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3 Departamento de Estadı́stica, Matemáticas e Informática, Universidad Miguel Hernández de Elche, 03202 Alacant, Spain

Correspondence should be addressed to Joan-Josep Climent; jcliment@ua.es

Received 9 October 2013; Accepted 17 March 2014; Published 17 April 2014

Academic Editor: Masoud Hajarian

Copyright © 2014 Joan-Josep Climent et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a method to iteratively construct new bent functions of 𝑛 + 2 variables from a bent function of 𝑛 variables and its cyclic
shift permutations usingminterms of 𝑛 variables andminterms of 2 variables. In addition, we provide the number of bent functions
of 𝑛 + 2 variables that we can obtain by applying the method here presented, and finally we compare this method with a previous
one introduced by us in 2008 and with the Rothaus and Maiorana-McFarland constructions.

1. Introduction

Boolean functions are widely used in different types of
cryptographic applications, such as block ciphers, stream
ciphers, and hash functions [1–3], and in coding theory [4, 5],
among others. For example, the implementation of an S-box
needs nonlinear Boolean functions to resist attacks such as
the linear and differential cryptanalysis [6–9]. For an even
number of variables, Boolean functions bearing maximum
nonlinearity are called bent functions [10, 11]. The construc-
tion of one-to-one S-boxes so that any linear combination of
the output functions is balanced has already been explained
[12, 13] and also the issue of making such linear combination
a bent function [14]. However, no conclusive approaches have
been presented yet for the construction of all S-boxes so
that they satisfy the property that any linear combination of
the outputs is also bent. It is precisely for this reason that a
thorough study of the properties of bent functions as well as
of the methods to construct them has occupied the minds of
many authors in the last decades (see, e.g., [9, 11, 15–35] and
the references therein).

Bent functions constitute a fascinating issue in cryp-
tography but, unfortunately, there is a mist hovering over
their properties, their classification, and their actual number.
The origin of the concept of bent function takes us back to
a theoretical article by McFarland [36] where he discussed
difference sets in finite noncyclic groups. Dillon [24], a
year later, systematized and further elaborated McFarland’s
insights and provided proofs for a great number of properties;
Dillon’s Ph.D. dissertation has been an excellent source in the
field of bent functions up to themid 1970s. But it was Rothaus
[37] who came up with the name for the concept. These
functions are called perfect nonlinear Boolean functions by
Meier and Staffelbach [30].

There are different ways to obtain bent functions; most of
them are based on the algebraic normal form of a Boolean
function and the Walsh transform. However, there are very
few constructions of bent functions based on the truth table
of Boolean functions, for example, the partial spread class
of bent functions introduced by Dillon [24]; moreover, from
the truth tables of linear functions and bent functions, it is
possible to construct bent functions with a greater number of
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variables [38]. But not all the bent functions in 6 variables can
be obtained from bent functions and linear functions with a
smaller number of variables, as proved by Chang [21]. Hou
and Langevin [28] described how, from a well-known bent
function, new bent functions can be obtained with the same
number of variables.

Charnes et al. [39, 40] discovered a surprising relation
with the classical invariant theory. Qu et al. [41] have
found, by computer enumeration, an interesting class of bent
functions with 6 variables. Carlet and Guillot [19], Dobbertin
[25], Kumar et al. [29], and Langevin [42] have analyzed some
bent function constructions, characterizations, properties,
and generalizations. Tokareva [34] introduces lower bound
on the number of bent functions that can be obtained by the
iterative constructions proposed by Canteaut and Charpin
[43].

A general method for generating all bent functions is
not known to exist yet, except for some particular cases.
For example, it is well known that, for 𝑛 = 4, there are
only 896 different bent functions, for 𝑛 = 6, Preneel [32]
(see also [21]) proved that the number of different bent
functions is 5 425 430 528, and, for 𝑛 = 8, Langevin
and Leander [44] proved recently that the number of bent
functions is 99 270 589 265 934 370 305 785 861 242 880.
Nevertheless, the classification and counting for 𝑛 > 8 is still
an open problem.

We refer the reader to the two excellent surveys in [18]
and [23, Chapter 5] about bent functions.

The mentioned literature so far makes an intensive use of
the representation of Boolean functions either in polynomial
form, in matrix form, or in sequential form. Nevertheless,
the classical concept of minterm, which, by the way, is
directly related to the implementation of logic circuits and
its complexity, has not been frequently applied (see [22]).
This paper purports to practically generate bent functions
using the representation of Boolean functions as a sum of
minterms.

The use of the algebraic normal form or the truth table
or both has its advantages and disadvantages. For example,
the algebraic normal form of a Boolean function 𝑓(x) of 𝑛
variables provides directly its degree, and, if it is greater than
𝑛/2, we can ensure that 𝑓(x) is not a bent function [37];
nevertheless, we do not know the cardinality of its support
(i.e., the number ofminterms). On the other hand, if we know
the truth table of 𝑓(x), then we know if its support has the
necessary number of elements to be a bent function, although
we do not know its degree.

The remainder of the paper is organized as follows. In
Section 2, we present some basic definitions and notations
used. In Section 3, we introduce a general method for the
construction of bent functions of 𝑛 + 2 variables using a
bent function of 𝑛 variables and some of its shifts; we also
introduce some other important results required to prove the
main theorems. In Section 4, we present the necessary results
to count the number of bent functionswe can construct based
on themethoddealt with in Section 3. Finally, in Section 5,we
show that our construction generates bent functions which
are not Rothaus or Maiorana-McFarland type (see, e.g., [29,
37]); we also show that the construction introduced in this

paper is basically different from the construction introduced
in [22] and we compute the number of bent functions we
can obtain using one construction but not by the other one.
In addition, we summarize the number of bent functions
obtained by the different methods here considered.

2. Preliminaries

Consider the binary field Z
2
with the addition modulo 2

(denoted by ⊕) and the multiplication modulo 2. For any
positive integer 𝑛, it is well known that Z𝑛

2
is a linear space

over Z
2
with the addition ⊕ given by

a ⊕ b = (𝑎
1
⊕ 𝑏
1
, 𝑎
2
⊕ 𝑏
2
, . . . , 𝑎

𝑛
⊕ 𝑏
𝑛
) , (1)

for a = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) and b = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) in Z𝑛

2
. Also, we

consider the inner product

⟨a, b⟩ = 𝑎1𝑏1 ⊕ 𝑎2𝑏2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎𝑛𝑏𝑛, (2)

of a and b. Furthermore, we say that a < b if there exists 𝑘
(with 1 ≤ 𝑘 ≤ 𝑛) such that

𝑎
1
= 𝑏
1
, 𝑎

2
= 𝑏
2
, . . . , 𝑎

𝑘−1
= 𝑏
𝑘−1

with 𝑎
𝑘
= 0, 𝑏

𝑘
= 1.

