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ERGODIC BSDES WITH MULTIPLICATIVE AND DEGENERATE NOISE
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Abstract. In this paper we study an Ergodic Markovian BSDE involving a forward process X that solves
an infinite dimensional forward stochastic evolution equation with multiplicative and possibly degenerate diffusion
coefficient. A concavity assumption on the driver allows us to avoid the typical quantitative conditions relating the
dissipativity of the forward equation and the Lipschitz constant of the driver. Although the degeneracy of the noise
has to be of a suitable type we can give a stochastic representation of a large class of Ergodic HIB equations; morever
our general results can be applied to get the synthesis of the optimal feedback law in relevant examples of ergodic
control problems for SPDEs.
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1. Introduction. In this paper we study the following BSDE of ergodic type

T T T
Yo=Y+ [ B0z un - Nds— [ zzawi- [Curawz o0<i<T<c,
t ¢ t
where the processes (Y*, Z*,U®) and the constant A are the unknowns of the above equation while
the diffusion X is the (mild) solution of the infinite dimensional (forward) SDE:

(L.1) { dX® = AXZ%ds+ F(X2%)ds + QG(X%)dW} + DdW?2,

X7 = =z

In the above equation X takes values in an Hilbert space H and W', W2 are independent cylindrical
Wiener processes (see (A.1)-(A.6) in Section 3 and (B.1) in Section 4 for precise description of
the other terms). We just stress that we will assume that G(x) is invertible for all z € H while @
and D will be general, possibly degenerate, linear operators.

Ergodic BSDEs have been introduced in [19] in relation to optimal stochastic ergodic control
problems and as a tool to study the asymptotic behaviour of parabolic HIB equations and conse-
quently to give a stochastic representation to the limit semilinear elliptic PDEs (see equation (5.1)
below).

In [19] the same class of BSDEs have been introduced, already in an infinite dimensional frame-
work, but only in the case in which the noise coefficient was constant (¢ = 0 in our notation).
Successive works, see [15] and [7] weakened the assumptions and refined the results in the same
additive noise case. Then in [24], in a finite dimensional framework, the case of ‘multiplicative noise
(Q # 0 and G depending on z in our notation) is treated under quantitative conditions relating
the dissipativity constant of the forward equation to the Lipscitz norm of QZ with respect to Z.
Afterwards, in [21], still in finite dimensions, such quantitative assumptions are dropped in the case
of a non degenerate and bounded diffusion coefficient (@ = I and G bounded and invertible in our
notation) by a careful use of smoothing properties of the Kolmogorov semigroup associated to the
non-degenerate underlying diffusion X. Finally in [14] the result is extended to the case of non de-
generate but unbounded (linearly growing) diffusion coefficients (Q = I and G invertible and linearly
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growing in our notation). To complete the picture we mention, [2], [3], [4] and [13] where Ergodic
BSDEs are studied in various frameworks different from the present one: namely, respectively when
they are driven by a Markov chain, in the context (see [17]) of randomized control problems and
BSDESs with constraints on the martingale term both in finite and in infinite dimensions and finally
in the context of G- expectations theory.

In this paper we propose an alternative approach that works well in the infinite dimensional case
and allows to consider degenerate multiplicative noise (@ in general non invertible and G bounded
invertible but depending on z). On the other side we have to assume that 1Z has the form:

~

O(x, z,u) = Yz, 2G7 (), u),

where 1 is Lipschitz and concave function with respect to (z,u).  Although not standard, our
assumptions allow to give a stochastic representation of a relevant class of Ergodic HJB equations
in Hilbert spaces (see Section 5) and of ergodic stochastic control problems for SPDEs (see Example
7.1 and Example 7.2). Notice that ¢ defined above is exactly the function that naturally appears in
the related HJB equation and in the applications to ergodic control.

As in all the literature devoted to the problem the main point is to prove a uniform gradient
estimate (independent on «) for v*(z) := Y*?* where (Y%, Z%% U*?) is the solution of the
discounted BSDE with infinite horizon:

T T T
A :Yﬁvu/ [V(XZ, Z27 UST) — aY 2" ds—/ Zo" dWsl—/ U™ dw?, 0<t<T<oo0.
t t t

Such estimate can be obtained by a change of probability argument when the noise is additive (see
[19]), by energy type estimates under quantitative assumptions on the exponential decay of the
forward equation (see [24]) or by regularizing properties of the Kolmogorov semigroup when the
noise in multiplicative but non degenerate (see [14] and [21]).

Here we exploit concavity of ¢ to introduce an auxiliary control problem and eventually obtain
the gradient estimate using a decay estimate on the difference between states starting from different
initial conditions, see Assumption (A.6) and, in particular, requirement (3.5). We stress the fact
that the estimate in (3.5) is only in mean and not uniform (with respect to the stochastic parameter)
as in the additive noise case. Moreover, as we show in Proposition 3.2, Assumption (A.6) is verified
if we impose a joint dissipativity condition on the coefficients, see Assumption (A.7). As a matter
of fact, in this case, the stronger formulation in which L? replaces L' norm holds. On the other side
(A.6) allows to cover a wider class of interesting examples, see for instance Example 7.1 in which
Assumption (A.7) does not seem to hold.

The structure of the paper in the following: in Section 2 we introduce the function spaces that
will be used in the following, Section 3 is devoted to the infinite dimensional forward equation; in
particular we state and discuss the key stability assumption (A.6). In Section 4 we present the main
contribution of this work introducing the auxiliary control problem, proving the gradient estimate
and the consequent existence of the solution to the ergodic BSDEs. In Section 5 we relate our ergodic
BSDE to a semilinear PDE in infinite dimensional spaces (the ergodic HJB equation). In Section
6 we discute the regularity of the solution of the ergodic BSDE, in particular we state that under
quantitative conditions on the dissipativity of the forward equation similar to the ones assumed in
[24], when all coefficients are differentiable then the solution of the ergodic BSDE is differentiable
with respect to the initial data as well. The proof of such result adapts a similar argument in [16]
and is rather technical, we have postponed it in the Appendix Section 7 we use our ergodic BSDE
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to obtain an optimal ergodic control problem (that is with cost depending only on the asymptotic
behaviour of the state) for an infinite dimensional equation. We close, see Section 7.1, by two
examples of controlled SPDEs to which our results can be applied. In both we consider a stochastic
heat equation in one dimension with additive white noise. In the first, Example 7.1 the system is
controlled through one Dirichlet boundary condition (on which multiplicative noise also acts) while,
in the second one, Example 7.2, the control enters the system through a finite dimensional process
that affects the coefficients of the SPDE. In this last case we also give conditions guaranteeing
differentiability of the related solution to the Ergodic BSDE.

2. General notation. Let =, H and U be real separable Hilbert spaces. In the sequel, we use
the notations |- |z, | - | and | - |y to denote the norms on E, H and U respectively; if no confusion
arises, we simply write | - |. We use similar notation for the scalar products. We denote the dual
spaces of 2, H and U by Z*, H*, and U* respectively. We also denote by L(H, H) the space of
bounded linear operators from H to H, endowed with the operator norm. Moreover, we denote by
Lo(E, H) the space of Hilbert-Schmidt operators from E to H. Finally, a map f: H — = is said to
belong to the class G1(H, =) if it is continuous and Gateaux differentiable with directional derivative
V.f(x)hin (x,h) € H x H and we denote by B(A) the Borel o-algebra of any topological space A.

Given a complete probability space (2, F,P) together with a filtration (F3):>o (satisfying the
usual conditions of P-completeness and right-continuity) and an arbitrary real separable Hilbert
space V we define the following classes of processes for fixed 0 <¢ < T and p > 1:

o L7 (2 x [t,T]; V) denotes the set of (equivalence classes) of (F;)-predictable processes Y €
LP(Q x [t,T]; V) such that the following norm is finite:

T 1/p
v = (& [ mras)
t

o L%ZOC(Q x [0,400[; V') denotes the set of processes defined on R*, whose restriction to an
arbitrary time interval [0, 7] belongs to L (Q x [0,T]; V).

o LL(C([t,T];V)) denotes the set of (F;)-predictable processes Y on [t, T] with continuous
paths in V, such that the norm

IVl = (B sup [vi?)""".
s€[t,T]
is finite. The elements of LY, (Q; C([t, T]; V')) are identified up to indistinguishability.
o LB°(Q; 0([0, +00[; V)) denotes the set of processes defined on R*, whose restriction to an
arbitrary time interval [0, 77 belongs to L%, (Q; C([0,T]; V)).
We consider on the probability space (Q,F,P) two independent cylindrical Wiener processes W' =
(W0 with values in Z and W2 = (W2);>0 with values in H. By (F;);>0, we denote the natural
filtration of (W1, W?), augmented with the family N of P-null sets of F. The filtration (F;) satisfies
the usual conditions of right-continuity and P-completeness.

