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Abstract—Vision-based human action recognition allows to
detect and understand meaningful human motion. This makes
it possible to perform advanced human-computer interaction,
among other applications. In dynamic environments, adaptive
methods are required to support changing scenario characteris-
tics. Specifically, in human-robot interaction, smooth interaction
between humans and robots can only be performed if these are
able to evolve and adapt to the changing nature of the scenarios.
In this paper, an adaptive vision-based human action recognition
method is proposed. By means of an evolutionary optimisation
method, adaptive and incremental learning of human actions
is supported. Through an evolving bag of key poses, which
models the learnt actions over time, the current learning memory
is developed to recognise increasingly more actions or actors.
The evolutionary method selects the optimal subset of training
instances, features and parameter values for each learning phase,
and handles the evolution of the model. The experimentation
shows that our proposal achieves to adapt to new actions or
actors successfully, by rearranging the learnt model. Stable and
accurate results have been obtained on four publicly available
RGB and RGB-D datasets, unveiling the method’s robustness
and applicability.

Index Terms—Evolutionary computing and genetic algorithms,
Feature evaluation and selection, Human computer interaction,
Vision and Scene Understanding

I. INTRODUCTION

UMAN action recognition has recently become of im-

portant interest due to its wide variety of applications.
Improvements in vision-based recognition of short-temporal
human behaviours have led to advanced visual surveillance
systems [1]], as well as sophisticated human-computer inter-
action (HCI) techniques [2]], which are applied to gaming
or intelligent environments, among others. Although visual
interpretation of human motion, like actions or gestures, has
been studied extensively [3]], specific requirements of dynamic
environments have only sparingly been taken into account [4]],
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[5]. These are needed, for example in human-robot interaction
scenarios. Especially at home, robots can be useful supporting
several safety and health care scenarios as, for instance,
monitoring or mobility assistance [6]. These care services,
among others, can potentially improve the independent living
of the elderly, or serve senior assisted living facilities. Reliable
support can only be ensured if robots are intelligent enough to
analyse and understand the scenario they perform in and the
events that occur, in order to be able to interact appropriately.

The application of human action recognition (HAR) to this
specific case of HCI comes along with several additional
hurdles: 1) since human behaviours are subject to change
depending on the specific scenario and actor, and moreover,
the behaviours can vary over time, an incremental and adaptive
learning process is required. The system has to adapt its
knowledge dynamically to recognise new scenarios as, for
instance, new actions or new actors. This process needs to
happen incrementally, as the system should be able to learn
continuously over time without requiring to start from scratch.
Furthermore, the recognition capabilities need to evolve and
adapt to the new data that needs to be discriminated; 2) for
instance, a robot presents several limitations related to the
sensor data that can be collected due to space and weight
constraints, and also related to the computational capacity.
Therefore, a simple camera setup should be employed and real-
time recognition algorithms are required. We have considered
these constraints choosing a low-cost feature extraction and a
state-of-the-art real-time HAR recognition method.

In order to support this dynamic behaviour of the learning
process, the use of an evolutionary algorithm (EA) is proposed.
EA can provide good solutions to optimisation problems in
a limited amount of processing time. Nevertheless, in this
contribution the EA is not only employed as an optimisation
technique, but also as on-line solution component, guiding
the incremental learning. By means of selection of instances,
features and parameters, the learning process of the clas-
sification algorithm can be optimised. Instance and feature
selection intend to find the optimal subset of, respectively,
training instances or features in order to eliminate redundant or
noisy data and retain the most characteristic elements [7], [8].
However, parameter selection pursues to obtain the classifica-
tion algorithm’s optimal parameter values for the current data.
Although, multi-objective EA can be employed considering the
action-class recognition rates as fitness values, for the sake of
simplicity, we employ the global recognition rate in order to
use a single optimisation objective.
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A. Summary of the proposal

In this paper, a state-of-the-art real-time HAR method
is extended in order to support a dynamic behaviour, i.e.
incremental and adaptive learning. The original method is
based on a bag-of-key-poses model, which learns the most rep-
resentative pose representations of the action classes, Sequence
recognition is performed, where action labels are assigned to
the video sequences based on temporal alignment. Therefore,
the learning memory of the method is constituted by the bag of
key poses. This model is evolved in our dynamic proposal in
order to continuously consider more and more action classes
and learning data over time. By means of an evolutionary opti-
misation method, three optimisation targets are pursued: selec-
tion of feature subset, training instances and parameter values.
The best performing configuration is learnt through evolution
using the current training data. Incrementally, this learning is
fed with new data which leads to the evolution of the bag-
of-key-poses model. In the performed experimentation, it is
analysed how the method develops and adapts itself to the
increasingly difficult recognition task. In order to validate our
approach on different kinds of input data, both traditional RGB
cameras and RGB-D sensors (Microsoft Kinect) have been
employed. It can be seen that consistently high results are
obtained over the different datasets and input data types, and
an outstanding performance increase is obtained with respect
to the static learning, in which incremental HAR is performed
without any adaptation.

