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[1] A technique for the accurate computation of the time domain electromagnetic fields
radiated by a charged distribution traveling along an arbitrarily shaped waveguide region is
presented. Based on the transformation (by means of the standard Fourier analysis) of the
time-varying current density of the analyzed problem to the frequency domain, the
resulting equivalent current is further convolved with the dyadic electric and magnetic
Green’s functions. Moreover, we show that only the evaluation of the transverse magnetic
modes of the structure is required for the calculation of fields radiated by particles
traveling in the axial direction. Finally, frequency domain electric and magnetic fields
are transformed back to the time domain, just obtaining the total fields radiated by the
charged distribution. Furthermore, we present a method for the computation of the
wakefields of arbitrary cross-section uniform waveguides from the resulting field
expressions. Several examples of charged particles moving in the axial direction of such
waveguides are included.
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1. Introduction

[2] From radiotherapy to nuclear physics research, particle
accelerators constitute a powerful device under continuous
development. Actual applications of accelerators and storage
rings introduce high restrictive design constraints on beam
intensity and emittance [Salah and Dolique, 1999; Salah,
2004; Gai et al., 1997]. In order to achieve optimum per-
formance, an accurate understanding of the involved physics
is required. In this sense, the evaluation of the fields radiated
by a charged particle moving linearly at constant velocity
within a beampipe is particularly important, since it may

influence the motion of trailing particles [Panofsky and
Wenzel, 1956; Wangler, 2008; Zotter and Kheifets, 1998].
In a particle accelerator, the beampipe is excited by an
electromagnetic field during the accelerating stage to store
and accelerate beams of charged particles. The particles are
usually packed into bunches and launched at the appropriate
time to take advantage of the accelerating phases, in order to
achieve relativistic velocities [Bane et al., 1985]. After the
accelerating circuit, the velocity of a beam should remain
constant; but the electromagnetic radiation of moving charges
may influence the motion of other particles and bunches. The
electromagnetic field created by a charge is scattered on the
metallic walls of the waveguide and acts back on trailing
charges, thus inducing energy loss, beam instabilities and
some secondary effects like the heating of sensitive compo-
nents [Figueroa et al., 1988]. The interaction with the struc-
ture can be described by impedances in the frequency domain,
or equivalently by wakefields in the time domain [Yokoya,
1993a; Stupakov et al., 2007]. These parameters have to be
taken into account during the design of an accelerator, as they
restrict the choice of materials and shape of components
[Burov and Danilov, 1999].
[3] The wakefields critically depend on the geometry of

the structure [Danilov, 2000]. The radiation of particles
within waveguides has deserved the attention of many
researchers in different fields of the electromagnetic theory
[Rosing and Gai, 1990; Ng, 1990; Xiao et al., 2001; Hess
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et al., 2007]. The solution of wakefields for rectangular and
circular waveguides is well known [Wangler, 2008; Zotter
and Kheifets, 1998; Gluckstern et al., 1993]; moreover, in
Gluckstern et al. [1993] a formula is given for the specific
case of charges traveling on the symmetry axes within an
elliptical guide. This formula has been extensively followed
to estimate the wakefields in beampipes similar to the
elliptical geometry [Rumolo et al., 2001; Zimmermann,
1997]. The absence of analytical expressions for predicting
the radiation within many geometries demands the devel-
opment of numerical techniques for the analysis of arbitrary
waveguides [Kim et al., 1990; Jing et al., 2003; Lutman
et al., 2008; Zagorodnov, 2006]. Usually, particle-in-cell
codes are used to compute wakefields. In this article, we
present an alternative full-wave modal method for the anal-
ysis of the electromagnetic radiation of charges in motion
within uniform waveguides with arbitrary cross-section. The
method here presented is based on the dyadic three-
dimensional electric and magnetic Green’s functions for-
mulation in the frequency domain. The radiated fields are
obtained from the convolution of the Green’s functions with
the current distribution of the bunch. Then, the fields are
expressed in the time domain by means of the Fourier’s
Transform technique, from which the wakefields are finally
derived. The effect of the velocity on beams has been tradi-
tionally omitted in the accelerators publications, where the
ultrarelativistic approach is assumed [Gluckstern et al.,
1993; Yokoya, 1993b; Kim et al., 1990; Bane et al., 1985;
Rosing and Gai, 1990; Iriso-Ariz et al., 2003; Lutman et al.,
2008; Palumbo et al., 1984]. In this sense, the present work
represents a contribution since different velocities for the
particles can be used in the proposed formulation. The pre-
sented formulation is completely analytic except in the cal-
culation of the modes of the waveguide, which must be
numerically computed. This fact reduces significantly the
associated error of the method to the accuracy of the numer-
ical technique used for the modal analysis of the structure.
Moreover, the proposed formulation can treat waveguides of
arbitrary shapes, what makes it a suitable method when non-
canonical geometries are considered. In this sense, this method

