

Subscriber access provided by Universidad de Alicante

Article

Assessment of CO2 adsorption capacity on activated carbons by a combination of batch and dynamic tests

Marco Balsamo, Ana Silvestre-Albero, Joaquin Silvestre-Albero, Alessandro Erto, Francisco Rodriguez-Reinoso, and Amedeo Lancia Langmuir, Just Accepted Manuscript • DOI: 10.1021/la500780h • Publication Date (Web): 30 Apr 2014 Downloaded from http://pubs.acs.org on May 6, 2014

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Langmuir is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. **Graphical Abstract**

Assessment of CO₂ adsorption capacity on activated carbons by a combination of batch and dynamic tests Marco Balsamo¹, Ana Silvestre-Albero², Joaquín Silvestre-Albero², Alessandro Erto^{1*}, Francisco Rodríguez-Reinoso², Amedeo Lancia¹ ¹ Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy ² Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica, Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain Abstract In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO₂ adsorption performance for three different activated carbons obtained from olives stones by chemical activation followed by physical activation with CO₂ at varying times, i.e. 20, 40 and 60 h. Kinetic and thermodynamic CO₂ adsorption tests from simulated flue-gas at different temperature and CO_2 pressure are carried out both in batch (a manometric equipment operating with pure CO_2) and dynamic (a lab-scale fixed-bed column operating with CO_2/N_2 mixture) conditions. The textural characterization of the activated carbon samples shows a direct

19 dependence of both micropore and ultramicropore volume on the activation time, hence AC60

^{*} Corresponding author. Tel.: +39 081 7682236; fax: +39 081 5936936. *E-mail address:* aleserto@unina.it (A. Erto).

Page 3 of 29

Langmuir

20	has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that, when
21	CO_2 pressure is lower than 0.3 bar, the lower the activation time the higher CO_2 adsorption
22	capacity and a ranking $\omega_{eq}(AC20) > \omega_{eq}(AC40) > \omega_{eq}(AC60)$ can be exactly defined when T= 293
23	K. This result can be likely ascribed to a narrower pore size distribution of the AC20 sample,
24	whose smaller pores are more effective for CO_2 capture at higher temperature and lower CO_2
25	pressure, the latter representing operating conditions of major interest for decarbonation of a
26	flue-gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the
27	results derived from the batch tests in terms of CO ₂ adsorption capacity. It is important to
28	highlight that the adsorption of N_2 on the synthesized AC samples can be considered negligible.
29	Finally, the importance of a proper analysis of characterization data and adsorption experimental
30	results is highlighted for a correct assessment of CO ₂ removal performances of activated carbons
31	at different CO ₂ pressure and operating temperature.

Keywords: CO₂; adsorption; activated carbon; carbon capture and storage; global warming

1. Introduction

CO₂ is unanimously considered as the primary greenhouse gas emitted through human activities, responsible for about 60% of increased greenhouse effect and climate change^{1,2}. The combustion of fossil fuels for the generation of heat and power energy is the main CO₂ emission source. Although many efforts are currently devoted to develop new and cleaner technologies, such as chemical looping combustion, new gasification technologies for power plants and hydrogen-based fuel cells^{2,3}, an immediate and effective CO₂ mitigation can be pursued by the adoption of appropriate post combustion technologies. The use of porous solids for CO₂ capture

is gaining crescent interest within the Carbon Capture and Storage (CCS) strategy aimed at a short-term reduction of CO₂ industrial emissions. Currently, several techniques are applied for the separation and capture of CO₂, which include amine-based absorption, membrane separation, cryogenic distillation and adsorption process⁴⁻⁶. An appropriate CO₂ capture technology should be effective, low cost, environmentally benign and easily applicable. In this context, adsorption technology represents a promising solution, which can be easily implemented in existing power plants. Moreover, it is a well-established technique which can be adopted for the removal of different classes of pollutants from both gaseous and liquid streams, thanks to a high versatility and general low maintenance costs⁷⁻¹². Although different classes of adsorbents are extensively investigated in the pertinent literature, the use of activated carbons (ACs) for CO₂ capture has a great appeal thanks to their tuneable porous structure, a wide adsorption spectrum and relatively limited costs^{7,8,13,14}. In addition, CO₂ adsorption on ACs has been demonstrated to be a reversible process, hence CO₂ recovery and AC regeneration can be simultaneously pursued by a desorption process¹⁵⁻¹⁸.

Activated carbons can be manufactured starting from various carbonaceous precursors^{17,19-} ²¹. In particular, lignocellulosic materials are characterized by general low-costs and abundant availability, which can allow a significant saving in adsorbent production and process management. Many efforts have been expended in the development of adsorbent materials from agricultural wastes²¹⁻²⁵ and, specifically, to define the optimal textural as well as chemical properties to maximize CO_2 capture²⁶⁻²⁸. At the current state-of-the-art, there is a general accordance in the literature to consider the increase in CO₂ adsorption capacity, under flue-gas simulated conditions (CO₂ partial pressure typically lower than 0.15 bar), as closely related to a high total or micropore volume coupled with a narrower micropore size distribution shifted

Page 5 of 29

Langmuir

towards ultramicropores^{13,26,29-31}. In particular, Sun and co-workers²⁹ elucidated the main
functional dependencies by a dedicated statistical analysis applied to a large set of activated
carbons, in which the correlation degree between CO₂ adsorption capacity and textural properties
was determined. Similarly, Yin and co-workers³¹ analysed a large number of experimental works
present in the literature and concluded that the surface area of activated carbon is not the
determining factor for CO₂ adsorption, while ultramicropores have a significant influence.

On the other side, Balsamo and co-workers³² pointed out that micropore diffusion is the limiting step of adsorption process carried out in fixed-bed column. Simultaneously, they highlighted the positive effect exerted by mesopores in the enhancement of CO_2 adsorption rate, as already stated by different authors, which worked with volumetric (manometric) apparatuses operated in batch mode^{11,29}.