3. Forward equation. Given x € H and a uniformly bounded progressively measurable
process g with values in H, we consider the stochastic differential equation for ¢ > 0

(3.1)  dX7? = AX[P%t+ F(X]%)dt + QG(X]9)dW} + DAW? + g(t)dt,  X5° = z.

On the coefficients A, F'; G, Q, D we impose the following assumptions.
3
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(A.1) A: D(A) C H — H is a linear, possibly unbounded operator generating a Cy semigroup

{e“}izo.
(A.2) F: H— H is continuous and there exists Lp > 0 such that

‘F(l‘) — F($/)|H S LF|J? - JJ/‘H,

for all z,2' € H.
(A.3) G: H — L(E) is a bounded Lipschitz map. Moreover, for every x € H, G(z) is invertible.
Thus there exists three positive constants Lg, Mg and Mg-1 such that for all z,2" € H:

G@)lz <Me,  |G) -G lie <Lelr—a'ln, |G7H(2)|,g < Me-1
We notice that the above yields Lipschitzianity of G~!, namely :
|G (2) = G2 )|nE) < ME-iLglz—2'|n,

(A.4) @ is an Hilbert-Schmidt operator from E to H.
(A.5) D is a linear and bounded operator from H to H and there exist constants L > 0 and

v € [0, %[
(3.2) 4D, < L(sT7 A1), Vs>0.
PROPOSITION 3.1. Under (A.1 — —A.5), for any x € H and any g bounded and progressively
measurable process with values in H, there exists a unique (up to indistinguishability) process X*9 =

(X"9) >0 that belongs to L%IOC(Q; C([0,4o00[; H)) for all p > 1 and is a mild solution of (3.1), that
is it satisfies for every t>0, P-a.s.:

¢ ¢ ¢
X% = e+ / e(t_S)AF(Xf’Q) ds + / e(t_S)Ag(s) ds + / e(t_s)AQG(Xf’g) dw}
0 0 0

t
+ /O et=AD aw?.

Moreover there exists a positive constant kg such that
(3.3) E| X7 < kgr(l+|2?), vVt € 10,T] and x € H.

Our main result will be obtained under the following exponential stability in L' norm requirement.
We stress the fact that such assumption is much weaker in comparison with the uniform decay
holding when noise is addittive (see [19]).

(A.6) There exist positive constants kg, x and p, independent from g, such that

(3.4) sup B[ X | < g (1 + |2]);
£>0
(3.5) E|X;® — Xf/’g| < ke Mz —2');

for any x,2’ € H and for all ¢ > 0.
Below we show that hypothesis (A.6) (as a matter of fact the stronger condition obtained replacing
L' norm by L? norm) is verified under the usual joint dissipative condition (A.7) (see [5]). We have
preferred to keep the weaker, but less intrinsic, form (A.6) since it allows to cover a wider class of
examples, see for instance Example 7.1.
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(A7) - Joint dissipative conditions
A is dissipative i.e. < Az,z > < p|z|?, for all z € D(A), and for some p € R, moreover there
exists p > 0 such that for all z,2" € D(A):

(3.6) 2(A(z —a') + F(z) = F(a'),x — 2')u + ||Q[G(z) — G,z < —mle—2'Ih,

Notice that, by adding a suitable constant to F' and subtracting it from A we can always
assume that p above is strictly negative.
Indeed we have that following holds

PROPOSITION 3.2. Assume (A.1 — —A.5) and (A.7) then the following estimates hold for the
solution X™9 of equation (3.1):

(3.7) sup E| X9 < kg (1 + |2[?);
>0
(3.8) E|X;® — Xf/’g 2 <eMx—a|%
for any x,x’ € H and for all t > 0. In particular, hypothesis (A.6) is verified.

Proof.
The proof of these estimates follows rather standard arguments, see for instance [5] where
dissipative systems are widely treated. O
We end this section noticing that will be mainly interested in the special case where g = 0:

(3.9) dX; = AXdt + F(X;)dt + QG(X,)dW} + Ddw?,  X& = z,

and we will denote by X?® its solution through the whole paper.

4. Ergodic BSDEs . In this section we study the following equation:
(4.1)
T T T
VP =YF +/ [W(X7, Z2EG7H(XT),UY) — N ds —/ VAL —/ Ugdw?,  0<t<T < oo,
t t t
where, we recall, A is a real number and it is part of the unknowns, and the equation has to hold
for every t and every T, see for instance [19, section 4]. On the function ¢ : H x =* x H* — R we
assume:
(B.1) (z,u) = ¥(x,2z,u) is a concave function at every fixed x € H.
Moreover there exist L, L., L, > 0 such that
(4.2)
[Y(z, z,u)—(2, 2" )| < Ly|le—a' |+ L. |z—2" [+ Ly|Ju—v'|, z,2' € H, 2,2’ € =%, u,u’ € H*.

Moreover #(-,0.0) is bounded. We denote sup,, [¢(z, 0.0)| by M.
We associate to v its Legendre transformation (modified according to the fact that we are dealing
with concave functions):

(43) 1/’*(5&]?7(1): inf {—Zp—uq—i/}(x,z,u)}, xEHap€E7qu
z€E* ueH*

Clearly ¢* is concave w.r.t to (p, q).
We collect some other properties of 1) and ¢* we will use in the future:

5
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PROPOSITION 4.1. Under hypothesis (B.1) we have that

w(xvzau) = {_ZP—U(]—1/J*(9C,P»Q)}

inf
(p,q)€ED* ()

where D*(z) = {(p,q) : ¥"(2,p,q) # —oo} C{(p,q) €Ex H : |p| < L., |q| < L.}
Moreover D*(x) = D* does not depend on x € H and the following holds

(4.4) W (2,p,q) =" (@', p, Q)| < Lalw — 2’|, x,2€ H, (p,q) €D".

Finally we remark that the above implies that for everyx € H,z € Z*,u € H* :

sup {9(x,z,u) + zp +uq + " (z,p,q)} = 0.
(p,9)€D

Proof. Since ¢(z, -, -) is concave its double Legendre transform coincides with the function itself
and the first relation follows immediately (see [1]).
Then, by the definition of ¥*:

|¢*($7paQ)_¢*($l,p7Q)| S SupH |—Zp—uq—1/)(x,z,u)+Zp+uq—|—w(x',z,u)| SL$|$—.T/|,
z€E* ueH*
thus we deduce that D* doesn’t depend on = € H and (4.4) holds. O

As in [19] we introduce, for each & > 0, the infinite horizon equation:

T T T
(15) Yoo = v [ 200 (), Use) - aveelds - [ zzeawd - [ uzeaw?,
¢ t ¢
where 0 <t <7T < 0.
The next result was proved in [25, Theorem 2.1] in finite dimensions, the extension to the
infinite dimensional case is straightforward, see also [19, Lemma 4.2]. Notice that the random
function, (t, z,u) := ¥(X¢, G~1(X¢)z,u), inherits the following properties:

~

(4.6) 19(,0,0)] = |(X,0,0)| < My, t>0, P-as.

o~ ~

4.7 ot z,u) =Yt 2 u)| < LoMg-a|z — 2|+ Ly|lu—u'| t>0, 2,2/ €E* u,u/' € H* .

therefore it satisfies the assumptions in [19, Lemma 4.2].

THEOREM 4.1. Let us assume (A.1 — —A.5) and (B.1). Then for every o > 0 there exists a
unique solution (Y%, Z%« U%%) to the BSDE (4.5) such that Y% is a bounded continuous process,
7% € LB°(Q x [0, +00f; %) and U™* € L3°( x [0, +00f; H*).

