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aUniversity of Alicante, Department of Optics, Pharmacology and Anatomy, Spain

bUniversity of Valencia, Department of Optics, Dr. Moliner 50, 46100 Burjassot, Spain
cUniversity of Belgrade, Institute of Chemistry, Technology and Metallurgy,
Center of Microelectronic Technologies and Single Crystals, Njegoševa 12,

11000 Belgrade, Serbia
svukovic@nanosys.ihtm.bg.ac.rs

dTexas A & M University at Qatar, P.O. Box 23874, Doha, Qatar
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1 Introduction

Ultrathin optical multilayers fabricated as periodic superlattices of two or more different materi-
als have continually been a focus of interest for both engineers and theorists for decades.1 The
possibility to relatively simply fabricate laminar structures with the thickness of their strata in the
nanometer range allowed for the fabrication of a plethora of different practical structures, from
antireflection layers and dielectric mirrors to various kinds of coatings and filters. A new boost to
this field arrived with the advent of plasmonics.2,3 New areas of investigation have emerged, such
as electromagnetic metamaterials, negative refraction, near-perfect near-field focusing, subwave-
length imaging, transformation optics including cloaking devices and superconcentrators,4–6

to mention just a few. Practical applications include chemical and biological sensing, optical
interconnects and waveguides, solar cell enhancement, etc.

A variety of different electromagnetic waves appear in ultrathin layered structures.7 An
especially important group is one-dimensional (1-D) noble metal-dielectric subwavelength
nanostructured planar multilayers. Such superlattices represent plasmonic metamaterials with
optical properties similar to uniaxial crystals with positive birefringence. They are also some-
times denoted as 1-D subwavelength plasmonic crystals, in analogy with photonic crystals. Due
to the presence of metallic nanolayers, such superlattices are dispersive and dissipative. A unit
cell of a 1-D subwavelength plasmonic crystal comprises one metal and one dielectric layer. In
addition to conventional propagating Floquet-Bloch (FB) modes, various in-plane plasmon-
polariton modes may appear at the interfaces between metal and dielectric strata,8–10 the presence
of metal being responsible for the excitation of surface plasmon-polariton resonances. Both
transverse magnetic (TM) and transverse electric (TE) polarized surface modes may exist in
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such anisotropic metamaterials,11 contrary to the conventional single-interface situation where
only TM modes are supported. The subwavelength stratified metal-dielectrics can be structurally
tailored in different manners in order to obtain the desired dispersion characteristics, including
those supporting fast light, slow light and left-handed modes.9

In the situation when an interface exists between two dielectric media, when one of them is
anisotropic and the other is isotropic, surface electromagnetic waves that are not based on
plasmon-polariton resonance may appear. These waves are termed Dyakonov waves after
the researcher who first envisioned them.12,13

If the anisotropic material is a uniaxial crystal with the optical axes in the plane of interface, it
becomes necessary for birefringence to be positive. At the same time, permittivity of the border-
ing isotropic dielectric must fulfill certain conditions. In contrast to metal-dielectric superlattices,
nondissipative all-dielectric multilayers always have negative birefringence, and therefore, no
Dyakonov modes can exist on their surface.

Contrary to the surface plasmon polaritons that are strictly TM polarized, Dyakonov waves are
hybrid with both TE and TM polarization components involved. Nevertheless, their most inter-
esting property is that they can propagate without losses and within a certain angular range with
respect to the optical axes. However, these waves were experimentally demonstrated only
recently,14 over 20 years after Dyakonov’s prediction, due to the fact that naturally anisotropic
materials have extremely small birefringence that leads to exceedingly narrow angular domain
of existence of Dyakonov modes. Some authors proposed widening the angular domain utilizing
the Pockels effect.15 Awidening of the angular domain for hybrid surface modes utilizing weakly
dissipative metal-dielectric laminar stuctures was described using the effective medium theory
(EMT).16,17 However, while EMT is a widely used and often accurate tool for simplified calculation
of electromagnetic properties of nanocomposites, it naturally has its inherent limitations18,19 and in
some situations gives only rough approximations or even completely fails.19,20

In this paper we utilize the exact FB approach to consider the general case of the wave pro-
pagation along the interface between a semi-infinite isotropic dielectric and a semi-infinite
metallodielectric binary superlattice cut normally to the layers.16,21 We report on the existence
of hybrid surface waves with both TE and TM polarizations involved, provided certain condi-
tions are fulfilled. Since we consider modes that are dispersive and dissipative, we introduce the
term Dyakonov-like surface modes, to make a distinction with the original Dyakonov modes,
which are described for purely lossless case. We compare the obtained results with those
determined by EMT. We show that by careful choice of the structural parameters, a substantial
enlargement of the angular range of existence of Dyakonov-like waves can be obtained.