Despite the large number of studies focused on the determination of the correlations between activated carbon properties and CO₂ capture performances, few studies are performed in simulated flue-gas streams^{15,17,29,32}. In addition, the current literature is still lacking of thorough studies on CO₂ adsorption onto activated carbons in dynamic conditions, as most of the experimental works are carried out in volumetric/gravimetric apparatuses. Even less studies are available in which the adsorption of CO_2 is investigated simultaneously from simulated flue-gas, in dynamic systems, and as a function of the main operational parameters (e.g. gas temperature, CO_2 concentration, etc.)³³⁻³⁵.

The goal of this work is an experimental analysis of CO_2 adsorption onto activated carbons (AC), produced starting from olive stones, through a combined set of batch and dynamic tests. A microstructural characterization of the AC samples by N_2 and CO_2 adsorption was carried out aimed at assessing the contribution of mesopores, micropores and narrow micropores. Kinetic

and thermodynamic CO_2 adsorption tests at different CO_2 pressure and temperature were performed both in batch (glass-made manometric adsorption equipment operating with pure CO_2) and in dynamic (a lab-scale fixed-bed column operating with CO_2/N_2 mixture) conditions, for a thorough comparison. The complementarity of batch and dynamic experiments was highlighted in order to pursue a correct determination of CO₂ adsorption capacity and to assess the factors affecting the CO₂ capture in operating conditions typical of a flue-gas (in terms of temperature and CO₂ concentration).

2. Materials and methods

2.1. Activated carbon samples

Three AC samples were synthesized starting from the same lignocellulosic precursor (i.e. olive stones) according to the procedure reported by Silvestre-Albero and co-workers³⁶. A combination of chemical and physical activation processes was adopted which involved the impregnation with an aqueous solution of ZnCl₂ at 358 K and a heat treatment under a N₂ flow at 773 K; this was followed by a physical activation performed with CO₂ (100 cm³ min⁻¹) at 1098 K using different periods of time, i.e. 20, 40 and 60 h, which gave rise to the different labelled materials (i.e. AC20, AC40 and AC60, respectively). A particle size range 1.00-2.36 mm was selected for all the experimental runs by mechanical sieving.

manometric equipment, the N₂Gsorb-6 porosimeter (www.g2mtech.com). Adsorption isotherms

The textural properties of the synthesized AC samples were determined in a fully automated

of N₂ and CO₂ were obtained at 77 K and 273 K, respectively. Before each experiment, the

- samples were outgassed at 423 K for 4 h under vacuum (10^{-8} bar) in order to remove humidity.

Page 7 of 29

Langmuir

The main microstructural parameters of the AC samples were obtained from mathematical processing of N₂ and CO₂ adsorption isotherms according to the models commonly applied in the literature. In particular, the "apparent" surface area was obtained using the BET method. The micropore volume (V_0) was deduced from the N₂ adsorption data using the Dubinin– Raduskevitch (DR) equation, while the mesopore volume (V_{meso}) was obtained as the difference between the total pore volume (V_t) adsorbed at $P/P^0 \sim 0.95$ and the micropore volume (V_o). The pore volume corresponding to the narrow microporosity (V_n) was obtained after application of the DR equation to the CO₂ adsorption data at 273 K.

2.2 Kinetic batch adsorption experiments

Pure CO₂ batch adsorption kinetics on the AC samples was carried out at 293 K in a glass-made manometric adsorption equipment developed by the Laboratorio de Materiales Avanzados group. Experimental runs were performed at two different initial CO₂ pressures, namely 0.25 and 0.42 bar and employing 0.2 g of each AC tested. The adsorption kinetics was determined from the pressure decrease in the pressure transducer with time. Prior to the adsorption experiment, the sample was degassed under vacuum (10^{-7} bar) at 423 K for 4 h.

129 2.3. Dynamic adsorption experiments

The dynamic adsorption runs were carried out in a lab-scale fixed-bed column (length=0.13 m;
inner diameter=0.02 m) made up of Pyrex glass. The fixed bed temperature was controlled by
means of cylindrical shell Watlow band heaters, enveloped in a thermal insulating layer of
ceramic fibres, and connected to EZ-PM® PID controllers (Watlow).

134	Two mass flow controllers (series El Flow Bronkhorst 201-CV) were used to generate a gas
135	(N_2+CO_2) with 1-30% CO ₂ concentration. Gas volumetric flow rate variations, occurring in the
136	fixed bed as a consequence of CO_2 adsorption, were monitored by means of a mass flow meter
137	series El Flow Bronkhorst 201-CV placed at the exit of the adsorption column.
138	A continuous NDIR (non-dispersive infrared) gas analyzer (AO2020 Uras 26 model provided by
139	ABB) was adopted for the determination of CO ₂ concentration. Finally, data acquisition and
140	elaboration were performed by interfacing the analyser with a PC unit via LabView TM software.
141	Experimental tests in fixed-bed column were carried out by feeding the column, charged with a
142	fixed adsorbent amount (i.e. 0.015 kg), with a 1.5 L min ⁻¹ gas stream (N ₂ +CO ₂) at 293 K and 1
143	atm total gas pressure.
144	CO ₂ dynamic adsorption results were processed to obtain the corresponding adsorption
145	isotherms. As known, the material balance on CO ₂ over the fixed-bed column leads to the
146	determination of the equilibrium CO ₂ adsorbed amount, ω_{eq} [mmol g ⁻¹]:
	$\omega^{eq} = \frac{Q_{CO_2}^{in} \rho_{CO_2}}{mM_{CO_2}} \int_{0}^{t_{eq}} \left(1 - \frac{Q_{CO_2}^{out}(t)}{Q_{CO_2}^{in}}\right) dt$
147	(1)
148	where $Q_{CO_2}^{in}$ and $Q_{CO_2}^{nu}$ are column inlet and outlet CO ₂ volumetric flow rates, respectively; <i>m</i> is the
149	mass of adsorbent; ρ_{CO2} [mg L ⁻¹] represents CO ₂ density (evaluated at 293 K and 1 bar); M_{CO2} is

150 its molecular weight $[mg mmol^{-1}]$.