Moreover
(4.8) [Y;"% < %, P-a.s., for all t > 0.
and
(4.9) E/Ooo le=@8 2|2 ds +E/OOO le= U ds < oc.

6
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We define
(4.10) v (x) = Yo"

The following is the main estimate of the paper.

PROPOSITION 4.2. Under (A.1 — —A.6) and (B.1) one has that for any a > 0:
@ @ / C / /
(4.11) [v*(z) —v*(2")| < =z — 2|, z,x" € H.
]

where C' depends on the constants in (A.1 — —A.5) and (B.1) but not on a (nor on p).

Proof. Since, instead of the pathwise decay estimate holding for | X7 — Xf/| in the additive noise
case (see [19, Theorem 3.2]), only the mean bound (3.5) is true here we cannot proceed as in [19,
Theorem 4.4]. Moreover, being the diffusion X, in general, degenerate, it is not possible to rely
on the smoothing properties of its Kolmogorov semigroup (see [21]). On the contrary, concavity
assumption (B.1) allows us to use control theoretic arguments.

First we notice that

t t
Yvoz,oc _ e—aty;m,a +/ e_asw(X;lj) Zg’aG_l(XSI),USI’a) ds _/
0

t
e~ ZP AW — / e~ UL dw?.
0 0

Thus we have, taking also into account (4.8) and (4.9), that
(4.12)

+o0 +oo +oo
Voo [ emer e (e uryds - [ ez awt - [ ez
0 0 0

Moreover being Y;"* deterministic, the uniqueness in law for the system formed by equations (3.9)
-(4.5) yields that it doesn’t depend on the specific independent Wiener processes.

We fix any stochastic setting (0, €, (F,), P, (th), (WtQ)) where ((th), (Wﬁ)) are independent
(f"t) Wiener processes with values in = and H respectively.

Given any (F;) progressively measurable process p := (ps, ;) with values in D* by (X©F) we
denote the unique mild solution of the forward equation:
(4.13)
AXPP = AXPPdt + F(X[P)dt + Dqidt + QG (X7 P )pedt + QG(XPP)dW}E + DAW?, X3P = .

Clearly (X7?) is also the unique mild solution of the forward equation:

(4.14) dX[P = AXPPdt+ F(X[P)dt+ QG(X]P)dW, P + DAWi*,  X§P = a.
where
. R t N . R t
(4.15) WP =W} +/ G U XTP)pyds, WP =W} +/ gs ds,
0 0

. , ~ 2, .

and we know that under a suitable probability PP the processes ((W; p), (W p)) are independent
Wiener processes with values in = and H respectively.
Let now (Y#P, Z#p [J%%P) be the solution to:

A A T A A A A

AL +/ [p(XEP, ZEoPGmH(X2P), [T5P) — qVEP] ds

t
7
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7T,Q, iLl.p TP T2

—/ ZTP qW —/ U; A
t t

where 0 <t < T < 0.
By previous considerations one has, recalling that {¢(z,2) + zp + uqg + ¥*(z,p)} < 0,Vx € H,z €
E* u € H* (p,q) € D*, that for every x € H

T, _ \T,0np
Yo=Y

:/ oS {w(f(f’p,Zg’a’PG_l(Xj’”),Uf’“’”) + ZA;c,a,va—l(j(;c,p)ps + Uf’a"’qs +¢*(X§vp,ps,qs)} ds
0
“+00 R . +oo R . e} N
—/ e ZTP iyt —/ e SULP g2 —/ PI(XIP ps,qs) ds
0 0 0
+o00 . . +o0 R R oo .
< / e—asZ;c,mp dWSI _ / e—asU;v,ocm dWSQ _ / w*(X;c7p7p57 QS) ds.
0 0 0
So:
(4.16) Yy < —E/ e Y (XIP, ps, qs) ds,
0

for arbitrary stochastic setting and arbitrary progressively measurable D* valued control p = (p, q).
Then we fix x € H and assume, for the moment, that Ve >0 there exists a stochastic setting

~ 2.,x

(o, 57 (Fp®), B, (Wor), (W, 7)),

and a couple of predictable processes p=* = (p=%,¢=*) with values in D* such that (with the
notations introduced above) the following holds P - a.s. for a.e. s > 0:

(4'17) 1/}()23’,)057Z;c,a,pg’mel(X;c,ps’”),Usz,a,pg’“) + Zg,a,ps’”Gfl(X‘f,ps’“)pz + U:,a,ps"”qi,z
T (XEPTT peT, g5 ) > —e.

Proceeding as before we get:

(4.18)
& _prm,a,pst
o0 y £, 2 E,T gl £,T ~ £,
= [ e [uee T Zzet (), O
0
FZPORT G KPP Y+ OO g (R )| ds
+m o E,T ol +m -~ £,T -~ o0 gl £,
_/0 efasZ‘f,a,p ’ dWsl,s,z _/0 efozsU;n,a,p ’ dWSQ,e,:v _/0 w*(st,p ’ 7p§,zyq§,m)ds
£ Hoo ot Hoeo e e e
2o S [T e iy - [ g iz - [Ty e g i) sy
Thus by (4.16) taking into account (4.18) and (4.4) we have:

oo
YEe e < / e B g (RIPT 2T q57) — o (RE poT, o) ds + e
0

8
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o0
_ AE T A e,z A I e, £
S/ e"CEP T IXPPT — XTP T | ds + —,
O a

we stress the fact that we keep the stochastic setting (Q5%, £5¢, (F5"), e, (W50, (Wtz’a’w)) and
control p=* corresponding to the initial datum x and just replace the initial state x with a different
one .

Noticing now that both (X**~*) and (X**"") satisfy (only the initial conditions differ):

dX, = AX,dt + F(X,)dt + DgE"dt + QG(X)pS“dt + QG(XPYdW,** + DAW ",
and taking into account (3.5) we can conclude that:
'« T, > —(a+4)s ’ 9 C ’ IS
Yo=Yt <L, e 28 —a'|ds+ — < —|x — 2|+ —.
0 o o
Interchanging the role of x with z’ one gets:

(4.19) ‘YO“"’O‘ —yge

C ;€
< —lz—2'|+ —.
W o

where the constant C' is independent of «, p and € and is able to conclude (4.11) being € > 0
arbitrary.

We are left with the construction, for any fixed x € H and € > 0 of a stochastic setting

A ~ ~ ~ ~ ~ 2.,x .
Qe Eon (FOm), Per (W)HS"), (W, ")) and control p=® for which (4.17) holds.

We start from an arbitrary stochastic setting: (,&, (F:),P, (W), (Wi?)). Let (X*) be the
corresponding mild solution of equation (3.1) and (Y*, Z%% U*%) the solution of (4.5). By a
measurable selection argument see [22, Theorem 4] we can find a couple of progressive measurable
process p=* = (p=%, ¢°%), (possibly depending on « as well), such that:

(XS, Z0GTHXD), UP) + 29 GTHXDpe™ + USar® + (X7, 037, 457) 2 —e.

Then it is enough to set:
. t A t
(4.20) Wit =Wl - / GTH XD ds, WP = WP — / ¢;" ds,
0 0

and choose Q5% = Q, £5% = £, (Ff'")) = (F;) and as P* the (unique) probability measure under
which (W), (W) are independent Wiener processes. The claim then follows selecting the
above control p©* and noticing that, by construction, (X**™") = (X*). O

Following [19] we can find a function ¥ and a number A such that:

(4.21) [v¥™ (z) — v (0)] — v(x), Vx € H,

(4.22) amv®™(0) — A.

where {am, }men s a suitable subsequence constructed using a diagonal method.
We can then proceed as in [19] to deduce from above the existence of a solution to (4.1) and the
uniqueness of A.
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THEOREM 4.2. Assume (A.1) — (A.6) and (B.1), let A the number defined in (4.22) and set
Y = 0(X¥), where v is defined in (4.21). Then there exists Z* in L%ZOC(Q x [0, +00[; Z*) and U®
in L%loc(ﬂ x [0, +ool; H*) such that (Y, Z%,U%, \) solves equation (4.1), P -a.s. for all0 <t <T.

Moreover suppose that another quadruple (Y',Z' U’ \) where Y' is a progressively measurable
continuous process verifying |Y{| < c(1 + |X7|), Z' € L%lOC(Q x [0,+c[;E*) , U € L?,’loc(Q x
[0,400[; H*) and X € R, satisfies (4.1). Then N = A.

