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Abstract 

 

 This paper analyzes a controlled servomechanism with feedback and a cubic 

nonlinearity by means of the Bogdanov-Takens and Andronov-Poincaré-Hopf 

bifurcations, from which steady-state, self-oscillating and chaotic behaviors will be 

investigated using the center manifold theorem. The system controller is formed by a 

Proportional plus Integral plus Derivative action (PID) that allows to stabilize and drive 

to a prescribed set point a body connected to the shaft of a DC motor. The Bogdanov-

Takens bifurcation is analyzed through the second Lyapunov stability method and the 

harmonic-balance method, whereas the first Lyapunov value is used for the Andronov-

Poincaré-Hopf bifurcation. On the basis of the results deduced from the bifurcation 

analysis, we show a procedure to select the parameters of the PID controller so that an 

arbitrary steady-state position of the servomechanism can be reached even in presence 

of noise. We also show how chaotic behavior can be obtained by applying a harmonical 

external torque to the device in self-oscillating regime. The advantage of achieving 

chaotic behavior is that it can be used so that the system reaches a set point inside a 

strange attractor with a small control effort. The analytical calculations have been 

verified through detailed numerical simulations. 

 

Keywords: Servomechanism, Bogdanov-Takens bifurcation, Andronov-Poincaré-Hopf 
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1. Introduction 

 

  The study of electromechanical devices has focused almost entirely on linear 

systems, although nowadays it is widely recognized that an analysis based on linear 

models can be inadequate for devices with strong nonlinearities and for sufficiently 

large excursions from the equilibrium point [1-3]. On the other hand, the bifurcation 

theory has not been widely used in the analysis of the multidimensional controlled 

electromechanical systems. For example, the Bogdanov-Takens (BT) bifurcation (i.e. 

when the matrix of the linear part of the system has two null eigenvalues) [4-12] or the 

Andronov-Poincaré-Hopf (APH) bifurcation (which appears if the matrix of the linear 

part of the system has two pure imaginary eigenvalues) [13-20] has not been of 

common use in the resolution of problems associated to nonlinear oscillations in 

complex systems.  

 

 This paper considers the motion of a servomechanism, whose mathematical 

model includes a potentiometer, a PID controller, a cubic nonlinearity, an amplifier, and 

a DC motor with a gear train controlled by armature, which provides a nonlinear 

feedback control system. It is assumed that an external disturbance torque formed by a 

constant term plus a harmonic one is applied to the output axis of the servomechanism. 

The present paper has two main purposes. The first one is to design the PID controller 

so that the output shaft of the servomechanism can reach a prescribed set point, which 

will be achieved on the basis of the results obtained from a detailed analysis of the BT 

and APH bifurcations. The second goal of the paper is to use the aforementioned 

bifurcation analysis to obtain chaotic behavior, which will be advantageously used to 

reach a predetermined set point with a small control effort, even in the presence of 

noise. 

 

The paper is organized as follows. In section 3, the BT bifurcation is analyzed 

by applying the center manifold theorem, which allows obtaining the normal form of 

the system, i.e. the simplest form of the system in R
2
 which contains all the dynamics 

properties of the original system -defined in R
4
-. In section 4, the stability of the normal 

form of the system is studied from the Lyapunov’s direct method by means of a 

candidate Lyapunov function [1]. Consequently, the proportional constant and the reset 

time of a PID controller can be tuned to find out the stability of a predefined set point or 
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to predict a self-oscillating behavior. The previous procedure does not provide the 

derivative control action of the PID, which has been determined through the harmonic 

balance method (describing function) [1], [21-22]. In addition, the self-oscillation 

frequency has also been obtained in section 4. 

 

In section 5, the servomechanism is analyzed from a computational viewpoint. 

The purpose is to demonstrate how the self-oscillation regime can be predicted from the 

parameters of the PID controller deduced in section 4, and how the chaotic behavior can 

appear. Once the self-oscillating regime has been reached with the BT bifurcation, it is 

demonstrated that the harmonic variation of the reference input can give rise to chaotic 

dynamics, which has been investigated from the analysis of the sensitive dependence, 

Lyapunov exponents, power spectral density, Poincaré sections and bifurcation 

diagrams. Consequently, a new family of strange attractors has been characterized. It 

should be noticed that, in systems from which experimental data can be obtained, the 

methods of nonlinear time series [23] can also be used to corroborate whether an 

attractor is chaotic or not. 

 

In section 6, the APH bifurcation is analyzed, and it is demonstrated that it can 

only appear if the external disturbance torque in the motor shaft has a non null mean 

value (which arises from a constant term). In this case, the self-oscillating conditions 

and the oscillation frequency are deduced by applying the Routh stability criteria to the 

linearized system at the equilibrium point. Consequently, the parameters of the PID 

controller can be designed to obtain an equilibrium point that is a weak focus [23], 

whose stability will be analyzed from the calculation of the first Lyapunov value [13-

18], [24-25] (since the analytical calculations are very cumbersome, a computational 

procedure to obtain the first Lyapunov value has been included in an Appendix). The 

simulation results shows that an unstable weak focus (i.e. a positive value of the first 

Lyapunov value) results in an unstable system.  

 

Once the self-oscillating behavior due to an APH bifurcation has been reached, 

as in the case of BT bifurcation, chaotic dynamics can appear when an external 

harmonic disturbance is applied, so a new family of chaotic attractors has been 

obtained, which can be used to reach the set point with small control signals. It is 
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interesting to point out that the partial control method [26-28] represents an alternative 

procedure for using the chaotic behavior to maintain the system in a small zone of the 

phase plane employing small control signals even in presence of noise. 

 

2. Mathematical model  

 

The system is formed by a body to be stabilized that is driven by a gear train 

(regarded as ideal) with a transmission relation n = N1/N2. The gear train is connected to 

a DC field-controlled motor to which an input voltage ua(t) is applied through an 

amplifier with constant Ka [2]. The feedback is carried out by means of a potentiometer 

with constant Ks, whose output voltage u(t) is applied to a PID controller connected to a 

nonlinear cubic element with a constant Kne as shown in Fig 1.  

The nomenclature and parameter values of the subsystems which form the 

servomechanism (i.e.: potentiometer, PID controller, nonlinear element, amplifier and 

DC motor with a gear train) are shown in Table 1. The rest of parameters associated to 

the analysis of the BT and APH bifurcations, stability by means of Lyapunov’s direct 

method, describing function and calculation of the first Lyapunov value are defined in 

each section, subsection and in the Appendix. 

Figure 1 

Table 1 

 

This device can be applied for tracking mechanical systems such as image 

tracking systems, in which a nonlinear element with zero-sensitivity zone type that can 

be approximated by a cubic parabola [29-30]. The mathematical equations of the system 

are the following ones: 

 

 Potentiometer equation:      

     s ru t K t t                                                  (1)               

 PID controller equation: 

 

     
 

1

0

1
t

p d

i

du t
u t K u t u d

dt
  



 
   
  

                                (2) 
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where Kp, is the proportional constant, τi is the reset time and τd is the derivative 

time [31-33]. 

 

 Equation of the nonlinear element: 

 

   3

2 1neu t K u t                                                    (3) 

 Amplifier equation: 

   2a au t K u t                                                    (4) 

 Equation of the armature current:         

         

 
     

   
 

a

a a a a b

m

b b m b

di t
L R i t u t u t

dt

d t
u t K t K

dt




  

 

                                      (5) 

 

where ub(t) is the back-electromotive force, θm(t) is the angle of the motor shaft 

and ωm(t) is the angular velocity of the motor shaft. 

 

 Equation of the motor torque: 

 

   
   

         

2
2

1 22

2

1 2

  ;  

  ;  

m m

me me m me m L

me m L m m L d

d t d t
J B T t J J N N J

dt dt

B B N N B T t T t T t T t

 
   

     

              (6) 

 

where Jm and JL are the inertia moments of the motor shaft and load respectively, 

Bm and BL are the viscous friction of the motor and load, and Jme and Bme are the 

equivalent inertia moment and viscous friction, both of them with respect to the 

motor shaft. On the other hand, Tm(t), T’m(t), T’L(t) and Td(t) are respectively the 

motor torque, the motor torque to move the shaft plus the motor viscous friction, 

the load torque and the disturbance torque. 

 

 Motor torque assuming a linear regime: 
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   m m aT t K i t                                              (7) 

where Km is the torque constant. 

 

 The reference input r(t) and the disturbance torque Td(t) are defined as: 

 

       1 2 1 2sin   ;  sinr r r r d d d dt t T t T T t                               (8) 

It should be noticed that it is possible to choose different input signals. For example, we 

have a step input for θr2 = 0, whereas the disturbance torque is constant for Td2 = 0. 

