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Abstract. In this paper we study an Ergodic Markovian BSDE involving a forward process X that solves3

an infinite dimensional forward stochastic evolution equation with multiplicative and possibly degenerate diffusion4

coefficient. A concavity assumption on the driver allows us to avoid the typical quantitative conditions relating the5

dissipativity of the forward equation and the Lipschitz constant of the driver. Although the degeneracy of the noise6

has to be of a suitable type we can give a stochastic representation of a large class of Ergodic HJB equations; morever7

our general results can be applied to get the synthesis of the optimal feedback law in relevant examples of ergodic8

control problems for SPDEs.9
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1. Introduction. In this paper we study the following BSDE of ergodic type

Y xt = Y xT +

∫ T

t

[ψ̂(Xx
s , Z

x
s , U

x
s )− λ] ds−

∫ T

t

Zxs dW
1
s −

∫ T

t

Uxs dW
2
s , 0 ≤ t ≤ T <∞,

where the processes (Y x, Zx, Ux) and the constant λ are the unknowns of the above equation while12

the diffusion X is the (mild) solution of the infinite dimensional (forward) SDE:13

(1.1)

{
dXx

s = AXx
s ds+ F (Xx

s )ds+QG(Xx
s )dW 1

s +DdW 2
s ,

Xx
t = x.

14

In the above equation X takes values in an Hilbert space H and W 1, W 2 are independent cylindrical15

Wiener processes (see (A.1)-(A.6) in Section 3 and (B.1) in Section 4 for precise description of16

the other terms). We just stress that we will assume that G(x) is invertible for all x ∈ H while Q17

and D will be general, possibly degenerate, linear operators.18

Ergodic BSDEs have been introduced in [19] in relation to optimal stochastic ergodic control19

problems and as a tool to study the asymptotic behaviour of parabolic HJB equations and conse-20

quently to give a stochastic representation to the limit semilinear elliptic PDEs (see equation (5.1)21

below).22

In [19] the same class of BSDEs have been introduced, already in an infinite dimensional frame-23

work, but only in the case in which the noise coefficient was constant (Q = 0 in our notation).24

Successive works, see [15] and [7] weakened the assumptions and refined the results in the same25

additive noise case. Then in [24], in a finite dimensional framework, the case of ‘multiplicative noise26

(Q 6= 0 and G depending on x in our notation) is treated under quantitative conditions relating27

the dissipativity constant of the forward equation to the Lipscitz norm of ψ̂ with respect to Z.28

Afterwards, in [21], still in finite dimensions, such quantitative assumptions are dropped in the case29

of a non degenerate and bounded diffusion coefficient (Q = I and G bounded and invertible in our30

notation) by a careful use of smoothing properties of the Kolmogorov semigroup associated to the31

non-degenerate underlying diffusion X. Finally in [14] the result is extended to the case of non de-32

generate but unbounded (linearly growing) diffusion coefficients (Q = I and G invertible and linearly33
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growing in our notation). To complete the picture we mention, [2], [3], [4] and [13] where Ergodic34

BSDEs are studied in various frameworks different from the present one: namely, respectively when35

they are driven by a Markov chain, in the context (see [17]) of randomized control problems and36

BSDEs with constraints on the martingale term both in finite and in infinite dimensions and finally37

in the context of G- expectations theory.38

In this paper we propose an alternative approach that works well in the infinite dimensional case

and allows to consider degenerate multiplicative noise (Q in general non invertible and G bounded

invertible but depending on x). On the other side we have to assume that ψ̂ has the form:

ψ̂(x, z, u) := ψ(x, zG−1(x), u),

where ψ is Lipschitz and concave function with respect to (z, u). Although not standard, our39

assumptions allow to give a stochastic representation of a relevant class of Ergodic HJB equations40

in Hilbert spaces (see Section 5) and of ergodic stochastic control problems for SPDEs (see Example41

7.1 and Example 7.2). Notice that ψ defined above is exactly the function that naturally appears in42

the related HJB equation and in the applications to ergodic control.43

As in all the literature devoted to the problem the main point is to prove a uniform gradient

estimate (independent on α) for vα(x) := Y α,x where (Y α,x, Zα,x, Uα,x) is the solution of the

discounted BSDE with infinite horizon:

Y α,xt = Y α,xT +

∫ T

t

[ψ̂(Xx
s , Z

α,x
s , Uα,xs )−αY α,xs ] ds−

∫ T

t

Zα,xs dW 1
s −

∫ T

t

Uα,xs dW 2
s , 0≤ t≤T <∞.

Such estimate can be obtained by a change of probability argument when the noise is additive (see44

[19]), by energy type estimates under quantitative assumptions on the exponential decay of the45

forward equation (see [24]) or by regularizing properties of the Kolmogorov semigroup when the46

noise in multiplicative but non degenerate (see [14] and [21]).47

Here we exploit concavity of ψ to introduce an auxiliary control problem and eventually obtain48

the gradient estimate using a decay estimate on the difference between states starting from different49

initial conditions, see Assumption (A.6) and, in particular, requirement (3.5). We stress the fact50

that the estimate in (3.5) is only in mean and not uniform (with respect to the stochastic parameter)51

as in the additive noise case. Moreover, as we show in Proposition 3.2, Assumption (A.6) is verified52

if we impose a joint dissipativity condition on the coefficients, see Assumption (A.7). As a matter53

of fact, in this case, the stronger formulation in which L2 replaces L1 norm holds. On the other side54

(A.6) allows to cover a wider class of interesting examples, see for instance Example 7.1 in which55

Assumption (A.7) does not seem to hold.56

The structure of the paper in the following: in Section 2 we introduce the function spaces that57

will be used in the following, Section 3 is devoted to the infinite dimensional forward equation; in58

particular we state and discuss the key stability assumption (A.6). In Section 4 we present the main59

contribution of this work introducing the auxiliary control problem, proving the gradient estimate60

and the consequent existence of the solution to the ergodic BSDEs. In Section 5 we relate our ergodic61

BSDE to a semilinear PDE in infinite dimensional spaces (the ergodic HJB equation). In Section62

6 we discute the regularity of the solution of the ergodic BSDE, in particular we state that under63

quantitative conditions on the dissipativity of the forward equation similar to the ones assumed in64

[24], when all coefficients are differentiable then the solution of the ergodic BSDE is differentiable65

with respect to the initial data as well. The proof of such result adapts a similar argument in [16]66

and is rather technical, we have postponed it in the Appendix Section 7 we use our ergodic BSDE67
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to obtain an optimal ergodic control problem (that is with cost depending only on the asymptotic68

behaviour of the state) for an infinite dimensional equation. We close, see Section 7.1, by two69

examples of controlled SPDEs to which our results can be applied. In both we consider a stochastic70

heat equation in one dimension with additive white noise. In the first, Example 7.1 the system is71

controlled through one Dirichlet boundary condition (on which multiplicative noise also acts) while,72

in the second one, Example 7.2, the control enters the system through a finite dimensional process73

that affects the coefficients of the SPDE. In this last case we also give conditions guaranteeing74

differentiability of the related solution to the Ergodic BSDE.75

2. General notation. Let Ξ, H and U be real separable Hilbert spaces. In the sequel, we use76

the notations | · |Ξ, | · |H and | · |U to denote the norms on Ξ, H and U respectively; if no confusion77

arises, we simply write | · |. We use similar notation for the scalar products. We denote the dual78

spaces of Ξ, H and U by Ξ∗, H∗, and U∗ respectively. We also denote by L(H,H) the space of79

bounded linear operators from H to H, endowed with the operator norm. Moreover, we denote by80

L2(Ξ, H) the space of Hilbert-Schmidt operators from Ξ to H. Finally, a map f : H → Ξ is said to81

belong to the class G1(H,Ξ) if it is continuous and Gateaux differentiable with directional derivative82

∇xf(x)h in (x, h) ∈ H ×H and we denote by B(Λ) the Borel σ-algebra of any topological space Λ.83

Given a complete probability space (Ω,F ,P) together with a filtration (Ft)t≥0 (satisfying the84

usual conditions of P-completeness and right-continuity) and an arbitrary real separable Hilbert85

space V we define the following classes of processes for fixed 0 ≤ t ≤ T and p ≥ 1:86

• LpP(Ω× [t, T ];V ) denotes the set of (equivalence classes) of (Fs)-predictable processes Y ∈87

Lp(Ω× [t, T ];V ) such that the following norm is finite:88

|Y |p =

(
E
∫ T

t

|Ys|p ds
)1/p

.89

• Lp,locP (Ω × [0,+∞[;V ) denotes the set of processes defined on R+, whose restriction to an90

arbitrary time interval [0, T ] belongs to LpP(Ω× [0, T ];V ).91

• LpP(Ω;C([t, T ];V )) denotes the set of (Fs)-predictable processes Y on [t, T ] with continuous92

paths in V , such that the norm93

‖Y ‖p =
(
E sup
s∈[t,T ]

|Ys|p
)1/p

.94

is finite. The elements of LpP(Ω;C([t, T ];V )) are identified up to indistinguishability.95

• Lp,locP (Ω;C([0,+∞[;V )) denotes the set of processes defined on R+, whose restriction to an96

arbitrary time interval [0, T ] belongs to LpP(Ω;C([0, T ];V )).97

We consider on the probability space (Ω,F ,P) two independent cylindrical Wiener processes W 1 =98

(W 1
t )t≥0 with values in Ξ and W 2 = (W 2

t )t≥0 with values in H. By (Ft)t≥0, we denote the natural99

filtration of (W 1,W 2), augmented with the family N of P-null sets of F . The filtration (Ft) satisfies100

the usual conditions of right-continuity and P-completeness.101

3. Forward equation. Given x ∈ H and a uniformly bounded progressively measurable102

process g with values in H, we consider the stochastic differential equation for t ≥ 0103

(3.1) dXx,g
t = AXx,g

t dt+ F (Xx,g
t )dt+QG(Xx,g

t )dW 1
t +DdW 2

t + g(t) dt, Xx,g
0 = x.104

On the coefficients A, F , G, Q, D we impose the following assumptions.105
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(A.1) A : D(A) ⊂ H → H is a linear, possibly unbounded operator generating a C0 semigroup106

{etA}t≥0.107

(A.2) F : H → H is continuous and there exists LF > 0 such that108

|F (x)− F (x′)|H ≤ LF |x− x′|H ,109

for all x, x′ ∈ H.110

(A.3) G : H → L(Ξ) is a bounded Lipschitz map. Moreover, for every x ∈ H, G(x) is invertible.111

