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Abstract

Preparation of homogeneous CNT coatings in insulating silica capillary tubes is carried out by an innovative electrochemically-assisted method in which the driving force for the deposition is the change in pH inside the

confined space between the inner electrode and the capillary walls. This method represents a great advancement in the development of CNT coatings following a simple, cost-effective methodology.

1 Introduction

In the last decade innovation in the design of microfluidic systems [1,2] combined with a deeper understanding of the singularities of chemistry in confined spaces [3,4] has boosted new breath into the development of microreactors,

i.e., those with at least two of their dimensions in the range of tens to hundreds of microns. Microreactors are considered a tool with the potential to push forward many industrial and lab processes which cannot be efficiently handled in

conventional reactors [5,6]. It is well established that in many cases synthetic chemistry [7,3], clinical analysis [8,9] and power supply devices [10,11] can benefit from miniaturization. The reason behind these claims is mainly the

optimization of heat and mass transfer due to their large surface-to-volume ratios. In addition the smart design of the reactor as a microfluidic system allows an increased control on the selectivity [3] and duration of critical reaction steps such

as mixing or the chemical reaction itself. However, the spread of microreactors as a truly versatile tool depends highly upon the ability to provide microfluidic conducts with functional stationary phases [12]. To achieve this particular target,

new strategies must still be developed in order to enable the generation of homogeneous coatings with the desired thickness throughout the microfluidic pipes without clogging the system.

The present work addresses the particular problem of the preparation of Carbon Nanotube (CNT) coatings as stationary phases inside capillary tubes. The CNT and graphene incorporation in microfluidic systems has recently drawn

attention due to their remarkable properties for solid phase separation. However, a recent review points out the urge for further developments in the preparation procedures as well as understanding of the fundamentals [13]. Nevertheless,

when it comes to the preparation of CNT films/coatings in a controlled manner a vast experience is already available in macroscopic as well as in patterned substrates. Authors usually choose between Chemical Vapor Deposition (CVD)

[14–16] and Electrophoretic Deposition (EPD) [17,18]. CVD generates dense, vertically aligned forests of CNTs using an organic carbon source, a metallic catalytic seed and high temperatures in an inert atmosphere. On the other hand EPD

is a method which specifically targets electrically conducting substrates and where already formed CNTs are provided in a liquid dispersion. The application of an electric field in the order of several tens of V cm−1 in an electrolyte-free CNT

dispersion induces the migration of anionic nanotubes towards the positively charged anode, followed by CNT coagulation and finally the formation of a deposit on the electrode which can retain CNT alignment in some cases [19]. CVD

presents the best conditions for its adaptation to miniaturized devices [20], provided that a good seeding of the metallic catalyst is achieved throughout the target surface. However, from a purely fundamental point of view there are other

concerns to be considered such as: (i) the use of temperatures higher than 600 °C necessary for the CNT preparation may affect the integrity of the reactor material, making it unsuitable for materials such as poly(methyl methacrylate)

(PMMA), poly(carbonate) (PC), poly(styrene) (PS) or poly(dimethyl siloxane) (PDMS) [21]; and (ii) the requirement in many cases for additional post-treatment to either remove the metals present in native CNTs (purification) and/or grafting a

supported catalyst, which can be complicated due to low accessibility and the corrosive action of acidic solutions used in the purification step.
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Concerning EPD, the intrinsic need for a conducting surface to act as the substrate meets the additional requirement for an “open structure” (i.e., appropriate channel design), since tubular conducts would require a non-conventional

electrode configuration in order to obtain a homogeneous distribution of the electric field along the inner cavity. These two limitations make EPD suitable for few specialty microreactor designs.

In the present study commercial fused-silica capillary tubes are used as a model insulator-based microreactor. To the best of our knowledge all reports dealing with the attachment of CNTs inside capillary tubes rely on the chemical

modification of the inner silica wall to induce specific interactions with the CNTs [22–24]. Different interactions from Van der Waals [22] to electrostatic [23], to covalent binding [24] have been claimed as responsible for the CNT retention

inside the capillary. The fact that a direct interaction between the capillary tube inner wall and the CNTs is needed generally limits the coating to a monolayer. In contrast to these approaches, here we present a method to prepare

homogeneous coatings of pre-synthesized CNTs especially suitable for tubular micro-conducts made up of an insulating material while avoiding chemical pre-treatments. This simple method uses cheap and readily available equipment,

reduces the number of necessary steps and avoids the use of toxic solvents. As in the case of EPD, electrochemistry is used for the deposition of the CNTs, but with a striking difference: the driving force is mainly the local pH shift produced

