Title

Role of macrophage migration inhibitory factor in NLRP3 inflammasome expression in

otitis media

Short running head

Role of MIF in NLRP3 inflammasome production

Name of authors

Shin Kariya, MD, PhD<sup>1</sup>; Mitsuhiro Okano, MD, PhD<sup>1,2</sup>; Pengfei Zhao, MD<sup>1</sup>; Yukihide

Maeda, MD, PhD<sup>1</sup>; Yuko Kataoka, MD, PhD<sup>1</sup>; Takaya Higaki, MD, PhD<sup>1</sup>; Seiichiro

Makihara, MD, PhD<sup>3</sup>; Jun Nishihira, MD, PhD<sup>4</sup>; Tomoyasu Tachibana, MD, PhD<sup>5</sup>;

Kazunori Nishizaki, MD, PhD<sup>1)</sup>

Author's affiliations

1) Department of Otolaryngology-Head and Neck Surgery, Okayama University

Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

 Department of Otorhinolaryngology, International University of Health and Welfare School of Medicine, Narita, Japan

3) Department of Otolaryngology-Head & Neck Surgery, Kagawa Rosai Hospital,

Marugame, Japan

4) Department of Medical Bioinformatics, Hokkaido Information University, Sapporo,

Japan

5) Departments of Otolaryngology, Japanese Red Cross Society Himeji Hospital,

Himeji City, Japan

Correspondence author

Shin Kariya, MD, PhD

Corresponding mailing address

Department of Otolaryngology-Head and Neck Surgery

Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical

Sciences

## 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan

E-mail: skariya@cc.okayama-u.ac.jp

Conflicts of Interest and Source of Funding

The authors report no conflict of interest to disclose. This work was supported by JSPS KAKENHI (Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology of Japan) (Grant Numbers, JP17K11329).

| 6 | Abstract |
|---|----------|
| 6 | Abstract |

| 8  | Hypothesis: Macrophage migration inhibitory factor plays an important role in the    |
|----|--------------------------------------------------------------------------------------|
| 9  | expression of interleukin (IL)-1 $\beta$ and the nucleotide-binding oligomerization  |
| 10 | domain-like receptor protein 3 (NLRP3) inflammasome in lipopolysaccharide-induced    |
| 11 | otitis media.                                                                        |
| 12 | Background: NLRP3 inflammasome and macrophage migration inhibitory factor are        |
| 13 | critical molecules mediating inflammation. However, the interaction between the      |
| 14 | NLRP3 inflammasome and macrophage migration inhibitory factor has not been fully     |
| 15 | examined.                                                                            |
| 16 | Methods: Wild-type mice and macrophage migration inhibitory factor gene-deficient    |
| 17 | (MIF-/-) mice received a transtympanic injection of either lipopolysaccharide or     |
| 18 | phosphate-buffered saline. The mice were sacrificed 24 h after the injection.        |
| 19 | Concentrations of IL-1 $\beta$ , NLRP3, ASC (apoptosis-associated speck-like protein |
| 20 | containing a caspase recruitment domain and a pyrin domain), and caspase-1 in the    |

 $\mathbf{2}$ 

| 21 | middle ear effusions were measured by enzyme-linked immunosorbent assay. Temporal                          |
|----|------------------------------------------------------------------------------------------------------------|
| 22 | bones were processed for histologic examination and immunohistochemistry.                                  |
| 23 | Results: In the immunohistochemical study using the wild-type mice, positive staining                      |
| 24 | of macrophage migration inhibitory factor, NLRP3, ASC, and caspase-1 were observed                         |
| 25 | in infiltrating inflammatory cells induced by lipopolysaccharide in the middle ear. The                    |
| 26 | number of inflammatory cells caused by lipopolysaccharide administration decreased                         |
| 27 | remarkably in the MIF <sup>-/-</sup> mice as compared with the wild-type mice. The concentrations          |
| 28 | of IL-1 $\beta$ , NLRP3, ASC, and caspase-1 increased in the lipopolysaccharide-treated                    |
| 29 | wild-type mice. The MIF <sup>-/-</sup> mice with lipopolysaccharide had decreased levels of IL-1 $\beta$ , |
| 30 | NLRP3, ASC, and caspase-1 as compared with the wild-type mice.                                             |
| 31 | Conclusion: Macrophage migration inhibitory factor has an important role in the                            |
| 32 | production of IL-1 $\beta$ and the NLRP3 inflammasome. Controlling the inflammation by                     |
| 33 | modulating macrophage migration inhibitory factor and the NLRP3 inflammasome may                           |
| 34 | be a novel therapeutic strategy for otitis media.                                                          |
| 35 |                                                                                                            |

36 Keywords:

37 infection; Toll-like receptor; NOD-like receptor; cytokine; interleukin; inflammation

40 Text

41

| 42 | Introdu | action |
|----|---------|--------|
|    |         |        |

43

| 44 | Otitis media is one of the most common diseases, especially in children. Otitis                     |
|----|-----------------------------------------------------------------------------------------------------|
| 45 | media associated with bacterial infection is frequently treated with antibiotics all over           |
| 46 | the world (1). Repeated use of antibiotics for frequent recurrence of otitis media might            |
| 47 | be related to microbial antibiotic resistance (2). Multiple inflammatory mediators have             |
| 48 | been reported in the pathophysiology of otitis media, and regulation of these factors               |
| 49 | may become a novel therapeutic option for otitis media without the administration of                |
| 50 | antibiotics (3,4). Interleukin (IL)-1 $\beta$ is a pro-inflammatory cytokine with important         |
| 51 | roles in the innate immune system. IL-1 $\beta$ is involved in the pathogenesis of otitis media,    |
| 52 | and activated caspase-1 is required for the processing of pro-IL-1 $\beta$ into mature IL-1 $\beta$ |
| 53 | (3).                                                                                                |
| 54 | The inflammasome is a protein complex, and several subtypes of                                      |
| 55 | inflammasome have been reported. The nucleotide-binding oligomerization domain                      |

