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Probabilistic-WCET Reliability:
Statistical Testing of EVT hypotheses

Federico Reghenzania, Giuseppe Massaria, William Fornaciaria

aDEIB, Politecnico di Milano, via Ponzio 34/5, Milano, IT

Abstract

In recent years, the interest in probabilistic real-time has grown, as a response to the limi-
tations of traditional static Worst-Case Execution Time (WCET) methods, in performing
timing analysis of applications running on complex systems, like multi/many-cores and
COTS platforms. The probabilistic theory can partially solve this problem, but it requires
strong guarantees on the execution time traces, in order to provide safe probabilistic-
WCET estimations. These requirements can be verified through suitable statistical tests,
as described in this paper. In this work, we identify also challenges and problems of using
statistical testing procedures in probabilistic real-time computing, proposing a unified
test procedure based on a single index called Probabilistic Predictability Index (PPI).
An experimental campaign has been carried out, considering both synthetic and realistic
datasets, and the analysis of the impact of the Linux PREEMPT RT patch on a modern
complex platform as a use-case of the proposed index.

1. Introduction

The Worst-Case Execution Time (WCET) analysis is an essential part of hard real-
time systems design, in order to properly validate tasks schedule, and thus guarantee
the timing constraints are satisfied at run-time. Failing to meet these constraints leads
the tasks to possibly misbehave, often with unacceptable consequences for hard real-
time systems, especially in the case of safety-critical applications. Consequently, the
timing analysis of critical tasks requires the WCET estimation to be safe, i.e, greater or
equal to the actual WCET experienced at run-time. On the other hand, this estimation
must be as tight as possible to the real WCET, to minimize over-provisioning in the
resource assignment. Recently, getting a safe but tight WCET has become a challenging
problem. The growing capabilities of embedded systems, in addition, but opposed to,
the reaching of technology limits is increasing the hardware complexity of processors –
such as the introduction of many-cores, multi-level caches, complex pipelines, etc. This
hinders the use of traditional WCET estimation techniques [9] [28] [31], that either require
an unfeasible amount of computational effort or produce an extremely pessimistic over-
estimation. This over-estimation can even lead to the inability of computinga feasaible

Email addresses: federico.reghenzani@polimi.it (Federico Reghenzani),
giuseppe.massari@polimi.it (Giuseppe Massari), william.fornaciari@polimi.it (William
Fornaciari)

Preprint submitted to Elsevier May 20, 2020

                  



tasks schedule. The problem is even magnified when dealing with Commercial-Off-The-
Shelf (COTS) components and general-purpose operating systems [42], that have not
been designed to be timing-predictable and they consequently lack a proper worst-case
analysis.

1.1. Probabilistic Real-Time Computing

Given the aforementioned scenario, probabilistic (hard) real-time has been proposed
as a possible solution to the WCET estimation problem. This approach is founded on
the well-known Extreme Value Theory (EVT), which is widely applied to the prediction
of natural disasters. The theory is briefly introduced in Section 2. The use of EVT in
real-time systems has been proposed since the beginning of the 2000s by Burns et al.
[11] and Bernat et al. [7]. The first paper presented EVT and the possibility of using
this theory for probabilistic real-time analysis. The latter instead, focused on the alge-
braic properties needed to combine several probabilistic-WCET estimations. Generally,
probabilistic real-time based approaches can be divided into two main classes [1]: Static
Probabilistic Time Analyses (SPTA) and Measurement-Based Probabilistic Time Analy-
ses (MBPTA). MBPTA, which we focus on, has been proposed to estimate the so-called
probabilistic-WCET (pWCET) by Edgar and Burns [17] by directly sampling the execu-
tion times of the tasks. Opposite to the classical WCET estimations, the pWCET is not
a single value, rather it is a statistical distribution, usually expressed by the complement
of its cumulative distribution function (cdf):

p = P (X > WCET ) (1)

where X is the random variable representing the task execution time. By using this
distribution, it is possible to compute the probability of violation (p) of a given WCET
or, vice versa, the WCET given the probability of violation (p). The probability of
violation represents how likely is the event of observing an execution time larger than
WCET . The selection of a value for the probability p is a trade-off between WCET
reliability and tightness. The pWCET is considered safe if the estimated distribution
“upper-bounds” the worst-case execution time with a probability value equal or higher
than the real one1.

1.2. Related works

The literature on probabilistic real-time computing was summarized in 2017 by San-
tinelli et al. [50] and more recently, in 2019, by two comprehensive surveys by Cazorla
et al. [13] and by Davis and Cucu-Grosjean [16]. The research efforts focused on both
the methodology of the application of EVT to probabilistic real-time, and on the design
of computing architectures capable of generating execution time traces that fulfills the
EVT requirements (see Section 2.1). Regarding the second point, several works have been
published [14] [29]. Other works focused more on the theoretical aspects of MBPTA [2]
[36], which still present several challenges to address [21] [44]. This work is neither based
on a particular architecture nor wants to propose a new EVT-compliant one. Rather, we
focus on the analysis of the tasks execution time traces, independently from the nature
of the system generating them. The goal is to provide a test suite and a unified index, to
verify the EVT hypotheses under the pWCET reliability requirement.

1Formal definitions for pWCET comparison are available in [50].
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1.3. Paper contributions and structure

Most of the articles in the literature assume the EVT hypotheses verified or do not
follow a systematic approach to assess them. Some works applied improper hypothesis
tests, erroneously run multiple tests on the same data, or reached conclusions without a
proper evaluation of the statistical effects. Strategies based on expert knowledge instead,
like graphical plot analysis, do not offer a systematic approach and thus quantitative
information on the pWCET reliability. For these reasons, in this work we aim at:

1. clearly stating the problems and the statistical aspects affecting the pWCET relia-
bility;

2. analyzing and making a selection of the statistical tests fitting the probabilistic real-
time computing case for the independent and identically distributed hypothesis;

3. proposing a single metric, called PPI, to use both as a decision rule and for the
analysis of the execution time series, as a comparison metric, to check how different
systems and task configurations may affect the validity of the probabilistic real-time
results;

4. highlighting some common errors recurring in previous works when statistical tests
are applied to MBPTA.

Finally, as use-case, we show how the theoretical results can be exploited to verify
whether the real-time patch (PREEMPT RT) of the Linux kernel is able to fulfill the
EVT hypotheses or not.

To the best of our knowledge, this is the first attempt to systematically analyze these
reliability theoretical problems on the application of EVT to probabilistic real-time com-
puting. In fact, the conclusions drawn from the EVT results cannot exclude the context
on which the statistical theory is used. Real-time computing is for sure an unique and
particular scenario, compared to the usual applications of this theory. As subsequently
explained, the reliability of the EVT results depends on three factors. The most interest-
ing and studied from a real-time standpoint is the independent and identically distributed
hypothesis: this work focuses, consequently, on this hypothesis, aiming at improving the
reliability of EVT results, essential steps towards a possible future certification process
of probabilistic real-time.

