
LIFTING ACCESSIBLE MODEL STRUCTURES

RICHARD GARNER, MAGDALENA KĘDZIOREK, AND EMILY RIEHL

Abstract. A Quillen model structure is presented by an interacting pair of
weak factorization systems. We prove that in the world of locally presentable
categories, any weak factorization system with accessible functorial factor-
izations can be lifted along either a left or a right adjoint. It follows that
accessible model structures on locally presentable categories—ones admitting
accessible functorial factorizations, a class that includes all combinatorial
model structures but others besides—can be lifted along either a left or a right
adjoint if and only if an essential “acyclicity” condition holds. A similar result
was claimed in a paper of Hess–Kędziorek–Riehl–Shipley, but the proof given
there was incorrect. In this note, we explain this error and give a correction,
and also provide a new statement and a different proof of the theorem which
is more tractable for homotopy-theoretic applications.
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1. Introduction

In abstract homotopy theory, one often works with categories endowed with
a class W of weak equivalences which, though not necessarily isomorphisms
themselves, satisfy closure properties resembling those of the isomorphisms1. In
many cases, the category M at issue is complete, cocomplete, and endowed with
further classes of maps C and F , called cofibrations and fibrations, for which the
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1More precisely, W should contain all identities and satisfy the 2-out-of-6 property.
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pairs

(1.1) (C ∩W,F) and (C,F ∩W)

satisfy the factorization and lifting properties axiomatized by the notion of a
weak factorization system; see Definition 2.1 below. One then has a Quillen model
category : a setting rich enough to perform many of the classical constructions of
homotopy theory.

While model structures are convenient to have, they can be difficult to construct.
One of the most useful tools for building model structures is that of “lifting” an
existing model structure (W, C,F) on a category M along an adjoint functor in
either one of the following situations:

(1.2) C oo
L

> M
//U

or K oo
R

⊥ M .
//V

On the one hand, if U : C→ M is a right adjoint functor, we may attempt to
define a model structure on C by taking the classes of weak equivalences and
fibrations to be U−1(W) and U−1(F) respectively; the model category axioms
then force the definition of the cofibrations in C, since they are supposed to
provide the left class of a weak factorization system with right class U−1(F ∩W).
When these classes determine a model structure on C, we call it a right-lifting
of (W, C,F) along U . On the other hand, if V : K→ M is a left adjoint functor,
we may define weak equivalences and cofibrations in K as the classes V −1(W)
and V −1(C), and define the fibrations in the only way allowed by the model
category axioms. When these classes determine a model structure on K, we call
it a left-lifting of (W, C,F) along V .

It is not always the case that right or left lifting will determine a model structure.
First, there is an essential “acyclicity condition” which must be satisfied, which
ensures that the left and right classes of the weak factorization systems are
compatible with the cofibrations, fibrations, and weak equivalences in the sense
of (1.1). In the right-lifted case, the acyclicity condition asserts that the left class
of the weak factorization system determined by U−1(F) (i.e. the class of maps
which are supposed to be acyclic cofibrations) is contained in the class U−1(W)
of lifted weak equivalences. This condition is non-trivial to check, and typically
requires some genuine insight into the homotopy theory at issue.

The other precondition for existence of the lifted model structure is existence
of the lifted weak factorization systems: and while the lifting axiom is satisfied by
construction, the existence of factorizations is not automatic. However, there are a
range of results available which verify this existence using only general properties
of the categories involved and of the model structure (W, C,F)—thus reducing
the question of lifting model structures to the essential acyclicity condition.

One situation in which lifted weak factorization systems always exist is the
combinatorial setting; here, the categories involved are locally presentable [10]—
an assumption which will remain in place for the rest of the introduction—and
the model structure (W, C,F) is cofibrantly generated [16, Definition 2.1.17].
In this context, it has been understood for several decades that right-lifted
factorizations can be constructed explicitly using Quillen’s small object argument.
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Very recently, [22] showed that in this same setting, left-lifted factorizations
also exist; this breakthrough result was put into the model-categorical context
in [5, Theorem 2.23], and has since been used to construct interesting new model
categories [9, 15].

These results were generalized in [14] to obtain left and right liftings of fac-
torizations for what the authors term accessible model structures. The simplest
formulation of what this means is that given in [25]: a model structure is ac-
cessible if its factorizations into the classes (1.1) can be realized by accessible
functors—ones which preserve λ-filtered colimits for some regular cardinal λ. In
particular, any cofibrantly generated model structure is accessible, but others
besides: for example, the model structures on dg-modules considered in [4]. The
main Corollary 3.3.4 of [14] asserts that, if (W, C,F) is accessible, then both
left- and right-lifted factorizations always exist; this has already found practical
application to the construction of new model structures in [13, 23].

While the main result of [14] is correct, the proof given there turns out to
contains a subtle error: in some cases, it exhibits “lifted factorizations” which are
not those of the desired left- or right-lifted weak factorization systems, but of
slightly different ones. The purpose of this note is to fix this error. In fact, we do
so in two ways: once by correcting the argument of [14], and once by a different
argument which sidesteps the difficulties at issue. For good measure, we also give
some concrete examples in which the previous argument does indeed break down.