151 A check on adsorption capacity was carried by desorption runs on spent AC samples. Pure N₂ 152 was used as desorbing agent and the CO₂ outlet concentration was monitored by means of the 153 NDIR analyzer. The desorption profiles were elaborated to obtain the total specific amount of 154 CO₂ desorbed from the spent AC, ω_{des} [mmol g⁻¹], through a material balance, similar to Eq. (1):

Langmuir

 $\omega^{\text{des}} = \frac{\rho_{\text{CO}_2}}{\text{mM}_{\text{CO}_2}} \int_0^{t_{0.1}} Q_{\text{CO}_2}^{\text{out}}(t) dt$ (2)

in which t0.1 is the time required to complete the desorption process, assumed as the one corresponding to the NDIR low detection limit (0.1% CO₂ by vol.). The maximum allowed discrepancy between ω_{eq} and ω_{des} was set at 5 %.

Further details about dynamic experimental apparatus and adsorption tests were reported in
a previous work¹⁷.

3. Results and discussion

3.1. Activated carbon textural characterization

The characterization of the textural properties of the AC samples included the realization
of both N₂ and CO₂ adsorption isotherms at 77 K and 273 K respectively, in order to investigate
all the dimensional ranges of AC porosity.

167 The N_2 adsorption isotherms, previously reported by Silvestre-Albero and co-workers³⁶,

showed that all the AC samples are mainly microporous with a narrow knee at low relative

169 pressure (Type I isotherms). Consequently, since it is generally accepted that CO₂ adsorption

170 occurs by a micropore filling mechanism 28,37,38 , pore size distribution (PSD) is expected to play a

- 171 crucial role in determining CO_2 adsorption performances of the investigated AC samples.
 - In Figure 1, the PSD of all the AC samples, as derived from N_2 adsorption isotherms by
 - application of the QSDFT (Quenched Solid Density Functional Theory), are depicted.

Figure 1. Pore size distribution of AC20, AC40 and AC60 samples obtained by QSDFT method (slit-shape equilibrium model) applied to N₂ adsorption isotherm at 77 K.

As it can be observed, the AC20 sample has the narrower PSD, mostly included in the range of narrow micropores (pore diameter < 10 Å). Differently, AC40 and AC60 samples have lower narrow micropore contribution, with a distribution shifted towards micropores of higher dimensions. In addition, AC60 sample shows a somewhat higher contribution of mesopores with respect to AC40 and, more, to AC20.

The analysis of the pertinent literature showed that microporous carbon materials with pores less than 1 nm are considered as the most suitable for CO_2 capture at ambient temperature and pressure^{13,26,30,39}. Hence, in order to deepen the investigation of smaller pore sizes and their

N ₂ adsorption, 77 K CO ₂ adsorption, 273 I						
Samula	S _{BET}	Vo	V _{meso}	V _t	V _n	
Sample	(m ² /g)	(cm ³ /g)	(cm ³ /g)	(cm ³ /g)	(cm ³ /g)	
AC20	1253	0.46	0.07	0.53	0.36	
AC40	1448	0.54	0.09	0.63	0.40	
AC60	1983	0.70	0.23	0.93	0.45	

Table 1. Textural parameters of AC20, AC40 and AC60 samples derived from N2 and CO2adsorption isotherms at 77 K and 273 K, respectively

The application of the DR equation to N₂ and CO₂ isotherms allowed determining that a higher activation time resulted in both higher micropore (V_0) and narrow micropore (V_n) volumes, the increase of the former being more relevant. Coherently, also the BET surface area increased with the activation time, and the contribution of mesopores (V_{meso}) became significant only for AC60 sample, as already deducted by PSD analysis. A comparative analysis of the data reported in Table 1 shows that AC60 has the highest micropore volume (V_o), but AC20 has the highest fraction of narrower micropore (calculated as V_n/V_t ratio), as previously observed in Figure 1. Moreover, it can be stated that the activation treatment with CO₂ determines the opening of new micropores coupled with the broadening of the porosity, as testified by the increasing difference between micropores (V_o) and narrow micropores (V_n) as a consequence of a higher burn-off with activation time 13,36 .

The results obtained so far would drive to the conclusion that AC60 is the most suitable sample for CO_2 adsorption. In fact, a higher micropore and narrow micropore contribution is commonly believed as a condition for the individuation of the sorbent with highest CO_2

Page 13 of 29

Langmuir

217	adsorption capacity (ω_{eq}). As a matter of fact, this result is always verified as long as CO ₂
218	pressure assumes values equal to 1 bar ^{13,19,26,30,31} . Coherently, data reported in Figure 2 confirms
219	that for a CO ₂ pressure of 1 bar a monotonic ranking $\omega_{eq}(AC60) > \omega_{eq}(AC40) > \omega_{eq}(AC20)$ exists.
220	However, it is interesting to observe that for a CO_2 pressure < 0.3 bar, the ranking is almost
221	inverted and becomes $\omega_{eq}(AC20) \approx \omega_{eq}(AC40) > \omega_{eq}(AC60)$. This result suggests a different
222	energetic distribution of the active sites of the different AC samples, which favours the
223	adsorption capacity of AC20 and AC60 for low and high CO2 pressure, respectively. An overall
224	analysis of the experimental results so far presented can be made following the Dubinin's
225	micropore filling theory. The high adsorption potential determined in narrow micropores, which
226	are mostly abundant in AC20 (cf. Figure 1) allows a more effective packing of CO ₂ molecules
227	even at low adsorbate partial pressures, thus explaining the higher CO ₂ adsorption capacity of
228	AC20 at low CO ₂ pressures ^{13,32,39} . The AC40 and AC60 samples show an almost similar
229	contribution of smaller micropores, even if the AC60 sample presents a sensibly higher
230	contribution of wider micropores and mesopores (as confirmed by data reported in Table 1),
231	these pores being favourably filled only at higher CO ₂ partial pressures because of their lower
232	adsorption potential ^{39,40} . On the basis of the reported PSD and from CO ₂ adsorption data at 273
233	K (Figure 1), it can be deducted that the wider pores provide a higher contribution to CO_2
234	adsorption above a stated crucial value of CO ₂ pressure.
235	These results assume an even greater importance when dealing with CO ₂ capture from flue gas,
236	in which CO ₂ concentration is always largely lower than 30%. However, in this step, the
237	analytical tests were performed in the fully automated manometric apparatus (cf. Section 2.1.)

