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Abstract: This paper describes a measurement method for the quality control of cylinders for 

printing machines based on roll-to-roll presses. If the surface finishing of the cylinders is not 

adequate, the printing is unacceptable, and the defective cylinders must be reworked. The 

performed quality check of the cylinder surface roughness by means of contact methods was unable 

to identify the cylinder defects, and acceptance of the manufactured cylinders before integration 

was demanded to the visual inspection performed by trained operators. In this work a contactless 

measurement method based on the eddy current displacement sensor was proposed and validated 

as a tool for quality check as an alternative to optical roughness measurements. A test bench for the 

characterization of printer cylinders was designed and manufactured, allowing for the validation of 

the proposed method on different batches of cylinders and the identification of a threshold to guide 

the acceptance of tested cylinders prior to mounting on the roll-to-roll press. 

Keywords: eddy current sensor; flexographic printing machines; surface roughness measurement; 

FE-Simulation 

 

1. Introduction 

Paper and tissue printing machines based on roll-to-roll presses are commonly used in the food 

and beverage or packing industries. Successful printing relies on different parameters, such as 

cylinder alignment, pressure between rotating cylinders and cylinder rotating speed. All these 

parameters are tuned during the machine fine calibration before its final installation in the production 

plant. Among all the checks performed before the integration of the cylinders in flexographic printing 

machines, the cylinders’ surface finishing is assessed. This step is of primary importance for the good 

quality of the prints, since any defect on the surface of the tested item (the anvil cylinder used in the 

direct printing process) would result in defective final prints. The general procedure for the 

acceptance of any cylinder which is lapped before assembling is based on the surface roughness 

verification. The arithmetic average roughness Ra must be less than 0.2 μm, the condition to be 

assured by the quality department on each item prior integration on the machine line. In the studied 

application, the surface roughness testing, based on the stylus probe measurement method, was 

demonstrated to not be sufficient to assure acceptable printing. This happens when the cylinder 

surface evidences longitudinal striations (directed along the cylinder axis) which affect the final 

prints but which are not evidenced by the roughness measurement (performed with mechanical 

stylus equipment) during the acceptance performed by the quality department of the company. The 

explanation for the roughness measurement failure is that in defective cylinders there are “stripes” 
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with a roughness that is ever better than that of good cylinders, alternated with rougher stripes. Thus, 

the measured Ra averages the two conditions and is not sensitive to the presence of the defects on 

the cylinder surface. This result allows for an understanding of why, beside the acceptance based on 

roughness measurements, the evaluation of the compliance of the tested cylinders is demanded to 

trained operators who judge the risk of failure in final prints based on their experience even though 

they cannot quantify the defect. 

A possible solution to this problem comes from the well-established literature about optical 

technology for surface roughness measurement [1], allowing for the overcoming of the main issues 

related to stylus probe measurement methods (finite size of the stylus tip, stylus kinematics, loading 

effect of the stylus itself). Thus, a non-contact technique appears to be well suited for use for the 

intended objective. For instance, the authors in [2] describe the design and testing of an optical probe 

based on the laser scattering working principle for in situ surface measurement during workpiece 

machining. The system requires a laser diode, a position sensitive detector and an optical system to 

convey scattered light on the analyzed surface. The system was demonstrated as being effective for 

the intended purpose and provided results in agreement with measurements performed with 

mechanical stylus equipment (taken as reference). A similar technology is used by the authors in [3], 

exploiting laser profilometry to evaluate the surface roughness dependence on the wiper inserts in 

conventional carbon steel turning. 

Imaging technology has also been used and developed for surface roughness measurement: the 

authors in [4–6] demonstrated the validity of using vision-acquired data to obtain a good estimate of 

the surface roughness. Imaging technique is also found in patent [7], where a method and related 

system for automatically detecting defects in a printing cylinder for gravure press during its 

fabrication are described. The authors designed a measurement system based on an imaging sensor 

which scans a rotating cylinder (the specimen to be tested), providing fast checking of the cylinder, 

and scanning a large area of the tested item. 