The remainder of this paper is organised as follows: Sec-
tion [ summarises the most recent related works on hu-
man action recognition and incremental and adaptive ap-
proaches. Section details the static human action recog-
nition method which has been tested for incremental learn-
ing, and our dynamic proposal based on evolutionary op-
timisation. Furthermore, the different learning trajectories
that are considered are presented. In section the pro-
posal’s performance is analysed using a publicly available
RGB-D dataset. Validation on traditional RGB datasets is also
provided. Finally, we present conclusions and discussion in
section [V]

II. RELATED WORK

In this section, the research fields of the present work are
briefly analysed, summarising the most relevant and recent
work. First, a background on human action recognition is
presented. Then, works which apply incremental and adaptive
learning techniques to HAR are detailed.

A. Human Action Recognition

Recently, interest in human action recognition based on
vision techniques has greatly grown due to several advances,
both in data acquisition and feature extraction tasks, and in
motion modelling and recognition [2]]. For instance, these
have made possible to develop advanced HCI applications,
which are already being used nowadays. Huge advances have
been made with regard to feature extraction methods from

RGB colour images, which can be classified as holistic or
sparse approaches. Among the former, the usage of human
silhouettes allows to limit the region of interest and to reduce
the characteristic data to shape and motion. Human silhou-
ettes are usually obtained using background subtraction, but
they could also be processed by means of human detection
algorithms, or specialised cameras, as depth or infra-red
sensors. Shape or shape-temporal features are then extracted
in order to encode the most characteristic information [9],
[10], which can also be made view-invariant [[I1]]. Although
accurate recognition results can be obtained using this kind
of dense spatio-temporal approaches, two main difficulties
remain: 1) the performance decay related to non-predictable
occlusions, and 2) the lack of suitability for recognition of
subtle movements, like gestures [[12]]. Sparse (also known as
local) approaches try to overcome these difficulties by relying
on a collection of smaller regions of interest, the so-called
interest or key points. These are selected based on colour,
gradient and shape properties (like Harris and SUSAN corners,
SIFT and SUREF points [[13]]), as well as their evolution over
time, resulting in spatio-temporal interest points. In order to
obtain these, traditional salient point detectors are extended
to include the temporal dimension [14], [15]. Usually their
frequency of appearance is modelled using bag of words. Even
if these sparse spatio-temporal methods have the potential to
overcome the limitations of the holistic ones, they come along
with several new difficulties. The robustness of the feature
detection suffers in cluttered environments leading to unstable
results, and key point tracking-based approaches present a high
computational cost.

RGB-D data, i.e. RGB colour information along pixel-
wise depth measurement, is increasingly being used, since
the Microsoft Kinect device has been released. Its low-cost
and straight-forward data acquisition, allows to obtain marker-
less body pose estimation in real time in form of 3D skeletal
information [16]. This kind of data results proficient for the
gesture and action recognition which is required in gaming
and natural user interfaces [12]]. Most of the state-of-the-art
methods [17]-[22] try to recognise the different actions using
all the available joints of the skeleton. However, some joints
are more characteristic to represent the pose or movement
than others [23]]. In fact, the joints in the torso (shoulders,
spine, torso, waist, hips, etc.) rarely exhibit strong independent
motion; thus, dimensionality reduction, which improves clas-
sification performance, can be applied taking these constraints
into account [23]. Feature selection can be driven by the
application, as some gestures may be performed with the
whole body while others only with arms or hands. Recently,
some works have tried to find the appropriate set of joints [24]],
combinations [25] or weighting of them [26], [27]] to improve
the recognition. A more detailed survey can be found in [12].

B. Incremental and Adaptive Human Action Recognition

Incremental and adaptive learning techniques have been
applied rather sparingly to the field of human action recog-
nition [28]]-[31], since they are more frequent in related fields
as, for instance, visual tracking [32], [33]. In incremental
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learning, the goal is to improve the learnt model or exemplar-
based data, combining the previous experience with the knowl-
edge extracted from the new example(s), in order to both
successfully recognise new samples and also improve the
recognition of existing ones. It is therefore also known as
iterative learning [34]]. Adaptive learning is closely related,
but it focuses on the capacity of adaptation of the learning
towards the new data. Specifically, in incremental learning
approaches, it is difficult to set the appropriate parameter
values of the algorithm if the data is initially unknown. There-
fore, the algorithm’s configuration should dynamically adapt
itself to the new requirements by tuning its configuration [28]],
for instance, by means of evolutionary algorithms. Ryoo et
al. [31] proposed a method to learn novel human activities
incrementally. Based on an incremental codebook, mining of
visual words is performed. Local spatio-temporal features are
clusterised to obtain the bag-of-words model. When a novel
activity is added to the system, new visual words are generated
and the existing ones are adapted or merged. Recognition
is performed based on visual words histograms, which are
also sequentially updated. The method achieves similar activ-
ity classification rates as other non-incremental approaches.
In [29]], snippet-level action recognition is targeted using a
recursively trained classifier based on a single-hidden layer
feed forward neural network, which is extended to present
an incremental behaviour. Nonetheless, it also is adaptive, as
the input weights are set randomly initially and then adjusted
by means of a generalised inverse operation of the hidden
layer weight matrices. In this work, the shape of an actor is
approximated by adaptively changing intensity histograms to
extract pyramid histograms of oriented gradient features. The
performance is analysed based on the length of the snippets. It
can be seen that with only two frames a recognition rate over
80% is achieved throughout employing from 10 to 50% of the
training data of the Weizmann dataset [35]. Wang et al. [30]]
rely on wearable sensor data instead of vision. Probabilistic
neural networks and an adjustable fuzzy clustering algorithm
are employed so as to support incremental learning by means
of addition of new information and new activities, but also
removing existing ones. The possible noise present in the
training dataset is explicitly considered by differentiating the
importance of pattern neurons.