 

The mathematical model of the device can be defined by two equivalent systems 

of equations; one of them is based on the output angle θ(t) of the axis and the other one 

is based on the input voltage of the PID controller u(t) (see Fig 1). Since θm = (N2/N1)θ 

= θ/n, from Eqs (6) and (7) it is deduced that: 

 

     3 2

3 2

ame me
m

d t d t di tJ B
K

n dt n dt dt

 
                                       (9) 

 
   

 
2

a a a b
a

a a a

di t d tR K K
i t u t

dt L L nL dt


                                  (10) 

 

Substituting Eq (10) into Eq (9) it is deduced that: 

 

     
   

3 2

23 2

me me m b m a m a
a

a a a

d t d t d tJ B K K K R K K
i t u t

n dt n dt nL dt L L

  
               (11) 

 

On the other hand, the armature current ia(t) can be deduced from Eqs (6) and (7) as: 

 

 
   2

2

me me
a

m m

d t d tJ B
i t

nK dt nK dt

 
                                         (12) 

 

In order to substitute Eq (12) into Eq (11) it is convenient to introduce the following 

nomenclature: 
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2 2

2

  ;    ;  2  ;   

1
            ;  

2 4

me a m a me a me a
ne s

m b a me me a me a m b a me

me a me a a me me a
m a me

me a m b a me me a

J L nK K B R J L
K K K K K

K K R B J L J L K K R B

B R J L L J B R
K R B

J L K K R B J L

  




 
      

  

      
          

      

 

(13) 

 

where Km is calculated as a function of ξ. It can be verified that ξ is a dimensionless 

parameter, whereas the units of τ, K’ and K are seconds (s), V
-1

s
-1

 and V
-2

s
-1

 

respectively. From Eqs (8)-(13) it is possible to determine a differential equation in 

terms of the θ(t), in which u(t) as well as the integral action in the PID controller can be 

eliminated between Eqs (1) and (2). Thus the mathematical model of the system can be 

written as follows:  
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3
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 (14) 

 

Taking into account Eq (1), it is possible to deduce an equivalent mathematical model 

expressed as a function of u(t), so from Eqs (1) and (14) it is deduced that: 
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       (15) 

 

Eqs (8), (14) and (15) will be used in the analysis of the BT [4-12] and APH 

bifurcations [13-20]. It is interesting to remark that the relation θ(t) = θ(t) + 2πk (k = 0, 

±1, ±2,..) must be taken into account in the numerical integration of Eqs (14), whereas 

Eqs (15) can be directly solved using the appropriate initial conditions. In accordance 
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with Eqs (13), Fig 2 shows the variation of the constant motor Km, the time constant τ 

and the parameter K as function of ξ and Ra/La. It is clear that small values for ξ can be 

inappropriate to obtain an admissible value for Km.  

 

Figure 2 

 

3. Analysis of the Bogdanov-Takens bifurcation 

 

The BT bifurcation is analyzed from Eqs (15), for which we first assume that 

there is no disturbance torque (i.e. Td(t) ≡ 0) and that the reference input is a step 

function of value θr1 (θr2 = 0). The effect of θr2 and Td2 will be examined later in the 

analysis of the chaotic behavior. Introducing the state variables: 

 

     
 

 
 

   
2

1 2 3 4 12
  ;    ;    ;  

du t d u t
x t u t x t x t x t u t

dt dt
                    (16)  

 

Eqs (15) can be rewritten as follows: 

 

     

 

 

 

 

 

 

 

 

 

1 1

2 23 3

24 42

3 3

4 4

0 1 0 0 0

0 0 1 0 0

0 1 2 0

0 0p i p p d

x t x t

x t x t
x t Ax t Bx t x t

x t x t K

K K Kx t x t

   

 

      
      
          
       
      

          

(17) 

 

It can be verified that the eigenvalues of matrix A are given by: 

 

   2 2 2

2

1,2 3,4

2

1,2 3,4 1,2 1,2

                   2 1 0

0  ;    ;    ;  1   ;  for  0 1

        0  ;    ;  1   ;   for  1

                     

I A

j

      

          

        

     
 

        

      

          (18) 

Consequently, a double zero eigenvalue appears (Bogdanov-Takens bifurcation) in the 

equilibrium point of Eqs (17), which is the origin. The analysis of this bifurcation will 

be carried out through a series of steps to obtain a simplified system reduced to the 

center manifold [5-12]: 
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It should be remarked that the BT bifurcation is due to the fact that the disturbance 

torque is zero, i.e. Td(t) ≡ 0. If the disturbance torque is a nonzero constant, i.e. 

  1 0d dT t T  , the origin is not an equilibrium point. Consequently, by introducing the 

deviation variable    4 4 4ex t x t x    to move the equilibrium point to the origin, Eqs 

(17) allow to deduce that the term A(3,4) of the new matrix A is not zero. Thus the 

eigenvalues λ1,2 are now different of zero, so the BT bifurcation disappears.  

 

 Step 1: 

 

We shall denote by P1 the matrix that transforms the linear part of Eq (11) into its 

Jordan canonical form when it has two complex conjugate eigenvalues (0<<1), 

whereas P2 shall denote the same matrix in case the four eigenvalues are real (≥1). 

Then the columns of P1 and P2 are the eigenvectors associated to the eigenvalues of Eq 

(18), so it follows that: 

 

 
1

1 2 2
2

1 2 2

3

1 2 2
4 1 1

1

2 1 2

2 2

3 1

4

For 0 1:

0 0 1
1

0 0
   

0 0 2

1 0

For 1:

0 1 1

0 0

0 0

i p p i

p d

p i

p d

i p

x K x K
a K

x y
x Px

x z K
b K

x b a w

x K

x
x P x

x

x



  
 

   

    
 

 





 

 

 

      
                  

                    



 
 
   
 
 
 

2 2

2

2

2

2 1

2 2 1

   

1 0

p

p p d

i

p

p p d

i

Kx
a K K

y

z K
b K K

b a w

 
 

 
 

   
     

    
              

      

(19) 

 

 Step 2 

 

From the new coordinates given by Eq (19), the system (17) can be rewritten in the 

canonical Jordan form as follows: 
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31

1 1 12

1

2 2

1

2

For 0 1:

0 1 0 0 0
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0 0

0 0 0

For 1:

0 1 0 0 0

0 0 0 0 0

0 0 0

0 0 0

x x

y y
P x b z a w

z z K

w w

x x

y y
P

z z K

w w



  

 



 







 

       
       
          
         
       

       



    
    
     
     
    

    

 
3

2 2

0

x b z a w

 
 
   
 
 
 

                (20) 

 

where P1
-1

 and P2
-1

 are the inverse matrices of P1 and P2 respectively. On the other hand 

we have that: 
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 1

2 2 1 2
i

p

b a
K


   

  

(21) 

 

where Δ1 and Δ2 are the determinants of the matrices P1 and P2 respectively. Taking 

into account Eq (21), Eq (20) can be rewritten as follows: 
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1 1

3

1 1

1

2

For 0 1:

0 1 0 0

0 0 0 0

0 0

0 0

For 1:

0 1 0 0

0 0 0 0

0 0 0

0 0 0

p i

x x a b

y y KK
x b z a w

z z

w w

x x

y y K

z z

w w



 

 

   

  



 



 

       
      

         
       
      

       



    
    

     
    
    

    

 

 

 

 

1 2 2 2

1 2 1 2

3

1 2 2 22

1 1 2

2 1 2

1

1

p i

a b

K x b z a w

 

   

  

  

  

 
 
 

      
  

 
   

         (22) 

 

 Step 3 

We now aim to simplify Eqs (22) as much as possible by using the center manifold 

theorem [14-16] to reduce the dimensionality to two in a neighborhood of the origin 

(equilibrium point). Since the nonlinearity is cubic, it is assumed that z and w are 

approximated by third-order polynomials, i.e.: 

 

3 3 2 2

1 2 3 4

3 3 2 2

1 2 3 4

z m x m y m x y m xy

w n x n y n x y n xy

    


    

                                   (23) 

 

where mi and ni (i = 1,2,3,4) are determined by applying the center manifold theorem.   

However, the coefficients ni and mi are not necessary to analyze the Bogdanov-Takens 

bifurcation, since the system reduced to the center manifold up to fifth-order terms 

(obtained by substituting Eqs (23) into Eqs (22)) can be written without involving such 

coefficients, i.e.: 

 

 

   

1 1
53

1 2 2 2

53
1 2 1 22

1 2

For 0 1:

0 1

0 0

For 1:

0 1

0 0

p

i

p i

a b
x x K

x xK
y y

a b
x x K

x x
y y

K



 








 

   


  

 

  
       

                 



 
                

        

                   (24) 
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where  5
x  accounts for fifth-order terms, which are neglected in a neighborhood of 

the origin. It should be noticed that the coefficients mi and ni (i = 1,2,3,4) are only 

necessary if one wants to obtain the variables z(t) and w(t) from the variables x(t) and 

y(t) deduced from a third-order approximation of Eq (22). From Eqs (19), the initial 

variables of the system could be calculated and compared with the simulation results 

deduced from Eqs (17). On the other hand, from Eqs (19) and (24) it is deduced that: 

 

 
 

1 2 2 2
1 1 1 2

1 2 1 2

2 2

1 2

       
p p

i i

a bK K
d a b

KK KK
d

 
 

     

    


    



   

                                 (25) 

 