The article is structured as follows: in Section 2 the description of the EVT theory and
its applicability to the probabilistic real-time problem is reviewed. Section 3 describes
the statistical testing procedures, with a special focus on reliability aspects and common
errors. The mathematical foundations of the proposed index PPI are described in Section
4. Finally, an experimental evaluation has been performed and presented in Section 5,
followed by conclusions and future works considerations in Section 6.

2. Extreme Value Theory in Real-time Computing

The statistical theory of extremes has been developed to study the “tails” of a distri-
bution, i.e. the events for which we have maximum (or minimum) probability values. In
this regard, the aforementioned Extreme Value Theory (EVT) is in the opposite direction
with respect to the well-known Central Limit Theorem (CLT), which is instead focused
on the behavior of the distribution around the mean value.
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Given a sequence of independent and identically distributed (i.i.d.) random vari-
ables X1, X2, ..., Xn, the EVT deals with the limit distribution at the extremes, i.e. the
max(X1, X2, ..., Xn) or min(X1, X2, ..., Xn). In the real-time computing scenario, the se-
quence of random variables X1, X2, ..., Xn is the execution times of a given task, that is
the direct time measurements in case of MBPTA. In the WCET estimation case, we are
interested in the maximum value, therefore it is possible to formalize the probability of
not incurring in a execution time longer than a certain threshold x as follows:

P (max(X1, X2, ..., Xn) ≤ x) = P (X1 ≤ x,X2 ≤ x, ...,Xn ≤ x)

iid
= P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x) = Fn(x)

(2)

F (x) is the cumulative distribution function (cdf) and its complement is the pWCET
formula of Equation 1. Without entering in statistical details, it is possible to demonstrate
that [12]:

∃an, bn s.t. lim
n→∞

Fn(anx+ bn) = G(x) (3)

where G(x) is the cdf of the so-called Extreme Value Distribution, for some an and bn. The
form of this distribution can be generalized, as subsequently described, and its parameters
can be estimated from data. The traditional methods to estimate the parameters of G(x)
are the Block-Maxima (BM) or the Peak-over-Threshold (PoT) approaches. In the first
case, the time values are grouped inside blocks of constant size B, to then compute the
maximum value for each block. Formally:

XBM = {XBM
1 , XBM

2 , ..., XBM
n/B}

XBM
i = max(XB·(i−1)+1, XB·(i−1)+2, ..., XB·i)

(4)

for i = 1, ..., nB . The PoT case, instead, discards values by removing any sample featuring
a value lower than a predefined threshold P :

XPoT = {Xi s.t. Xi > P} (5)

According to the Fisher-Tippett-Gnedenko theorem [19] [22], regardless of the origi-
nal distribution, XBM and XPoT converge respectively to the Generalized Extreme Value
Distribution (GEVD) and to the Generalized Pareto Distribution (GPD). These distribu-
tions can be then exploited to compute the pWCET, as shown in Figure 1 and described
in [43]. The so obtained pWCET is representative of the real distribution of the ex-
tremes, and consequently safe for real-time computing, if and only if the following EVT
hypotheses hold:

1. the execution time samples must be identically and independently distributed (i.i.d.);

2. the original distribution must be in the domain of attraction of an extreme distri-
bution;

3. the inputs provided to the task are representative of the real worst-case behaviour.

As explained in the next sections, all the hypotheses are necessary to obtain a reliable
pWCET. The hypothesis on representativity (3) is related to the task itself and to the
procedure that selects the input samples to generate the execution time trace. We do
not explore this hypothesis in this work, since it does not depend on how the pWCET
estimation process is performed.
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Figure 1: pWCET estimation flow based on the EVT.

2.1. The i.i.d. hypothesis

In common with many other statistical theories, the classical formulation of EVT
requires the random samples to be identically and independently distributed (i.i.d.). In
real-time computing, this hypothesis is mainly dependent on the processor and the system
architecture. For example, a multi-core processor including a cache memory would not
probably be able to fulfill the independence requirement, due to the time locality principle.
Time samples from consecutive executions of the same task, in fact, are affected by the
data locality given by the cache, making the execution times not independent. In practice,
the i.i.d. requirement can be relaxed in favor of the stationary property and weaker
independence properties [33] [51]. Such hypotheses must hold [50] and can be formalized
as follows:

Stationarity. Given a random sequence X1, X2, ..., Xn of size n, the process is said
to be strict stationary iff for any choice of k, l,m with 0 < k + l + m < n the following
condition is true: F (Xk, Xk+1, ..., Xk+l) = F (Xk+m, Xk+m+1, ..., Xk+m+l), where F is the
cdf of the joint distribution. This condition implies identical distribution of the random
variables. In real-time computing, the stationary hypothesis indicates a flat distribution
of execution times, with constant variance. For instance, a task that drastically changes
the job execution time after some runs violates this property.

Short-range independence. Given a sequence of random variables X1, X2, ..., Xn

of size n, the sequence is said to be short-range independent if for any i1 < i2 < · · · <
ip < j1 < · · · < jp ≤ n s.t. j1 − ip ≥ s > 1, defining FIJ the cdf of Xi1,...,ip,j1,...,jn , FI
the cdf of Xi1,...,ip , FJ the cdf of Xj1,...,jp we have |FIJ − FIFJ | ≤ αn,s where αn,s is a
sequence with non-decreasing values with respect to s and αn,s → 0 for n → ∞. The
intuition behind this property can be noticed looking at the content of the absolute value
operator, that is zero if FI and FJ are perfectly independent, otherwise the dependency
has to be upper-bounded by (a function of) the distance among the random sequences.
In real-time computing, an example of a cause of short-independence property violation
is the presence of processor cache effects between two job instances.

Long-range independence. According to this property, the time series does not
show a significant correlation across large time-spans. We define this property by defining
its opposite. A long-range dependent sequence can be defined as: a random sequence
X1, X2, ..., Xn of size n is said to have long-range dependence if its auto-correlation

function ρ(τ) decays exponentially: ρ(τ) ∼ L(τ)
τ1−2d with 0 < d < 1

2 where L(τ) verifies

limt→∞
L(at)
L(t) = 1 for some a > 0.

It is worth noting that the short-range hypothesis is a sufficient but not necessary
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condition for EVT applicability [34]. If the dataset presents a short-range dependence, it
can still be considered valid if other conditions hold. The statistical paper [34] proposes
some diagnostic methods to check these properties, however, they require a non-trivial
in-depth analysis of the dataset and the used estimation method. For this reason, we
suggest using such techniques only when the short-range independence hypothesis is false
and it is not possible to improve the system to be adherent to this hypothesis.

2.2. The domain-of-attraction hypothesis

The last property to be satisfied, introduced in [50], is called matching and it is
related to the domain of attraction hypothesis. This hypothesis requires that the original
distribution of extremes actually converges to one of the EVT distribution classes. When
the timing samples are represented with random variables having continuous distribution
functions, the domain of attraction hypothesis is true in the overwhelming majority of the
times [49]. This is, instead, not necessarily true when discrete distributions are considered.
The matching property is usually checked with a posteriori statistical tests, that verify
whether the resulting distribution actually matches the input data. Typical tests are the
Kolmogorov-Smirnov [27] and Anderson-Darling [55]. Moreover, checking the matching
hypothesis with these tests has another advantage, i.e. verifying if the BM (or PoT)
procedure and, in general, the whole EVT process correctly estimates the distribution.

