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Abstract 

Electron donor-acceptor (EDA) interactions are widely involved in chemistry and their 

understanding is essential to design new technological applications in a variety of fields ranging 

from material sciences and chemical engineering to medicine. In this work, we study EDA 

complexes of carbon dioxide with ketones using several ab initio and Density Functional Theory 

methods. Energy contributions to the interaction energy have been analyzed in detail using both 

variational and perturbational treatments. Dispersion energy has been shown to play a key role in 

explaining the high stability of a non-conventional structure, which can roughly be described by 

a cooperative EDA interaction.  

Keywords: Electron donor-acceptor interactions, carbon dioxide, ab initio methods, density 

functional theory, dispersion energy. 
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I. INTRODUCTION 

 

Intermolecular interactions involving carbon dioxide have attracted increasing attention in 

recent years in connection with a variety of technological applications such as carbon dioxide 

capture and sequestration or separation and synthetic processes in supercritical carbon dioxide 

(scCO2).[1-4] In particular, efforts to develop molecules and materials that can be easily solvated 

in scCO2 have led to the discovery of weak electron donor-acceptor (EDA) interactions between 

CO2 (Lewis acid, LA) and compounds containing fluorine atoms (Lewis base, LB), such as 

fluorinated polymers.[5] The next milestone for advances in the development of CO2-philic 

molecules was represented by the characterization of EDA interactions between CO2 and 

carbonyl groups.[6] Indeed, playing with different substituents and building polymers containing 

the carbonyl function has allowed tuning the solubility in CO2 and has opened the door to a 

wider range of applications of this solvent in green processes. Among the carbonyl-based, CO2-

phile materials that have been developed are functionalized silicones,[7] diglycolic acid 

esters,[8] poly(ether-carbonate) copolymers,[9] sugar[10] and amide[11, 12] derivatives. 

Theoretical studies on model systems have been carried out to analyze the interactions of CO2 

with carbonyl compounds.[13-25] Former studies did confirm the existence of EDA complexes 

in which, as expected from simple chemical considerations, CO2 play the role of the electron 

acceptor (i.e., it behaves as a Lewis acid). Recent work, however, has revealed the existence of 

other unconventional EDA structures. On the one hand, when the carbonyl derivative is 

conveniently activated (for instance through perfluorinated groups) the donor-acceptor role is 

inversed and CO2 behaves as the Lewis base, the carbonyl compound playing the role of the 

Lewis acid. On the other hand, in ketones, esters or amides (but not in aldehydes), a dual 

interaction occurs.[23-25] In that case, CO2 and the carbonyl compound behave as the electron 
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donor and acceptor, respectively and reciprocally. An illustrative example is shown in Scheme 1 

(structure IIIa), which also shows other classical structures reported in the literature (Ib and IIb). 

For simplicity, we use the same labeling than in previous works. IIIa has been shown to display a 

comparable or even larger stability compared to Ib, which in the past had been generally 

considered to correspond to the global energy minimum. For example, amides and carbamides 

lead to IIIa complexes with interactions energies as large as 6 kcal/mol.[25] This result is 

particularly relevant in the context of solvation studies in scCO2 and may have significant 

implications in terms of CO2-phile molecules development. However, the nature of the 

stabilizing energy contributions responsible for the unexpected IIIa structure still remains 

unclear. 

 

 

Scheme 1. Structure of the complexes (acetone-CO2) considered in this paper. The labeling 

corresponds to the one proposed in previous studies.[23-25] Electron donor-acceptor interactions 

are schematically represented as dashed arrows (oriented from the electron donor to the 

acceptor). 

 

 In order to get new insights on this topic, we have analyzed the potential energy surface (PES) 

of the acetone-CO2 model system using different theoretical approaches. First, a decomposition 

of the interaction energy has been made in terms of Coulomb, exchange, correlation and electron 
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kinetic energy contributions. The results of DFT methods are compared to those of HF, MP2 and 

CCSD(T) ab initio calculations. Through this comparison, we aimed to assess the ability of 

commonly used exchange-correlation functionals to describe cooperative EDA interactions (note 

that some previous DFT studies have already been devoted to EDA systems[26, 27]). Then, 

using the symmetry-adapted perturbation theory (SAPT),[28, 29] we have evaluated the 

electrostatic, induction, exchange and dispersion contributions to the interaction energy in order 

to clarify their respective role in the stabilization of conventional and unconventional complexes 

of carbonyl dioxide with carbonyl compounds.      

