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Entanglement and its relation to energy variance for local one-dimensional Hamiltonians
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We explore the relation between the entanglement of a pure state and its energy variance for a local one-
dimensional Hamiltonian, as the system size increases. In particular, we introduce a construction which creates a
matrix product state of arbitrarily small energy variance δ2 for N spins, with bond dimension scaling as

√
ND1/δ

0 ,
where D0 > 1 is a constant. This implies that a polynomially increasing bond dimension is enough to construct
states with energy variance that vanishes with the inverse of the logarithm of the system size. We run numerical
simulations to probe the construction on two different models and compare the local reduced density matrices of
the resulting states to the corresponding thermal equilibrium. Our results suggest that the spatially homogeneous
states with logarithmically decreasing variance, which can be constructed efficiently, do converge to the thermal
equilibrium in the thermodynamic limit, while the same is not true if the variance remains constant.
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I. INTRODUCTION

Entanglement plays a central role in several phenomena
in many-body quantum systems. Ground and low-excitation
states of local lattice Hamiltonians typically have very little
entanglement as they fulfill an area law [1,2]: the entangle-
ment of a connected region with the rest scales with the
number of particles (area) at its boundary. As a consequence,
those states can be efficiently described with tensor networks,
with a number of parameters that only scales polynomially
with the total system size [3–5]. However, generic eigenstates
may possess a lot of entanglement, as they are expected
to obey a volume law. This has relevant implications, like
the fact that the dynamics of quenched systems is hard to
describe in terms of tensor networks, at least for sufficiently
long times [6,7]. This volume law is also closely related
to the eigenstate thermalization hypothesis [8–11], namely,
the fact that generic eigenstates are able to capture the lo-
cal properties of systems in thermal equilibrium, when the
number of lattice sites N → ∞: The entropy of any finite
region in the thermodynamic limit must be extensive, and thus
entanglement has to obey a volume law [12–14]. Indeed, for
a large variety of local Hamiltonians, it is expected that local
expectation values in any eigenstate with energy in the interval
�E = [E − aNα, E + aNα] converge to the same value in the
thermodynamic limit for any constant a and α < 1.

The observation that all eigenstates in an energy interval
lead to the same properties in the thermodynamic limit natu-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

rally implies that convex combinations thereof fulfill the same
property. Those mixed states may have an energy variance δ2

that scales according to δ ∼ Nα and still give rise to thermal
averages. However, this is not necessarily the case for linear
combinations of those eigenstates or, more generally, for
arbitrary pure states with δ ∼ Nα . In fact, product pure states
typically possess a variance that scales as δ ∼ N1/2 and do not
have any entanglement at all, so they cannot describe thermal
properties of a system. This raises some natural questions: Are
there states with δ below

√
N but still with little entanglement?

Is there a general relation between those two quantities? How
does the energy variance of a pure state need to scale with N
to ensure that the state describes local thermal properties?

Some related problems have been studied in the literature.
Typicality arguments [13] can be invoked to argue that most
pure states compatible with any macroscopic constraints will
exhibit very similar local expectation values. Under appro-
priate considerations, this is enough to ensure that energy
eigenstates look locally thermal [15]. However, if the most
strict sense of typicality is considered [16,17], this is, if all
eigenstates within an energy shell need to have expectation
values that are exponentially close (in the system size) to the
shell average, this requires an exponentially small width of the
energy shell for most few-body Hamiltonians [16]. For chaotic
systems, a polynomial relation was found [17] between the en-
ergy width and the maximal deviation from thermal behavior
for any state supported on it, in particular, in terms of the sub-
system entropy. Additionally, the typical entanglement of en-
ergy eigenstates has been the focus of recent theoretical stud-
ies for chaotic and integrable systems [18–24]. Less is known
about the typical behavior of entanglement for a pure state
that is a superposition of energy eigenstates within a narrow
energy shell, although results exist that characterize the typi-
cal entropy of physical states, understood as those that can be
reached by unitary evolution with local Hamiltonians [25–27].
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A related topic is the concept of thermal pure quantum
states [28–30] (TPQ), introduced to develop a pure state
formulation of statistical mechanics. TPQ are random states
for which expectation values of local observables probabilis-
tically converge, in the thermodynamic limit, to their values
in a given statistical equilibrium ensemble. The variance of
their energy-density distribution vanishes as 1/N . In Ref. [31],
TPQ states were constructed starting with a state drawn from
a random matrix product state ensemble [32] with fixed bond
dimension, what allows for a more efficient sampling in
many-body systems. However, if the resulting TPQ needs
to approach the entanglement content (for a subsystem) that
characterizes the equilibrium ensemble, the accurate MPS
approximation of the TPQ will be unfeasible in most cases.

In this paper, we address the question of how much entan-
glement is required to reduce the energy variance of a local
Hamiltonian in one-dimensional spin chains. In particular, we
construct states with an arbitrary value of the variance δ2 and
with entanglement that scales as (k/δ) + log2

√
N , where k

is a constant.1 We use matrix product state (MPS) techniques
[33,34] for the deterministic construction and also to compute
the entanglement, which we estimate through the bond dimen-
sion of the states. We also extensively check numerically this
prediction with the Ising model in a transverse and longitu-
dinal field and with the Heisenberg model. Our results imply
that it is indeed possible to build states of constant variance
δ = O(1) but with little entanglement, which grows only
logarithmically with N and a bond dimension of the MPS that
grows polynomially. In fact, one can even take δ � 1/ log(N )
while keeping such polynomial scaling with N . However, if
we want to obtain a scaling δ ∝ 1/N , the entanglement will
grow linearly with the size. We also investigate to what extent
the states we construct can recover the thermal properties as N
grows. Since the entropy in thermal equilibrium is extensive, a
necessary condition for a region of size L to be thermal is that
its entanglement entropy is O(L). Thus, the bond dimension
of the MPS must at least scale exponentially with L. If one
restricts the bond dimension to grow only polynomially with
N , the largest thermal region can be at most L ∼ O(log N ).
According to our bounds, the required O(L) entropy can be
thus achieved with a variance that decreases as δ ∼ 1/ log(N ).
Our numerical results confirm that we can decrease the vari-
ance as δ ∼ 1/ log(N ), keeping a polynomially scaling bond
dimension and, for fixed value of L, all local observables in
the region of size L converge to their thermal values in the
thermodynamical limit.