It must be noted that any image-based measurement method is in general sensitive to lightness 

modification, the exposure time of the camera and/or optical surface characteristics; this is a well-

known problem, as evidenced more recently by the authors in [8], who developed an image based 

measurement method for surface roughness measurement, addressing two main problems related to 

the imaging technique, i.e., the complexity of the calculation and the dependence of the obtained 

results on a light source. 

Thus, we decided to develop a measurement method to perform a quality check of the printing 

cylinders using a displacement contactless sensor based on the eddy current working principle. It has 

to be clear that the proposed method is not aiming to measure the surface roughness, a task already 

achieved by means of well-established contact and contactless methods [1], which nevertheless have 

proven ineffective in detecting the defects in the case of stylus probe equipment. The new method 

aims to provide a robust and cost-effective alternative, in agreement with the Internet of Things (IoT) 

paradigm [9], to the visual inspection performed by trained operators in detecting defects prior to 

cylinder assembly. The IoT approach has a great relevance in modern industrial quality control; low-

cost sensors can be used to greatly improve product quality in different fields [10]. Furthermore, 

signal processing plays an important role in the extraction of information from production systems, 

and techniques such as sensor fusion and data fusion are nowadays widely used to reduce the 

measurement uncertainty [11]. The main objectives of the intended method are the simplification and 

standardization of the quality check performed in the company, providing a quantitative parameter 

for the cylinder-screening phase before integration. 

Section 1 describes the proposed measurement method and the designed testing setup. The 

results of the method validation and performed experimental activity on batches of cylinders are 

presented and discussed in Section 2, while the paper is eventually concluded in Section 3. 
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2. Materials and Methods 

2.1. Proposed Measurement Method 

The quality check of the anvil cylinders’ roughness for flexographic printing machines is a 

mandatory task to assure the good quality of the final prints. A scheme of the printing process is 

shown in Figure 1. 

 

Figure 1. Flexographic printing process. 

The printed material is dragged by the anvil cylinder, which is in contact with the printing cliché. 

The latter holds the ink that is taken from a reservoir by means of an anilox roller and doctor-bladed 

system. One of the main steps of the process is the contact between the anvil cylinder and the cliché 

one, since any defect on the anvil cylinder surface would provide an unacceptable print. 

Examples of defective and non-defective cylinders and an unacceptable print are shown in 

Figure 2. 

 

Figure 2. (a) Defective cylinder, (b) non-defective cylinder and (c) print result during machine 

calibration. 

A comparison between the defective and non-defective cylinders (provided in Figure 2a,b) 

clearly shows the presence of the defects. This is testified by looking at the print of the defective 

cylinder, where it can be noticed that the longitudinal defects are regularly spaced. This is not seen 

on the non-defective cylinder (shown in Figure 2b). In fact, the resulting striations develop along the 

cylinder axis at a nearly constant angular distance. In the case of the defective print shown in Figure 

2c, the defect on the cylinder led to parallel stripes of different grey levels, in this case with a pitch of 

about 3.4 mm. 
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The defect being regular along the cylinder circumference, the root cause is most likely a 

mechanical vibration of the cylinder (or of the machine) during lapping; therefore, the idea behind 

the proposed method is that if longitudinal striations are present, they can be sensed as local 

variations of the cylinder circumference by means of contactless displacement sensors, providing an 

oscillating signal with a frequency that depends on the pitch of the defect and the rotational speed of 

the cylinder. Thus, knowing the rotational speed of the cylinder ωc, the pitch of the defect pd and the 

diameter of the cylinder D (190 mm for the tested cylinders), the expected frequency fd of the defect 

would be given by: 

�� =
��

� �

 �∗�

��
, (1) 

It is clear that the frequency fd is not expected to be strictly constant because of the variability of 

the defects in terms of pitch and depth. The working principle of the proposed measurement method 

is shown in Figure 3. 

 

Figure 3. The proposed measurement method working principle: the displacement of the defective 

cylinder is measured by means of a contactless sensor while the cylinder is rotating; the measured 

profile is related to the cylinder surface defect. 