Thus there exists three positive constants LG, MG and MG−1 such that for all x, x′ ∈ H:112

|G(x)|L(Ξ) ≤MG, |G(x)−G(x′)|L(Ξ) ≤ LG, |x− x′|H ,
∣∣G−1(x)

∣∣
L(Ξ)

≤MG−1 .113

We notice that the above yields Lipschitzianity of G−1, namely :114

|G−1(x)−G−1(x′)]|L(Ξ) ≤M2
G−1LG |x− x′|H ,115

(A.4) Q is an Hilbert-Schmidt operator from Ξ to H.116

(A.5) D is a linear and bounded operator from H to H and there exist constants L > 0 and117

γ ∈ [0, 1
2 [:118

|esAD|L2(H) ≤ L
(
s−γ ∧ 1

)
, ∀s ≥ 0.(3.2)119120

Proposition 3.1. Under (A.1 − −A.5), for any x ∈ H and any g bounded and progressively121

measurable process with values in H, there exists a unique (up to indistinguishability) process Xx,g =122

(Xx,g
t )t≥0 that belongs to Lp,locP (Ω;C([0,+∞[;H)) for all p ≥ 1 and is a mild solution of (3.1), that123

is it satisfies for every t≥0, P-a.s.:124

Xx,g
t = etAx+

∫ t

0

e(t−s)AF (Xx,g
s ) ds+

∫ t

0

e(t−s)Ag(s) ds+

∫ t

0

e(t−s)AQG(Xx,g
s ) dW 1

s125

+

∫ t

0

e(t−s)ADdW 2
s .126

127

Moreover there exists a positive constant κg,T such that128

(3.3) E|Xx,g
t |2 ≤ κg,T (1 + |x|2), ∀t ∈ [0, T ] and x ∈ H.129

Our main result will be obtained under the following exponential stability in L1 norm requirement.130

We stress the fact that such assumption is much weaker in comparison with the uniform decay131

holding when noise is addittive (see [19]).132

(A.6) There exist positive constants κg, κ and µ, independent from g, such that133

(3.4) sup
t≥0

E|Xx,g
t | ≤ κg(1 + |x|);134

135

(3.5) E|Xx,g
t −Xx′,g

t | ≤ κe−µt|x− x′|;136

for any x, x′ ∈ H and for all t ≥ 0.137

Below we show that hypothesis (A.6) (as a matter of fact the stronger condition obtained replacing138

L1 norm by L2 norm) is verified under the usual joint dissipative condition (A.7) (see [5]). We have139

preferred to keep the weaker, but less intrinsic, form (A.6) since it allows to cover a wider class of140

examples, see for instance Example 7.1.141

4
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(A.7) - Joint dissipative conditions142

A is dissipative i.e. < Ax, x >≤ ρ|x|2, for all x ∈ D(A), and for some ρ ∈ R, moreover there143

exists µ > 0 such that for all x, x′ ∈ D(A):144

(3.6) 2〈A(x− x′) + F (x)− F (x′), x− x′〉H + ||Q[G(x)−G(x′)]||2L2(Ξ,H) ≤ −µ|x− x
′|2H ,145

Notice that, by adding a suitable constant to F and subtracting it from A we can always146

assume that ρ above is strictly negative.147

Indeed we have that following holds148

Proposition 3.2. Assume (A.1 − −A.5) and (A.7) then the following estimates hold for the149

solution Xx,g of equation (3.1):150

(3.7) sup
t≥0

E|Xx,g
t |2 ≤ κg(1 + |x|2);151

152

(3.8) E|Xx,g
t −Xx′,g

t |2 ≤ e−µt|x− x′|2;153

for any x, x′ ∈ H and for all t ≥ 0. In particular, hypothesis (A.6) is verified.154

Proof.155

The proof of these estimates follows rather standard arguments, see for instance [5] where156

dissipative systems are widely treated. 2157

We end this section noticing that will be mainly interested in the special case where g ≡ 0:158

(3.9) dXt = AXtdt+ F (Xt)dt+QG(Xt)dW
1
t +DdW 2

t , Xx
0 = x,159

and we will denote by Xx its solution through the whole paper.160

4. Ergodic BSDEs . In this section we study the following equation:161

(4.1)

Y xt = Y xT +

∫ T

t

[ψ(Xx
s , Z

x
sG
−1(Xx

s ), Uxs )− λ] ds−
∫ T

t

Zxs dW
1
s −

∫ T

t

Uxs dW
2
s , 0 ≤ t ≤ T <∞,162

where, we recall, λ is a real number and it is part of the unknowns, and the equation has to hold163

for every t and every T , see for instance [19, section 4]. On the function ψ : H × Ξ∗ ×H∗ → R we164

assume:165

(B.1) (z, u)→ ψ(x, z, u) is a concave function at every fixed x ∈ H.166

Moreover there exist Lx, Lz, Lu > 0 such that167

(4.2)

|ψ(x, z, u)−ψ(x′, z′.u′)| ≤ Lx|x−x′|+Lz|z−z′|+Lu|u−u′|, x, x′ ∈ H, z, z′ ∈ Ξ∗, u, u′ ∈ H∗.168

Moreover ψ(·, 0.0) is bounded. We denote supx |ψ(x, 0.0)| by Mψ.169

We associate to ψ its Legendre transformation (modified according to the fact that we are dealing170

with concave functions):171

(4.3) ψ∗(x, p, q) = inf
z∈Ξ∗,u∈H∗

{−zp− uq − ψ(x, z, u)}, x ∈ H, p ∈ Ξ, q ∈ H.172

Clearly ψ∗ is concave w.r.t to (p, q).173

We collect some other properties of ψ and ψ∗ we will use in the future:174

5
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Proposition 4.1. Under hypothesis (B.1) we have that175

ψ(x, z, u) = inf
(p,q)∈D∗(x)

{−zp− uq − ψ∗(x, p, q)}.176

where D∗(x) = {(p, q) : ψ∗(x, p, q) 6= −∞} ⊂ {(p, q) ∈ Ξ×H : |p| ≤ Lz, |q| ≤ Lu} .177

Moreover D∗(x) = D∗ does not depend on x ∈ H and the following holds178

(4.4) |ψ∗(x, p, q)− ψ∗(x′, p, q)| ≤ Lx|x− x′|, x, x ∈ H, (p, q) ∈ D∗.179

Finally we remark that the above implies that for every x ∈ H, z ∈ Ξ∗, u ∈ H∗ :180

sup
(p,q)∈D

{ψ(x, z, u) + zp+ uq + ψ∗(x, p, q)} = 0.181

Proof. Since ψ(x, · , · ) is concave its double Legendre transform coincides with the function itself182

and the first relation follows immediately (see [1]).183

Then, by the definition of ψ∗:184

|ψ∗(x, p, q)− ψ∗(x′, p, q)| ≤ sup
z∈Ξ∗, u∈H∗

|−zp− uq − ψ(x, z, u) + zp+ uq + ψ(x′, z, u)| ≤ Lx|x− x′|,185

186

thus we deduce that D∗ doesn’t depend on x ∈ H and (4.4) holds. 2187

As in [19] we introduce, for each α > 0, the infinite horizon equation:188

(4.5) Y x,αt = Y x,αT +

∫ T

t

[ψ(Xx
s , Z

x,α
s G−1(Xx

s ), Ux,αs )−αY x,αs ] ds−
∫ T

t

Zx,αs dW 1
s −

∫ T

t

Ux,αs dW 2
s ,189

where 0 ≤ t ≤ T <∞.190

The next result was proved in [25, Theorem 2.1] in finite dimensions, the extension to the191

infinite dimensional case is straightforward, see also [19, Lemma 4.2]. Notice that the random192

function, ψ̂(t, z, u) := ψ(Xt, G
−1(Xt)z, u), inherits the following properties:193

(4.6) |ψ̂(t, 0, 0)| = |ψ(Xt, 0, 0)| ≤Mψ, t ≥ 0, P- a.s..194

195

(4.7) |ψ̂(t, z, u)− ψ̂(t, z′, u′)| ≤ LzMG−1 |z − z′|+ Lu|u− u′| t ≥ 0, z, z′ ∈ Ξ∗, u, u′ ∈ H∗ .196

therefore it satisfies the assumptions in [19, Lemma 4.2].197

Theorem 4.1. Let us assume (A.1 − −A.5) and (B.1). Then for every α > 0 there exists a198

unique solution (Y x,α, Zx,α, Ux,α) to the BSDE (4.5) such that Y x,α is a bounded continuous process,199

Zα,x ∈ L2,loc
P (Ω× [0,+∞[; Ξ∗) and Uα,x ∈ L2,loc

P (Ω× [0,+∞[;H∗).200

Moreover201

(4.8) |Y x,αt | ≤ Mψ

α
, P-a.s., for all t ≥ 0.202

and203

(4.9) E
∫ ∞

0

|e−αsZx,αs |2 ds+ E
∫ ∞

0

|e−αsUx,αs |2 ds <∞.204

6
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We define205

(4.10) vα(x) = Y α,x0 .206

The following is the main estimate of the paper.207

Proposition 4.2. Under (A.1−−A.6) and (B.1) one has that for any α > 0:208

(4.11) |vα(x)− vα(x′)| ≤ C

µ
|x− x′|, x, x′ ∈ H.209

where C depends on the constants in (A.1−−A.5) and (B.1) but not on α (nor on µ).210

Proof. Since, instead of the pathwise decay estimate holding for |Xx
t −Xx′

t | in the additive noise211

case (see [19, Theorem 3.2]), only the mean bound (3.5) is true here we cannot proceed as in [19,212

Theorem 4.4]. Moreover, being the diffusion X, in general, degenerate, it is not possible to rely213

on the smoothing properties of its Kolmogorov semigroup (see [21]). On the contrary, concavity214

assumption (B.1) allows us to use control theoretic arguments.215

First we notice that216

Y x,α0 = e−αtY x,αt +

∫ t

0

e−αsψ(Xx
s , Z

x,α
s G−1(Xx

s ), Ux,αs ) ds−
∫ t

0

e−αsZx,αs dW 1
s −
∫ t

0

e−αsUx,αs dW 2
s .217

218

Thus we have, taking also into account (4.8) and (4.9), that219

(4.12)

Y x,α0 =

∫ +∞

0

e−αsψ(Xx
s , Z

x,α
s G−1(Xx

s ), Ux,αs ) ds−
∫ +∞

0

e−αsZx,αs dW 1
s −

∫ +∞

0

e−αsUx,αs dW 2
s .220

Moreover being Y x,α0 deterministic, the uniqueness in law for the system formed by equations (3.9)221

-(4.5) yields that it doesn’t depend on the specific independent Wiener processes.222