It is hard to provide a generalization of the domain-of-attraction hypothesis, being a
statistical detail that cannot be easily linked to specific hardware or software characteris-
tics. A recent paper carried out a preliminary study on how to deal with this hypothesis
in the context of probabilistic real-time [48]. In real-time computing, the execution time
is usually expressed as clock cycles, which is a discrete measure. However, the cardinality
of clock cycles is usually so large that we can approximately consider it in a continuous
domain. An alternative is to measure the execution time in seconds, to avoid this issue
and making this assumption almost certainly true.

3. Statistical Testing in MBPTA

All the hypotheses previously described can be verified through suitable statistical
tests. The results are reject/not-reject responses that correspond to the adherence or not
to the EVT hypothesis. This, in turn, can represent a true/false boolean response to
the problem of verifying the pWCET reliability. Therefore, performing proper statistical
tests in the correct way is fundamental, other than being a necessary step towards the
certifiability of the probabilistic approaches.

3.1. Assessing the EVT hypotheses via hypothesis testing

A statistical test is typically described by its hypothesis scheme. Usually, the symbol
H0 represents the null hypothesis, while the symbol H1 or Ha the alternative hypothesis.
The result of a test can be “reject the null hypothesis” or “unable to reject the null
hypothesis”. In the first case, the test detects strong evidence that the null hypothesis
is probably false, while the alternative hypothesis is probably true. The outcome of a
statistical test (reject/not-reject) comes from the evaluation of the p-value or the critical
value. As the two approaches are exactly equivalent, we have decided to consider only
the second one. The critical value is a constant value, i.e. not dependent on the input,
but derived from the significance level α. It is compared against the statistic computed
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over the input data to take the reject/not-reject decision. How the critical value and the
statistic are computed depends on the specific test.

3.2. Selection of the statistical tests

Stationarity. In literature, several studies on stationary processes are available,
along with related statistical test procedures. In particular, there is a large availability
of unit-root tests – a particular case of non-stationarity – but a lower number of general
stationary tests. Given a time series X = {X1, X2, ..., Xn}, we are looking for a test with
the following hypothesis scheme:

H0 : the time series X is stationary
H1 : the time series X is not stationary

In this regard, the most used one is the Kwiatkowsky, Phillips, Schmidt and Shin (KPSS)
test [32]. A variant of KPSS considering the relaxed null hypothesis “the time series is
stationary or trend stationary” exists. For the EVT hypothesis of stationarity, we are
interested in the tightest one, thus we do not consider this variant. The formula for KPSS
statistic is available in Appendix A.1. The critical values can be computed through the
interpolation of the tabular data proposed in [32] or by using Monte Carlo approaches.

Short-Range dependence. To test the short-range dependence of data, we selected
the Brock, Dechert, Scheinkman and LeBaron (BDS) test [10]. For probabilistic real-time,
we decided to select this test because it is a portmanteau test, i.e. the null hypothesis is well
specified, but the alternative hypothesis is not. Given a time series {Xi} = X1, X2, ..., Xn:

H0 : the time series {Xi} is independent
H1 : the time series {Xi} has some sort of dependency

Most of the other available tests detect specific sort of dependency (e.g. serial correlation
or deterministic chaos). Therefore, we decided to choose the test with the most general
detection capability. The formula for BDS statistic is available in Appendix A.2. The
critical values can be computed via numerical methods.

Long-Range dependence. The Hurst Exponent (H) is the traditional index used
to measure the long-term memory of a time series in financial applications [41]. H is a
number in the range [0; 1] indicating the degree of long-term dependency: H = 0.5 means
a perfectly random and uncorrelated time series, while H < 0.5 or H > 0.5 indicates a
negative or positive correlated time series, respectively. However, performing a statistical
test on H is nontrivial [15] and, to the best of our knowledge, it does not exist a well-
assessed test. The Hurst index is computed from the R/S statistic equation [25] instead,
that can be directly used as a test:

H0 : the time series has no long-range dependency
H1 : the time series has long-range dependency

This test is sensitive to long-range dependency but also to short-range dependency. An
alternative to this formulation is the Lo’s modified version [38] that has been developed
to limit the influence of short-range dependency in the R/S equation and it is commonly
used. However, this version reduces the statistical power of the test [56], which is not
desirable in this context (see Section 3.4). Therefore, by using the unmodified R/S statis-
tic, this test may detect a short-range dependency partially overlapping the BDS test,
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thus providing pessimistic but safe results. The formula for R/S statistic is available in
Appendix A.3. The critical values can be computed via numerical methods.

3.3. The significance level - False positive

Once the statistical test procedure is defined, the next critical step is to set the sample
size and the significance level α. The sample size, i.e. the number of time measurements,
composing a time trace used in the estimation process, is a parameter affecting both
pWCET accuracy and safety, as discussed in the next Section 3.4. The significance
level α is a parameter chosen by the designer of the statistical test procedure and it
corresponds to the false-positive ratio of the test, i.e. the probability that a test rejects
the null hypothesis even if it is actually true. This is often called Type I error and in
pWCET terms it corresponds to discard the sample when it is instead compliant with
EVT hypotheses. To check the sub-hypotheses presented in the previous section, the
experimenter usually performs a sequence of three statistical tests. In general, executing
multiple hypothesis tests on the same data increases the false-positive rate on the null
hypothesis rejection of the overall test [5]:

αglobal = 1− (1− α)n (6)

where n is the number of tests (in our case n = 3).
For common values α = 0.05 and α = 0.01, the resulting global significance levels are

respectively αglobal ≈ 0.14 and αglobal ≈ 0.03. The real significance level is thus higher
than the single test levels, entailing a higher false-positive rate in rejection. Rejecting
a sample implies that the pWCET estimation process stops, because it detects that not
all the hypotheses are satisfied, preventing the estimation of an unsafe pWCET. The
false-positive rate makes difficult to characterize the capability of a hardware-software
architecture to fulfill the EVT hypotheses: obtaining a rejection result, by running one
single time a statistical test, does not necessarily mean that the architecture is non-
compliant with EVT hypotheses. To perform a correct evaluation, the test has to be
run multiple times and the final outcome has to be decided by looking at the overall
reject/not-reject ratio: a rejection ratio close to α identifies a system that verifies the
EVT hypotheses, while a higher ratio represents a violation of the EVT hypotheses. This
problem is subsequently discussed in Section 3.5.

In statistical literature, several methods exist to reduce the αglobal value when multiple
tests are performed. The most famous one is the Bonferroni correction [8]. However, all
of such approaches have the negative effect of reducing the statistical power [40] that, as
explained in the subsequent paragraphs, may hinder the reliability of our results. Because
the number of tests is fixed and low (3), it does not worth to trade a lower αglobal value
with lower statistical power.