(3)

So, we can order the elements e
0
, e
1
, . . . , e

2
𝑛
−1
∈ Z𝑛
2
such that

e
0
< e
1
< ⋅ ⋅ ⋅ < e

2
𝑛
−1
. (4)

Furthermore, if e
𝑖
= (𝜖
(𝑖)

1
, 𝜖
(𝑖)

2
, . . . , 𝜖

(𝑖)

𝑛
) ∈ Z𝑛
2
, then

𝜖
(𝑖)

1
2
𝑛−1
+ 𝜖
(𝑖)

2
2
𝑛−2
+ ⋅ ⋅ ⋅ + 𝜖

(𝑖)

𝑛−1
2
1
+ 𝜖
(𝑖)

𝑛
2
0
= 𝑖 ∈ Z

2
𝑛 (5)

and we call the vector e
𝑖
the binary expansion of the integer

𝑖. With this representation, we can identify the vector e
𝑖
with

the integer 𝑖 and, consequently, we can identify the setZ𝑛
2
with

the set Z
2
𝑛 .

A Boolean function of 𝑛 variables is a map 𝑓 : Z𝑛
2
→ Z
2
.

The set B
𝑛
of all Boolean functions of 𝑛 variables is a linear

space over Z
2
with the addition ⊕ given by

(𝑓 ⊕ 𝑔) (x) = 𝑓 (x) ⊕ 𝑔 (x) , (6)

for 𝑓, 𝑔 ∈ B
𝑛
. For a function 𝑓 ofB

𝑛
, the (0, 1)-sequence of

length 2𝑛,

𝜉
𝑓
= (𝑓 (e

0
) , 𝑓 (e

1
) , . . . , 𝑓 (e

2
𝑛
−1
)) , (7)

is called the truth table of 𝑓. The truth table of a Boolean
function can be obtained by its minterms. A minterm on 𝑛
variables 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
is an expression of the form

𝑚
(𝑢
1
,𝑢
2
,...,𝑢
𝑛
)
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

= (1 ⊕ 𝑢
1
⊕ 𝑥
1
) (1 ⊕ 𝑢

2
⊕ 𝑥
2
) ⋅ ⋅ ⋅ (1 ⊕ 𝑢

𝑛
⊕ 𝑥
𝑛
) ,

(8)

where (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ Z𝑛
2
.

For 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1, it is evident that 𝑚e
𝑖

(x) = 1 if
and only if x = e

𝑖
. We will write 𝑚

𝑖
(x) instead of 𝑚e

𝑖

(x). So,
the truth table,

(𝑚
𝑖
(e
0
) , 𝑚
𝑖
(e
1
) , . . . , 𝑚

𝑖
(e
2
𝑛
−1
)) , (9)
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of 𝑚
𝑖
(x) has 1 in the 𝑖th position and 0 elsewhere. Conse-

quently,
2
𝑛

−1

⨁

𝑖=0

𝑚
𝑖
(x) = 1. (10)

Also, since𝑚
𝑖
(x) = 𝑚

𝑗
(x) if and only if 𝑖 = 𝑗, we can identify

the minterm𝑚
𝑖
(x) with the integer 𝑖 (or with the vector e

𝑖
as

best suited).
Now, for all 𝑓 ∈B

𝑛
, it is well known that

𝑓 (x) =
2
𝑛

−1

⨁

𝑖=0

𝑓 (e
𝑖
)𝑚
𝑖
(x) (11)

and since the identity
2
𝑛

−1

⨁

𝑖=0

𝑎
𝑖
𝑚
𝑖
(x) = 0 (12)

implies 𝑎
𝑖
= 0 for 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1, we can state that the

set {𝑚
0
, 𝑚
1
, . . . , 𝑚

2
𝑛
−1
} is a basis ofB

𝑛
.

For all 𝑓 ∈B
𝑛
, we call the support of 𝑓 the set

𝑀 = {a ∈ Z
𝑛

2
| 𝑓 (a) = 1} or 𝑀 = {𝑖 ∈ Z

2
𝑛 | 𝑓 (e

𝑖
) = 1} ,

(13)

according to expression (11) and the identification ofZ𝑛
2
with

Z
2
𝑛 . So, we can identify 𝑀 as the set of minterms of 𝑓(x).

Therefore, we can rewrite expression (11) as

𝑓 (x) =⨁
𝑖∈𝑀

𝑚
𝑖
(x) , (14)

where𝑀 ⊆ Z𝑛
2
or𝑀 ⊆ Z

2
𝑛 as best suited.

The Hamming weight of a (0, 1)-sequence 𝛼, denoted by
𝑤(𝛼), is the number of 1s in 𝛼. The Hamming weight of a
Boolean function 𝑓(x), denoted by 𝑤(𝑓), is the Hamming
weight of its truth table 𝜉

𝑓
; that is, 𝑤(𝑓) = 𝑤(𝜉

𝑓
),

and consequently, 𝑤(𝑓) is the number of minterms in the
expression of 𝑓(x) taken as a sum of minterms. A (0, 1)-
sequence is balanced if it contains an equal number of 0s
and 1s, so a function 𝑓 in B

𝑛
is balanced if its truth table

is balanced.
We say that 𝑓 ∈ B

𝑛
is an affine function if it takes the

form

𝑓 (x) = 𝑙a (x) ⊕ 𝑏, (15)

where a ∈ Z𝑛
2
, 𝑙a(x) = ⟨a, x⟩, and 𝑏 ∈ Z

2
. If 𝑏 = 0, 𝑓 is called

a linear function.
The nonlinearity of a function 𝑓 ∈B

𝑛
is defined as

NL (𝑓) = min {𝑑 (𝑓, 𝜑) | 𝜑 ∈ A
𝑛
} , (16)

where A
𝑛
⊆ B
𝑛
is the set of all affine functions and the

distance 𝑑(𝑓, 𝑔), for 𝑓, 𝑔 ∈ B
𝑛
, is defined as 𝑑(𝑓, 𝑔) = 𝑤(𝑓 ⊕

𝑔). The nonlinearity of 𝑓 ∈ B
𝑛
is upper bounded (see, e.g.,

[11, 18, 23, 30]) by

NL (𝑓) ≤ 2𝑛−1 − 2𝑛/2−1. (17)

The Boolean functions achieving the maximum nonlinearity
are called bent functions (see, e.g., [11, 18, 23, 30]). As a
consequence, bent functions only exist for 𝑛 even.

It is well know that the above upper bound on the
nonlinearity of a Boolean function of 𝑛 variables coincides
with the covering radius of the first order binary Reed-Muller
code of length 2𝑛 (see, e.g., [30, 45]).

The following result (see, e.g., [11, 46]) that we quote
for further references gives us a characterization of a bent
function.

Theorem 1. Let𝑓(x) be a function of 𝑛 variables.The following
statements are equivalent.

(1) 𝑓(x) is a bent function.
(2) The Boolean function 𝑓(x) ⊕ 𝑓(x ⊕ a) is balanced for

all a ∈ Z𝑛
2
\ {0}.

(3) The number of 1s in the truth table of the Boolean
function 𝑓(x) ⊕ 𝑙a(x) is 2𝑛−1 ± 2𝑛/2−1 for all a ∈ Z𝑛

2
.