III. EVOLVING BAG OF KEY POSES
A. Original Human Action Recognition Method

As has been previously mentioned, our method builds on
a state-of-the-art classification method [36] and extends it
to an incremental and adaptive behaviour by means of an
evolutionary algorithm. This classification method provides the
evaluation of a specific optimisation in terms of the resulting
global recognition rate.

The classification method is made up of a learning stage,
in which the representative feature instances are modelled as
key poses, and a recognition stage, in which sequences of key
poses are recognised based on sequence matching. We will go
through these parts briefly, a more detailed explanation can be
found in [36], [37]. Fig. |I| shows an overview of the process.

Fig. 1. Overview of the static human action recognition method that has been
used: First, learning is performed by means of a bag-of-key-poses model that
learns K key poses per action class. Then, the temporal relation between key
poses is learnt by modelling sequences of key poses. Action recognition can
be performed by matching the unknown sequence of key poses to the closest
known one.

1) Learning based on bag of key poses: First, pose repre-
sentations are obtained out of the available video sequences in
order to obtain a feature vector for each frame. The specific
feature depends on the type of data and will be detailed
in section [IV] The most representative feature instances of
each action class are learnt by means of key poses. The
usage of key poses is motivated by attempting to recognise
actions similarly to humans [38]]. In this way, our goal is to
model an action class based on a few indicative poses and the
transitions between them. Using a clustering algorithm as the
common K-means algorithm, we generate the K1, Ko, ..., K4
representative instances for the A action classes by employing
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Fig. 2. Evolutionary controller: the evolutionary optimisation system obtains the best performing selection of training instances, features and parameter values
by testing them using the human action recognition method. The fitness value of the evaluated individual is then established as the returned recognition rate.

In this way, the selections can be improved by applying elitism.

the resulting cluster centres. These action class key poses are
combined together in a single bag of key poses.

2) Sequence recognition: With the purpose of modelling
the temporal relation between key poses, sequences of key
poses are obtained. Specifically, for each training sequence,
an equivalent sequence of key poses is built by translating the
pose representations, i.e. the RGB or RGB-D based features,
to key poses. For each feature instance, the nearest neighbour
key pose out of the bag of key poses is taken. Since this is also
performed for the sequence to be recognised, human actions
can be classified using sequence matching. In this regard,
dynamic time warping (DTW) [39] has been chosen due to the
required alignment of human motion, which is performed at
different pace among people of varying condition and age. The
result of the classification is defined as the label of the best
matching sequence, i.e. the sequence with the lowest DTW
distance.

B. Evolution of the model

This bag-of-key-poses model may be used in an environ-
ment where the complete training set is established at the
beginning of the learning process [36]. In this paper, we
extend the model in order to allow an adaptive and incremen-
tal learning. The bag-of-key-poses model will continuously
evolve in order to adapt to the new data and, at the same
time, optimisation is applied, trying to find the best training
set, features and parameters to improve the global recognition
rate (see Fig. [2).

The evolutionary optimisation system consists of a pop-
ulation of individuals representing combinations of training
set, feature subset and parameters. The fitness value of these
individuals is given by the global recognition rate that is
obtained using their configuration with the presented HAR
method. The optimisation process follows the evolutionary
algorithm [1]

Algorithm 1 Evolutionary algorithm

Initialise the populations with N randomly generated indi-
viduals

Rank the population by fitness using the recognition rate
obtained with the configuration provided by each individual

repeat
Adapt to the inclusion of new data
Increase the length of the training set vector by the
number of new training instances %,eq,
if a new action class is learnt then
Increase by one the length of the parameter vector
Learn the K., key poses for the new action class
end if
if a new actor is learnt then
Readapt the bag of key poses considering the new
instances
end if

for number of new individuals to be created do
Generate a new individual
Create one new individual ind by crossover
Mutate ind
Calculate fitness
Calculate fitness(ind)
end for
Generate next generation’s population
Rank the population by fitness
Select next generation’s population with elitism
until a termination condition is achieved or forever
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Fig. 3. Structure of the individual: ¢ binary values are defined for the selection
of instances, f binary values for the selection of features and p integer values
are used to establish the parameter values.

Next, information about this evolutionary process is ex-
plained in detail.

1) Individuals’ representation: Individuals are encoded as
the concatenation of three different vectors representing the
training set and feature selections, and the parameters of the
clustering algorithm.