Eqs (25) allow to deduce that both conditions 0 < ξ < 1 and ξ ≥ 1 can be used for the 

stability analysis. For simplicity, we will only refer to the case 0 < ξ < 1 taking into 

account that analogous results are obtained for ξ ≥ 1. With the purpose of deducing the 

normal form of Eqs (24), we consider the following coordinate change: 

 

3 2

1 1

3 2

3

3

y y d x y y d x x

x x x x x x x 

    
 

    
                                     (26) 

 

where γ is a parameter that will be suitably chosen so that the system of Eqs (24) in the 

new variables  ,x y  is simplified as much as possible. Substituting Eqs (26) into Eqs 

(24) and taking into account that only the terms up to the fifth order are necessary, Eqs 

(24) can be rewritten in the new variables as follows:  

 

        

   

3 53 2 3 2

1 1

3 52 3

1 2

1 3 1 3

                3

x y d x x d x x x x

y d x x d x x x

  



      

   

                (27) 

 

Taking γ = 0 in Eqs (27), the normal form of the BT bifurcation can be written in terms 

of the new variables  ,x y  as follows: 
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5

53 2

2 13

x y x

y d x d x x x

 

  
                                      (28) 

 

The system in Eq (28) has a double null eigenvalue and it preserves the invariance 

under the coordinate transformation    , ,x y x y   . It is interesting to remark that 

the parameters a1 and b1 in Eqs (19) are dimensionless; the parameters d1 and d2 defined 

in Eqs (28) have the units V
-2

s
-1

 and V
-2

s
-2

 respectively and the variables  ,x x  and 

 ,y y  have the units V and Vs
-1 

respectively. 

 

It should be noticed that the inequality 1 1 0a b    can be deduced directly 

from the arguments shown in pages 374 and 446 of Refs [14] and [16] respectively. 

However, the deduction of the previous inequality in this paper has been made from Eqs 

(29)-(32) in order to generalize the reasoning by introducing the dimensional parameter 

p and to obtain the period Tos of the self-oscillating behavior given by Eq (36). The 

parameter p and the period Tos will be used to corroborate the accurateness of the 

describing function in the next section. 

 

4. Parameters of the PID controller deduced from the BT bifurcation and the 

describing function 

 

In this section we shall analyze the BT bifurcation by determining the normal 

form as well as the conditions for self-oscillating and steady state behavior once the PID 

controller parameters have been specified. We shall demonstrate that the proportional 

constant Kp and the integral action τi can be obtained by applying the Lyapunov’s direct 

method, whereas the derivative constant τd is specified by using the harmonic balance 

method (or describing function).  

 

4.1 Procedure to determine admissible parameter values for the PID controller 
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Once the system reduced to the center manifold has been obtained, the stability 

analysis of the system can be carried out by using the Lyapunov’s method. For this 

purpose, we choose a tentative Lyapunov function given by: 

   4 21
,

2
V x y px y                                                 (29) 

 

where p > 0 is a dimensional parameter (with units V
-2

s
-2

) and  ,V x y  is a positive 

definite function. Taking the derivative with respect to the time in Eq (29) and 

substituting the truncated form in Eq (28) (i.e. neglecting fifth-order terms) it is deduced 

that: 

   3 3 2 2

2 1, 2 2 2 6V x y px x y y p d x y d x y                             (30) 

 

Taking into account Eqs (28) and (30) it is deduced that the origin will be 

asymptotically stable when  , 0V x y  , which requires the following conditions: 

 

   2 1 1 1 1 10 0  ;  0 0
p

i

KK K
p d p d a b a b   

 
                      (31) 

 

Considering the substitution p iK p K   and taking into account Eqs (18) and (21) it 

is deduced that: 

 

   1 1 i2 2 2 2

2 2
  ;  p p p

p p
a b K K KK

K K

 
   

   
     

 
               (32) 

 

It should be noticed that the derivative control action does not appear in Eq (32), and 

thus it cannot be determined from the analysis of the BT bifurcation. As a result of the 

previous analysis, the stability conditions are given by: 

 

    2 22 2 2 2

2 2 2
  ;  p p i

p pf pf
K K

K K

  


    
   

 
                 (33) 
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where the parameter f ≥1 is introduced to calculate an admissible value for the 

proportional constant Kp. In accordance with Eqs (28), (31) and (33), for f = 1 it follows 

that: 

4
3 2

2

x
x px p y C                                                (34) 

where C is an arbitrary constant. Consequently, a limit cycle appears in the phase plane 

of the system reduced to the center manifold and thus the condition for self-oscillating 

behavior has been obtained. Taking into account Eq (34), the period of the self-

oscillation regime for the approximated system of Eq (28) can be deduced as follows: 

 

0

4

4 4

4
2 4

22 4 4
o o

x

os

x x

dx dx dx
C px t T

dt C px C px
     

           (35) 

 

where 0x  is an arbitrary initial condition and Tos is the period of the self-oscillation 

regime. Introducing the double change of variables given by 

 
1 4 44  and p C x y y z  , Eq (35) can be rewritten in terms of the Beta function 

B(q1,q2), i.e.: 

 
1

4
0 0

0

2 8 2 8 1
1 4,1 2

41
os

dy
T B

x p x py

 
   

                                 (36) 

 

The importance of this self-oscillating behavior lies on the fact that, once it has 

been reached, the presence of a harmonic term in the input signal or an external 

harmonic disturbance in the load of the stabilization body can lead to chaotic 

oscillations in the device, as it will be analyzed in section 5. In the following subsection, 

the effect of parameter p is studied. 

 

4.2 Determination of the derivative constant of the PID controller 

 

In the analysis of the previous subsection, the derivative constant τd of the PID 

controller remained unknown. To overcome this problem, the harmonic balance 

technique or describing function [1], [21-22] shall be applied to investigate the 

influence of τd on the self-oscillating behavior. In view of Fig 1, and assuming a 
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sinusoidal input signal  1 1 sinmu t U t  in the nonlinear element, the output voltage 

will be given by: 

     
3

3 1
2 1 3sin sin3

4

ne m
ne

K U
u t K u t t t                              (37) 

 

On the other hand, taking the Laplace transform of the input and output signals 

of the PID controller as well as the input signals to the potentiometer and amplifier, the 

transfer functions of the PID controller and the system are the following ones: 

 

 
 

 
 

 

   
1

2 2
2

1
1   ;  

2 1
PID p d

i

U s s K
G s K s G s

U s s U s s s s




  

  
      

  
   (38) 

 

where “s” denotes the complex variable associated to the Laplace transform. Assuming 

that G(s) is a low-pass filter, the influence of the third harmonic can be regarded as 

negligible and therefore Eq (37) allows to deduce that:  

 

       
3 3

1 1
2 2 1 1

3 3
sin sin

4 4

ne m ne m
m m

K U K U
u t t u t N U t N U              (39) 

 

Taking into account Eqs (38) and (39), the output of the transfer function G(s) will be: 

 

     

   

 

2
2 2 2 2 2

3 2
2 2 2 2 21

1

2 2

1

4 1

3
           4 1sin

4
1

2

ne m

K
G j

K U
t G j t

arctg





     


       

 





   


      


      

    (40) 

 

where  G j  is the modulus of  
s j

G s


and 1  is its argument. Taking into account 

Eqs (39) and (40), the output of the PID controller can be written as follows (see Fig 1): 
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3

1
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2

1

3
sin

4

1
               

ne s m
PID

i d
PID

i

K K U
u t G j t

arctg

    

  


 

   

 
   

 

                      (41) 

 

Since u1(t) is known, by identifying the amplitude and phase in Eqs (39)-(41) it is 

deduced that: 

   

   

3

1
1 1 1 1 1

i
1

3
  ;  0 0

4

22
             ;  =

23

ne s m
m PID PID

m os

i dne s

K K U
G j U tg

U
K K G j

      

 


   

      






        (42) 

 

where U1m and ωos are respectively the input voltage in the nonlinear element and the 

self-oscillation frequency. From Eqs (42) it follows that:  

 

2

2
2  ; 2 4

4

i
i d i d d


       


                                 (43) 

 

Consequently, we have obtained the same condition for the reset time τi as in the 

previous section (Eqs (18) and (32)-(33)). Assuming that p = 1 and that f > 1, the 

derivative time can be obtained from Eqs (33) and (43) as: 

 

 1 12 2

2
 ; 1

4 4 2

i
d d d

pf pf
f f

  
  

  
                                   (44) 

 

The self-oscillation frequency can be obtained as function of f and f1 by substituting Eq 

(44) into Eq (42), i.e.: 

 

  min

1

1 1 1 1

1
os os

pf pf

pf pf f pf
 

 

 
  

 
                                  (45) 

 

where ωosmin is the minimum value that the self-oscillation frequency can take. It should 

be noticed that the self-oscillating behavior appears when f = 1, and consequently Eq 

(45) can only be applied when p > 1. Assuming that p = 1 -this will be corroborated 
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later- and taking into account that τ is very small, we can choose f > 1 very close to 

unity (for example f = 1.00001 to assure acceptable values for the self-oscillation 

frequency) with f·f1 < 1. Next, we can define the interval of self-oscillation frequencies 

by ωos1 > ωosmin and ωos2 > ωos1, so the minimum and maximum allowed values for f1 

will be: 

   
1min 1max2 2

1 2

1 1 1 1
1   ;  1

os os

f f
f f

f ff f   

    
      

      

                     (46) 

 

With this procedure it is possible to choose an interval for the desired self-

oscillation frequencies. Next, the self-oscillation frequency and the parameter τd of the 

PID controller can be obtained by choosing a value for f1 such that f1min < f1 < f1max . In 

addition, if one chooses f >> 1, the corresponding values for the parameters Kp and τi of 

the PID controller can drive the axis position of the servo to a desired set point, as it will 

be analyzed in the following section. It is interesting to remark that the describing 

function is an approximate procedure whose exactitude depends on the Fc filter 

condition defined by [21]: 

   

   

3 3PID

c

PID

G j G j
F

G j G j

 

 
                                           (47) 

 

which can be determined by Eqs (38). The precision of the harmonic balance method is 

acceptable for Fc ≈ 0.1. 