We fix any stochastic setting (Ω̂, Ê , (F̂t), P̂, (Ŵt
1
), (Ŵt

2
)) where ((Ŵt

1
), (Ŵt

2
)) are independent223

(F̂t) Wiener processes with values in Ξ and H respectively.224

Given any (F̂t) progressively measurable process p := (pt, qt) with values in D∗ by (X̂x,p
t ) we225

denote the unique mild solution of the forward equation:226

(4.13)

dX̂x,p
t = AX̂x,p

t dt+ F (X̂x,p
t )dt+Dqtdt+QG(X̂x,p

t )ptdt+QG(X̂x,p
t )dŴ 1

t +DdŴ 2
t , X̂x,p

0 = x.227

Clearly (X̂x,p
t ) is also the unique mild solution of the forward equation:228

(4.14) dX̂x,p
t = AX̂x,p

t dt+ F (X̂x,p
t )dt+QG(X̂x,p

t )dŴ 1,p
t +DdŴ 2,p

t , X̂x,p
0 = x.229

where230

(4.15) Ŵ 1,p
t := Ŵ 1

t +

∫ t

0

G−1(X̂x,p
s )ps ds, Ŵ 2,p

t := Ŵ 2
t +

∫ t

0

qs ds,231

and we know that under a suitable probability P̂p the processes ((Ŵt
1,p

), (Ŵt
2,p

)) are independent232

Wiener processes with values in Ξ and H respectively.233

Let now (Ŷ x,α,p, Ẑx,α,p, Ûx,α,p) be the solution to:234

Ŷ x,α,pt =Ŷ x,α,pT +

∫ T

t

[ψ(X̂x,p
s , Ẑx,α,ps G−1(X̂x,p

s ), Ûx,α,ps )− αY x,α,ps ] ds235

7
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−
∫ T

t

Ẑx,α,ps dŴ 1,p
s −

∫ T

t

Ûx,α,ps dŴ 2,p
s ,236

237

where 0 ≤ t ≤ T <∞.238

By previous considerations one has, recalling that {ψ(x, z) + zp + uq + ψ∗(x, p)} ≤ 0,∀x ∈ H, z ∈239

Ξ∗, u ∈ H∗, (p, q) ∈ D∗, that for every x ∈ H240

Y x,α0 = Ŷ x,α,p0241

=

∫ ∞
0

e−αs
[
ψ(X̂x,p

s , Ẑx,α,ps G−1(X̂x,p
s ), Ûx,α,ps ) + Ẑx,α,ps G−1(X̂x,p

s )ps + Ûx,α,ps qs + ψ∗(X̂x,p
s , ps, qs)

]
ds242

−
∫ +∞

0

e−αsẐx,α,ps dŴ 1
s −

∫ +∞

0

e−αsÛx,α,ps dŴ 2
s −

∫ ∞
0

ψ∗(X̂x,p
s , ps, qs) ds243

≤−
∫ +∞

0

e−αsẐx,α,ps dŴ 1
s −

∫ +∞

0

e−αsÛx,α,ps dŴ 2
s −

∫ ∞
0

ψ∗(X̂x,p
s , ps, qs) ds.244

245

So:246

Y x,α0 ≤ −Ê
∫ ∞

0

e−αsψ∗(X̂x,p
s , ps, qs) ds,(4.16)247

248

for arbitrary stochastic setting and arbitrary progressively measurable D∗ valued control p = (p, q).249

Then we fix x ∈ H and assume, for the moment, that ∀ε>0 there exists a stochastic setting250

(Ω̂ε,x, Êε,x, (F̂ε,xt ), P̂ε,x, (Ŵ 1,ε,x
t ), (Ŵt

2,ε,x
)),

and a couple of predictable processes pε,x = (pε,x, qε,x) with values in D∗ such that (with the251

notations introduced above) the following holds P - a.s. for a.e. s ≥ 0:252

253

(4.17) ψ(X̂x,pε

s , Ẑx,α,p
ε,x

s G−1(X̂x,pε,x

s ), Ûx,α,p
ε,x

s ) + Ẑx,α,p
ε,x

s G−1(X̂x,pε,x

s )pεs + Ûx,α,p
ε,x

s qε,xs254

+ ψ∗(X̂x,pε,x

s , pε,xs , qε,xs ) ≥ −ε.255256

Proceeding as before we get:257

Y x,α0 =Ŷ x,α,p
ε,x

0 =

(4.18)

258

=

∫ ∞
0

e−αs
[
ψ(X̂x,pε,x

s , Ẑx,α,p
ε,x

s G−1(X̂x,pε,x

s ), Ûx,α,p
ε,x

s )259

+Ẑx,α,p
ε,x

s G−1(X̂x,pε,x

s )pε,xs + Ûx,α,p
ε,x

s qε,xs + ψ∗(X̂x,pε,x

s , pε,xs , qε,xs )
]
ds260

−
∫ +∞

0

e−αsẐx,α,p
ε,x

s dŴ 1,ε,x
s −

∫ +∞

0

e−αsÛx,α,p
ε,x

s dŴ 2,ε,x
s −

∫ ∞
0

ψ∗(X̂x,pε,x

s , pε,xs , qε,xs ) ds261

≥− ε

α
−
∫ +∞

0

e−αsẐx,α,p
ε,x

s dŴ 1,ε,x
s −

∫ +∞

0

e−αsÛx,α,p
ε,x

s dŴ 2,ε,x
s −

∫ ∞
0

ψ∗(X̂x,pε,x

s , pε,xs , qε,xs ) ds.262
263

Thus by (4.16) taking into account (4.18) and (4.4) we have:264

Y x
′,α

0 − Y x,α0 ≤
∫ ∞

0

e−αsÊpε,x |ψ∗(X̂x,pε,x

s , pε,xs , qε,xs )− ψ∗(X̂x′,pε,x

s , pε,xs , qε,xs )| ds+ ε265
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≤
∫ ∞

0

e−αs Êpε,x |X̂x,pε,x

s − X̂x′,pε,x

s | ds+
ε

α
,266

267

we stress the fact that we keep the stochastic setting (Ω̂ε,x, Êε,x, (F̂ε,xt ), P̂ε,x, (Ŵ 1,ε,x
t ), (Ŵt

2,ε,x
)) and268

control pε,x corresponding to the initial datum x and just replace the initial state x with a different269

one x′.270

Noticing now that both (X̂x,pε,x) and (X̂x′,pε,x) satisfy (only the initial conditions differ):

dX̂t = AX̂tdt+ F (X̂t)dt+Dqε,xt dt+QG(X̂t)p
ε,x
t dt+QG(X̂x,p

t )dŴ 1,ε,x
t +DdŴ 2,ε,x

t .

and taking into account (3.5) we can conclude that:

Y x
′,α

0 − Y x,α0 ≤ Lx
∫ ∞

0

e−(α+µ
2 )s|x− x′| ds+

ε

α
≤ C

µ
|x− x′|+ ε

α
.

Interchanging the role of x with x′ one gets:271 ∣∣∣Y x,α0 − Y x
′,α

0

∣∣∣ ≤ C

µ
|x− x′|+ ε

α
.(4.19)272

273

where the constant C is independent of α, µ and ε and is able to conclude (4.11) being ε > 0274

arbitrary.275

We are left with the construction, for any fixed x ∈ H and ε > 0 of a stochastic setting276

(Ω̂ε,x, Êε,x, (F̂ε,xt ), P̂ε,x, (Ŵ 1,ε,x
t ), (Ŵt

2,ε,x
)) and control pε,x for which (4.17) holds.277

We start from an arbitrary stochastic setting: (Ω, E , (Ft),P, (W 1
t ), (Wt

2)). Let (Xx) be the

corresponding mild solution of equation (3.1) and (Y x,α, Zx,α, Ux,α) the solution of (4.5). By a

measurable selection argument see [22, Theorem 4] we can find a couple of progressive measurable

process pε,x = (pε,x, qε,x), (possibly depending on α as well), such that:

ψ(Xx
s , Z

x,α
s G−1(Xx

s ), Ux,αs ) + Zx,αs G−1(Xx
s )pε,xs + Ux,αs qε,xs + ψ∗(X

x
s , p

ε,x
s , qε,xs ) ≥ −ε.

Then it is enough to set:278

(4.20) Ŵ 1,ε,x
t := W 1

t −
∫ t

0

G−1(Xx
s )pε,xs ds, Ŵ 2,ε,x

t := W 2
t −

∫ t

0

qε,xs ds,279

and choose Ω̂ε,x = Ω, Êε,x = E , (F̂ε,xt )) = (Ft) and as P̂ε,x the (unique) probability measure under280

which ((Ŵ 1,ε,x
t ), (Ŵ 2,ε,x

t )) are independent Wiener processes. The claim then follows selecting the281

above control pε,x and noticing that, by construction, (X̂x,pε,x) = (Xx). 2282

Following [19] we can find a function v̄ and a number λ such that:283

(4.21) [vαm(x)− vαm(0)]→ v̄(x), ∀x ∈ H,284

285

(4.22) αmv
αm(0)→ λ.286

where {αm}m∈N is a suitable subsequence constructed using a diagonal method.287

We can then proceed as in [19] to deduce from above the existence of a solution to (4.1) and the288

uniqueness of λ.289
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Theorem 4.2. Assume (A.1) − (A.6) and (B.1), let λ the number defined in (4.22) and set290

Ȳ xt := v̄(Xx
t ), where v̄ is defined in (4.21). Then there exists Z̄x in L2,loc

P (Ω× [0,+∞[; Ξ∗) and Ūx291

in L2,loc
P (Ω× [0,+∞[;H∗) such that (Ȳ x, Z̄x, Ūx, λ) solves equation (4.1), P -a.s. for all 0 ≤ t ≤ T .292

Moreover suppose that another quadruple (Y ′, Z ′, U ′, λ) where Y ′ is a progressively measurable293

continuous process verifying |Y ′t | ≤ c(1 + |Xx
t |), Z ′ ∈ L2,loc

P (Ω × [0,+∞[; Ξ∗) , U ′ ∈ L2,loc
P (Ω ×294

[0,+∞[;H∗) and λ′ ∈ R, satisfies (4.1). Then λ′ = λ.295

Finally there exists a measurable function ζ̄ : H → Ξ∗ ×H∗ such that (Z̄xt , Ū
x
t ) = ζ̄(Xx

t ).296

Proof.297

Once (4.11), (4.21) and (4.22) are obtained, the proof as far the first two statements is concerned298

follows exactly as in [19, Theorem 4.4].299

To get the existence of a function ζ̄, we proceed in the following way. For arbitrary fixed300

0 ≤ t ≤ T let (Ȳ x,t,T , Z̄x,t,T , Ūx,t,T ) be the solution to:301

(4.23)


dXt,x

s = AXt,x
s ds+ F (Xt,x

s )ds+QG(Xt,x
s )dW 1

s +DdW 2
s ,

Xt,x
t = x,

−dY x,t,Ts = ψ̂(Xx,t
s , Zx,t,Ts , Ux,t,Ts ) ds− Zx,t,Ts dW 1

s − Ux,t,Ts dW 2
s − λ ds,

Y x,t,TT = v̄(Xx,t
T ).