Thus, the root means square ( RMS ) of the radius variation (filtered in the frequency band of 

interest derived from the expected defect pitch interval, defect shape and rotational speed) was 

identified as the best estimator of the defect severity. Moreover, it is expected that, given that during 

the test the cylinder is mounted on rotating supports, introducing some eccentricity, a filtering must 

be applied to remove low frequency content (same period of the rotation) due to the mounting error. 

Cut-off filters are applied as digital filters after the signal acquisition.  

It has to be noted that any disturbances coming from bearings’ tolerance or external mechanical 

and acoustic vibrations may cause an unwanted measured signal in the bandwidth of interest. Even 

if some filtering techniques can be used to mitigate the issue with data post-processing, the unwanted 

disturbances may lead to false detections or, on the other hand, prevent the measurement system 

from identifying the defects on the tested cylinders. In order to identify the limitation of the proposed 

method, the threshold value of detectability can be computed from the standard deviation of the 

measured RMS of the radius variation. If n multiple measurements of the measured RMS are taken, 

the sample standard deviation sRMS can be computed as: 

���� = ��
(���� − ���������)�

� − 1
 

�

���

 (2) 

Under the hypothesis of a normal distribution, a confidence level of 99.7% provides the 

maximum of the confidence interval set to ������  and minimum to ������: 

������ =  ��������� + 3���� (3) 



Machines 2020, 8, 16 5 of 13 

 

������ =  ��������� − 3���� (4) 

Given the quadratic combination of RMS for the uncorrelated signal, one can predict that a defect 

generating a normalized RMSdef equal to the quadratic difference between RMSmax and RMSmin would 

generate an increase in the measured RMS still within the range of variability due to the set-up: 

������ = �������
� − ������

�   (5) 

Thus, RMSdef can be identified as the detectability threshold for the proposed method. 

2.2. Test Bench Design and Verification 

In order to verify the feasibility of the proposed method, a setup was designed. A sketch of the 

conceived design is shown in Figure 4. The setup comprises an (1) aluminum bench plate, (2) MR 742 

45 1/144 DC motor with encoder, (3) elastic joint ECCN 020 R, (4) supporting bearings, (5) eddy 

current sensor eddy NCDT 3100–EPU05 @MICRO-EPSILON MESSTECHNIK GmbH & Co. KG and 

(6) elastomeric dampers 3025VD23–45Sh. The eddy current sensor has been selected on the basis of 

its characteristics, i.e., a measurement range of 0.5 mm, sensing head diameter of 2 mm, resolution of 

50 nm and uncertainty due to nonlinearity of about 1.25 μm. 

 

Figure 4. Sketch of the conceived test bench for the measurement of the defective cylinder: (1) bench 

plate, (2) DC motor and encoder, (3) joint transmission, (4) bearings, (5) eddy current displacement 

sensor and (6) dampers. Moreover, the areas of interest to be analyzed are shown with the capital 

letters A, B and C. 

The setup has been designed in view of the following requirements: 

• the positioning system of the eddy current sensor (by means of a mechanical slide), ensuring the 

movement of the sensor along the entire component; this would allow for the scanning of 

different areas along the cylinder axis (in particular, the areas of interests, named A, B and C in 

Figure 4, are near the supporting bearings and in the central part of the cylinder); and 

• the first mode of vibration of the bench above 100 Hz, to avoid mechanical disturbances induced 

by the modes of the supporting structure on the RMS displacement measurement; and 

• the reduction of the sensitivity of the bench to the vibrations transmitted by the supporting 

surface and the motor; this objective has been achieved by using dampers installed on the bottom 

of the bench plate and by mounting the motor by means of an elastomeric tape. 

The design of the bench has been carried out numerically by means of the Finite Element (FE) 

approach [12–15]. A 3D FE model of the bench has been developed, accounting for mass components 

and equivalent damper properties. The developed model is shown in Figure 5. Figure 6 shows the 

computed modes of vibration with details of the optical bench plate only. 
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Figure 5. 3D FE model of the test bench. 

 

Figure 6. Modes of vibration of the bench plate: (a) first mode at 5.3 Hz, (b) second mode at 7.1 Hz, 

(c) seventh mode at 114.3 Hz. 

