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Abstract. Covariance determination as the heart of Least
Squares Collocation gravity field modeling is based on fitting
an analytical covariance to the empirical covariance, which
is stemmed from gravimetric data. The main objective of
this study is to process different local covariance strategies
over four regions with different topography and spatial data
distribution in Iran. For this purpose, Least Squares Collo-
cation based on Remove – Compute – Restore technique is
implemented. In the Remove step, gravity reduction in re-
gions with a denser distribution and a rougher topography is
more effective. In the Compute step, the assessment of the
Collocation estimates on the gravity anomaly control points
illustrates that data density is more relevant than topogra-
phy roughness to have a good covariance determination.
Moreover, among the different attempts of localizing the co-
variance estimation, a recursive approach correcting the co-
variance parameters based on the agreement between Least
Squares Collocation estimates and control points shows bet-
ter performance. Furthermore, we could see that covariance
localization in a region with sparse or bad distributed obser-
vations is a challenging task and may not necessarily improve
the Collocation gravity modeling. Indeed, the geometrical fit-
ness of the empirical and analytical covariances – which is
usually a qualitative test to verify the precision of the covari-
ance determination – is not always an adequate criterion.

1 Introduction

Least Squares Collocation (LSC) takes root on both deter-
ministic and stochastic modeling. This is an advantage that
makes LSC a flexible apparatus in the gravity field determi-
nation. Basically, it consists of two steps. First, the determin-
istic part of the signal is removed from the data, in case esti-
mating it by a least squares adjustment. Second, residuals are
modelled in a stochastic way and the noise is filtered out by
minimizing the mean square estimation error. Moreover, the
capability of combining heterogeneous observations as well
as the possibility of predicting quantities that are different
from the observed ones are other advantages of LSC (Moritz,
1980; Sansò, 1986). In gravity field modeling, LSC is usu-
ally implemented through the Remove – Compute – Restore
(RCR) technique. This means that the systematic parts of the
gravity signal related to the global and topographical effects
are first removed and then restored after applying the LSC es-
timation on the gravity residuals (Sansò and Sideris, 2013).

One of the most critical task in LSC gravity field modeling
is the covariance (COV) determination. Tscherning and Rapp
(1974) introduced a harmonic 3D COV model (TR1974) for
the gravity anomaly 1g:
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where rP and rQ are the radii of the Earth at the points P
and Q, RE is the mean radius of the Earth which is assumed
to be equal to 6371 km, N is the maximum degree of the
global gravity model (GGM) that is removed from the data,
P` is the Legendre polynomial of degree `, ψ is a spherical
distance between points P and Q, and σ 2

` is the error degree
variance of the reference GGM coefficients. The first term of
the right hand side of Eq. (1) is devoted to model the error
of removing long wavelengths of the signal through the RCR
technique. The second term is written in such a way that the
summation can be expressed in a closed form and therefore
can be numerically evaluated (Tscherning and Rapp, 1974,
pp. 43–45). In case of block-mean values, the expression for
the covariance model also includes the smoothing factors β`
(Rapp, 1977):

cov
(
1gP,1gQ

)
= α

N∑
`=2

[
R2

E
rPrQ

]`+2

β2
`

(`− 1)2

R2
E

σ 2
` P`(cosψ)

+

∞∑
`=N+1

[
R2

B
rPrQ

]`+2

β2
`

A(`− 1)
(`− 2)(`+ 4)

P`(cosψ)

(2)

In this work the available data are point-wise and Eq. (1) is
used for the computations. TR1974 is a harmonic 3D COV
model and, in contrast to 2D COV models which work on a
sphere, it takes the radii of the observations into considera-
tion. This property is relevant in our case studies due to the
rough topography in Iran (see Sect. 2). Note that the TR1974
3D COV model depends on the spherical distance between
gravimetric observations, as well as their radii.