 

II. COMPUTATIONAL DETAILS 

The study has been carried out with different ab initio and DFT methods and we refer the 

reader to the Supplemental Material (SM) section for a full bibliography on all the methods and 

codes used. 

Full geometry optimization for the IIIa complex was attempted with the whole set of methods 

considered here. The nature of the stationary points found (minimum or saddle point) was 

inspected by a vibrational frequency analysis (except in the case of QCISD and CCSD(T) 

optimizations, for which frequency calculations would be too costly).  Afterwards, analyses of 

the interaction energy were done with some selected approaches by computing the different 

contributions along an ad hoc intermolecular coordinate that links the conventional T-shaped 

structure IIb (CO2 as LA) to the unconventional cyclic one IIIa (CO2 as both LA and LB). 

Specifically, we carried out relaxed scan computations of the complex at the MP2/aug-cc-pVDZ 

level by varying the angle  (C(carbonyl)-O(carbonyl)-C(CO2)) while keeping the C(carbonyl)-

O(carbonyl)-C(CO2)-O(CO2) atoms coplanar. Single-point energy calculations were then carried 
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out (same basis set) at the CCSD(T) level and using DFT methods with different exchange-

correlation functionals. In agreement with our previous study,[24] we checked that the increase 

of the basis set from aug-cc-pVDZ to aug-cc-pVTZ does not lead to significant changes in the 

results. The physical meaningful components of the interaction energy were obtained using 

symmetry-adapted perturbation theory (SAPT), which has already been successfully used to 

study some intermolecular complexes of carbon dioxide.[30-32] The role of basis set 

superposition errors (BSSE) on interaction energies and geometries was estimated using the 

counterpoise correction method[33] and the seven-point scheme of Dannenberg and co-

workers.[34, 35]  

 

III. RESULTS 

Full geometry optimization of the unconventional structure IIIa has been done with different 

ab initio and DFT methods, with and without BSSE corrections. Table 1 summarizes the results 

for intermolecular distances and interaction energies. The obtained values are crucially 

dependent on the theoretical approach. Thus, many commonly used DFT methods, such as 

BLYP, B3LYP or PBE0, fail to predict an energy minimum for IIIa. M11-L and LC-BLYP do 

predict a stationary point but the frequency analysis shows one and two imaginary frequencies, 

respectively. When the geometry of the complex is optimized without BSSE corrections, the best 

results (compared to CCSD(T)) are obtained with the range-separated functional M11 for 

intermolecular distances and with the M06-2X method for the interaction energy. When BSSE 

corrections are taken into account, the best results (the reference is now MP2) are obtained with 

the range-separated dispersion-corrected functional B97XD for both, geometry and energy, 

although there are several other DFT methods that lead to comparable results. Dispersion 
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corrections and long-range corrections to the non-Coulomb part of the exchange functional seem 

therefore important to describe the complex IIIa. However, it should be noted that some hybrid 

range-separated functionals such as CAM-B3LYP or LC-PBE fail to predict an energy 

minimum for IIIa.  

 

Table 1. Interatomic C···O distances (RCO, Å), interaction energies (



E int , kcal/mol) and 

interaction energies corrected for BSSE (



E int

CP , kcal/mol) obtained for the acetone – CO2 IIIa 

complex using different ab initio and DFT methods. The shortest C···O distance corresponds to 

Oacetone···CCO2. The geometries have been fully optimized with each method. The vibrational 

frequency analysis shows that all optimized structures correspond to energy minima, except in 

the case of M11-L (one imaginary frequency) and LC-BLYP (two imaginary frequencies). In the 

case of QCISD and CCSD(T), frequency calculations were not attempted due to computational 

limitations.  

Method Geometry optimization  

without BSSE corrections 

Geometry optimization 

including BSSE corrections 

 RCO 



E int
 RCO 



E int

CP  

MP2 2.946 2.956 -4.01 3.040 3.114 -2.59 

QCISD 2.953 3.006 -3.95    

CCSD(T) 2.931 2.963 -4.09    

M06-2X 2.821 2.940 -3.62 2.845 2.974 -3.12 

M06-HF 2.813 2.971 -3.59 2.825 3.017 -3.09 

M11 2.861 2.940 -3.24 2.902 3.000 -2.79 

M11-L 2.859 3.157 -1.94 2.942 3.090 -1.32 

LC-BLYP 2.814 3.016 -3.61 2.801 3.113 -3.17 

BLYP-D 3.022 3.102 -2.42 3.026 3.177 -2.03 

ωB97X  2.874 3.035 -3.26 2.893 3.076 -2.88 

ωB97XD 3.010 3.100 -2.76 3.019 3.172 -2.44 

HF, BLYP, B3LYP, 

BHandHLYP, PBEPBE, 

PBE0, CAM-B3LYP,  

LC-ωPBE 

 