gives a practical contribution, since many modern accelerating
structures are based on non-canonical waveguides.
[4] The paper has been organized in three sections. In the

next one, the theoretical formulation of the problem is
detailed. This section is divided in three blocks, corresponding
to the dyadic electric and magnetic Green’s functions, the
fields created by moving charged particles, and the resulting
wakefields. Afterwards, some examples of charges moving
lengthwise within arbitrary waveguides are tackled by the
presented derivation. Finally, conclusions are outlined.

2. Theory

2.1. Basic Formulation

[5] The type of geometry analyzed in this paper consists of
an arbitrary cross-section homogeneous waveguide that is
uniform along the direction of propagation, which coincides
with the z axis (see Figure 1). Losses are not considered, and
the guide is filled with vacuum, ɛ0 being the electric per-
mittivity of free space and m0 the magnetic permeability of
free space; speed of light is given by c ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
m0ɛ0

p
. In this

context, the vector position is divided in its transverse
and axial components, r ¼ rt þ zẑ. For this uniform cross-
section waveguide region, it is well known that the solutions
of Maxwell equations in the frequency domain can be
expressed in terms of TE and TM modes [Conciauro et al.,
2000; Collin, 1991; Felsen and Marcuvitz, 1994; Jackson,
1999]. The transverse electric and magnetic fields can be
decomposed into an infinite set of waveguide modes:

Et r;wð Þ ¼
X
m

Vm z;wð Þem rtð Þ ð1aÞ

Ht r;wð Þ ¼
X
m

Im z;wð Þhm rtð Þ ð1bÞ

where Vm and Im are the voltage and current modal amplitudes,
and em and hm are the electric and magnetic normalized
vector modal functions, respectively. The normalization
condition satisfied by these functions is given by

Z
CS
em � endS ¼

Z
CS
hm � hndS ¼ dm;n ð2Þ

where CS is the waveguide cross-section, and dm,n is the
Kronecker delta function. On the other hand, the axial
components are expressed in terms of the scalar potentials
Fm [Felsen and Marcuvitz, 1994]:

Ez r;wð Þ ¼ 1

iwɛ0

X
m

ITMm z;wð Þk2tmFTM
m rtð Þ ð3aÞ

Hz r;wð Þ ¼ 1

iwm0

X
m

V TE
m z;wð Þk2tmFTE

m rtð Þ ð3bÞ

i being the imaginary unit i ¼ ffiffiffiffiffiffiffi�1
p

; ktm are the modal
transverse wave numbers, and the frequency is f ¼ w

2p
. A

time-harmonic dependence eiwt is assumed and omitted
throughout this paper. The modal characteristic impedances
are given by Zm

TE = (wm0)/kzm and Zm
TM = kzm/(wɛ0); kzm being

the propagation factor in the axial direction. The dispersion

Figure 1. Schematic of an arbitrary charge distribution
moving inside a uniform arbitrarily shaped cross-section
waveguide region.
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relationship satisfied by these modes is k2 = ktm
2 + kzm

2 , where
k ¼ w ffiffiffiffiffiffiffiffiffiffim0ɛ0

p
is the free space wave number. An exponential

factor of the form exp(�ikzmz) is assumed inside the modal
amplitudes V(z) and I(z), for waves traveling in the positive
z-direction.
[6] In our problem we have a time-varying arbitrarily

shaped charged distribution radiating inside a waveguide
region, as depicted in Figure 1, which is described by its
volumetric charge density r(r, t) as well as its current den-
sity J r; tð Þ ¼ r r; tð Þ v r; tð Þ, where v is the velocity vector;
note that both densities are also related through the conti-
nuity equation [Jackson, 1999]. In our formulation, the first
step relies on the evaluation of the Fourier transform of the
time domain current density,

J r;wð Þ ¼
Z þ∞

�∞
J r; tð Þe�iwtdt ð4Þ

J being the frequency domain current density. The next step
consists on the evaluation of the frequency domain electric
and magnetic fields radiated by such harmonic currents,
which will be performed by means of the following volume
integrals:

E r;wð Þ ¼
Z
V
Ge r; r′ ;wð Þ � J r′ ;wð ÞdV ′ ð5aÞ

H r;wð Þ ¼
Z
V
Gm r; r′ ;wð Þ � J r′ ;wð ÞdV ′ ð5bÞ

where Ge and Gm are the frequency domain three-
dimensional dyadic electric and magnetic Green’s functions
of the infinite waveguide region, respectively. The evaluation
of Green’s functions is a classical problem of electromagnetics,
which has been extensively treated in the technical literature
[Collin, 1991; Felsen and Marcuvitz, 1994; Tai, 1993;Hanson
and Yakovlev, 2002]. The dyadic Green’s functions of an infi-
nite uniform cross-section waveguide represents the electric
and magnetic fields radiated by a time-harmonic unit impulse
current source placed at an arbitrary location given by the
vector position r′. The source element can be oriented along
any direction, thus allowing to solve three-dimensional current
problems. In the spectral domain, the dyadic electric and
magnetic Green’s functions are expressed in terms of the nor-
malized electric and magnetic TE and TM vector modal func-
tions, as follows [Felsen and Marcuvitz, 1994; Wang, 1978;
Rahmat-Samii, 1975; Deshpande, 1997]

Ge r; r′ ;wð Þ ¼ � 1

2

X
m

ZTM
m eTMm rtð ÞeTMm r′tð Þe�ikzm z�z′

�� ��

� 1

2

X
m

ZTE
m eTEm rtð ÞeTEm r′tð Þe�ikzm z�z′

�� ��

� u z� z′ð Þ
i2wɛ0

X
m

k2tmF
TM
m rtð ÞẑeTMm r′tð Þe�ikzm z�z′

�� ��

þ u z� z′ð Þ
i2wɛ0

X
m

k2tme
TM
m rtð ÞẑFTM

m r′tð Þe�ikzm z�z′
�� ��

� 1

2w2ɛ20

X
m

k4tm
ZTM
m

FTM
m rtð ÞFTM

m r′tð Þẑẑe�ikzm z�z′
�� ��

� d r� r′ð Þ
iwɛ0

ẑẑ

ð6aÞ

Gm r; r′ ;wð Þ ¼ � u z� z′ð Þ
2

X
m

hTMm rtð ÞeTMm r′tð Þe�ikzm z�z′
�� ��

� u z� z′ð Þ
2

X
m

hTEm rtð ÞeTEm r′tð Þe�ikzm z�z′
�� ��

� 1

i2wm0

X
m

ZTE
m k2tmF

TE
m rtð ÞẑeTEm r′tð Þe�ikzm z�z′

�� ��

þ 1

i2wm0

X
m

k2tm
ZTM
m

hTMm rtð ÞẑFTE
m r′tð Þe�ikzm z�z′

�� �� ð6bÞ

where the sign function u(z � z′) and the Dirac delta function
d(r � r′) have been introduced.
[7] Finally, we must derive the time domain electric

and magnetic fields using the standard inverse Fourier
transform,

E r; tð Þ
H r; tð Þ

� �
¼ 1

2p

Z þ∞

�∞

Eðr;wÞ
Hðr;wÞ

� �
eiwtdw ð7Þ

The present formulation is completely general, and now it
will be applied to analyze several problems of radiation
of charged particles. The presence of arbitrarily shaped
cross-section waveguides will be considered in this work.

2.2. Study of the Fields Radiated by a Charged Particle
Uniformly Moving in the Axial Direction

[8] A particle accelerator structure basically consists of a
waveguide circuit alternating accelerating cavities and
through-sections. The particles, packed in bunches, are
injected into the structure and accelerated up to ultra-
relativistic velocities by the action of the accelerating cavi-
ties which contain RF high-power electromagnetic fields. In
the present section, the electromagnetic fields radiated by
such particles within the beampipe of a particle accelerator
or within a generic homogeneous waveguide are discussed.
Since the particles velocity is unchanged between successive
accelerating cavities, they can be reduced to the study of
constant velocity particles traveling along an infinite
homogeneous waveguide. There is a source particle carrying
charge q uniformly moving in the z direction with constant
velocity v; we assume that v ≥ 0. The charge and current
densities of this particle are represented in the time domain
by

r r′; tð Þ ¼ qd x′ � x0ð Þd y′ � y0ð Þd z′ � vtð Þ ð8aÞ

~J r′; tð Þ ¼ r r′; tð Þvẑ ð8bÞ

respectively. Thus, the Cartesian coordinates r0 = (x0, y0)
define the transverse position of the particle. Following the
presented technique, now we have to calculate the frequency
domain current density applying (4) to (8), easily obtaining