 $\mathbf{5}$ 

| 56 | (NOD)-like receptor protein 3 (NLRP3) inflammasome is an important inflammatory              |
|----|----------------------------------------------------------------------------------------------|
| 57 | factor discovered at the beginning of the 2000s (5,6). The components of the NLRP3           |
| 58 | inflammasome are NLRP3, ASC (adaptor apoptosis-associated speck-like protein                 |
| 59 | containing a caspase activation and recruitment domain (CARD) and a pyrin domain             |
| 60 | (PYD)), and pro-caspase-1 (7). The NLRP3 inflammasome controls the production of             |
| 61 | IL-1 $\beta$ and IL-18 in collaboration with Toll-like receptors and nuclear factor kappa B  |
| 62 | (NF- $\kappa$ B). When the NLRP3 inflammasome is formed, it causes caspase-1 activation,     |
| 63 | resulting in the maturation of IL-1 $\beta$ (8). The role of the NLRP3 inflammasome has been |
| 64 | extensively examined in numerous diseases, and has also been reported as a critical          |
| 65 | factor controlling inflammation in otitis media, both in human and animal models             |
| 66 | (9-12).                                                                                      |
| 67 | Macrophage migration inhibitory factor is an inflammatory and                                |
| 68 | stress-regulating cytokine with multiple functions (13). The significant role of             |
| 69 | macrophage migration inhibitory factor in middle ear and inner ear diseases has been         |
| 70 | reported (14-19). The reduction in macrophage migration inhibitory factor activity by        |
| 71 | intraperitoneal injection of a macrophage migration inhibitory factor antagonist can         |

| 72 | decrease inflammatory responses in the middle ear cavity in lipopolysaccharide-induced            |
|----|---------------------------------------------------------------------------------------------------|
| 73 | otitis media (20). The inhibition of macrophage migration inhibitory factor pathway               |
| 74 | reduces cytokine production (13). However, the mechanism of inflammation through                  |
| 75 | macrophage migration inhibitory factor has not been fully revealed.                               |
| 76 | To the best of our knowledge, only two recent studies have reported the                           |
| 77 | interaction between the NLRP3 inflammasome and macrophage migration inhibitory                    |
| 78 | factor (21,22). In addition, no previous study has shown the role of macrophage                   |
| 79 | migration inhibitory factor in expression of the NLRP3 inflammasome in otitis media.              |
| 80 | Using macrophage migration inhibitory factor-deficient (MIF <sup>-/-</sup> ) mice, the purpose of |
| 81 | this study is to reveal the definitive effect of macrophage migration inhibitory factor in        |
| 82 | the induction of the NLRP3 inflammasome in lipopolysaccharide-induced otitis media.               |
| 83 |                                                                                                   |
| 84 | Materials and Methods                                                                             |
| 85 |                                                                                                   |
| 86 | Induction of otitis media by lipopolysaccharide                                                   |

87 Male BALB/c mice at 6-10 weeks of age were used in this study. Through

| 88  | targeted disruption of the macrophage migration inhibitory factor gene, MIF-/- mice in      |
|-----|---------------------------------------------------------------------------------------------|
| 89  | the BALB/c background were established (23). The study was performed in accordance          |
| 90  | with the relevant animal protection rules, and the Animal Research Control Committee        |
| 91  | approved the study (application number, OKU-2016541; the name of the principal              |
| 92  | investigator, S.K.). Before the experiment, an otoscopic examination was performed on       |
| 93  | the ears of all the mice to ensure that the tympanic membranes were normal and that no      |
| 94  | middle ear inflammation was present. An intraperitoneal injection of a mixture of           |
| 95  | ketamine (100 mg/kg body weight) and xylazine (10 mg/kg body weight) was                    |
| 96  | administered for anesthesia during all experimental procedures. Both the wild-type mice     |
| 97  | and MIF-/- mice were randomly divided into two groups. The otitis media group               |
| 98  | received lipopolysaccharide (1.0 mg/mL; 10 $\mu$ l/ear; both ears in each mouse;            |
| 99  | Sigma-Aldrich, St. Louis, Missouri, USA) via transtympanic injection using a 30-gauge       |
| 100 | needle. Phosphate-buffered saline (PBS) (10 $\mu$ l/ear) was injected into both middle ears |
| 101 | of the animals in the control group. The mice were sacrificed 24 hours after injection of   |
| 102 | the lipopolysaccharide or PBS. The middle ears were then washed transtympanically           |
| 103 | using 200 $\mu$ l of PBS. The collected washings from the middle ear lavage were            |

| 104 | centrifuged. The supernatant was transferred to microcentrifuge tubes (Treff AG,     |
|-----|--------------------------------------------------------------------------------------|
| 105 | Degersheim, Switzerland) and stored at -30°C until analysis. The temporal bones were |
| 106 | removed immediately after sacrifice and processed for histologic examination.        |
| 107 |                                                                                      |
| 108 | Levels of IL-1 $\beta$ , NLRP3, ASC, and caspase-1                                   |
| 109 | The concentrations of IL-1 $\beta$ , NLRP3, ASC, and caspase-1 in the supernatant    |
| 110 | of the middle ear lavage (otitis media group, n=6; control group, n=6) were measured |
| 111 | using enzyme-linked immunosorbent assay (ELISA) (IL-1 $\beta$ , 559603, BD OptEIA    |
| 112 | Mouse IL-1β ELISA Set, BD Biosciences, San Jose, CA, USA; NLRP3,                     |
| 113 | CSB-EL015871MO, Mouse NLRP3 ELISA Kit, CUSABIO, College Park, MD, USA;               |
| 114 | ASC, CSB-EL019114MO, Mouse Apoptosis-associated speck-like protein containing a      |
| 115 | CARD (PYCARD) ELISA kit, CUSABIO; Caspase-1, SEB592Mu, ELISA Kit for                 |
| 116 | Caspase 1, Cloud-Clone Corp., Houston, TX, USA). All samples were examined in        |