Finally there exists a measurable function ¢ : H — Z* x H* such that (ZF,UF) = ((XF).
Proof.

Once (4.11), (4.21) and (4.22) are obtained, the proof as far the first two statements is concerned
follows exactly as in [19, Theorem 4.4].

To get the existence of a function ¢, we proceed in the following way. For arbitrary fixed
0<t<Tlet (Y=tT ZztT [J=tT) be the solution to:

dXb" = AXDds + F(XP7)ds + QG(XE™)dW{ + DdWZ,

Xi® = a,

—dYEET = (X2t Z2t T UBt T ds — Z28T dW) — URST dWE — Nds,
Vit = 5(X50).

(4.23)

Then we clearly have that (Y, Z%, U?), restricted on [0, T, coincide with (Y*0.T Z2.0.T {y=.0.T) for
all T > 0. By [8, Prop. 3.2] we know that there exists a measurable function ¢7 : [0,7] x H — E* x
H*, such that (2241 UztT) = (T(s, X%, s € [t,T]. Moreover, see also [8, Remark 3.3], the map
[0,7] > (1,2) — ¢T(r,) is characterized in terms of the laws of (fTH_% zr= T gs, f:+% Ur=Tds),
n e N.

The uniqueness in law of the solutions to the system (4.23) together with the fact that its
coefficients are time autonomous, we get:

S 1 1
"t T " 50,2, T—T " sw
Z7% 0 ds ~ Z) ds ~ Z7 ds,
T 0 0
1

1 1
Ttw _ T [ wo_
Ur** ds ~ U %" " Tds ~ U? ds.
T 0 0

So far we've proved that ¢7(7,-) does not depend neither from T nor from 7, thus we can define
¢T(r,-) =: {(-) and observe that (Z7,Uf) = (Z7*7,07%") = ¢ (t, X[°) = {(XF). O

REMARK 4.1. Concerning the uniqueness of the Markovian solution to the Ergodic BSDE (4.1)
and consequently of the mild solution to the ergodic HJIB equation (5.1) only partial results are
available even in the additive case (beside the obuvious consideration that adding a constants to 'Y
and consequently to v transforms solutions into solutions). In particular an argument based on
recurrence of the solution X to (1.1) is developed in [12] (see also [19]) to obtain a control theoretic
representation of v and consequently its uniqueness up to an additive constant. Such arguments seem
inapplicable in the present context due to possible degeneracy of the noise.

and

5. Ergodic Hamilton-Jacobi-Bellman. We wish now to prove that function v satisfies, in
a suitable way, the following Hamilton Jacobi Bellman elliptic partial differential equation:

(5.1) %tr[QG(m)G*(x)QVQTJ(x)] + %tr[DD*(a:)QV%(J:)] + (Az + F(2), Vi(x)) =
10
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—Y(x,Vi(x)Q,Vi(x)D) + A

Since the prof of differentiability of © requires quantitative conditions that we were able to avoid in
Theorem 4.2 we firstly formulate the PDE in a weaker sense involving the Generalized directional
gradient introduced in [11]. The following is the version of Theorem 3.1 in [11] adapted to the
present autonomous and Lipschitz case. The proof is identical to the one in [11] and is omitted.

THEOREM 5.1. Given any Lipschitz function v on H there exists a couple of bounded and Borel
measurable functions ¢* : H — Z*, (2 : H — H* such that denoting, for all € = (£1,£?) € Z x H,
by W = (WL, W2),£) the real Brownian Motion obtained projecting (W2, W2) along direction €,
then we have the following relation, for any x € H and any p > 0

p P
(0(X7), WE) 0, = / CHXPE dt + / C(XP)Edr, P as.

DEFINITION 5.1. The family of functions ¢ = (¢1,(?) satisfying the above will be called the
generalized (QG, D) directional gradients of u (denoted by VOGP ).

REMARK 5.1. Concerning uniqueness we can only say that if ¢ and é both belong to V@G.D
then (1(X¥) = CH(XF) and (3(XF) = (*(X¥), P-a.s. for almost every t > 0. See [11]. It is
also clear that, by Ito rule, if u is regular enough, including twice continuously differentiable, then
(Vu(-)QG(-), Vu(-)D) is in VRGP,

We are therefore led to the following definition of generalized solution to HIB equation. see [11,

Section 5]:

DEFINITION 5.2. A pair (v, ) is a mild solution in the sense of generalized directional gradient
of the HJB equation (5.1) if v: H — R is Lipschitz and, for every T > 0 and for all0 <t <T and
x € H it holds

T
(5-2) v(x) = Pri[v](z) +/t (Po—t[to(-, ¢t ()G G ()](x) = ) ds.

where ¢ = (', ¢?) is an arbitrary element of the generalized gradient V(@SP) and (P,);>o is the
transition semigroup corresponding to the diffusion X*, see equation (3.9), that is:

(5.3) Pé](x) := Ep(X}), ¢ : H — R measurable and bounded.

We notice that function v defined in (4.21) is Lipschitz. Moreover recalling, seeTheorem 4.2, that
(Y72, Z8,UF) = (0(XF), CH(XF), C?(XF)) we have that then equation (4.1) is satisfied, in particular,
for t = 0 and all T > 0 we immediately deduce that ¢ = (¢!, ¢?) is in V(QREP), Finally recalling
once more equation (4.1) now interpreted as a finite horizon BSDE:

—dY = (X7, Z3GTHXD), U) ds — Nds — Z3 AW, = U7 dW?,  Yf = o(XF)
we can conclude the following, proceeding exactly as in [11] Theorem 5.1

THEOREM 5.2. Assume (A.1 — —A.6), (B.1) then the couple (0,\), characterized in Theorem
4.2, is a mild solution, in the sense of the generalized directional gradient of equation (5.1).

Whenever v is differentiable then we can switch to the more classical notion of mild solution to
equation (5.1) (7, A), see [20, Section 6]:
11
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DEFINITION 5.3. A pair (v, \) is a mild solution to the HJB equation (5.1) if v € G1(H,R) with
bounded derivative and, for all 0 <t < T, x € H it holds:

(5.4) v(x) = Pr[vl(z) +/t (Pait[9(-, Vo()Q, Vu(-) D)](z) — A) ds.

We have the following result.

THEOREM 5.3. Assume (A.1 — —A.6), (B.1) and that v is of class G'. Then (v,)), defined in
(4.21) 4s a mild solution of the HJIB equation (5.1). On the other hand if (v', ') is a mild solution
of (5.1) then setting Y;* := v'(X¥), ZF = VUV (XF)QG(XY¥) and UF = V' (XF)D, we obtain that
(Y*,Z*, U, ) is a solution to equation (4.1).

Moreover if (v',N') is another solution with v' Gateaux differentiable with linear growth then
A= M.

Proof. The existence part follows from [10, Theorem 6.2], while the uniqueness of X in the class of
solutions that are Gateaux differentiable with linear growth follows as [20, Theorem 4.6]. O

REMARK 5.2. The differentiability of function v is proved in Theorem 6.1 under quantitative
assumptions on the coefficients. Although the argument essentially follows the classical paths of L?
estimates on infinite horizon see, for instance, [6] it is not completely standard since exploits in
several points an apriori L>° estimate on Z and U descending from Proposition J.2. In particular
the uniform bounds for Z is essential in getting (A.9).

We conclude this section proving the following asymptotic expansion result for parabolic solu-
tions to the HJB equation.