J r′ ;wð Þ ¼ qd x′ � x0ð Þ d y′ � y0ð Þe�iwz′ =vẑ ð9Þ
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Secondly, the frequency domain electric and magnetic fields
can be analytically derived by inserting (9) into (5), thus
obtaining

Et r;wð Þ ¼ q

vɛ0

X
m

k2tme
TM
m rtð ÞFTM

m r0ð Þ e�iwz=v

w
vg

� �2

þ k2tm

ð10aÞ

Ez r;wð Þ ¼ � iq

wɛ0

X
m

k4tmF
TM
m rtð ÞFTM

m r0ð Þ e�iwz=v

w
vg

� �2

þ k2tm

ð10bÞ

Ht r;wð Þ ¼ q
X
m

k2tmh
TM
m rtð ÞFTM

m r0ð Þ e�iwz=v

w
vg

� �2

þ k2tm

ð10cÞ

Hz r;wð Þ ¼ 0 ð10dÞ

After applying the inverse Fourier transformation (7) to
these expressions, we finally obtain the time domain fields
radiated by the charged particle (see Appendix A for a dee-
per explanation of the inverse Fourier transformation),

~E t r; tð Þ ¼ qg
2ɛ0

X
m

ktme
TM
m rtð ÞFTM

m r0ð Þe�ktm g vt�zj j ð11aÞ

Ez r; tð Þ ¼ � q

2ɛ0
u t � z

v

� 	
�
X
m

k2tmF
TM
m rtð ÞFTM

m r0ð Þe�ktm g vt�zj j

ð11bÞ

~Ht r; tð Þ ¼ qvg
2

X
m

ktmh
TM
m rtð ÞFTM

m r0ð Þe�ktm g vt�zj j ð11cÞ

Hz r; tð Þ ¼ 0 ð11dÞ

where g ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
is the relativistic factor, b ≡ v/c being

the velocity in terms of the speed of light in vacuum. Note
that only the TM modes are being excited. It should be
observed that the magnetic field is zero for a static charge
(v = 0). Due to the analytical nature of the method, it achieves
good accuracy as compared to numerical techniques based on
differential equations, such as finite differences or finite
elements. This is because these techniques require the dis-
cretization of the whole volume, and the accuracy strongly
depends on how fine the structure is discretized.
[9] It is worth to analyze these expressions in the case that

the particle velocity approaches the speed of light limit
(ultrarelativistic case). Then, the field power concentrates on
a cross-plane moving together with the charge. The trans-
verse components of the fields turn into a Dirac-delta,
whereas the longitudinal field vanishes (see Appendix B for
details):

lim
v→c�

~E t r; tð Þ ¼ q

2cɛ0
d t � z

c

� 	X
m

eTMm rtð ÞFTM
m r0ð Þ ð12aÞ

lim
v→c�

Ez r; tð Þ ¼ 0 ð12bÞ

lim
v→c�

~H t r; tð Þ ¼ q

2
d t � z

c

� 	X
m

hTMm rtð ÞFTM
m r0ð Þ ð12cÞ

lim
v→c�

Hz r; tð Þ ¼ 0: ð12dÞ

2.3. Study of the Wakefields

[10] The electromagnetic fields created by the particles in
the previous section induce surface charges and currents in
the walls of the beampipe, which act back on particles and
beams traveling behind. The trajectory and the velocity of
traveling particles are modified by the presence of such
surface charges, thus resulting in bunch instabilities. It is a
convention for relativistic electron beams to know these
space forces as wakefields, although they also propagate in
front of the source charge for v < c. The wakefield effect is
analyzed in the frame of the actual work by means of the
definition of a d-function wake potential. This function
characterizes the net impulse delivered from a unit-strength
source charge to a trailing charge along an homogeneous
waveguide section of length L. Both charges travel at the
same velocity v along the same or parallel trajectories,
spaced in the axial direction by a distance s (s can be greater
or smaller than L). The d-function wake potential has been
defined as in section 11.3 of Wangler [2008], here adapted
to particles with a velocity below the limit c and traveling
within a lossless waveguide:

wt r; r′ ; sð Þ ¼ 1

q

Z L

0

~E t r; t ¼ zþ s

v

� 	
dzþ vm0

q

Z L

0
ẑ

� ~H t r; t ¼ zþ s

v

� 	
dz ð13aÞ

wz r; r′; sð Þ ¼ � 1

q

Z L

0
Ez r; t ¼ zþ s

v

� 	
dz ð13bÞ

where wz and wt are the longitudinal and transverse d-
function wake potentials; r′ and r stand for the initial position
of the leading and the trailing charges, respectively. Apply-
ing these definitions to the field expressions (11), one obtains
(see Appendix C):