We now retrace the reasoning of [14] with a view to explaining what goes
wrong. First let us note that the authors of ibid. express accessibility of a
model structure in a different way to [25]—taking it to mean that the two weak
factorization systems of the model structure can be made into accessible algebraic
weak factorization systems [7]. This means that, as well as accessible functors

(1.3) X
f−→ Y 7→ X

Lf−−→ Ef
Rf−−→ Y

that realize the factorizations in each case, there should also be provided fillers:

(1.4)

X
LLf

//

Lf
��

ELf

RLf
��

Ef

LRf
��

Ef

Rf
��

Ef

δf

<<

Ef ERf
RRf

//

µf

<<

Ef

subject to axioms which, among other things, cause these data to endow the
functors L : M2 → M2 and R : M2 → M2 with the structure of a comonad L and a
monad R respectively; see Definition 3.2 below. While this is apparently stronger
than [25]’s notion of accessible model category, it turns out that, starting from
the less elaborate definition, one can always derive the data required for the more
elaborate one; this is the content of Remark 3.1.8 of [14].

The motivation for adopting the more involved definition of accessibility is that
it allows application of [7, Proposition 13], which says that accessible algebraic
weak factorization systems can always be left- and right-lifted. The intended
approach is thus the following. With (L,R) taken successively to be (C,F ∩W)
and (C ∩W,F), one first algebraizes (L,R) to (L,R); then right- or left-lifts this
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along U : C→ M or V : K→ M to an algebraic weak factorization system (L′,R′);
and then takes the underlying weak factorization system (L′,R′), whose classes
comprise the retracts of maps of the form L′f or R′f respectively.

This is the argument of [14, Corollary 3.3.4]; for it to work, one must be
sure that the (L′,R′) produced above is indeed left- or right-lifted from (L,R),
meaning in the left case that L′ = V −1(L), and dually in the right. This is claimed
to be the case in Theorems 3.3.1 and 3.3.2 of [14], but the claim is incorrect.
The reason is subtle, and has to do with what exactly is lifted in applying [7,
Proposition 13].

Concentrating on the left case, one lifts not the L-maps of the underlying weak
factorization system, but rather the L-maps: the coalgebras for the comonad
L. While every L-map has the property of being an L-map, a given L-map
may not be the underlying map of any L-map; it may be necessary to take
a retract2. The upshot of this is that, if one applies the above procedure to
(L,R), one finds that L′ comprises the retract-closure of V −1(L-map) rather
than V −1(L) = V −1(retract-closure of L-map); and while the former is always
included in the latter, the inclusion may be strict, as shown in Section 3.3 below.

In this way, the above procedure may produce factorizations for an incorrect
lifting of one of the original weak factorization systems. The author who is
responsible for this error was well aware of this issue when she proved [24,
Theorem 3.10]—indeed, an important part of that argument explains why it does
not arise in the cofibrantly generated and right-lifting context—but had fallen
out of touch with that awareness when writing Section 3 of [14].

Note that the problem we have described would not arise if the maps in M
admitting L-map structure were already closed under retracts. This observation
suggests a fix: we adjust the algebraization (L,R) appropriately before lifting.
Indeed, in Proposition 4.5 below, we will see that any algebraic weak factorization
system (L,R) may be “shifted” to one (L],R]) whose underlying weak factorization
system is the same, but whose L]-maps are closed under retracts. Now to correct
the above procedure for left-lifting, we need only interpolate the step of replacing
(L,R) by (L],R]). Of course, exactly the same issues arise in the case of right-
lifting, and exactly the same fix is possible, this time involving a dual shifting
(L[,R[); all of this is detailed in Section 4 below.

In addition to correcting the argument that proves [14, Corollary 3.3.4], the
remaining aspect of this paper is a new proof of the result which proceeds
directly from the simpler definition of accessible model structure given in [25]. In
particular, this argument avoids the use of algebraic weak factorization systems
entirely, since these are beside the point for the homotopy-theoretic applications.
It is with this more streamlined proof that we now begin the paper.

2. The new proof

2.1. Background and statement of results. Our terminology and approach will
largely follow that of [14]; we begin by recalling the necessary background. Given

2A good intuition is that, if the L-maps are the “cofibrations”, then the L-maps are the
“relative cell complexes”. In many cases this is literally true: see [2].
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a class of maps X in a category C, we write �X and X� for the classes of maps
with the left, respectively right, lifting property against each map in X , and given
a functor H : C′ → C, we write H−1X for the class of morphisms in C′ which are
mapped into X by H.

Definition 2.1. A weak factorization system (L,R) on a category C is given by a
left class of maps L and a right class of maps R such that:

(1) Every morphism in C can be factored as a map in L followed by one in R.
(2) The classes L and R are mutually determined by the equations:

L = �R and R = L� ;

in the presence of the first axiom, this is equally to ask that each L-map
has the left lifting property against each R-map, and that both L and R
are closed under retracts.