The three unknown variables α (scale factor of the GGM
global error variance), A (scale factor of the residual sig-
nal variance at higher degrees), and the Bjerhammer radius
RB are estimated by fitting TR1974 to the Empirical COV
(E_COV) computed from the available local observations.
In this approach, homogeneity (2D position-independency)
and isotropy (azimuth-independency) have to be presumed to
compute the E_COV, albeit these assumptions are not appli-
cable in everywhere of the Earth gravity field. To overcome
these limitations, there have been some attempts in mathe-
matical geodesy. Tscherning (1999) used Riesz-representer
to account for anisotropy of the COV determination, Barza-
ghi et al. (2001) presented a new idea for the estimation of a
non-homogeneous local COV. Moreover, Keller (2002) and
Kotsakis (2007) made use of wavelet applications in non-
homogeneous COV estimation, and Darbeheshti and Feath-
erstone (2009) introduced kernel convolution to improve
COV determination, even though none of these attempts
could attain the wide generality of the TR1974 approach.
Another limitation is that the radii of the observations are ig-
nored when computing the empirical covariance, that is fitted
by the model in Eq. (1) assuming rP = rQ = RE.

Ramouz et al. (2019) used the LSC method based on
TR1974 for gravity field modeling in Iran which led to the
best geoid model for the region in the sense of Standard De-
viation (SD) of the difference between the model and the
GNSS/Leveling geoid values. They implemented two strate-
gies for the COV determination; the former used all ter-
restrial observations in a uniform COV model (U_COV),
the latter divided the region into four subareas and then
determined the COV model of each subarea independently
(P_COV). The effect of these two strategies on the LSC al-
gorithm showed that, at least in this case study, localization
of the COV modeling resulted in a slightly better accuracy.
In Ramouz et al. (2019), the heterogeneity and the lack of
data in some parts of Iran lay at the root of the simplicity
in the localization and region subdivision performed in their
work. It is expected that the localized COV determination,
if it is implemented in a more appropriate way based on the
region characteristics, will guide us to a better gravity field
modeling via LSC.

In this research, various criteria in the COV determination
are investigated. The effect of the observation spatial distri-
bution and the topography roughness on the data reduction in
RCR, the refinement of the observation spatial distribution to
smooth its pattern and improve the COV determination, the
implementation of different COV strategies and also the sen-
sitivity analysis of the COV localization to the observation
spatial distribution are studied. In the next section, the prop-
erties of the regions and the gravimetric data are introduced,
also explaining how the data reduction is implemented. In
Sect. 3, the process of the COV modeling is described and
various attempts for the COV determination in the regions
are tested and evaluated. Finally, in Sect. 4 the results of the
research are discussed and a conclusion is drawn.

2 Data and its reduction

Four regions with a size of 2.5×3 arcdeg with different char-
acteristics were chosen in Iran. First and third regions (R1
and R3) have approximately 5 arcmin network resolution
(Fig. 1 and Table 1). Note that R1 has a relatively smoother
topography than R3 (see Table 2). Second and fourth regions
(R2 and R4) have approximately 13 arcmin network resolu-
tion. In this case, R2 has a relatively rougher topography than
R4. The free air gravity anomalies are collected from ter-
restrial observations of zeroth, first, second, and third order
gravity networks, with mean uncertainties of 0.001, 0.010,
0.015, and 0.020 mGal respectively. Moreover, free air grav-
ity observations from a first order precise leveling network
(PLN) with a mean uncertainty of about 0.050 mGal were in-
cluded (Saadat et al., 2018). In R1 and R3, almost all the ob-
servations are from PLN and third order network, while PLN
and second order network observations embody the majority
of R2 and R4 (Fig. 2).
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Figure 1. Distribution of gravity data over Iran (green dots). Topog-
raphy as background (m).

Table 1. Location of each region based on geographical coordinates
and corresponding number of observations.