wt r; r′; sð Þ ¼ L

2gɛ0

X
m

ktme
TM
m rtð ÞFTM

m r′tð Þe�ktm gs ð14aÞ

wz r; r′; sð Þ ¼ L

2ɛ0

X
m

k2tmF
TM
m rtð ÞFTM

m r′tð Þe�ktm gs ð14bÞ

Note that last expressions are zero at the physical limit v →
c� for any separation between charges s ≠ 0. It means that no
wakefield is present in a lossless homogeneous waveguide
for charges traveling at the speed of light. Wakefields appear
as consequence of wall discontinuities, finite conductivity of
the material and a velocity of charges less than the ultra-
relativistic limit. The integrated effect over a finite distribu-
tion of charged particles is described by the wake potential.
The wake potential of a complete bunch on a single charge
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can be determined by the convolution of the wake d-function
with the charge distribution of the bunch.
[11] The convergence of an expression in infinite series

like (14) is dominated by the exponential part; the larger the
exponent is, the faster the series converges to a realistic
solution. This effect is shown in Figure 2, where the wake
potential in a waveguide example is approached by different
number of terms in the summation expression. The conver-
gence of the series (14) is also guaranteed in the limit s
approaches zero, as is demonstrated in Álvarez Melcón and
Mosig [2000]. This limit represents the waveguide cross-
plane that contains the source charge. In this case, the
exponent in the series vanishes and the number of modes
required for convergence is extremely high. Thus, it is more
efficient to tackle the s = 0 problem by means of a numerical
approaching method, such as to estimate the value of fields
and wake-potentials from the solution of a series of
decreasing distance points, or by using extrapolation tech-
niques as in Álvarez Melcón and Mosig [1999].

3. Numerical Results

[12] Next, the presented formulation will be applied to the
analysis of wakefields within structures of arbitrary geome-
try, thus proving the capabilities of this method. In a first
example, a cross-shaped waveguide has been chosen for
discussing the effect of rounding the corners of the inner
waveguide walls. In the second example, several geometries
are compared to a waveguide similar to the CERN Large
Hadron Collider (LHC) beampipe.

3.1. Rounded-Corner Cross-Shaped Waveguides

[13] It is well known that the electromagnetic fields within
a waveguide are particularly strong near convex wedges.
The power focusing in these areas gives rise to undesirable

consequences, like the heating of walls and the attraction of
free particles. The accumulation of charged particles in a
small region of the beampipe will produce changes in the
resistivity of the component and multipactoring effects, both
causing losses and defocusing in the beam. For this reason,
sharp wedges are avoided in the design of accelerating
structures as far as possible.
[14] With the aim of studying the influence of corners in

the geometry of a beampipe, an homogeneous cross-shaped
waveguide with rounded corners (see Figure 3) has been
analyzed. Three different radii of curvature r for the corners
of the waveguide are considered for comparison. The size of
the arms of the cross has been selected to a = 3 mm. The
wakefields for two different trajectories of a source particle
are compared.
[15] For the calculation of the modal expansion of

the waveguide, the two-dimensional Boundary Integral-
Resonant Mode Expansion (BI-RME) method was used.
The BI-RME method [Conciauro et al., 1984, 2000] has
been revealed as a robust and high computational efficient
modal technique for the characterization of arbitrary wave-
guides, whose accuracy is discussed in Conciauro et al.
[1984], Cogollos et al. [2003] and Bozzi et al. [2001]. The
accuracy of the results shown in this example and in the next
one is only dependent on the number of modes used in the
summation expressions (11) and (14), and on the accuracy of
the numerical computation of such modes. The BI-RME
method here used allows to compute a large number of
modes with high precision on a standard PC [Conciauro
et al., 1984; Cogollos et al., 2003; Bozzi et al., 2001]. A
total of 450 electric TM-modal vectors were generated by a
BI-RME based tool [Cogollos et al., 2003] and used to
evaluate the d-function wake potential at any point.
[16] Figures 4 and 5 show the wake-potential distribution

in the XY-plane at s = 5 mm behind the source. In Figure 4
the source particle is on the center of the waveguide and
the normalized velocity is b = 1 � 10�7; on the other hand,
in Figure 5 the source is within one of the arms of the

Figure 2. Influence of the number of modes used in the solu-
tion of the d-function wake potential (14) for the waveguide
geometry represented in Figure 3. Comparison between sev-
eral charge velocities for a fixed distance s = 5 mm (the wake
function has been normalized to make the comparison possi-
ble). Note that the number of modes necessary for the conver-
gence of the solution reduces when the velocity increases;
similar effect would produce an increment in the distance s.