The rest of the paper is organized as follows. In Sec. II, we
introduce the general aspects of our setup and our notation.
Then, Sec. III presents two explicit constructions of pure
states which can attain arbitrarily small energy variance. In
Sec. IV, we derive our main result: the bounds on bond
dimension and entropy of such states as a function of the
variance. We also discuss the limitations and implications
of our results. Section V presents our numerical results for
the Ising and Heisenberg spin chains. Besides checking the
scaling of the variance, and the verification of the theoretically

1Unless otherwise explicitly indicated, we consider logarithms in
base 2.

derived bounds, we probe the convergence of reduced density
matrices toward the thermal equilibrium states. In Sec. VII, we
compare the results with those from variational minimization
of the variance for the same sets of parameters. Finally, in
Sec. IV A we discuss our results and summarize our conclu-
sions.

II. PRELIMINARIES

We are interested in analyzing the entanglement required to
achieve a given energy variance δ2. We consider a spin chain
of local dimension, d , and a local Hamiltonian

H =
N∑

n=1

hi, (1)

where hn acts on spins n and n + 1. We will consider open
boundary conditions, i.e., hN acts only on the N th spin,
although our results can be easily extended to the case of
periodic boundary conditions. Without loss of generality, we
will assume that tr(hn) = 0, and trn(hn) = 0. Note that if the
latter is not the case, we can always include the part that
does not vanish in the term hn+1. We will normalize the
Hamiltonian such that

max
n

‖hn‖ = 1, (2)

where we took the operator norm, so its spectrum, σ (H ) ⊆
[−N, N]. When we consider sequences of Hamiltonians
with increasing number of spins, we will also assume that
min‖hn‖ = hmin > 0, where hmin is some constant indepen-
dent of N . In particular, for the numerical computations, we
will take hn = hm (except for n = N), so this is automatically
fulfilled.

The energy variance of a pure state � is

δ2 = 〈�|H2|�〉 − 〈�|H |�〉2. (3)

To analyze the entanglement present in the state, one can con-
sider a “cut” of the �th link of the chain, with � ∈ {1, . . . N −
1}. This divides the chain in two regions, which we denote by
the number of spins they contain, respectively, � and N − �.
The entanglement entropy with respect to this bipartition is

S� = −tr(ρ� log2 ρ�) = SN−�, (4)

where the reduced state ρ� = tr�+1,...N |�〉〈�|.
This quantity is bounded by log2 d times the minimum

between the number of spins in both regions. Typically, when
the sizes are large, S� is difficult to compute (as it requires
diagonalizing ρ�), and even to bound (because two states that
are arbitrarily close may have very different values). Alterna-
tively, we will also consider the bond dimension required to
describe the state � in terms of a MPS. That is, the size, D, of
the matrix As[n] such that |�〉 ≈ |	D〉 with

|	D〉 =
d∑

s1,...,sN =1

tr(As1 [1] . . . As1 [N])|s1, . . . , sN 〉. (5)

Typically, one would expect that the maximum entropy with
respect to all possible cuts, S = max� S�, fulfills

S ∼ c log2(D) (6)
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for some c = O(1).
In the following sections, we will construct states with an

arbitrary energy variance δ2 and that (for large system sizes
and small δ) can be approximated by an MPS with bond
dimension

D � c′√ND1/δ

0 , (7)

where c′ and D0 are some constants. One can thus estimate the
entanglement of the state across any cut to be bounded Eq. (6),

SA � k1

δ
+ 1

2
log2 N + k2, (8)

where k1,2 are constants.

III. CONSTRUCTING STATES WITH ARBITRARILY
SMALL ENERGY VARIANCE

To explore how much entanglement is in pure states with
small energy variance, we present here two explicit construc-
tions for families of states with well-defined variance. In the
next section, we will show that they also have controlled
entanglement.

A. Product states

We start considering the trivial case of product states

|p〉 = |p1〉 ⊗ . . . |pn〉, (9)

where pn are single spin states. These states have no entangle-
ment for any bipartition, and their variance reads

δ2
p =

N∑
n=1

1∑
m=−1

〈p|hnhn+m|p〉 − 〈p|hn|p〉〈p|hn+m|p〉. (10)

This tells us that δp �
√

6N . Actually, one can always con-
struct a product state with δ � y

√
N for some constant y, since

the averaged variance over all product states can be easily
seen to be O(N ). Thus, δ ∼ √

N can be obtained with zero
entanglement.

We will make use of the following result from Ref. [35]. In
the case of a product state |p〉 with mean energy Ep = 〈p|H |p〉
and energy variance σ 2

p such that σp = a
√

N , with a > 0, the
local density of states (or energy distribution) converges in the
thermodynamic limit to a Gaussian

ρp(E ) = 1√
2πσp

e−(E−Ep)2/2σ 2
p . (11)

By local density of states, we mean that for any interval � =
[E1, E2] ∈ σ (H ), if we take P� to be the projector onto the
subspace spanned by the eigenstates of H with eigenvalue in
that interval, then [36]

〈p|P�|p〉 �
∫ E2

E1

ρp(E )dE . (12)

B. Entangled states

We will consider here states of the form

|�〉 = 1

N

M0∑
m=−M0

cmei2mH/N |p〉, (13)

where p is a product state with Ep = 〈p|H |p〉 = 0, σp = a
√

N
with a = O(1), and N is the normalization factor.

In the following paragraphs, we specify two explicit
choices for the coefficients cm of the sum in Eq. (13), such that
the variance of the resulting state |�〉 systematically decreases
with the number of terms in the sum M0.

1. Cosine filter

We consider the following operator:

[
cos

H

N

]M

= 1

2M

M/2∑
m=−M/2

(
M

M/2 − m

)
ei2mH/N . (14)

The sum above can actually be restricted to −x
√

M � m �
x
√

M, with the error scaling as a Gaussian function of x, so
it can be made arbitrarily small by a judicious choice of x =
O(1). We have indeed checked that taking x = 2, the relative
error is smaller than 10−3 for N � 1000 and M � (100N )2.
The action of this operator on |p〉 can thus be written in the
form Eq. (13) with M0 = x

√
M terms.

Using the fact that cosM (X ) � e−MX 2/2 for |X | < 1, and
the Gaussian form Eq. (11) of the local energy density of |p〉,
the variance of the resulting state is found to be δ2 = (1/σ 2

p +
2M/N2)−1, which for large enough systems scales as

δ = N√
2M

. (15)

2. Chebyshev filter

We found that for the numerical implementation, it is more
convenient to use the alternative construction we describe
here, which attains a similar scaling, but allows more efficient
simulations.