Region 1 2 3 4

Min_Phi 34.0 30.4 27.25 34.0
Max_phi 36.5 32.9 29.75 36.5
Min_Lam 48.0 49.9 54.0 57.0
Max_Lam 51.0 52.9 57.0 60.0
Number of points 2062 818 1599 793

According to the RCR technique, residual gravity anoma-
lies are obtained by

1gres =1gFA−1gGGM−1gRTM (3)

where 1gFA is the free-air gravity anomaly, 1gGGM is the
long wavelength of the gravity signal derived from a GGM
and1gRTM is the residual terrain model (RTM) effect. To re-
move 1gGGM from the observations, EIGEN6C4 (Förste et
al., 2014) up to degree and order 360 was used, as it was
shown that EIGEN6C4 has better performance than other
GGMs in Iran (Foroughi et al., 2017). Moreover, to re-
move 1gRTM, a residual terrain modeling technique (Fors-
berg, 1984) with the SRTM1′′ (NASA, 2013) digital eleva-
tion model (DEM) was used in the same way of Ramouz et
al. (2019). A reference grid of 0.5◦ resolution, corresponding
to degree and order 360 of the GGM effect, was derived from
SRTM1′′ and used as a mean elevation surface in order to re-
move the long-wavelengths of the topographic gravity signal.
Moreover, inner and outer zone cap-radius (r1 and r2) were
chosen equal to 13 and 80 km, respectively (Forsberg, 1984).
As it is shown in Tables 3 and 4, the GGM and RTM ef-
fects represent a significant part of the gravity signal in these
regions. On average, 28.3 % of the SD of the gravity anoma-
lies was removed by the GGM and 31.2 % of the remaining

Table 2. Statistics of topographic height in each region (m).

Region 1 2 3 4

Min 692.53 115.14 5.40 714.91
Max 3016.50 2750.23 2953.60 2260.25
Mean 1637.43 1779.17 1240.94 1187.97
SD 333.59 528.10 673.35 269.91

SD by the RTM technique. Altogether, the removed effects
in these four regions are about 59.5 % of the original sig-
nal. Apart from R3 where there is a considerable reduction
from the GGM, RTM effects are generally more significant
in these regions. Again in Table 4, the regions are classified
based on data spatial distribution and topographic pattern. It
comes out that removing a systematic part of the signal in
denser regions (R1 and R3) is more effective. In addition,
statistics in Table 4 reveal that in the regions with rougher
topography (R2 and R3) reductions have more impact com-
pared to the regions with a similar data spatial distribution. It
should be noted that the density of the data distribution has
more influence on the reductions than the topography rough-
ness.

3 Covariance analysis

To assess the quality of the COV estimation, residual grav-
ity anomalies from Eq. (3) for each region were partitioned
into two sub-sets: observations and control data. To this aim,
R1 and R3 were tiled to a set of 7× 7 arcmin windows, and
R2 and R4 to 14× 14 arcmin windows. Then, every window
was sequentially selected and alternately classified as obser-
vations or control data (Fig. 2). It should be noted that, at the
edge of each region, control points were excluded in a strip
of 15 arcmin thickness. In other words, this means that out-
put data are limited to a 2× 2.5 arcdeg region, though input
data spread over the 2.5× 3 arcdeg area.

3.1 Covariance estimation

In this section, the implemented procedure for the COV es-
timation using TR1974 COV model is described. First, the
E_COV is computed by using the following estimator:

0(ψ)=

∑
1gires1g

j
res

n
(4)

where 1gires and 1gjres are the ith and j th residual gravity
anomalies with a spherical distance ψij falling in the interval

ψ −
1ψ

2
<ψij <ψ +

1ψ

2
(5)

1ψ is the so-called Sample Interval (SI), which should be
proportional to the overall spatial resolution of the data in
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Table 3. Statistics of gravity anomalies before and after removing GGM and RTM effects (mGal).

Region 1 2 3 4

Remove Before GGM RTM Before GGM RTM Before GGM RTM Before GGM RTM

Min −50.2 −158.0 −46.3 −75.7 −153.9 −39.0 −152.3 −95.2 −75.2 −94.1 −110.8 −82.7
Max 191.7 116.1 47.0 132.4 61.2 68.9 188.9 93.8 65.5 111.4 63.3 36.4
Mean 38.66 −17.94 −7.21 15.71 −31.18 −3.96 −0.02 −22.42 −5.10 3.24 −22.54 −11.40
SD 33.85 27.44 14.83 36.26 34.69 16.92 63.86 24.83 16.92 29.88 25.42 17.54

Table 4. Percentage of removing GGM and RTM effects on the SD of the gravity signal in each region.