Taking into account that, and as a consequence of the
previous theorem, if 𝑓(x) is a bent function of 𝑛 variables,
then the number of 1s in its truth table is 2𝑛−1 ±2𝑛/2−1; so that
𝑤(𝑓) = 2

𝑛−1
± 2
𝑛/2−1 and 𝑓(x) is not balanced. Equivalently,

𝑓(x) is expressed as a sum of 2𝑛−1 ± 2𝑛/2−1 minterms.
Finally, it is well known that for any bent function 𝑓(x),

the functions 1 ⊕ 𝑓(x) and 𝑓(x ⊕ u), for all u ∈ Z𝑛
2
, are also

bent functions.
Before moving onto the next section, remember that two

Boolean functions𝑓(x) and 𝑔(x) are called affine equivalent if
there exist an 𝑛×𝑛 invertible matrix𝐴, two vectors a, b ∈ Z𝑛

2
,

and a bit 𝑐 ∈ Z
2
such that 𝑔(x) = 𝑓(x𝐴 ⊕ a) ⊕ 𝑙b(x) ⊕ 𝑐.

It is known (see, e.g., [47]) that affine equivalent functions
are both bent or both not bent. So, many authors work on
the problem of finding the number and representatives of
affine equivalent classes of bent functions. Nevertheless, we are
interested in the problem of finding how many different bent
functions there exist or we can construct, because not all affine
equivalent bent functions are different as we can see in the
following example.

Example 2. Consider the bent function

𝑓 (x)=𝑚
0
(x) ⊕ 𝑚

1
(x) ⊕ 𝑚

2
(x) ⊕ 𝑚

4
(x) ⊕ 𝑚

8
(x) ⊕ 𝑚

15
(x) ,
(18)

of 4 variables; the invertible matrix

𝐴 =

[

[

[

[

0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0

]

]

]

]

, (19)

the vectors a = (0, 0, 0, 1), b = (0, 0, 0, 0), and the bit 𝑐 = 0. It
is easy to check that the Boolean functions𝑓(x𝐴⊕ a) ⊕ 𝑙b(x) ⊕
𝑐 and 𝑓(x) have both the same truth table and, consequently,
are the same Boolean function.

3. Main Results

In the rest of the paper, we consider that x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

is a vector of Z𝑛
2
and that y = (𝑦

1
, 𝑦
2
) is a vector of Z2

2
.
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Firstly, we introduce two important properties of the
minterms which allow us to construct functions of 𝑛 + 2
variables from functions of 𝑛 variables. In the first one,
for each minterm of 𝑛 variables, we obtain four different
minterms of 𝑛 + 2 variables.

Lemma 3 (see Lemma 1 of [22]). Suppose that 𝑎 ∈ Z
2
𝑛 and

𝑏 ∈ Z
2
2 . If 𝑚

𝑎
(x) is a minterm of 𝑛 variables and 𝑚

𝑏
(y) is

a minterm of 2 variables, then 𝑚
𝑐
(y, x) = 𝑚

𝑏
(y)𝑚
𝑎
(x) is a

minterm of 𝑛 + 2 variables, where

𝑐 = 𝑏
1
2
𝑛+1
+ 𝑏
2
2
𝑛
+ 𝑎, 𝑏 = 𝑏

1
2 + 𝑏
2
. (20)

The previous lemma tells us that the fourminterms of 𝑛 +
2 variables, which can be obtained from the minterm 𝑚

𝑎
(x)

of 𝑛 variables, are

𝑚
𝑎
(y, x) , 𝑚

2
𝑛
+𝑎
(y, x) ,

𝑚
2
𝑛+1
+𝑎
(y, x) , 𝑚

2
𝑛
+2
𝑛+1
+𝑎
(y, x) .

(21)

Note that if we use the vector representation for the indices of
the minterms, the four minterms of 𝑛 + 2 variables obtained
from the minterm𝑚a(x) of 𝑛 variables are

𝑚
(0,0,a) (y, x) , 𝑚

(0,1,a) (y, x) ,

𝑚
(1,0,a) (y, x) , 𝑚

(1,1,a) (y, x) .
(22)

Furthermore, minterms have the following property that
makes them operative from the algebraic point of view.

Lemma 4. One has𝑚u(x ⊕ k) = 𝑚u⊕k(x) for all u, k ∈ Z𝑛
2
.

Proof. Assume that

u = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) , k = (V

1
, V
2
, . . . , V

𝑛
) ; (23)

then

𝑚u (x ⊕ k) = (1 ⊕ 𝑢
1
⊕ 𝑥
1
⊕ V
1
) (1 ⊕ 𝑢

2
⊕ 𝑥
2
⊕ V
2
)

⋅ ⋅ ⋅ (1 ⊕ 𝑢
𝑛
⊕ 𝑥
𝑛
⊕ V
𝑛
) = 𝑚u⊕k (x) .

(24)

The following theorem is the main result of this paper.
Here, we present a construction of bent functions of 𝑛 + 2
variables from a bent function 𝑓(x) of 𝑛 variables and some
cyclic shifts of 𝑓(x).

Theorem 5. Let 𝑓(x) be a bent function of 𝑛 variables and
consider u, k ∈ Z𝑛

2
. If 𝜎 is any permutation of {0, 1, 2, 3}, then

𝐵 (y, x) = 𝑚
𝜎(0)

(y) 𝑓 (x) ⊕ 𝑚
𝜎(1)

(y) 𝑓 (x ⊕ u)

⊕ 𝑚
𝜎(2)

(y) 𝑓 (x ⊕ k)

⊕ 𝑚
𝜎(3)

(y) (1 ⊕ 𝑓 (x ⊕ u ⊕ k))

(25)

is a bent function of 𝑛 + 2 variables.

Proof. According toTheorem 1 we must prove that the Bool-
ean function,

𝐵
(b,a) (y, x) = 𝐵 (y, x) ⊕ 𝐵 ((y, x) ⊕ (b, a)) , (26)

is balanced for all (b, a) ∈ Z2
2
×Z𝑛
2
with (b, a) ̸= (0

2
, 0
𝑛
). In the

following, we use the vector b = (𝑏
1
, 𝑏
2
) ∈ Z2
2
as the argument

of the functions and its integer representation 𝑏 = 𝑏
1
2 + 𝑏
2
∈

Z
2
2 as subindex of a minterm. So, by Lemma 4,

𝐵
(b,a) (y, x) = 𝐵 (y, x) ⊕ 𝐵 (y ⊕ b, x ⊕ b)

= 𝑚
𝜎(0)

(y) 𝑓 (x)

⊕ 𝑚
𝜎(1)

(y) 𝑓 (x ⊕ u) ⊕ 𝑚
𝜎(2)

(y) 𝑓 (x ⊕ k)

⊕ 𝑚
𝜎(3)

(y) (1 ⊕ 𝑓 (x ⊕ u ⊕ k))

⊕ 𝑚
𝜎(0)⊕𝑏

(y) 𝑓 (x ⊕ a)

⊕ 𝑚
𝜎(1)⊕𝑏

(y) 𝑓 (x ⊕ u ⊕ a)

⊕ 𝑚
𝜎(2)⊕𝑏

(y) 𝑓 (x ⊕ k ⊕ a)

⊕ 𝑚
𝜎(3)⊕𝑏

(y) (1 ⊕ 𝑓 (x ⊕ u ⊕ k ⊕ a)) .
(27)

Now, for each 𝑏 ∈ Z
2
2 , if we denote by 𝜇

𝑏
the permutation

of {0, 1, 2, 3} given by

𝜇
𝑏
(𝑖) = 𝜎 (𝑖) ⊕ 𝑏 for 𝑖 = 0, 1, 2, 3, (28)

then it is not difficult to prove that the 4!⋅4 cases, correspond-
ing to the different values of 𝜎 and 𝑏, are reduced to one of the
following four cases for some permutation 𝜂 of {0, 1, 2, 3}.