It has to be noted that the first six modes involve an almost rigid motion of the bench plate on 

the dampers, with the first cut-off frequency located at about 5.3 Hz. The first mode involving a 

significant bench plate deformation is at about 114.3 Hz, corresponding to a bending of the plate. The 

latter would be a disturbance for the measurement, but the dynamic design requirement is fulfilled 

as the frequency is significantly far from the measurement frequency band. The designed bench was 

manufactured and assembled to verify the feasibility of the defect characterization of the printing 

cylinders. Figure 7 shows a view of the manufactured test bench. 

 

Figure 7. Manufactured test bench and positioning of the accelerometers for dynamic testing. 

The bench was tested in order to validate the design phase. The frequency response function of 

the structure was measured using a dynamometric hammer (PCB Piezotronics Depew, NY, USA 

model 086C02) and three piezoelectric accelerometers (Bruel&Kiaer, model 4508-B). The 
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accelerometers were placed along the bench plate in different positions (see Figure 7). The bench was 

excited with ten impulses (measured by a dynamometric hammer). The acquired time histories were 

triggered and the average Frequency Response Functions (FRFs) were computed. The resulting FRFs 

for the 1st, 2nd and 7th modes are shown in Figure 8. 

 

Figure 8. Dynamic characterization of the test bench: the first two modes of vibration on interface 

dampers and the bench mode of vibration. The blue, orange and light gray trends are the measured 

FRFs with accelerometer numbers 3, 2 and 1, respectively. 

The mechanical filtering capabilities of the used dampers were confirmed, first providing a 

measured cutoff frequency of 6.4 Hz, a value close to the 5.3 predicted by the numerical analysis, the 

difference being justified by the non-linear stiffness of the dampers combined with the static load due 

to the weight of the system. The validation of the modeling was achieved by exploiting the mode of 

vibration of the bench plate. The first measured resonance was found to be 112.6 Hz, about 2% less 

than the one predicted by the analysis, in line with the intrinsic uncertainty of the FEM discretization. 

3. Experimental Activity 

3.1. Test Procedure 

In order to verify the effectiveness of the proposed method for the problem of interest, two 

different cylinders were tested. These had been identified by experienced quality experts as defective 

and non-defective cylinders. As a reference for the geometry measurement, the Laser Doppler 

Vibrometer (LDV), OFV-505 with displacement decoder DD-200 by Polytech, was used. The LDV 

allows for the measurement of the displacement and velocity of a target object without contact and 

with a resolution as low as 2 nm [16,17]. For each cylinder, the following testing procedure was 

adopted: 

• An eddy current (EC) displacement sensor has been positioned at the region to be investigated 

along the cylinder axis (as shown in Figure 3); before starting each measurement session, the 

head of the sensor has been placed at 0.1 mm distance from the cylinder by means of a thickness-

calibrated spacer in order to provide the repeatable mounting of the sensing head; and 

• the cylinder rotation has been set at 0.785 rad/s (rotation period of 8 s), and upon stabilization 

the signals of the vibrometer and eddy current sensors have been acquired; and 

• the acquired time histories have been pass band-filtered (Butterworth, 3rd order) with cut-off 

frequencies at 15 and 55 Hz; these values correspond to defect pitches of about 4.4 and 1.4 mm. 

For each time history, three cycles were selected (named below as cycles #1,#2 and #3) in order 

to have a raw assessment of the method repeatability, and the RMS displacement was computed; 

below, we will refer to the RMS of the LDV and of the EC as RMSLDV and RMSEC, respectively. The 

measured spectra were compared for the tested cylinders by means of the LDV and of the eddy 

current displacement sensor only during the validation phase. If defects were present, a spectral 

feature was expected at the frequency of the defect. The acquisition system also comprised a NI 
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acquisition board 9234 with a sampling frequency of 2048 Hz, equipped with an antialiasing filter. 