PROPOSITION 5.1. Let v(-,-) be a mild solution of the parabolic HIB equation:

Opv(t, x) :%[tr[QG(x)G*(x)QVQU(t, z)] + tr{DD*(2)QV?v(t, x)) + (Ax + F(x), Vo(t, z))
(55) + (x, Vot 2)Q, Vo(t, z) D),
v(0,x) =¢(x).

where ¢ : H — R is function of class G* with bounded derivative and by mild solution of equation
5.5 we mean a function v : RY x H — R of class G%' (see [10]) verifying for allt >0, x € H:

(5.6) v(t, z) =Pt[¢](w)+/0 P s[y(-, Vo (1)@, Vu(-) D)(x) ds.
Then
(5.7) Jim. ”(:gf”) =\

Proof.We fix T" > 0 and consider the following finite horizon BSDE

(5.8) { —dY = (X3, G (XE) 28w UL*) ds — 20+ AW} — UD* dW? — Nds

v A T
Y= ¢(XT)~
By standard results on finite horizon BSDEs and mild solution of parabolic Hamilton-Jacobi-Bellman

equations (see [10]) we have that Y.['* = v(T — s, X%) — X\(T — s), s € [0, T].
12
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Set YtT’x =YF - YtT’Z, for all ¢ € [0,T7], then YT'o verifies:
(5.9) .
=AY = [(X7, GTHXD)ZE,U7) — (X!, GHXD) 20" UL ) ds — (28 = Z1") dW
— \ds

—dYT" = 4N (ZF — ZT%) ds + 43(0F — U ds — (ZF — Z1) dW}!
(5.10) —(U2 —UT=)dW2 — \ds
(X%) — ¢(XF).

where v!' and 42 are the typical uniformly bounded processes that arise in the linearization trick.
Hence, by a Girsanov argument, we get that

(5.11) vhe =107 (0(XE)),

where the probability measure P" 7" is the one under which W]lﬁ? = (W} —fot yLds, W2 — fot 72 ds)
is a cylindrical Wiener process in E x H in [0,7T]. Therefore by (3.4) and having v Lipschitz, we get
that

(5.12) Yo" = B0 (0(X8) — G(X2)) < Ky np (1 + 2]),

for some constant k., ~, independent of 7. Thus, noticing that ?OT“ =0(x) —v(T,z) + AT we get
that:

(5.13) lim 2

d

REMARK 5.3. A more precise description of the asymptotic behaviour of w is obtained in

[15] when the noise is non degenerate by techniques involving Girsanov change of probability and
coupling estimates. Due to the possible non-invertibility of Q we do not know whether similar results
can be true in the present framework. We do think that, in any case, the proof of such results would
require different arguments.

6. Differentiability with respect to initial data. In this section we wish to present suffi-
cient conditions under which the function o defined in the section above is differentiable.
Throughout the section we assume the following:
(C.1) Fis of class G1(H, H) and G is of class G*(H, L(Z, H))
We start from a straightforward result in the non-degenerate case.

PROPOSITION 6.1. Beside (A.1 — —A.6), (B.1) and (C.1) assume that the operator Q :=
(Q,D) : = x H — H admits a right inverse Q1 then v belongs to class G*(H).

Proof. We fix T' > 0 and notice that (Y, Z,U,\) satisfies (see (4.1) and the definition of Y; in
Theorem 4.2):

T T T
Yoo+ [ 002500 - Nds— [ zzawi- [Corawz 0<i<T<c,
t t t
13
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where, we recall J(x,z,u) = (x,2G71(z),u) is lipschitz with respect to z and u. Moreover the
forward equation (3.9) solved by X® can be rewritten as

dX? = AXPdt+ F(XP)dt + Q(X)dWs,  X§ = .

1

where W, := <Wt ) is a = x H valued Wiener process and Q(z) = (QG(x), D).

W7
Under the present assumptions Q(m) turns out to be invertible with bounded right inverse:

Q= (7 e

It is then straight forward to verify that all the assumptions in [9, Theorem 3.10] are satisfied and
consequently v (that coincides with the map x — Y;) is in class G! O

When the noise in the diffusion can be degenerate the situation is less simple and we will need
quantitative conditions on the coefficients (see, for instance, [24]).
We will now work under the joint dissipative condition (A.7) that, taking into account differentia-
bility of F' and G becomes:

(6.1) 2(Ay + Vo F(2)y, )i + |QVG(@)ylT, = m < —plylir, Yy € D(A), Vo € H.

Under the above assumptions the following well known differentiability result for the forward
equation (3.1) holds:

LEMMA 6.1. Under (A.1 — —A.5), (A.7) and (C.1) the map x — X* is Gateaux differentiable.
Moreover, for every h € H, the directional derivative process V,X"h, solves, P— a.s., the equation

(6.2)

t t
V. XPh = e“‘h+/ e(t_s)AVwF(Xf)Vzthds—i—/ QY G(XE)V, XEhdW,, >0,
0 0

Moreover
(6.3) E|V. X7 h|? < e " |n|?.

Proof. Our hypotheses imply the Hypotheses 3.1 of [10], therefore we can apply [10, Prop 3.3]. The
estimate (6.3) follows applying the It6 formula to |V, Xh|? and arguing as in Proposition 3.1. O

We will need the following additional assumption to state the last result
(C.2) G and G are of class G'(H, L(Z)) and v is of class G (H x =*,R)
We eventually have:

THEOREM 6.1. Assume that (A.1 — —A.5), (A.7) and (B.1) hold with p > 2(L2MZ_, + L3),
moreover we assume (C.1) and (C.2). Then the function v defined in (4.21) is of class G'(H,R).

Proof.The proof is detailed in the Appendix. O

7. Application to optimal control. Let I' be a separable metric space, an admissible control
v is any JF; - progressively measurable I'-valued process. The cost corresponding to a given control
is defined as follows. Let Ry : I' = Z, Ry : I' =& H and L : H x I' — R measurable functions such
that, for some constant ¢ > 0, for all z,2’ € H and v € I":
14
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(E.1)  [Ri()[<e, [Re()|<¢ Lz y)<e |[L(z,y) = L(a',7)] < oo — 2.

Let for every € H be X* the solution to (3.9), then for every T' > 0 and every control v we
consider the Girsanov density:

1

T T T
P = exp </0 G X Ry (vs)dW! +/OR2(vs)de — 5/0 IGTHXD)Ri(vs) 2 + |Ra(vs) ] dé’)

and we introduce the following ergodic cost corresponding to = and -y:
1 T
I(o.) = timsup 7 BT [ LX) ds,
t—o00 0

where E7'7T is the expectation with respect to P¥ := prP. Notice that with respect to P7 the
processes

t t
WhY =~ /G*l(Xg)Rl(%)ds +dWl, WP .= —/Rg(’ys)ds +dW2,
0 0

are independent cylindrical Wiener processes and with respect to them X% verifies:

{ dXF = AXZdt + F(XE)dt + QR (vs)ds + DRy(7s)ds + QG(XE) AW + DAW2Y, ¢ >0,
X§ =z,

and this justifies the above (weak) formulation of the control problem.
We introduce the usual Hamiltonian:

(7.1) P(z,z,u) = ig%{L(x,’y)—|—zR1(’y)—|—uR2(’y)}, re€H,ze=Z"ue H",
e

that by construction is a concave function and, under (E.1), fullfils assumption (B.1). The forward
backward system associated to this problem, is the following:

AX? = AXPdt+ F(X¥)dt + QG(XF)dAW} + DAW, t>0,
(7.2) Xg =z,
—dY{ = [p(XF, ZFGH(XY), UP) = N dt — ZF dW — U} dW?.

By Theorem 4.2 under (A.1 — —A.6) and (E.1) for every x € H there exists a solution:

(73) (Yz,ZIaUxaA) = (@(Xm)vél(Xm)a€2(Xx)aA)a

where Y is a progressive measurable continuous process, Z € L%IOC(Q x [0, +00[;E%), U € L%ZOC(Q X
[0, +00[; H*), A € R, ¥ is Lipschitz and (;, (> are measurable.

Once we have solved the above ergodic BSDE the proof of the following result containing the
synthesis of the optimal control for the ergodic cost is identical to the one of [19, Theorem 7.1].

THEOREM 7.1. Assume (A.1 — —A.6) and (E.1). Then the following holds:
(i) For arbitrary control v we have J(x,v) > A, and equality holds if and only if the following
holds P- a.s. for a.e. t > 0:

L(XF, ) + QX )GTHXT) Ru(e) + G(XT)Ra(m) = (X7, Q(XT)GTHXY), G(XT)).
15
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(i) If the infimum is attained in (7.1) and p : Z* x H* — T is any measurable function realizing
the minimum (that always exists by Filippov selection theorem, see [22]) then the control
A = p(XF, L (XF), G(XF)) is optimal, that is J(x,7) = \.