(1) Consider

𝐵
(b,a) (y, x)

= 𝑚
𝜂(0)

(y) (𝑓 (x) ⊕ 𝑓 (x ⊕ a))

⊕ 𝑚
𝜂(1)

(y) (𝑓 (x ⊕ u) ⊕ 𝑓 (x ⊕ u ⊕ a))

⊕ 𝑚
𝜂(2)

(y) (𝑓 (x ⊕ k) ⊕ 𝑓 (x ⊕ k ⊕ a))

⊕ 𝑚
𝜂(3)

(y) (𝑓 (x ⊕ u ⊕ k) ⊕ 𝑓 (x ⊕ u ⊕ k ⊕ a)) .
(29)

(2) Consider

𝐵
(b,a) (y, x)

= 𝑚
𝜂(0)

(y) (𝑓 (x) ⊕ 𝑓 (x ⊕ u ⊕ a))

⊕ 𝑚
𝜂(1)

(y) (𝑓 (x ⊕ u) ⊕ 𝑓 (x ⊕ a))

⊕ 𝑚
𝜂(2)

(y) (𝑓 (x ⊕ k) ⊕ 𝑓 (x ⊕ u ⊕ k ⊕ a) ⊕ 1)

⊕ 𝑚
𝜂(3)

(y) (𝑓 (x ⊕ u ⊕ k) ⊕ 𝑓 (x ⊕ k ⊕ a) ⊕ 1) .
(30)
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(3) Consider

𝐵
(b,a) (y, x)

= 𝑚
𝜂(0)

(y) (𝑓 (x) ⊕ 𝑓 (x ⊕ k ⊕ a))

⊕ 𝑚
𝜂(1)

(y) (𝑓 (x ⊕ u) ⊕ 𝑓 (x ⊕ u ⊕ k ⊕ a) ⊕ 1)

⊕ 𝑚
𝜂(2)

(y) (𝑓 (x ⊕ k) ⊕ 𝑓 (x ⊕ a))

⊕ 𝑚
𝜂(3)

(y) (𝑓 (x ⊕ u ⊕ k) ⊕ 𝑓 (x ⊕ u ⊕ a) ⊕ 1) .

(31)

(4) Consider

𝐵
(b,a) (y, x)

= 𝑚
𝜂(0)

(y) (𝑓 (x) ⊕ 𝑓 (x ⊕ u ⊕ k ⊕ a) ⊕ 1)

⊕ 𝑚
𝜂(1)

(y) (𝑓 (x ⊕ u) ⊕ 𝑓 (x ⊕ k ⊕ a))

⊕ 𝑚
𝜂(2)

(y) (𝑓 (x ⊕ k) ⊕ 𝑓 (x ⊕ u ⊕ a))

⊕ 𝑚
𝜂(3)

(y) (𝑓 (x ⊕ u ⊕ k) ⊕ 𝑓 (x ⊕ a) ⊕ 1) .

(32)

Observe that each one of the factors which multiply to
𝑚
𝜂(𝑖)
(y) for 𝑖 = 0, 1, 2, 3 can be written as

𝑓 (z) ⊕ 𝑓 (z ⊕ a) or 𝑓 (z) ⊕ 𝑓 (z ⊕ a) ⊕ 1

for z ∈ {x, x ⊕ u, x ⊕ k, x ⊕ u ⊕ k} .
(33)

Now, by Theorem 1, since 𝑓(z) ⊕ 𝑓(z ⊕ a) is balanced for
all nonzero a, we have that 𝐵

(b,a)(y, x) is balanced, unless a =
b = 0.

Note that, as a consequence of Lemma 4, if 𝑀 is the
support of 𝑓(x), then

𝑀w = {a ⊕ w | a ∈ 𝑀} (34)

is the support of 𝑓(x ⊕ w) for all w ∈ Z𝑛
2
. Furthermore, as

a consequence of Lemma 3, if we use the decimal notation
for the indices of the minterms and consider the permutation
(
0 2
𝑛

2
𝑛+1

2
𝑛

+2
𝑛+1

𝑏
0
𝑏
1
𝑏
2
𝑏
3

), then the support of the bent function
𝐵(y, x) constructed inTheorem 5 is the set

{𝑏
0
+ 𝑎 | 𝑎 ∈ 𝑀} ∪ {𝑏

1
+ 𝑎 | 𝑎 ∈ 𝑀u}

∪ {𝑏
2
+ 𝑎 | 𝑎 ∈ 𝑀k} ∪ {𝑏3 + 𝑎 | 𝑎 ∈ 𝑀u⊕k} .

(35)

Nevertheless, if we use the vector notation for the
indices of the minterms and consider the permutation
(
(0,0) (0,1) (1,0) (1,1)

b
0

b
1

b
2

b
3

), then the support of 𝐵(y, x) is the set

{(b
0
, a) | a ∈ 𝑀} ∪ {(b

1
, a) | a ∈ 𝑀u}

∪ {(b
2
, a) | a ∈ 𝑀k} ∪ {(b3, a) | a ∈ 𝑀u⊕k} .

(36)

Note that the sets of expression (35) (resp., (36)) are pairwise
disjoints by Lemma 3.

4. Counting Bent Functions

In this section we introduce some results in order to com-
pute the number of bent functions we can construct using
Theorem 5. Firstly, we consider three particular cases (see
Corollaries 6, 7, and 8) which we can derive directly from
Theorem 5. The first one corresponds to the case u = k = 0;
the second one to the case u = k ̸= 0, and the third one to the
case 0 ̸=u ̸= k ̸= 0.

Corollary 6. If 𝑓(x) is a bent function of 𝑛 variables and 𝜎 is
any permutation of {0, 1, 2, 3}, then

𝐹
𝑓
(y, x) = (𝑚

𝜎(0)
(y) ⊕ 𝑚

𝜎(1)
(y) ⊕ 𝑚

𝜎(2)
(y))

× 𝑓 (x) ⊕ 𝑚
𝜎(3)

(y) (1 ⊕ 𝑓 (x))
(37)

is a bent function of 𝑛 + 2 variables.

Corollary 7. If 𝑓(x) is a bent function of 𝑛 variables, u ∈ Z𝑛
2
\

{0}, and 𝜎 is any permutation of {0, 1, 2, 3}, then

𝐺
𝑓,u (y, x) = 𝑚𝜎(0) (y) 𝑓 (x) ⊕ (𝑚𝜎(1) (y) ⊕ 𝑚𝜎(2) (y))

× 𝑓 (x ⊕ u) ⊕ 𝑚
𝜎(3)

(y) (1 ⊕ 𝑓 (x))
(38)

is a bent function of 𝑛 + 2 variables.