A piecewise continuous function f (x) for −1 � x � 1 can
be expanded as f (x) = ∑

m pmTm(x) in terms of Chebyshev
polynomials of the first type. The coefficients of the ex-
pansion can be computed using the orthogonality properties
of the polynomials as pm = C−1

m

∫
dxw(x) f (x)Tm(x), where

w(x) = (1 − x2)−1/2 is the weight function for this family
of polynomials, and Cm are the normalization factors, Cm =∫ 1
−1 dxw(x)Tn(x)2, namely, Cm>0 = π/2 and C0 = π . The

truncation of the sum to a finite M provides an approximation
to the function, which exhibits characteristic (Gibbs) oscil-
lations near a discontinuity. The kernel polynomial method
[37] reduces this effect and improves the convergence of the
truncated series by multiplying the coefficients by specific
factors g(M )

m . In particular, we use the Jackson kernel, for
which

g(M )
k = (M − k + 1) cos πk

M+1 + sin πk
M+1 cot π

M+1

M + 1
. (16)

In the case of the Dirac delta function, all coefficients for
odd polynomials vanish, and the M − th order approximation
using the KPM reads

δ(x) ≈
�M/2�∑
n=0

(−1)n 2 − δn0

π
g(M )

2n T2n(x). (17)
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By applying the same truncated series to the rescaled
Hamiltonian H/N , we obtain the operator

OM =
�M/2�∑
m=0

(−1)m 2 − δm0

π
g(M )

2m T2m

(
H

N

)
. (18)

The result of applying this operator to the product state
|p〉 can also be written in the form Eq. (13). The Chebyshev
polynomials fulfill Tn(cos x) = cos(nx). Then

Tn

(
αH

N

)
≈ Tn

[
sin

(
αH

N

)]
= Tn

[
cos

(
π

2
− αH

N

)]

= cos

(
n
π

2
− n

αH

N

)

= 1

2
[(−i)neiαnH/N + ine−iαnH/N ]. (19)

Choosing a constant α � 1 and rescaling H → αH ensures
that the approximation holds for all eigenvalues of the ar-
gument. In the case we study here, it is enough to consider
α = 1, since the contributions of large eigenvalues (for which
in principle the relation may fail) are rapidly suppressed.

So, finally, we can write

OM |p〉 ∼
�M/2�∑

m=−�M/2�
Kmei2mH/N |p〉, (20)

which is of the form Eq. (13) with M0 = �M/2� terms in the
sum.

The truncated sum Eq. (17) actually approximates a Gaus-
sian [37] e−x2/(2σ 2 ) with variance σ ∼ π/M. Similarly, the
corresponding operator series Eq. (18) approximates OM ∼
e−(HM/

√
2πN )2

. This fact, combined with Eq. (11), enables us
to evaluate the variance of the state OM |p〉,

δ2 = (
1
/
σ 2

p + 2M2/πN2
)−1 ∼

(
πN√
2M

)2

, (21)

where the last step results from considering the limit N � 1.

IV. RELATION BETWEEN ENTANGLEMENT AND
ENERGY VARIANCE

The entanglement of any state with the form Eq. (13)
can be upper bounded by a function of M0 and N . Using a
result from Ref. [35], in the thermodynamic limit, the overlap
between two terms in the sum, m and m′ decreases with their
separation as∣∣〈p|ei2(m−m′ )H/N |p〉∣∣2 � e−[2(m−m′ )σp/N]2

, (22)

terms for which the separation m − m′ � N/(2σp) =√
N/(2a) are almost proportional to each other. Therefore,

we can reduce the number of terms in the sum by a factor√
N by defining a constant γ � a and grouping each set of√
N/γ consecutive terms, as

|�〉 � 1

N

γ M0/
√

N∑
k=−γ M0/

√
N

Cke2ikH/γ
√

N |p〉, (23)

where Ck = ∑k
√

N/γ−1
m=(k−1)

√
N/γ

cm.

The entanglement generating capacity of a local Hamilto-
nian as Eq. (1) is bounded [38–41], so, when acting with the
evolution operator eirH on a product state, the entanglement
for any given cut can only increase linearly with r, indepen-
dently of N .

Thus, each (normalized) term e2ikH/γ
√

N |p〉 appearing in
the sum can be approximated by a MPS with bond dimension

D2|k|/γ√
N

1 , for some D1 = O(1). Since the bond dimension of
a sum of MPS is at most the sum of the bond dimensions of
its terms, |�〉 can be approximated by a MPS with

D �
γ M0/

√
N∑

k=−γ M0/
√

N

(
D2/γ

√
N

1

)|k|
(24)

or, in the limit of large system size N � 1,

D � γ
√

N

ln D1

(
D2M0/N

1 − 1
)
, (25)

From Eqs. (15) and (21), we see that the energy vari-
ance in both constructions presented in the previous sections
decreases precisely as δ ∝ N/M0, so in Eq. (25) we may
substitute D2M0/N

1 = D1/δ

0 , with a value D0, specific for each
case, that absorbs the corresponding constant exponents. Then
the bond dimension in both cases scales (for large systems) as

D � γ
√

N

ln D1

(
D1/δ

0 − 1
)
, (26)

which is one of our main results. The expression reduces to
Eq. (7) when δ � 1.

Correspondingly, using Eq. (6), in the large N limit, the
entanglement is bounded by

S � log2

(
D1/δ

0 − 1
) + 1

2
log2 N + k2, (27)

which reduces to S � k1/δ + log2

√
N + k2 for small

enough δ.

Implications and limitations

Let us briefly comment on the conditions and conse-
quences of the results derived above. Regarding the conditions
in our derivations:

(i) Equations (26) and (7) have to be taken as upper bounds:
The estimations we made to compute the bond dimension of
the approximations to the state Eq. (13) consider a worst-
case scenario, where the Hamiltonian H generates as much
entanglement as possible, and the bond dimension of a linear
combination of states is the sum of the bond dimensions of
each of them.