302

Then we clearly have that (Ȳ x, Z̄x, Ūx), restricted on [0, T ], coincide with (Ȳ x,0,T , Z̄x,0,T , Ūx,0,T ), for303

all T > 0. By [8, Prop. 3.2] we know that there exists a measurable function ζT : [0, T ]×H → Ξ∗×304

H∗, such that (Z̄x,t,Ts , Ūx,t,Ts ) = ζT (s,Xx,t
s ), s ∈ [t, T ]. Moreover, see also [8, Remark 3.3], the map305

[0, T ] 3 (τ, x) → ζT (τ, x) is characterized in terms of the laws of (
∫ τ+ 1

n

τ
Z̄τ,x,Ts ds,

∫ τ+ 1
n

τ
Ūτ,x,Ts ds),306

n ∈ N.307

The uniqueness in law of the solutions to the system (4.23) together with the fact that its308

coefficients are time autonomous, we get:309 ∫ τ+ 1
n

τ

Z̄τ,x,Ts ds ∼
∫ 1

n

0

Z̄0,x,T−τ
s ds ∼

∫ 1
n

0

Z̄xs ds,310

and311 ∫ τ+ 1
n

τ

Ūτ,x,Ts ds ∼
∫ 1

n

0

Ū0,x,T−τ
s ds ∼

∫ 1
n

0

Ūxs ds.312

So far we’ve proved that ζT (τ, ·) does not depend neither from T nor from τ , thus we can define313

ζT (τ, ·) =: ζ̄(·) and observe that (Z̄xt , Ū
x
t ) = (Z̄x,0,Tt , Ūx,0,Tt ) = ζT (t,Xx,0

t ) = ζ̄(Xx
t ). 2314

Remark 4.1. Concerning the uniqueness of the Markovian solution to the Ergodic BSDE (4.1)315

and consequently of the mild solution to the ergodic HJB equation (5.1) only partial results are316

available even in the additive case (beside the obvious consideration that adding a constants to Y317

and consequently to v transforms solutions into solutions). In particular an argument based on318

recurrence of the solution X to (1.1) is developed in [12] (see also [19]) to obtain a control theoretic319

representation of v and consequently its uniqueness up to an additive constant. Such arguments seem320

inapplicable in the present context due to possible degeneracy of the noise.321

5. Ergodic Hamilton-Jacobi-Bellman. We wish now to prove that function v̄ satisfies, in322

a suitable way, the following Hamilton Jacobi Bellman elliptic partial differential equation:323

324

(5.1)
1

2
tr[QG(x)G∗(x)Q∇2v̄(x)] +

1

2
tr[DD∗(x)Q∇2v̄(x)] + 〈Ax+ F (x),∇v̄(x)〉 =325
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− ψ(x,∇v̄(x)Q,∇v̄(x)D) + λ326327

Since the prof of differentiability of v̄ requires quantitative conditions that we were able to avoid in328

Theorem 4.2 we firstly formulate the PDE in a weaker sense involving the Generalized directional329

gradient introduced in [11]. The following is the version of Theorem 3.1 in [11] adapted to the330

present autonomous and Lipschitz case. The proof is identical to the one in [11] and is omitted.331

Theorem 5.1. Given any Lipschitz function v on H there exists a couple of bounded and Borel332

measurable functions ζ1 : H → Ξ∗, ζ2 : H → H∗ such that denoting, for all ξ = (ξ1, ξ2) ∈ Ξ ×H,333

by W ξ
s := 〈(W 1

s ,W
2
s ), ξ〉 the real Brownian Motion obtained projecting (W 1

s ,W
2
s ) along direction ξ,334

then we have the following relation, for any x ∈ H and any ρ > 0335

〈v(Xx
· ),W ξ

· 〉[0,ρ] =

∫ ρ

0

ζ1(Xx
t )ξ1 dt+

∫ ρ

0

ζ2(Xx
t )ξ2 dt, P− a.s.336

Definition 5.1. The family of functions ζ = (ζ1, ζ2) satisfying the above will be called the337

generalized (QG,D) directional gradients of u (denoted by ∇̃QG,D).338

Remark 5.1. Concerning uniqueness we can only say that if ζ and ζ̂ both belong to ∇̃QG,D339

then ζ1(Xx
t ) = ζ̂1(Xx

t ) and ζ2(Xx
t ) = ζ̂2(Xx

t ), P-a.s. for almost every t ≥ 0. See [11]. It is340

also clear that, by Ito rule, if u is regular enough, including twice continuously differentiable, then341

(∇u(·)QG(·),∇u(·)D) is in ∇̃QG,D.342

We are therefore led to the following definition of generalized solution to HJB equation. see [11,343

Section 5]:344

Definition 5.2. A pair (v, λ) is a mild solution in the sense of generalized directional gradient345

of the HJB equation (5.1) if v : H → R is Lipschitz and, for every T > 0 and for all 0 ≤ t ≤ T and346

x ∈ H it holds347

(5.2) v(x) = PT−t[v](x) +

∫ T

t

(Ps−t[ψ(·, ζ1(·)G−1, ζ2(·))](x)− λ) ds.348

where ζ = (ζ1, ζ2) is an arbitrary element of the generalized gradient ∇̃(QG,D) and (Pt)t≥0 is the349

transition semigroup corresponding to the diffusion Xx, see equation (3.9), that is:350

(5.3) Pt[φ](x) := Eφ(Xx
t ), φ : H → R measurable and bounded.351

We notice that function v̄ defined in (4.21) is Lipschitz. Moreover recalling, seeTheorem 4.2, that

(Ȳ xt , Z̄
x
t , Ū

x
t ) = (v̄(Xx

t ), ζ̄1(Xx
t ), ζ̄2(Xx

t )) we have that then equation (4.1) is satisfied, in particular,

for t = 0 and all T > 0 we immediately deduce that ζ̄ = (ζ̄1, ζ̄2) is in ∇̃(QG,D). Finally recalling

once more equation (4.1) now interpreted as a finite horizon BSDE:

−dȲ xt = ψ(Xx
s , Z̄

x
sG
−1(Xx

s ), Ūxs ) ds− λ ds− Z̄xs dW 1
s − Ūxs dW 2

s , Ȳ xT = v̄(Xx
T )

we can conclude the following, proceeding exactly as in [11] Theorem 5.1352

Theorem 5.2. Assume (A.1−−A.6), (B.1) then the couple (v̄, λ), characterized in Theorem353

4.2, is a mild solution, in the sense of the generalized directional gradient of equation (5.1).354

Whenever v̄ is differentiable then we can switch to the more classical notion of mild solution to355

equation (5.1) (v̄, λ), see [20, Section 6]:356

11
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Definition 5.3. A pair (v, λ) is a mild solution to the HJB equation (5.1) if v ∈ G1(H,R) with357

bounded derivative and, for all 0 ≤ t ≤ T , x ∈ H it holds:358

(5.4) v(x) = PT−t[v](x) +

∫ T

t

(Ps−t[ψ(·,∇v(·)Q,∇v(·)D)](x)− λ) ds.359

We have the following result.360

Theorem 5.3. Assume (A.1−−A.6), (B.1) and that v̄ is of class G1. Then (v̄, λ), defined in361

(4.21) is a mild solution of the HJB equation (5.1). On the other hand if (v′, λ′) is a mild solution362

of (5.1) then setting Y xt := v′(Xx
t ), Zxt = ∇v′(Xx

t )QG(Xx
t ) and Uxt = ∇v′(Xx

t )D, we obtain that363

(Y x, Zx, Ux, λ) is a solution to equation (4.1).364

Moreover if (v′, λ′) is another solution with v′ Gateaux differentiable with linear growth then365

λ = λ′.366

Proof. The existence part follows from [10, Theorem 6.2], while the uniqueness of λ in the class of367

solutions that are Gateaux differentiable with linear growth follows as [20, Theorem 4.6]. 2368

Remark 5.2. The differentiability of function v̄ is proved in Theorem 6.1 under quantitative369

assumptions on the coefficients. Although the argument essentially follows the classical paths of L2370

estimates on infinite horizon see, for instance, [6] it is not completely standard since exploits in371

several points an apriori L∞ estimate on Z and U descending from Proposition 4.2. In particular372

the uniform bounds for Z is essential in getting (A.9).373

We conclude this section proving the following asymptotic expansion result for parabolic solu-374

tions to the HJB equation.375

Proposition 5.1. Let v(·, ·) be a mild solution of the parabolic HJB equation:376

(5.5)


∂tv(t, x) =

1

2
[tr[QG(x)G∗(x)Q∇2v(t, x)] + tr[DD∗(x)Q∇2v(t, x)) + 〈Ax+ F (x),∇v(t, x)〉

+ ψ(x,∇v(t, x)Q,∇v(t, x)D),

v(0, x) =φ(x).

377

where φ : H → R is function of class G1 with bounded derivative and by mild solution of equation378

5.5 we mean a function v : R+ ×H → R of class G0,1 (see [10]) verifying for all t > 0, x ∈ H:379

(5.6) v(t, x) = Pt[φ](x) +

∫ t

0

Pt−s[ψ(·,∇v(·)Q,∇v(·)D)](x) ds.380

Then381

(5.7) lim
T→∞

v(T, x)

T
= λ.382

Proof.We fix T > 0 and consider the following finite horizon BSDE383

(5.8)

{
−dȲ T,xs = ψ(Xx

s , G
−1(Xx

s )ZT,xs , UT,xs ) ds− ZT,xs dW 1
s − UT,xs dW 2

s − λ ds
Ȳ T,xT = φ(Xx

T ).
384

By standard results on finite horizon BSDEs and mild solution of parabolic Hamilton-Jacobi-Bellman385

equations (see [10]) we have that Ȳ T,xs = v(T − s,Xx
s )− λ(T − s), s ∈ [0, T ].386
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Set Ỹ T,xt = Ȳ xt − Ȳ
T,x
t , for all t ∈ [0, T ], then Ỹ T,x verifies:387

(5.9)
−dỸ T,xs = [ψ(Xx

s , G
−1(Xx

s )Z̄xs , Ū
x
s )− ψ(Xx,t

s , G−1(Xx
s )ZT,xs , UT,xs )] ds− (Z̄xs − ZT,xs ) dW 1

s

−(Ūxs − UT,xs ) dW 2
s − λ ds

Ỹ T,xT = v̄(Xx
T )− φ(Xx

T ).