with pure CO₂ at different pressure and at 273 K. Hence, in order to go into the effect of

2
3
4
5
6
0
1
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
22
33
34
35
36
37
38
39
40
40
41
42
43
44
45
46
47
18
40
49
50
51
52
53
54
55
55
00
5/
58
59
60

temperature and CO₂ partial pressure further investigations were carried out in different
 experimental conditions and reported in the following sections.

241

242

1

3.2. CO_2 adsorption kinetics in batch system

In order to extend the field of investigation of CO₂ adsorption onto the synthesized AC

samples, new experimental runs were carried out at 293 K in a manometric apparatus. To this

aim, kinetic batch tests were realized with pure CO_2 and for two different initial CO_2 pressure (

246 $P_{CO_2}^0$ levels, namely 0.25 and 0.42 bar. The results are depicted in Figure 3A and 3B,

respectively. It is worth to observe that the batch character of these tests leads to a variable CO_2

final equilibrium pressure which depends mainly on CO₂ equilibrium adsorption capacity, but

also on slight variations in the initial pressure and in the mass of the adsorbent charged into the

apparatus. Hence, for the sake of completeness, in Figure 3A-3B, the CO₂ equilibrium pressure (

251 P_{CQ}^{eq}) was reported for each experimental run.

2 3							
4 5	254	Figure 3. Pure CO ₂ batch adsorption tests on AC samples at (A) $P_{CO_2}^{\nu} = 0.25$ and (B) $P_{CO_2}^{\nu} =$					
6 7	255	0.42 bar. T= 293 K; adsorbent dose: 0.2 ± 0.01 g					
8 9 10	256						
10 11 12	257	From Figure 3 it can be observed that, for both the CO_2 initial pressures investigated, CO_2					
13 14	258	adsorption rate is higher for AC60, as testified by the lowest time taken to reach the final					
15 16 17	259	equilibrium adsorption capacity; on the other hand, differences between AC20 and AC40 are					
18 19	260	very slight. In Table 2, the equilibrium times (t_{eq}) , as derived from experiments reported in					
20 21 22	261	Figure 3, are summarized:					
23 24	262						
25 26		AC20 AC40 AC60					
27 28 29 30		t_{eq} ($P_{CO_2}^0 = 0.25$ bar), s 210 180 90					
31 32 33		t_{eq} ($P_{CO_2}^0$ =0.42 bar), s 420 360 180					
34 35	263						
36 37 38	264	Table 2. Comparison between equilibrium time (t_{eq}) values obtained from batch adsorption					
39 40 41	265	tests for AC20, AC40 and AC60 at different CO ₂ initial pressure ($P_{CO_2}^0$)					
42 43	266						
44 45	267	These results reflect the mesopore content of the AC samples, highest for AC60 and					
46 47 48	268	comparable for AC40 and AC20, which is commonly believed to exert a significant influence on					
49 50	269	CO_2 adsorption rate ^{13,32} . Moreover, the experimental results clearly demonstrate that in both the					
51 52	270	investigated experimental conditions AC60 has the lowest adsorption capacity while AC20					
53 54 55	271	displays comparable (Figure 3A) or slightly better (Figure 3B) CO ₂ removal performances at					
56 57 58 59	272	equilibrium, with respect to AC40. However, a rigorous analysis should take into account also					
60		15					

Page 17 of 29

Langmuir

the differences in equilibrium pressure, which allows considering AC20 favoured with respect to AC40 also at lowest equilibrium pressure (Figure 3A). Hence, for the two tests conducted at CO₂ partial pressure <0.3 bar and T=293 K the new ranking of adsorption capacity is $\omega_{eq}(AC20) > \omega_{eq}(AC40) > \omega_{eq}(AC60)$. A comparison with the adsorption isotherm at T=273 K (Figure 2), equally realized with pure CO_2 , confirms the exothermic character of CO_2 adsorption (as expected the amount adsorbed is lower at 293 K for all samples) but leads to a further important conclusion. An increase in temperature determines a reduction of the pore size diameter active towards CO₂ adsorption; in fact, at 293 K, the AC20 sample shows the highest difference in adsorption capacity with respect to AC40 and AC60 whereas these differences decrease at 273 K. This result is consistent with the experimental findings reported by Zhang and co-workers⁴¹ which observed that at higher temperature stronger adsorption potentials, as those related with pore of smaller dimension, are required to avoid the adsorbate escaping from pores (due to their higher kinetic energy). It can be concluded that narrow micropores play a more relevant role at 293 K, with respect to 273 K, and low CO₂ pressures in determining higher pollutant capture performances for AC20 sorbent.