(ii) The constructions introduced in this section prepare
states of a given variance and we have shown that they possess
bounded entanglement, but there may well be other states with
less entanglement for the same variance. Indeed, we cannot
expect to find tight bounds, since it is possible to construct
examples of exact product states in the middle of the spectrum
for specific interacting systems. For instance, just take a
staggered ferromagnetic Hamiltonian, H = ∑

n(−1)n �σn �σn+1,
for which any product state |p〉⊗N is an eigenstate with zero
energy (for N even).
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To try to obtain better general bounds, one could separate
H = HL + HR + h, where HL (HR) is the part of H acting on
the left (right) half of the chain, and h the one that connects
them. Then, the state |�〉 = |ϕL〉 ⊗ |ϕR〉, where |ϕL,R〉 are the
ground eigenstates of HL and −HR, respectively, would have
a variance of O(1), as only h contributes to it. Furthermore,
if HL and −HR are gapped, then the states |ϕL,R〉 satisfy
an area law, and thus the entropy of |�〉 along any cut
is upper bounded by a constant independent of N , which
improves the scaling in Eq. (27). However, if HL or −HR are
gapless, the bound on the entropy scales again with log N ,
possibly with a larger prefactor than in Eq. (27). Even in
the gapped case, the bond dimension of |�〉 is not bounded,
but the states |ϕL,R〉 can be approximated with MPS |φL,R〉 of
bond dimension D = exp[O(log(N )3/4ε

−1/4
L,R )] [42,43], where

εL,R = ‖|ϕL,R〉 − |φL,R〉‖2. In that case, the bond dimension
of the state |	〉 = |φL〉 ⊗ |φR〉 would be upper bounded by
a sublinear function of N , but its variance may be as large
as εN2: Just taking |φL〉 = √

1 − εL|ϕL〉 + √
εL|φ′〉, with φ′

the maximally excited state of HL, even letting ε = 1/ log N
(which would cost D = O[poly(N )], as we obtained above),
the variance would only be upper bounded by O(N2/ log N ).

(iii) We have shown that, in the limit N � 1, our construc-
tions yield a variance of the form δ ∼ N/M0, for M0 terms
in the sum, but for finite systems we expect some corrections
to appear. In particular, to make the derivation of the cosine
operator rigorous, we should scale x and γ with N and δ;
however, since the error we made by truncating the series
Eq. (14) is exponentially small in x, the corrections will only
depend logarithmically on those quantities.

(iv) Although we have described how to use our construc-
tion to obtain states in the middle of the spectrum, with E � 0,
it can also be used for other energies E0, as long as there exists
a product state with mean energy 〈p|H |p〉 = E0 on which we
can apply the filter, after replacing H→H − E0. In particular
for qubits, as considered here, such an initial product state can
be shown to exist for any energy |E0| � Nhmin/6. This can be
seen as follows. First, for each odd term h2n−1 in H , we define

m2n−1 := max
|ϕ φ〉

|〈ϕ φ|h2n−1|ϕ φ〉|, (28)

where the maximization is over all product states, and we
define local unitaries Un such that m2n−1 = 〈00|h̃2n−1|00〉,
where h̃2n−1 is h2n−1 conjugated with U2n−1 ⊗ U2n. It is easy
to show that m2n−1 � hmin/3, where the bound is tight (for
instance, for h2n−1 = �σ2n−1 �σ2n). If we conjugate H with the
product of all Un, we obtain

H̃ =
∑

n

(
anσ

z
nσ z

n+1 + bnσ
z
n

) + H ′, (29)

where |a2n−1| + |b2n−1| = m2n−1, and H ′ does not contain
terms of the form: σ z

2n−1, σ
z
2n−1σ

z
2n, σ z

2n−1σ
x,y
2n . The first two

cannot appear since they are already included in Eq. (29)
and trnhn = 0, so they cannot come from h2n. The terms
σ z

2n−1σ
x,y
2n cannot appear either, as if they do, then there would

exist a product state such that the expectation value of h̃2n−1

would be larger than the maximum, m2n−1. Now, we can
take a product state of the form ⊗i|pi〉, where we choose
pi ∈ {0, 1} from left to right, making sure that all expectation
values give a positive value, and we call, for the even terms,

m2n := 〈p2n p2n+1|h̃2n|p2n p2n+1〉 � 0. Then the corresponding
energy is

∑
� m� � ∑

n m2n−1 � Nhmin/6 = E0. Similarly, we
can construct product states with energy −E0.

Regarding the consequences:
(i) Equation (26) implies that there are states with constant

energy variance and with a bond dimension that only scales
polynomially with N . Those states have at most log N entan-
glement along any cut, and thus only slightly violate the area
law. Conversely, if we keep the bond dimension constant, the
variance must increase with δ ∼ √

N .
(ii) It is possible to build states with a variance decreasing

as δ ∼ 1/ log N but still keeping a polynomial bond dimen-
sion. Notice, however, that this case may be affected by
the corrections mentioned above. For instance, in the cosine
construction in Sec. IIIB1, if the factor x needs to grow
logarithmically with N , δ would have to decrease as some
power of 1/ log N .

(iii) For the state Eq. (13) to reproduce the thermal proper-
ties in the thermodynamic limit (i.e., for the expectation values
of all local observables—with any support—to converge to
their thermal values) the state needs to have an extensive value
of the entanglement entropy, and thus δ � 1/N . However, if
one is only interested in the observables in a region of fixed
size L, it may be enough that the entropy of that region is
L, so keeping δ constant (or slightly decreasing with N) may
be enough to locally thermalize for sufficiently large N , and in
this case the local temperature may vary on length scales much
larger than L [17]. Notice that we can also apply the arguments
leading to Eq. (27) to a subsystem in the middle of the chain
by simply considering a double chain obtained by folding the
original one in two around the center of the subsystem. Thus,
a similar bound Eq. (27) (with different constants) holds for
the entropy of the subchain of length L.

In the next sections, we investigate numerically all the
points raised above. We give an explicit construction to build
the MPS, and numerically check to what extent Eqs. (21),
(26), and (27) are obtained for moderate values of N and δ. We
also explore how close to thermal the reduced density matrices
of these states are for small subsystems.

V. NUMERICAL RESULTS

A. Numerical implementation

To achieve a fixed variance δ2, both constructions pre-
sented in the previous section would require a number of states
in the sum Eq. (13) proportional to N/δ. To implement the
first strategy in Sec. III B 2 numerically, we can use standard
MPS time-evolution techniques to approximate each term of
the sum starting from the product state |p〉. We have observed,
nevertheless, that the truncation error accumulates fast when
compressing the terms of the sum. Iteratively applying the
cosine operator exp[iH/N] + exp[−iH/N] produces numer-
ically more stable results, but requires (N/δ)2 iterations. A
more efficient strategy is to implement the Chebyshev con-
struction from Sec. III B 2 by approximating with a MPS the
action of each term in Eq. (18) on the initial state.