388

We rewrite (5.9) as:389

(5.10)


−dỸ T,xs = γ1

t (Z̄xs − ZT,xs ) ds+ γ2
t (Ūxs − UT,xs ) ds− (Z̄xs − ZT,xs ) dW 1

s

−(Ūxs − UT,xs ) dW 2
s − λ ds

Ỹ T,xT = v̄(Xx
T )− φ(Xx

T ).

390

where γ1 and γ2 are the typical uniformly bounded processes that arise in the linearization trick.391

Hence, by a Girsanov argument, we get that392

(5.11) Ỹ T,x0 = Eγ
1,γ2

(v̄(Xx
T )),393

where the probability measure Pγ1,γ2

is the one under which W γ1,γ2

t = (W 1
t −
∫ t

0
γ1
s ds,W

2
t −
∫ t

0
γ2
s ds)394

is a cylindrical Wiener process in Ξ×H in [0, T ]. Therefore by (3.4) and having v̄ Lipschitz, we get395

that396

(5.12) Ỹ T,x0 = Eγ
1,γ2

(v̄(Xx
T )− φ(Xx

T )) ≤ κγ1,γ2(1 + |x|),397

for some constant κγ1,γ2 independent of T . Thus, noticing that Ỹ T,x0 = v̄(x)− v(T, x) + λT we get398

that:399

(5.13) lim
T→∞

v(T, x)

T
= lim
T→∞

v̄(x)

T
+ λ = λ.400

2401

Remark 5.3. A more precise description of the asymptotic behaviour of v(T,x)
T is obtained in402

[15] when the noise is non degenerate by techniques involving Girsanov change of probability and403

coupling estimates. Due to the possible non-invertibility of Q we do not know whether similar results404

can be true in the present framework. We do think that, in any case, the proof of such results would405

require different arguments.406

6. Differentiability with respect to initial data. In this section we wish to present suffi-407

cient conditions under which the function v̄ defined in the section above is differentiable.408

Throughout the section we assume the following:409

(C.1) F is of class G1(H,H) and G is of class G1(H,L(Ξ, H))410

We start from a straightforward result in the non-degenerate case.411

Proposition 6.1. Beside (A.1−−A.6), (B.1) and (C.1) assume that the operator Q :=412

(Q,D) : Ξ×H → H admits a right inverse Q−1 then v̄ belongs to class G1(H).413

Proof. We fix T > 0 and notice that (Ȳ , Z̄, Ū , λ) satisfies (see (4.1) and the definition of Ȳt in

Theorem 4.2):

Y xt = v̄(Xx
T ) +

∫ T

t

[ψ̂(Xx
s , Z̄

x
s , Ū

x
s )− λ] ds−

∫ T

t

Z̄xs dW
1
s −

∫ T

t

Ūxs dW
2
s , 0 ≤ t ≤ T <∞,

13

This manuscript is for review purposes only.



where, we recall ψ̂(x, z, u) = ψ(x, zG−1(x), u) is lipschitz with respect to z and u. Moreover the

forward equation (3.9) solved by Xx can be rewritten as

dXx
t = AXx

t dt+ F (Xx
t )dt+ Q̃(Xx

t )dWt, Xx
0 = x.

where Wt :=

(
W 1
t

W 2
t

)
is a Ξ×H valued Wiener process and Q̃(x) = (QG(x), D).414

Under the present assumptions Q̃(x) turns out to be invertible with bounded right inverse:

[Q̃(x)]−1 =

(
G−1(x) 0

0 I

)
Q−1.

It is then straight forward to verify that all the assumptions in [9, Theorem 3.10] are satisfied and415

consequently v̄ (that coincides with the map x→ Ȳx) is in class G1 2416

When the noise in the diffusion can be degenerate the situation is less simple and we will need417

quantitative conditions on the coefficients (see, for instance, [24]).418

We will now work under the joint dissipative condition (A.7) that, taking into account differentia-419

bility of F and G becomes:420

(6.1) 2〈Ay +∇xF (x)y, y〉H + ||Q∇xG(x)y||2L2(Ξ,H) ≤ −µ|y|
2
H , ∀y ∈ D(A), ∀x ∈ H.421

Under the above assumptions the following well known differentiability result for the forward422

equation (3.1) holds:423

Lemma 6.1. Under (A.1−−A.5), (A.7) and (C.1) the map x→ Xx is Gâteaux differentiable.424

Moreover, for every h ∈ H, the directional derivative process ∇xXxh, solves, P− a.s., the equation425

(6.2)

∇xXx
t h = etAh+

∫ t

0

e(t−s)A∇xF (Xx
s )∇xXx

s h ds+

∫ t

0

e(t−s)AQ∇xG(Xx
s )∇xXx

s h dWs, t ≥ 0,426

Moreover427

(6.3) E|∇xXx
t h|2 ≤ e−µt|h|2.428

Proof. Our hypotheses imply the Hypotheses 3.1 of [10], therefore we can apply [10, Prop 3.3]. The429

estimate (6.3) follows applying the Itô formula to |∇xXx
t h|2 and arguing as in Proposition 3.1. 2430

431

We will need the following additional assumption to state the last result432

(C.2) G and G−1 are of class G1(H,L(Ξ)) and ψ is of class G1(H × Ξ∗,R)433

We eventually have:434

Theorem 6.1. Assume that (A.1−−A.5), (A.7) and (B.1) hold with µ > 2(L2
zM

2
G−1 + L2

u),435

moreover we assume (C.1) and (C.2). Then the function v̄ defined in (4.21) is of class G1(H,R).436

Proof.The proof is detailed in the Appendix. 2437

7. Application to optimal control. Let Γ be a separable metric space, an admissible control438

γ is any Ft - progressively measurable Γ-valued process. The cost corresponding to a given control439

is defined as follows. Let R1 : Γ → Ξ, R2 : Γ → H and L : H × Γ → R measurable functions such440

that, for some constant c > 0, for all x, x′ ∈ H and γ ∈ Γ:441
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(E.1) |R1(γ)| ≤ c, |R2(γ)| ≤ c, |L(x, γ)| ≤ c, |L(x, γ)− L(x′, γ)| ≤ c|x− x′|.442

443

Let for every x ∈ H be Xx the solution to (3.9), then for every T > 0 and every control γ we444

consider the Girsanov density:445

ργT = exp

(∫ T

0

G−1(Xx
s )R1(γs)dW

1
s +

∫ T

0

R2(γs) dW
2
s −

1

2

∫ T

0

[|G−1(Xx
s )R1(γs)|2Ξ + |R2(γs)|2H ] ds

)
446

and we introduce the following ergodic cost corresponding to x and γ:447

J(x, γ) = lim sup
t→∞

1

T
Eγ,T

∫ T

0

L(Xx
s , γs) ds,448

where Eγ,T is the expectation with respect to Pγ := ργTP. Notice that with respect to Pγ the

processes

W 1,γ
t := −

∫ t

0

G−1(Xx
s )R1(γs)ds+ dW 1

s , W 2,γ
t := −

∫ t

0

R2(γs)ds+ dW 2
s ,

are independent cylindrical Wiener processes and with respect to them Xx verifies:{
dXx

t = AXx
t dt+ F (Xx

t )dt+QR1(γs)ds+DR2(γs)ds+QG(Xx
t )dW 1,γ

t +DdW 2,γ
t , t ≥ 0,

Xx
0 = x,

and this justifies the above (weak) formulation of the control problem.449

We introduce the usual Hamiltonian:450

(7.1) ψ(x, z, u) = inf
γ∈Γ
{L(x, γ) + zR1(γ) + uR2(γ)}, x ∈ H, z ∈ Ξ∗, u ∈ H∗,451

that by construction is a concave function and, under (E.1), fullfils assumption (B.1). The forward452

backward system associated to this problem, is the following:453

(7.2)


dXx

t = AXx
t dt+ F (Xx

t )dt+QG(Xx
t )dW 1

t +DdW 2
t , t ≥ 0,

Xx
0 = x,

−dY xt = [ψ(Xx
t , Z

x
t G
−1(Xx

t ), Uxt )− λ] dt− Zxt dW 1
t − Uxt dW 2

t .

454

By Theorem 4.2 under (A.1−−A.6) and (E.1) for every x ∈ H there exists a solution:455

(7.3) (Ȳ x, Z̄x, Ūx, λ) = (v̄(Xx), ζ̄1(Xx), ζ̄2(Xx), λ),456

where Ȳ is a progressive measurable continuous process, Z̄ ∈ L2,loc
P (Ω× [0,+∞[; Ξ∗), Ū ∈ L2,loc

P (Ω×457

[0,+∞[;H∗), λ ∈ R, v̄ is Lipschitz and ζ̄1, ζ̄2 are measurable.458

Once we have solved the above ergodic BSDE the proof of the following result containing the459

synthesis of the optimal control for the ergodic cost is identical to the one of [19, Theorem 7.1].460

Theorem 7.1. Assume (A.1−−A.6) and (E.1). Then the following holds:461

(i) For arbitrary control γ we have J(x, γ) ≥ λ, and equality holds if and only if the following

holds P- a.s. for a.e. t ≥ 0:

L(Xx
t , γt) + ζ̄1(Xx

t )G−1(Xx
t )R1(γt) + ζ̄2(Xx

t )R2(γt) = ψ(Xx
t , ζ̄1(Xx

t )G−1(Xx
t ), ζ̄2(Xx

t )).
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(ii) If the infimum is attained in (7.1) and ρ : Ξ∗×H∗ → Γ is any measurable function realizing462

the minimum (that always exists by Filippov selection theorem, see [22]) then the control463

γ̄t = ρ(Xx
t , ζ̄1(Xx

t ), ζ̄2(Xx
t )) is optimal, that is J(x, γ̄) = λ.464

(iii) v̄ admits a generalized directional gradient and (v̄, λ) is the mild solution of the equation465

(5.1), in the sense of definition (5.2) and ζ̄1, ζ̄2 ∈ ∇̃(QG,D).466

(iv) Finally if v̄ is in class G1 then (v̄, λ) is a mild solution of equation (5.1), in the sense of467

definition (5.3) and ζ̄1 = ∇v̄QG and ζ̄2 = ∇v̄D .468

7.1. Examples.469

Example 7.1. We consider an ergodic control problem for a stochastic heat equation controlled470

through the boundary471

(7.4)



dtx(t, ξ) = ∂
∂ξ2x(t, ξ) dt+ d(ξ)Ẇ(t, ξ) dt, t ≥ 0, ξ ∈ (0, π),

x(t, 0) = y(t), x(t, π) = 0,

x(0, ξ) = x0(ξ), ξ ∈ (0, π)

dy(t) = b(y(t)) dt+ σ(y(t))ρ(γ(t))dt+ σ(y(t)) dBt, t ≥ 0,

y(0) = x ∈ R.