 

To validate the relation between 0x  and U1m given by Eqs (36) and (42) (as well 

as the numerical simulations of the next section), we are going to deduce how the 

physical variables defined by Eqs (15-17) and the variables  ,x y  in normal form given 

by Eqs (28) are related. From the Eqs (20) and (21) it is deduced that: 
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           (48)  

 

Taking into account the parameter values indicated in table 1, it is obtained that 

1 3 1 3 1 5 1 5

112 212 113 213~10 ; ~10  and ~10 ; ~10p p p p        , whereas the simulation results indicate~ 

that    2 3

2 3~10  and ~10x t x t  (this will be verified next). Therefore, 

     4x t x t x t   and taking into account Eqs (26-28) it is concluded that the output 

voltage of the PID controller u1(t) ≡ x4(t) coincides with the variable associated to the 

normal form of the BT bifurcation, i.e.        1 4u t x t x t x t   . Thus for a desired 

self-oscillation frequency ωos, Eq (36) allows to obtain the period Tos from the 

corresponding initial voltage 0 0x x , which can be compared with the value of U1m 

deduced from the describing function (Eqs (42)). Consequently, we have an indirect 

procedure to know the precision of the harmonic balance method for a given value of 

parameter p. 

 

Assuming that f = 1 + 10
-6

 and p = 1 (the time constant is τ = 3.7969.10
-3

 s), 

from Eq (45) it is deduced that ωosmin = 0.2634 rad/s, so the arbitrary range 0.3 < ωos < 

3 rad/s of self-oscillation frequencies can be chosen. If we select ωos = 2 rad/s as the 

desired self-oscillation frequency, the corresponding value f1 = 0.9827 is deduced from 

Eq (46) taking ωos1 = ωos2 = 2. The parameters of the PID controller can now be 

obtained as: Kp = 0.0099, τi = 0.0072 s, τd = 0.002 s, 0 0 2.3607 Vx x  and U1m = 

2.3094 V. In this case, the filter condition given by Eq (47) is Fc = 0.1111 and therefore 

the error of the harmonic balance method can be regarded as acceptable.  
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The previous procedure has been applied to deduce the results shown in Fig 3. 

Fig 3 a) shows the variation of x0 and U1m as a function of the self-oscillation frequency 

for different values of p. The difference between x0 and U1m is small for large values of 

p and low values of the self-oscillation frequency. Fig 3 c) shows the filter condition, 

which is almost independent of the self-oscillation frequency. It should be noted that the 

harmonic balance method involves an excessive error for Fc > 0.2 and for low values of 

p. In Figs 3 b) and 3 d), the PID parameters are plotted. As expected, the PID 

parameters are negative without physical meaning for frequencies below ωosmin. On the 

other hand, since the proportional constant becomes very small for low values of p, the 

value p =  1 V
-2

s
-2

 will be considered in the rest of the paper to avoid this inconvenient. 

 

Figure 3 

 

5. Dynamical analysis of the system by using the Bogdanov-Takens bifurcation 

 

 In this section we analyze several dynamical behaviors that can appear as a 

result of two zero eigenvalues in the matrix associated to the linear part of the 

servomechanism given by Eqs (15) and (17) [13]. The aim is to corroborate the 

analytical results and conclusions of the previous section by using numerical 

simulations. For this purpose, we shall investigate the influence of the parameters Kp, τi 

and τd on the self-oscillating regime, the appearance of limit cycles due to the external 

disturbances and the possibility of chaotic behavior. The simulations are carried by 

using 0 < ξ < 1 or ξ ≥ 1, and in addition, the effect of random noise on the control 

trajectory (to reach a prescribed set point) will be also analyzed. 

 

5.1 Self-oscillating limit cycles and steady-state regime. 

  

We first analyze the self-oscillation conditions for the servomechanism. 

Assuming a set point of θr = 0 rad and f = 1 + 10
-6

, the values Kp = 0.0099, τi = 0.0072 

s and ωosmin = 0.2634 rad/s are obtained according to the self-oscillation conditions 

given by Eqs (32) and (33). Next, the frequencies ωos1 = 0.28 rad/s and ωos2 = 3 rad/s 

are chosen with the corresponding values f1min = 0.1153 and f1max = 0.9923 determined 

from Eqs (46). By choosing a desired self-oscillation frequency ωos = 0.65 rad/s, the 
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values τd = 0.0017 and f1 = 0.8358 are obtained from Eqs (44) and (46) respectively, 

and taking Tos = 2π/ωos in Eq (36) it follows that 0 0.753x  V.  

 

It is important to remark that the self-oscillating behavior depends on the initial 

condition for the control signal u1(0). The simulation is carried out equating to zero the 

initial state variables except for the voltage x4(0) ≡ u1(0) = U1m = 0.7506 V, which is 

calculated taking into account Eq (42) and the self-oscillation condition obtained from 

the harmonic balance method. It should be noted that this voltage value is very close to 

the value for 0x  deduced from Eq (36). The simulation results are shown in Figs 4 a), b) 

and c), where a limit cycle appears. In Fig 4 d), the power spectral density of the control 

signal u1(t) shows that the obtained self-oscillation frequency is 0.6283 rad/s with a 

relative error of 3.34 %. At t = tcon = 50 s, a new set point of θr = 0.8 rad is chosen and 

the parameter f is changed to f = 200 giving rise to new values of Kp (Kpc = 1.9718) and 

τi (τic = 1.4428 s), whereas τd remains unchanged and thus the new set point is reached. 

 

Figure 4 

 

It should be remarked that the possibility of reaching an arbitrary set point only 

depends on the PID parameter values. However, the values of the PID parameters are 

independent of the set point, and they only depend on Eqs (33) and (34) deduced from 

the analysis of the BT bifurcation. This remark is also applicable in the case of the APH 

bifurcation, which will be analyzed in the next section.  

 

 The presence of limit cycles is analyzed assuming that Td2 ≠ 0 and θr2 = 0. In 

accordance with Eqs (8) and (15), the external disturbance can be written as follows: 

 

      2 sin coss d a
d d d d

me a

nK T R
f t t t

J L
  

 
  

 
                              (49) 

 

Taking into account Eqs (20)-(22) and (49), and neglecting fifth-order terms, Eqs (28) 

can be written as follows: 
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1

13

2 3 1

1 2 233

i p

i p

x t y t p f t

y t d x t x t d x t p f t





 

  
                           (50) 

 

where 1

13ip and 1

23ip are the corresponding elements of the matrices P1
-1

 and P2
-1

 defined 

in Eqs (21), and the indexes  i = 1 and i = 2 refer to the cases 0 < ξ < 1 and ξ ≥ 1 

respectively.  

 

The simulation results are shown in Figs 5 and 6 taking ξ = 2.5. Fig 5 a) shows 

all the state variables xi(t) (i = 1, 2, 3, 4), in which it can be observed that x2(t) and x3(t) 

are lower than 40 (the maximum values of x2(t) and x3(t) are 8.4004 and 38.4869 

respectively) whereas 1 3

212 4.7594 10p   and 1 5

213 1.0452 10p   . Consequently, Eq (48) 

allows to deduce that x(t) ≈ x4(t). As shown in Fig 5 b), we first choose θr = 1 rad, f = 5 

(f  > 1) to obtain asymptotic stability for the values of Kp and τi deduced from Eqs (33). 

The value of τd has been chosen in accordance with Eq (44) taking f1 = 0.4 so that τd = 

τ/ξ. 

 

At tp = 10 s, an external disturbance torque of    4.567sin 1.234dT t t N is 

applied and the system jumps to a limit cycle (both tp and    4.567sin 1.234dT t t  

have been chosen arbitrarily). At t = tcon = 60 s, we select a new set point of θr = 0.5 

rad, the value of f is increased to f = 10 with the corresponding updated values of Kp 

and τi. To check the robustness of the PID controller, it is assumed that the system can 

exhibit random noise, i.e. the state variables are corrupted with a noise signal n(t) 

defined by (see Fig 1): 

 

           

           
1 1 2 2

3 3 4 4

0.5   ;  0.5

0.5   ;  0.5

na na

na na

x t x t f X x t x t f X

x t x t f X x t x t f X

     

     
                (51)              

 

where X is a random variable that is uniformly distributed between 0 and 1, and fna > 0 

is an amplification factor to obtain a uniformly distributed noise amplitude between –

fna/2 and  fna/2. It is assumed that random noise with fna = 0.2 is present for t ≥ tcon = 60. 