(iii) U admits a generalized directional gradient and (0, \) is the mild solution of the equation
(5.1), in the sense of definition (5.2) and (y,y € V(QGD),

(iv) Finally if v is in class G' then (v,)) is a mild solution of equation (5.1), in the sense of
definition (5.3) and {, = VOQG and {; = ViD .

7.1. Examples.

ExaMPLE 7.1. We consider an ergodic control problem for a stochastic heat equation controlled
through the boundary

dyx(t,€) = 522 (t, &) dt + d(E)V(t, €) dt, t>0, £€(0,m),
x(¢,0) = y(t), x(t,m) =0,
(74) *T’(Ov é.) = $0(§)7 f S (07 ﬂ-)
dy(t) = by(t)) dt + o (y(t))p(r(t))dt + o (y(t)) dBy, >0,
y(0) =z € R.

where W is the space-time white noise on [0, +00) x [0, 7] and B is a Brownian motion. An admissible
control v is a predictable process v : Q x [0, +00) — R. The cost functional is

o 1 T T
(7.5) J(x0,7) = liminf —E/O /0 (x(t,€),~v(t)) d dt.

T—+oo T

We assume that
1. b: R — R is a measurable function such that

b(y) — b(y")| < Lyly — v/l

for a suitable positive constant Ly, for every y,y € R.
2. 0 : R — R is a measurable and bounded function, such that

lo(y) — o ()| < Loly —yl,
for suitable positive constants L, and there exists a suitable positive ¢ such that:
lo(y))| = 6> 0,

for every y € R.
3. there exists p > 0 such that for all 3,3’ € R:

(7.6) 20b(y) —b(y),y — ) +lo(y) —oW)I? < —ply -y,

4. d:[0,7] = R, p: R — R are bounded and measurable functions.
5. ¢:R xR — R is a measurable and bounded function such that

M(ZE,’}/) - e(xlafy)‘ < L|CE - IL’/|,

for a suitable positive constant L, for every z,x’,v € R.
16
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Under these hypotheses, see [18], the above equation can be reformulated in an infinite dimen-
sional space as:

di Xy = AX, dt — Avy(t)dt + DAW; t>0, £€0,n],
(7.7) Xo = 2o(), ¢€(0,m)

dy(t) = b(y(t)) dt + o(y(t))p(u(t))dt + o(y(t)) dB(t), t=0,

y(0) = yo € R.

where X; = z(-) is in L?(0,7), W is a cylindrical Wiener process in L?(0,7), D is the bounded
operator in L?(0, ) corresponding to multiplication by a bounded function d, A is the realisation
of the Laplace operator with Dirichlet boundary conditions in L?(0,7), that is (denoting by D(A)
the domain of the operator)

D) = B0, MO, Af= 5T vieD()
Finally v(§) = 1 — £, € € [0, 7] is the solution to
) =0, g€ (0,m),
¢
(7:8) { t(0) =1, t(m) = 0.

It is well known that A generates an analytic semigroup of contractions (of negative type —1)
moreover, for any § > 0, v € D((—A)Y/279) (where (—A)® denotes the fractional power). Standard
results on analytic semigroups then yield:

(7.9) [(—A)e | L2(0m < e G >0,

We are now in a position to rephrase the problem according to our general framework. Indeed
setting H = L?(0,7) x R, £ =R and X; = (X;,y(t)) equation (7.7) becomes

(7.10) { dXF = AXFdt + F(XE)dt + QG(XF)p(ye)dt + QG(XF)dW}E + DAW?, t >0,
’ X§ = =

where:

1. A= <_0A _§R> where R: R — D((—A)2 %), is defined as Ry = t(-)y, y € R

It is easy to verify that A generates a Cy-semigroup in H.

2. F: H— H, is defined as: F(X> = ( 0 ),
y b(y)

Q@ :Z — H is defined as: Qy = <2),
G :E — E, is defined as: G(y) =o(y)
D : H — H is defined as: D (j) = (DOX> .
3. Wi(t) = B(t) and (W?) is a cylindrical Wiener process in H.
Hypotheses (A.1 — —A.5) are immediately verified, we have to check (A.6). We come back to
the formulation (7.7) and start with the second component y (that only depends on yg). By (7.6),
Proposition 3.2 gives:

(7.11) Ely¥ (t) — y¥0 (£)[* < e™2#yo — yp .
17
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518 Coming now to the first component we have that it fullfills in L2(0, 7) the following mild formulation:

¢ ¢
519 XFoYo = ety — / [Ae(t_smt} y¥o(s)ds —|—/ =92 D dw,.
520 0 0
521  Thus considering two different initial data
ro t /
522 xFove _ govo — ot (g — af) — / A=A (¢y¥0 (5) — ty¥o(s)) ds.
523 0
524 By (7.9) and (7.11) choosing po € (0,1 A p)
’ ’ t 1
525 E|X oY — X 0% < e txg — xp| + / e (1 — 5) T e |y — 4l | ds
0
t
526 < e twg — zh| + e Hot [/ e=(I=mo)(t=9) (4 — )= GH0) gg ! |yo — yh.
527 0
528 That implies that (3.5) holds. In the same way one gets the proof of (3.4).
529 We notice that it is not at all obvious that the stronger versions (3.7), (3.8) holds in this case.
530 As far as the control functional is concerned it is enough to set L(X,v) = [ (&, X(£),7)d¢
531 and to verify in a straightforward way that (E.1) holds (in this case Ry = p, Ro =0, T = R).
532 Thus all the hypotheses of Theorem 7.1 hold and points (i) and (ii) in its thesis give the optimal
533 ergodic cost and strategy in terms of the solution to the ergodic BSDE in (7.2). Moreover by point
534 (iii) of Theorem 7.1 we have that (v, ) is the mild solution of the equation (5.1), in the sense
535 of definition (5.2) and the optimal feedback law can be characterized in terms of the generalized
536  directional gradient of v.
537 EXAMPLE 7.2. We consider an ergodic control problem for a stochastic heat equation with

538  Dirichlet boundary conditions with nonlinearity controlled through a one dimensional process y.

dyx(t, &) = 8%21‘
x(t,0) =z(t,1) =0,

530 (7.12) 2(0,€) = 0(£), §€(0,1)
dy( ) dt + o (y(t))y(t)dt + o (y(t)) dBy, t>0,

540 where W is the space-time white noise on [0, +00) X [0, 1] and B is a Brownian motion. An admissible
541 control v is a predictable process v : © x [0, +00) — [—1,1]. The cost functional is

1 T pl
o (73) J(z0,7) = liminf ~ E / [ / (Ut €), y(£))de ++2(1)) dt.

T—+oo T /g 0
543 We assume:
544 1. f:R? — R is a Lipschitz map. We fix two constants Ls >0 and py € R such that
75,7}(—} |f($,y)—f($l,y)| SLf<|$_xl|—i_|y_y/|)7 <f(x,y)—f(:v7y'),x—x/> S —/if|$—$/|2,
547 for every z, 2’ y,y € R.
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2. b: R — R is Lipschitz. We fix a constant p; € R such that:
(bly) —b)y—y) < —mly -y’ Vyy' eR
3. 0:R? = R is a Lipschitz and bounded. We fix L, such that
lo(y) —oW) < Loly—y'l,  Vy.y' €R,
We also assume that there exists a suitable positive § such that:
o)l >8>0,  VyeR.

4. d:[0,1] — R is a bounded and measurable function.
5. £:R? — R is bounded and Lipschitz
As in the previous example the above equation can be reformulated in an infinite dimensional
space as:

di Xy = AX, dt + f(X,,y(t)dt + DAW, t>0, £€o,1],
Xo = zo(+), §€10,1]

dy(t) = b(y(t)) dt + o(y(t))y(t)dt + o(y(t)) dB(t), t =0,

y(0) =yo € R.

where X; := z(-) is in L?(0,1), W is a cylindrical Wiener process in L?(0,1), A is the realisation of
the Laplace operator with Dirichlet boundary conditions in L?(0, 1), D is the bounded operator in
L?(0,1) corresponding to multiplication by a bounded function d.

Finally setting H = L?(0,1) xR, 2 =R, I' = [-1,1] and X; = (X}, y(t)) equation (7.4) becomes

(7.14) { dXf = AXFdt + F(XF)dt + QG(XE)vdt + QG(XF)dWE + DAW?, >0,
' X§ = z.

and the cost takes our general form:

T(20,7) = liminf ~E /0 LOX (), 7(1)) dt.