 

No stationary point found for IIIa structure 
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Total energies for the acetone – CO2 complex as a function of the  angle linking structures IIb 

to IIIa are reported in Figure 1 using some representative theoretical methods (energies are given 

relative to the T-shaped structure IIb). As shown, MP2, CCSD(T), M06-2X and B97XD 

calculations predict an energy minimum for  100° (IIIa structure) and the same methods 

predict a flat PES around =180° (structure IIb). Conversely, HF, PBE0, BHandHLYP, BLYP 

and B3LYP do not predict an energy minimum for IIIa but they do so for IIb. It is worth noting 

that upon full optimization of IIb, all methods lead to a stationary point, but its nature depends on 

method. Thus IIb is a true energy minimum at the HF, B3LYP, B97XD and M06-2X levels, a 

first-order transition state at the PBE0, BHandHLYP and BLYP levels and a second-order saddle 

point in MP2 calculations. 

 

 

Figure 1. Potential energy of the acetone-CO2 complex (a.u.) along the  coordinate (angle 

C=O
…

C chosen for our study. Structures IIb and IIIa correspond to =180° and 100°, 

respectively. Energy values are given relative to T-shaped structure IIb (=180°). Results are 

reported for selected quantum chemistry methods. 
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The fact that the Hartree-Fock (HF) potential energy surface of this system does not present a 

minimum for the IIIa structure, in contrast to MP2 or coupled cluster approaches, emphasizes the 

crucial role of correlation effects for describing CO2-carbonyl compound interactions. In the 

following discussion, we will focus our analysis on the variation of the relative contributions to 

the total interaction energy in going from structure IIb to structure IIIa trying to get a deeper 

insight into the origin of such interactions and the reasons that make them so dependent on the 

theoretical method.  

To start with, let us consider the HF energy. In Figure 2, we report the total potential (V) and 

kinetic (T) energies along the chosen coordinate (the angle ) as well as the decomposition of 

the potential term into Coulomb (VC) and exchange (Vex) contributions. Approaching the value 

of =100°, which corresponds to the IIIa structure, the potential energy (V) has a minimum, 

arising from the stabilizing contribution of both Coulomb and exchange interactions. The total 

kinetic energy instead exhibits a maximum in this region. Qualitatively, therefore, V and T 

display the expected behavior for the formation of a chemical bond. The quantitative comparison 

between these terms, however, shows that the kinetic energy rises more rapidly than the potential 

energy decreases, so that the variation of the total energy T+V (black solid curve in Figure 1) is 

globally repulsive and does not exhibit a minimum value in the proximity of the IIIa region.  

Let us now consider the results from the correlated ab initio and DFT-based calculations. In 

the case of DFT-based methods, we have two series of energy calculations. In the first case, we 

use the HF orbitals/density so that the kinetic and Coulomb contributions are the same for all 

methods and the comparison can focus on the exchange-correlation terms. The corresponding 

results are included as supplemental material and will not be discussed hereafter in detail. In the 
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second case, we use the Kohn-Sham orbitals/densities, as obtained with each specific method. 

The results are gathered in Figures 3 and 4, where we have plotted the exchange and correlation 

contributions to the interaction energy, respectively. 

 

Figure 2. Relative values of the Hartree-Fock potential (V) and kinetic (T) energies along the 

coordinate  with respect to the T-shaped structure IIb (=180°). The Coulombic (VC) and 

exchange (Vex) contributions to the potential energy are displayed as well. 

 

 As shown in Figure 3, most methods predict a minimum for the exchange energy at about 

=100
o
 (in agreement with HF results) although significant differences are found among the 

different functionals and particularly with M06-2X and B97XD. The first method does not 

predict a minimum at all whereas the second predicts a very shallow one. Interestingly when the 

HF orbitals/densities are used (see SM), the decrease of the non-local exchange energy obtained 

in the HF calculations are qualitatively well reproduced by all DFT methods, including M06-2X 

and B97XD for which very different curve shapes were obtained using the Kohn-Sham 

orbitals/densities, as shown in Figure 3. 
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Figure 3. Relative values of the exchange energy (a.u.) for the acetone-CO2 complex along the 

coordinate  with respect to the T-shaped structure IIb (=180°). Exchange energy includes for 

hybrid methods, local and non-local contributions. 