As shown in Fig 5 b), it is clear that the set point is reached even with a disturbance 

torque and random noise. In Fig 5 c), the variables u1(t) and x(t) are plotted, and it can 
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be observed that u1(t) ≈ x(t) in accordance with the previous reasoning. On the other 

hand, Fig 5 d) allows to verify that the outlined procedure provides a physically feasible 

armature current ia(t) in the context of the considered system. 

 

 Fig 6 a) shows two limit cycles. One of them is obtained from Eqs (15) and it is 

plotted with u1(t) = x4(t), whereas its derivative du1(t)/dt is numerically obtained from 

4 ( )x t within the integration scheme. The other limit cycle is plotted with the variables 

     ,x t y t x t    deduced from Eqs (50). A high degree of concordance between 

both cycles can be observed. In addition, Fig 6 b) shows the plots of du1/dt and 

  /dx t dt  as a function of the time, where the noise signal has been added after the 

control has been applied. As it can be observed, the analytical deductions are reasonably 

in accordance with the numerical results. 

 

Figure 5 

Figure 6 

 

5.2 Analysis of the chaotic behavior 

  

 It is well known that a nonlinear system in self-oscillating regime can reach 

chaotic behavior when an external harmonic disturbance is applied [17-19]. To 

investigate this issue we apply the general Eqs (15), which account for a possible 

external disturbance Td(t) and an harmonic input θr(t) defined by Eqs (8). In particular, 

taking into account the state variables defined in Eqs (16) and assuming that Td(t) = 0, 

the simulation results obtained from Eqs (15) are shown in Fig 7. It is interesting to 

remark that the values of the PID parameters for t < 50 s have been chosen in 

accordance with Eqs (33), and (44) taking p = 1, f = 1 + 10
-6

 and f1 = 0.9827, so the 

system has self-oscillating behavior. At t = tr ≥ 50 s the input is changed to 

( ) 1 0.987sin 0.789r t t   , which leads to the appearance of chaotic behavior. In this 

case, the system is not autonomous and thus it is transformed into an autonomous one 

by introducing an auxiliary variable x5(t) defined as: 

 

 
 5

5  ;   mod 2r

dx t
x t

dt
                                          (52) 
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Figs 7 a) and 7 b) show strange attractors both in the phase plane u(t)-du(t)/dt and  θ(t)-

dθ(t)/dt respectively. 

Figure 7 

 

 To corroborate that the strange attractors of Fig 7 are chaotic, the simulation 

results of two simulations of the same state variable with very close initial conditions 

(denoted by x1(t) and x11(t)) are plotted in Fig 8 a). It should be noted that the simulation 

results are completely different at t = 190 s approximately, and therefore the system 

shows a strong sensitive dependence. Fig 8 b) shows the error evolution as function of 

the time, which corroborates the results of Fig 8 a). In Fig 8 c) all Lyapunov exponents 

have been calculated [35-36] showing that one of them is positive, which provides 

another indicator of chaotic behavior. Since the numerical procedure may be unstable, 

the Runge-Kutta-Fehlberg integration method has been used with a simulation step of  

0.002 s. The divergence of the vector field is obtained from Eqs (15), (17) and (52) as: 

 

2
500.4044divf




                                           (53) 

 

whereas the sum of Lyapunov exponents in steady state is given by:  

 

 0.0783 0.1085 250.1975 250.1639 0

                          500.3916

e

e

LY

LY

   

 
                       (54) 

 

The divergence value of Eq (53) is approximately equal to the sum of the steady-state 

Lyapunov exponents given in Eq (54), which also corroborates the accurateness of the 

numerical computations. On the other hand, Fig 8 d) shows that the power spectral 

density exhibits a broad spectrum with decaying energy, which is a typical feature of 

chaotic systems [34].    

 

Figure 8 
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 Figs 9 a) and b) show the auxiliary variable defined in Eq (52) as a function of 

the state variables x1(t) and x2(t), for which the corresponding Poincaré sections in Figs 

9 c) and 9 d) with fω1 = 3 and fω2 = 1 show a clear chaotic behavior. Additionally, two 

bifurcation diagrams have been calculated in Fig 10 by using the numerical algorithm of 

Ref [37]. In Fig 10 a) it is assumed that θr1 = 0 and Td(t) ≡ 0, whereas in Fig 10 b) we 

have that θ(t) ≡ 0, Td1 = 0 and Td2 = 2.55 N.m. The presence of a sequence of windows 

with chaotic and multi-periodic behaviors can be clearly appreciated in both cases. 

 

Figure 9 

Figure 10 

 

 To illustrate how the chaotic behavior can be used, we consider the data shown 

in legend of Fig 10 a), in which a chaotic window appears for θr1 = 0, θr2 = 1.234, ωr = 

1.125 rad/s and Td(t) ≡ 0. If we assume a desired set point inside a zone of the strange 

attractor, as a result of its characteristic tangle (see Fig 7) we can affirm that a chaotic 

trajectory will pass very near this point after a certain simulation time. When this 

occurs, the parameters of the PID controller can be changed to reach the set point with a 

very small control effort. 

 

In Fig 11 a) the phase plane θ(t)-dθ(t)/dt is plotted, in which we define the 

capture region Ω ≡ (rax = 0.5, ray = 0.4) around the set point θr = 0.45 rad containing the 

points A and B. When a chaotic trajectory enters the capture region Ω after the arbitrary 

time tcon = 250 s, the control law is changed taking f = 150 and the new PID controller 

parameters are determined in accordance with Eqs (33) and (44). As shown in Fig 11 b), 

it is clear that the capture zone is reached at tcon1 = 255.455 s, i.e. 5.455 s after the 

control law has been changed at tcon = 250 s. Fig 11 c) shows the control effort, which is 

clearly smaller than when the control law is changed at exactly tcon = 250 s. 

 

Figure 11 

 

6. Analysis of the Andronov-Poincaré-Hopf bifurcation 

 

 As we saw in section 2, the constant term Td1 of the disturbance torque (Eqs (8)) 

was assumed to be zero and consequently Eqs (17) allowed to deduce that a BT 
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bifurcation appeared. In this section we shall investigate the possibility of the 

appearance of an APH bifurcation when Td1 ≠ 0, for which Eqs (14) will be taken into 

account. For this purpose, we assume that θr2 = 0 and we introduce the state variables 

defined as: 
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                      (55) 

 

According to Eq (55), Eqs (14) can be rewritten as follows: 
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(56) 

Taking into account Eqs (13), the equilibrium points of the system are given by: 
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                        (57) 

Introducing the deviation variables: 

               1 1 1 2 2 3 3 4 4 4 ;  ;  ; r ey t y t y t y t y t y t y t y t y                      (58) 

 

into Eqs (56) and taking into account Eqs (57), the following equations are deduced: 
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 (59) 

 

being 
2 ; ps p s neK K K K K K   . The eigenvalues of the linear part of Eq (59) are 

the roots of the characteristic equation defined as: 
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          (60) 

 

where Kps = KpKs. Since ai > 0 (i = 1,2,3,4), from the Routh criterion of stability [24] it 

is deduced that an APH bifurcation appears if the following self-oscillation conditions 

are fulfilled: 

2 2

2 3 1 1 2 3 1 0 30  ;  0a a a a a a a a a                                         (61) 

From Eqs (60) and (61) it is deduced that: 
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         (62) 

 

where the parameter fd is introduced to rewrite the inequalities of Eq (62) in term of 

equalities, i.e.: 
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                   (63) 

 

From Eqs (62) and (63) it is possible to deduce the parameter values of the PID 

controller to obtain a self-oscillating behavior associated to an APH bifurcation, i.e.: 
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                    (64) 

 

where fk < 1 is another (positive) parameter that has been introduced to transform the 

last inequality of Eqs (62) into the second equality of Eq (64). In addition, the self-

oscillation frequency is given by: 
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Once the pair of pure imaginary roots of Eqs (60) given by 1,2 aphj    are known, the 

other roots can be determined by inspection of the polynomial given by Eq (60), i.e.: 
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kk

k

ff
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      (66) 

 

It should be remarked that the difference between the BT and APH bifurcations 

relies on the fact that the BT bifurcation appears when the disturbance torque is zero 

(Td(t) ≡ 0), whereas a nonzero constant torque   1 0d dT t T   is a necessary but not 

sufficient condition for the appearance of the APH bifurcation. In this case, the 

sufficient conditions to obtain an APH bifurcation are given by Eqs (61)-(63). 

 

 The following step of our analysis consists of investigating the stability 

conditions for the APH bifurcation. For this purpose, it is necessary to determine the 

first Lyapunov value for the weak focus associated to 1,2 aphj   [14-16], [24]. Since 

the analytical calculations lead to voluminous formulae, it is preferable to use the 

computational procedure shown in Appendix. Whereas a first Lyapunov value L1>0 

leads to an unstable weak focus, a negative value L1<0 leads to a stable weak focus 

whose trajectory length in the phase plane tends to infinite while turning around the 

weak focus [24]. 