- 117 duplicate, and measured values were averaged.
- 118
- 119 Histologic examination

| 120 | Temporal bone specimens from both the wild-type mice and MIF <sup>-/-</sup> mice             |
|-----|----------------------------------------------------------------------------------------------|
| 121 | (otitis media group, n=4; control group, n=4) were placed in 4% paraformaldehyde for         |
| 122 | 72 hours and decalcified in 10% ethylenediaminetetraacetic acid for 3 weeks at 4°C.          |
| 123 | After dehydration, the specimens were embedded in paraffin and sectioned at a                |
| 124 | thickness of 10 $\mu$ m, then mounted on glass slides, processed using hematoxylin and       |
| 125 | eosin staining, and evaluated under light microscopy.                                        |
| 126 |                                                                                              |
| 127 | Immunohistochemistry                                                                         |
| 128 | The paraffin-embedded temporal bone specimens from the wild-type mice                        |
| 129 | (otitis media group, n=6; control group, n=6) were sectioned at a thickness of 4 $\mu$ m and |
| 130 | mounted on glass slides. The sections were deparaffinized and rehydrated. Endogenous         |
| 131 | peroxidase activity was quenched with 0.3% hydrogen peroxide in methanol for 30              |
| 132 | minutes at room temperature. Antigen retrieval was performed by microwave heating.           |
| 133 | Goat serum albumin (S-1000, Vector Laboratories Inc., Burlingame, CA, USA) was               |
| 134 | used for 1 hour at room temperature to block non-specific protein binding. Rabbit            |
| 135 | anti-macrophage migration inhibitory factor antibody (sc-20121; Santa Cruz                   |

| 136 | Biotechnology, Inc., Santa Cruz, CA), rabbit anti-NLRP3 antibody (bs-10021R, Bioss        |
|-----|-------------------------------------------------------------------------------------------|
| 137 | Antibodies Inc., Woburn, MA, USA), rabbit anti-ASC antibody (NBP1-78977, Novus            |
| 138 | Biologicals, Littleton, CO, USA), and rabbit anti-caspase-1 antibody (NB100-56564,        |
| 139 | Novus Biologicals) were applied overnight at 4°C as the primary antibodies for            |
| 140 | immunohistochemical staining. Rabbit Immunoglobulin Fraction (X0903, Dako,                |
| 141 | Glostrup, Denmark) was used as a negative control. For visualization, a VECTASTAIN        |
| 142 | Elite ABC Kit (PK-6100, Vector Laboratories Inc.) and 3,3'-diaminobenzidine (DAB)         |
| 143 | reagent (K3467, Dako) were used according to the manufacturers' instructions.             |
| 144 | The reaction was assessed by blinded investigators under light microscopy                 |
| 145 | according to the method of previous study (24). Briefly, the rating score was classified  |
| 146 | as: (-), no positive reaction; (+), 1-10 positive cells; (++), 11-100 positive cells; and |
| 147 | (+++), over 100 positive cells per high power field (×400).                               |
| 148 |                                                                                           |
| 149 | Statistical analysis                                                                      |

150 Data are presented as median ± standard error. For statistical analysis, the
151 non-parametric Mann-Whitney U test was used for comparison of continuous variables

| 152 | between the two groups. The chi-square test was applied to compare categorical            |
|-----|-------------------------------------------------------------------------------------------|
| 153 | variables. Significant differences were established at a level of $P < 0.05$ (IBM SPSS    |
| 154 | Statistics; IBM, New York, USA).                                                          |
| 155 |                                                                                           |
| 156 | Results                                                                                   |
| 157 |                                                                                           |
| 158 | Expression of macrophage migration inhibitory factor and NLRP3 inflammasome by            |
| 159 | lipopolysaccharide                                                                        |
| 160 | Lipopolysaccharide is a component of the outer membrane of gram-negative                  |
| 161 | bacteria that is a major causative pathogen of otitis media, and it is a potent           |
| 162 | inflammatory molecule (14). Lipopolysaccharide induces an increased infiltration of       |
| 163 | inflammatory cells in middle ear (25). As a first step, we examined the expression and    |
| 164 | localization of macrophage migration inhibitory factor, NLRP3, ASC, and caspase-1 in      |
| 165 | the middle ear cavity as induced by lipopolysaccharide in wild-type mice.                 |
| 166 | Strong positive immunostaining was found for macrophage migration                         |
| 167 | inhibitory factor in the infiltrating inflammatory cells as well as mucosal epithelium in |

| 168 | the middle ear of the lipopolysaccharide-injected wild-type mice. NLRP3, ASC, and                                    |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 169 | caspase-1 were also observed in inflammatory cells and middle ear mucosa of the                                      |
| 170 | lipopolysaccharide-treated wild-type mice. There was no significant immunostaining in                                |
| 171 | the middle ear in the negative controls using Rabbit Immunoglobulin Fraction in the                                  |
| 172 | PBS-treated wild-type mice (Figure 1).                                                                               |
| 173 | The rating scores of immunopositive cells for macrophage migration                                                   |
| 174 | inhibitory factor, NLRP3, ASC, and caspase-1 were summarized in Table 1. The                                         |
| 175 | lipopolysaccharide-injected wild-type mice had the increased number of                                               |
| 176 | immunopositive cells as compared with PBS-injected control mice (macrophage                                          |
| 177 | migration inhibitory factor, <i>P</i> <0.05; NLRP3, <i>P</i> <0.05; ASC, <i>P</i> <0.05; caspase-1, <i>P</i> <0.05). |
| 178 |                                                                                                                      |
| 179 | Role of macrophage migration inhibitory factor in lipopolysaccharide-induced otitis                                  |
| 180 | media                                                                                                                |
| 181 | Next, we examined the effect of deficiency of the macrophage migration                                               |
| 182 | inhibitory factor gene in lipopolysaccharide-induced otitis media. Administration of                                 |
| 183 | lipopolysaccharide into the middle ear cavity induced remarkable infiltration of                                     |