Starting from the product state, |p〉, we construct the terms
of the sum Eq. (18) as follows. The first two Chebyshev
polynomials are exact matrix product operators [44] (MPOs)

144305-5



BAÑULS, HUSE, AND CIRAC PHYSICAL REVIEW B 101, 144305 (2020)

with small bond dimension, T0(H̃ ) = 1, and T1(H̃ ) = H̃ ,
where H̃ = αH/N is the properly rescaled Hamiltonian, so its
spectrum is within the convergence domain of the Chebyshev
expansion. In practice, to choose α, it is enough to obtain
an estimate of the edges of the spectrum, Emin and Emax,
which can be done efficiently using density matrix renor-
malization group (DMRG) [33,34], and then to take α <

N/ max(|Emin|, |Emax|), where the inequality is guaranteed by
fixing for instance α as 0.9 times the rhs).

The zeroth order approximation corresponds to |�0〉 =
g(M )

0 c0|p〉. Then, we iterate until the desired order M,

|�n+1〉 = |�n−1〉 + g(M )
n cnTn(H̃ )|p〉, (30)

where cn can be read from Eq. (18). In principle, the higher or-
der polynomials could also be computed as MPO using the re-
currence Tn+1(H̃ ) = 2H̃Tn(H̃ ) − Tn−1(H̃ ) using the standard
algorithms. However, since only the action of each polynomial
on the initial state, |Tn(p)〉 := Tn(H̃ )|p〉, appears in the sum, it
is more efficient to compute these vectors, which satisfy the
same recurrence relation,

|Tn+1(p)〉 = 2H̃ |Tn(p)〉 − |Tn−1(p)〉, (31)

and use them to update the sum as |�n+1〉 = |�n−1〉 +
g(M )

n cn|Tn(p)〉. This allows us to operate directly with MPSs,
avoiding the more costly operators. Notice that the use of
Chebyshev polynomials of the Hamiltonian combined with
tensor network techniques was suggested in Ref. [45] for
approximating spectral functions and was later used for time
evolution [46–48] and density of states calculations [49]. The
technical details involved in our computation of the intermedi-
ate |Tn+1(p)〉 vectors are virtually the same described in those
references.

Models and initial states

We consider two spin-1/2 quantum chains to probe our
construction, namely, the Ising model with longitudinal and
transverse field, and the XYZ Hamiltonian in a magnetic
field:

HI = J
∑

i

σ [i]
z σ [i+1]

z + g
∑

i

σ [i]
x + h

∑
i

σ [i]
z , (32)

HXYZ =
∑

i

(
Jxσ

[i]
x σ [i+1]

x + Jyσ
[i]
y σ [i+1]

y + Jzσ
[i]
z σ [i+1]

z

)

+ h
∑

i

σ [i]
z . (33)

We consider nonintegrable points and choose the sets of
parameters (J = 1, g = −1.05, h = 0.5) for HI and (Jx = 1.1,
Jy = −1, Jz = 0.9, h = 1.2) for HXYZ.

In both cases, we select a product initial state that has
energy close to 0. In the case of the Ising model, we use

|p〉 = |Y +〉 := ( |0〉+eiπ/2|1〉√
2

)
⊗N

, which has 〈Y + |HI|Y +〉 = 0
for every system size. In the case of the XYZ chain, we use a
staggered configuration |p〉 = |Zst2〉 := (|0〉|0〉|1〉|1〉)⊗N/4 (if
the chain length is even, but not a multiple of 4, the last
pair of sites is in |0〉), with constant energy Jz (for even
chain lengths), and thus vanishing energy density in the ther-
modynamic limit. Note that these initial states are spatially
homogeneous on large length scales, so as they approach

101 102 103

10-2

100

102

(a) Ising model: variance vs. M

101 102 103

10-1

100

101

102

(b) XYZ model: variance vs. M

FIG. 1. Scaling of the (final) variance δ2 as a function of the
order M of the Chebyshev expansion, for different system sizes
N = 20 − 100 in the Ising (upper) and XYZ (lower panel) setups. We
show the results for the largest bond dimension used D = 1000. For
the largest M, the results are not yet converged, and they deviate from
the straight line (especially noticeable for the XYZ case). Before
truncation limits the decrease of the variance, the scaling is consistent
with the expected δ2 ∝ 1/M2 (up to small M corrections). The dotted
lines show a power-law fit for the intermediate (converged) points
of each size, at the largest bond dimension, with exponents for δ2

between −1.95 and −1.88 (Ising) and between −1.93 and −1.80
(XYZ).

local thermal equilibrium at large M, the local temperature is
spatially uniform. Below, in Sec. VI, we also explore spatially
nonuniform initial states.

Using the method described above, we compute the Cheby-
shev sum to Mth order for different values of M, and for
system sizes between N = 20 and 100. In each case, we allow
bond dimensions between D = 200 and 1000 (notice that
D = 1024 is exact for our smallest system N = 20).
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(a) Ising model
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(b) XYZ model

FIG. 2. Final variance δ2 as a function of the system size N , for
number of steps corresponding to various functions M = f (N ), in
the Ising (left) and XYZ (right panel) setups. We show the results
with the largest D = 1000, converged for all sets except M ∝ N2

(purple circles), for which we show in lighter shades the results for
D = 300 − 500 (lighter to darker).

B. Scaling of the variance

To probe whether the energy variance decreases with the
number of terms in the sum according to the asymptotic
behavior in Eq. (21) already for the moderate system sizes
accessible to the numerics, we run the procedure described
above for both models using truncation parameters M that
vary with the system size. As shown in Fig. 1, the scaling
is close to the asymptotic one, as long as the truncation error
is not important. Fitting the final variance for the converged
calculations for each system size to δ = AM−η, we find η

close to 1 for all cases, with only small deviations (see caption
of Fig. 1).

Another way to check the behavior predicted in Sec. III B
is to examine the scaling of the final variance when the
truncation order scales as a certain function of the system
size M = f (N ) (see Fig. 2). Since we expect δ ∝ N/M, a
linearly growing M ∝ N should maintain constant variance
for increasing system size. Our simulations show that this is
practically the case, and the behavior is consistent in both
models. Nevertheless, we observe a slight increase δ � N0.03

for Ising [Fig. 2(a)] and δ � N0.05 for XYZ [Fig. 2(b)]. If
M grows faster than linear (see the figure for M ∝ N log2 N
and M ∝ N2), the variance decreases with increasing system
size. In the first case, the results are compatible with a descent
δ ∼ 4/ log2 N , but also with a power law N−0.223 (Ising), re-
spectively, δ ∼ 1.53/ log2 N or N−0.22 (XYZ). In the quadratic
case, the variance drops much faster, compatible with δ ∝
N−0.97 (Ising) and N−0.88 (XYZ) within the converged range
of sizes (notice that in that case the largest system size is not
converged even with D = 1000).