 

In accordance with the computational procedure shown in the Appendix, the first 

Lyapunov value in Fig 12 has been calculated as a function of fk taking Td1 as a 

parameter. Since the value of τ is small (see Table 1), the value of fk must also be small 

to obtain admissible values for the self-oscillation frequency (Eq (65)). The first 

Lyapunov values shown in Figs 12 a) and b) have been obtained for ξ = 0.95 and ξ = 5 

respectively, which according to Eq 66 imply complex conjugate roots for ξ = 0.95 and 

real negative roots for ξ = 5. 

 

Figure 12 
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To corroborate the previous results, the system has been simulated with PID 

parameter values so that the self-oscillation conditions are fulfilled according to Eqs 

(64). For ξ = 0.95, Td1 = 9 N.m and fk = 1.2.10
-4

, the first Lyapunov value depicted in 

Fig 12 a) is L1 = 1.0881.10
-4

, which is positive although very small. Since the value L1 > 

0 can be considered as a measure of the divergence speed of trajectories spiraling away 

the weak focus, a long simulation time (higher than 10
4
 s) will be necessary to 

appreciate the divergence effect. In accordance with Eq (65), the self-oscillation 

frequency is ωaph = 6.4512 rad/s for fk = 1.2.10
-4

 and fd = 0.8. 

 

The simulation results are plotted in Fig 13. Figs 13 a) and b) show the limit 

cycles while Figs 13 c) and d) show the control signal and the armature current in the 

DC motor respectively. To corroborate the calculations shown in the appendix in 

accordance with the results shown in Fig 12 b), Fig 14 shows unstable and stable weak 

focus that appear as a result of the APH bifurcation for ξ = 5 > 1. As shown in Figs 14 

a) and b), a positive Lyapunov value (L1 = 12.6337) is obtained for Td1 = 0.03 N and fk 

= 1.2.10
-3

, so an unstable weak focus appears. Fig 14 c) shows a stable weak focus (L1 

<0) that has been obtained by using Fig 12 b) with Td1 = 0.51 N and fk = 6.10
-3

, and its 

corresponding armature current is depicted in Fig 14 d). It should be remarked that the 

effects of instability or stability are clearly visible even for small (positive or negative) 

values of the first Lyapunov value. 

 

Figure 13 

Figure 14 

 

Once the self-oscillating behavior has been corroborated, the appearance of 

chaotic behavior is investigated by assuming a harmonic disturbance torque with Td2 = 

10 N.m and ωp = ωaph/2 = 3.2256 rad/s at an arbitrary time t = 10 s, as well as a constant 

reference angle θr1 = 1 rad with θr2 =0. As in the case of the BT bifurcation, the presence 

of a positive Lyapunov exponent together with the Poincaré section and the power 

spectral density allow to assure the appearance of a new family of strange attractors, 

which has been used to investigate how an arbitrary set point can be reached. For this 

purpose, a capture region Ω (rax = 0.3, ray = 0.2) is defined around the set point θr = 0.45 

rad. Consequently, when a chaotic trajectory enters the region Ω after tcon = 250 s, the 
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PID controller parameters will be changed to destroy the chaotic dynamics and reach 

the set point even in presence of noise (see Eqs (51)). 

 

The simulation results together with the corresponding parameter values are 

indicated in Fig 15. Fig 15 a) shows the sensitive dependence of the variable u(t) ≡ 

u11(t) when the initial error in the initial conditions of system is 10
-8

 (Eqs (16)). It 

should be noted that, when the parameters of the PID controller are changed (the control 

action begins at t = 250.98), the values of both variables are almost coincident after a 

transitory. Fig 15 b shows the position of motor shaft, which allows to appreciate that 

the system is almost self-oscillating for t < 10 s -i.e. before the disturbance is applied-. 

Fig 15 c) shows the control trajectory plus noise (with fna = 0.1) embedded in a sea of 

chaotic trajectories. It should be noted that the PID controller drives the motor shaft to 

the set point θr = 0.45 rad following the control trajectory in presence of noise. 

 

Figure 15 

 

 The APH bifurcation is investigated in Figs 16 and 17 taking ξ = 5. In this case, 

we assume that Td1 = 0.52 N, fd = 0.8 and fk = 2.5.10
-3

 to obtain a stable weak focus in 

accordance with Figs 12 b) (L1 = -0.049) and Figs 14 c) and d). The PID parameter 

values and the self-oscillation frequency are deduced from Eqs (64) and (65). From Eq 

(66) it follows that the eigenvalues λ3,4 are real. The external disturbance is applied at t 

= 10 s assuming that Td2 = 0.45 N and ωp = ωaph/2 = 2.7973 rad/s, for which another 

family of strange attractors appears. At t = 250 s, the PID parameters are changed and a 

chaotic orbit intersect the capture zone Ω 1.81 s later. Fig 16 a) shows a strange attractor 

in the u(t)-du(t)/dt phase plane. Figs 16 b) and c) show the control signal generated by 

the PID controller and the position of the motor shaft respectively. The armature current 

is shown in Fig 16 d), whereas the strange attractor in the phase plane θ(t)-dθ(t)/dt as 

well as the control trajectory plus noise are plotted in Fig 17. 

 

Figure 16 

Figure 17 

 

The same remark regarding the BT bifurcation can be made in case of the APH 

bifurcation, i.e.: the values of the PID parameters are independent of the set point; 
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however, a set point may only be reached if the parameters values of the PID controller 

are suitably chosen.  

Finally, it is interesting to remark that the control technique used in the work of 

Ott, Gregobi and Yorke [38] is applied to a bidimensional map whose chaotic trajectory 

is linearized around the set point to apply the control effort when the chaotic trajectory 

is close to the set point. However the goal of this paper is different, since we pretend to 

use a PID controller to drive the motor shaft to a predetermined set point. For this 

reason, the previous control technique has not been used in this paper. 

 

 

7 Conclusions   

 

 The nonlinear dynamics of a PID controlled servomechanism aimed to stabilize 

an external body subjected to a constant disturbance torque has been investigated in this 

paper. By using a cubic nonlinearity and a PID feedback control system, it has been 

shown that the matrix of the linear part of the system can have two zero eigenvalues or 

two pure complex eigenvalues which are responsible for BT and APH bifurcations 

respectively. It has been verified that the BT bifurcation is more robust than the APH 

one against harmonic external disturbances applied to the load.  

 

The analysis of the BT bifurcation together with the center manifold theorem has 

allowed us to obtain a simplified system which can be used to choose appropriate values 

for the proportional constant Kp and the reset time τi of the PID controller. On the other 

hand, the derivative time τd and a predefined interval of self-oscillation frequencies have 

been obtained through the describing function of the cubic nonlinearity. In addition, it 

has been corroborated that harmonic variations in the reference input can produce 

chaotic oscillations, which have been studied through the analysis of the sensitive 

dependence, Lyapunov exponents, Poincare sections and bifurcation diagrams.  

 

We have demonstrated that the chaotic behavior can be used jointly with the PID 

controller in an advantageous manner. For this purpose, we define a small capture zone 

around the desired set point and the so called control action is applied when a chaotic 

trajectory intersects such capture zone. The control action consists of a change in the 
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PID parameters Kp, τi and τd which allows to reach the set point by using very small 

control signals. The correct performance of the PID controller has been corroborated 

even in the presence of random noise. 

 

The analysis of the APH bifurcation has been carried out assuming that a 

constant external disturbance is applied to the load. The Routh stability criterion has 

allowed to deduce the conditions which give two pure imaginary eigenvalues, the self-

oscillation frequency and the PID controller parameters. The stability of the weak focus 

associated to the self-oscillating behavior has been investigated through the calculation 

of the first Lyapunov value L1. It has been verified that the simulation results are in 

accordance with the sign (positive or negative) obtained for L1. For positive values of 

L1, the chaotic behavior has also been found and used as in the case of the BT 

bifurcation. It should however be noted that the families of strange attractors for the BT 

and APH bifurcations are different.  

 

Our analysis has provided a unified framework in which PID control, BT and 

APH bifurcations, describing function, Lyapunov stability theory, chaotic behavior, 

random noise and calculation of the first Lyapunov value have allowed to tune the PID 

parameters with a better understanding of the underlying dynamical behaviors. The 

methodology presented in this paper can be extended to more sophisticated systems 

with more complicated control laws, which in turn can result in new interesting 

dynamical behaviors. 

 

Appendix 

 

 In this Appendix, a computational procedure to obtain the first Lyapunov value 

is developed. For this purpose we will distinguish the cases in which the 

eigenvalues 3,4 are complex (case (a)) or real and negative (case (b)). 