 

 

Figure 4. Relative values of the correlation energy (a.u.) for the acetone-CO2 complex along the 

 coordinate with respect to the T-shaped structure IIb (=180°). 
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The shape of the correlation energy curves shown in Figure 4 for the MP2 and CCSD(T) 

calculation is similar. Both display a minimum around =80
o
 with comparable depth (-0.00352 

au or -2.21 kcal/mol at the CCSD(T) level) to the exchange minimum (-0.00417 au or -2.62 

kcal/mol at the HF level). All the DFT functionals tested here predict this correlation energy 

minimum (using either the HF or Kohn-Sham electron densities) but the minima appear at 

slightly larger  values (around =90°) and their depth is very dependent on method. The M06-

2X functional overestimates the depth of the well (note that when the HF electron density is 

used, M06-2X provides a reasonably good estimate of the correlation energy variation, see SM) 

whereas other DFT methods underestimate it. A special comment is required in the case of 

B97XD calculations since this method also includes an empirical dispersion correction. The 

results for this term are shown in the SM; the shape of the curve is similar to the correlation term 

in Figure 4 with a minimum at 80° and a well depth of 0.00153 au (0.96 kcal/mol). 

 

IV. DISCUSSION. 

According to the NBO (natural bond orbital) analysis[24, 25] the intermolecular interaction in 

IIIa involves two donor-acceptor terms coming from: 1) the  orbital of the carbonyl compound 

interacting with the * orbital of CO2 and 2) the n orbital of CO2 interacting with a * orbital of 

the carbonyl compound. This dual LA-LB interaction is consistent with the stabilizing Coulomb 

+ exchange HF energy described above. However, the results show also that such a contribution 

is clearly insufficient to compensate the associated increase in electronic kinetic energy. In other 

words, the formation of a stable IIIa complex is only possible by the supplementary stabilizing 

effect provided by the electronic correlation energy of the complex, pointing towards a crucial 

role of dispersion interactions.  
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In order to quantify in a more formal way the role of dispersion energy on the intermolecular 

interaction, a SAPT analysis has been carried out (for this study, we use the MP2/aug-cc-pVDZ 

optimized structures). In the SAPT method, the unperturbed Hamiltonian of the dimer is the sum 

of the Fock operators for the monomers and the perturbation Hamiltonian contains two terms: the 

intramonomer correlation operator and the intermolecular interaction operator. The total 

interaction energy is obtained as a sum of perturbative corrections corresponding to electrostatic, 

induction and dispersion contributions and their respective exchange counterparts. At second 

order: 



Eint

SAPT  Eelec
1  Eexch

1  Eind
2  Edisp

2  Eexchind
2  Eexch disp

2  

For systems with polar molecules, it is usual to add a correction to this energy, HF, that accounts 

for higher order terms and that is defined as: 

 



HF  Eint

HF  Eelec
1  Eexch

1  Eind
2  Eexchind

2  

where 



E int

HF is the counterpoise corrected supermolecular interaction energy. 

 First of all, we make a comparison of SAPT contributions to the interaction energy for the 

conventional Ib complex, usually assumed to be the global minimum, the IIIa complex, which 

involves a cooperative EDA interaction, and the structure IIb, which, as said above, is an energy 

minimum at the HF level but a second-order saddle point at the MP2 level. The results are 

summarized in Table 2. For all cases, the electrostatic energy is the main stabilizing factor and it 

decreases (in absolute value) in the order Ib>IIIa>IIb. The repulsive exchange contribution is by 

far the largest one in Ib and IIIa but in the case of IIb its magnitude is comparable to the absolute 

value of the electrostatic energy. The induction and the dispersion energies, though smaller 

compared to the electrostatic and the exchange terms, provide a significant contribution to the 
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stabilization energy for the three complexes. Note, incidentally, that the higher-order terms 

estimated by the HF contribution are small, around 0.2-0.3 kcal/mol. From the comparison of the 

SAPT energy contributions in the three complexes, it is clear that only complex IIIa is crucially 

dependent on Edisp. In the case of Ib and IIb, the interaction energy 



E int

SAPT  is larger in absolute 

value than the dispersion energy, meaning that these complexes would be predicted to be more 

stable than the separated monomers even if the dispersion term was neglected, as found with the 

HF method. On the contrary, neglecting the dispersion contribution would lead to an unstable 

IIIa complex (or to a very slightly stable complex if the HF energy correction is considered). 