C. Scaling of entropy and truncation error

Equations (26) and (27) estimate the upper bounds of the
scaling of the entanglement entropy and the bond dimension
with system size for each set of states defined by a function
M = f (N ). In particular, if 1/δ scales as log N or slower,
which is the case for all functions discussed above except
M ∝ N2, the bound scales asymptotically as log N .

We check this prediction plotting the numerical results ver-
sus the logarithm of the system size, as shown in Fig. 3. Our
data show that in almost all cases, the growth of the entropy

20 40 60 80 100
0

1

2

3

4

5

6

(a) Ising model

20 40 60 80 100
0

1
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3

4

5

6

(b) XYZ model

FIG. 3. Entropy of the half chain as a function of the system
size N , after applying the Chebyshev filter for different truncations
M = f (N ) (indicated by the symbols) in the Ising (upper) and XYZ
(lower panel) setups, for bond dimension D = 1000. In the only
nonconverged case, the lighter symbols also show results for D =
300 − 500 (lighter to darker shades). We observe that almost all cases
grow with log N , except for the case M ∝ √

N , in which the entropy
seems upper bounded by a constant. In the case M = 0.1N2, in which
the values are also compatible with an additional linear term in N .

is compatible with log N . We fit the resulting entropies for the
largest bond dimension (discarding the smallest system sizes)
for each model [Figs. 3(a) and 3(b)], and find the following
forms [50].

Ising XYZ

S5
√

N −0.04 log2 N + 1 −0.003 log2 N + 0.34
S2N 0.46 log2 N − 0.4 0.47 log2 N − 1.15
S5N 0.5 log2 N + 0.9 0.57 log2 N − 0.03
SN log N 0.78 log2 N − 1.15 0.91 log2 N − 2.46
S0.1N2 0.012N + 1.32 log2 N 0.004N + 2.02 log2 N

−4.3 −8.47

We can further probe to which extent the asymptotic be-
havior for large systems Eq. (26) is satisfied within our data.
Without taking the large N limit in the sum Eq. (24), we obtain
for arbitrary sizes

D � 2[1 + g(N )]D1/δ

0 − [1 + 2g(N )], (34)

where we have defined g(N ) = (D2/γ
√

N
1 − 1)−1. In the limit

of large system size, g(N ) ∼ γ
√

N/2 ln D1 � 1, and Eq. (26)
is recovered. We thus estimate D0 from the moderate sizes
available by fitting the data for each system size to a function
2S = aD1/δ

0 + b. This yields D(Ising)
0 ∼ 1.50(15) for the Ising

and D(XYZ)
0 ∼ 3.9(0.24) for the XYZ model (where the errors

are estimated from the weighted mean of D0 values obtained
for each system size N > 20). For these values of D0, we
check that most of our data satisfies 2S ∝ √

N (D1/δ

0 − 1),
as shown in Fig. 4. As expected, the largest deviations are
observed for the smallest system size N = 20. For larger
systems, the Ising data fits well the expected behavior, while
in the XYZ case the finite size effects seem to be more
important, and deviations can be appreciated also for N = 40.

From our simulations, run with constant bond dimension,
we can estimate the truncation error and thus the minimal
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(a) Ising model
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FIG. 4. Scaling of the exponential of the entropy as predicted
by Eq. (26). Except for the smallest systems N = 20, the expo-
nential of the half-chain entropy is approximately proportional to√

N (D1/δ

0 − 1) with a constant D0 (shown in each panel), found
from the individual fits for different system sizes. The dotted line
represents the linear fit 2S/

√
N = AD1/δ

0 + B, and the parameters of
each fit are shown in the corresponding panel. We observe that the
XYZ case (below) exhibits larger deviations for finite systems.

bond dimension required to maintain a given precision in the
MPS representation of the states we construct. The MPS form
gives access to the Schmidt decomposition {λk}D

k=1 across any
cut. For the one corresponding to the middle of the chain,
we define Dtr as the minimum bond dimension required to
ensure a small error ε = 10−2, namely, 1 − ∑Dtr

i=1 |λk|2 � ε.
We then analyze the scaling of Dtr as we did for the en-
tropy. Figure 5 shows the scaling with the system size for
the various families of states M = f (N ). We observe that
almost all cases are compatible with a polynomial increase
Dtr ∝ Nβ , with β = 0, 0.42, 0.53, and 0.88, respectively,

20 40 60 80 100
100

101

102

103

(a) Ising model

20 40 60 80 100
100

101

102

103

(b) XYZ model

FIG. 5. Minimum bond dimension Dtr required to keep a trunca-
tion error (for the middle cut) smaller than ε = 0.01 as a function of
the system size, for different truncations of the Chebyshev expansion
M = f (N ) for the Ising (left) and XYZ (right) setups. As for pre-
vious figures, solid symbols correspond to D = 1000. Darker colors
correspond to larger bond dimensions. We observe that almost all
cases grow polynomially with N , except for M = 0.1N2, when the
values are also compatible with an additional linear term in N .

for M = 5
√

N, 2N, 5N , and N log2 N in the Ising case and
β = 0, 0.59, 0.57, and 0.96 in the XYZ model. The case
M = 0.1N2, instead, shows a faster increase and is compat-
ible with a fit log2 Dtr ∼ 0.02N + 1.47 log2 N − 7.9 (Ising)
and log2 Dtr ∼ 0.02N + 1.70 log2 N − 5.5 (XYZ). Notice that
these estimates are obtained for the largest D = 1000 (dis-
carding the largest sizes which may not be fully converged).

Repeating the analysis we described for the entropy, we can
fit the data for each system size to a curve Dtr = aD1/δ

0 + b,
extract D0 and check the scaling Eq. (26). Again we observe
Dtr/

√
N varying linearly in D1/δ

0 (see insets of Fig. 4).