| 184 | inflammatory cells (polymorphonuclear leukocyte and monocyte) in the middle ear in                 |
|-----|----------------------------------------------------------------------------------------------------|
| 185 | wild-type mice (Figure 2A). In contrast, a small number of infiltrating inflammatory               |
| 186 | cells was detected in the middle ear in lipopolysaccharide-treated MIF <sup>-/-</sup> mice (Figure |
| 187 | 2B). No significant number of inflammatory cells was found in the middle ear in either             |
| 188 | the wild-type mice or MIF <sup>-/-</sup> mice in the PBS-injected control group.                   |
| 189 |                                                                                                    |
| 190 | Quantification of IL-1 $\beta$ and NLRP3 inflammasome                                              |
| 191 | The histological findings showed the inflammatory response reduced in MIF-/-                       |
| 192 | mice by lipopolysaccharide as compared with wild type mice. Thus, we examined the                  |
| 193 | levels of IL-1β, NLRP3, ASC, and caspase-1 in lipopolysaccharide-induced otitis media.             |
| 194 | The protein levels of IL-1 $\beta$ , NLRP3, ASC, and caspase-1 in the supernatant of the           |
| 195 | middle ear lavage from both the wild-type mice and MIF <sup>-/-</sup> mice are shown in Figure 3.  |
| 196 | Compared with the PBS-injected wild-type mice, the                                                 |
| 197 | lipopolysaccharide-injected wild-type mice showed a significant increase in the protein            |
| 198 | concentration of IL-1 $\beta$ in the middle ear ( $P < 0.05$ ). In the MIF <sup>-/-</sup> mice,    |
| 199 | lipopolysaccharide induced a lower level of IL-1 $\beta$ than in the wild-type mice. There was     |

200 a significant difference in the concentration of IL-1 $\beta$  between the lipopolysaccharide

- 201 group and PBS group of  $MIF^{-/-}$  mice (Figure 3).
- 202 Compared with the PBS-injected wild-type mice, the
- 203 lipopolysaccharide-injected wild-type mice showed significant up-regulation of NLRP3
- 204 (P < 0.05), ASC (P < 0.05), and caspase-1 (P < 0.05) in the middle ear. There were
- significant differences between the wild-type mice and MIF<sup>-/-</sup> mice in the concentrations

206 of NLRP3 (P < 0.05), ASC (P < 0.05), and caspase-1 (P < 0.05) induced by

- 207 lipopolysaccharide. In addition, no statistically significant difference was observed in
- 208 the concentrations of NLRP3, ASC, and caspase-1 between the lipopolysaccharide
- 209 group and PBS group of MIF<sup>-/-</sup> mice (Figure 3).
- 210
- 211 Discussion
- 212

213 Otitis media is one of the most common middle ear diseases, and patients with 214 otitis media frequently have hearing impairment. Numerous factors are associated with 215 the onset and development of otitis media. The presence of upper respiratory diseases

| 216 | and Eustachian tube dysfunction are important factors, and inflammatory cytokines and              |
|-----|----------------------------------------------------------------------------------------------------|
| 217 | chemokines including IL-1 $\beta$ are also involved in the pathogenesis of otitis media (3).       |
| 218 | Lipopolysaccharide from gram-negative bacteria activates Toll-like receptor 4,                     |
| 219 | and induces IL-1 $\beta$ production through the NF- $\kappa$ B pathway (26). In addition, the      |
| 220 | maturation of pro-IL-1 $\beta$ protein into the secreted bioactive form of IL-1 $\beta$ requires a |
| 221 | second signal via NLRP3 inflammasome (27). Lipopolysaccharide has been detected in                 |
| 222 | the middle ear in almost all patients with otitis media (17). The expression of Toll-like          |
| 223 | receptor 4 in the middle ear tissues of patients with otitis media has been reported, and          |
| 224 | Toll-like receptors have been suggested to have an important role in the pathogenesis of           |
| 225 | otitis media (4,28,29). Recent studies have reported that NLRP3 was detected in middle             |
| 226 | ear tissues in patients with otitis media (9,11). In an animal model of otitis media, the          |
| 227 | NLRP3 inflammasome was induced by lipopolysaccharide in mouse middle ear, and                      |
| 228 | ASC-deficient mice had reduced middle ear inflammation (10,12).                                    |
| 229 | Macrophage migration inhibitory factor is a cytokine expressed in various                          |
| 230 | cells, and has been associated with a multitude of diseases (30). Macrophage migration             |
| 231 | inhibitory factor has been reported to have a possible role in middle ear diseases and             |

| 232                                                       | hearing function (14,19). Inhibition of macrophage migration inhibitory factor resulted                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 233                                                       | in the reduction of inflammatory responses in experimental otitis media (20). However,                                                                                                                                                                                                                                                             |
| 234                                                       | the mechanism was not revealed. This study shows for the first time that production of                                                                                                                                                                                                                                                             |
| 235                                                       | IL-1 $\beta$ and the NLRP3 inflammasome by lipopolysaccharide is remarkably suppressed in                                                                                                                                                                                                                                                          |
| 236                                                       | MIF <sup>-/-</sup> mice. There were several limitations in this study including small sample size and                                                                                                                                                                                                                                              |
| 237                                                       | the use of a single time point. However, our findings suggest that the reduced                                                                                                                                                                                                                                                                     |
| 238                                                       | inflammation in histological findings and the decreased secretion of IL-1 $\beta$ in MIF <sup>-/-</sup>                                                                                                                                                                                                                                            |
| 239                                                       | mice are the result of down-regulation of the NLRP3 inflammasome.                                                                                                                                                                                                                                                                                  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 240                                                       | Investigations are just starting to examine the relationship between                                                                                                                                                                                                                                                                               |
| 240<br>241                                                | Investigations are just starting to examine the relationship between<br>macrophage migration inhibitory factor and the NLRP3 inflammasome. A recent study                                                                                                                                                                                          |
|                                                           |                                                                                                                                                                                                                                                                                                                                                    |
| 241                                                       | macrophage migration inhibitory factor and the NLRP3 inflammasome. A recent study                                                                                                                                                                                                                                                                  |
| 241<br>242                                                | macrophage migration inhibitory factor and the NLRP3 inflammasome. A recent study showed that macrophage migration inhibitory factor is required for the interaction                                                                                                                                                                               |
| 241<br>242<br>243                                         | macrophage migration inhibitory factor and the NLRP3 inflammasome. A recent study<br>showed that macrophage migration inhibitory factor is required for the interaction<br>between NLRP3 and the intermediate filament protein vimentin, which is critical for                                                                                     |
| <ul><li>241</li><li>242</li><li>243</li><li>244</li></ul> | macrophage migration inhibitory factor and the NLRP3 inflammasome. A recent study<br>showed that macrophage migration inhibitory factor is required for the interaction<br>between NLRP3 and the intermediate filament protein vimentin, which is critical for<br>NLRP3 activation (22). Another study showed that macrophage migration inhibitory |