Figure 3. Cross-section of a rounded-corner cross-shaped
waveguide.
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waveguide, and the normalized velocity is b = 1 � 10�6.
The CPU time used for the computation of a unique point is
42 seconds in a standard PC at 3.2 GHz.
[17] Cuts along the y-axis of preceding pictures are found

in Figures 6 and 7, where wx has been omitted (this com-
ponent is null on the y-axis because of the symmetry of the
problem). The maximum value for wz varies with the radius
of curvature, but obviously coincides with the source loca-
tion, as can be seen in Figures 6b and 7b. The behavior of
the transverse wake potential is different. From Figure 6a it
is observed that, when the source is at the center, the maxi-
mum magnitude for wy lays at a point within the interval
�(a/2, a/2 + r); this interval coincides with the narrowing of
the waveguide at the beginning of one arm of the cross. On
the other hand, when the source is shifted from the center
(Figure 7a), the transverse wake potential has an offset
related to the deviation of the leading charge.

[18] The different scales for the wake potential intensity
shown in both trajectories can be explained by the difference
in velocity. Note that the electric field distribution is con-
tracted into a disk perpendicular to the direction of motion
with a narrow angular spread of the order of 1/g, as reported
in Wangler [2008]. In Figure 8, the wake potential is plotted
for a testing and a trial charge depending on the velocity. It is
shown that the intensity of the longitudinal wake potential
decreases with the velocity as a consequence of the electric
field contraction.

3.2. A Comparative Study of the Wake Potentials
for Different Waveguide Geometries

[19] A homogeneous waveguide with a cross-section
similar to the beampipe used in the CERN LHC Laboratory
[Iriso-Ariz et al., 2003] has been modeled by means of a BI-
RME based tool. The wake potential in this structure is

Figure 4. The d-function wake potential for cross-shaped waveguides with different radii of curvature.
Picture of the transverse plane at a distance s = 5 mm behind the source charge. r′t ¼ 0; 0ð Þ, b = 1 �
10�7. The colorbar stands for |Wz|/L (V pC�1 m�1) and the arrows point to the direction of wt.
(a) r = a/8, (b) r = a/4, (c) r = a/2.
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Figure 6. Dependence of the d-function wake potential on the transverse position of a trailing charge
along the y-axis for cross-shaped waveguides. The leading charge is located at the center of the waveguide
(vertical dashed line), s = 5 mm and b = 1 � 10�7; (a) wy, (b) wz.

Figure 5. The d-function wake potential for cross-shaped waveguides with different radii of curvature.
Picture of the transverse plane at a distance s = 5 mm behind the source charge. r′t ¼ 0; 2:3ð Þ mm,
b = 1 � 10�6. The colorbar stands for |Wz|/L (V pC�1 m�1) and the arrows point to the direction of wt;
(a) r = a/8, (b) r = a/4, (c) r = a/2.
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compared for several waveguides, which have different
cross-sections. A total of four waveguide geometries are
considered. In order to obtain comparable structures, the
dimensions of the guides are such that the cut-off frequen-
cies of the two first propagating modes are close enough to
that of the original beampipe. In Figure 9 there is a picture of
the different geometries analyzed, whose dimensions and
cut-off frequencies are related in Table 1. Note that in most
of the geometries the cut-off frequencies cannot be tuned
independently, so the achieved results are not so close for
the second mode.
[20] Next, the wakefield of a point charge is analyzed for

the proposed waveguides. The potentials have been com-
puted using 1800 TM-modal vectors, previously obtained by
a BI-RME simulation tool. The source charge moves along
the z-direction at the center of the waveguides. In Figures 10,
11, and 12, the wake potential is evaluated on the cross axes
for several velocities. Only the positive semi-axes are con-
sidered because of symmetry. Despite results are similar for
all the geometries, some conclusions can be extracted from
these plots. The lengthwise force induced on a trailing
charge is smaller in rounded-corner rectangular waveguides,
whereas the response is worse in a circular waveguide; the
same happens for wx, but it is not the case for wy. The
symmetry of the circular waveguide E produces equal forces
in magnitude along the transverse axes here considered. In
the A waveguide, two straight cuts are introduced across the
y-axis. These two cuts have the effect of increasing wy with
respect to the wx. It is also worthwhile to mention that the
wakefields produced in the waveguides A and D are very
close. Finally, the dependence of the wake potential on the
velocity of the particles is shown in Figure 13.