Corollary 8. If 𝑓(x) is a bent function of 𝑛 variables, u, k ∈
Z𝑛
2
\ {0}, with u ̸= k, and 𝜎 is any permutation of {0, 1, 2, 3},

then

𝐻
𝑓,u,k (y, x) = 𝑚𝜎(0) (y) 𝑓 (x) ⊕ 𝑚𝜎(1) (y) 𝑓 (x ⊕ u)

⊕ 𝑚
𝜎(2)

(y) 𝑓 (x ⊕ k)

⊕ 𝑚
𝜎(3)

(y) (1 ⊕ 𝑓 (x ⊕ u ⊕ k))

(39)

is a bent function of 𝑛 + 2 variables.

The following result establishes that the bent functions
constructed in Corollary 6 are all different from one another.

Lemma 9. Let 𝑓(x) and 𝑔(x) be bent functions of 𝑛 variables.
Assume that 𝐹

𝑓
(y, x) is the bent function constructed in

Corollary 6 using 𝑓(x) and the permutation 𝜎 of {0, 1, 2, 3}.
Assume also that 𝐹

𝑔
(y, x) is the bent function constructed in

Corollary 6 using 𝑔(x) and the permutation 𝜏 of {0, 1, 2, 3}. If
𝑓(x) ̸= 𝑔(x), then 𝐹

𝑓
(y, x) ̸= 𝐹

𝑔
(y, x).

Proof. If 𝜉 and 𝜂 are the truth tables of 𝑓(x) and 𝑔(x),
respectively, then the truth tables of𝐹

𝑓
(y, x) and𝐹

𝑔
(y, x) have

four blocks (not necessarily in that order and not the same
order for all):

𝐹
𝑓
: 𝜉 𝜉 𝜉 1 ⊕ 𝜉

𝐹
𝑔
: 𝜂 𝜂 𝜂 1 ⊕ 𝜂. (40)

If 𝐹
𝑓
(y, x) = 𝐹

𝑔
(y, x), then the four blocks of the

second row are a permutation of the four blocks of the first
row. But if we consider the 4! cases corresponding to these
permutations, we obtain that 𝑓(x) = 𝑔(x), or that 𝑓(x)
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and 𝑔(x) both have the same number of minterms and the
complementary number of minterms. So, in all cases, we
obtain a contradiction and, therefore, 𝐹

𝑓
(y, x) ̸= 𝐹

𝑔
(y, x).

Our next result, whose proof is similar to the previ-
ous one, establishes that the bent functions constructed in
Corollary 7 are all different from one another.

Lemma 10. Let𝑓(x) and 𝑔(x) be bent functions of 𝑛 variables.
Assume that 𝐺

𝑓,u(y, x) is the bent function constructed in
Corollary 7 using 𝑓(x), the vector u ∈ Z𝑛

2
\ {0}, and the

permutation 𝜎 of {0, 1, 2, 3}. Assume also that 𝐺
𝑔,a(y, x) is the

bent function constructed in Corollary 7 using 𝑔(x), the vector
a ∈ Z𝑛

2
\{0}, and the permutation 𝜏 of {0, 1, 2, 3}. If𝑓(x) ̸= 𝑔(x),

then 𝐺
𝑓
(y, x) ̸= 𝐺

𝑔
(y, x).

The same result is not true for the bent functions
constructed using Corollary 8 as we can see in the following
example.

Example 11. Assume that 𝑛 = 2. Consider the vectors u = 1 =
(0, 1), k = 2 = (1, 0) and the bent function 𝑓(x) = 𝑚

0
(x).

Then, according to expression (10), Lemmas 3 and 4, and
Corollary 8, we have that

𝐻
𝑓,1,2 (y, x)

= 𝑚
0
(y) 𝑓 (x) ⊕ 𝑚

1
(y) 𝑓 (x ⊕ 1) ⊕ 𝑚

2
(y) 𝑓 (x ⊕ 2)

⊕ 𝑚
3
(y) (1 ⊕ 𝑓 (x ⊕ 3))

= 𝑚
0
(y)𝑚
0
(x) ⊕ 𝑚

1
(y)𝑚
1
(x) ⊕ 𝑚

2
(y)𝑚
2
(x)

⊕ 𝑚
3
(y) (1 ⊕ 𝑚

3
(x))

= 𝑚
0
(y, x) ⊕ 𝑚

5
(y, x) ⊕ 𝑚

10
(y, x) ⊕ 𝑚

12
(y, x)

⊕ 𝑚
13
(y, x) ⊕ 𝑚

14
(y, x)

(41)

is a bent function of 𝑛 + 2 = 4 variables.
On the other hand, consider the vectors a = 1 = (0, 1) and

b = 3 = (1, 1) and the bent function 𝑔(x) = 𝑚
1
(x). Again, by

expression (10), Lemmas 3 and 4, and Corollary 8, we have
that

𝐻
𝑔,1,3 (y, x)

= 𝑚
1
(y) 𝑔 (x) ⊕ 𝑚

0
(y) 𝑔 (x ⊕ 1)

⊕ 𝑚
2
(y) 𝑔 (x ⊕ 3) ⊕ 𝑚

3
(y) (1 ⊕ 𝑔 (x ⊕ 2))

= 𝑚
0
(y, x) ⊕ 𝑚

5
(y, x) ⊕ 𝑚

10
(y, x)

⊕ 𝑚
12
(y, x) ⊕ 𝑚

13
(y, x) ⊕ 𝑚

14
(y, x) ,

(42)

is a bent function of 𝑛 + 2 = 4 variables. Clearly𝐻
𝑔,1,3(y, x) =

𝐻
𝑓,1,2(y, x).

Note that, in the previous example, 𝑔(x) = 𝑓(x ⊕ 1) and
that {1, 2} and {1, 3} are bases of the same linear subspace
{0, 1, 2, 3} of Z2

2
. With the aim to avoid this situation which

provides equal bent functions, we will consider only vectors
u, k ∈ Z𝑛

2
such that {u, k} is aGauss-Jordan basis of cardinality

2. Remember that a set {u
1
, u
2
, . . . , u

𝑘
} ⊆ Z𝑛

2
is a Gauss-

Jordan basis of cardinality 𝑘 if the matrix whose rows are
u
1
, u
2
, . . . , u

𝑘
is in reduced row echelon form (see also [48,

49]).
So, our next result establishes that the bent functions

constructed in Corollary 8 are all different if {u, k} is a Gauss-
Jordan basis of cardinality 2 of Z𝑛

2
.

Lemma 12. Let𝑓(x) and 𝑔(x) be bent functions of 𝑛 variables.
Assume that 𝐻

𝑓,u,k(y, x) is the bent function constructed
in Corollary 8 using 𝑓(x), the Gauss-Jordan basis {u, k} of
cardinality 2 of Z𝑛

2
, and the permutation 𝜎 of {0, 1, 2, 3}.

Assume also that 𝐻
𝑔,a,b(y, x) is the bent function constructed

in Corollary 8 using 𝑔(x), the Gauss-Jordan basis {a, b} of
cardinality 2 of Z𝑛

2
, and the permutation 𝜏 of {0, 1, 2, 3}. If

𝑓(x) ̸= 𝑔(x), then𝐻
𝑓,u,k(y, x) ̸=𝐻

𝑔,a,b(y, x).