| 248                      | Figure 4. In this study, the concentration of IL-1 $\beta$ induced in the middle ear by                                                                                                                                                                                                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 249                      | lipopolysaccharide was low in the MIF <sup>-/-</sup> mice as compared with the wild-type mice.                                                                                                                                                                                                                                                            |
| 250                      | Down-regulation of the caspase-1 may be the major factor in the reduced production of                                                                                                                                                                                                                                                                     |
| 251                      | IL-1 $\beta$ in the MIF <sup>-/-</sup> mice. However, there was still a significant difference in the                                                                                                                                                                                                                                                     |
| 252                      | expression of IL-1 $\beta$ between the lipopolysaccharide-injected MIF <sup>-/-</sup> mice and                                                                                                                                                                                                                                                            |
| 253                      | PBS-injected MIF <sup>-/-</sup> mice. Lipopolysaccharide may also induce IL-1 $\beta$ through a                                                                                                                                                                                                                                                           |
| 254                      | different signaling pathway independent of macrophage migration inhibitory factor and                                                                                                                                                                                                                                                                     |
| 255                      | the NLRP3 inflammasome.                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                                                                                                                                                                                                                                                                                                                           |
| 256                      | Otitis media is a common disease, and the management of intractable otitis                                                                                                                                                                                                                                                                                |
| 256 $257$                | Otitis media is a common disease, and the management of intractable otitis<br>media is a challenging problem. Macrophage migration inhibitory factor and NLRP3                                                                                                                                                                                            |
|                          |                                                                                                                                                                                                                                                                                                                                                           |
| 257                      | media is a challenging problem. Macrophage migration inhibitory factor and NLRP3                                                                                                                                                                                                                                                                          |
| 257<br>258               | media is a challenging problem. Macrophage migration inhibitory factor and NLRP3 inflammasome have an important role in immune response. For example, the inhibition                                                                                                                                                                                      |
| 257<br>258<br>259        | media is a challenging problem. Macrophage migration inhibitory factor and NLRP3<br>inflammasome have an important role in immune response. For example, the inhibition<br>of macrophage migration inhibitory factor activity attenuated lethality in endotoxic                                                                                           |
| 257<br>258<br>259<br>260 | media is a challenging problem. Macrophage migration inhibitory factor and NLRP3<br>inflammasome have an important role in immune response. For example, the inhibition<br>of macrophage migration inhibitory factor activity attenuated lethality in endotoxic<br>shock (31). In addition, macrophage migration inhibitory factor genetic variants are a |

| 264 | migration | inhibitory | v factor as | well as | NLRP3 | inflammasome | may be | promising | g factors |
|-----|-----------|------------|-------------|---------|-------|--------------|--------|-----------|-----------|
|     |           |            |             |         |       |              |        |           |           |

- 265 in future treatment strategies for otitis media.
- 266 In summary, the expression of IL-1 $\beta$  is markedly induced by
- 267 lipopolysaccharide in mouse middle ear, and is significantly suppressed in MIF<sup>-/-</sup> mice
- as compared with wild-type mice. The induction of NLRP3 inflammasome by
- 269 lipopolysaccharide is also reduced in the MIF<sup>-/-</sup> mice. Our findings suggest that
- 270 regulation of macrophage migration inhibitory factor and the NLRP3 inflammasome
- 271 may become a new therapeutic target for control of the inflammation from a different
- point of view.
- 273

## 275 Acknowledgments

- 276 This work was supported by JSPS KAKENHI Grant Number JP17K11329
- 277 (Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports,
- 278 Science and Technology of Japan).
- 279
- 280

- 281 Disclosure of Interest
- 282 The authors report no conflict of interest.

285 References:

| 287 | 1. | Monasta L, | Ronfani L, | Marchetti F, | et al. | Burden | of disease | caused | by otitis | media: |
|-----|----|------------|------------|--------------|--------|--------|------------|--------|-----------|--------|
|-----|----|------------|------------|--------------|--------|--------|------------|--------|-----------|--------|

- systematic review and global estimates. *PLoS One* 2012;7:e36226.
- 289 2. Vergison A, Dagan R, Arguedas A, et al. Otitis media and its consequences: beyond
- the earache. *Lancet Infect Dis* 2010;10:195-203.
- 3. Juhn SK, Jung MK, Hoffman MD, et al. The role of inflammatory mediators in the
- 292 pathogenesis of otitis media and sequelae. *Clin Exp Otorhinolaryngol*
- 293 2008;1:117-38.
- 4. Hirai H, Kariya S, Okano M, et al. Expression of toll-like receptors in chronic otitis
- 295 media and cholesteatoma. *Int J Pediatr Otorhinolaryngol* 2013;77:674-6.
- 296 5. Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes through
- the inflammasomes. *Nat Immunol* 2012;13:325-32.
- 298 6. Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative
- 299 regulation of NF-κB and the NLRP3 inflammasome. *Nat Immunol* 2017;18:861-9.
- 300 7. Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease.