The characteristics of each of the vectors are (see also
Fig. B):

e Training set: This vector is made up of ¢ elements
corresponding to the number of instances (i.e. video
sequences) available for training. This number is variable
as new sequences increase the size of the vector. It is
encoded as a binary vector, where each gene represents
the selection of that instance during the learning.

o Features: This vector contains f elements, one for each
feature element of the feature vector that has been ob-
tained for pose representation. This number is constant.
Each gene of this binary vector indicates whether or not
the corresponding feature element should be used during
the classification process.

o Parameters: This vector defines p parameter values, one
for each of the A action classes. Therefore, it is increased
by one element if a new action must be learnt. Its values
correspond to the number of key poses that are learnt for
each action class. Each gene takes an integer value in the
range of allowed number of key poses.

Each individual in the population stores the bag of key poses
obtained with its configuration in order to use it when new
instances are included in the learning. This allows the online
updating of the bag of key poses when new instances are added
to the training set.

2) Crossover: The usual method in evolutionary com-
putation is to perform a single crossover operation to the
individual. However, as the individual considered in this work
has three different parts, one crossover is applied to each one
of the vectors (training set, features and parameters) as if these
were independent individuals. This is similar to coevolutionary
algorithms. Nevertheless, the use of a coevolutionary algorithm
with different populations for each of the vectors would
difficult the management of the key poses associated with
each of the individuals, because these would be shared among
individuals of different populations.

Therefore, a 1-point crossover operator is applied to each
part of the individual. The parents are selected by ranking
among the individuals of the population. However, if there
is some knowledge about the specific problem, e.g. about
the structure of the features, other more specific crossover
operators can be applied (see Section [[V-A).

3) Mutation: Similarly to the crossover operation, a muta-
tion is performed over each part of the individual with different
probabilities. Instance and feature vectors use standard muta-
tion, i.e. each gene changes its value according to probabilities
mut; and mutp. In the parameter population, each gene is
mutated with a probability mutp. This mutation can be done
in two different ways (with equal chance): modifying slightly
its value applying Gaussian noise, or setting it to a random
value in an interval.

C. Inclusion of New Data

In this section, the different learning trajectories that have
been considered are detailed. If we try to classify the de-
velopment of the human brain from a machine learning
perspective, two clearly different learning trajectories can be
distinguished: 1) the learning of new data which belongs to
previously unknown classes, or 2) the learning of new samples
which belong to known classes. For this reason, two learning
trajectories have been designed, learning of new actions classes
and learning of class samples of new actors (see Fig. ] for a
graphical explanation on how this affects the evolving bag-of-
key-poses model). Note that, in the first case, the inclusion of
more and more action classes reduces the inter-class distance,
whereas in the second case, the inclusion of new actors, which
perform actions differently, produces an increase of the intra-
class distance.

1) Learning of New Actions: Learning a new action in-
volves the generation of the specific K., key poses for
that action in the bag of key poses. The following steps are
performed:

(a) The length of the training set vector of each individual
is updated by increasing it by the number of training
instances of the new action class %,e,. The new binary
genes are set randomly following the same distribution
than when the population was initialised.

(b) The length of the parameter vector is increased by one
gene associated to the number of key poses of the new
action Action,e,. This gene is set to a random value in
the interval of possible K.

(c) The K, key poses for the new action are learnt, execut-
ing the K-means clustering algorithm for each individual
of the population and recalculating its fitness. The key
poses for the actions that have already been learnt do not
need to be obtained as they are stored along with each
individual.

2) Learning of New Actors: If training instances of a new
actor are learnt, the incremental learning is applied as follows:

(a) As for the learning of new actions, the training set vector
is increased by the number of training instances of the
New actor i, and the values are initialised randomly.

(b) Learning training instances performed by a new actor
does not involve to apply a new K-means clustering.
However, the new training instances must be considered
in the K-means associated with each action. This is
achieved by initialising the K -means algorithm with the
previously obtained key poses instead of using random
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Fig. 4. Incremental learning of new actions (a) and new actors (b). It can be seen that for a new action class, the bag of key poses is updated with the
corresponding Krew key poses. But for the inclusion of new actors, all the key poses obtained for the A action classes need to be updated by adapting their

key poses to the performances of the new actor.

vectors. This process will produce a readaptation of the
K -means clustering algorithm, and an updating of the bag
of key poses that, consequently, will take into account the
new data.

Once the current population is updated with the new data,
new individuals can be created and the evolution continues
until a termination condition is achieved (for instance, that no
more new data has to be learnt).

IV. EXPERIMENTATION

A. Adaptive Human Action Recognition with RGB-D cameras

The proposed method has been evaluated with the MSR
Action3D dataset [40]. This dataset contains 20 different
actions performed by 10 subjects with up to three repetitions.
This makes a total of 567 sequences. However 10 sequences
are not used in that paper because the skeletons were either
missing or wrong, as explained by the author Specifically,
we apply a leave-one-actor-out cross validation. In this test,
the sequences from all but one actor are used for training,
and the remaining sequences are used in the evaluation. This
is repeated for all the available actors. The average score is
used as the global recognition rate. This test focuses especially
on the robustness to actor variance, which is related to the
peculiarities of each subject’s appearance and behaviour.

Li et al. [40] divided the dataset in three subsets of eight
gestures each. These are shown in Table[l Most of the papers
working with this dataset have also used these subsets, due to
the high computational cost of dealing with the whole dataset.
The AS1 and AS2 subsets are intended to group actions with
similar movement, whereas AS3 is intended to group complex
actions together.
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Fig. 5. 20-joint model from the MSR Action3D dataset. A sample selection
of joints is shown to illustrate how the f binary values of the individual are
employed for feature selection.