Proof. If 𝜉 and 𝜂 are the truth tables of 𝑓(x) and 𝑔(x), respec-
tively, then the truth tables of𝐻

𝑓,u,k(y, x) and𝐻𝑔,a,b(y, x) have
four blocks (not necessarily in that order and not the same
order for all):

𝐻
𝑓,u,k : 𝜉 𝜉u 𝜉k 1 ⊕ 𝜉u⊕k

𝐻
𝑔,a,b : 𝜂 𝜂a 𝜂b 1 ⊕ 𝜂a⊕b,

(43)

where 𝜉u, 𝜉k, 𝜉u⊕k, 𝜂a, 𝜂b, and 𝜂a⊕b are the truth tables of𝑓(x⊕
u), 𝑓(x ⊕ k), 𝑓(x ⊕ u ⊕ k), 𝑔(x ⊕ a), 𝑔(x ⊕ b), and 𝑔(x ⊕ a ⊕ b),
respectively.

If 𝐻
𝑓,u,k(y, x) = 𝐻

𝑔,a,b(y, x), then the four blocks of the
second row are a permutation of the four blocks of the first
row. But if we consider the 4! cases corresponding to these
permutations, we obtain that 𝑓(x) = 𝑔(x) or that 𝑓(x)
and 𝑔(x) both have the same number of minterms and the
complementary number of minterms, or that

(a, b) ∈ {(u, u ⊕ k) , (k, u ⊕ k) , (u ⊕ k, u) , (u ⊕ k, k)} ; (44)

note that if {u, k} is a Gauss-Jordan basis of cardinality 2,
then {a, b} cannot be a Gauss-Jordan basis of cardinality 2.
So, in all cases we obtain a contradiction and, therefore,
𝐻
𝑓,u,k(y, x) ̸=𝐻

𝑔,a,b(y, x).

Our next result establishes that none of the bent func-
tions, obtained by one of Corollaries 6, 7, and 8, can be
obtained by any of the others involved.

Lemma 13. Let 𝑓(x), 𝑔(x), and ℎ(x) be three bent functions
of 𝑛 variables (not necessarily different). Assume that 𝐹

𝑓
(y, x)

is the bent function constructed in Corollary 6 using 𝑓(x) and
the permutation 𝜎 of {0, 1, 2, 3}. Assume that 𝐺

𝑔,u(y, x) is the
bent function constructed in Corollary 7 using 𝑔(x), the vector
u ∈ Z𝑛

2
\ {0}, and the permutation 𝜏 of {0, 1, 2, 3}. Assume also

that𝐻
ℎ,a,b(y, x) is the bent function constructed in Corollary 8

using ℎ(x), the Gauss-Jordan basis {a, b} of cardinality 2 ofZ𝑛
2
,

and the permutation𝜔 of {0, 1, 2, 3}.Then𝐹
𝑓
(y, x) ̸= 𝐺

𝑔,u(y, x),
𝐹
𝑓
(y, x) ̸=𝐻

ℎ,a,b(y, x), and 𝐺𝑔,u(y, x) ̸=𝐻
ℎ,a,b(y, x).

Proof. If 𝜉, 𝜂, and 𝜁 are the truth tables of 𝑓(x), 𝑔(x), and
ℎ(x), respectively, then the truth tables of 𝐹

𝑓
(y, x), 𝐺

𝑔,u(y, x),
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and𝐻
ℎ,u,k(y, x) have four blocks (not necessarily in that order

and not the same order for all):

𝐹
𝑓
: 𝜉 𝜉 𝜉 1 ⊕ 𝜉

𝐺
𝑔,u : 𝜂 𝜂u 𝜂u 1 ⊕ 𝜂

𝐻
ℎ,a,b : 𝜁 𝜁a 𝜁b 1 ⊕ 𝜁a⊕b,

(45)

where 𝜂u, 𝜁a, 𝜁b, and 𝜁a⊕b are the truth tables of 𝑔(x ⊕ u),
ℎ(x ⊕ a), ℎ(x ⊕ b), and ℎ(x ⊕ a ⊕ b), respectively.

The result is now evident because 𝐹
𝑓
(y, x) has three

identical blocks, 𝐺
𝑔,u(y, x) has only two identical blocks, and

all the blocks of𝐻
ℎ,a,b(y, x) are different.

Now, as a consequence of the previous lemmas, we can
obtain the number of bent functions of 𝑛+2 variables that we
can construct using Corollaries 6, 7, and 8.

Theorem 14. If ]
𝑛
is the number of bent functions of 𝑛

variables, then using Corollaries 6, 7, and 8 one can construct
2
2𝑛+2]
𝑛
different bent functions of 𝑛 + 2 variables.

Proof. According to Lemma 9, using Corollary 6, we can
construct

4!

3!

]
𝑛
, (46)

bent functions of 𝑛 + 2 variables.
Similarly, according to Lemma 10, using Corollary 7, we

can construct

4!

2!

]
𝑛
(2
𝑛
− 1) , (47)

bent functions of 𝑛 + 2 variables.
Finally, according to Lemma 12, using Corollary 8, we can

construct

4!]
𝑛
𝑁(𝑛, 2) , (48)

bent functions of 𝑛 + 2 variables where𝑁(𝑛, 2) is the number
of Gauss-Jordan basis of cardinality 2 inZ𝑛

2
. Now, taking into

account that each linear subspace of dimension 2has a unique
Gauss-Jordan basis of cardinality 2, we have that𝑁(𝑛, 2) is the
number of linear subspaces of dimension 2 inZ𝑛

2
; so (see [50,

page 46])

𝑁(𝑛, 2) =

(2
𝑛
− 1) (2

𝑛
− 2)

(2
2
− 1) (2

2
− 2)

=

(2
𝑛
− 1) (2

𝑛−1
− 1)

3

. (49)

The result follows now by replacing expression (49)
in expression (48) and by adding expressions (46), (47),
and (48) because Lemma 13 guarantees that bent functions
constructed according to Corollaries 6, 7, and 8 are all
different from one another.

5. Comparison with Other Methods

Our examples now show some bent functions constructed
according to Corollaries 7 and 8 that are not Maiorana-
McFarland functions or Rothaus functions.

Example 15. Assume that 𝑛 = 2 and consider the bent
function 𝑓(x) = 𝑚

3
(x), the vector u = 3 = (1, 1), and the

permutation ( 0 1 2 3
3 1 2 0

). Then Corollary 7, expression (10), and
Lemmas 3 and 4 provide the bent function

𝐺 (y, x)

= 𝑚
3
(y)𝑚
3
(x) ⊕ (𝑚

1
(y) ⊕ 𝑚

2
(y))𝑚

0
(x)

⊕ 𝑚
0
(y) (1 ⊕ 𝑚

3
(x))

= 𝑚
15
(y, x) ⊕ 𝑚

4
(y, x) ⊕ 𝑚

8
(y, x)

⊕ 𝑚
0
(y, x) ⊕ 𝑚

1
(y, x) ⊕ 𝑚

2
(y, x)

= 1 ⊕ 𝑥
1
𝑥
2
⊕ 𝑦
1
𝑦
2
⊕ 𝑦
1
𝑥
1

⊕ 𝑦
1
𝑥
2
⊕ 𝑦
2
𝑥
1
⊕ 𝑦
2
𝑥
2
,

(50)

which is not a Maiorana-McFarland function.