3.4. The sample size - False negatives

In addition to the previously cited Type I error, the test can fail with the so-called Type
II error, i.e. a false-negative result. In this case, the test retains the null hypothesis when
it is actually false. Unlike the α, the Type II error can not be directly managed by the
experimenter, rather it depends on the statistical power W of the test: W = 1− β where
β = P (Accept H0|H0 is false). Unfortunately, the statistical power is neither simple to
control nor to estimate. In fact, the statistical power W depends on several parameters,

8

                  



including the significance level, the input data distribution, the test statistic itself and
the sample size. It can, however, easily be increased by enlarging the sample size.

In our scenario, the Type II error represents the inability to detect a violation of EVT
hypotheses, which consequently generates an incorrect extreme value distribution, that
may lead to unsafe pWCET computation. For hard real-time systems, a preliminary
study on the statistical power is therefore necessary, to both select the proper sample size
and to estimate the statistical power. A recent paper studied the statistical power in the
context of pWCET [48], providing some insights on the minimum sample size value.

3.5. Fulfilling the hypotheses is a property of the system and not of the single time trace

In order to produce correct results, the EVT theory requires the original statistical
process generating the data, in our scenario generating the execution times, to be com-
pliant with the aforementioned hypotheses. In the computing scenario, this is a property
of both the hardware and software. The compliance proof can be provided by construc-
tion, by describing the underlying statistical process that governs the execution times.
This is the behind idea of randomized cache approaches [14]: the cache is an important
source of violation of the EVT hypotheses, thus such approaches try to randomize the
cache behavior to make this component compliant. However, to prove by construction
that a whole system is compliant requires an in-detail hardware and software analysis
that may vanish the advantage of measurement-based approaches. Consequently, the use
of statistical tests has been proposed to assess the compliance a posteriori of the time
measurements, without looking at the system description.

The correct assessment of such hypotheses with a statistical testing inference requires
to acquire several time traces of execution time, run the statistical tests for each time
trace, and, finally, look at the results. In particular, the ratio of rejection/non-rejection
of the null hypothesis provides the deduction of the statistical property searched for. A
single time traces meeting the EVT hypotheses can not provide any insights about the
statistical process generating it. In fact, even if a single time trace may be able to pass
the checks, this must not be interpreted as the system being compliant with the EVT
hypotheses. In fact, the hypotheses can be considered fulfilled when the rejection/non-
rejection ratio settles around the significance level for the test, or the αglobal in case of
multiple testing as described in Section 3.4.

3.6. Analysis of the previous literature

Most of the scientific literature in probabilistic real-time checks the EVT applicability
by directly verifying the i.i.d. hypothesis. The execution times independence is usually
checked by performing a Ljung-Box test [3] [4] [6] [18] [52]. This is problematic for two
reasons: we already described that pure independence is a too strict requirement [51]
and the Ljung-Box test checks for the presence of a particular form of independence,
i.e. the serial correlation. Other approaches use the Wald-Wolfowitz test (also called
runs test), e.g. [30] [52], that suffers from the same problems: on one hand it is used
as a ”pure” independence test, on the other hand, its detection capabilities refer to a
particular dependence around the median value. Finally, to test the identically distributed
hypothesis, the Kolmogorov-Smirnov (KS) two-sample test has been extensively used2 [4]

2Not to be confused with the one-sample KS test used as Goodness-of-Fit test for the maximum
domain of attraction hypothesis.
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[6] [18] [30] [52] [54] [57] [58]. This test consists of dividing the sample into two parts
of equal size and then comparing each other with the KS test to check whether they
have the same distribution. While this can be effective against some form of violation of
the identically distributed hypothesis (e.g., the later presented dataset B1 in Figure 3 of
the experimental evaluation), it is easy to build counter-examples that show this test is
ineffective and improperly used in our scenario. For example, let consider x1, x2, ..., x200
as our execution time trace, drawn from a sequence of random variable distributed as
follow: X20k+1, ..., X20k+10, for k = 0, ..., 9 from a distribution D1, while the values
X20k+11, ..., X20k+20, for k = 0, ..., 9 from a distribution D2. Applying the KS test using
the first 100 elements as the first sample and the last 100 elements as the second sample,
it would result in a false-negative, being unable to detect the non-identically distributed
hypothesis. This because, while the two joint cumulative distribution functions of the
samples of 100 elements each are similar, their inside random variables are not identically
distributed.

In Section 3.4 we showed why the sample size plays a critical role in the amount of
false-negative of the statistical tests. For example, for a sample size of 200, the KS test’s
statistical power can be lower than 50% [47]. Previous works in probabilistic real-time
used different values for the sample size: in some cases very low, e.g. 50-100 range [3] [54]
[58], making the test result unreliable. Other works used a higher number of samples,
about ∼ 500 [23] [39] [57]. Without a proper power analysis, it is difficult to estimate the
confidence in the results of these papers. Conversely, papers like [6] [52] used 105 or 106

number of samples, getting rid of the statistical power problem. Our recommendation, as
suggested by the preliminary results3 of [47], is to use at least 1000 samples in academic
research, while for industrial applications a preliminary statistical power analysis must be
performed. Please note that even if 500 and 1000 are sizes of the same order of magnitude,
the effect on statistical power differs for several orders of magnitude.

Finally, to the best of our knowledge, none of the previously cited papers considered
the significance level problem described in Section 3.3 nor the systems have been tested
with a proper sequence of analyses described in Section 3.5. The only exceptions are
represented by the papers of Arcaro et al. [4] and Silva et al. [54], that analyzed the
p-value distributions across different time traces.

4. Towards a unified index

The reject/not-reject result and the absolute values of the statistics of the three pre-
viously described tests do not provide a clear and straightforward information about the
time predictability coming out of the traces or about the system in general.

In this regard, the goal of our work is to introduce a much more meaningful single uni-
fied index, through which to provide a quantitative value, to express the fulfillment of the
statistical hypotheses, given time traces samples. We refer to this index as Probabilistic
Predictability Index or PPI. The PPI has been designed by merging the three tests dis-
cussed while maintaining their statistical properties to be able to use PPI as a hypothesis
test as well. The PPI is defined over the continuous range (0; 1). For PPI values near 0

3The cited paper performed an analysis of Goodness-of-Fit tests for pWCET and not specifically of
the tests exploited in PPI. However, it is reasonable, or at least conservative, to think that the statistical
power of PPI tests is in the same order of magnitude.
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the time samples present strong evidence that the time series is not analyzable, because it
violates EVT hypotheses. Vice versa, for PPI values near 1 the time series presents good
properties and adherence to EVT hypotheses. The time series should be rejected if the
PPI is lower than the predefined critical value CPPI , maintaining the original statistical
tests’ significance. In particular, if PPI > CPPI the hypotheses are true and the pWCET
can be safely estimated, while if PPI ≤ CPPI at least one hypothesis is violated and any
pWCET estimation would lead to unreliable results. The PPI is obtained with a set of
transformations that maintain the statistical foundations of the original hypothesis tests.
The capability of rejecting or not rejecting the null hypothesis is unchanged, as well as
the statistical power. This is extremely important in probabilistic real-time context, due
to the critical aspect of the pWCET reliability.