 

a) A pair of complex conjugate eigenvalues: 

  2

1,2 3,4  ;    ;    ;  1aph h h kj j f                              (A1)  

 Step1 
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Let Pa be the matrix that transforms the linear part of Eqs (59) into its Jordan canonical 

form. The columns of Pa are then the eigenvectors associated to the eigenvalues of 

linear part of Eqs (59), so it follows that: 
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(A2) 

 Step2 

From the new coordinates given by Eqs (A2), the equations of the system (59) can be 

written in its Jordan canonical form as follows: 
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where from Eqs (59) it follows that 43 eK y  . Taking into account the center 

manifold theorem, the variables  3 4,y y  can be approximated by: 
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The function f’3 in Eqs (A3) can be expressed by using only terms up to third order, so it 

follows that: 
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On the other hand, from Eqs (A3) it is obtained that: 
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where: 

1 2 1 2 1 1 3 1 2 1 2 1 3
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and: 

1 1 2 1 3 1 4 1

13 23 33 43 ;    ;    ;  ij a ij ij a ij ij a ij ij a ija P t a P t a P t a P t                                (A8) 

 

whereas the terms 1 1 1 1

13 23 33 43 ,    ,   and a a a aP P P P    are determined from the inverse matrix of 

Pa.  

 

 Step 3 

The calculation of the coefficients ai and bi (i = 1,2,3) given in Eqs (A4) is carried out 

by applying the center manifold theorem as follows: 
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It should be noted that the product:    1 2 1 2 1 2, , , ,yD h y y f y y h y y    gives terms of third 

and fourth order in the variables  1 2,y y , which are not necessary in the calculation of 

the coefficients ai and bi.  By identifying terms coefficients of 2 2

1 2 1 2,  and y y y y  in both 

members of Eq (A9), the following system of equations can be written in matrix form: 
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Consequently, the coefficients ai and bi can be calculated by resolving the matrix 

equation (A10). 

 

 Step 4 

From Eqs (A3) and (A6), the approximate system reduced to the center manifold can be 

written as follows: 
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The first Lyapunov value is calculated as [43-44]: 
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where for instance  
1 1 1

1

1 3 1 3

1 0y y y y
f f y


    and so on. From Eqs (A5)-(A7), (A9) and 

(A11), the first Lyapunov value can be expressed as: 

 



  

 36 

 
   1 1 1 2 2 2

11 20 02 11 20 021 1 2 2

1 30 12 21 03
1 2 1 2

20 20 02 02

2 2 2 21 1
6 2 2 6

16 16           4 4aph

a a a a a a
L a a a a

a a a a

   
      

   

    (A13)  

  

b) Real and negative eigenvalues: 

 2

1,2 3 1 4 2 1,2  ;    ;     ; 1aph kj f                           (A14) 

 

In this case, both α1 and α2 are negative since ξ
2
 > 1 - fk. The previously described steps 

can be applied but taking into account that now we have that: 
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and the first Lyapunov value can be calculated by assuming the following changes: 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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TABLE 1. NOMINAL OPERATING CONDITIONS AND 

PARAMETER VALUES 
 

Variable Description Value 

Ka Amplifier constant 100 

Ra Armature resistance (Ω) 5 

La Armature inductance (H) 0.01 

Jm Shaft motor moment of inertia (N.m.s
-2

) 1.36.10
-2 

Bm Viscous friction coefficient (N.m.s) 9.64.10
-3 

JL Moment of inertia of the load (N.m.s
-2

) 1.36 

BL Load viscous coefficient (N.m.s)  0.136 

n  Gear train ratio (N1/N2) 1/10
 

Km Motor torque coefficient (N.m/A) < 7 

Kb Back-electromotive force (V.s/rad) = Km 

Kne Nonlinear element constant (V
-2

) 0.1 

Ks Potentiometer constant (V/rad)  20/2π 

Jme Equivalent moment of inertia (N.m.s
-2

) 2.72.10
-2 

Bme Equivalent viscous load (N.m.s) 1.1.10
-2 

ia Armature current (A) -6<  ia <  6 

u(t) Imput voltage to PID controller (V)  

u1 Control voltage (V) -10< u1 <10 

ξ Damping coefficient  0.5 < ξ  ≤ 5 

τ Time constant (s)  ≥ 0.0038 

K’ System parameter (V
-1

.s
-1

) 0.23 to 3.14 

K System parameter KmKsK’ (V
-2

.s
-1

) 0.72 to 10 

Kp Proportional constant of the PID controller 10
-3

< K p<2 

τi Reset time of the PID controller (s) τi  ≥ 7.10
-3 

τd Derivative constant of the PID controller (s) τd  ≥ 10
-3 

FC Filter coefficient ≤ 0.1111 

ω0s Self-oscillation frequency (rad/s) 0.1≤ ω0s ≤9 

θr1 Constant set point (rad) -1 <  θr1 < 1 

θr2 Amplitude of the set point (rad) -2<  θr2 <2 

ωr Disturbance frequency (rad/s) 1<  ωr < 5 

Td1 Disturbance torque (N) 0 ≤ Td1≤ 10 

Td2 Amplitude of the disturbance torque (N) 0 ≤ Td2≤ 5 

ωd Disturbance frequency (rad/s) 1<  ωd < 5 

rax Horizontal axis of the capture zone (rad) ≤ 0.3 

ray Vertical axis of the capture zone (rad/s) ≤ 0.2 

p Dimensional parameter (V
-2

s
2
) 1 

f Dimensionless parameter 0.9 <f< 150 

L1 First Lyapunov value  > 0, or < 0 
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Figure captions 

 

Figure 1. Schematic diagram of the controlled servomechanism with a reference input 

θr(t), an external disturbance torque Td(t) and a noise signal n(t). The feedback system is 

formed by a PID controller together with an amplifier with a constant Ka. The DC motor 

is controlled by field (the parameter values are indicated in table 1). 

  

Figure 2. Parameter values obtained for La = 0.01 H. a) Values of the motor constant 

Km, b) time constant τ and c) system constant K as a function of the damping coefficient 

ξ and Ra/La (Eqs (13)). 

 

Figure 3. a) Variations of U1m and x0 as a function of the self-oscillation frequency for 

different values of p.  b) Dependence of the proportional constant of the PID controller 

as a function of the self-oscillation frequency for different values of p. c) Filter 

coefficient Fc deduced from Eq (47) for different values of p. d) Reset time and 

derivative constant of the PID controller as a function of the self-oscillation frequency.   

 

Figure 4. Simulation results obtained through the fourth-order Runge-Kutta method 

with the following parameter values in self-oscillating regime: Simulation time t = 200 

s, simulation step T = 0.005 s, Ka = 100, ξ = 0.95, τ = 3.7969.10
-3 

s, Km = 4.3373 

N.m/A, p = 1, f = 1 + 10
-6

, ωosmin = 0.2634 rad/s, ωos1 = 0.28, ωos2 = 3, f1min = 0.1153, 

f1max = 0.9923, ωos = 0.65 rad/s,  f1 = 0.8358, Kp = 0.0099, τi = 0.0072 s, τd = 0.0017 s, 

U1m = 0.7506, θr1 = θr2 = 0 and Td2 = 0. The initial conditions are xo = [0 0 0 0.7506]. 

The stability regime is applied at tcon = 50 s with f = 200, Kpc = 1.9718, τic = 1.4428 s 

and τdc = τd = 0.0017 s with a set point given by θsp = 0.8 rad. a) Self-oscillating and 

steady state behavior in the phase plane e(t)-de(t)/dt. b) Self-oscillating and steady state 

behavior in the phase plane θ(t)- dθ(t)/dt. c) Time evolution of the angle of the device 

shaft. d) Power spectral density of the control signal u1(t). 

 

Figure 5. Simulation results obtained through the fourth-order Runge-Kutta method 

with the following parameter values in the self-oscillation regime: Simulation time t = 

80 s, simulation step T = 0.004 s, Ka = 100, ξ = 2.5, τ = 9.9919.10
-3 

s, Km = 1.6338, K 

=1.9089  N.m/A, p = 1, f = 5, Kp = 0.1309, τi = 0.2498 s, τd = 0.004 s,, θr1 = 1, θr2 = 0 

and Td1 = 0, Td2 = 4.567 N, ωd = 1.234 rad/s. The initial conditions are x0 = [2.5455 0 0 

0.1]. The stability regime is applied at tcon = 60 s with f = 10 and the new control PID 

parameters are Kpc = 0.2617, τic = 0.4996 s and τdc = τd = 0.004 s with a set point given 

by θsp = 0.5 rad. a) State variables as a function of the time. b) Limit cycle of the system 

given by Eqs (15). c) Variables u1(t) and x(t) as a function of the time. d) Armature 

current as a function of the time. 

 

Figure 6. Phase portrait of u1(t)-du1(t)/dt and    x t y t . b) Value of du1(t)/dt deduced 

from the variables x4(t) and    y t dx t dt  as a function of the time (simulation 

values are indicated in the legend of Fig 5). 
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Figure 7. a) Strange attractor in the phase plane u(t)-du(t)/dt. b) Strange attractor in the 

phase plane θ(t)-dθ(t)/dt. Simulation results obtained through the fourth-order Runge-

Kutta method with the following parameter values in the self-oscillation regime: Ka = 

100, ξ = 0.95, p = 1, f = 1+ 10
-6

, f1 = 0.9827, Kp = 0.0099, τi = 0.0072 s, τd = 0.002 s, 

U1m = 2.3094 V, x0 = 2.3607 V, Fc = 0.1111, simulation time t = 400 s, simulation step 

T = 0.002 s, self-oscillation frequency ωos = 0.9 rad/s and initial conditions x0 = [-

0.6996 0 0 1.0623 0 0]. At t = tr it holds that Td1 = Td2 = 0, θr1 = 1 rad, θr2 = 0.987 rad 

and ωr = 0.789 rad/s. 