Example 16. Assume that 𝑛 = 2 and consider the bent
function 𝑓(x) = 𝑚

1
(x), the vectors u = 2 = (1, 0),

k = 1 = (0, 1), and the permutation (
0 1 2 3

0 3 1 2
). Then

Corollary 8, expression (10), and Lemmas 3 and 4 provide the
bent function

𝐻(y, x)

= 𝑚
0
(y)𝑚
1
(x) ⊕ 𝑚

3
(y)𝑚
3
(x)

⊕ 𝑚
1
(y)𝑚
0
(x) ⊕ 𝑚

2
(y) (1 ⊕ 𝑚

2
(x))

= 𝑚
1
(y, x) ⊕ 𝑚

15
(y, x) ⊕ 𝑚

4
(y, x)

⊕ 𝑚
8
(y, x) ⊕ 𝑚

9
(y, x) ⊕ 𝑚

11
(y, x)

= 𝑥
2
⊕ 𝑥
1
𝑥
2
⊕ 𝑦
2
⊕ 𝑦
2
𝑥
1

⊕ 𝑦
1
⊕ 𝑦
1
𝑥
2
⊕ 𝑦
1
𝑥
1
,

(51)

which is not a Rothaus function, because it does not contain
the monomial 𝑦

1
𝑦
2
.

In [22] we introduced the following construction of bent
functions of 𝑛+2 variables using bent functions of 𝑛 variables
and the minterms of two variables.

Theorem 17. (1) (Corollary 1 of [22]). If𝑓(x) is a bent function
of 𝑛 variables and if 𝑖 ∈ {0, 1, 2, 3}, then

𝐴
𝑓
(y, x) = 𝑓 (x) ⊕ 𝑚

𝑖
(y) (52)

is a bent function of 𝑛 + 2 variables.
(2) (Corollary 2 of [22]). Let 𝑓

0
(x) and 𝑓

1
(x) be bent

functions of 𝑛 variables such that

𝑓
1
(x) ̸= 𝑓

0
(x) , 𝑓

1
(x) ̸= 1 ⊕ 𝑓

0
(x) . (53)

If 𝜎 is any permutation of {0, 1, 2, 3}, then

𝐵
𝑓
0
,𝑓
1

(y, x) = (𝑚
𝜎(0)

(y) ⊕ 𝑚
𝜎(1)

(y)) 𝑓
0
(x)

⊕ 𝑚
𝜎(2)

(y) 𝑓
1
(x) ⊕ 𝑚

𝜎(3)
(y) (1 ⊕ 𝑓

1
(x))

(54)

is a bent function of 𝑛 + 2 variables.
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In addition, we also establish [22, Theorem 3] that the
number of different bent functions of 𝑛 + 2 variables we can
construct using the previous theorem is

6]2
𝑛
− 8]
𝑛
, (55)

that is, 4]
𝑛

from Theorem 17(1) and 6]2
𝑛
− 12]

𝑛
from

Theorem 17(2).
According to expression (10) it is evident that Corollary 6

andTheorem 17(1) provide the same bent functions. It is also
evident that the bent functions constructed by Corollary 7
can be obtained byTheorem 17(2) if we take

(𝑓
0
(x) , 𝑓

1
(x)) = (𝑓 (x ⊕ u) , 𝑓 (x)) or

(𝑓
0
(x) , 𝑓

1
(x)) = (𝑓 (x ⊕ u) , 1 ⊕ 𝑓 (x)) .

(56)

In fact, for 𝑛 = 2, both constructions provide the same
bent functions of 𝑛 + 2 = 4 variables. The following result
establishes that this is the only case when both constructions
provide the same bent functions.

Theorem 18. Let 𝑓
0
(x), 𝑓
1
(x), and 𝑓(x) be bent functions of 𝑛

variables and consider u ∈ Z𝑛
2
\ {0}. If

(𝑓
0
(x) , 𝑓

1
(x)) ̸= (𝑓 (x ⊕ u) , 𝑓 (x)) ,

(𝑓
0
(x) , 𝑓

1
(x)) ̸= (𝑓 (x ⊕ u) , 1 ⊕ 𝑓 (x)) ,

(57)

then 𝐵
𝑓
0
,𝑓
1

(y, x) ̸= 𝐺
𝑓,u(y, x).

Proof. If 𝜂
0
, 𝜂
1
, 𝜉, and 𝜉u are the truth tables of the functions

𝑓
0
(x), 𝑓
1
(x), 𝑓(x), and 𝑓(x ⊕ u), respectively, then, according

to Theorem 17(2) and Corollary 7, the truth tables of the
functions 𝐵

𝑓
0
,𝑓
1

(y, x) and 𝐺
𝑓,u(y, x) have four blocks (not

necessarily in that order and not the same order for all):

𝐵
𝑓
0
,𝑓
1

: 𝜂
0
𝜂
0
𝜂
1

1 ⊕ 𝜂
1

𝐺
𝑓,u : 𝜉 𝜉u 𝜉u 1 ⊕ 𝜉. (58)

If 𝐵
𝑓
0
,𝑓
1

(y, x) = 𝐺
𝑓,u(y, x), then the four blocks of the

second row are a permutation of the four blocks of the first
row. But if we consider the 4! cases corresponding to these
permutations, we obtain that u = 0, (𝑓

0
(x), 𝑓
1
(x)) = (𝑓(x ⊕

u), 𝑓(x)), (𝑓
0
(x), 𝑓
1
(x)) = (𝑓(x ⊕ u), 1 ⊕ 𝑓(x)), 𝑓(x ⊕ u) =

1 ⊕ 𝑓(x), or 𝑓(x) = 1 ⊕ 𝑓(x). So, in all cases, we obtain a
contradiction and, therefore, 𝐵

𝑓
0
,𝑓
1

(y, x) ̸= 𝐺
𝑓,u(y, x).

Although, for 𝑛 = 2, both constructions provide the same
bent functions of 𝑛 + 2 = 4 variables, for 𝑛 ≥ 4, Theorems
18 and 14 ensure that Theorem 17(2) provides (see expression
(47) and the comment explaining expression (55))

6]
𝑛
(]
𝑛
− 2
𝑛+1
) , (59)

bent functions of 𝑛+2 variables which cannot be obtained by
Corollary 7.

Now, the following result, whose proof is similar to the
previous one, establishes that none of the bent functions
obtained by Corollary 8 can be obtained by Theorem 17(2)
and vice versa.

Theorem 19. Let 𝑓
0
(x), 𝑓
1
(x), and 𝑓(x) be bent functions of

𝑛 variables and assume that {u, k} is a Gauss-Jordan basis of
cardinality 2 of Z𝑛

2
; then 𝐵

𝑓
0
,𝑓
1

(y, x) ̸=𝐻
𝑓,u,k(y, x).

So,Theorem 19 and expressions (48) and (49) ensure that
the number of different bent functions of 𝑛 + 2 variables
constructed by Corollary 8, which cannot be obtained by
Theorem 17(2), is

(2
𝑛+2
(2
𝑛
− 3) + 8) ]

𝑛
. (60)

Finally, adding expressions (55) and (60), we have the
following result which establishes the number of different
bent functions we can construct usingTheorems 5 and 17.

Theorem 20. If ]
𝑛
is the number of bent functions of 𝑛

variables, then using Theorems 5 and 17 we can construct

6]2
𝑛
+ 2
𝑛+2
(2
𝑛
− 3) ]

𝑛
, (61)

different bent functions of 𝑛 + 2 variables.