4.1. Probabilistic Predictability Index (PPI) construction

The statistics of the previously described tests have the following ranges4:

SKPSS ∈ (0; +∞) SBDS ∈ (−∞; +∞) SR/S ∈ (0; +∞)

In order to level off these statistics we need to define a common domain D = (0; 1) that
will be the PPI domain. By taking into account the described desired meaning for PPI
and the statistics analytical formulation available in the Appendix, we have to find the
following functions:

fKPSS : (0; +∞)→ D

fBDS : (−∞; +∞)→ D

fR/S : (0; +∞)→ D

under the following constraints:

lim
x→+∞

fKPSS = 0 lim
x→0

fKPSS = 1

lim
x→±∞

fBDS = 0 lim
x→0

fBDS = 1

lim
x→+∞

fR/S = 0 lim
x→0

fR/S = 1

Moreover, the rejection property of the test statistics against the critical value must be
maintained. Let CKPSS , CBDS , CR/S be the critical values of the respective tests, each
null hypothesis has to be rejected if

|Si| > Ci ∀i ∈ {KPSS,BDS,R/S} (7)

For this reason, the Equation 7 must hold whatever transformation we apply. In order
to satisfy this requirement, the fKPSS , fBDS , fR/S transformations must be continuous,
positive and monotonic functions. The following functions satisfy the aforementioned
properties:

fKPSS(x) = e−KKPSS ·x

fBDS(x) = e−KBDS ·|x|

fR/S(x) = e−KR/S ·x
(8)

4We omit the ({Xi}) parameter of statistics Si for brevity.
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Table 1: Example of PPI values for three cases of statistical tests. The critical value is CPPI = 0.89.

fKPSS(SKPSS) fBDS(SBDS) fR/S(SR/S) PPI

0.96 0.91 0.92 0.92 3

0.50 0.91 0.92 0.50 7

0.50 0.91 0.70 0.425 7

Now we have to select KKPSS ,KBDS ,KR/S in order to be compliant with the previous
constraints and to get the same critical value for each test. We assign an empirical value to
KKPSS = 1

4 , then the critical value for KPSS test can be computed C∗KPSS = e−
1
4CKPSS .

Since we want the same critical value for the other two tests, their constants have to be
computed as follow:

kBDS = − logC∗KPSS
|CBDS |

kR/S = − logC∗KPSS
CR/S

(9)

eventually obtaining

CPPI := C∗i = fi(Ci) ∀i ∈ {KPSS,BDS,R/S}

Assigning different values to kKPSS would produce different statistic PPI values. How-
ever, it does not change its statistical meaning, because the critical values would change in
a consistent manner. Choosing a higher value of kKPSS shifts the PPI to produce values
towards 0, vice versa a lower value of kKPSS shifts the PPI to produce values towards 1.
We selected the value of kKPSS = 1

4 such that the obtained CPPI is 0.89 for α = 0.05,
i.e. about of 10% of fraction of PPI values (0.9−1.0) are dedicated to values representing
valid hypothesis, while the remaining 90% fraction (values 0.0 − 0.9) can represent the
violation degree of the hypotheses. The experimenter can change kKPSS at will, without
losing statistical properties, but modifying the human perception of the index value. In
Table 1, we can see an example of PPI value computation, for three cases of statistical
tests statistics.

Having uniformed the three statistics in the (0, 1) range with the same critical values,
it is possible to merge them into a unique index, by applying the following conservative
approach:

• if all test statistics are higher than the critical value, PPI must be higher than the
critical value;

• if any of the three test statistics is lower than the critical value, PPI must be lower
than the critical value;

• if more than one test statistics are lower than the critical value, PPI must be lower
than the minimum statistic.

This approach ensures that the statistical test meaning is not changed: we can compare
PPI with the critical value to assess all three hypotheses, assuming that if any hypothesis
is violated the test will reject the null hypothesis.
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Thus, we applied the following merging transformation:

PPI :=





min
∀i

fi(Si) ·
∏

i∈v∗
[1− (CPPI − fi(Si))] v 6= ∅

1

3

∑

∀i
fi(Si) v = ∅

(10)

where v is the violation set, i.e. v = {i|fi(Si) < CPPI}, and v∗ is the violation set without
the minimum, i.e. v∗ = {v\arg min∀i fi(Si)}. If no violation occurs in the three tests, the
result is the arithmetic mean of the three values, that is greater than CPPI . Otherwise,
the PPI is equal to the minimum statistic potentially multiplied by other statistics that
violate CPPI . This leads to a PPI value lower than CPPI , guaranteeing the statistical
hypothesis testing property. The arithmetic mean computes PPI using the same weight
for the three tests because each test verifies one different hypothesis.

To summarize, the PPI value can be computed by using Equation 10 and compared
with the critical value CPPI . In probabilistic real-time scenarios, if PPI < CPPI the
following null hypothesis (H0) has to be rejected in favor of the alternative one (H1):

H0 : the time trace verifies the EVT hypotheses
H1 : at least one EVT hypothesis is violated

5. Experimental Evidences

In this section, we present the experimental evaluation of the chosen statistical tests
and the proposed index PPI. The datasets have been analyzed thanks to the open-source
software chronovise [43], where we implemented the algorithm to compute the PPI index.
The algorithm is also available separately as MATLAB script [46]. The expectation is
to get high rejection rates for time traces that do not satisfy the conditions described in
Section 2.1. On the other hand, if the source of the samples is a distribution that verifies
the EVT hypotheses, then the rejection rate should settle around the significance value
α.

5.1. Time trace sources

For characterizing the properties of the proposed test, we used both synthetic time
samples and real benchmark executions. The first class of time traces has been designed
to stress the detection capability of each statistical test, by using synthetic distributions
with well-known statistical properties. The real benchmarks are instead executed on
different hardware platforms, with known real-time capabilities, to show an evaluation of
the probabilistic predictability of the target system.

Without losing generality, we evaluated the tests with a level of significance α = 0.05.
This means that we expected for each test a type I error (i.e. false-positive rate) of 5%.
In our scenario, this is a conservative error: each test excludes 5% of the times a dataset
that is actually valid for EVT estimation. The overall type I error can be computed using
Equation 6, obtaining 14% (αglobal = 0.14).

Synthetic sources. Let Xa:b be an ordered subset of the full time trace X1:n. For
synthetic and controlled time traces we used both i.i.d. and non i.i.d. sources. For the
former, we selected the following EVT-compliant distributions, that are expected to pass
the statistical tests:
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Figure 2: The Probability Distribution Functions of the synthetic benchmarks considered.
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Figure 3: Plots of the realization of 1000 random variables with the distributions of the synthetic bench-
marks considered. The red dashed line shows the long-term trend, computed as a linear interpolation of
all the points.
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A1 X1:n ∼ N (10, 1): Gaussian (normal)

A2 X1:n ∼ P(10): Poisson

A3 X1:n ∼ Γ(10, 1): Gamma

Then we tested three non-compliant distributions, that are expected to violate at least
one of the i.i.d. hypotheses:

B1 X1:n2
∼ N (10, 1);Xn

2 +1:n ∼ P(1): a normally distributed time trace for the first
half part and then a Poisson distribution; it represents a sequence of independent
but not identically distributed samples.