at the electrode environment caused by redox reactions. This versatile technique has been successfully applied in the preparation of controlled deposits of different inorganic materials (see for example Refs. [25,26]) and even composites

containing CNTs such as chitosan-CNTs [27], silica-CNTs [28], metal complexes-CNTs [29], and hydroxyapatite-CNTs [30]. Moreover, this strategy has already  proven its usefulness in the preparation of patterned coatings

of CNTs on conductive substrates [31]. The protocol for the successful deposition of CNTs coatings needs the preparation of pH sensitive CNT dispersions. Oxidized CNTs are known to be dispersed in water under neutral to alkaline pH

due to the presence of acidic O-containing groups such as carboxylic acids. At sufficiently high pH values, these groups release protons to give negatively charged CNTs where water molecules easily disrupt the π-– π stacking interactions. It

is well established that acidifying the solution leads to CNT coagulation due to the neutralization of these charges, although some groups [32] have reported the possibility of dispersing functionalized CNTs under acidic pH after undergoing

harsh oxidation treatments, which may be due to the presence of defects on the surface of the CNTs apart from the surface oxygen groups. In the present study, water oxidation on an inert metal electrode is used to decrease the local pH

inside the insulating capillary tube.

2 Experimental

2.1 Carbon nanotube functionalization

Commercial Multiwalled CNTs (MWCNT, NanoBlack, Columbian Chemicals Co.) with a typical diameter of 14 nm and lengths ranging from few hundred nanometers to several microns, and a measured BET area of 253  m2 g−1 [33], were used without

further purification. Considering the MWCNT coatings, the geometric coverage on a flat surface was estimated as Scovered = SBET/π = 80  m2 g−1, by assuming an ideal rod-shaped form for the CNTs. Functionalization of the MWCNT surface (fMWCNT) with O-

containing groups was achieved by reaction with ammonium persulfate (APS, Merck) in aqueous solution (0.5 g of MWCNT in 100 mL, 20% w/v APS), for 24 h at 25.0 ± 0.1 °C. The fMWCNT were recovered by centrifugation, and purified by re-

dispersion in ultra-pure water aliquots several times followed by subsequent centrifugation steps. TG-MS analysis was performed on the sample in order to analyze the amount of surface oxygen groups on the MWCNT.

2.2 Preparation and characterization of the Pd catalyst

Pd-decorated partially oxidized Multi-Walled Carbon Nanotubes, fMWCNT-Pd, were prepared by direct impregnation of the fMWCNT, where previously formed Pd nanoparticles were spontaneously attached to the carbon support after spending

several days in suspension. Pd nanoparticles were provided in the form of a stable colloidal suspension in methanol, prepared using a method from the literature [34]. After 72 h stirring at room temperature, the already formed catalyst was recovered by

filtering. Non-specifically attached Pd and capping agent excess were removed by subsequent washing with refrigerated water–ethanol mixture prepared with equivalent volumes.

2.3 Preparation of stable fMWCNT dispersions in water and estimation of their concentration

To obtain highly concentrated solutions, 100 mg of the solid sample were dispersed in 10 mL ultra-pure water using sonication. The mixture was centrifuged in order to separate the stable dispersion from the non-soluble fraction. This fraction can be

used to prepare new CNT dispersions by repeating the whole process over again. The first or the second aliquot is usually the highest concentrated for the fMWCNT-Pd, while for fMWCNT the highest value is obtained after 6–7 water extractions. For the

estimation of the concentration as well as for the studies on CNT leaching the π-plasmon band in UV analysis (245 nm) was used. The MWCNT dispersions were diluted 1:35 v/v in ultra-pure water and the UV–Vis–NIR spectrum was obtained in a JASCO (V-

670) spectrophotometer. The difference between the absorbance at 1300 nm (baseline) and 350 nm was used as the indicative parameter. This value multiplied by a factor 1.085 – the slope of the calibration curve – gives a good estimate of the real

concentration in mg mL−1.