T—+oo T
where
1. A= <0A 8) generates a Cp-semigroup in H. We also have that
(AX, X) i = (AX, X) 120,1) < —pal X|720.1y5

for some pa > 0.

2. F: H— H, is defined as: (j) ( )7
Q@ :Z — H is defined as: Qy = ( )
G : 2 — E, is defined as: G(y) =
D : H — H is defined as: D (y) (DOX) .

3. Wi(t) = B(t) and (W?) is a cylindrical Wiener process in H.
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1
4. L:HxT =R, L(X,w)z/o X (&), y)d€ + [

We also notice that in this case the Hamiltonian defined as in (7.1) becomes:

(7.15) W <(X> z> - 724—2[[_272](2) b (1= DT () + Ale(X(g),y)dg.

Y

We also assume that there exists i > 0 such that

— — ir
(7.16) ( ha =Ry 2 )gﬁfﬂp.

5Ly —pp+ 35Lo

Hypotheses (A.1 — —A.5) are immediately verified. Moreover relation (7.16) ensures that (A.7)
holds as well. Finally (E.1) is straight forward (in this case Ry = id, Ry = 0). Thus the hypotheses
of Theorem 7.1 hold and points (i), (ii) and (iii) in its thesis give the optimal ergodic cost, the
strategy in terms of the solution to the ergodic BSDE in (7.2) and we have that (7, A) is the mild
solution of the equation (5.1), in the sense of definition (5.2) and the optimal feedback law can be
characterized in terms of the generalized directional gradient of v.

We finally wish to apply the differentiability result in Theorem 6.1 to this specific example. We
notice that by (7.15) the Hamiltonian v is concave and differentiable with respect to z with V. ¢ < 1.
Thus (B.1) holds and we can choose L, = 1 in (4.2). If we assume that f b o and £ are of class
C' in all their variables then (C.1) and (C.2) hold, moreover if we impose that i > 252 (here,
comparing with Theorem 6.1, L, = 0, Mg-1 = 6~ ') then all the assumptions of Theorem 6.1 are
verified and we can conclude that function v in Theorem 7.1 is differentiable. Consequently point
(iv) in Theorem 7.1 as well applies here and we obtain that (o, A) is a mild solution of equation (5.1),
in the sense of definition (5.3), and that the optimal feedback law can be characterized in terms of
the gradient of v.

Appendix A. Proof of Theorem 6.1.

We will need to use some results from [23, Theorem 5.21 and Section 5.6]. The first concerns
finite horizon BSDEs and the estimate of their solution, while the second concerns the infinite horizon
case. We restate them in our setting as follows:

LEMMA A.1. Let us consider the following equation:
(A1) —dY; = (¢(t, Z,Uy) dt — aYy) dt — Zy AW} — Uy dW?, Yr =1, te[0,T], a>0.

assume that:
Lo |o(t, z,u) — ¢(t, 2" u')| < £(t)(|z — 2'12 + |u — '|?)V/2, V2,2 € B u,u’ € H*, P — a.s. for
some £ € L?([0,T]);

t
2. for v := / (*(s)ds, one has
0

2

T
(A.2) E (e*772°T|p[?) < oo, E (/0 e’ "% ¢(s,0,0)] ds) < 00.

Then there exists a unique solution (Y, Z,U) € L%(Q;C([0,T);R)) x L3 (2 x [0, T];E*) x LAH(Q x
[0,T]; H*) and it verifies for all 0 <t <T':

T T
E‘Ft( sup 62(V57as)|Y;|2)+E]:t (/ 62(usfas)|ZS|2 dS) _’_E]-'t </ 62(V57as)|Us|2 d8> <

s€t,T) t ¢
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631
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633
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2
T
(A.3) E7 (e 72T |p|?) + E7 </ eV=7%%|4(s,0,0)| ds) , P—-as., tel0,T)].
t

LEMMA A.2. Let us consider the following equation for a > 0:
(A.4) —dY; = (¢(t, Z;, Up) dt — aYy) dt — Zy dW} — Uy dWE, t>0, .

Assume that:
L |o(t, z,u) — ¢(t, 2", u')| < £(t)(|z — 2']2 + |u — '|?)V/2, V2,2 € E* u,u’ € H*, P — a.s. for
some £ € LE ([0, +00[);

t
2. for v := / (*(s) ds, one has
0

(A.5) E </OOO evs

Then there exists a unique triple of processes (Y,Z,U) with Y € L%ZOC(Q;C([O, +oo[;R)), Z €
L3°(Q x [0, +00[; E%), U € L3"°(Q x [0, +00[; H*), such that

2
@(s,0,0)] ds) < 00.

(A.6) E( sup e**|Y;]?) < 400, VT >0, lim E(e*7|Yr[?) = 0.
te[0,T) T—o0

Moreover
(A7) E*(supe®=|Y,|?) + B </ e?s(
s>t t

for some positive constant C.

[e'e) 2
zs|2+|Us|2>ds) < CEF (/ ¢<s,o,0>|ds) ,
t

Proof of Theorem 6.1. The proof is split into two parts. The first deals with approximating
functions v* defined in (4.10)

Part I - Differentiability of v
We first have to come back to the elliptic approximations:

T T T
(A8) Yoo =y [ s 2006 o), Upe) —avields [ zpeawl- [ ozeaw?,
t t t
and for those equations we prove that:

PrOPOSITION A.1. Under the same assumptions of Theorem 6.1 we have that, for each a > 0,
the map © — Y;" belongs to G'(H,R).

Proof. We fix n € N and introduce the following finite horizon approximations where 0 <t < n:
Y = / [W(XZ,ZD"GHXE), UP™") — aY P ds — / ZDOm AW — / Upemdw?.
t t t

For such equations [16, Prop. 3.2] holds true, moreover we have from [10, Propositions 5.6 and 5.7]
that z — Y™ := v®"(z) belongs to G1(H,R) and Z;*" = V,v*"(X?)G(X¥) and US*" =
V0" (X)D.

Hence, arguing as in Proposition 4.2, we deduce that |Z;"""| < |V, 0*"™(X}?)G(X])| < C/u and

a,r,n C’ . .
|U" < | Vau*™(XF)D| < —, with C independent of n and a.
U
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Moreover, see [10, Prop 5.2], the map z — (Y;"*", Z;>*", U;”™") is Gateaux differentiable and the
equation for the derivative in the direction h € H, |h| = 1, is the following:

Vth””’“’"h:/ [0 (5, Ve Z2*"h, WV ,UD*"h) — aV, Y% R ds—/ Vo ZZmh dW )
t t
—/ V. US"hdW?2, 0<t<n.
t

where

OO (s,2,u) = Varh(XE, 200" GTHXE), UV XEh 4+ Vup (XE, 220G (XE), UD* ™ Yuh
+ Vop(XT, 200G HXD), UP ™) [ 20"V G (XT) Ve XTh 4+ 2 hG~H(XT)).

Notice that ¢™“(t, z,u) is affine in z and u and :
@ (s, 2,u) — M (5,0,0)| < Lyfu|+LoMg-1|2| < (L2ME—1+L2)Y2(|2* +|ul?)'/2, P—a.s.

where here and in the following the constant C' may change from line to line but always independently
from n, ¢ and from «.