1) Feature set: For pose representation, the skeletal 3D
pose information has been employed. Since the MSR Ac-
tion3D dataset uses the 20-joint model described in Fig. [3}
we used a feature vector of 20 genes (f = 20), where each
gene represents whether or not a specific joint is used in
the recognition algorithm. For the classification, each joint
is described by its 3D coordinates, applying a normalisation
process where the skeleton is normalised to scale and rotation
(see [24] for more details).

2) Ad-hoc crossover operator for the feature vector: As it
has been stated before, normally a 1-point crossover operator
would be considered. However, since the joints have a known
topology relation among them, an ad-hoc crossover operator
has been designed. It works similar to the typical crossover in
genetic programming where a node in one parent is randomly
selected and the branch below it is substituted by the same
branch from a different parent (see Fig. [6).

3) Mutation: Mutation is performed over the three vectors
with different probabilities. Instead of having a static mutation
probability, the system selects each time a random value in
an interval: mut; € [0,0.1], mutp € [0,0.2] and mutp €

IMSR Action Recognition Datasets and Codes, http://research.microsoft.
com/en-us/um/people/zliu/actionrecorsrc/default.htm (last access: 02/01/2014)
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TABLE I
ACTIONS OF EACH OF THE MSR-Action3D SUBSETS
AS1 AS2 AS3
Label | Action name Label | Action name Label | Action name
a02 Horizontal arm wave a0l High arm wave a06 High throw
a03 Hammer a04 Hand catch al4 Forward kick
a05 Forward punch a07 Draw cross als Side-kick
a06 High throw a08 Draw tick al6 Jogging
al0 Hand clap a09 Draw circle al7 Tennis swing
al3 Bend all Two-hand wave al8 Tennis serve
al8 Tennis serve al2 Side-boxing al9 Golf swing
a20 Pick-up and throw ald Forward kick a20 Pick-up and throw
parent 1 parent 2 offspring gntll .that moment, conmds:rmg an equivalent pgmber of 50
I & I iterations per stage. For this reason, the recognition rate may
dontseected | . { increase during a learning stage. The dynamic lines show
’ F_\ DR 'ﬁa\ three different runs of our evolving proposal of adaptive and
i\ i 4 . * ph l\ 1 incremental learning with different random initialisations.
VT RN e graph shows that when a new action is included the
‘ R G— [ Th h shows that wh t luded th
¢ hIE g b ¢ recognition rate usually suffers a dramatic change. Sometimes
o the recognition rate decreases. This is because the new action
e " is difficult to recognise, or because there are other similar
o actions already learnt by the system and misclassifications are
N . " N performed. The global recognition rate may also improve if
, . N

Fig. 6. Crossover between skeletons: The randomly selected joint serves
as crossover point. All the joints corresponding to the branch below it are
substituted with the values from a different parent. The current selection of
joints is represented by the colour of the joints: white joints are selected,
black ones are discarded.

[0,0.2]. In this way, we try to avoid early convergence of
the evolution to a local minimum. Besides, in order to limit
the search space, the genes in the parameter vector take a
value between 4 and 75, which represents the K value, i.e. the
number of key poses for each action class. These values have
been chosen experimentally.

4) Results: In Fig. [/} an extensive analysis of the results
which have been obtained on the AS2 dataset is shown. We
have chosen this particular dataset for an exhaustive analysis
of our adaptive approach because it is considered to be the
most difficult among the three previously mentioned sets. The
graph shows the behaviour of the whole system, comparing the
dynamic and static approaches when actions are sequentially
incorporated every 50 generations. With the purpose to ease
the usage of the results as references and establish a learning
order, we employ the given alphanumeric order of the actions.
In order to be able to perform classification, we start with the
two first action classes a0l and a04. All the tests have been
performed with a population of N = 10 individuals.

The static line represents the best solution considering that
the system is using all the training instances, all the joints and
the default value of the parameters (these have been set to 16
for all the action classes). Therefore, in the static execution,
incremental learning is applied without any adaptation. This
line varies during a stage because of the non-deterministic
behaviour of the K-means clustering, which is related to its
random initialisation. Obviously, the system always uses the
configuration that has obtained the best recognition results

the new action is easy to recognise by the system, since the
average rate is improved in this case.

The recognition rate is globally better in any of the dynamic
runs. The inclusion of new actions affects less than in the static
version and, if it is affected, it rapidly evolves, selecting the
appropriate training set, joints and parameters, thus, improving
the recognition rate.

In Fig.[7]and Tables and [TV] further analysis of results
is provided for the Dynamic B evolution. The bottom part of
Fig. 7| shows the evolution of the joints vector throughout the
learning following the definition presented in Fig.[5] It can be
observed that some joints (as the RIGHT HAND and the RIGHT
WRIST corresponding to positions 7 and 17) are selected
throughout the whole learning. Obviously, this is related to the
actions included in AS2, which are mostly performed with the
right hand.