2 Formulation of the Problem

We consider a binary plasmonic superlattice (laminar metal-dielectric) made of metal and dielectric
layers alternatively stacked along the z axis and cut normally along the y-z plane so that it reveals a
surface with alternating metal and dielectric regions toward the environment, as shown in Fig. 1. The
unit cell of the 1-D lattice integrates a transparent material layer with a relative dielectric permittivity
εd and a slab width wd followed by a metal layer with the corresponding parameters εm and wm. The
plasmonic metamaterial is located in the semi-space x > 0, while an isotropic material with a relative
dielectric permittivity ε is placed adjacent to the cut surface of the periodic medium in the semi-space
x < 0 (Fig. 1). In this work, we consider two kinds of glass substrates as that dielectric material,
N-BAK1 with dielectric constant ε ¼ 2.43, and P-SF68 (SCHOTT) with dielectric constant
ε ¼ 3.8025. We denote the relative permittivity measured along the optical z-axis by εk, while
the permittivity in the transversal direction is ε⊥. The metal filling factor is defined as

f ¼ wm

wd þ wm
: (1)

Besides absorption losses, there is a strong time dispersion in metals that gives rise to a
frequency dependence of metal permittivity. This can be described by the well-known Drude
model. However, for the purpose of this paper, we keep the wavelength (frequency) constant
at λ0 ¼ 1.55 μm. That allows us to study space dispersion only, and avoid study of time
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dispersion. In our numerical simulations we set εd ¼ 12.4 and εm ¼ −103.3þ i 8.1, correspond-
ing to GaAs and Ag, respectively, at a wavelength of λ0 ¼ 1.55 μm.22,23

The optical properties of multilayers are often described by the EMT, also known as optical
homogenization theory,24 provided that the radiation wavelength is much greater than the dimen-
sions of a unit cell of the multilayer. The EMT may be useful in describing both propagating
volume and surface modes instead of the accurate transfer-matrix solutions.25,26 It furnishes
relatively simple expressions and is computationally undemanding. However, caution is neces-
sary when utilizing EMT, especially for metal-dielectric structures.18,27 The limitations of the
theory have been investigated variously for weakly dissipative metamaterials19 and 1-D laminar
gratings,11,18 but also for complex nanocomposites, including those with fractal patterns.28 An
isofrequency, or space dispersion relation of light propagation in both all-dielectric and metal-
dielectric nanostructured multilayers can significantly differ from the results of the EMT due to
high nonlocalities.29–31 For 1-D subwavelength plasmonic crystals EMT is valid if kdwd ≪ 1;
kmwm ≪ 1, and kzðwd þ wmÞ ≪ 1, where kx, ky, and kz are the wavevector components, while

kd ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εd − ðk2x þ k2yÞ∕k20

q
; km ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εm − ðk2x þ k2yÞ∕k20

q
; k0 ¼ 2π∕λ0.

The isofrequency surfaces in the three-dimensional space of wavevectors for ε⊥ > 0 and εk > 0

obtained by the EMT are spheroid for ordinary modes that correspond to TE-polarization, while
extraordinary modes that correspond to TM polarization are described by an ellipsoid. In this
case our plasmonic metamaterial qualitatively behaves like a uniaxial crystal with positive bire-
fringence. If ε⊥ < 0 and εk > 0 the isofrequency surface becomes a hyperboloid. A consideration
of the EMT applied for the case of surface modes in laminar metal-dielectrics can be found in
Ref. 11, and its application to the case of Dyakonov waves in Refs. 16 and 17.

