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Abstract. A new Flow Blurring® multiple nebulizer (FBMN) has been used for the 

efficient generation of As and Se hydrides directly into the aerosol formed inside the 

spray chamber before detection by inductively coupled plasma optical emission 

spectrometry (ICP OES). The FBMN allowed the hydrides generation directly into the 

spray chamber without using any additional device either for solution and gases control 

or for gas phase separation. Synthetic solutions containing As and Se plus Ca, Mg and 

K were used for evaluating matrix effects and Ge was suggested as internal standard. 

Limits of detection of 2.7 and 5.8 µg L-1 were obtained for As and Se, respectively, 

when keeping the nebulization gas flow rate at 0.60 L min-1 and the liquid flow rate at 

0.67 mL min-1. The developed procedure was applied for spiked digests of food samples 

and quantitative recoveries were attained. The combination of FBMN, internal standard 

and hydride generation is a robust and simple approach for generating As and Se 

hydrides directly into the aerosol. 
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1. Introduction 

Arsenic is widely and naturally distributed in the environment. Depending on its 

chemical form, it is considered toxic for all living organisms and it has any known 

biological function. The main route of exposure to arsenic is by ingestion of foods and 

beverages [1]. Selenium also occurs in all earth’s crust and it is considered an essential 

element, but it can be toxic at high concentrations [2]. Generally, these elements are 

found in low concentrations and their determinations require the use of sensitive 

techniques. Inductively coupled plasma optical emission spectrometry (ICP OES) is 

widely used in chemical analysis because of its multielemental character, high 

throughput, and capability for simultaneous determination. However, ICP OES may 

present limitations for determining trace elements when using its conventional liquid 

sample introduction system [3,4]. The most common route for introducing samples into 

the plasma is by converting them into solutions in diluted acid medium. A conventional 

liquid sample introduction system is composed by a nebulizer and a spray chamber. 

Usually an aerosol is generated by a nebulizer and transported to the plasma through a 

spray chamber [4,6]. However, most commonly used systems show some drawbacks 

such as low transport efficiency, high sample consumption, clogging with high salt 

content matrices and matrix effects in As and Se determination in presence of easily 

ionized elements (EIEs) [4,7-10]. Many strategies were developed in order to overcome 

these limitations, such as hydride generation (HG) for hydride-forming elements and 

modified sample introduction systems. Frequently HG is used for improving sensitivity 

because of the higher transport efficiency of the gas phase and the separation of the 

analyte from the matrix. These advantages made HG a routine sample introduction 

technique in atomic spectrometry [11]. Pohl et al. developed a procedure for 

determining As and Sb using continuous flow HG coupled to microstrip plasma (MSP) 
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for emission spectrometry [12]. Savio et al. proposed a procedure combining flow 

injection (FI) and HG-ICP OES. The developed procedure was suitable for determining 

As, Bi, Sb and Se as hydrides in airborne particulates  [13]. Other authors also proposed 

the use of modified nebulizers such as V-groove, ultrasonic and concentric Meinhard as 

direct hydride generation nebulizers [14-16]. Rojas et al. proposed the use of a direct 

hydride generation nebulizer (DHGN) as sample introduction system for As, Sb and Se 

determination [17]. Maldonado et al.[18] and Gómez et al.[19] reported a dual nebulizer 

sample introduction system in which two nebulizers were coupled to the spray chamber. 

Matusiewicz and Ślachciński described the development of the SS-CVG-NEB-MIP 

OES (i.e., slurry sampling - chemical vapor generation - pneumatic nebulization - 

microwave induced plasma optical emission spectrometry) for As, Bi, Ge, Sb, Se, Sn, 

Hg, Ca, Fe, Mg, Mn, and Zn determination [20,21]. These same authors also evaluated 

the performance of a commercial, specially designed continuous-microflow ultrasonic 

nebulizer dual capillary system for determination of volatile species by MIP OES 

[20,21]. Asfaw and Wibetoe [22] developed a procedure for the simultaneously analysis 

of hydride and non-hydride-forming species using the commercial multimode sample 

introduction system® (MSIS) by ICP OES. Wiltsche et al.[23] used the same MSIS for 

multielemental analysis of high alloy steels using masking agents by ICP OES. It must 

be pointed out that in all these works the HG systems require the use of other devices 

for solutions management, for controlling reactions and for gas-liquid separation. The 

majority of these systems are relatively expensive, difficult to handle, high sample 

consumption and their applications could be limited to the analysis of simple 

environmental and biological samples because they did not employ the combination of 

internal standard and masking agents.  
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Recently, Aguirre et al. reported the performance of a new and efficient multiple sample 

introduction device based on the Flow Blurring® nebulization principle. These authors 

adopted on-line internal standard calibration to determine several elements in complex 

matrices obtaining good precision, accuracy and limits of detection [24]. Also, it was 

reported the successful elimination of matrix effects in As and Se determination using a 

multiple nebulizer [25].   