We can apply Lemma A.1 with vy = (L2M2_, + L2)s =: Ks, indeed for ¢ =
have, recalling also that U¥**"™ and Z¥“" are bounded uniformly in s, o and n

%(:u - 2K)7 we

n 2 n
(A.9) E U |¢h’°""(s,0,0)|e(_°‘+K)5dt] < 9/ ee720+2K)sp 17 XTh 2 dt < ¢
0 € Jo p—2K

Therefore the following estimate holds, arguing as before in (A.9), for all 0 <t < n:

(A10) E sup e2otfs|y yzenp2 L g / 2ot s |7, z2en 2 + |V, U h)?] dt
t

s€(t,n]
Ce(—2o¢—%u+K)t

, t<s<n.
uw—2K

n 2
<CE |:/ e(—a+K)s|¢h,a,n(87070)| d8:| <
t
In particular, we have for all t > 0:
(A11) E( 2KV, ) < 0 at

From estimate (A.10) we deduce that (V,Y**"h, V,Z%*"h V,U"*"h) weakly converges in the
Hilbert space L2(Q x (0,T); R x Z* x H*) to some (R®®h V@b pfz.ah) for every T > 0. From
(A.11) we also have that V,Y;"*"h converge in R to &%k,

We define for every t > 0

t t t
Ratv,oc,h _ é-w,OéJ'L +/ [¢h,o¢(87 V'Sw,ogh,MSz,a,h) o aRi,a,h] ds _/ V'sw,aﬁdWSl _/ Mg7a’de3.
0 0 0
Compare the above with the forward equation fulfilled by (V,Y®%"h V,Z%%"h V, U*™h),
namely:

t
vm}/tz,a,nh :szz)z’a’nh + / [¢h,a,n(s, VIZSaz,a,n’ vasw,a,n) . avzy'sz,a,nh] ds
0
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695

t i
—/ VIZg’a’"deQ—/ V. UZThdW2, P —a.s.
0 0

Since every term in the R.H.S., passing to a subsequence if necessary, weakly converges in
L2(Q x (0,T);R), see also [16, Theo. 3.1], we have that R**" = RF*" P—as. for ae. t > 0.
Thus the triplet processes (R%" V&:ah M.l verifies for all ¢ > 0, P-a.s.:

t t t
Rf’mh _ Rg,ouh _|_/0 [qsh,a(s,‘/sm,a,h’M::,a,h) _aR;c,a,h:| ds _/0 Vsz,a,h dWél _/0 Msz,oz,h de

where
¢ (s, 2,u) = Vb (XTI, Z0GTHXD), US )WV XTh + Vo (XT, 20 GHXT), UD Juh
+ Vop(XT, ZDGHXD), UP) 20V G (XE) Ve XEh 4+ 2 hG™H(XT)).
Moreover, thanks to (A.10) and (A.11) we have that

(A.12) E sup e*|RTM2 < 400 and EeX|RTOM2 < O elmrt2K)s,
5€[0,T]

therefore, (R’”?"“h, yzah ppeashy s the unique solution of equation:
(A.13) dsR, = [¢"(s, Vs, M) — aR,|ds — VodW} — M, dW?2,
in the class of processes with the regularity imposed in Lemma A.2 veryfying:

(A.14) E sup |[RP*"? < 400 and lim BT |RE*M?2 =, VT > 0.
te[0,7T] T—+o00

We then closely follow the proof of [16, Prop 3.2], indeed we get that lim, i V,Y5""""h =
R*®"(0), defines a linear and bounded operator R**(0) from H to H, by (A.11), such that
R**(0)h = R**"(0), moreover for every fixed h € H, x — R“*(0)h is continuous in z, we
will sketch the argument by the the end of the proof in a similar point. Therefore, by dominated
convergence, we get that:

z+Llh,a z,x z+Lh,a,n z,a,mn
Y — Y Y, — Y

1
(A15) lim ————— =lim lim 0 = lim lim / VzYO’x+9Zhva»nh do
240 4 210 n—oo / €10 n—oo J

1
=1lim [ R*T9"2(0)hdd = R**(0)h.
o
Thus v* is differentiable and since ¥;"* = v*(X}) we have V,Y,;"“h = v*( X))V, X h.

Fixing T > 0 we can see the equation satisfied by (Y*'*, Z** U®%) as a BSDE on [0, 7] with
final condition v®(X#%) and we can apply standard results on the differentiability of markovian, finite
horizon BSDEs (see, for instance, [10]) to deduce that the map x — Y* is of class G! from H to
L%(9Q,;C([0,T];R)) and  — Z*“ is of class G from L3 ([0, 7] x ; E*). Moreover for every h € H,
for every 0 <t < T it holds that:

T
V. Y5h = VY5 h + / (6" (5, Vo Z5h, Vo UPh) — aV,Y2h) ds
t

T T
(A.16) 7/ vngﬁahdw,}f/ V., UZhdW?2, 0<t<n.
t t
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Comparing the above with (A.13) and noticing that for all 7' > 0:
Ee*MT |V, Y7 h|* = Be* T |V, 0 (X7) VL X5h|? < CeCRmT

the uniqueness part of Lemma A.2 tells us that (V,Y."%h,V,.Z"h,V,U""h) coincides with
(R©ho yrha preshey and is the unique solution of equation (A.13) in the sense of Lemma A.2.

Part II - Differentiability of v
We also introduce the following infinite horizon BSDE:

(A.17) — dR%M = ¢ (s, VI MPMYds — VI AW — MPPAwW? > 0.
with
¢" (s, 2,u) =[Vob (X7, Z5G7H(XT), ””) +Vp(XT, Z5GHXT), UF) 23V oG H XDV XS h
+ Vo (X2, Z5G N XE), U u + Vo p(XE, Z5GHXE), UY)z.

By Lemma A.2 has a unique solution in the class of processes R®" € L%IOC(Q;C([O,—‘FOO[; R)),
Vel e LB x [0, +oo[; %), M € L3°(Q x [0, +oo[; H*) verifying:

(A.18) lim 2KTE|R%"2 =0, VI >0.
T—4o0

As in [19, Theorem 5.1] we claim that, along the sequence () introduced in (4.21), it holds:
(A.19) V0o (2)h = VY h = REO™" 5 I,

as m — 0o.
Let us introduce again some parabolic approximations. For s € [0, n] consider:

{ —d R:Sp,a,n,h — ¢h,o¢(8’ ‘/'Sw,a7n,h7 Mw,a,n,h)ds _ aR;c,oz,n,h ds — V'Sw,am,h dWSI _ M;v,a,mh dW527
Rw,a,n,h — 0.
n

and

—d Rg,n,h — (bh(S’ V'Sx,h,n’ Mac,n,h)ds _ V'Sa:,h,n dWSI _ M;c,h de,
Rx,h,n — 0,

Since along the sequence () selected in Section 4 we have

E sup (V7 = Y2 P 4B [ (12, 250+ (07 - UPe Pl ds
0

s€[0,n]

and consequently

E/ | (5,0,0) — ¢"(5,0,0)|%ds — 0 as m — oo.
0

standard estimates on finite horizon BSDEs give:
(A.20) E sup |R®™h — RTommhZ 00 asm — oo.

s€[0,n]
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Moreover if we compare with the solution (R%®", V#:®h M#ah) of equation (A.13)
(A.21)
CA (R Fipeh) [ghe(s, Vet VEh, Mzanh 1fzan) a(Rpenh - Rt ds
—[Vpemh — VperldW) — [Mpemt — Mpeh dwe,
Rocomh — Rash — Y p%(X2)V, X2h

Thus Lemma A.1 estimate (A.3) yields:
(A22)  |Ry™ — Ry <E (27|V,0%(XE)V.XZh?) < CePE=mm 0 as n — +oo.
Notice that the right hand side does not depend on « . Finally

—d (Rx,n,h _ Rac,h) — (bh(S Vx,n,h _ Vx,h Mac,n,h _ Ma:,h>ds
(A.23) —[Vprmt —VER AW — [ME — MEP AW,
R:Tcl,n,h o R;vl,h — *Ri’h,

and taking into account (A.18), one has, again by Lemma A.1 relation (A.3):
(A.24) |RE™" — REM? < E (2K |R2M?) < CeE—mn g, as N — +oo.
Therefore summing up (A.22), (A.24) and (A.20) we have that:
Rymh — REM as m — —+oo.

Finally the continuity with respect to x of R‘g’h descends immediately from (A.24) and from the
continuity of the map x — R(gj’”’h proved in [10, Prop. 4.3].

We can now conclude as above (and as in [16, Prop 3.2]); R*"(0), defines a linear and bounded
operator R*(0) from H to H, such that R*(0)h = R*"(0), and we have:

o(x 4 th) — v Yyt _ v yrtthem _y e
limM = lim =2 9 —lim lim -2 0 =

t10 t t10 t t10 m—0 t

1 1
= lim lim / VL YTy dg = lim lim [ R*H0emh(0)hdo =
tl0 m—0 Jq, tl0 m—0 Jq

1

=lim [ R*T"(0)hdh = R*(0)h.
tl0 0

d
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