- 301 *Nature* 2012;481:278-86.
- 302 8. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell
- 303 2014;157:1013-22.
- 304 9. Granath A, Cardell LO, Uddman R, et al. Altered Toll- and Nod-like receptor
- 305 expression in human middle ear mucosa from patients with chronic middle ear
- 306 disease. J Infect 2011;63:174-6.
- 307 10. Kurabi A, Lee J, Wong C, et al. The inflammasome adaptor ASC contributes to
- 308 multiple innate immune processes in the resolution of otitis media. *Innate Immun*309 2015;21:203-14.
- 310 11. Kariya S, Okano M, Zhao P, et al. Activation of NLRP3 inflammasome in human
- 311 middle ear cholesteatoma and chronic otitis media. Acta Otolaryngol
- 312 2016;136:136-40.
- 313 12. Kariya S, Okano M, Zhao P, et al. NLRP3 inflammasome expression in
- 314 lipopolysaccharide-induced otitis media. *Acta Otolaryngol* 2018;138:1061-5.
- 315 13. Trivedi-Parmar V, Jorgensen WL. Advances and insights for small molecule
- 316 inhibition of macrophage migration inhibitory factor. *J Med Chem* 2018

## 317 27;61:8104-19.

| 318 | 14. Ishihara H, Kariya S, Okano M, Zhao P, Maeda Y, Nishizaki K. Expression of          |
|-----|-----------------------------------------------------------------------------------------|
| 319 | macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in      |
| 320 | lipopolysaccharide-induced otitis media. Acta Otolaryngol 2016;136:1011-6.              |
| 321 | 15. Kariya S, Okano M, Fukushima K, et al. Expression of inflammatory mediators in      |
| 322 | the otitis media induced by Helicobacter pylori antigen in mice. Clin Exp Immunol       |
| 323 | 2008;154:134-40. Erratum in: Clin Exp Immunol 2008;154:432.                             |
| 324 | 16. Kariya S, Schachern PA, Cureoglu S, et al. Up-regulation of macrophage migration    |
| 325 | inhibitory factor induced by endotoxin in experimental otitis media with effusion in    |
| 326 | mice. Acta Otolaryngol 2008;128:750-5.                                                  |
| 327 | 17. Kariya S, Okano M, Aoji K, et al. Role of macrophage migration inhibitory factor in |
| 328 | otitis media with effusion in adults. Clin Diagn Lab Immunol 2003;10:417-22.            |
| 329 | 18. Kariya S, Okano M, Maeda Y, et al. Macrophage migration inhibitory factor           |
| 330 | deficiency causes prolonged hearing loss after acoustic overstimulation. Otol           |
| 331 | Neurotol 2015;36:1103-8.                                                                |
| 332 | 19. Kariya S, Okano M, Maeda Y, et al. Role of macrophage migration inhibitory factor   |

- in age-related hearing loss. *Neuroscience* 2014;279:132-8.
- 334 20. Zhang J, Xu M, Zheng Q, Zhang Y, Ma W, Zhang Z. Blocking macrophage
- 335 migration inhibitory factor activity alleviates mouse acute otitis media in vivo.
- 336 *Immunol Lett* 2014;162:101-8.
- 337 21. Shin MS, Kang Y, Wahl ER, et al. Macrophage migration inhibitory factor regulates
- 338 U1 small nuclear RNP immune complex-mediated activation of the NLRP3
- inflammasome. Arthritis Rheumatol 2019;71:109-20.
- 340 22. Lang T, Lee JPW, Elgass K, et al. Macrophage migration inhibitory factor is
- 341 required for NLRP3 inflammasome activation. *Nat Commun* 2018;9:2223.
- 342 23. Honma N, Koseki H, Akasaka T, et al. Deficiency of the macrophage migration
- 343 inhibitory factor gene has no significant effect on endotoxaemia. *Immunology*
- 344 2000;100:84-90.
- 345 24. Szczepański M, Szyfter W, Jenek R, Wróbel M, Lisewska IM, Zeromski J. Toll- like
- receptors 2, 3 and 4 (TLR-2, TLR-3 and TLR-4) are expressed in the
- 347 microenvironment of human acquired cholesteatoma. *Eur Arch Otorhinolaryngol*
- 348 2006;263:603-7.

| 349 | 25. Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X. Lipopolysaccharide-induced middle  |
|-----|--------------------------------------------------------------------------------------|
| 350 | ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through      |
| 351 | down-regulation of tight junction proteins. PLoS One 2015;10:e0122572.               |
| 352 | 26. Man SM, Kanneganti TD. Converging roles of caspases in inflammasome activation,  |
| 353 | cell death and innate immunity. Nat Rev Immunol 2016;16:7-21.                        |
| 354 | 27. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of            |
| 355 | pyroptosis, inflammatory caspases and inflammasomes in infectious diseases.          |
| 356 | Immunol Rev 2017;277:61-75.                                                          |
| 357 | 28. Jesic S, Jotic A, Tomanovic N, et al. Expression of toll-like receptors 2, 4 and |
| 358 | nuclear factor kappa B in mucosal lesions of human otitis: pattern and relationship  |
| 359 | in a clinical immunohistochemical study. Ann Otol Rhinol Laryngol                    |
| 360 | 2014;123:434-41.                                                                     |
| 361 | 29. Lee HY, Park MS, Byun JY, et al. Expression of pattern recognition receptors in  |
| 362 | cholesteatoma. Eur Arch Otorhinolaryngol 2014;271:245-53.                            |
| 363 | 30. Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of     |
| 364 | MIF signaling. Cell Signal 2019 Jan 22. pii: S0898-6568(19)30015-4.                  |

| 365 | 31. Sparkes A, De Baetselier P, Brys L, et al. Novel half-life extended anti-MIF    |
|-----|-------------------------------------------------------------------------------------|
| 366 | nanobodies protect against endotoxic shock. FASEB J 2018;32:3411-22.                |
| 367 | 32. Das R, Koo MS, Kim BH, et al. Macrophage migration inhibitory factor (MIF) is a |
| 368 | critical mediator of the innate immune response to Mycobacterium tuberculosis.      |
| 369 | Proc Natl Acad Sci USA 2013;110:E2997-3006.                                         |
| 370 |                                                                                     |
| 371 |                                                                                     |

| 374      | Figure  | Captions |
|----------|---------|----------|
| <b>.</b> | 1 19410 | captions |