3.3. CO_2 adsorption in dynamic system

The above experimental results highlighted the substantial effect of temperature and CO_2 pressure on adsorption capacity of the investigated series of AC. In particular, the inversion of performance ranking observed for a pressure < 0.3 bar drives to further investigations in this range of pressures, which is consider of great interest because it includes those typical of a postcombustion CO_2 capture treatment. The new experimental runs were performed at T= 293 K in a

1
י ר
2
3
4
5
e
0
7
8
g
10
10
11
12
13
10
14
15
16
17
10
IŎ
19
20
21
∠ I 00
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
37
38
39
40
41
42
43
44
1
45
46
47
48
40
49
50
51
52
52
53
54
55
56
50
5/
58

59

3 4	295	dynamic system represented by a fixed-bed column, in which a model flue-gas composed by
5 6 7	296	CO ₂ +N ₂ was fed.
7 8 9	297	The breakthrough profiles of CO_2 on AC20, AC40 and AC60 obtained at different CO_2
10 11	298	concentration in the feed (range 1-15% by vol.) are depicted in Figures 4 (A)-(H).
12	200	
13 14	299	
14		
16		
17		
18		
19		
20		
21		
22		
23 21		
25		
26		
27		
28		
29		
30		
31		
32 วว		
33 34		
35		
36		
37		
38		
39		
40		
41 42		
42 13		
43 44		
45		
46		
47		
48		
49		
50 54		
51 52		
53		
54		
55		
56		
57		
58		

303 13%; H) 15%. T= 293 K, P=1 bar.

58 59

60

The analysis of the dynamic adsorption patterns reveals that for all the investigated CO_2 concentrations, AC60 shows the steeper curves and, hence, a faster CO₂ adsorption. This result is consistent with the results derived from the batch tests carried out in the manometric apparatus and can be ascribed to the wider pore dimension in the PSD of this sample (cf. Figure 2 and Table 1). In addition, the kinetic adsorption profiles of AC40 and AC60 sorbents practically overlap up to $Q_{CO_2}^{out}(t)/Q_{CO_2}^{in} \approx 0.1$, while a general smaller slope of the sigmoid is observed for AC20, likely due to a higher narrow micropore contribution. Moreover, for all the AC samples, an increase in CO₂ concentration fed to the column results in steeper breakthrough curves, possibly related to faster mass transfer phenomena taking place at higher driving force^{32,42}.

The differences in mass transfer rates can be better evaluated by introducing a time parameter $\Delta \tau = t_{0.7} - t_{0.1}$ (with $t_{0.1}$ and $t_{0.7}$ being the time for which $Q_{CO_2}^{out}(t)/Q_{CO_2}^{in}=0.1$ and 0.7, respectively) which is related to the slope of the linear part of the sigmoid: the smaller this parameter the steeper the breakthrough curve and consequently the faster the adsorption kinetics. The values of $\Delta \tau$ derived from the kinetic patterns for AC 20, 40 and 60 are listed in Table 3.

Langmuir

	-				
			AC20	AC40	AC60
	-	Δτ (CO ₂ :1%), s	77	64	40
		Δτ (CO ₂ :3%), s	60	49	33
	-	Δτ (CO ₂ :5%), s	47	40	26
		Δτ (CO ₂ :7%), s	41	36	23
	-	Δτ (CO ₂ :9%), s	35	30	21
		Δτ (CO ₂ :11%), s	31	28	19
	-	Δτ (CO ₂ :13%), s	28	26	16
		Δτ (CO ₂ :15%), s	25	24	15
319	-				
320	Table 3. Comparis	son between $\Delta \tau$ value	es obtaine	d from dyı	namic adsor

AC40 and AC60 at different CO₂ concentration in the feed

Results confirm a significantly faster adsorption for AC60 for all CO₂ concentrations, while they allow highlighting that the differences between AC20 and AC40 tend to reduce when the CO₂ initial concentration increases and become negligible when it approaches the maximum investigated value (15%). For example, at 15% CO₂ in the feed, $\Delta \tau = 15$, 24 and 25 s for AC 60, 40 and 20 respectively. Even if the kinetic differences between AC20 and AC40 are not so marked, particularly at higher pollutant concentration, the CO₂ capture process is generally slightly slower for AC20, if the time needed to reach equilibrium is considered. This result fully confirms the outcomes derived from the batch kinetic tests (Figure 3) and it testifies the perfect integration between these two analytical tests in the analysis of CO₂ adsorption on AC samples.

Further indications about the kinetic can be drawn out from the evaluation of the breakpoint times t_b , defined as the time for which $Q_{CO_2}^{out}(t)/Q_{CO_2}^{in}=0.05$. The highest values shown by AC20, coupled with a more gentle slope, proves that in the investigated experimental conditions, this sample has the highest CO₂ adsorption capacity, as discussed in the following. The experimental data obtained on the dynamic apparatus were processed according to Eq.

The experimental data obtained on the dynamic apparatus were processed according to Eq. (1), in order to obtain useful thermodynamic indications about the behaviour of AC samples in the investigated conditions. Figure 5 depicts the adsorption isotherms obtained at 293 K in terms of molar equilibrium adsorption capacity as a function of CO₂ equilibrium partial pressure P_{CQ}^{eq} .

Figure 5. CO_2 adsorption isotherms on AC20, AC40 and AC60 as a function of CO_2 partial pressure (balance N₂). T=293 K and P=1 bar.

Page 23 of 29

Langmuir

Experimental data clearly show that, in all the range of the investigated CO_2 partial pressure, the ranking of adsorption capacity is $\omega_{eq}(AC20) > \omega_{eq}(AC40) > \omega_{eq}(AC60)$. In particular, for a typical flue gas composition (i.e. CO_2 partial pressure ~ 0.15 bar) the adsorption capacity resulted to be 0.855, 0.806 and 0.758 mmol g⁻¹, respectively for AC20, AC40 and AC60. The experimental error of this series of data is always included in $a \pm 5\%$ range, so that the observed ranking cannot be altered. It is worth to observe that the ranking is confirmed also in an extended range of CO₂ partial pressure (with respect to data reported in Figure 4). More interestingly, this extension allowed to compare the data obtained in the dynamic apparatus with the homologous data obtained in the batch apparatus, whose results were previously reported in Figures 3. To this aim, CO₂ equilibrium adsorption data as derived from batch tests were also included in Figure 5. A very good matching can be observed in terms of CO₂ adsorption capacity ranking, even if the different experimental conditions adopted for the two series of data did not allow a punctual comparison. Notwithstanding, it can be asserted with great confidence that the adsorption of N₂ on the synthesized AC samples can be considered as negligible. In fact, for each AC sample, pure CO₂ adsorption data (batch series) and CO₂+N₂ adsorption data (dynamic series) almost lies on the same adsorption isotherm. This result has very important implications in terms of practical utilization of these AC samples in a post combustion treatment of a real flue gas, since the competition of N₂ could seriously diminish CO₂ adsorption, affecting the efficiency of the process. However, it has to be underlined that typical flue-gas compositions include the presence of water, NOx, SOx and other contaminants which, despite of their low concentrations, can significantly influence CO_2 adsorption. Summarizing the considerations drawn from batch and dynamic adsorption tests at 293 K, it can be asserted that fixed bed experiments allow an accurate and simultaneous evaluation of both thermodynamic capture capacity and of the