The top part shows the corresponding skeleton at the end
of every stage. The joints that are finally selected are those
from the arms, as all the actions in this dataset involve mostly
these body parts and, as has been already mentioned, mainly
the right arm. The consideration of other body parts during
the evolution may be due to slight motions of those joints that
allow to differ actions, or because the evolution has not been
long enough to discard them.

Table [T shows the global recognition rate and the specific
rate for each action class at the end of each stage (every 50
generations). It allows to observe how the addition of action
classes affects the recognition of the already learnt classes.
It can be seen that the newly introduced class is always
recognised with a very high success rate, which means that
the learning successfully adapts to the new data during the
learning stage. The addition also influences the recognition
rates of the other classes. These can decrease, when the inter-
class similarity is increased and therefore new confusions
appear. But they may also increase, when the adaptation
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process has been able to optimise the recognition of the

actions, despite of the new data that has been introduced.

Furthermore, the continuous optimisation can also negatively

influence the recognition of a specific action class, because

the global rate is used as optimisation target.

Table [l shows the number of instances of each action class
that have been chosen for training. In this case, around 50%
of the instances are discarded, since including them decreases
the recognition rate, mainly because they incorporate noise to
the training. Needless to say that, although these instances are
not considered in learning, all of them, chosen and discarded,
are used in the testing phase. One fact is that the number
of instances considered per action class usually decreases
until it converges to the most discriminative and useful set
of instances.

Table shows the values for the parameter vector, i.e. the
number of key poses considered to represent each action. This
vector seems to fluctuate more than the training set or feature
vectors. This could have two main reasons:

(a) the key poses obtained with the K-means clustering
algorithm when a new action is included are similar to
other previously learnt ones, what causes a change of size;
or

(b) the parameter vector is less important than the training
set or feature vectors in order to improve the recognition
rate. So, changes in this vector are not very relevant to the
behaviour of the system.

Fig. B] shows the evolution for the other two subsets, AS1
and AS3. In this case, the static learning is compared to the
average of three dynamic runs. Results are quite similar to
those obtained with AS2, i.e. recognition rate is better almost
at every moment for the dynamic run. AS3 is the easiest
subset. The effect is that there is not too much possibility
to improve the results over the static version. It is worth
mentioning that many sequences for a20, present in this
dataset, are corrupted. The skeletons are not well obtained
from the depth image, since there are many body occlusions.
This produces a low recognition rate for this specific action.

The final results for our adaptive proposal shown in Fig.
and [8] are close to the results that would be obtained if the
whole training data, with all the actions, had been used since
the beginning of the learning (Table [V).

We have also analysed the effect of the amount of time that
is employed to learn a new action. Fig. [9]shows how more time
per stage, i.e. more generations, allows a longer evolution and,
consequently, a greater optimisation of the recognition. It can
be observed that in the long term, the system adapts better if
more time is available, and significant differences can be seen
from 10 to 100 generations per stage, although approximately
50 generations are enough to outperform the static incremental
learning.

Finally, we have also tested the system with the complete
MSR Action3D dataset. It is very challenging to consider
all the 20 actions, since many of them are quite similar.
For instance, confusion between actions a0l to a09 is high.
Consequently, the results are affected (see Fig. [I0), and the
recognition rate decreases when these actions are included.
However, as in the previous cases, our dynamic approach

recovers fast after each action is added, and the recognition
rate is better than with the static option.

Fig. [IT] shows the evolution of the system (average of three
different runs) when new actors are added instead of new
actions. In this test, always all the actions are considered
and new actors are sequentially introduced to the learning.
We have added the actors in the given order, starting with
actors s01 and s02 and adding a new one every 50 generations.
The results show that when few actors are considered, there
are too few sequences for training and this produces low
recognition rates. However, as more instances are included
with new actors, the system is able to evolve to similar final
results to those that have been obtained when new actions
are learnt (see Fig.[7). It can also be observed that both in the
static and dynamic runs, some subjects do not provide valuable
data to improve the classification, which is probably related to
noise and outlier values regarding their action performances.
The dynamic approach proves to handle also this case better,
since less performance decrease is obtained (for instance, when
subject s05 is learnt).

B. Adaptive Human Action Recognition with RGB cameras

The proposed approach has also been validated on regular
RGB cameras. For this purpose, a silhouette-based feature is
employed taking into account multiple views. Three state-of-
the-art publicly available benchmarks have been tested. As it
will be seen, the adaptive and incremental learning algorithm
shows steadily promising results despite the singularities of
different action classes, actors and scenario-related conditions.

1) Silhouette-based feature: As it has already been seen in
section human silhouettes have been used successfully
in order to recognise whole-body movements based on shape.
So as to reduce the silhouette’s dimensionality and noise
(related to the commonly inaccurate background subtraction),
we extract a radial summary feature which is based on the
silhouette’s contour points P = {p1, ps, ..., pn }, Where p; =
(x,y;). First, the silhouette’s contour is divided in S radial
bins of the same angular width taking the silhouette’s centroid
as the origin. The centroid C' is computed as C' = (e, Ye)s

with z, = ==t %}yc = == % The corresponding radial
bin of each contour point can be obtained as follows (for the
sake of simplicity a; = 0 is considered as a; = 360):

arccos( ¥4 ) - 180 if z; >0,
Qi = L uis 180 . D
180 + arccos(¥74<) - === otherwise,
S N7
i = , Viell.n], 2
= | St ], vie o)

where d; stands for the Euclidean distance between contour
point p; and the centroid.