The aim of the study here described was to develop a simple and robust system for 

hydride generation and on-line internal standardization based on the new Flow 

Blurring® multiple nebulizer (FBMN). The performance of this device for aerosol 

generation of As and Se hydrides and on-line internal standardization followed by 

determination by ICP OES was studied. The first focus was the development of a 

straightforward and efficient approach for hydride generation directly into the aerosol 

inside the nebulization chamber without requiring any additional device either for 

solutions control or for gas phase separation. The second one was to use the FBMN for 

correcting matrix effects caused by Ca, K, Mg and a mixture of all them for the 

determination of As and Se by ICP OES using on-line internal standardization. 

2. Experimental 

2.1. Reagents and solutions  

All reagents used were of analytical grade. Stock solutions of 1000 mg L-1 As and Se 

were purchased from High-Purity Mono Element Standard Solutions (Charleston, 

USA). Four analytical calibration solutions containing 50, 100, 150 and 200 µg L-1 As 

and Se were prepared by dilution of the respective stock solutions. Taking into account 

the concentration of nitric acid in the diluted food digests, all calibration solutions were 

acidified to 0.14 mol L-1 by adding proper volume of HNO3 65% w w-1 high purity 
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grade (Merck, Darmstadt, Germany). A calibration blank containing the same amount of 

HNO3 was also prepared. 

Arsenic and Se solutions containing 100 µg L-1 of each element were also prepared in 

media containing 0.050 and 0.100 mol L-1 K, Ca, Mg and a mixture of them as nitrate 

salts (Merck).  

Measurements using internal standard (I.S.) was performed using solutions of 100 µg L-

1 of Ge prepared from 1000 mg L-1 stock solutions (High-Purity Mono Element 

Standard Solutions). This internal standard solution was acidified to 3 mol L-1 HCl 

(Merck) for proper generation of hydrides.  

A 2.2% w v-1 sodium borohydride (Scharlau, Barcelona, Spain) solution in 0.1% w v-1 

potassium hydroxide (Scharlau) and 5% w v-1 thiourea (Merck) was daily prepared 

immediately prior to analysis.  

2.2. On-line hydride generation  

The geometry of the FBMN allowed easy and simple coupling with the conventional 

spray chamber. The on-line hydride generation system used in this work was composed 

by the new FBMN prototype, previously described [25-27] associated with a 

conventional baffled cyclonic spray chamber with a volume of 50 mL (model Twister, 

Glass Expansion, West Melbourne, Victoria, Australia). The combination of FBMN and 

the spray chamber was named as the FBMN-based system. Figure 1 shows the 

schematic diagram of the on-line hydride generation system using the FBMN-based 

system. Reagent solutions (i.e., borohydride and hydrochloric acid), masking agent (i.e., 

thiourea), internal standards and calibration standards/samples were simultaneously 

aspirated and flowed through the three capillaries of the FBMN and they were inserted 

into the spray chamber. Then the primary aerosols generated by the nozzles interact 

inside the spray chamber generating the conditions for hydrides formation. The tertiary 
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aerosol is transported to the spectrometer without any separation of gas and liquid 

phases. 

2.3. Instrumentation 

All measurements were made using an ICP OES with dual view capacity but operated 

in axially-viewed plasma mode (Perkin Elmer, Model Optima 4300DV, Norwalk, CT, 

USA). The operating conditions are shown in Table 1. The sample introduction system 

is outside of the instrument providing easy access. The quartz torch used is removable 

and has a ceramic injector. Figure 2 shows a photograph of the FBMN-based system. 