2.4 Electrochemically-assisted fMWCNT deposition

An electrochemical column-shaped glass cell (10 cm long; 1.5 cm inner diameter) sealed by rubber septa at both ends was employed. Commercial fused silica capillary tubes for chromatography (Agilent, 0.250 mm inner diameter) were used as

received. Capillary tube segments employed were typically 18–23 cm long. One end of the capillary tube was fixed to a syringe by means of epoxy adhesive, to allow its filling and emptying, and then was inserted in the electrochemical cell through the upper

septum. A Pd wire (Goodfellow, 0.050 mm diameter) was passed all the way through the capillary segment, exiting the cell through the lower septum. Copper self-adhesive tape was used to immobilize the tip of the Pd inner electrode, providing a stiff point for
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the electric contact. A coiled Pt wire (Goodfellow, 1.0 mm diameter) acted as the auxiliary-outer-electrode. The lower end of the capillary tube almost reaches the bottom of the glass cell, lying only a few millimeters away from both the septum and the outer

electrode. In the present configuration a very small volume (1–2 mL) of the fMWCNT / fMWCNT-Pd aqueous dispersion was required. Once the components were placed as indicated in Fig. 1, a DC power source (Phywe) was connected to the electrodes,

always setting the Pd -inner- electrode as the anode (+). After a 1 h treatment at a voltage of 30 V, the capillary tube and the Pd wire were removed from the cell jointly. The inner solution was drawn out with the syringe and the tube was dried at 80 °C under

dynamic vacuum before carefully removing the wire to avoid scratching of the CNT coating.

2.5 Sample characterization

The obtained samples were characterized by Scanning Electron Microscopy (SEM, JEOL JSM-840), with an acceleration voltage of 15 kV. The capillary segments were beveled with a scalpel blade in order to uncover the inner face of the tube.

Samples were coated with a thin gold layer prior to analysis. CNTs samples were also characterized by Transmission Electron Microscopy (TEM, JEOL JEM-2010) with an accelerating voltage of 200 kV.

Quantification of the Pd loading in the catalysts was performed by the analysis of the solutions obtained through the acidic digestion of an fMWCNT-Pd sample with the Inductively Coupled Plasma-Optical Electron Spectroscopy technique (ICP-OES,

Perkin Elmer, Optima 4300 DV).

Thermal analyses of the samples were carried out in a Differential Scanning Calorimetry-Thermogravimetric Analysis (DSC-TGA) equipment (TA Instruments, SDT 2960 Simultaneous) coupled to a mass spectrometer (Thermostar, Balzers,

GSD 300 T3). About 10 mg of the sample were heated up to 940 °C (heating rate of 10 °C/min) under a helium flow rate of 100 mL/min.

Electrochemical studies of the fMWCNT-Pd coated capillary tubes were performed in a standard 3 electrode electrochemical cell, using a reversible hydrogen electrode (RHE) as the reference electrode and a platinum wire as the counter-electrode.

Cyclic voltammetry was measured in a 0.5 M H2SO4 electrolyte, thoroughly purged with N2 (g) prior to each experiment, at a scan rate of 10 mV s−1. The fMWCNT-Pd coated capillary tube used as the working electrode was prepared in such a way

that electric contact with the inner CNT layer could be easily made. For such a purpose the capillary was beveled at the upper end and then covered with a thin layer of sputtered gold, covering the tip inside and outside. Then a conducting silver-epoxy

adhesive was used to bind the metalized end of the capillary tube to the needle of a syringe. Electrical contact to the CNT coating was made directly through the needle. Fine control of the electrolyte level in the capillary was achieved by means of a pro-pipette

adapted to the syringe through a flexible rubber conduct. An eDAQ potentiostat and recorder were used to record the cyclic voltamm ogram.

3 Results and discussion

The functionalization treatment significantly increased the amount of surface oxygen groups present in the MWCNT  without altering their morphology. For the fMWCNT sample the combined presence of CO2 and H2O

evolution in the region below 300 °C is highly characteristic of the presence of carboxylic acid groups, Fig. 2. The CO desorption at higher temperatures is due to decomposition of other O-containing surface groups such as anhydrides,

Fig. 1 Illustration (Please substitute Figure 1 with the image attached in this galley proof document. Thank you very much ) of the experimental setup for the electrochemically-assisted deposition of MWCNT inside capillary tubes. Insets corresponding to a close-up view (lower right) of the bottom of

the cell and the suggested deposition process (top right).
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phenols, ethers, quinones and carbonyl groups. Quantification of CO2 and CO signals at the mass spectrometer revealed that the oxygen content after functionalization rose to 5.4  wt%, from the 1.5  wt% typical of as received

MWCNT.

TEM analysis of the sample fMWCNT-Pd revealed that the Pd nanoparticles were very well distributed on the surface of the carbon support (Fig. 3), without any visible agglomeration. The Pd loading in the catalyst was

1.33 ± 0.02  wt% according to the ICP-OES analysis.

lactones, 

Fig. 2 CO2, CO and H2O desorption rate profiles as a function of the temperature for the fMWCNT sample. (A color version of this figure can be viewed online.)