Table 1 summarizes the number of bent functions we
can construct using Theorems 5 and 17 compared with
the number of bent functions of the classes of Rothaus
andMaiorana-McFarland and the iterative construction.The
number of Rothaus functions for more than 6 variables is
unknown. Also, the number of bent functions of more than
10 variables is unknown. Note that for 4 variables the number
of bent functions provided by Theorem 5 or by Theorem 17
(see comments after Theorem 18) is the same as the number
of bent functions provided by Rothaus construction; never-
theless, both constructions provide different bent functions
as we can see in Example 16. Using the iterative construction
of Canteaut and Charpin [43], Tokareva [34] obtain the
same number of bent functions for 4 variables and more
functions for a greater number of variables, but for 8 and 10
variables, she only provides a lower bound on the number of
bent functions that can be obtained. Finally, an exhaustive
computer search shows that the 512 bent functions of 4
variables obtained by iterative construction and Theorem 17
are the same.

6. Some Remarks

Note that the bent functions obtained by Theorem 5 can
be obtained from some affine transformations of the bent
function

𝐴
𝑓
(y, x) = 𝑓 (x) ⊕ 𝑚

3
(y) , (62)

obtained inTheorem 17(1).
For example, for u, k ∈ F𝑛

2
, consider the (𝑛 + 2) × (𝑛 + 2)

matrix,

𝑀 =
[

[

1 0 k
0 1 u
0𝑇 0𝑇 𝐼

𝑛

]

]

, (63)
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Table 1: Number of bent functions constructed with different methods.

Variables 4 6 8 10

Bent 896 5 425 430 528 99 270 589 265 934 370 305 785 861 242 880 ≈ 2
106

?

Rothaus 512 ? ? ?

Maiorana-McFarland 384 10 321 920 1 371 195 958 099 968 000 ≈ 2
60

2
150

Iterative construction 512 333 961 408 2
87.35

2
262.16

Theorem 17 320 4 809 728 176 611 778 441 522 708 480 ≈ 2
68

2
214

Theorem 5 512 752 640 84 766 926 569 472 ≈ 2
47

2
128

Theorems 5 and 17 512 5 562 368 176 611 863 208 449 277 952 ≈ 2
68

2
214

where 𝐼
𝑛
is the 𝑛 × 𝑛 identity matrix. It is not difficult to see

that the bent function

𝐴
𝑓
((y, x)𝑀) = 𝑓 (𝑦

1
k ⊕ 𝑦
2
u ⊕ x) ⊕ 𝑦

1
𝑦
2 (64)

has the same truth table as the bent function

𝐵 (y, x) = 𝑚
0
(y) 𝑓 (x) ⊕ 𝑚

1
(y) 𝑓 (x ⊕ u) ⊕ 𝑚

2
(y) 𝑓 (x ⊕ k)

⊕ 𝑚
3
(y) (1 ⊕ 𝑓 (x ⊕ u ⊕ k)) ,

(65)

and, therefore, both expressions define the same bent func-
tion. Analogously, for the (𝑛 + 2) × (𝑛 + 2)matrix

𝑁 =
[

[

1 0 u ⊕ k
0 1 u
0𝑇 0𝑇 𝐼

𝑛

]

]

, (66)

the bent function

𝐴
𝑓
((y, x)𝑁 ⊕ (0

2
, u))

= 𝑓 (𝑦
1
(u ⊕ k) ⊕ (𝑦

2
⊕ 1) u ⊕ x) ⊕ 𝑦

1
𝑦
2

(67)

has the same truth table as the bent function

𝐵 (y, x) = 𝑚
1
(y) 𝑓 (x) ⊕ 𝑚

0
(y) 𝑓 (x ⊕ u) ⊕ 𝑚

2
(y) 𝑓 (x ⊕ k)

⊕ 𝑚
3
(y) (1 ⊕ 𝑓 (x ⊕ u ⊕ k)) ,

(68)

and, therefore, both expressions define the same bent func-
tion.

Weuse the construction ofTheorem 5 instead of the affine
transformations because of the following.

(i) As we explained in Example 2, not all the bent
functions that are affine equivalent to a given function
are different. This fact makes the computation of the
number of functions we can construct a difficult task.

(ii) The simplicity of the operationswithmintermsmakes
the computation of the support of the new bent
functions evident.

(iii) Finally, in Example 11, using two different bent func-
tions of 𝑛 variables and two different pairs of vectors,
we have obtained the same bent function of 𝑛 + 2
variables faster and in a clearer fashion. However, to
achieve the same result using the affine equivalence,

we need a greater number of algebraic manipulations
and, besides, it is far from evident the choice of the
appropriate pair of vectors to prevent the equality of
the obtained functions.

The following example emphasizes the latter two items.

Example 21. For the functions 𝑓(x) and 𝑔(x) of Example 11,
using the first and the second affine transformations intro-
duced at the beginning of this section, we have, after some
algebraic manipulations, the following functions:

𝐻
𝑓,1,2 (y, x) = 𝑓 (𝑦12 ⊕ 𝑦21 ⊕ x) ⊕ 𝑚

3
(y)

= 𝑚
0
(𝑦
1
⊕ 𝑥
1
, 𝑦
2
⊕ 𝑥
2
) ⊕ 𝑦
1
𝑦
2
,

𝐻
𝑔,1,3 (y, x) = 𝑔 (𝑦1 (1 ⊕ 3) ⊕ (𝑦

2
⊕ 1) 1 ⊕ x) ⊕ 𝑚

3
(y)

= 𝑚
1
(𝑦
1
⊕ 𝑥
1
, 1 ⊕ 𝑦

2
⊕ 𝑥
2
) ⊕ 𝑦
1
𝑦
2
.

(69)

As we know, both functions are the same, but, in this
way, it is our contention that the support of those func-
tions is not obtainable straightforwardly. Nevertheless, from
Example 11, the support of the above functions is the set
{0, 5, 10, 12, 13, 14}.
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Birkhäuser, Basel, Switzerland, 2004.

[17] C. Carlet, “On bent and highly nonlinear balanced/resilient
functions and their algebraic immunities,” in Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, M. Fossorier,
H. Imai, S. Lin, and A. Poli, Eds., vol. 3857 of Lecture Notes in
Computer Science, pp. 1–28, Springer, Berlin, Germany, 2006.

[18] C. Carlet, “Boolean functions for cryptography and error-
correcting codes,” in Boolean Models and Methods in Mathe-
matics, Computer Science, and Engineering, Y. Crama and P.

Hammer, Eds., chapter 8, pp. 257–397, Cambridge University
Press, New York, NY, USA, 2010.

[19] C. Carlet and P. Guillot, “A characterization of binary bent
functions,” Journal of CombinatorialTheory A, vol. 76, no. 2, pp.
328–335, 1996.

[20] C. Carlet and J. L. Yucas, “Piecewise constructions of bent
and almost optimal boolean functions,” Designs, Codes, and
Cryptography, vol. 37, no. 3, pp. 449–464, 2005.

[21] D. K. Chang, “Binary bent sequences of order 64,” Utilitas
Mathematica, vol. 52, pp. 141–151, 1997.
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