2.4. Optimization of CP OES parameters 

It is important to mention that the liquid uptake flow rate and all reagent concentrations, 

e.g. the optimum concentration of tiourea, were optimized in a previous study using 

experimental design for eliminating interferences caused by transition metals, i.e., Cu, 

Cd, Co, Ni and Fe.  Data were evaluated with the NemroadW version 2007 software 

(LPRAI, Marseille, France) [27].  On the other hand, the fine adjustment of the 

concentrations of HCl and sodium borohydride solutions is relevant because both have a 

strong influence on HG. The total liquid flow rate used was 0.67 mL min-1 (i.e., 0.22 

mL min-1 for each nozzle, approximately) and total nebulizer gas flow rate was 0.60 L 

min-1 (i.e., 0.20 L min-1 for each nozzle). The optimum operating conditions are 

summarized in Table 1. 

2.5. Digestion of food samples 

All tested food samples (i.e., viscera, processed food, hamburger, wrapped food, jam, 

pate and soy food) were microwave-assisted acid-digested using an Ethos 1 microwave 

oven (Milestone, Sorisole, Italy). A mass of 250 mg of a lyophilized sample is inserted 

in the microwave vessel and a volume of 5 mL HNO3 concentrated was added. The 

mixture is left in contact without heating during 2 h. Afterwards, the vessels are closed 
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and the rotor is inserted inside the microwave oven cavity. The following heating 

program was applied: (1) heat up to 95 oC during 3 min, (2) heat up to 165 oC during 15 

min, (3) heat up to 190 oC during 5 min, (4) hold at 190 oC during 15 min.  

Since As and Se concentrations in the tested samples were below the limits of detection, 

all digests were spiked with 20 µg L-1 of As and Se. Recoveries of As and Se in these 

spiked solutions will show the accuracy of the developed procedure. 

3. Results and discussion 

3.1. Hydride generation and matrix effects 

The formation of As and Se hydrides was studied in media containing Ca, Mg, K and all 

them for evaluating matrix interferences. The performance of the system was assessed 

by using addition-recovery experiments. Figure 3 shows the recoveries for 100 µg L-1 of 

As and Se in 0.100 mol L-1 K, Mg, Ca, and a mixture of all them using external 

calibration without internal standardization and on-line internal standardization with the 

FBMN-based system. When external calibration was used, signal depression in the 

different matrices evaluated was observed. For all As emission lines evaluated the mean 

recoveries using external calibration were 94% for Ca, 92% for Mg, 91% for K and 

79% for a mixture of them. The mean recoveries obtained for the Se emission lines were 

70% for Ca, 87% for Mg, 77% for K and 50% for the mixture. It is known that these 

EIEs interfere in the generation and transport of aerosol as well as in the stability of the 

plasma. So it is necessary to use internal standardization in order to  compensate for 

matrix effects. Since hydrides from the analytes are formed inside the spray chamber, 

the internal standard to be used should present similar behavior for proper correction of 

eventual matrix effects on HG. For this reason, Ge was tested as internal standard. 

Higher recoveries and lower standard deviations were obtained when using Ge(I) 

303.906 nm emission line. Addition-recovery experiments indicated that a solution 
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containing 100 µg L-1 of Ge presented the best performance for correcting for matrix 

effects and improving accuracy. When on-line internal standardization was applied, the 

mean recoveries for As emission lines using Ge as I.S. were 96% for Ca, 94% for Mg, 

99% for K and 99% for a mixture of them. For the most sensitive As emission line (i.e., 

As(I) 228.812 nm) recoveries were 97% for Ca, 92% for Mg, 99% for K and 101% for 

the mixture. The mean recoveries obtained for the two Se emission lines were 90% for 

Ca, 94% for Mg, 103% for K and 108% for the mixture. For the most sensitive Se 

emission line (i.e., Se(I) 196.026 nm) recoveries were 99% for Ca, 91% for Mg, 103% 

for K and 104% for the mixture. Data presented show quantitative recoveries for most 

emission lines in different media, but As(I) 228.812 nm and Se(I) 196.026 nm lines 

presented higher recoveries in Ca, Mg, K and a mixture of them 0.100 mol L-1 medium. 

The same behavior was observed using solutions containing 0.050 mol L-1 of each 

concomitant. 