Then, for each radial bin, a summary value v; is computed.
This value is defined as the statistical range of the distances
from the contour points to the centroid.

adl)
Vi e [1...9],

Uj ZHIaX(dk7 dk+1, ...,dl) — min(dk,dk_H,

/ Sk...si =73 ANkl €[l.n], ©
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TABLE II
CLASS-SPECIFIC RECOGNITION RATES OF THE AS2 DATASET AT THE END OF EACH STAGE OF THE LEARNING (corresponds to Dynamic B)

Generation | Global a0l a04
a0l + a04 50 85.19% | 88.9% | 80.0%

+ a07 100 84.44% | 74.1% | 72.0% | 100.0%

+ a08 150 86.50% | 85.2% | 84.0% 81.5%

+ a09 200 81.55% | 77.8% | 64.0% 81.5%

+ all 250 85.46% | 74.1% | 84.0% 77.8% 100.0%

+ al2 300 85.75% | 81.5% | 64.0% 81.5% 96.7% 100.0%

+ ald 350 89.7% 59.3% | 84.0% 88.9% 96.7% | 90.0% | 100.0% 100.0%

TABLE III

NUMBER OF SELECTED INSTANCES PER ACTION CLASS (TRAINING SUBSET) FOR THE AS2 DATASET AT THE END OF EACH STAGE OF THE LEARNING.
THE SECOND ROW (GREY CELLS) SHOWS THE TOTAL AVAILABLE NUMBER OF INSTANCES PER ACTION CLASS (corresponds to Dynamic B)

a0l | a04 | a07 | a08 | a09 | all | al2 | ald
Generation 27 25 27 30 30 30 30 29 % used
a0l + a04 50 10 12 22/52
+ al7 100 12 13 18 43/79
+ al8 150 13 12 18 20 63/109
+ al9 200 13 7 20 16 26 82/139
+ all 250 14 11 16 19 22 30 112/169
+ al2 300 10 13 15 15 23 14 11 101/199
+ al4 350 10 13 15 15 19 15 10 24 1217228
TABLE IV
NUMBER OF KEY POSES PER ACTION CLASS FOR THE AS2 DATASET AT THE END OF EACH STAGE OF THE LEARNING (corresponds to Dynamic B)
Generation | a0l | a04 Total | Average
a0l + a04 50 56 59 115 57.50
+ al7 100 52 66 128 42.67
+ al8 150 75 62 174 43.50
+ al9 200 69 35 197 39.40
+ all 250 6 38 195 32.50
+ al2 300 7 20 213 30.43
+ al4 350 27 9 266 33.25

Finally, the feature vector V is obtained by concatenating
the normalised summary values:

Vi .
jj = —gt—, Vje[l.S], 4)
Zq:wq
V=u | ol|. | s (3)

Since this feature vector contains S elements, the same
amount of genes (f = S) are employed for the individuals
of the evolutionary algorithm. By applying feature subset
selection to this descriptor, redundant or noisy body parts
can be ignored, and the most characteristic parts which are
involved in the actions can be retained.

In the case of a multi-view scenario, this feature is first
obtained for each view. Then, by means of feature fusion, a

TABLE V
COMPARISON BETWEEN INCREMENTAL AND NON-INCREMENTAL
LEARNING. RESULTS SHOW THE AVERAGE RECOGNITION RATES OF THREE
RUNS AT THE 350%" GENERATION (first column corresponds to the final
rates shown in Fig. [7] and

Incremental | Non-incremental
Dataset learning learning
AS1 90.06% 91.50%
AS2 88.56% 90.80%
AS3 95.21% 96.99%

multi-view pose representation is built using feature concate-
nation.

Note that in this case a standard 1-point crossover and the
same mutation probabilities from the RGB-D experimentation
are employed.

2) Benchmarks: For the evaluation on RGB images, both
single- and multi-view datasets have been chosen. The pop-
ular Weizmann dataset includes ten different actions
performed by nine actors. For the recorded static-front view,
human silhouettes are available. These have been obtained
automatically by means of background subtraction (the ones
without post-alignment are employed). We use all the 93
available sequences and perform a leave-one-actor-out cross
validation (LOAO).

The MuHAVi dataset includes images from multiple
viewpoints. Its subset MuHAVi-MAS provides manually anno-
tated silhouettes of very good quality for two camera views and
two subjects. It comes in two versions, with either 8 (MuHAVi-
8) or 14 (MuHAVi-14) different action classes. The same
LOAO cross validation has been tested on this dataset (called
Novel Actor test by its authors).

Finally, we also tested our system with the challenging
INRIA XMAS dataset IXMAS) [11]]. Four side views and
a top view are available for up to 11 actions which have been
performed by 12 different actors, three times each. Subjects
were allowed to choose their location and orientation freely,
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Fig. 10. Results of the learning for the whole MSR Action3D dataset. A static and a dynamic run are shown for the incremental learning of 20 action classes.

which implies that this dataset is also testing view-invariance
implicitly. In this case, automatically obtained silhouettes
of a much lower quality are provided. Again, LOAO cross
validation has been employed to obtain the recognition rate
on this dataset.