 

Table 2. Comparison between the interaction energies for acetone-CO2 complexes as calculated 

with the SAPT method. In all cases, we use the MP2 optimized geometries of the complex and 

the aug-cc-pVDZ basis set. Deformation energy is not taken into account (i.e., the monomers are 

taken at their geometry in the complexes). The exchange term in this table contains first and 

second order corrections. 

Complex 



Eelec
1

 



Eexch
12

 



E ind
2

 



Edisp
2

 



E int

SAPT
 



E int

SAPT+ δHF 

Ib -5.19 6.42 -2.29 -2.93 -3.99 -4.27 

IIb -3.91 3.89 -1.29 -2.07 -3.38 -3.56 

IIIa -4.52 6.98 -2.36 -3.57 -3.47 -3.69 

 

   

A striking result in Table 2 is the small difference between the SAPT interaction energies for 

IIb and IIIa complexes. This finding is consistent with the ab initio MP2 and CCSD(T) PES in 

Figure 1, although the SAPT energy difference is even smaller. To complete the analysis, we 

calculated the SAPT contributions along the angle  used above for constructing the PES. The 

results for different terms are plotted in Figure 5. Note that the total SAPT interaction energy 
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curve corresponds to the corrected energy 



Eint

SAPT HF  and does not include the deformation 

energy of the monomers (i.e., the energy required to transform the isolated monomers optimized 

structures into their geometry in the optimized dimer). This last term is small and has been 

omitted for simplicity but it can explain part of the difference with respect to the ab initio PES. 

Indeed, the SAPT energy exhibits a similar shape to the MP2 and CCSD(T) curves represented 

in Figure 1, therefore confirming the existence of an energy minimum for  ≈ 100°, as in the 

case of structure IIIa. The curves confirm the conclusions derived from the results gathered in 

Table 1. It appears that the three stabilizing contributions to the interaction energy in the 

framework of perturbation theory, electrostatic, induction and dispersion, do favor complex IIIa 

with respect to the standard EDA complex IIb (=180°). The results emphasize once again the 

remarkable role of the dispersion contribution, as can be deduced if one compares the curves for 

Edisp and ETotal. Indeed, for  slightly above 90° (structure IIIa), the two curves intersect, 

meaning that the stabilizing role of electrostatic + induction energies is counterbalanced by 

exchange contributions, which reach an energy maximum in that region. The perturbation 

analysis confirms therefore the trends discussed above on the basis of the variational 

supermolecular calculations and the evaluation of the independent Hartree-Fock and correlation 

terms. 
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Figure 5. Contributions to the SAPT interaction energy for the acetone-CO2 complex along the 

coordinate . 

 

IV. CONCLUSION 

The reported analysis, which combines variational and perturbational molecular orbital 

theories, allows us to highlight the key role played by dispersion energy in the IIIa-type EDA 

complexes formed between carbonyl dioxide and carbonyl compounds. Accordingly, such 

complexes cannot be predicted by HF methods or by many commonly used DFT-based 

techniques. We have shown that the variations of exchange and correlation contributions moving 

from IIb to IIIa, though qualitatively correct in most cases, are significantly underestimated by 
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all tested DFT methods. Clearly, the subtle combination of intermolecular interactions leading to 

the stabilization of IIIa, among which dispersion energy has been shown to give an important 

contribution, is difficult to capture by approximated DFT functionals of different type (hybrid, 

GGA, meta-GGA). Overall, range-separated hybrid functionals, in which the interelectronic 

Coulomb operator is split into a short–range and a long–range part, and those including an 

empirical dispersion correction of the interaction energy, appear to perform better than the 

others. However, this trend is not systematic and some hybrid range-separated functionals do not 

predict an energy minimum for IIIa (CAM-B3LYP, LC-PBE). In spite of these apparent 

inconsistencies, our findings point out possible directions to improve DFT techniques in the 

future. Note finally that the unconventional structures IIIa might exist in many other complexes 

involving CO2 but further work will be necessary to confirm this hypothesis. 

 

SUPPLEMENTAL MATERIAL 

References on electronic methods used. Total, exchange and correlation energies obtained with 

the HF density. Dispersion energy with the B97XD method. 
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Highlights 

 We study the potential energy surface of the acetone - carbon dioxide complex with ab initio methods 

 We analyze the contributions to the interaction energy with variational and perturbative approaches  

 We describe non-conventional structures in which dispersion energy plays a key role. 

 We show that current density functional theory methods are unsuitable to describe this type of 

complexes.  
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