ELSEVIER_CARBON_8465



The experimental setup employed for the electrochemically-assisted coating process consisted basically on a DC power source and an electrochemical cell, provided with two inert electrodes (metal wires), where the capillary tube is

held vertically. The configuration of the different elements is illustrated in Fig. 1. A Pd wire (Ø = 50 µm, inner electrode) in passed through the capillary tube, exiting the cell through a rubber septum at the bottom of the cell. An auxiliary

electrode is provided in the form of a Pt coil (counter electrode) with one end exiting the upper rubber septum. The solution used as electrolyte was a concentrated dispersion of fMWCNT or a dispersion of fMWCNT-Pd in ultra-pure water (see

Section 2.3).

The electrochemical treatment consisted in the application of a high voltage (30 V) between the inner (anode, +) and outer (cathode, -) −) electrodes. The applied voltage must be high enough to produce the oxidation of water

molecules at the Pd wire, but not too high in order to prevent gas evolution as a result of the massive formation of dioxygen. As water electrolysis proceeds protons are released over the inner electrode, acidifying the solution confined within

the capillary tube, Fig. 1.

Confinement is expected to enhance the local pH shift by limiting proton diffusion to the electrolyte reservoir at the bottom of the cell. This change in the local pH inside the capillary causes the CNTs to coagulate, favouring the

massive deposition of the newly formed aggregates on the capillary surface and the Pd wire used as anode. After 1 h of electrochemical treatment the capillary tube inner wall was nearly covered with a homogeneous CNT coating along the

length of the fused silica capillary, as revealed by SEM images in Fig. 4 A-–D, at the magnification scale used. As evidenced from these images, dense layers of fMWCNT may be deposited on an insulating substrate with a complex

geometry by a simple methodology in which no pre-treatment of the substrate is necessary and which, moreover, does not require the use of high temperatures, aggressive chemicals, or noxious solvents. A control experiment was performed

in which no current was passed through the circuit in order to verify that the CNTs were indeed deposited by an electrochemically-assisted process. The control experiment did not yield any appreciable CNT deposits.

Fig. 3 TEM images of fMWCNT-Pd deposited from a stable water dispersion. Scale bar: 20 nm; inset scale bar: 5 nm.
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A thorough microscopic analysis along the main axis did not display significant changes in the CNT deposit as a function of the distance to the bottom of the cell. Fig. 4A and  4B feature two spots from the capillary separated by

10 cm with almost identical coverage.

Fig. 4 SEM images of the inner wall of fMWCNT (A–D) and fMWCNT-Pd (E–H) coated capillary tubes. Silica splinters (sharp-edged fragments) and fractures are artifacts produced as a result of the incision with the scalpel blade.
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The same procedure was repeated with a dispersion of fMWCNT-Pd. The coverage featured by the SEM images (Fig. 4,  E-–H) is slightly higher than that of the bare fMWCNT, rendering an almost homogeneous coating of at least one

monolayer thick. This improvement may be related to the 4-fold increase (0.9 to –3.9 mg · mL−1) in the concentration of the fMWCNT in water when loaded with palladium nanoparticles, as evidenced from the UV–Vis analysis of the samples

(Fig. 5). This increase in maximum dispersion of the MWCNT was probably due to the presence of the capping agent poly(n-vynilpyrrolidone) (PVP) that protects the nanoparticles from aggregation. It should be highlighted that for a good

coverage of the capillary tube, working electrolyte solutions should be as concentrated as possible, thus the necessity of increasing the amount of surface oxygen-containing groups of the starting material.

It must be noted that for comparison purposes, the same electroassisted deposition process was applied to a conventional conductive support (flat ITO glass). After undergoing deposition under the same conditions as those

described in this study, a continuous deposit of CNTs was observed on the surface of the glass slide (results not shown). Moreover, using this configuration the CNT assisted-electrodeposi tion could be obtained at voltages as low as 2 V, as

reported by Aziz and Yang [31]. In this respect, the use of comparatively high voltages is necessary when using the fused silica capillaries due to their being insulating materials.

SEM offers valuable qualitative information about the degree of immobilization and distribution of CNTs on the silica walls. Nevertheless, a quantification of the amount of CNTs inside the capillary using Air-TG was also attempted.

As the flexible polyimide coating found over the silica capillary could also be oxidized at the same temperature range of the CNTs, its removal is critical to avoid misassignments. In order to do this, the electrochemically-assisted deposition

was performed as described previously, but using a silica capillary tube where the polymer coating had been carefully burned off with a conventional flame burner. After deposition, a 10 mg sample of the capillary tube was cut into small

segments of few mm. The conditions and the equipment for TG-MS were the same as for the TPD except for the injected gas, replaced now by synthetic air (H2O and CO2 < 5 ppm). A clear increase for the CO2 MS-signal was observed in the

region between 500 and 700 °C, Fig. 6. A control experiment performed with a polyimide-free capillary tube in the absence of the CNT deposit clearly shows that the previously found CO2 desorption must be due to the combustion of the CNT

coating. The area under the peak was quantified giving a 0.023  wt% for the CNT deposit related to the total mass of the coated capillary tube.