dynamic response of the gas-solid system, with associated time-saving advantages for the proper selection of an activated carbon able to remove CO_2 from flue-gas under low operating pressure (<0.15 bar). Contextually, data from Figure 4 permit to consider AC20 as a better sorbent for practical application in large-scale adsorption unit aimed at mitigating CO_2 -deriving global warming effect because, despite its slower adsorption kinetics, it showed a higher equilibrium adsorption capacity and a greater breakpoint time, hence it allows keeping CO_2 concentration at a lower level for higher operating time with respect to AC40 and AC60 sorbents.

Finally, an overall evaluation of the experimental results obtained in this work drives to the conclusion that the ranking observed in terms of CO₂ equilibrium adsorption capacity at 293 K (Figure 5) is not in line with the ranking observed for micropore and narrow micropore volumes (Table 1), for which AC60 results favoured. However, this evidence, apparently in contrast with the results reported in the literature on similar experimentations, must be evaluated together with the particular porous structure of the AC samples, which determines a combined dependence of CO_2 adsorption capacity both on CO_2 partial pressure and temperature. In fact, the determination of narrow micropore volume from CO₂ adsorption isotherm at 273 K (Figure 1) is made by considering the cumulative contribution corresponding to the entire CO_2 pressure range (0-1) bar). In these conditions, AC60 showed the highest CO₂ capture performances and, coherently, the highest narrow micropore volume. Conversely, until a CO_2 partial pressure <0.3 bar, AC20 showed the highest CO₂ adsorption capacity, also confirmed by experimental data realized at 293 K (Figure 3 and 5). Hence greater energetic interactions are determined by a higher adsorption potential, likely due to a narrower PSD shifted to narrow micropores. It is interesting to remark that these results were confirmed by comparing batch and dynamic data, realized in different experimental devices. Therefore, this work allowed determining the importance of a combined

394

1

Langmuir

2	
2	
3	
4	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
47	
47	
48	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	
50	
59	

60

application of different techniques (i.e. batch and dynamic tests) for a thorough comprehension of CO_2 adsorption on activated carbons and, in particular, for its practical application to the treatment of a flue gas in its typical conditions of temperature, pressure and CO_2 concentration.

4. Conclusions

The assessment of CO_2 adsorption capacity on a series of three different activated carbons, obtained from olives stones by physical and chemical activation at three different times i.e. 20, 40 and 60 hours, was experimentally carried out by a combination of batch and dynamic tests.

398 Preliminarily, a textural characterization of the samples (named AC20, AC40 and AC60) showed a monotonic increase of both the micropore and ultramicropore volume with the 399 activation time, even if for CO_2 partial pressure lower than 0.3 bar the ranking for CO_2 400 401 adsorption capacity at 273 K is inverse, i.e. $\omega_{eq}(AC20) > \omega_{eq}(AC40) > \omega_{eq}(AC60)$. In order to deeper investigate the relationship between textural properties and CO₂ capture performances, 402 kinetic and thermodynamic CO₂ adsorption tests were carried out at 293 K both in a batch 403 apparatus (pure CO₂ tests) and in a dynamic apparatus, represented by a lab-scale fixed-bed 404 column (CO₂+N₂ tests). In both the series of experiments, a very good agreement between 405 homologous experimental results was observed, which allowed considering as negligible N₂ 406 adsorption on all the AC samples. For CO_2 pressure <0.3 bar, the AC60 showed the lowest 407 adsorption capacity but the fastest mass transfer phenomena, likely due to a remarkable greater 408 contribution of mesopores and a wider micropore size distribution. Conversely, the AC20 sample 409 exhibited the highest CO_2 adsorption capacity likely due to a greater contribution of smaller 410 pores in the ultramicropore range. Interestingly, the ranking of CO₂ adsorption capacity in 411 experimental conditions typical of a flue gas resulted to be $\omega_{eq}(AC20) > \omega_{eq}(AC40) > \omega_{eq}(AC60)$. 412

This ranking does not reflect the ranking observed in terms of ultramicropore volume $(V_n(AC60) > V_n (AC40) > V_n (AC20))$ determined by pure CO₂ isotherm at 273 K, but it is coherent with the adsorption capacity displayed by all the AC samples at 273 K in correspondence of a CO_2 pressure < 0.3 bar. Finally, this result highlights the importance of a deeper analysis of adsorption data for the determination of the factor affecting CO₂ adsorption performances. The different pore size distributions of the AC samples and in particular the higher contribution of ultramicropores observed for AC20 sample play a major role in determining a stronger interaction energy with CO₂ molecules at higher temperature and lower CO_2 partial pressure. References [1] Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.; Bland, A.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14-27. [2] Figueroa, J.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. Advances in CO₂ capture technology-The U.S. Department of Energy's Carbon Sequestration Program. Int. J. Greenh. Gas Con. 2008, 2, 9-20.

- [3] I. E. A. (IEA). Energy Technology Perspectives. 2010. [Online]. Available: http://www.iea.org/techno/etp/etp10/English.pdf.
- [4] Strube, R.; Manfrida, G. CO₂ capture in coal-fired power plants-Impact on plant performance. *Int. J. Greenh. Gas Con.* **2011**, *5*, 710-726.