Comparing the system proposed by Maldonado et al. [18] and this work, we observe 

some difference between them. The work proposed here used a new multiple nebulizer, 

a commercial spray chamber and a peristaltic pump while Maldonado et al. used two 

nebulizers, a spray chamber that is not commercially available and two peristaltic 

pumps. Therefore our system does not change appreciably from a conventional sample 

introduction system used in ICP OES. Internal standard approach and thiourea were 

used here to compensate matrix effects, on the other hand Maldonado et al. just used 

thiourea. The LOD for As I (188.979 nm) showed by this study was lower than that 

found previously[18]. 

 

3.2. Analytical figures of merit 
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Limits of detection (LOD), calculated using the IUPAC recommendation (based on 3σ 

blank criterion, determined by 10 consecutive measurements of the blank involving the 

entire process), are summarized in Table 2. Table 2 also shows LOD values previously 

presented in the literature and for the FBMN without hydride generation. It can be 

observed that with the combination of HG and FBMN better LOD values were achieved 

for all emission lines of As and Se in comparison with those obtained without HG (i.e., 

higher sensitivity was reached using HG).  As expected, the introduction of As and Se 

as hydrides directly generated into the spray chamber led to a gain of sensitivity around 

15-fold when compared to the direct introduction of solutions of these analytes using 

FBMN.  

Table 2 also shows LOD values obtained using different hydride generation systems. 

Despite the fact that the use of masking reagent results in a significant reduction of 

volatile hydride intensities [17,23,27], this reagent is needed to analyze real samples. 

On this study masking agent has been used on the LOD values calculations and they are 

comparable to those obtained by Wiltsche et al.[23] and slightly higher than those 

obtained by Matusiewicz and Ślachciński [21] (both works using masking agent). On 

the other hand, there are different works with LOD values lower than this study [17,28]. 

This could be related with the high sample consumption (higher than 2 mL min-1). If 

there is not limitation in sample amount, an increment in the sample flow rate may help 

to decrease LOD values. Nevertheless, in this work the use of a sample flow rate as 

small as possible was chosen because both the analysis of samples with limited volume, 

e.g. some biological fluids, and without any limitation can be tackled. The µ-USN-

DCS-HG-MIP OES is especially interesting since it provides better LOD values with a 

sample consumption only of 15 µL min-1 [21]. Nevertheless, this system is not 
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commercially available and it may be complex to handle (i.e., home-made ultrasonic 

nebulizer and torch electrically heated). 

3.3. Real samples 

In order to assess the applicability of the new hydride generation device, different real 

samples were analyzed. 

All samples were mineralized using closed vessel pressurized system assisted by 

microwave energy using nitric acid. Usually, acids such as HNO3, that is used for wet 

sample digestion is responsible by oxidation of the analytes to their higher oxidation 

states, i.e. pentavalent form for arsenic (As(V)) and hexavalent form for selenium 

(Se(VI)). Thus it is necessary to use pre-reducing reagents to ensure that analytes are 

present in the solutions at their lower oxidation states. For pre-reduction of As(V) to 

As(III) the reagents normally used are: KI, thiourea and ascorbic acid. For reducing 

Se(VI) to Se(IV) the use of a mixture of HCl and HBr under heating is common[11]. 

In multi-elemental analysis it is essential to use only one procedure for all analytes. 

Thiourea in combination with HCl was shown as a convenient pre-reducing agent for 

simultaneous determination of As, Bi, Sb, Se, and Te [11]. 

In this study a mixture of thiourea and HCl was used as pre-reducing agent for hydride 

generation. The HCl and thiourea concentrations were optimized considering that the 

degree of reduction is also dependent on the concentrations of both. 

Considering the analytical application for food analysis, As is a contaminant in 

foodstuff, but there are no maximum levels established by Codex Alimentarius for this 

element in some foodstuffs, such as meats. According to the Mercosul Technical 

Regulation on maximum levels of inorganic contaminants in foods, the maximum level 

of As in foodstuff (processed food) is 0.5 mg kg-1 [29]. There is no maximum level for 

Se concentration in foodstuff.  
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Despite the good LOD values obtained with HG associated with FBMN, all digests of 

food samples did not contain detectable amounts of As and Se. Further, these digests 

were spiked with 20 µg L-1 of As and Se. Recoveries using HG and FBMN ranged from 

102 to 114 % for As and from 77 to 107% for Se (Table 3). Recoveries for Se varied in 

a relatively broad range because the spiked concentration is close to the limit of 

quantification obtained for this analyte. A diluted solution of nitric acid (0.14 mol L-1 

HNO3) was inserted between samples for preventing the occurrence of any memory 

effects.  