| 376 | Figure 1 |
|-----|----------|
| 0.0 | 1.900.01 |

| 377 | Immunohistochemical staining for (A) macrophage migration inhibitory factor, (B)                     |
|-----|------------------------------------------------------------------------------------------------------|
| 378 | nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), (C)                       |
| 379 | apoptosis-associated speck-like protein containing a caspase recruitment domain and a                |
| 380 | pyrin domain (ASC), and (D) caspase-1 in lipopolysaccharide-injected wild-type mice.                 |
| 381 | Strong positive staining (brown color) was observed in inflammatory cells (black arrow).             |
| 382 | (E) Immunohistochemical staining using Rabbit Immunoglobulin Fraction in                             |
| 383 | phosphate-buffered saline (PBS)-treated control mice. (*, middle ear cavity; Scale bar,              |
| 384 | 100 μm)                                                                                              |
| 385 |                                                                                                      |
| 386 | Figure 2                                                                                             |
| 387 | Histological findings of the middle ear cavity in (A) wild-type mice and (B) MIF <sup>-/-</sup> mice |
| 388 | with transtympanic injection of lipopolysaccharide. Numerous inflammatory cells                      |

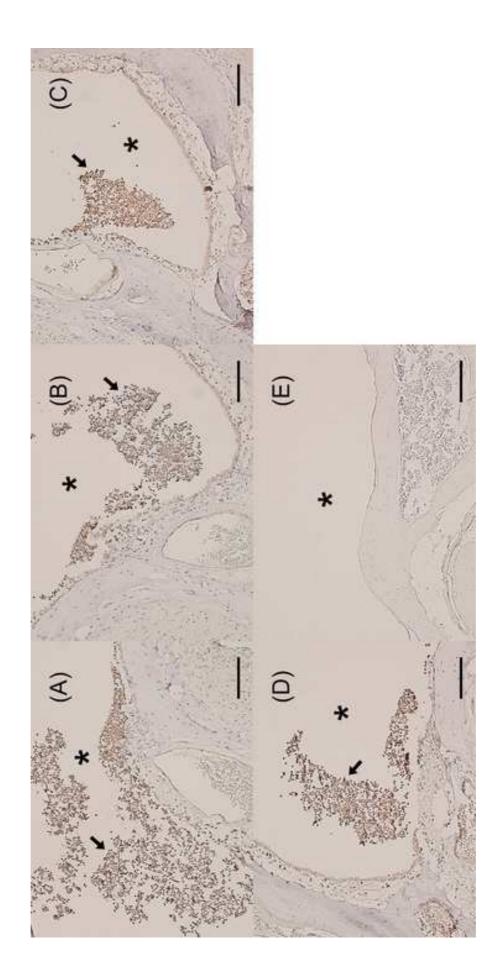
389 (polymorphonuclear leukocyte and monocyte) infiltrated into the middle ear cavity in

| 390 the | e lipopolysac | charide-injected | wild-type mice. | In contrast, a small | number of |
|---------|---------------|------------------|-----------------|----------------------|-----------|
|---------|---------------|------------------|-----------------|----------------------|-----------|

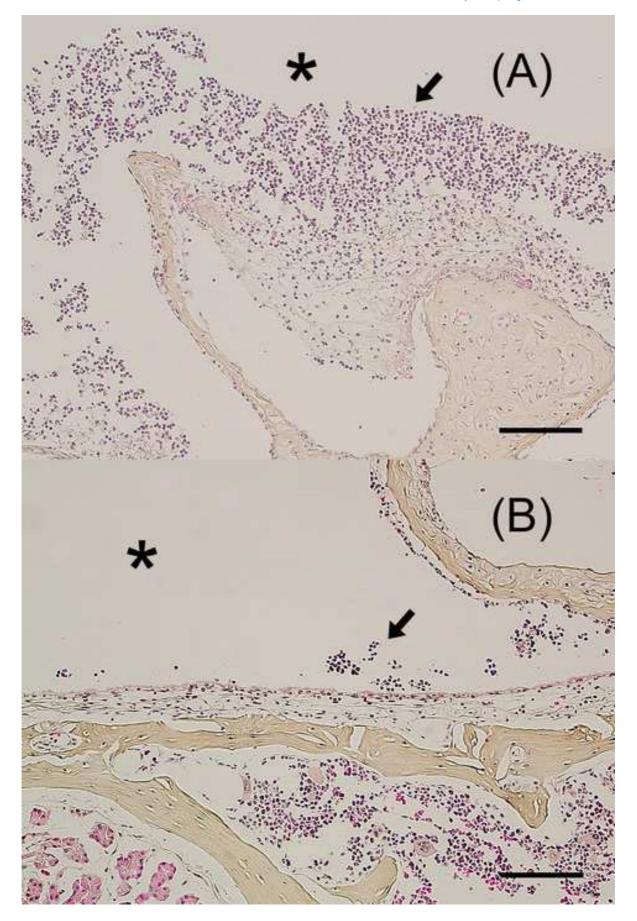
- inflammatory cells were found in the lipopolysaccharide-injected MIF<sup>-/-</sup> mice.
- 392 (Hematoxylin and eosin staining; scale bar, 100 μm) (black arrow, inflammatory cells; \*,
- 393 middle ear cavity; MIF, macrophage migration inhibitory factor).