D. Local similarity to thermal state

For all the states explored in Fig. 2(a), i.e., sets of states
defined by a truncation order M = f (N ) �

√
N , the scaling

of the variance is compatible with δ ∼ Nη, with η < 1, so the
energy density variance δ/N ∼ Nη−1 vanishes in the thermo-
dynamic limit. This is, however, not enough to guarantee that
the reduced state for a subsystem is close to thermal.

In the setups we consider, the (target) mean energy is zero,
which corresponds to infinite temperature. We thus compare
the reduced density matrix for the central Lc sites (up to
Lc = 10) with the corresponding reduced density matrix for
the maximally mixed state. We study how this distance varies
as a function of the system size for the different sets of states
described above, with different scalings of the variance. The
results for Lc = 8 are shown in Fig. 6.

We observe that for M ∝ √
N , which yields δ ∼ √

N , the
local distance for all sizes Lc grows with the system size, ap-
proaching the maximum possible value, 1 − 2−Lc . For linear
truncation M ∝ N , which results into almost constant (or very
slightly decreasing) δ, the local distance seems to become con-
stant, growing a bit for the smallest systems in the Ising case,
and decreasing in the XYZ case, but seemingly stabilizing
for larger sizes. These states, thus, do not locally resemble
thermal equilibrium either in the thermodynamic limit. Our
results suggest, however, that an energy variance decreasing
as log N or faster would guarantee local convergence to ther-
mal equilibrium in the limit of large N (as the curves for
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(a) Ising model, trace distance
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(b) Ising model, entropy
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FIG. 6. Trace distance (left column) between the reduced density
matrix for the Lc = 8 central sites and the thermal state at the end
of the Chebyshev filter, corresponding to data in Fig. 2. For M ∝√

N , which gives approximately δ ∝ √
N , the distance grows and

approaches the maximum (0.996). For constant variance, instead, the
distance seems to stay almost constant in the Ising case, and to go
slightly down in the XYZ case. A number of steps M ∝ N log N
or M ∝ N2 seems to be enough to have convergence of the local
reduced density matrices to the thermal one. As in previous figures,
solid symbols correspond to the maximum bond dimension D =
1000, and for the largest number of steps we show in lighter shades
the nonconverged results for D = 300 − 500. The right column
shows the entropy of the corresponding reduced density matrix for
the same cases.

M = N log2 N and M = 0.1N2 illustrate). We observe the
same qualitative behavior in both setups. Also, different sub-
system sizes (except the smallest ones) behave similarly.

The distances shown in Fig. 6 demonstrate that with
variance decaying as δ ∝ 1/ log N or faster, local thermal
equilibrium will be reached for large enough systems. The
first case can actually be achieved with polynomially growing
bond dimension. However, our numerical results are limited
by the maximum bond dimension that we can reasonably
simulate, so we can only explore these thermalizing regimes
up to moderate system sizes.

A necessary condition for the reduced state of Lc sites to
resemble thermal equilibrium (which here corresponds to the
maximally mixed state) is that the entropy of the correspond-
ing subsystem grows as Lc. We have evaluated the entropy of
the central subchain in these states for Lc = 1, . . . 10. Our ar-
guments bound the growth of this entropy with the same form
Eq. (27), but since the maximum entropy of the block is Lc, if
Lc < log2 N/2, the right-hand side of Eq. (27) just gives a triv-
ial bound. Thus we illustrate the behavior for the case Lc = 8
in the right panels of Fig. 6, although qualitatively similar
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(a) Ising model
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FIG. 7. Spatial distributions of energy density correlations
〈hnc hnc+x〉 − 〈hnc 〉〈hnc+x〉 with respect to a site nc near the center
of the chain [51] (N = 40) in both models, for a different number
of steps M. The insets show the approximate 1/N dependence of
long-range terms (magnitude of the peaks for XYZ) for numbers of
iterations M ∝ N that keep the variance constant.

plots are obtained for the other sizes explored, if Lc � 4. We
observe that, while for large entropy of the block, approaching
the upper bound Lc, the distance decreases much faster than
Lc − S(ρLc ), when the entropy is comparatively smaller, there
is a clear correlation between both quantities, and the entropy
fulfills the form Eq. (27) qualitatively.

E. Variance and correlations

To decrease the energy variance δ2 = ∑
n,m 〈�|hnhm|�〉 −

〈�|hn|�〉〈�|hm|�〉, the system needs to arrange the local
energy fluctuations and their correlations, such that the sum
nearly vanishes. For a translationally invariant system with
zero mean energy, and taking into account that 〈h2

n〉 � a
for some constant a > 0, a constant δ2 can thus be attained
by either some short-range terms 〈hnhn+�〉 of O(1) or if
all terms 〈hnhm〉 become O(1/N ). By inspecting the spatial
distribution of such correlators in the states constructed in
this section, we can thus better understand how our method
constructs the states with small energy variance (the local
energy operators hn are chosen to fulfill trnhn = 0, as specified
in Sec. II).

As illustrated in Fig. 7 for the case N = 40, very early
a certain amount of long-range correlations develops. In the
Ising case (left panel), where the initial state is translationally
invariant, these correlations are homogeneous, while in the
XYZ model (right panel) they reflect the periodicity of the
initial state. The reference site is chosen to be the central one
nc = N/2 in the Ising case. In the nontranslationally invariant
XYZ case, to compare different system sizes we choose as
reference the position of the |0011〉 substring closest to the
center in the initial state. By comparing the (largest) magni-
tude of the long-range correlations for different system sizes,
at a number of steps M ∝ N , which, as we have discussed,
corresponds to a constant δ2, we observe that these long-
range terms scale indeed as 1/N . This strategy is thus not the
most entanglement effective, which explains why, when we
search for the states minimizing the variance at fixed energy
and bond dimension (see Fig. 12), we encounter a different
structure.
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FIG. 8. Applying the Chebyshev filter to initial states with inho-
mogeneous energy density. The variance (inset) decreases as δ2 ∝
1/M2: The dotted black lines that fit the data to δ2 = AM−η give
precisely exponent η = 2. The main panel shows the local energy
density as a function of the position in the chain (for N = 24) for
some values of M. The initial distribution (bright blue) is a step, and
the filter smears it slowly: After M = 8800 steps, the inhomogeneity
is still significant (green), while the variance read in the inset has
decreased by three orders of magnitude until δ2 ∼ 10−4.