Region 1 2 3 4

Remove mGal Percent mGal Percent mGal Percent mGal Percent

GGM 11.4 18.9 1.3 4.3 39.0 61.1 4.5 14.9
RTM 12.6 46.0 17.7 51.2 7.9 31.9 7.9 31.0
GGM+RTM 24.0 56.2 19.1 53.3 46.9 73.5 12.3 41.3

Data Distribution Dense Sparse Dense Sparse
Topography Smooth Rough Rough Smooth

the region. The selected SI values for these four regions are
reported in Table 5. These values could be compared to the
data distribution in Fig. 2. By SI in hand, the E_COV of each
region was computed and the two parameters of the E_COV,
namely the covariance at zero distance (ψ = 0) or variance
(C0) and the correlation distance (ξ ), i.e. the spherical dis-
tance where the value of covariance becomes half the value
of C0, were determined (Table 5).

After that, an Analytical COV (A_COV) has to be mod-
eled by fitting the E_COV in the best way. This analytical
formula was determined by estimating the three parameters
(depth to the Bjerhammer sphere (RE−RB), A and α) in
Eq. (1) through a least squares adjustment implemented in
the COVFIT software (Knudsen, 1987). The A_COV is pre-
dicted with a given spherical distance step, that is named
Mean Data Spacing (MDS). In the same way as SI for
E_COV, the chosen value of the MDS depends on the data
spatial resolution (Table 5). The estimated A_COV param-
eters are included in Table 5. In Fig. 3, the E_COV and its
fitted A_COV model are illustrated for each region.

3.2 Refinement of gravity data distribution

The quite rough E_COV in Fig. 3 and their modeled A_COV,
which did not fit the E_COV adequately, encouraged us to
check if a refinement of the data distribution can improve the
COV determination. To this aim, data were decimated by us-
ing a minimum-distance criterion. That to say, all the obser-
vations with distances less than 1.5 arcmin in R1 and R3 and
2 arcmin in R2 and R4 to the targeted observation were re-
moved, thus reducing the print of the heavily linear crowded
PLN observations (Fig. 4). The number of the observations
and control data before and after the distribution refinement

Table 5. Parameters of the empirical and analytical COVs in each
region.

Region 1 2 3 4

Sample interval (arcmin) 4 12 5 12
Mean data spacing (arcmin) 4 12 5 12
C0 (mGal2) 158.5 177.6 252.1 255.3
ξ (arcmin) 12.9 15.1 11.3 7.3
RE−RB (km) −18.28 −0.002 −7.2 −5.62
A (mGal2) 198.4 400.2 304.8 330.0
α 12.9 38.0 26.0 0.001

are shown in Table 6, and the COV parameters for the four
regions in Table 7. Note that SI and MDS values are the same
as in Table 5. As one can see from Fig. 5, this attempt geo-
metrically improves the COV fitting.

3.3 Assessment of covariance estimation

In the previous section, the effect of the spatial distribution
refinement of the datasets was visually assessed by com-
paring the fitness between empirical E_COV and estimated
A_COV. Here, we will statistically evaluate it by comput-
ing the LSC output at control points. For this purpose, LSC
gravity field modeling has to be implemented on the datasets.
To perform the LSC procedure, besides the estimation of the
COV parameters that has been described in Sect. 3.1 and 3.2,
the observation and control subsets were respectively used
as input and output of the LSC process in each region. In
Table 8, the results of LSC modeling accuracy with respect
to control data are shown for U_COV, P_COV, Simple local
COV (S_COV) and Refined local COV (R_COV) solutions.
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Figure 2. Divided data into observations (dots) and control points (crosses) in the regions (a) R1, (b) R2, (c) R3 and (d) R4. Topography as
background (m).