Moreover, a piezoelectric accelerometer (Bruel&Kjaer model 4370) was mounted on the measurement 

bench to monitor vibrations from unwanted external disturbances that would prevent the system 

from correctly measuring the defect. During quality testing, the bench vibration (quantified by the 

acceleration RMS value) was measured and compared with a threshold value identified in a 

laboratory environment. If the measured bench vibration overcame the identified threshold, the 

general inspection of the bench was performed until the RMS came back within the acceptable range, 

and the measurement was repeated. 

3.2. Method Validation and Cylinders Testing 

Below, the measured time histories and spectra of the LDV and eddy current sensor are 

provided. Before testing, the eddy current sensor was calibrated on the cylinder material using the 

LDV as reference. Static calibration is mandatory because the sensitivity of these kinds of transducers 

strongly depends on the target type of material and also on its microstructure. The calibration 

provided 17.33 V/mm sensitivity (the nominal value is 20 V/mm from the sensor datasheet with an 

AISI 440 target), with a standard uncertainty of 0.73% on the measured sensitivity. In order to ease 

the comparison between the defective and reference cylinders, we normalized the quantities RMSLDV 

and RMSEC with respect to the average measured RMS of the radius variation for the reference 

cylinder without the defects measured by the LDV RMSRef,LDV: 

����  =  
������

������,���

 (6) 

���  =  
�����

������,���

 (7) 

Thus, for the LDV measurements with the cylinder without defects, the average of RLDV was 

expected to be 1. 

3.2.1. Testing of the Cylinder without Defects 

Figures 9 and 10 show, for the LDV and eddy current sensor respectively, the measured time 

histories and corresponding spectra of the reference cylinder. Table 1 summarizes the normalized 

measured displacement RMS in the three areas of interest for the cylinder. 

 

Figure 9. Cylinder without defects, LDV signal: (a) filtered time history (blue) and selected cycles 

(red), (b) spectra of the selected cycles. 
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Figure 10. Cylinder without defects, eddy current signal: (a) filtered time history (blue) and selected 

cycles (red), (b) spectra of the selected cycles. 

Table 1. Measured RLDV and REC of the filtered time histories, non-defective cylinder, LDV vs. eddy 

current sensor. 

Parameter Region of the Cylinder Cycle #1 Cycle #2 Cycle #3  

���� 

A 1.019 0.790 1.027 

B 1.121 1.027 1.010 

C 1.053 0.993 0.959 

��� 

A 1.522 1.406 1.405 

B 1.418 1.448 1.441 

C 1.426 1.428 1.429 

3.2.2. Testing of the Cylinder with Defect 

In Figures 11 and 12, the measured time histories and related spectra for the defective cylinder 

measured by the LDV and the eddy current sensor are provided. Table 2 summarizes the measured 

RMS values in the selected areas. 

 

Figure 11. Defective cylinder, LDV signal measured in area B: (a) filtered time history (blue) and 

selected cycles (red), (b) spectra of the selected cycles. 
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Figure 12. Defective cylinder, eddy current signal measured in area B: (a) filtered time history (blue) 

and selected cycles (red), (b) spectra of the selected cycles. 

Table 2. Measured RLDV and REC of the filtered time histories, defective cylinder, LDV vs. eddy current 

sensor. 

Parameter Region of the Cylinder Cycle #1 Cycle #2 Cycle #3 

���� 

A 6.156 6.232 6.139 

B 8.677 9.959 9.594 

C 7.064 7.293 8.151 

��� 

A 5.293 5.179 5.519 

B 6.048 6.249 6.210 

C 5.461 5.311 5.679 

In order to assess the repeatability of the proposed measurement method, additional 

measurements were performed on the defective cylinder. The normalized RMS values were 

computed on eight time-histories, and the variability was computed as a sample standard deviation. 

The latter expresses the method repeatability and is the lower limit of the measurement method 

uncertainty. The results are summarized in Table 3. 

Table 3. Defective cylinder, repeatability testing, area B. 