395 Figure 3

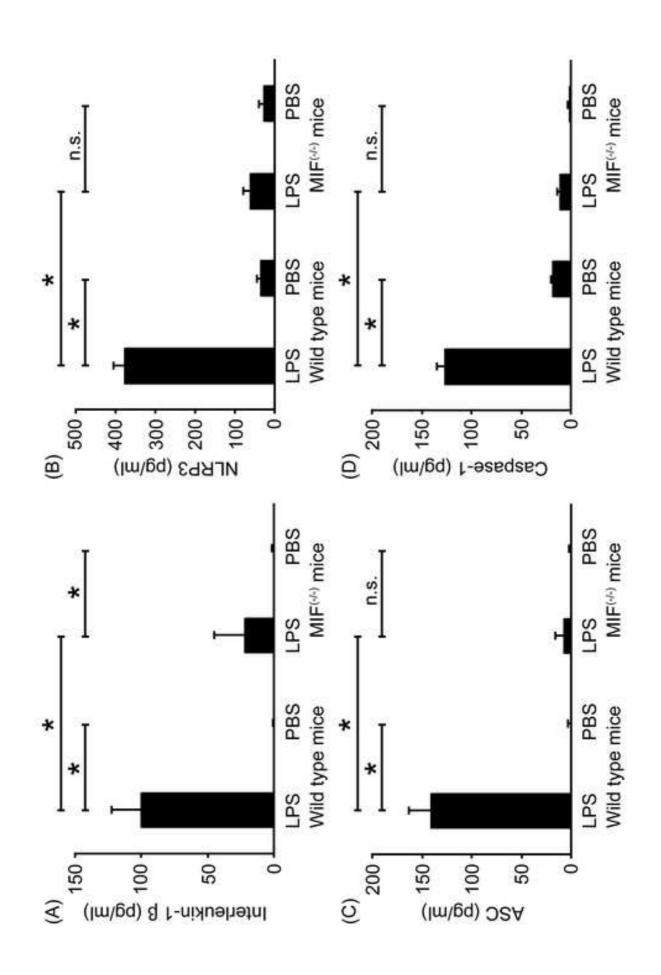
396 Concentrations of (A) interleukin-1 $\beta$  (IL-1 $\beta$ ), (B) nucleotide-binding oligomerization


397 domain-like receptor protein 3 (NLRP3), (C) apoptosis-associated speck-like protein

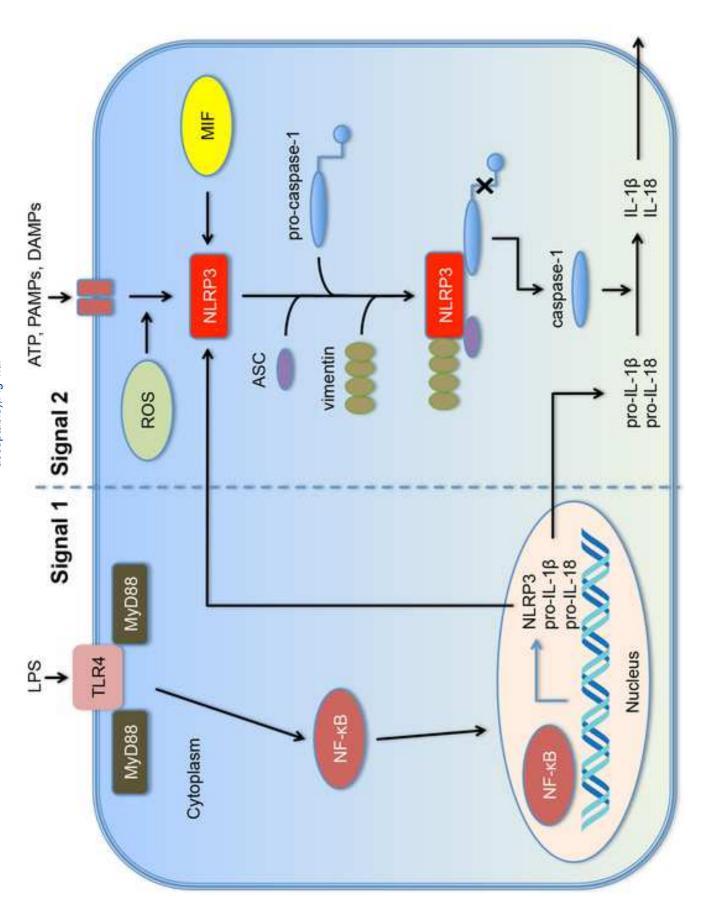
- 398 containing a caspase recruitment domain and a pyrin domain (ASC), and (D) caspase-1
- in lipopolysaccharide (LPS)-injected and phosphate-buffered saline (PBS)-treated mice.
- 400 (n = 6 (12 ears); median  $\pm$  standard error; \*, P < 0.05) (MIF, macrophage migration
- 401 inhibitory factor; n.s., not significant).
- 402


403 Figure 4

- 404 Potential molecular mechanism of macrophage migration inhibitory factor and NLRP3
- 405 inflammasome on the production of IL-1β. Signal 1 (Toll like receptor/NF-κB pathway)


- 406 is needed to induce pro-IL-1 $\beta$ . Signal 2 with macrophage migration inhibitory factor,
- 407 vimentin, and NLRP3 inflammasome has a critical role in the production of caspase-1.
- 408 The active caspase-1 released from the NLRP3 inflammasome is responsible for the
- 409 conversion of inactive IL-1β precursor into its biological active form.
- 410 LPS: lipopolysaccaride
- 411 TLR4: Toll-like receptor 4
- 412 NF-κB: nuclear factor-kappa B
- 413 NLRP3: the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3
- 414 ATP: adenosine triphosphate
- 415 PAMPs: pattern-associated molecular patterns
- 416 DAMPs: danger-associated molecular patterns
- 417 ROS: reactive oxygen species
- 418 MIF: macrophage migration inhibitory factor
- 419 ASC: adaptor apoptosis-associated speck-like protein containing a caspase activation
- 420 and recruitment domain (CARD) and a pyrin domain (PYD)
- 421




♦I







♦I



MIF NLRP3 ASC Caspase-1 LPS PBS LPS PBS LPS PBS LPS PBS score (n=6) (n=6) (n=6) (n=6) (n=6) (n=6) (n=6) (n=6) 0 0 0 0 0 0 0 -1 +0 6 0 5 0 5 0 6 0 1 0 2 0 ++ 1 1 1 5 5 0 5 0 0 4 0 +++

Table 1: The rating scores of immunostaining for each protein in lipopolysaccharide (LPS)- or phosphate buffered saline (PBS)-injected wild-type mice.

The rating score: (-), no positive reaction; (+), 1-10 positive cells; (++), 11-100 positive cells; and (+++), over 100 positive cells per high power field (×400).

MIF, macrophage migration inhibitory factor

NLRP3, The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 ASC, adaptor apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (CARD) and a pyrin domain (PYD)