By applying the continuity of fields as the standard boundary conditions at x ¼ 0, one can see
that both ordinary (TE) and extraordinary (TM) evanescent modes in metal-dielectric superlattice
must become coupled with the evanescent wave in the isotropic dielectric medium. Contrary to
the standard surface plasmon polaritons that are widely studied in plasmonics and are exclusively
TM-polarized, such surface modes become necessarily hybrid in polarization and propagate
obliquely with respect to the optical axes. This was precisely Dyakonov’s conclusion in
1988 for the case of planar interface between isotropic and anisotropic dielectrics.12 Dyakonov
equation for space dispersion reads

ðκ þ κeÞðκ þ κoÞðεκo þ ε⊥κeÞ ¼ ðεk − εÞðε − ε⊥Þk20κo; (2)

where κe (extraordinary) and κ0 (ordinary) are the imaginary wavevector components normal to
the boundary (x-direction), while k0 is the wavevector in free space.

Strictly speaking, Dyakonov Eq. (2) is applicable only if EMT is valid. However, within
the regions of existence of Dyakonov-like surface waves, the FB solutions for TM and TE

Fig. 1 Schematic setup under study consisting of a semi-infinite Ag-GaAs superlattice (x > 0)
and an isotropic cover (x < 0), either N-BAK1 or P-SF68 (SCHOTT).
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modes can be approximated with high accuracy by ellipses and circles. That procedure allows for
Dyakonov Eq. (2) to be employed.

According to Eq. (2), Dyakonov waves can propagate in a narrow angular domain
Δθ ¼ θmax − θmin. Here θ stands for the angle between the two-dimensional wavevector q!ðky ¼
q sin θ; kz ¼ q cos θÞ and the optical axis. The angular domain is proportional to the birefrin-
gence of material determined by the difference between refractive indices in the z-direction and
transversal to it, Δn ¼ ffiffiffiffiffi

εk
p − ffiffiffiffiffi

ε⊥
p

.
Assuming that all dielectric constants (ε, εk and ε⊥) are positive and imposing that all

decay rates involved must be positive, the following additional restriction for the existence
of Dyakonov surface waves becomes valid

εk > ε > ε⊥: (3)

As a consequence, positive birefringence is mandatory to ensure the existence of surface
waves. In addition, the value of the dielectric permittivity of the isotropic media has to be
between the parallel and the perpendicular ones with respect to the optical axes of the plasmonic
metamaterial. Therefore, such a layered superlattice cannot be formed by all-dielectric materials,
since their birefringence is always negative.

To consider the full-wave solution of Maxwell’s equations in bulk 1-D-periodic media with
binary unit cell it becomes necessary to use the exact transfer-matrix method.25 As a result, two
FB dispersion equations can be obtained for TE-polarized (ordinary) and TM-polarized (extra-
ordinary) modes that can propagate within the periodic Ag-GaAs structure illustrated in
Fig. 125,26

cosðkzLÞ ¼ cosðkmwmÞ cosðkdwdÞ − ηo;e sinðkmwmÞ sinðkdwdÞ; (4)

where kz represents the pseudo-moment of a Bloch wave, L ¼ wm þ wd is the unit cell thickness,
while ηo ¼ ðk2d þ k2mÞ∕2kdkm and ηe ¼ ðε2mk2d þ ε2dk

2
mÞ∕2εmεdkdkm are coefficients for TE

(ordinary) and TM (extraordinary) waves, respectively. Finally, k2d ¼ εdk20 − k2x − k2y represents
the dispersion equation for bulk waves within GaAs, and k2m ¼ εmk20 − k2x − k2y is the correspond-
ing equation for silver.

It is worth noting that the dispersion equations for EMT for 1-D subwavelength plasmonic
crystal11 can be obtained as a special case of the FB Eq. (4) using a corresponding Taylor expan-
sion for the case when kdwd ≪ 1; kmwm ≪ 1 and kzL ≪ 1.

In some cases, the propagation of Dyakonov-like waves can be prevented due to high
absorption that can be described by energy attenuation length l ¼ ½2ImðqÞ�−1. Because of that
we utilize a figure of merit FOM ¼ Refqg∕Imfqg describing the influence of absorption losses.
Obviously, high values of FOM are desirable.