4. Conclusions 

The aerosol hydride generation system proposed in this work using the new FBMN 

offers a simple and robust alternative for generation of As and Se hydrides without 

requiring any special device for solutions control and gas-liquid separation. The FBMN 

is a straightforward device for fast and simple generation of hydrides. Limits of 

detection for As and Se with the FBMN-HG-ICP OES are of the same order of the best 

ones reported in the literature using masking agent. The combination of internal 

standard calibration and the masking agent could permit the analysis of complex 

metallurgical, environmental and biological samples. It was demonstrated that the 

FBMN is suitable for generation of As and Se hydrides taking into account the 

versatility and transport efficiency of this new multiple nebulizer. 
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Table 1. Operating conditions of the ICP OES. 

Generator frequency (MHz) 40 

Radio-frequency applied power (kW) 1.35 

Plasma gas flow rate (L min-1) 15 

Auxiliary gas flow rate (L min-1) 0.20 

Total nebulizer gas flow rate (L min-1) 0.60 

Total liquid flow rate (mL min-1) 0.67 

Read time (ms) 10 

Nebulizer Flow Blurring® multiple nebulizer 

Spray chamber Baffled cyclonic-type 

Wavelength (nm)  As(I) 228.812, Se(I) 196.026 
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Table 2. Limits of detection (µg L-1) for various sample introduction techniques. 

Emission lines (nm) 
AsI 

(188.979) 
AsI 

(193.696) 
AsI 

(197.197) 
AsI 

(228.812) 
SeI 

(196.026) 
SeI 

(203.985) 
I.S. 

Masking 
agent 

Sample flow rate 
(mL min-1) 

Source 

2.8 4.7 5.0 2.7 5.8 6.2 Yes Yes 0.22 Present work 

44 43 103 48 53 125 Yes No 0.30 
FBMN-
based 

systema 

0.1 - - - 0.4 - No No 2.2 
Chemifold 

system, 
PerkinElmerb 

0.4 - - - 0.1 - No No 2.2 [16]c 

5.3 - - - 4.9 - No No 0.24 [17]d 

3 - - - 10 - No No 0.60 [18]d 

- - - 1.2 3.3 - No Yes 0.015 [20]e 

0.5 1.8 - - 0.5 0.9 No No 0.85 [22]f 

2.5 - - - 4.9 - No Yes 0.85 [22]f 

aWithout HG. 
bConventional flow hydride system [27]. 
cDHGN (Direct Hydride Generation Nebulizer). 
dDual nebulizer system. 
eµ-USN-DCS-HG-MIP OES (microflow ultrasonic nebulizer dual capillary system hydride 
generation by MIP OES). 
f(MSIS) Multimode sample introduction system. 
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Table 3. Recoveries of AsI (228.812 nm) and SeI (196.026 nm) for spiked digests of 

food samples. 

Recovery (%)a,b 

Samples 
As Se 

Viscera 113 ± 11 107 ± 5 
Processed food 107 ± 1 88 ± 7 
Hamburger 102 ± 8 82 ± 4 
Wrapped food 113 ± 2 90 ± 10 
Jam 111 ± 1 91 ± 6 
Pate 114 ± 7 96 ± 11 
Soy food 105 ± 5 77 ± 7 
aMean ± standard deviation, n = 3. 
bSpiking level: 20 µg L-1. 
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Fig 1. Schematic diagram of the on-line hydride generation system using the FBMN-

based system: R1, NaBH4, KOH and thiourea; R2, HCl and internal standard; S, 

calibration standards and samples; PP, peristaltic pump; SP, spray chamber.  
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Fig 2. Photograph of FBMN coupled with baffled cyclonic spray chamber and blow up 

of the nebulizer tips (left) and bubbles (right) formed by hydride generation reaction 

inside the spray chamber. R1: NaBH4, KOH and thiourea; R2: HCl and internal 

standard; S: calibration standards and samples. 
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Fig 3. Recoveries of As and Se hydrides in 0.100 mol L-1 solutions of Ca, Mg, K and 

mixture of them using external calibration (grey bars) and the combination of on-line 

hydride generation and on-line internal calibration (black bars). I.S.: Ge(I) 303.906 nm; 

[Ge]=100 µg L-1. The error bars are the standard deviation of three measurements. 
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