Table 6. Number of observations and control points before and after the data distribution refinement in each region.

Region 1 2 3 4

Refinement Before After Before After Before After Before After

All data 2062 1148 818 145 1599 894 793 131
Observation 1499 773 583 97 1069 594 602 101
Control 563 375 235 48 530 300 191 30

Because of using localized observation datasets, as well as
P_COV, S_COV and R_COV are categorized into local COV
strategies. Note that P_COV and S_COV are computed in the
same way but they refer to areas with a different size. The dif-
ference between S_COV and R_COV is not in the area size,
but in the number of used data, since for the R_COV compu-
tation the data distribution refinement described in Sect. 3.2
is performed. To estimate the LSC uniform and partial solu-
tions, the related COV parameters are taken from Ramouz et
al. (2019), while in the case of the LSC simple and refined

solutions, the COV parameters are reported in Tables 5 and
7, respectively.

At the first glance, Table 8 shows that, irrespective of the
processing strategy, a good spatial data distribution has a pos-
itive effect on the COV determination and LSC gravity mod-
eling. That is to say, the accuracy of the LSC models in R1
and R3 is better than R2 and R4 at control points. On the
other hand, the topography roughness has a reverse effect.
Note that R1 and R4 have better accuracy than R3 and R2 at
control points, respectively in the case of dense and sparse
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Figure 3. Empirical and fitted COV for residual gravity anomalies of the regions (a) R1, (b) R2, (c) R3 and (d) R4.

Table 7. Parameters of the empirical and analytical COVs after the
data distribution refinement in each region.

Region 1 2 3 4

C0 (mGal2) 232.5 202.3 284.2 271.0
ξ (arcmin) 9.7 10.7 11.1 7.6
RE−RB (km) −6.62 −3.96 −9.44 −0.04
A (mGal2) 315.5 280.2 342.9 759.1
α 11.5 25.5 25.5 15.0

data distribution regions. In fact, both R1 and R4 have a rel-
atively smoother topography pattern.

As was expected from Ramouz et al. (2019), P_COV has
slightly better performance than U_COV over the case study
regions. On the other hand, S_COV which is spatially more
localized than P_COV could not reduce the SD of the differ-
ences over all the regions, but it could only decrease the mean
of the differences. Table 8 also illustrates that, even though
the fitness between E_COVs and A_COVs is enhanced af-
ter the data distribution refinement, the accuracy of the LSC
modeling by applying R_COV is deteriorated in our case
studies. This result confirms the claim of Paciorek (2003),
who had mentioned that fitting E_COV to A_COV may not
give reliable estimates. The statistics information of Table 8
shows that localization of the COV determination is a diffi-

cult task and does not necessarily lead to an improvement for
the output of the LSC. One can see that the localized COV
determination in R2 and R3 with relatively rough topography
is positive or at least not damaging, while it seems to nega-
tively work in R1 and R4. Note that the improvement in R2
with sparse data distribution is more than in the case of the
dense distributed R3.

3.4 Attempt to improve covariance determination

Another idea to analyze the influence of the local COV esti-
mation on the LSC gravity modeling was to improve the es-
timation of the TR1974 covariance parameters by means of
a recursive LSC procedure. In order to implement this idea,
S_COV parameters are used as the initial values for this Im-
proved local COV (I_COV) strategy. In the first step, LSC
gravity anomaly estimation is performed at the location of
control points using S_COV parameters. In the second step,
the best ratio between the two parameters A and α is deter-
mined in such a way that mean and SD of the differences
between LSC outputs and control data get minimum. In the
next step, (RE−RB) is changed and LSC estimation is re-
peated at the same control points. This process has to be con-
tinued until these differences reach their minimum values. In
Table 9, the final values for I_COV parameters in each region
are shown.
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Figure 4. Observations (dots) and control points (crosses) in the regions (a) R1, (b) R2, (c) R3 and (d) R4 after refining the data distribution.
Topography as background (m).