Fig. 5 UV–Vis–NIR spectra of the different stable CNT dispersions employed in the present study, after 1:35 dilution in water. The difference between the absorbance at 1300 nm (baseline) and 350 nm was used as the indicative parameter. (A color version of this figure can be viewed online.)

o
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The pristine MWCNT used in the present study are known to cover a geometric area of about 80  m2 g−1, leading to an estimated coverage value of 0.250  cm2 per 1 cm length (pcl). To put these figures into context it must be

emphasized that the specific surface of the inner wall of the capillary tube is just 0.078  cm2 pcl, which would mean that the method reported in this study can deliver a coating of MWCNT with an estimated thickness of three monolayers.

In order to properly test the homogeneity and coherence of the CNT deposit, cyclic voltammetry was performed inside the capillary tube using the CNT layer as the working electrode (WE) in a 3 electrode-electrochemical cell. By

filling the capillary with growing amounts of electrolyte solution a broadening in the double layer of the cyclic voltammogram was observed, Fig. 7. This is due to an increase in the WE surface area immersed in the electrolyte. In addition,

quantification of the broadening registered at 1.05 V, rendered average current values of 13.3, 23.5 and 35.6 nA for electrolyte filling levels of 2, 4 and 6 cm, respectively. The increase in the area immersed follows a 1: 1.8: 2.7 ratio as the

electrolyte level is increased inside the capillary, confirming that the distribution of the CNTs along the tube surface is homogeneous, with a slight enrichment at the lower section of the capillary. 

Fig. 6 CO2 desorption rate profile as a function of the temperature, during the combustion of silica capillary tubes in synthetic air. (A color version of this figure can be viewed online.)

The of the voltammograms

towards lower intensities below 0.5 V as the capillary length is increased may be related to CNT agglomeration , which would be a direct result of the deposition method reported in this study (vide supra).

 shifting elongation

 (thjs may arise from diffusional limitations)
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Finally the adherence of the fMWCNT coating to the silica wall in hydrodynamic conditions was studied. These preliminary tests consist in flowing water aliquots through the fMWCNT and fMWCNT-Pd modified capillary tubes at a

controlled rate (10 mL s−1  ≡  4 m s−1). Each capillary segment was treated with nearly 104 times its inner volume. SEM images obtained after the treatment showed non-significant CNT loss in either fMWCNT or fMWCNT-Pd coated capillary

tubes, Fig. 8. As no large parts of the deposit were missing, UV–Vis spectroscopic analysis of water aliquots was employed in order to trace the possible dispersion of individual nanotubes or small bundles. The π-plasmon MWCNT

characteristic signal centered at 245 nm was absent in all cases, suggesting that CNT concentration in the aliquot must fall below the detection limit of the technique, experimentally determined to be 10 ng mL−1. According to these results

CNT leaching beyond 2  wt% under harsh hydrodynamic conditions can be ruled out. This method can be listed as environmental-friendly as organic solvents are not required and no significant MWCNT leaching from the coating takes place.

Fig. 7 Cyclic voltammograms obtained in 0.5 M H2SO4 for the capillary tube coated with fMWCNT-Pd, for increasing levels of the electrolyte inside the tube. Scan rate of 10 mV s−1.
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4 Conclusion

In summary, a simple, robust and innovative electrochemically-assisted method for the generation of homogeneous CNT coatings inside fused-silica capillary tubes has been demonstrated using a very simple principle

(aggregation–deposition of CNTs when submitted to a pH change) and readily-available instrumentation. Due to the simplicity of the operational principles, CNT-supported  catalysts can be easily prepared as coatings too. While no pre-

treatment of the target surface was required, this method may be applied to complex reactor architectures and avoids problems derived from the use of high temperatures required for CVD. Unlike for EPD, insulating materials and closed

micro-conducts are perfectly suited substrates for CNT deposition. This method can be listed as environmental-friendly as organic solvents are not required and no significant MWCNT leaching from the coating takes place, even under harsh

hydrodynamic conditions. The possible use of SWCNT, scalability and production of thicker coatings are the matter of ongoing research but the simplicity of the present strategy offers good prospects for all these purposes.
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