4. Conclusions

[21] The calculation of the wakefields is a primary task in
the evaluation of the suitability of a beampipe. In this sense,
the use of d-function wake potentials is a good strategy for

predicting the response of a waveguide to real bunches of
particles. We have presented a method for the calculation of
the wake potential for point charges in uniform waveguides
with arbitrarily shaped cross-section. An expression for the
wake potentials as a function of the vector modal functions
of the waveguide has been proposed. The method consists of
deriving the electromagnetic fields radiated by a point charge
through the three-dimensional dyadic Green’s functions of
the waveguide; the wake potential is further extracted from
the time domain expression of the fields. A few examples are
included in the article to show the capabilities of the pre-
sented method. Modal analysis of the geometries in the
examples are accomplished by a BI-RME based tool. The
flexibility and efficiency of the BI-RME method makes
possible an accurate computation of the modes of arbitrary
waveguides. In the examples, the influence of the trajectory

Figure 8. Dependence of wz on the velocity of the charges.
Both charges travel on the center of the waveguide and
s = 1 mm.

Figure 7. Dependence of the d-function wake potential on the transverse position of a trailing charge
along the y-axis for cross-shaped waveguides. The leading charge is located at the point (x, y) =
(0, 2.3) mm (vertical dashed line), s = 5 mm and b = 1 � 10�6; (a) wy, (b) wz.
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and the velocity of charges on the wakefields is compared for
different geometries, emphasizing the rounded-corner effect
of the waveguides used in particle accelerator structures.

Appendix A: Frequency to Time Domain
Transformation of Field Expressions

[22] The calculation of the time domain field expres-
sions (11) is outlined in the present appendix. For this
purpose, the inverse Fourier transform (7) will be applied
to the frequency domain field equations (10). The trans-
formation of the electric field transverse component is
tackled next. From (10a) one can write:

~E t r; tð Þ ¼ q

vɛ0

X
m

k2tme
TM
m rtð ÞFTM

m r0ð Þ
Zþ∞

�∞

e�iwz=veiwt

w
vg

� �2

þ k2tm

dw ðA1Þ

The integral in (A1) can be rewritten as:

vgð Þ2
Z þ∞

�∞

e�iwz=v

w2 þ ktmvgð Þ2 e
iwtdw ðA2Þ

In order to solve this equation, the following Fourier pair
has to be used:

1

2p

Z þ∞

�∞

1

w2 þ A2
eiwtdw ¼ 1

2A
e�A tj j ðA3Þ

The application of this last relation and the shifting
property of Fourier transform into (A2) leads to the
equation (11a). The procedure followed for the calcula-
tion of the transverse component of the magnetic field is
completely similar to the previous one.

Figure 9. Cross-section of the waveguides studied in section 3.2: (a) LHC beampipe, (b) rounded-corner
rectangular waveguide, (c) LHC beampipe modified with elliptical sidewalls, and (d) circular waveguide.

Table 1. Waveguides Used in Section 3.2 and Cut-Off
Frequencies for the First Two Modesa

WG Figure Dimensions fc1 fc2

A 9a a1 = 44, b1 = 36, r1 = 22 3.84 4.49
B 9b a2 = 39, b2 = 34, r2 = 3 3.86 4.43
C 9b a2 = 44, b2 = 36, b2 = 15.3 3.80 4.56
D 9c a3 = 46, b3 = 32, h = 34 3.82 5.22
E 9d r4 = 22 3.99 5.21

aDimensions are expressed in mm and cut-off frequencies in GHz.
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[23] On the other hand, the next integral must be solved
for the calculation of the longitudinal field (10b):

Z þ∞

�∞

1

iw
� e�iwz=v

w
vg

� �2

þ k2tm

eiwtdw ðA4Þ

Note that this integral is like (A2) but multiplied by the

factor
1

iw
. In order to solve it, the integration property of

Fourier transform has to be applied to the Fourier pair (A3):

1

2p

Z þ∞

�∞

1

iw
� 1

w2 þ A2
eiwtdw ¼

Z t

�∞

1

2A
e�A tj jdt ¼ � 1

2A2
u tð Þe�A tj j

ðA5Þ

Finally, the shifting term z/v is applied, thus obtaining the
field expression (11b).