In comparison with the results of the above-mentioned
strategies, I_COV shows an improvement in terms of SD
and especially in removing systematical effects in the differ-
ences with control points (Table 10). Considering all regions,
I_COV estimation approach reduces mean and SD of the re-
sults by 96 % and 10.2 %, respectively (Table 11). The values
of the parameter α in I_COV are significantly different from
the corresponding values of the other COV strategies in all
regions. Based on the information of Tables 5 and 7, α ranges
between 0 to 39, while for I_COV it is between 70 and 116
(Table 9).

3.5 Sensitivity of the localization and covariance
parameters analysis

Improvement of LSC modeling through COV localization
was one of the main objectives of this study. Therefore, we
examined different covariance estimation strategies besides
the one presented in Ramouz et al. (2019). A considerable

outcome of this comparison and analysis was the sensitiv-
ity of COV localization to the spatial data distribution in our
case study. That is, COV localization in a region with sparse
data distribution, like R2 and R4, is more challenging than
in a dense one. In other words, precise local COV determi-
nation in sparse or bad data distributed regions is a difficult
task that requires to accurately estimate the COV parameters.
It means that a small change in the input parameters results
in a big deviation in the output model. This is detectable in
Table 12, where the variance of the mean and SD values of
the different LSC solutions at control points in each region
is depicted. In R2 and R4 the variations of both mean and
SD statistics of the LSC modeling are much more than R1
and R3.

We also studied the changes in the COV parameters of
the four regions with their different topography and spatial
observations distribution. In Fig. 6, the COV parameters for
each region are depicted based on the different COV strate-
gies. According to the three graphs of the COV parameters,
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Figure 5. Empirical and fitted COV for the regions (a) R1, (b) R2, (c) R3 and (d) R4 after refining the data distribution.

Figure 6. COV parameters of the different strategies in each region: (a) RE−RB (km), (b) A (mGal2), and (c) α.

the behaviour of I_COV is more similar to the one of S_COV,
although there is a shift of about 70 units between values of
S_COV and I_COV strategies for the parameter α. Actually,
the assessment of α requires more in-deep investigations.
Combined GGMs suffer from the lack of accurate terrestrial

observations in Iran. Furthermore, previous studies showed
that combined GGMs cannot model the gravity field in Iran
as well as in Europe (for instance, Amjadiparvar et al., 2011;
Foroughi et al., 2017; Kiamehr, 2009). Therefore, whereas
LSC gravity modeling has been done in France by α = 2.05,
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Table 9. Parameters of the improved local COV modeling in each
region.

Region 1 2 3 4

RE−RB (km) −7.05 −0.06 −0.8 −14
A (mGal2) 311.1 518.2 429.0 350.0
α 70.0 116.2 96.5 79.7

Table 10. Accuracy of the LSC gravity estimation based on the im-
proved local COV modeling in each region (mGal).

Region 1 2 3 4

Min −16.3 −27.6 −20.3 −36.0
Max 21.7 54.3 29.0 35.6
Mean −0.03 1.14 0.0 −0.04
SD 4.21 11.09 5.68 9.40
Observation error 0.30 0.85 0.40 0.12
LSC estimated error 0.29 1.14 0.95 0.11

Table 11. Statistics of the different COV strategies over all the re-
gions (mGal).

COV Uniform Local

Partial Simple Refined Improved

Min −50.8 −51.3 −46.4 −33.5 −36.0
Max 45.6 51.2 53.6 51.3 54.3
Mean −1.40 −1.36 −1.10 −1.75 0.06
SD 6.04 5.95 6.01 6.23 5.44

Table 12. Sensitivity of the LSC solutions with respect to their data
distribution and topography roughness (mGal2).

Region 1 2 3 4

Data distribution Dense Sparse Dense Sparse
Topography Smooth Rough Rough Smooth
Variance of Mean 0.18 1.73 0.76 1.90
Variance of SD 0.02 0.31 0.15 0.42

α ∼= 0 for R4 could not be a precise estimation (Yildiz et al.,
2012).