472

whereW is the space-time white noise on [0,+∞)×[0, π] and B is a Brownian motion. An admissible473

control γ is a predictable process γ : Ω× [0,+∞)→ R. The cost functional is474

(7.5) J(x0, γ) = lim inf
T→+∞

1

T
E
∫ T

0

∫ π

0

`(x(t, ξ), γ(t)) dξ dt.475

We assume that476

1. b : R→ R is a measurable function such that477

|b(y)− b(y′)| ≤ Lb|y − y′|,478479

for a suitable positive constant Lb, for every y, y ∈ R.480

2. σ : R→ R is a measurable and bounded function, such that481

|σ(y)− σ(y′)| ≤ Lσ|y − y|,482483

for suitable positive constants Lσ and there exists a suitable positive δ such that:484

|σ(y))| ≥ δ > 0,485

for every y ∈ R.486

3. there exists µ > 0 such that for all y, y′ ∈ R:487

(7.6) 2〈b(y)− b(y′), y − y′〉+ |σ(y)− σ(y′)|2 ≤ −µ|y − y′|2,488

4. d : [0, π]→ R, ρ : R→ R are bounded and measurable functions.489

5. ` : R× R→ R is a measurable and bounded function such that490

|`(x, γ)− `(x′, γ)| ≤ L|x− x′|,491

for a suitable positive constant L, for every x, x′, γ ∈ R.492
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Under these hypotheses, see [18], the above equation can be reformulated in an infinite dimen-493

sional space as:494

(7.7)


dtXt = ∆Xt dt−∆ry(t)dt+ D̃dW̃t , t ≥ 0, ξ ∈ [0, π],

X0 = x0(·), ξ ∈ (0, π)

dy(t) = b(y(t)) dt+ σ(y(t))ρ(u(t))dt+ σ(y(t)) dB(t), t ≥ 0,

y(0) = y0 ∈ R.

495

where Xt := x(·) is in L2(0, π), W̃ is a cylindrical Wiener process in L2(0, π), D̃ is the bounded

operator in L2(0, π) corresponding to multiplication by a bounded function d, ∆ is the realisation

of the Laplace operator with Dirichlet boundary conditions in L2(0, π), that is (denoting by D(∆)

the domain of the operator)

D(∆) = H2(0, π) ∩H1
0 (0, π), ∆f =

∂2f

∂ξ2
, ∀f ∈D(∆)

Finally r(ξ) = 1− ξ
π , ξ ∈ [0, π] is the solution to496

(7.8)

{
∂2r
∂ξ2 (ξ) = 0, ξ ∈ (0, π),

r(0) = 1, r(π) = 0.
497

It is well known that ∆ generates an analytic semigroup of contractions (of negative type −1)498

moreover, for any δ > 0, r ∈ D((−∆)1/2−δ) (where (−∆)α denotes the fractional power). Standard499

results on analytic semigroups then yield:500

(7.9) |(−∆)et∆r|L2(0,π) ≤ cre−tt−( 1
2 +δ), t > 0.501

We are now in a position to rephrase the problem according to our general framework. Indeed502

setting H = L2(0, π)× R, Ξ = R and Xt =
(
Xt, y(t)

)
equation (7.7) becomes503

(7.10)

{
dXx

t = AXx
t dt+ F (Xx

t )dt+QG(Xx
t )ρ(γt)dt+QG(Xx

t )dW 1
t +DdW 2

t , t ≥ 0,

Xx
0 = x.

504

where:505

1. A =

(
−∆ −∆R

0 0

)
where R : R→ D((−∆)

1
2−δ), is defined as Ry = r(·)y, y ∈ R506

It is easy to verify that A generates a C0-semigroup in H.507

2. F : H → H, is defined as: F

(
X
y

)
=

(
0

b(y)

)
,508

Q : Ξ→ H is defined as: Qy =

(
0

y

)
,509

G : Ξ→ Ξ, is defined as: G(y) = σ(y)510

D : H → H is defined as: D

(
X
y

)
=

(
D̃X

0

)
.511

3. W 1(t) = B(t) and (W 2) is a cylindrical Wiener process in H.512

Hypotheses (A.1−−A.5) are immediately verified, we have to check (A.6). We come back to513

the formulation (7.7) and start with the second component y (that only depends on y0). By (7.6),514

Proposition 3.2 gives:515

E|yy0(t)− yy
′
0(t)|2 ≤ e−2µt|y0 − y′0|2.(7.11)516
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517

Coming now to the first component we have that it fullfills in L2(0, π) the following mild formulation:518

X x0,y0
t = et∆x0 −

∫ t

0

[
∆e(t−s)∆r

]
yy0(s) ds+

∫ t

0

e(t−s)∆DdWs.519
520

Thus considering two different initial data521

X x0,y0
t −X x

′
0,y
′
0

t = et∆(x0 − x′0)−
∫ t

0

∆e(t−s)∆(ryy0(s)− ryy
′
0(s)) ds.522

523

By (7.9) and (7.11) choosing µ0 ∈ (0, 1 ∧ µ)524

E|X x0,y0
t −X x

′
0,y
′
0

t | ≤ e−t|x0 − x′0|+
∫ t

0

e−(t−s)(t− s)−( 1
2 +δ)e−µs|y0 − y′0| ds525

≤ e−t|x0 − x′0|+ e−µ0t

[∫ t

0

e−(1−µ0)(t−s)(t− s)−( 1
2 +δ) ds

]
|y0 − y′0|.526

527

That implies that (3.5) holds. In the same way one gets the proof of (3.4).528

We notice that it is not at all obvious that the stronger versions (3.7), (3.8) holds in this case.529

As far as the control functional is concerned it is enough to set L(X, γ) =
∫ π

0
`(ξ,X (ξ), γ)d ξ530

and to verify in a straightforward way that (E.1) holds (in this case R1 = ρ, R2 = 0, Γ = R).531

Thus all the hypotheses of Theorem 7.1 hold and points (i) and (ii) in its thesis give the optimal532

ergodic cost and strategy in terms of the solution to the ergodic BSDE in (7.2). Moreover by point533

(iii) of Theorem 7.1 we have that (v̄, λ) is the mild solution of the equation (5.1), in the sense534

of definition (5.2) and the optimal feedback law can be characterized in terms of the generalized535

directional gradient of v̄.536

Example 7.2. We consider an ergodic control problem for a stochastic heat equation with537

Dirichlet boundary conditions with nonlinearity controlled through a one dimensional process y.538

(7.12)



dtx(t, ξ) = ∂
∂ξ2x(t, ξ) dt+ f(x(t, ξ), y(t)) + d(ξ)Ẇ(t, ξ) dt, t ≥ 0, ξ ∈ (0, 1),

x(t, 0) = x(t, 1) = 0,

x(0, ξ) = x0(ξ), ξ ∈ (0, 1)

dy(t) = b(y(t)) dt+ σ(y(t))γ(t)dt+ σ(y(t)) dBt, t ≥ 0,

y(0) = y0 ∈ [−1, 1].

539

whereW is the space-time white noise on [0,+∞)×[0, 1] and B is a Brownian motion. An admissible540

control γ is a predictable process γ : Ω× [0,+∞)→ [−1, 1]. The cost functional is541

(7.13) J(x0, γ) = lim inf
T→+∞

1

T
E
∫ T

0

[∫ 1

0

(`(x(t, ξ), y(t))dξ + γ2(t)

]
dt.542

We assume:543

1. f : R2 → R is a Lipschitz map. We fix two constants Lf > 0 and µf ∈ R such that544

|f(x, y)− f(x′, y)| ≤ Lf (|x− x′|+ |y − y′|), 〈f(x, y)− f(x, y′), x− x′〉 ≤ −µf |x− x′|2,545546

for every x, x′, y, y ∈ R.547
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2. b : R→ R is Lipschitz. We fix a constant µb ∈ R such that:548

〈b(y)− b(y′), y − y′〉 ≤ −µb|y − y′|2, ∀y, y′ ∈ R549550

3. σ : R2 → R is a Lipschitz and bounded. We fix Lσ such that551

|σ(y)− σ(y′)| ≤ Lσ|y − y′|, ∀y, y′ ∈ R,552553

We also assume that there exists a suitable positive δ such that:554

|σ(y))| ≥ δ > 0, ∀y ∈ R.555

4. d : [0, 1]→ R is a bounded and measurable function.556

5. ` : R2 → R is bounded and Lipschitz557

As in the previous example the above equation can be reformulated in an infinite dimensional

space as: 
dtXt = ∆Xt dt+ f(Xt, y(t))dt+ D̃dW̃t , t ≥ 0, ξ ∈ [0, 1],

X0 = x0(·), ξ ∈ [0, 1]

dy(t) = b(y(t)) dt+ σ(y(t))γ(t)dt+ σ(y(t)) dB(t), t ≥ 0,

y(0) = y0 ∈ R.

where Xt := x(·) is in L2(0, 1), W̃ is a cylindrical Wiener process in L2(0, 1), ∆ is the realisation of558

the Laplace operator with Dirichlet boundary conditions in L2(0, 1), D̃ is the bounded operator in559

L2(0, 1) corresponding to multiplication by a bounded function d.560

Finally setting H = L2(0, 1)×R, Ξ = R, Γ = [−1, 1] and Xt =
(
Xt, y(t)

)
equation (7.4) becomes561

(7.14)

{
dXx

t = AXx
t dt+ F (Xx

t )dt+QG(Xx
t )γtdt+QG(Xx

t )dW 1
t +DdW 2

t , t ≥ 0,

Xx
0 = x.