Appendix B: Ultrarelativistic Case
Fields Derivation

[24] The derivation of the expression (12) for the time
domain fields of the ultrarelativistic case is shown in this

appendix. The analysis starts on the transverse component of
the electric field. The ultrarelativistic limit of (11a) is:

lim
v→c�

~E t r; tð Þ ¼ q

2ɛ0

X
m

ktme
TM
m rtð ÞFTM

m r0ð Þ: ðB1Þ

lim
v→c�

ge�ktm g vt�zj j ðB2Þ

Knowing limv→c�g → ∞, the previous expression con-
stitutes an indeterminate form except for zero value of the
exponent (ct = z). L’Hopital’s rule applies when the expo-
nent is different from zero, obtaining:

lim
v→c�

ge�ktm g vt�zj j
vt≠z ¼ 0j ðB3Þ

On the other hand, this limit diverges when the exponent is
zero:

lim
v→c�

ge�ktm g vt�zj j
vt¼z ¼ ∞j ðB4Þ

Figure 10. The wz/L on the positive y-semiaxis for different particle velocities. The source charge is
located at the center of the waveguide, s = 10 mm; (a) b = 1 � 10�5, (b) b = 1 � 10�6, (c) b = 1 � 10�7.
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Figure 11. The wx/L on the positive x-semiaxis for different particle velocities. The source charge is
located at the center of the waveguide, s = 10 mm; (a) b = 1 � 10�5, (b) b = 1 � 10�6, (c) b = 1 � 10�7.
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These two results can be combined by means of the Dirac-
delta function, thus leading to the expression

lim
v→c�

~E t r; tð Þ ¼ q

2ɛ0

X
m

ktme
TM
m rtð ÞFTM

m r0ð Þd ct � zð Þ ðB5Þ

which is equivalent to (12a). A similar analysis can be fol-
lowed for the transverse magnetic field (12c). For the anal-
ysis of the longitudinal electric field, the ultrarelativistic
limit is applied to (11b):

lim
v→c�

Ez r; tð Þ ¼ � q

2ɛ0

X
m

k2tmF
TM
m rtð ÞFTM

m r0ð Þ: ðB6Þ

lim
v→c�

u t � z

v

� 	
e�ktm g vt�zj j ðB7Þ

The resulting limit can be analyzed for zero and different
from zero values of the exponent:

lim
v→c�

u t � z

v

� 	
e�ktm g vt�zj j

���
vt≠z

¼ 0 ðB8Þ

lim
v→c�

u t � z

v

� 	
e�ktm g vt�zj j

���
vt¼z

¼ u 0ð Þ ¼ 0 ðB9Þ

Figure 12. The wy/L on the positive y-semiaxis for different particle velocities. The source charge is
located at the center of the waveguide, s = 10 mm; (a) b = 1 � 10�5, (b) b = 1 � 10�6, (c) b = 1 � 10�7.

Figure 13. Dependence of wz on the velocity. The leading
charge travels along the center of the waveguide; s = 1 mm.
A logarithmic scale has been chosen to emphasize differ-
ences at high velocities.
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This time, the limit is zero in both cases, and hence the null
expression for the longitudinal field (12b), as predicted by
Lorentz.

Appendix C: Wake Potentials Derivation

[25] The derivation of the d-function wake potential (14)
from the definition given in (13) is detailed in the present
appendix. First of all, the time domain field expression (11)
is used in (13):

wt r; r′; sð Þ¼ g
2ɛ0

X
m

ktme
TM
m rtð ÞFTM

m r0ð ÞI 1ð Þ
m

þ v2gm0

2

X
m

ktmF
TM
m r0ð Þ ẑ � hTMm rtð Þ
 �

I 1ð Þ
m ðC1aÞ

wz r; r′; sð Þ ¼ 1

2ɛ0

X
m

k2tmF
TM
m rtð ÞFTM

m r0ð ÞI 2ð Þ
m ðC1bÞ

where the following integrals have been introduced,
obtaining:

I 1ð Þ
m ≡

Z L

0
e�ktm g vt�zj j

t¼ zþ s

v

dz ¼ Le�ktm g sj j
����� ðC2aÞ

I 2ð Þ
m ≡

Z L

0
u t � z

v

� 	
e�ktm g vt�zj j

t¼ zþ s

v

dz ¼ Lu
s

v

� 	
e�ktm g sj j

����� ðC2bÞ

On the other hand, knowing that ẑ � hm ¼ �em and v2gm0/
2 = g/(2ɛ0) � 1/(2gɛ0), the transverse component (C1a) can
be simplified as

wt r; r′; sð Þ ¼ 1

2gɛ0

X
m

ktme
TM
m rtð ÞFTM

m r0ð ÞI 1ð Þ
m ðC3Þ

Finally, assuming positive distance s, the previous expres-
sions yield the equation (13).
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