As was mentioned in Sect. 3.1, the SI for E_COV and
MDS for A_COV could be defined based on the region data
distribution. But, when the data are not distributed well in the
case study, choosing an appropriate SI turns to a hard job. For
example, SI usually should be set to less than the minimum
distance between the observations, but this is impossible in
our regions, because of the presence of highly dense PLN ob-
servations before data refinement. In this case, different val-
ues for SI and especially MDS should be tried to find the best
one. In addition, MDS affects convergence of the adjustment.
That is to say, the velocity of the adjustment convergence is
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Table 13. Sensitivity of the outputs of Refined COV estimation in the region R2.

Sample interval (arcmin) 5

Mean data spacing (arcmin) 1.8 3.6 6.3

RE−RB (km) −0.5 −1.5 −0.08 −0.39 −0.005 −0.1
A (mGal2) 392.1 334.5 526.3 407.3 770.6 508.8
α 30.2 30.3 30.4 30.2 30.4 30.4

proportional to the chosen MDS. With a bigger MDS, the
adjustment converges sooner. Moreover, when the MDS is
small, sometimes the adjustment (specifically RE−RB) does
not converge, or converges to different values of the param-
eters. For this situation, the adjustment becomes sensitive to
the initial values which by various quantities lead to differ-
ent outputs. As an example, the COV estimation for R2 is
showed in Table 13, when using different initial values.

Data distribution itself is a challenging element that could
affect the adjustment convergence. In R2 and R4 (before data
refinement), for all the SI values and all the MDS values from
0.5 to 13 arcmin, the estimation of RE−RB is sensitive to the
initial value.

4 Discussion and conclusion

In this study, our focus was on the localization and enhance-
ment of the COV determination through LSC gravity mod-
eling in Iran. For this purpose, in addition to U_COV and
P_COV strategies, three localized attempts named S_COV,
R_COV and I_COV were also investigated. First, four re-
gions with different characteristics were chosen to analyze
the gravity reduction and it was concluded that the data re-
duction based on the RCR technique in a dense distributed
region is more influential. More precisely, in R1 and R3 aver-
agely 65 % of the gravity anomaly signal is reduced, while in
R2 and R4 this number is about 47 %. Moreover, one can find
a relation between the region topography pattern and the data
reduction. Between R1 and R3, the reduction in R3 which
has relatively rougher topography is more effective, as well
as the reduction in R2 between the sparser distributed regions
R2 and R4.

Naturally, non-homogeneous data distribution led to
rugged E_COV functions, and necessarily, the A_COV func-
tion could not fit the E_COV in an optimal way. By refin-
ing the data distribution, we obtained smoother E_COV and
consequently better fitted A_COV. The impact of the data
distribution refinement on the LSC modeling was investi-
gated, showing that despite of the visual analysis of the con-
sistency between E_COV and A_COV, refining the data dis-
tribution could not enhance the accuracy of LSC solutions
with respect to the gravity anomaly control points in the re-
gions. Therefore, the geometrical fitness of the E_COV and
A_COV, which is usually a test to verify the precision of the

COV determination, is not an appropriate or at least an ade-
quate criterion.

In spite of topography roughness, density of the data dis-
tribution has a positive effect on the COV determination and
LSC gravity modeling. That is to say, the accuracy of the
LSC models in R1 and R3 is better than R2 and R4 with
respect to control points. Among various attempts for local-
ization, the I_COV strategy shows better performance which
could reduce mean and SD values of the differences between
LSC model and control data, on average by 96 % and 10 %
respectively. Moreover, the COV determination in a region
is sensitive to the data distribution. Indeed, when the region
has sparse or bad distributed data, the COV determination
will turn to a challenging task and using local COV strate-
gies may not necessarily improve the LSC gravity modeling.

It is necessary to mention that the findings of this study
should be examined in other case studies with different ge-
ographical characteristics and spatial data distribution. Fur-
thermore, the non-homogeneity and anisotropic properties of
these regions and their effects on LSC modeling should be
considered. Finally, future researches should certainly fur-
ther test whether the I_COV approach could have the same
performance on the GNSS/Leveling-derived geoid height as
control points.
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