562

and the cost takes our general form:

J(x0, γ) = lim inf
T→+∞

1

T
E
∫ T

0

L(X(t), γ(t)) dt.

where563

1. A =

(
−∆ 0

0 0

)
generates a C0-semigroup in H. We also have that564

〈AX,X〉H = 〈∆X ,X〉L2(0,1) ≤ −µ∆|X |2L2(0,1),565

for some µ∆ > 0.566

2. F : H → H, is defined as: F

(
X
y

)
=

(
f(X , y)

b(y)

)
,567

Q : Ξ→ H is defined as: Qy =

(
0

y

)
,568

G : Ξ→ Ξ, is defined as: G(y) = σ(y),569

D : H → H is defined as: D

(
X
y

)
=

(
D̃X

0

)
.570

3. W 1(t) = B(t) and (W 2) is a cylindrical Wiener process in H.571
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4. L : H × Γ→ R, L(X, γ) =

∫ 1

0

`(X (ξ), y)d ξ + |γ|2.572

We also notice that in this case the Hamiltonian defined as in (7.1) becomes:573

(7.15) ψ

((
X
y

)
, z

)
= −z

2

4
I[−2,2](z) + (1− |z|)I[−2,2]c(z) +

∫ 1

0

`(X (ξ), y)d ξ.574

We also assume that there exists µ̄ > 0 such that575

(7.16)

(
−µ∆ − µf 1

2Lf
1
2Lf −µb + 1

2Lσ

)
≤ −µ̄ IR2 .576

Hypotheses (A.1−−A.5) are immediately verified. Moreover relation (7.16) ensures that (A.7)577

holds as well. Finally (E.1) is straight forward (in this case R1 = id, R2 = 0). Thus the hypotheses578

of Theorem 7.1 hold and points (i), (ii) and (iii) in its thesis give the optimal ergodic cost, the579

strategy in terms of the solution to the ergodic BSDE in (7.2) and we have that (v̄, λ) is the mild580

solution of the equation (5.1), in the sense of definition (5.2) and the optimal feedback law can be581

characterized in terms of the generalized directional gradient of v̄.582

We finally wish to apply the differentiability result in Theorem 6.1 to this specific example. We583

notice that by (7.15) the Hamiltonian ψ is concave and differentiable with respect to z with ∇zψ ≤ 1.584

Thus (B.1) holds and we can choose Lz = 1 in (4.2). If we assume that f b σ and ` are of class585

C1 in all their variables then (C.1) and (C.2) hold, moreover if we impose that µ̄ > 2δ−2 (here,586

comparing with Theorem 6.1, Lu = 0, MG−1 = δ−1) then all the assumptions of Theorem 6.1 are587

verified and we can conclude that function v̄ in Theorem 7.1 is differentiable. Consequently point588

(iv) in Theorem 7.1 as well applies here and we obtain that (v̄, λ) is a mild solution of equation (5.1),589

in the sense of definition (5.3), and that the optimal feedback law can be characterized in terms of590

the gradient of v̄.591

Appendix A. Proof of Theorem 6.1.592

We will need to use some results from [23, Theorem 5.21 and Section 5.6]. The first concerns593

finite horizon BSDEs and the estimate of their solution, while the second concerns the infinite horizon594

case. We restate them in our setting as follows:595

Lemma A.1. Let us consider the following equation:596

−d Yt = (φ(t, Zt, Ut) dt− αYt) dt− Zt dW 1
t − Ut dW 2

t , YT = η, t ∈ [0, T ], α ≥ 0.(A.1)597598

assume that:599

1. |φ(t, z, u) − φ(t, z′, u′)| ≤ `(t)(|z − z′|2 + |u − u′|2)1/2, ∀z, z′ ∈ Ξ∗, u, u′ ∈ H∗, P − a.s. for600

some ` ∈ L2([0, T ]);601

2. for νt :=

∫ t

0

`2(s) ds, one has602

(A.2) E
(
e2νT−2αT |η|2

)
<∞, E

(∫ T

0

eνs−αs|φ(s, 0, 0)| ds

)2

<∞.603

Then there exists a unique solution (Y,Z, U) ∈ L2
P(Ω;C([0, T ];R)) × L2

P(Ω × [0, T ]; Ξ∗) × L2
P(Ω ×604

[0, T ];H∗) and it verifies for all 0 ≤ t ≤ T :605

EFt( sup
s∈[t,T ]

e2(νs−αs)|Ys|2) + EFt
(∫ T

t

e2(νs−αs)|Zs|2 ds

)
+ EFt

(∫ T

t

e2(νs−αs)|Us|2 ds

)
≤606
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EFt
(
e2νT−2αT |η|2

)
+ EFt

(∫ T

t

eVs−αs|φ(s, 0, 0)| ds

)2

, P− a.s., t ∈ [0, T ].(A.3)607

608

Lemma A.2. Let us consider the following equation for α ≥ 0:609

−d Yt = (φ(t, Zt, Ut) dt− αYt) dt− Zt dW 1
t − Ut dW 2

t , t ≥ 0, .(A.4)610611

Assume that:612

1. |φ(t, z, u) − φ(t, z′, u′)| ≤ `(t)(|z − z′|2 + |u − u′|2)1/2, ∀z, z′ ∈ Ξ∗, u, u′ ∈ H∗, P − a.s. for613

some ` ∈ L2
loc([0,+∞[);614

2. for νt :=

∫ t

0

`2(s) ds, one has615

(A.5) E
(∫ ∞

0

eνs |φ(s, 0, 0)| ds
)2

<∞.616

Then there exists a unique triple of processes (Y,Z, U) with Y ∈ L2,loc
P (Ω;C([0,+∞[;R)), Z ∈617

L2,loc
P (Ω× [0,+∞[; Ξ∗), U ∈ L2,loc

P (Ω× [0,+∞[;H∗), such that618

(A.6) E( sup
t∈[0,T ]

e2νt |Yt|2) < +∞, ∀T ≥ 0, lim
T→∞

E(e2νT |YT |2) = 0.619

Moreover620
621

(A.7) EFt(sup
s≥t

e2νs |Ys|2) + EFt
(∫ ∞

t

e2νs(|Zs|2 + |Us|2) ds

)
≤ C EFt

(∫ ∞
t

eνs |φ(s, 0, 0)| ds
)2

,622

623

for some positive constant C.624

Proof of Theorem 6.1. The proof is split into two parts. The first deals with approximating625

functions vα defined in (4.10)626

Part I - Differentiability of vα627

We first have to come back to the elliptic approximations:628

(A.8) Y x,αt = Y x,αT +

∫ T

t

[ψ(Xx
s , Z

x,α
s G−1(Xx

s ), Ux,αs )−αY x,αs ] ds−
∫ T

t

Zx,αs dW 1
s −

∫ T

t

Ux,αs dW 2
s ,629

and for those equations we prove that:630

Proposition A.1. Under the same assumptions of Theorem 6.1 we have that, for each α > 0,631

the map x→ Y x,α0 belongs to G1(H,R).632

Proof. We fix n ∈ N and introduce the following finite horizon approximations where 0 ≤ t ≤ n:

Y x,α,nt =

∫ n

t

[ψ(Xx
s , Z

x,α,n
s G−1(Xx

s ), Ux,α,ns )− αY x,α,ns ] ds−
∫ n

t

Zx,α,ns dW 1
s −

∫ n

t

Ux,α,ns dW 2
s .

For such equations [16, Prop. 3.2] holds true, moreover we have from [10, Propositions 5.6 and 5.7]633

that x → Y x,α,n0 := vα,n(x) belongs to G1(H,R) and Zx,α,nt = ∇xvα,n(Xx
t )G(Xx

t ) and Ux,α,nt =634

∇xvα,n(Xx
t )D.635

Hence, arguing as in Proposition 4.2, we deduce that |Zα,x,nt | ≤ |∇xvα,n(Xx
t )G(Xx

t )| ≤ C/µ and636

|Uα,x,nt | ≤ |∇xvα,n(Xx
t )D| ≤ C

µ
, with C independent of n and α.637
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Moreover, see [10, Prop 5.2], the map x→ (Y x,α,nt , Zx,α,nt , Ux,α,nt ) is Gateaux differentiable and the638

equation for the derivative in the direction h ∈ H, |h| = 1, is the following:639

∇xY x,α,nt h =

∫ n

t

[φh,α(s,∇xZx,α,ns h,∇xUx,α,ns h)− α∇xY x,α,ns h] ds−
∫ n

t

∇xZx,α,ns h dW 1
s640

−
∫ n

t

∇xUx,α,ns h dW 2
s , 0 ≤ t ≤ n.641

642

where643

φh,α,n(s, z, u) = ∇xψ(Xx
s , Z

x,α,n
s G−1(Xx

s ), Ux,α,ns )∇xXx
s h+∇uψ(Xx

s , Z
x,α,n
s G−1(Xx

s ), Ux,α,ns )uh644

+∇zψ(Xx
s , Z

x,α,n
s G−1(Xx

s ), Ux,α,ns )[Zx,α,ns ∇xG−1(Xx
s )∇xXx

s h+ z hG−1(Xx
s )].645646

Notice that φh,α(t, z, u) is affine in z and u and :647

|φh,α,n(s, z, u)−φh,α,n(s, 0, 0)| ≤ Lu|u|+LzMG−1 |z| ≤ (L2
zM

2
G−1 +L2

u)1/2(|z|2 + |u|2)1/2, P−a.s.648

where here and in the following the constant C may change from line to line but always independently649

from n, ε and from α.650

We can apply Lemma A.1 with νs = (L2
zM

2
G−1 + L2

u)s =: Ks, indeed for ε = 1
2 (µ − 2K), we651

have, recalling also that Ux,α,ns and Zx,α,ns are bounded uniformly in s, α and n652

(A.9) E
[∫ n

0

|φh,α,n(s, 0, 0)|e(−α+K)s dt

]2

≤ C

ε

∫ n

0

e(ε−2α+2K)sE|∇xXx
s h|2 dt ≤

C

µ− 2K
.653

Therefore the following estimate holds, arguing as before in (A.9), for all 0 ≤ t ≤ n:654

655

(A.10) E sup
s∈[t,n]

e2(−α+K)s|∇xY x,α,ns h|2 + E
∫ n

t

e2(−α+K)s
[
|∇xZx,α,ns h|2 + |∇xUx,α,ns h|2

]
dt656

≤ C E
[∫ n

t

e(−α+K)s|φh,α,n(s, 0, 0)| ds
]2

≤ Ce(−2α− 1
2µ+K)t

µ− 2K
, t ≤ s ≤ n.657

658

In particular, we have for all t ≥ 0:659

(A.11) E
(
e2Kt|∇xY x,α,nt h|2

)
≤ C e(− 1

2µ+K) t.660

From estimate (A.10) we deduce that (∇xY x,α,nh,∇xZx,α,nh,∇xUx,α,nh) weakly converges in the661

Hilbert space L2(Ω× (0, T );R× Ξ∗ ×H∗) to some (Rx,α,h, V x,α,h,Mx,α,h), for every T > 0. From662

(A.11) we also have that ∇xY x,α,n0 h converge in R to ξx,α,h.663

We define for every t ≥ 0

R̃x,α,ht = ξx,α,h +

∫ t

0

[
φh,α(s, V x,α,hs ,Mx,α,h

s )− αRx,α,hs

]
ds−

∫ t

0

V x,α,hs dW 1
s −

∫ t

0

Mx,α,h
s dW 2

s .