3) Results: Fig. shows the results that have been ob-
tained on the Weizmann dataset with the adaptive human
action recognition method and the static approach. Again,
each 50 generations, a new action class is incorporated to
the evolutionary process. As it can be seen, depending on the
newly introduced action (and on the already learnt ones) the
static result decreases or increases. Especially, the skip action,
that is commonly excluded by other authors , , causes
a dramatic performance drop from which the static approach
does not achieve to recover. In contrast, the dynamic approach
handles this drop and also others very well. In few iterations,

the system adapts to the new data and achieves to return high
results steadily. Furthermore, the drops are not as relevant
as with the static approach, which means that the dynamic
approach leads to a more stable and general learning model.

Fig. [13] and [I4] show the results on the MuHAVi dataset.
Whereas on MuHAVi-8 the static approach starts to suffer an
important performance decrease when the fifth action class
(run) is introduced, the dynamic approach shows to support
the incremental learning exceptionally well. With MuHAVi-14,
100 generations have been employed for each stage, since due
to the higher number of action classes (14) the system requires
more time to adapt to the new data. Again, our proposal
shows that it successfully adapts to the new action classes
to recognise, and it is less affected by the new data. The
obtained recognition rates are globally better and more stable.
As an example, the final feature subset selection of the best
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Fig. 11. Results of the learning of new actors for the AS2 dataset. In this case, all the actions are known from the beginning, but each 50 generations, samples
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shown. The number of employed radial bins S = 18 and the default value for K1, K2, ..., K4 is 7 (with a range from 4 to 30).
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performing individual is shown in Fig. [T5]

Finally, the method has been tested also on the much larger
IXMAS dataset. Fig. [I6] compares the dynamic and the static
behaviour. Since the dataset includes nearly 2000 video se-
quences, only a single full run could be executed. Nonetheless,
also on this challenging data, the proposed method presents an
importantly improved behaviour with lower performance drops
and a continuously higher recognition rate over the different
learning stages. It can be seen that in this case, although the
learnt selection of features, training instances and parameter
values successfully supports the inclusion of new actions to
recognise, less improvement is observed during the learning
stages. This is related to the limited amount of generations
used for each learning stage, as well as to the data variance.

V. CONCLUSION

In this paper, an adaptive human action recognition method
that can be applied to intelligent environments or autonomous
robots has been presented. Based on an evolutionary algo-
rithm, a dynamic learning of human actions is supported by
evolving a bag-of-key-poses model. At the same time, through

for the static learning and the average of three runs of the dynamic learning
for K1, Ka, ..., K 4 is 4 (with a range from 4 to 30).

evolution, the best performing selection of training instances,
features and parameters is sought. Therefore, the contribution
of the evolutionary approach is two-fold. One the one hand,
it serves as optimisation method in order to improve the
adaptation to the new data to be recognised and increase the
recognition rate. On the other hand, it guides the dynamic
behaviour in which new data is incrementally learnt and the
bag-of-key-poses model is evolved. In this way, the method
is able to support the inclusion of new data successfully
with small performance changes, that are overcome in few
generations in which the method adapts to the new data.
Two learning trajectories have been considered and tested,
the inclusion of data from unknown action classes or new
samples of unknown actors. The approach has been validated
on two different data input types: RGB-D data obtained with
a Microsoft Kinect device, and traditional RGB images. An
extensive analysis on the AS2 subset from the MSR Action3D
dataset shows that, although the obtained results vary due
to the random initialisation and non-deterministic behaviour,
the proposed dynamic approach achieves superior results in
comparison to the static incremental learning. This holds
true for the tests performed on the other subsets and the
whole dataset. Considering the specific changes at the feature
level, the validation on RGB images has been detailed. On
multiple publicly available datasets of different difficulty and
image quality, good to outstanding results have been obtained
throughout the whole learning.

In future work, the proposed adaptive learning should
be compared to other state-of-the-art incremental learning
and continuous adaptation methods. In order to make this
comparison possible, a consensus must be reached on how
this performance can be measured in terms of continuous
recognition rates and adaptation times. In the present work, the
objective was to maximise the global recognition rate, since all
the action classes have been considered as equally important.
If this were not the case, or the best individual action-
class recognition rates should be obtained, an approach based
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Fig. 16. Results of the learning of the IXMAS dataset. Recognition rates for the static learning and the dynamic learning are shown. The number of employed

radial bins S = 27 and the default value for K1, Ka, ..

on a multi-objective EA could be employed. Other learning
trajectories should be studied too. The intuitive idea to start
with the most simple actions and continue to learn more and
more difficult ones requires a measurement of difficulty, which
could be based on a binary classification rate, since a multi-
class one would depend on the other classes. During execution
time, new data can be captured, although it would normally
be unlabelled. This raises the question whether the data class
could automatically be learnt assuming that it corresponds to
one of the known classes. Furthermore, new data of unknown
actors and actions could be learnt simultaneously. This would
require to combine the two learning trajectories that have been
presented.
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