B2 X1:n ∼ AR(2): an auto-regressive model of order 2, with constant 10 and auto-
regressive coefficients (0.7, 0.25). This class represents a short-range dependent
time source.

B3 X1:n ∼ ARFIMA( 1
2 , 0, 0, 0,

1
4 ): an auto-regressive fractionally integrated moving

average model with AR, MA, and I coefficients zero, constant 1
2 and d = 1

4 . This
class represents a time source with a long memory.

B4 X1:n = {∀i ∈ [1;n]|Xi ∼ N(10 + 0.001 · i, 1)}: non identically distributed samples
with long-range dependence, but short-range independent.

We have drawn a total of 1 000 000 samples for each distribution and then we split into
groups of size 1 000 for a total of 1 000 evaluations. The pdfs of these distributions have
been plotted in Figure 2, as well as an example of traces in Figure 3. It is possible to
note that A1, A2, A3 appear as random, B1 is composed of two modes, B2 presents a
clear short-range dependence, while B3 and B4 have long-term trends.

Real sources. Concerning the experimental evaluation on real platforms, we run
four state-of-the-art benchmarks of the WCET Mälardalen suite [24]: sqrt, minver,
fdct, complex. We implemented each benchmark onto five different platforms, whose
well-known architecture characteristics introduce different degrees of unpredictability:

R1 PIC: a PIC18F45K50 microcontroller without operating system;

R2 STM: time-deterministic platform with a L1D and L1I cache: STM32F7 board pro-
grammed bare-metal without operating system;

R3 MIO: time-deterministic platform with a real-time operating system: the STM32F4
with Miosix operating system5;

R4 ODR: embedded development-board unpredictable platform: multi-core Odroid XU-3
with a Linux OS (vanilla kernel);

R5 INT: a desktop system, completely unpredictable platform: multi-core Intel i7 with
a Linux OS (vanilla kernel).

5http://miosix.org/
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E[PPI] VAR[PPI] RejectPPI RejectKPSS RejectBDS RejectR/S

A1 0.9374 1e-3 13.9% 6.8% 5.5% 4.5%

A2 0.9388 1e-3 12.3% 5.3% 4.9% 4.3%

A3 0.9393 1e-3 11.4% 4.9% 5.3% 3.4%

B1 0.6302 2e-3 100% 4.7% 100% 6.9%

B2 0.0058 1e-5 100% 100% 100% 100%

B3 0.5228 3e-2 100% 83.1% 99.2% 98%

B4 0.1319 3e-3 100% 100% 5.5% 100%

Table 2: Tests rejection results of synthetic time traces analysis.

R1 is a simple processor, time-deterministic and constant instruction timing. R2 and
R3 also are time-deterministic platforms, with no features that can affect the execution
time predictability, with the exception of the L1 caches of R2, which introduce a timing
dependence among the benchmark execution. R4 is, instead, an embedded development
board with several advanced features, making the execution time unpredictable. R5
is even more unpredictable because it is a general-purpose machine and, consequently,
contains several unpredictable hardware features, such as System Management Interrupts.

The benchmarks have been slightly modified to add: (1) a PRNG for input data
generation (except for complex where the input is constant), (2) an external loop to run
the benchmark multiple times, (3) a toggling mechanism for a GPIO to signal the start
and stop of a benchmark execution. To maintain consistency among all platforms, the
PRNG has been initialized with the same seed. This way each platform generates the
same sequence of pseudo-random inputs to the benchmarks. The time measurements
have been acquired by measuring the GPIO interval between the rising edge (start of
the computation) and the falling edge (end of the computation), using a commercial
logical analyzer with a 10ns resolution. Each benchmark then has been executed 100 000
times by using time series of size 1 000 for statistical testing, for a total number of 100
estimations for each benchmark.

5.2. Results

5.2.1. Synthetic samples

The results on time traces from synthetic sources are shown in Table 2. For i.i.d.
datasets (A1-A3) it is possible to notice a rejection rate based on evaluations of single
tests around 5%, that actually matches the chosen significance level α. The rejection
rate of the composed index PPI is slightly below 14%, that is the significance level value
computed by using Equation 6. This value represents the false-positive error rate, i.e.
the percentage of time series that is discarded even if they are generated by compliant
sources.

Regarding the results of time traces that do not satisfy at least one EVT condition
(B1-B4), we can notice the PPI rejection rate is always 100%. We can observe that the
power of BDS is high for B1-B3 but it is not for B4, where KPPS and R/S are able
to reject the hypothesis. On the contrary, for B1 only BDS appears to be sufficiently
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RejectPPI RejectKPSS RejectBDS RejectR/S

sq
rt

R1 23% 7% 15% 6%
R2 24% 2% 20% 3%
R3 29% 6% 23% 7%
R4 14% 1% 13% 1%
R5 34% 20% 12% 21%

m
in

ve
r

R1 16% 6% 6% 6%
R2 15% 9% 5% 6%
R3 17% 10% 7% 8%
R4 44% 1% 44% 1%
R5 78% 61% 31% 66%

fd
ct

R1 8% 2% 5% 2%
R2 20% 4% 15% 4%
R3 100% 99% 100% 99%
R4 62% 16% 48% 15%
R5 81% 67% 45% 71%

co
m

p
le

x

R1 79% 19% 72% 16%
R2 56% 5% 52% 3%
R3 100% 0% 100% 0%
R4 92% 5% 92% 1%
R5 100% 60% 95% 71%

Table 3: Tests rejections of R1-R5 real hardware time traces.

powerful. Moreover, it is worth highlighting that B1 is a non-identically distributed time
series, but KPSS is not able to detect it, while BDS provides for it. This is due to the
lack of statistical power of KPSS in case of weak stationary, but not strict stationary time
series [37].

5.2.2. Real platforms samples

Table 3 and Figure 4 show the results when time traces are generated by executing
benchmark applications on the aforementioned platforms. It is possible to observe the
expected trend of generating less-compliant time traces, with the increasing of the hard-
ware complexity. The traces generated by the complex benchmark are hardly analyzable
for all platforms, due to the lack of variability. This is in contrast with the common logic
behind the WCET analysis for which a more stable timing is preferable. The statistical
tests described and the EVT in general instead, require a minimal degree of variability,
as also shown by Lima et al. [35]. The benchmark complex lacks variability as it is the
only benchmark one – out of the four benchmarks – that performs simple computation
on the same input data for each iteration. For example, in the PIC microcontroller case
(R1), the variability of time measurements of complex benchmark is due only to the
measurement errors of the instrumentation: the input is constant for this benchmark and
the PIC microcontroller has a constant instruction timing architecture, making the actual
execution time constant. The same measurement errors affect the other experiments, but
the variability from software and hardware causes dominates the measurement errors.