Compare the above with the forward equation fulfilled by (∇xY x,α,nh,∇xZx,α,nh,∇xUx,α,nh),664

namely:665

∇xY x,α,nt h =∇xY x,α,n0 h+

∫ t

0

[
φh,α,n(s,∇xZx,α,ns ,∇xUx,α,ns )− α∇xY x,α,ns h

]
ds666
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−
∫ t

0

∇xZx,α,ns h dW 1
s −

∫ t

0

∇xUx,α,ns h dW 2
s , P− a.s..667

668

Since every term in the R.H.S., passing to a subsequence if necessary, weakly converges in

L2(Ω × (0, T );R), see also [16, Theo. 3.1], we have that R̃x,α,ht = Rx,α,ht , P−a.s. for a.e. t ≥ 0.

Thus the triplet processes (R̃x,α,h, V x,α,h,Mx,α,h) verifies for all t > 0, P-a.s.:

R̃x,α,ht = R̃x,α,h0 +

∫ t

0

[
φh,α(s, V x,α,hs ,Mx,α,h

s )− αR̃x,α,hs

]
ds −

∫ t

0

V x,α,hs dW 1
s −

∫ t

0

Mx,α,h
s dW 2

s .

where669

φh,α(s, z, u) = ∇xψ(Xx
s , Z

x,α
s G−1(Xx

s ), Ux,αs )∇xXx
s h+∇uψ(Xx

s , Z
x,α
s G−1(Xx

s ), Ux,αs )uh670

+∇zψ(Xx
s , Z

x,α
s G−1(Xx

s ), Ux,αs )[Zx,αs ∇xG−1(Xx
s )∇xXx

s h+ z hG−1(Xx
s )].671672

Moreover, thanks to (A.10) and (A.11) we have that673

(A.12) E sup
s∈[0,T ]

e2Ks|R̃x,α,hs |2 < +∞ and E e2Ks|R̃x,α,hs |2 ≤ C̃ e(−µ+2K) s,674

therefore, (R̃x,α,h, V x,α,h,Mx,α,h) is the unique solution of equation:675

(A.13) dsRs = [φh,α(s, Vs,Ms)− αRs]ds− VsdW 1
s −MsdW

2
s ,676

in the class of processes with the regularity imposed in Lemma A.2 veryfying:677

(A.14) E sup
t∈[0,T ]

|R̃x,α,ht |2 < +∞ and lim
T→+∞

E e2K2T |R̃x,α,hT |2 = 0, ∀T > 0.678

We then closely follow the proof of [16, Prop 3.2], indeed we get that limn→+∞∇xY α,n,x0 h =679

R̃α,x,h(0), defines a linear and bounded operator R̃α,x(0) from H to H, by (A.11), such that680

R̃α,x(0)h = R̃x,α,h(0), moreover for every fixed h ∈ H, x → R̃α,x(0)h is continuous in x, we681

will sketch the argument by the the end of the proof in a similar point. Therefore, by dominated682

convergence, we get that:683

684

(A.15) lim
`↓0

Y x+`h,α
0 − Y x,α0

`
= lim

`↓0
lim
n→∞

Y x+`h,α,n
0 − Y x,α,n0

`
= lim

`↓0
lim
n→∞

∫ 1

0

∇xY ,x+θ`h,α,n
0 h dθ685

= lim
`↓0

∫ 1

0

R̃x+θ`h,α(0)h dθ = R̃x,α(0)h.686
687

Thus vα is differentiable and since Y x,αt = vα(Xx
t ) we have ∇xY x,αt h = vα(Xx

t )∇xXx
t h.688

Fixing T > 0 we can see the equation satisfied by (Y x,α, Zx,α, Ux,α) as a BSDE on [0, T ] with689

final condition vα(Xx
T ) and we can apply standard results on the differentiability of markovian, finite690

horizon BSDEs (see, for instance, [10]) to deduce that the map x → Y x,α is of class G1 from H to691

L2
P(Ω, ;C([0, T ];R)) and x→ Zx,α is of class G1 from L2

P([0, T ]×Ω; Ξ∗). Moreover for every h ∈ H,692

for every 0 ≤ t ≤ T it holds that:693

∇xY x,αt h = ∇xY x,αT h+

∫ T

t

[φh(s,∇xZx,αs h,∇xUx,αs h)− α∇xY x,αs h] ds694

−
∫ T

t

∇xZx,αs h dW 1
s −

∫ T

t

∇xUx,αs h dW 2
s , 0 ≤ t ≤ n.(A.16)695
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696

Comparing the above with (A.13) and noticing that for all T > 0:

Ee2KT |∇xY x,αT h|2 = Ee2KT |∇xvα(Xx
T )∇xXx

Th|2 ≤ Ce(2K−µ)T ,

the uniqueness part of Lemma A.2 tells us that (∇xY x,α· h,∇xZx,α· h,∇xUx,α· h) coincides with697

(R̃x,h,α, V x,h,α,Mx,h,α) and is the unique solution of equation (A.13) in the sense of Lemma A.2.698

Part II - Differentiability of v̄699

We also introduce the following infinite horizon BSDE:700

(A.17) − dRx,hs = φh(s, V x,hs ,Mx,h
s )ds− V x,ht dW 1

t −M
x,h
t dW 2

t t ≥ 0.701

with702

φh(s, z, u) =[∇xψ(Xx
s , Z̄

x
sG
−1(Xx

s ), Ūxs ) +∇zψ(Xx
s , Z̄

x
sG
−1(Xx

s ), Ūxs )Z̄xs∇xG−1(Xx
s )]∇xXx

s h703

+∇uψ(Xx
s , Z̄

x
sG
−1(Xx

s ), Ūxs )u+∇zψ(Xx
s , Z̄

x
sG
−1(Xx

s ), Ūxs )z.704705

By Lemma A.2 has a unique solution in the class of processes Rx,h ∈ L2,loc
P (Ω;C([0,+∞[;R)),706

V x,h ∈ L2,loc
P (Ω× [0,+∞[; Ξ∗), M ∈ L2,loc

P (Ω× [0,+∞[;H∗) verifying:707

(A.18) lim
T→+∞

e2KTE |Rx,hT |
2 = 0, ∀T > 0.708

As in [19, Theorem 5.1] we claim that, along the sequence (αm) introduced in (4.21), it holds:709

(A.19) ∇xvαm(x)h = ∇xY αm,x0 h = Rx,αm,h0 → Rx,h0 ,710

as m→∞.711

Let us introduce again some parabolic approximations. For s ∈ [0, n] consider:712 {
−dRx,α,n,hs = φh,α(s, V x,α,n,hs ,Mx,α,n,h)ds− αRx,α,n,hs ds− V x,α,n,hs dW 1

s −Mx,α,n,h
s dW 2

s ,

Rx,α,n,hn = 0.
713

and714 {
−dRx,n,hs = φh(s, V x,h,ns ,Mx,n,h)ds− V x,h,ns dW 1

s −Mx,h
s dW 2

s ,

Rx,h,nn = 0,
715

Since along the sequence (αm) selected in Section 4 we have

E sup
s∈[0,n]

|Ȳ xs − Y x,αms |2 + E
∫ n

0

[
|Z̄s − Zx,αms |2 + |Ūxs − Ux,αms |2

]
ds→ 0.

and consequently

E
∫ n

0

|φh,αm(s, 0, 0)− φh(s, 0, 0)|2ds→ 0 as m→∞.

standard estimates on finite horizon BSDEs give:716

(A.20) E sup
s∈[0,n]

|Rx,n,hs −Rx,αm,n,hs |2 → 0, as m→∞.717
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Moreover if we compare with the solution (R̃x,α,h, V x,α,h,Mx,α,h) of equation (A.13)718

(A.21)
−d (Rx,α,n,hs − R̃x,α,hs ) =[φh,α(s, V x,α,n,hs − V x,α,hs ,Mx,α,n,h

s −Mx,α,h
s )−α(Rx,α,n,hs − R̃x,α,hs )] ds

−[V x,α,n,hs − V x,α,hs ] dW 1
s − [Mx,α,n,h

s −Mx,α,h
s ] dW 2

s ,

Rx,α,n,hn − R̃x,α,hn = −∇xvα(Xx
n)∇xXx

nh

719

Thus Lemma A.1 estimate (A.3) yields:720

(A.22) |Rx,α,n,h0 − R̃x,α,h0 |2 ≤ E
(
e2kn|∇xvα(Xx

n)∇xXx
nh|2

)
≤ Ce(2K−µ)n → 0, as n→ +∞.721

Notice that the right hand side does not depend on α . Finally722

(A.23)


−d (Rx,n,hs −Rx,hs ) = φh(s, V x,n,hs − V x,hs ,Mx,n,h

s −Mx,h
s )ds

−[V x,n,hs − V x,hs ] dW 1
s − [Mx,n,h

s −Mx,h
s ] dW 2

s ,

Rx,n,hn −Rx,hn = −R̃x,hn ,

723

and taking into account (A.18), one has, again by Lemma A.1 relation (A.3):724

(A.24) |Rx,n,h0 −Rx,h0 |2 ≤ E
(
e2Kn|Rx,hn |2

)
≤ Ce(2K−µ)n → 0, as N → +∞.725

Therefore summing up (A.22), (A.24) and (A.20) we have that:726

Rx,αm,h0 → Rx,h0 , as m→ +∞.727

Finally the continuity with respect to x of Rx,h0 descends immediately from (A.24) and from the728

continuity of the map x→ Rx,n,h0 proved in [10, Prop. 4.3].729

We can now conclude as above (and as in [16, Prop 3.2]); Rx,h(0), defines a linear and bounded730

operator Rx(0) from H to H, such that Rx(0)h = Rx,h(0), and we have:731

lim
t↓0

v̄(x+ th)− v̄(x)

t
= lim

t↓0

Ȳ x+th
0 − Ȳ x0

t
= lim

t↓0
lim
m→0

Y x+th,αm
0 − Y x,α0

t
=732

= lim
t↓0

lim
m→0

∫ 1

0

∇xY x+θth,αm
0 h dθ = lim

t↓0
lim
m→0

∫ 1

0

Rx+θth,αm,h(0)h dθ =733

= lim
t↓0

∫ 1

0

Rx+θth(0)h dθ = Rx(0)h.734
735
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