[5] Brúder, P.; Svendsen, H. Capacity and kinetics of solvents for post-combustion CO₂ capture. *Energy Procedia* **2012**, *23*, 45-54.

 [6] Herzog, H.; Meldon, J.; Hatton, A. Advanced post-combustion CO₂ capture. Report prepared for the Clean Air Task Force, [Online]. Available: http://web.mit.edu/mitei/research/reports.html, 2009.

Langmuir

3	
Δ	
-	
5	
6	
7	
<i>i</i>	
8	
9	
10	
44	
11	
12	
13	
10	
14	
15	
16	
47	
17	
18	
19	
00	
20	
21	
22	
~~	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
21	
31	
32	
32 33	
32 33 34	
32 33 34	
32 33 34 35	
32 33 34 35 36	
32 33 34 35 36	
32 33 34 35 36 37	
32 33 34 35 36 37 38	
32 33 34 35 36 37 38 39	
32 33 34 35 36 37 38 39	
32 33 34 35 36 37 38 39 40	
32 33 34 35 36 37 38 39 40 41	
32 33 34 35 36 37 38 39 40 41 42	
32 33 34 35 36 37 38 39 40 41 42 42	
32 33 34 35 36 37 38 39 40 41 42 43	
32 33 34 35 36 37 38 39 40 41 42 43 44	
32 33 34 35 36 37 38 39 40 41 42 43 44 45	
32 33 34 35 36 37 38 39 40 41 42 43 44 45	
32 33 34 35 36 37 38 39 40 41 42 43 44 5 46	
32 33 34 35 36 37 38 39 40 41 42 43 44 5 46 47	
32 33 34 35 36 37 38 30 41 42 34 45 46 47 8	
32 33 34 35 36 37 38 39 40 41 23 44 546 47 48	
32 33 34 35 36 37 38 39 40 41 42 44 44 546 47 48 9	
32 33 34 35 36 37 38 9 40 41 23 44 50	
32 33 34 35 36 37 38 9 40 41 42 43 44 50 51	
32 33 33 35 36 37 38 30 41 42 34 45 46 47 89 50 10	
32 33 33 35 37 38 30 41 42 34 45 46 78 90 55 52	
32 33 33 35 37 33 30 41 42 34 45 46 78 90 55 52 53	
32 33 33 33 33 33 33 33 33 33 33 33 33 3	
32 33 33 35 33 33 33 33 33 33 33 33 33 33	
32 33 34 35 37 33 30 41 42 44 44 45 46 7 89 55 55 55 55 55	
32 33 33 35 37 33 30 41 23 44 50 55 55 55 55 55 55 55	
32 33 33 33 33 33 33 33 33 33 44 42 34 45 67 89 01 23 34 55 55 55 55 55 55 55 55 55 55 55 55 55	
32 33 33 33 33 33 33 33 33 33 44 42 34 45 67 85 55 55 55 55 55 55 55 55 55 55 55 55	
32 33 33 33 33 33 33 33 33 33 40 41 23 44 56 78 33 33 33 33 33 33 33 33 33 33 33 33 33	
32 33 33 33 33 33 33 33 33 40 41 23 44 56 78 30 55 55 55 55 55 55 55 55 55 55 55 55 55	

- [7] Choi, S.; Drese, J.; Jones, C. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. *ChemSusChem* **2009**, *2*, 796-854.
- [8] Samanta, A.; Zhao, A.; Shimizu, G.; Sarkar, P.; Gupta, R. Post-combustion CO₂ capture using solid sorbents: A review. *Ind. Eng. Chem. Res.* 2012, *51*, 1438-1463.
- [9] Abanades, J.; Rubin E.; Anthony, E. Sorbent cost and performance in CO₂ capture systems. *Ind. Eng. Chem. Res.* 2004, 43, 3462-3466.
- [10] Erto, A.; Lancia, A.; Musmarra, D. A Real Adsorbed Solution Theory model for competitive multicomponent liquid adsorption onto granular activated carbon. *Micropor. Mesopor. Mater.* 2012, 154, 45-50.
- [11] Whaby, A.; Ramos-Fernández, J.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Silvestre Albero, J.; Rodríguez-Reinoso, F. High-surface-area carbon molecular sieves for selective CO₂ adsorption. *ChemSusChem* 2010, *3*, 974-981.
- [12] Sanz, R.; Calleja, G.; Arenciba, A.; Sanz-Pérez, E.S. Development of high efficiency adsorbents for CO₂ capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A 2013, 1(6), 1956-1962.
- [13] Wahby, A.; Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. CO₂ adsorption on carbon molecular sieves. *Micropor. Mesopor. Mater.* 2012, *164*, 280-287.
- [14] Liu, Y.; Wilcox, J. Effects of Surface Heterogeneity on the Adsorption of CO₂ in microporous Carbons. *Environ. Sci. Technol.* 2012, 46, 1940-1947.
- [15] Plaza, M.; Pevida, C.; Pis, J.; Rubiera, F. Evaluation of the cyclic capacity of low-cost adsorbent for post-combustion CO₂ capture. *Energy Procedia* **2011**, *4*, 1228-1234.
- [16] Gomes, V.; Yee, K. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. *Sep. Purif. Technol.* **2002**, *28*, 161-171.
- [17] Balsamo, M.; Budinova, T.; Erto, A.; Lancia, A.; Petrova, B.; Petrov, N.; Tsyntsarski, B. CO₂ adsorption onto synthetic activated carbon: kinetic, thermodynamic and regeneration studies. *Sep. Purif. Technol.* **2013**, *116*, 214-221.
- [18] Sayari, A.;. Belmabkhout, Y; Serna-Guerrero, R. Flue gas treatment via CO₂ adsorption. *Chem. Eng. J.* 2011, 171, 760-774.
- [19] Yang, R.; Liu, G.; Li, M.; Zhang, J.; Hao, X. Preparation and N₂, CO₂ and H₂ adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem.