For all the other benchmarks, the simple PIC microcontroller generates deterministic
time traces that lead to a low rejection rate, close to the significance level, i.e. the false
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Figure 4: The reject rates of the four benchmarks executed onto the described platforms.

positive rate. The MIO and STM platforms present higher values of rejection, caused
by the presence of the operating system and cache memories, respectively. As expected,
and with the only exception of sqrt case, the probabilistic theory cannot be used for the
Odroid, and least of all, the Intel CPU based machine. The only unexpected outlier is
the fdct benchmark on the Miosix board. Here the rejection rate is 100% without a clear
reason. By observing the time traces, we hypothesize that the instruction prefetcher,
the board is equipped with, causes large recurrent variations compared to the intrinsic
variability of the fdct benchmark, that triggers the detection of a short-range dependence.
However, this conclusion requires a more in-depth analysis of the specific system, that
falls outside the scope of this paper.

Generally, the results shown in Table 3 highlight an important fact: the single PPI
hypothesis test result depends on both the system and the considered workload. Moreover,
the result is a random variable, that consequently requires to be sampled several times
to assess the capability of analyzing a system by using EVT. Again, the PPI hypothesis
test result (or the result of any single test) is a property of the time traces provided, not
of the system generating such traces.

5.3. Linux PREEMPT RT analysis

The Linux kernel has been built as a general operating system and thus not appropriate
for real-time computing, since its main performance goal can be considered maximizing
the average throughput. For this reason, the PREEMPT RT patch has been developed
since the first decade of the 2000s, in order to add predictability and low-latency to the
Linux kernel. A comprehensive survey of scientific works related to PREEMPT RT is
available [45].

In this experimental evaluation, we run the same benchmarks used for R1-R5 but
on an Odroid H2, a quad-core x86-64 platform based on COTS components and conse-
quently subject to unpredictable latencies. The goal is to verify if the introduction of
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ACET WCOT DI RejPPI RejKPSS RejBDS RejR/S

sq
rt

P1 408 262 ns 938 217 ns 7 508.3 89% 39% 67% 48%

P2 390 508 ns 426 728 ns 77.5 88% 0% 88% 0%

P3 388 413 ns 413 123 ns 65.6 6% 1% 5% 1%

m
in

ve
r P1 485 854 ns 1 114 823 ns 6 938.3 94% 48% 72% 47%

P2 466 040 ns 1 914 380 ns 128.5 89% 0% 89% 0%

P3 464 227 ns 542 293 ns 69.4 43% 0% 43% 0%

fd
ct

P1 470 208 ns 789 290 ns 6 482.7 92% 39% 67% 48%

P2 450 845 ns 478 049 ns 46.8 100% 0% 100% 0%

P3 450 561 ns 487 578 ns 35.5 100% 0% 100% 0%

co
m

p
le

x P1 429 737 ns 764 678 ns 7 206.3 87% 20% 71% 22%

P2 410 894 ns 447 453 ns 63.9 97% 0% 97% 0%

P3 410 585 ns 443 200 ns 46.7 100% 13% 100% 33%

Table 4: Linux PREEMPT RT result for the four WCET benchmarks considered.

PREEMPT RT improves the predictability of execution times and which effects PRE-
EMPT RT has on the applicability of the probabilistic theory. This is done exploiting
the PPI index previously defined. The tests have been performed on three scenarios:

P1 On a plain vanilla Linux and the task having no special configuration (like the
previous R5 case);

P2 On a plain vanilla Linux but the task configured with real-time priority and with
core pinning;

P3 On a PREEMPT RT kernel and the task configured with real-time priority and a
core pinning;

The task under analysis runs together with contenders on other cores that cause in-
terferences at both architecture and operating system levels. The contention has been
generated thanks to the stress-ng tool6. Like the previous tests, each benchmark has been
executed 100 000 times by using time series of size 1 000 for statistical testing, for a total
number of 100 estimations for each benchmark and scenario.

The results are shown in Table 4. As common in PREEMPT RT works, we also
computed the Average-Case Execution Time (ACET), the Worst-Case Observed Time
(WCOT), the Dispersion Index (DI), the PPI value and its components. DI is computed
as follows: µ

σ , where µ is the mean value of the time trace and σ the standard deviation.
Looking at the traditional ACET, WCOT and DI values, it is possible to notice that
applying the correct task real-time priority configuration and the PREEMPT RT patch
are essential to obtain low variability. In particular, the dispersion index of P2 is at least
one order of magnitude lower than P1, and P3 is slightly better than P2. This means
that the execution times vary in a smaller interval, making it more predictable. It is

6http://kernel.ubuntu.com/~cking/stress-ng/
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possible to notice that the WCOT is much lower in P3 than the other cases. Setting
real-time priority is not sufficient to reduce sporadic high-level latencies, as proved by the
large WCOT of minver benchmark, even larger than the P1 scenario. To reduce these
latencies is crucial the inclusion of the PREEMPT RT patch in Linux kernel. Focusing
on PPI index, there is no a direct link between DI, WCOT or ACET with respect to the
satisfaction of EVT hypotheses. In fact, even if PREEMPT RT seems to improve the
satisfaction of hypothesis for sqrt and minver, this is not true for fdct and complex.
Comparing the PPI index with its critical value, it is possible to conclude that only the
scenario sqrt running on PREEMPT RT satisfies the EVT hypothesis and makes possible
the estimation of a correct distribution.

This example of PREEMPT RT shows that it is not sufficient to improve the average-
case, worst-case, nor the predictability of the platform to improve the satisfaction of the
EVT hypotheses. A future possible work may be investigating why PREEMPT RT is not
able to improve the fdct and complex cases and which are the internal kernel mechanisms
and/or architecture components that prevent this.

5.4. Summary

Considering the synthetic time traces, the PPI resulted to be very effective in the
detection of the violation of i.i.d. property. Indeed, the non-compliant time traces have
been rejected with a 100% rate, while the rejection rate of the compliant ones settled in
the range 11.4% – 13.9%. This range represents the false-positive rate of the test, which
is, however, lower than the expected theoretical value of 14%.

For the real-time traces from real benchmark applications, we can notice that the
trend of the PPI rejection rate is coherent with the index meaning. In fact, for predictable
platforms, we experienced low rejection rates, while for complex platforms this is very
close to 100%, as expected.

Finally, we computed the PPI index for the same benchmarks running on a Linux
embedded platform to observe if the PREEMPT RT patch can make the system EVT-
compliant, concluding that it is not possible to claim a priori satisfiability of the hypothe-
ses, nor we can generally conclude that improving the usual average-case or worst-case
metrics improves the satisfiability as well. This makes the PPI analysis essential.

6. Conclusion

Statistical hypothesis testing plays a key role in the reliability of probabilistic real-
time estimation and the consequent safety of critical systems. However, some state-of-
the-art works do not follow a systematic procedure in performing statistical tests. This
paper aimed at highlighting the problems affecting part of the scientific literature in
probabilistic real-time and discussed which factors affect the reliability of statistical test
procedures. The PPI absolute values can be used to compare the predictability of time
traces, from a probabilistic real-time standpoint. More in general, we can use PPI to
compare different systems and workloads, as also shown by experimental evaluation. A
use-case of this index has been proposed to check the real-time capability improvement
when the PREEMPT RT patch is applied to a Linux kernel.
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2005. Extreme value and related models with applications in engineering and science.
Wiley Hoboken, NJ.