 

Figure 8. a) Self-oscillating and chaotic behavior with sensitive dependence of the input 

voltage of the PID controller x1(t) ≡ u(t). b) The difference between x1(t) and u(t) allows 

to appreciate the sensitive dependence with two initial conditions that are very close. c) 

All Lyapunov exponents as a function of the time, being one of them positive. d) The 

peak of the power spectral density of x1(t) ≡ u(t) allows to identify the external applied 

frequency (the simulation and parameters values are indicated at the legend of Fig 7). 

 

Figure 9. Simulation results obtained through the fourth-order Runge-Kutta method 

taking a simulation time of 10000 s and a simulation step of 0.002 s (the rest of 

parameter values are indicated at legend of Fig 7). a) Angular variable fω (0 < fω < 2π) 

associated to the external disturbance and external frequency ωr as a function of the 

voltage u(t). b) Angular variable x5 ≡ fω (0 < fω < 2π) associated to the external 

disturbance and external frequency ωr as a function of du(t)/dt. c) Poincaré section 

obtained for the values of fω1 and fω2 indicated in a) and b). d) Poincaré section obtained 

for the values of fω1 and fω2 indicated in a) and b). 

 

Figure 10. a) Bifurcation diagram obtained through the calculation of the Poincaré 

sections for the system defined by Eqs (15) (see Figs 9 c) and d)) with Ka = 100, ξ = 

0.95, p = 1, f = 1, Kp = 0.0099, τi = 0.0072 s, τd = 0.002 s, simulation time t = 400 s, 

simulation step T = 0.002 s and initial conditions x0 = [0 0 0 0.5902 0 0]. At t = tr it 

holds that Td1 = Td2 = 0, θr1 = 0 rad and θr2 = 1.234 rad. b) Same as figure 10 a) but 

taking Ka = 100, ξ = 0.95, p = 1, f = 1, Kp = 0.0099, τi = 0.0072 s, τd = 0.002 s, 

simulation time t = 400 s, simulation step T = 0.002 s and initial conditions x0 = [0 0 0 

0.5902 0 0]. At t = tr it holds that Td1 = 0, Td2 = 2.55 and θr1 =  θr2 = 0. 

 

Figure 11. Simulation results obtained through the fourth-order Runge-Kutta method 

with the following parameter values in the self-oscillating regime: Ka = 100, ξ = 0.95, p 

= 1, f = 1, Kp = 0.0099, τi = 0.0072 s, τd = 0.0019 s, simulation time t = 400 s, 

simulation step T = 0.005 s and initial conditions x0 = [0 0 0 0.5902 0 0]. At t = tcon = 

250s the capture region is Ω(rax = 0.5, ray = 0.4) whereas  f =150, Kpc = 1.4788, τic = 

1.0821 s, τdc = 0.0019 s, Td1 = Td2 = 0, θr1 = 0, θr2 = 1.234 rad and ωr = 1.125 rad/s. a) 

Phase plane θ(t)-dθ(t)/dt showing that points A and B are inside the capture zone. b) 

Armature current. c) Control signals u1(t) and u11(t). 

 

Figure 12. First Lyapunov value plotted as a function of the parameter fk. a) ξ = 0.95, 

for which the eigenvalues are λ1,2 = ±jωaph and  λ3,4 = -250.02 ± j82.19. b) ξ = 5, for 
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which the eigenvalues are λ1,2 = ±jωaph,  λ3 = -495.35 and λ4 = -5.055. In both cases it 

has been assumed that fd = 0.8. 

 

 

 

 

Figure 13. Self-oscillating behavior caused by an APH bifurcation. Simulation results 

obtained through the fourth-order Runge-Kutta method with the following parameter 

values in the self-oscillating regime: Ka = 100, ξ = 0.95, p = 1, f = 1, Kp = 0.13345, τi = 

7.215.10
-3

 s, τd = 1.5987.10
-3

 s, simulation time t = 40 s, simulation step T = 0.005 s, 

initial conditions x0 = [-0.9549 0 0 0.5 0 0] and self-oscillation frequency ωaph = 6.4512 

rad/s. The eigenvalues associated to the weak focus are λ1,2 = ±j6.4512 and λ3,4 = -

250.02 ± j82.187, and at the equilibrium point we have that y4e = 1.0124 V, Td1 = 0.9 

N.m, Td2 = 0, θr1 = 1 rad, θr2 = 0, first Lyapunov value L1 = 1.0881.10
-4

 and fk = 1.2.10
-

4
. a) Limit cycle in the phase plane θ(t)-dθ(t)/dt. b) Limit cycle in the phase plane u(t)-

du(t)/dt. c) Control signal. d) Armature current ia(t). 

 

Figure 14. Unstable and stable weak focus plotted in the phase plane θ(t)-dθ(t)/dt. The 

simulation results have been obtained for Ka = 100, ξ = 5, p = 1, f = 1, a simulation 

time t = 200 s, a simulation step T = 0.005 s and initial conditions x0 = [1 0 0 0.4 0 0].  

a) Unstable weak focus for Td1 = 0.03 N, fk = 1.2.10
-3

, L1 = 12.6337 > 0, Kp = 3.0867, τi 

= 0.2001 s, τd = 1.5987.10
-3

 s and ωaph = 3.8761 rad/s. b) Armature current with an 

unstable weak focus. c) Stable weak focus for Td1 = 0.51 N, fk = 6.10
-3

, L1 = -1.2092 < 

0, Kp = 2.8788, τi = 0.2010 s, τd = 1.5987.10
-3

 s and ωaph = 8.6673 rad/s. d) Armature 

current with a stable weak focus. 
 

 

Figure 15. Simulation results obtained through the fourth-order Runge-Kutta method 

with Ka = 100, ξ = 0.95, p = 1, Td1=9 N.m, fk = 1.2.10
- 4

,ωaph = 6.4512 rad/s, λ1,2 = 

±j6.4512,  λ3,4 = -250.02 ± j82.187 and L1 = 1.0881.10
-4

. The PID parameters before the 

control action are Kp = 1.3345.10
-1

, τi = 7.215.10
-3

 s and τd = 1.5987.10
-3

 s, while the 

simulation time is t = 300 s, the simulation step is T = 0.005 s, and the initial conditions 

are x0 = [0 0 0 0.1 0 0]. At t = tcon = 250s we define a capture region Ω(rax = 0.3, ray = 

0.2) with a seek time of 0.98 s, f =150 and fna = 0.1. The PID parameters after the 

control action at t = 250.98 s are Kpc = 1.4788, τic = 1.0821 s, τdc = 0.0016 s, Td2 = 10 

N.m, ωp = 3.2256 rad/s, θr1 = 1, θr2 = 0 and ωr = 0. a) Sensitive dependence of voltages 

u(t) and u1(t), which differ in 10
-8

 at t = 0. b) Position of the motor shaft. c) Chaotic 

trajectories and control trajectory in the phase plane θ(t)-dθ(t)/dt after the control action. 

 

Figure 16. Simulation results obtained through the fourth-order Runge-Kutta method 

with Ka = 100, ξ = 5, p = 1, Td1= 0.52 N.m, fk = 2.5.10
- 4

,ωaph = 5.5947 rad/s, λ1,2 = 

±j5.5947,  λ3,4 = -495.3493, -5.0551 and L1 = -0.049. The PID parameters before the 

control action are Kp = 1.1841, τi = 0.2003 s and τd = 0.0016 s, while the simulation 

time is t = 350 s, the simulation step is T = 0.005 s and the initial conditions are x0 = [0 

0 0 0.2 0 0]. At t = tcon = 250s, we define a capture region Ω(rax = 0.3, ray = 0.2) with a 

seek time of 1.81 s,  f =20 and fna = 0.015. The PID parameters after the control action 

at t = 251.81 s are Kpc = 1.0808, τic = 3.9968 s, τdc = 0.0016 s, Td2 = 0.45 N.m, ωp = 

2.7973 rad/s, θr1 = 1, θr2 = 0 and ωr = 0. a) Strange attractor in the phase plane u(t)-

du(t)/dt. b) Control signal. c) Axis position of the motor shaft. d) Armature current (note 

the presence of noise after the control application).  
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Figure 17. Strange attractor in the phase plane θ(t)-dθ(t)/dt, where the set point has 

been reached even in the presence of noise (parameter values are indicated in the legend 

of Fig 16). 



  

 

 

 

Highlights 

 

 Comparative analysis of  Bogdanov-Takens and Andronov-Poincare-Hopf 

bifurcations. 

 Tuning a PID controller using Bogdanov-Takens bifurcation and describing 

function. 

 Tuning a PID controller by using the Andronov-Poincaré-Hopf bifurcation. 

 Analysis of self-oscillating and chaotic behavior for the servomechanism.  

 Use of chaotic behavior to improve the PID controller performance. 