VI. INHOMOGENEOUS ENERGY DISTRIBUTION

The scaling of the variance in our constructions Eqs. (15)
and (21) follows from considering an initial product state
with narrow enough (σp ∼ √

N) energy distribution, but does
not require translational invariance, and thus must also hold
for initial states that have an inhomogeneous energy density.
Simulating this situation allows us to ask how such an initial
imbalance diminishes as the variance is reduced.

To probe this scenario numerically, we consider a product
initial state with a stepwise energy density, and zero mean
energy, with respect to the nonintegrable Ising Hamiltonian,
and apply the Chebyshev filter as described above. Figure 8
show the results of our simulation, using exact diagonaliza-
tion, for systems up to N = 24 sites (although we exam-
ined larger systems with MPS, the truncation error became
important much before the effects on the spatial profile are
noticeable). We observe in the inset that the scaling of the
variance decreases with the number of steps as δ2 ∝ 1/M2,
as expected from Eq. (21). The inhomogeneity of the energy
density, nevertheless, survives much longer, and it remains
noticeable even when the variance has decreased by several
orders of magnitude.

VII. VARIATIONAL OPTIMIZATION

Applying the strategy described in the paper with a fixed
bond dimension manages to produce a MPS with small energy
variance at the given mean energy. This variance can be sys-
tematically reduced by increasing the order of the Chebyshev
expansion, before truncation error appears. But this does not
need to be the MPS with the smallest possible variance for the
given bond dimension and mean energy. Instead, we can di-
rectly search for such optimal MPS by a variational optimiza-
tion using as cost function �H2 = 〈�|H2|�〉 − 〈�|H |�〉2
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FIG. 9. Relation between the bond dimension and the final en-
ergy variance attained via variational minimization for several sys-
tem sizes for the Ising (left) and XYZ (right) setups. For large enough
system sizes, we observed a behavior compatible with log D ∼ 1/δ.

(plus a penalty term to ensure the desired mean energy). This
variational problem can be formulated as the optimization of a
MPS, and be solved using a sequential iteration over tensors,
similar to DMRG algorithms [33,34], with the difference that
the local problem to be solved for each individual tensor is
the minimization of a quartic expression. A similar problem
also appears when optimizing purifications and can be solved
using some iterative numerical scheme, e.g., a gradient de-
scent algorithm (see, e.g., Ref. [52]), but the problem has local
minima (even at the level of the individual tensors) and the
convergence severely depends on the parameters of this local
optimizer.

We have performed the variational search for the same
setups and system sizes discussed in the first part of the paper,
and using bond dimensions 20 � D � 500 to compare the re-
sults to the ones discussed in the previous section. We observe
that the values of the energy variance reached for a certain
bond dimension can be much smaller than with the Chebyshev
sum. Similar to that case, the bond dimension seems to grow
exponentially with 1/δ, with a coefficient that depends on the
system size, as shown in Fig. 9. but which does not correspond
to

√
N . From our data, we could not identify a clear scaling

of the coefficients. Additionally, the behavior of the variance
is not smooth when increasing D, what we attribute to the
imperfect convergence of the nonlinear optimizations, which
may sometimes be trapped in local minima for a certain value
of the bond dimension, while the state may change completely
when the bond dimension is varied.

The entanglement entropy of the states found in the op-
timization reflects an even stronger nonsystematic behavior,
especially in the case of the XYZ model, as shown in Fig. 10.
The average distance of the subsystems to the thermal equi-
librium does not behave monotonically either (see Fig. 11),
with the large changes corresponding to the abrupt variations
in δ appreciated in Fig. 9. Interestingly, although the variance
decreases monotonically when increasing D, the distance does
not behave in the same way. Overall, the distances obtained
with the variational minima are (except for the smallest sys-
tem) larger than the best distances achieved with the filter.

Also, the energy-density correlations in these states differ
from the systematic behavior encountered in Fig. 7. Now
we find that the states achieve much lower energy variance
by modifying the short-range correlations, and long-range
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FIG. 10. Entanglement entropy (half chain) of the MPS resulting
from the variational minimization of the variance, as a function of
1/δ, for different system sizes for the Ising (left) and XYZ (right)
setups.

ones are developed only at much larger bond dimensions (see
Fig. 12).

VIII. DISCUSSION

We have introduced a method that, starting from a prod-
uct state, systematically constructs states with decreasing
energy variance and controlled entanglement for any local
one-dimensional Hamiltonian. This allows us to extract con-
clusions about the minimal entanglement (or bond dimension)
guaranteeing the existence of a state with a certain variance, as
a function of the system size. We have found that it is possible
to prepare states with arbitrarily small variance (vanishing as
δ ∼ 1/ log N) with a bond dimension that scales polynomially
with the system size.

Using MPS algorithms, we have implemented the con-
struction numerically for the Ising and XYZ models, and
we have confirmed that the asymptotic scalings hold already
for system sizes N ∈ {20, 100}. Using the numerical simu-
lation, we have also analyzed how close these states are to
thermal equilibrium, in terms of the local reduced density
matrices. Our results suggest that a variance that vanishes as
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FIG. 11. Average trace distance between a Lc = 8 subsystem and
the thermal equilibrium state at infinite temperature, as a function of
the bond dimension, after the variational minimization, for several
system sizes for the Ising (left) and XYZ (right) setups. The lines are
simply for visual aid.
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FIG. 12. Spatial distributions of energy density correlations
〈hnc hnc+x〉 − 〈hnc 〉〈hnc+x〉 with respect to a central site nc of the chain
(N = 40) in both models, for the states minimizing the variance at
fixed D (to be compared to Fig. 7).

δ ∼ 1/ log N is enough to obtain local thermal behavior for
small subsystems. Notice that the main goal of this method is
not to numerically construct pure states in local equilibrium,
as with this scaling, reaching system sizes where the local
state is close enough to thermal equilibrium may still be
extremely demanding computationally, as it will require a
bond dimension growing polynomially with N .

For comparison, we have run a variational search for
the MPS that minimizes the energy variance at fixed bond
dimension. Although the variational method we use may find
convergence problems, the states we find enable a qualitative
comparison with the results from the systematic construction.
The variational search finds states with smaller variance for
the same entanglement, although in general the corresponding
reduced density matrices are further from thermal. Neverthe-
less, the exponential scaling of the bond dimension with the
variance also seems to hold in this case.

Finally, notice that the result about the scaling of the vari-
ance holds independent of the dimensionality of the problem.
Furthermore, since the bound on the rate of entanglement
generation by a local Hamiltonian is general as well, we
expect that the bound of the entropy can also be generalized
to higher dimensional systems.
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