3 Results and Discussion

A consideration of the two FB Eq. (4) shows that their solutions are periodic in kz with a period
2π∕L, contrary to EMT solutions. They are dependent on the unit cell thickness L ¼ wm þ wd

for a fixed filling factor f, since nonlocalities and retardation effects are not neglected, as is the
case with the EMT. Nonlocalities must be taken into account for metallic layer thickness of the
order of the metal skin-depth or lower. For silver, we estimate λs ¼ c∕ωp ≈ 24 nm, where ωp is
the plasma frequency. Notice that in practice, metallic strata less than 10 nm thick are rarely
used. In some cases, the solutions of FB equations reveal dual elliptic-hyperbolic periodic
isofrequency curves.30

The calculated birefringence of the Ag-GaAs laminar structure is Δn > 3.7. For comparison
we quote Δn ¼ 0.0084. for crystalline quartz and Δn ¼ 0.22 for liquid crystal BDH-E7.32 Thus
our plasmonic superlattice has a birefringence greater by more than an order of magnitude.

The isofrequency curves for various Ag layer thicknesses wm, but for a fixed filling factor f,
obtained from the FB Eq. (4) (for kx ¼ 0), in the case of negligible losses, are shown in Fig. 2
together with the corresponding EMT solution. We observe that the EMT is sufficiently accurate
for wm ≤ 3 nm only.
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The contours for wm ¼ 6 nm (green), and wm ¼ 12 nm (red) are ellipse-like (solid), and
circle-like (dashed) curves, but they are not the true ellipses and circles, respectively. Apparently
Eq. (13) is in good agreement with the EMT in the vicinity of kz ¼ 0 for TM waves. In contrast,
propagation along the z-axis, where ky ¼ 0, results in larger discrepancies, as the Bloch wave
number kz increases for higher wm. This effect is observed simultaneously for TM and TE waves.
Consequently the form birefringence displayed by TM waves is reduced (see Fig. 3). For TE
waves, isotropy of the isofrequency curve is practically conserved, e.g., n⊥ ¼ 1.70 and
nk ¼ 1.67 for wm ¼ 12 nm. At the same time, ε⊥ increases with wm. Figure 3(b) shows the
angular range of existence for Dyakonov-like surface waves obtained by FB.

Nonlocal effects can substantially impact the existence of Dyakonov-like surface waves.
Increasing ε⊥ by decreasing f leads to a significant modification of the isofrequency curve

Fig. 2 Isofrequency curves (spatial dispersion) for Ag-GaAs metal-dielectric superlattice by using
Floquet-Bloch equation (blue, red, and green) and EMA (black), for various metallic layer thick-
ness. Dashed lines: TE—polarization; full lines: TM—polarization. Losses in Ag layers are
neglected.
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Fig. 3 (a) Spatial dispersion (isofrequency curves) of Dyakonov-like surface waves (green) at the
interface of Ag-GaAs superlattice and P-SF68 (blue) substrate utilizing Floquet-Bloch equation;
f ¼ 0.10 and wm ¼ 12 nm. (b) Angular range of existence for Dyakonov-like surface waves at the
interface of Ag-GaAs and P-SF68 substrate by using Floquet-Bloch equation. Realistic losses in
Ag are included.
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derived from Eq. (2). According to Eq. (3) it may entirely prevent the existence of surface waves.
In Fig. 4 we present the form birefringence as a function of the filling factor f (solid blue line),
and as function of metallic layer width wm for a fixed filling factor f ¼ 0.1 (dotted red line).

As it can be seen, the birefringence increases with the filling factor up to f ¼ f0, which is
1.07 in our case. However, the birefringence decreases with the metallic layer thickness for a
fixed filling factor f ¼ 0.1. Consequently, the angular range of existence of Dyakonov-like
waves Δθ will decrease.
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Fig. 4 Birefringence for Ag-GaAs superlattice as a function of filling factor (blue), and as a function
of metallic layer thickness with a constant filling factor f ¼ 0.10 (red).
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equation; f ¼ 0.1 and wm ¼ 6 nm. (b) Angular range of existence for Dyakonov-like surface
waves for the same substrates by using Floquet-Bloch equation; losses in Ag layers are included.
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To further study Dyakonov-like surface waves at the Ag-GaAs interface, we have used FB
Eq. (4) with wm ¼ 6 nm and wm ¼ 12 nm, and a filling factor of f ¼ 0.1. The dissipative effects
in metallic layers have been included, too. Since the imaginary part of εm is not neglected, kz
becomes complex. Furthermore, we impose that the real parts of the parameters κ, κo and κe in
Eq. (2) are all positive, which is correlated with the requirement that the field decays exponen-
tially from the surface, thus remaining confined near x ¼ 0. We evaluate numerically kz for a
given ky and plot Refkzg as a function of ky. The results are presented in Fig. 5(a) for
wm ¼ 6 nm; f ¼ 0.1, for N-BAK-1 (red line), and P-SF68 (green line) substrates, respectively.