Test ID ��� 

1 6.207 

2 6.249 

3 6.592 

4 6.193 

5 6.416 

6 5.987 

7 6.148 

8 6.377 

3.3. Discussion 

In order to identify the limitation of the proposed method, the threshold value of detectability 

was computed from the standard deviation of the measured REC in Table 1 (measurements of the non-

defective cylinder by the eddy current probe). The average REC is 1.436, with a standard deviation of 

0.035, providing a maximum of the confidence interval set to 1.541 and a minimum to 1.331 (like for 
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Equations (3) and (4)). The measured values provide the detectability threshold of the proposed 

method at 0.78. 

Spectra in Figures 9 and 10 evidence peaks that are not repeatable in terms of the amplitude and 

frequency content for each analyzed cycle of the measured time histories. This is coherent with a 

surface of the tested item that does not present defects. Instead, looking to the measured spectra in 

Figures 11 and 12, the amplitudes of the peaks and related frequency content appear to be repeatable 

for both used sensors. Peaks had a larger magnitude than that measured for the non-defective 

cylinder by a factor ranging between four and ten for the eddy current sensor and the LDV, 

respectively. This result evidences the presence of defects, with quite a repeatable shape, on the 

examined cylinder. 

When further comparing the obtained results, it can be seen that the REC and RLDV values for the 

defective cylinder are different between the used sensors. This is somehow expected, and the cause 

lies in the spatial resolution of the sensors. In fact, the LDV measurement spot is in the order of tens 

of millimeters, whereas the eddy current sensor is at least one order of magnitude larger. This causes 

an averaging of the peak-valley difference, resulting in lower estimated amplitudes. In any case, this 

is not a limiting factor for the proposed method since, as already mentioned, the main objective is to 

find a parameter for the identification of the defective condition. In order to have an estimation of the 

defect pitch, the computed maxima of the spectra in Figures 11 and 12 have been taken. The obtained 

result (frequency varying between 21.63 and 22.27 Hz) agrees with what was derived by prints, i.e., 

a pitch of the defect ranging between 3.45 and 3.35 mm. This validates the proposed method, 

confirming the capability to identify surface defects relevant to the intended application. As shown 

in Table 3, the method repeatability is about 2% of the average value of the measured REC; this 

becomes the uncertainty in the threshold identification during the quality check during cylinder 

testing. 

3.4. Batches Testing 

After the encouraging results of the above tests, the test bench was used to inspect different 

batches of incoming cylinders. Two different batches were tested, 17 cylinders in total. The objective 

of this test campaign was the identification of a threshold value for the RMS to be used for the quality 

control. Among the tested cylinders, as expected, there were not only “good” and “bad” specimens 

like in the previous test but defects of variable gravities. Figure 13 summarizes the measured results. 

 

Figure 13. Measured REC values for the tested cylinders, (left) batch #1 and (right) batch #2. 

It can be noted that the batch testing evidences a variability of the normalized RMS between 2.55 

and 0.85 in view of all the analyzed areas. All the cylinders (preliminarily screened by the quality 

control department) were integrated in the machine lines. All the tested items showed acceptable 

results, without noticeable defects in the resulting prints. Thus, in accordance with the quality 

department of the company, the threshold value for the acceptance was set at 2.55, the maximum 

value registered during the testing of the batches. 

Comparing the latter value with the threshold value related to the detectability of the method, 

it can be noted that the risk of considering defective good cylinders as only being a consequence of 
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the randomness of the bearings’ noise or of the measurement chain lies well below a meaningful 

probability. This result proves the robustness of the proposed method for the intended case. 

4. Conclusions 

In this work, a measuring system based on an eddy current displacement sensor was developed 

for the quality check of the surface of cylinders used in flexographic roll-to-roll printing machines. 

The method was demonstrated as being effective for the intended application, i.e., providing a 

screening method for quality control. The main advantages are related to a rapid scan of the tested 

item, providing the possibility of analyzing different areas of the cylinder, and rapid post-processing, 

mainly based on the acquisition and evaluation of the RMS displacement of the tested item. 

The test bench was designed and successfully validated by a dynamic characterization. The 

validity of the proposed system was checked on previously classified items, i.e., defective and non-

defective cylinders. The testing activity on different batches of printing cylinders allowed the 

identification of the threshold value of the measured RMS to be used in order to assess the acceptance 

during quality control. 
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