[13] Francisco J. Cazorla, Leonidas Kosmidis, Enrico Mezzetti, Carles Hernandez, Jaume
Abella, and Tullio Vardanega. 2019. Probabilistic Worst-Case Timing Analysis: Tax-
onomy and Comprehensive Survey. ACM Comput. Surv. 52, 1, Article 14 (Feb. 2019),
35 pages. https://doi.org/10.1145/3301283
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probabilistic worst-case execution time estimates. In 8th European Congress on Em-
bedded Real Time Software and Systems (ERTS 2016).

[24] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The
Mälardalen WCET Benchmarks – Past, Present and Future. In 10th International
Workshop on Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010,
Brussels, Belgium, Björn Lisper (Ed.). OCG, Brussels, Belgium, 137–147.

[25] H. E. HURST. 1951. Long term storage capacity of reservoirs. ASCE Transactions
116, 776 (1951), 770–808. https://ci.nii.ac.jp/naid/10011004012/en/

[26] BelaireFranch Jorge and Contreras Dulce. 2002. How to compute
the BDS test: a software comparison. Journal of Applied Econo-
metrics 17, 6 (2002), 691–699. https://doi.org/10.1002/jae.679

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jae.679

[27] Frank J. Massey Jr. 1951. The Kolmogorov-Smirnov Test for Goodness of Fit. J.
Amer. Statist. Assoc. 46, 253 (1951), 68–78.

[28] R. Kirner and P. Puschner. 2008. Obstacles in Worst-Case Execution Time Analysis.
In 2008 11th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). 333–339.

[29] L. Kosmidis, C. Curtsinger, E. Quiones, J. Abella, E. Berger, and F. J. Cazorla.
2013. Probabilistic timing analysis on conventional cache designs. In 2013 Design,
Automation Test in Europe Conference Exhibition (DATE). 603–606. https://

doi.org/10.7873/DATE.2013.132

[30] L. Kosmidis, E. Quiones, J. Abella, T. Vardanega, I. Broster, and F. J. Cazorla.
2014. Measurement-Based Probabilistic Timing Analysis and Its Impact on Processor
Architecture. In 2014 17th Euromicro Conference on Digital System Design. 401–410.
https://doi.org/10.1109/DSD.2014.50

[31] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, and H. Theiling. 2013. Mul-
ticore in real-time systems–temporal isolation challenges due to shared resources. In
Workshop on Industry-Driven Approaches for Cost-effective Certification of Safety-
Critical, Mixed-Criticality Systems. Grenoble, France, 6.

[32] Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin. 1992.
Testing the null hypothesis of stationarity against the alternative of a unit root: How
sure are we that economic time series have a unit root? Journal of Econometrics
54, 1 (1992), 159 – 178. https://doi.org/10.1016/0304-4076(92)90104-Y

23

                  



[33] M. R. Leadbetter and Holger Rootzen. 1988. Extremal Theory for Stochastic Pro-
cesses. Ann. Probab. 16, 2 (04 1988), 431–478.

[34] Anthony W. Ledford and Jonathan A. Tawn. 2003. Diagnostics for Dependence
within Time Series Extremes. Journal of the Royal Statistical Society. Series B
(Statistical Methodology) 65, 2 (2003), 521–543. http://www.jstor.org/stable/

3647519

[35] G. Lima and I. Bate. 2017. Valid Application of EVT in Timing Analysis by Ran-
domising Execution Time Measurements. In 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 187–198. https://doi.org/10.

1109/RTAS.2017.17

[36] G. Lima, D. Dias, and E. Barros. 2016. Extreme Value Theory for Estimating Task
Execution Time Bounds: A Careful Look. In 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS). 200–211. https://doi.org/10.1109/ECRTS.2016.

20

[37] L.R. Lima and B. Neri. 2013. A Test for Strict Stationarity. In Uncertainty Analysis
in Econometrics with Applications, Van-Nam Huynh, Vladik Kreinovich, Songsak
Sriboonchitta, and Komsan Suriya (Eds.). Springer Berlin Heidelberg, 17–30.

[38] Andrew W Lo. 1989. Long-term memory in stock market prices. Technical Report.
National Bureau of Economic Research. https://doi.org/10.3386/w2984

[39] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. 2012. A Statistical Response-Time
Analysis of Real-Time Embedded Systems. In 2012 IEEE 33rd Real-Time Systems
Symposium. 351–362. https://doi.org/10.1109/RTSS.2012.85

[40] Shinichi Nakagawa. 2004. A farewell to Bonferroni: the problems of low statistical
power and publication bias. Behavioral Ecology 15, 6 (11 2004), 1044–1045. https:

//doi.org/10.1093/beheco/arh107 arXiv:http://oup.prod.sis.lan/beheco/article-
pdf/15/6/1044/17274115/arh107.pdf

[41] Bo Qian and Khaled Rasheed. 2004. Hurst exponent and financial market predictabil-
ity. In Proceedings of the Second IASTED International Conference on Financial
Engineering and Applications.
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Appendix A. Test statistics

Appendix A.1. KPSS

Omitting the mathematical proofs available in the original paper [32], the test statistic
SKPSS can be computed as:

η(X) =

(
n∑

i=1

(Xi − X̄)

)2

− n2

SKPSS(X) =
η(X)

σX,l

where σX is the consistent estimate of the error variance computed for lags 1, ..., l. The
value of l can be computed with the following well-known formula [53]:

l = 12 4

√
n

100

Appendix A.2. BDS

The test statistic can be computed with the following formula:

SBDS =
√
n−m+ 1

cm,n − cm1,m−n+1

σm,n
(A.1)

where n is the sample size, m is the embedding dimension, σm,n the consistent variance
estimator and ca,b is defined as follow [26]:

ca,b = 2
1

(b− a+ 1)(b− a)

b∑

s=a

b∑

t=s+1

a−1∏

j=0

I(Xs−j , Xt−j)

where

I(Xs−j , Xt−j) =

{
1 if |Xs−j −Xt−j | < ε

0 otherwise
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for some ε > 0. We do not provide here a detailed explanation of the above formulas,
leaving the reader to examine them in detail in the cited statistical articles.

Under independence conditions, the SBDS is normally distributed, therefore the critical
region is obtained using the well-known t-student inverse-cdf.

Appendix A.3. R/S Statistic

Given the time series X = {X1, X2, ..., Xn} and its mean value X̄ = 1
n

∑n
i=1Xi the

function cumulative sum is defined as:

Zc(X) =

c∑

i=1

(Xi − X̄)

The test statistic is the defined as:

SR/S(X) =
1√
n

maxc(Zc(X))−minc(Zc(X))

σX

where σX is the sample standard deviation. If the values are uncorrelated the statistic
follows the distribution having the following cdf:

F (v) = 1 + 2

∞∑

i=1

(1− 4k2v2) · e−2(kv)2

from which the critical values can be computed by numerical methods.
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