In Fig. 5(b) we present Refqg∕k0, as a function of θ ¼ Refarctanðky∕kzÞ for the same
parameters and substrates. As can be seen, the angular range of existence is Δθ ≈ 32 deg

with θmin ¼ 33 deg for N-BAK1, and Δθ ≈ 23 deg with θmin ¼ 47.4 deg. Generally, as the
substrate permittivity ε increases, the angular domain of existence of Dyakonov-like waves
decreases and moves toward higher angles.

The situation when wm ¼ 12 nm and all other parameters are kept the same is presented in
Fig. 3(a) and 3(b). Now, there are no Dyakonov-like surface waves for N-BAK1 substrate,
because of violation of Eq. (3). The angular range of existence becomes smaller, Δθ ≈ 14 deg

with θmin ¼ 28 deg, but shifted toward lower angles.
In Fig. 6 we plot FOM as a function of ky, in the range of existence of the surface waves.

The boundaries of such a curve are established according to the ability of the electromagnetic
field to be confined in the neighborhood of x ¼ 0, which leads to a certain inaccuracy from
the computational grounds. For paraxial surface waves with low ky, we observe that
Imfqg ≪ Refqg, or high FOM. This is caused by a large shift of the intensity maximum toward
the transparent isotropic medium. In this case, Refκg → 0. On the other hand, nonparaxial waves
with high ky are characterized by deep energy penetration inside the plasmonic superlattice, and
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Fig. 6 Figure of merit (FOM) as a function of angle of propagation corresponding to Dyakonov-like
hybrid surface waves at the boundary between a semi-infinite P-SF68 (SCHOTT) substrate and
a plasmonic Ag-GaAs superlattice with f ¼ 0.10 and wm ¼ 12 nm. Points A, B, and C correspond
to high, moderate and low FOM, respectively.

Fig. 7 Three contour plots of magnetic field jHx j in the points A, B, C as given in Fig. 6, evaluated
by the finite element method. Left: P-SF68 [SCHOTT] glass, right: plasmonic Ag-GaAs
superlattice with f ¼ 0.10 and wm ¼ 12 nm.
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Refκeg → 0. As a consequence, losses in metal are manifested by significantly higher values
of Imfqg, or low FOM.

To complete our analysis, we determined field profiles near the interface between the AgGaAs
superlattice and the P-SF68 (SCHOTT) substrate. For that purpose numerical simulations were
performed using a commercial software package (COMSOL Multiphysics) based on the finite ele-
ment method. Notice that our computer simulations have not revealed surface waves for N-BAK1
substrate (n ¼ 1.56), as expected. Clearly, this is because of the violation of Eq. (3) in that case.
However, for P-SF68 (SCHOTT) substrate this inequality is not violated. The corresponding field
profiles that are presented in Fig. 7 are fully consistent with the FOM analysis given in Fig. 6.

Finally, it is worth mentioning that the above analysis is valid for a fixed value of wavelength
of λ0 ¼ 1.55 μm. Results at other wavelengths are expected to qualitatively differ from those
presented here.

4 Conclusion

We conclude that oblique surface waves may propagate at an interface between a plasmonic
bilayer superlattice and an isotropic transparent material. These modes are not TM-polarized,
since all three spatial components of the electric, as well as of the magnetic, field are involved,
i.e., these modes are hybrid in polarization. Our numerical simulations prescribe the use of
substrate materials with higher refractive index for the existence of surfaces waves. A large
increase of the angular range of Dyakonov-like surface waves is attainable with large to moderate
energy attenuation lengths. Thus, somewhat counter-intuitively, the introduction of weak absorp-
tion losses actually increases the angular domain of existence for hybrid surface waves. Finally,
we point out that the properties of the resulting bound states change rapidly with the refractive
index of the surrounding medium (cover), which suggests potential applications for chemical
and biological sensors.
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