Micropor. Mesopor. Mater. 2012, 158, 108–116.

- [20] Shen, C.; Grande, C.; Li, P.; Yu, J.; Rodrigues, A. Adsorption equilibria and kinetics of CO₂ and N₂ on activated carbon beads. *Chem. Eng. J.* **2010**, *160*, 398-407.
- [21] Marsh, H.; Rodríguez-Reinoso, F. *Activated Carbon*, Elsevier Science & Technology Books: Amsterdam, 2006.
- [22] Ello, A. S.; de Souza, L. K.; Trokourey, A.; Jaroniec, M. Coconut shell-based microporous carbons for CO₂ capture. *Micropor. Mesopor. Mater.* 2013, 180, 280-283.
- [23] Vargas, D. P.; Giraldo, L.; Moreno-Piraján, J. C. CO₂ adsorption on granular and monolith carbonaceous materials. *J. Anal. Appl. Pyrol.* **2012**, *96*, 146–152.
- [24] Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO₂. *Appl. Energ.* 2013, *112*, 526-532.
- [25] Vargas, D.; Giraldo, L.; Moreno-Piraján, J. Activated carbon for CO₂ adsorption obtained through the chemical activation of African palm stone. *Adsorpt. Sci. Technol.* 2013, 31(9), 845-858.
- [26] Lee, S. Y.; Park, S. J. Determination of the optimal pore size for improved CO₂ adsorption in activated carbon fibers. *J. Colloid Interface Sci.* **2013**, *389(1)*, 230–235.
- [27] Vargas, D.; Giraldo, L.; Erto, A.; Moreno-Piraján, J. Chemical modification of activated carbon monoliths for CO₂ adsorption. *J. Therm. Anal. Calorim.* **2013**, *114(3)*, 1039-1047.
- [28] Sevilla, M.; Parra, J.; Fuertes, A. Assessment of the role of micropore size and N-doping in CO₂ capture by porous carbons. *Appl. Mater. Interf.* **2013**, *5(13)*, 6360-6368.
- [29] Sun, N.; Sun, C.; Liu, H.; Liu, J.; Stevens, L.; Drage, T.; Snape, C. E.; Li, K.; Wei W.; Sun, Y. Synthesis, characterization and evaluation of activated spherical carbon materials for CO₂ capture. *Fuel* 2013, *113*, 854-862.
- [30] Wickramaratne, N. P.; Jaroniec, M. Importance of small micropores in CO₂ capture by phenolic resin-based activated carbon spheres. J. *Mater. Chem. A* **2013**, *1*, 112-116.
- [31] Yin, G.; Liu, Z.; Liu, Q.; Wu, W. The role of different properties of activated carbon in CO₂ adsorption. *Chem. Eng. J.* **2013**, *230*, 133-140.
- [32] Balsamo, M.; Rodríguez-Reinoso, F.; Montagnaro, F.; Lancia, A., Erto, A. Highlighting the role of activated carbon particle size on CO₂ capture from model flue gas. *Ind. Eng. Chem.*

2
3
4
5
â
0
1
8
9
10
44
11
12
13
14
15
16
10
17
18
19
20
21
21
22
23
24
25
26
20
27
28
29
30
31
00
32
33
34
35
36
07
31
38
39
40
41
40
42
43
44
45
46
17
47
48
49
50
51
52
52
23
54
55
56
57
50
20
59
60

Res. **2013**, *52*, 12183–12191.

- [33] Dantas, T. L. P.; Luna, F. M. T.; Silva Jr., I. J.; de Azevedo, D. C. S.; Grande, C. A.; Rodrigues, A. E.; Moreira, R. F. P. M. Carbon dioxide–nitrogen separation through adsorption on activated carbon in a fixed bed. *Chem. Eng. J.* 2011, 169, 11-19.
- [34] García, S.; Gil, M.; Martín, C.; Pis, J.; Rubiera, F.; Pevida, C. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO₂ capture. *Chem. Eng. J.* 2011, *171*, 549-556.
- [35] Yong, Z.; Mata, V.; Rodrigues, A. Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. *Adsorption* **2001**, *7*, 41-50.
- [36] Silvestre-Albero, A.; Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Ethanol removal using activated carbon: Effect of porous structure. *Micropor. Mesopor. Mater.* 2009, 120, 62–68.
- [37] Garrido, J.; Linares-Solina, A.; Martin-Martinez, J.; Molina-Sabio, M.; Rodriguez-Reinoso, F.; Torregrosa, R. Use of nitrogen vs carbon dioxide in the characterization of activated carbons. *Langmuir* 1987, *3*, 76-81.
- [38] Martin-Martinez, J. M.; Torregosa-Macia, R.; Mittelmeijer-Hazeleger, M. C. Mechanisms of adsorption of CO₂ in the micropores of of activated anthracite. *Fuel* **1995**, *74*, 111-114.
- [39] Casco, M.; Martínez-Escandell, M.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Effect of the porous structure in carbon materials for CO₂ capture at atmospheric and high-pressure. *Carbon* 2014, 67, 230-235.
- [40] Cazorla-Amorós, D.; Alcañiz-Monge, J.; de la Casa-Lillo, M.; Linares-Solano, A. CO₂ as an adsorptive to characterize carbon molecular sieves and activated carbons. *Langmuir* 1998, 14(16), 4589–4596.
- [41] Zhang, Z.; Zhou, J.; Xing, W.; Xue, Q.; Yan, Z.; Zhuo, S.; Zhang Qiao, S. Critical role of small micropores in high CO₂ uptake. *Phys. Chem. Chem. Phys.* 2013, 15, 2523-2529.
- [42] Ruthven, D. *Principles of adsorption and adsorption processes*; John Wiley & Sons:New York, 1984.

425