We have already discussed in the introduction what we mean by a left- or
right-lifting of a model structure along a left or right adjoint functor; this is what
Definition 2.1.3 of [14] called the left-induced or right-induced model structure.
More generally, we can speak of the left-lifting or right-lifting of a weak factoriz-
ation system (L,R) along a left adjoint V or right adjoint U as in (1.2); when
these exist, they are by definition the weak factorization systems on the domain
category with respective classes

(2.2) ( ~L, ~R) = (V −1L, (V −1L)
�

) and ( ~L, ~R) = (�(U−1R), U−1R) .

A necessary condition for the existence of a left- or right-lifted model structure
is that both of its underlying weak factorization systems (1.1) should admit left-
or right-liftings. Conversely, if we assume such liftings, then we have:

Proposition 2.3 (Proposition 2.1.4 of [14]). Let (W, C,F) be a model structure on
M, and suppose there are given adjunctions as in (1.2) for which the right-lifted
weak factorization systems exist on C and the left-lifted weak factorization systems
exist on K. In this situation:

(1) The right-lifted model structure exists on C if and only if the right acyclicity
condition �(U−1F) ⊆ U−1W is satisfied.

(2) The left-lifted model structure exists on C if and only if the left acyclicity
condition (V −1C)� ⊆ V −1W is satisfied.

As noted in the introduction, the satisfaction of the acyclicity condition typically
depends on non-trivial homotopy-theoretic arguments; this is discussed at some
length in [14, §2.2]. In this paper, however, our sole interest will be in verifying
the existence of the lifted weak factorization systems as in (2.2). The setting in
which we do so is that of accessible weak factorization systems.

Definition 2.4. A weak factorization system (L,R) on a category M is called
accessible if M is locally presentable, and there is given a functorial realization

(2.5) A
f−→ B 7→ A

Lf−−→ Ef
Rf−−→ B



6 RICHARD GARNER, MAGDALENA KĘDZIOREK, AND EMILY RIEHL

for (L,R) whose underlying functor E : M2 → M is accessible.3 A model structure
on M is accessible if its underlying weak factorization systems (1.1) are so.

The key objective of this paper is to give a correct proof of:

Theorem 2.6. Let (L,R) be an accessible weak factorization system on M, and
suppose there are given adjunctions (1.2) with C and K also locally presentable.
In these circumstances, (L,R) admits a left-lifting along V and a right-lifting
along U , and these are again accessible.

Using this, we re-find the main Corollary 3.3.4 of [14]:

Corollary 2.7. Let (W, C,F) be an accessible model structure on M, and suppose
given adjunctions (1.2) with K and C also locally presentable.

(1) The right-lifted model structure exists on C if and only if the right acyclicity
condition holds.

(2) The left-lifted model structure exists on K if and only if the left acyclicity
condition holds.

2.2. Cloven L- and R-maps. The first proof we give of Theorem 2.6 will still
employ ideas derived from [7], but will be given in a fully self-contained manner
with the minimum of additional machinery. The main notion we require is:

Definition 2.8. Let (L,R) be an accessible weak factorization system on M. A
cloven L-map (f, s) : A → B comprises a map f : A → B of M together with a
lift of f against its own right factor, as to the left in:

(2.9)

A
Lf
//

f

��

Ef

Rf

��

C

Lg

��

C

g

��

B

s

>>

B Eg

p
>>

Rg
// D .

Dually, a cloven R-map (g, p) : C → D is a map g : C → D together with a lift of
g against its own left factor, as above right. The cloven L-maps are the objects
of a category Clov(L), wherein a morphism (f, s)→ (g, t) is a map (h, k) : f → g
in M2 as below left which also renders commutative the square to the right:

A
h //

f
��

C

g

��

Ef
E(h,k)

// Eg

B
k
// D B

k
//

s

OO

D .

t

OO

Dually, the cloven R-maps form a category Clov(R). We write UL : Clov(L)→ M2

and UR : Clov(R)→ M2 for the functors forgetting the liftings.

3By the usual retract argument, a given functorial factorization provides factorizations for
at most one weak factorization system: namely, that whose left and right classes comprise the
retracts of the Lf ’s and the Rf ’s respectively. This is the sense in which we refer to (L,R) as a
functorial realization of the weak factorization system (L,R).
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It will be useful to re-express the above definition in a different manner. Any
functorial factorization (1.3) yields endofunctors L,R : M2 → M2 and natural
transformations ~η : idM2 ⇒ R and ~ε : L⇒ idM2 with components

(2.10) ~ηf = (Lf, 1) : f → Rf and ~εf = (1, Rf) : Lf → f .

In these terms, to endow g : C → D with cloven R-map structure is to endow it
with a choice of retraction ~p : Rg → g for ~ηg, or in other words, with (R, ~η)-algebra
structure. We may thus identify UR with the forgetful functor Alg(R,~η) → M2

from the category of (R, ~η)-algebras. Similarly, we may identify UL with the
forgetful functor Coalg(L,~ε) → M2 from the category of (L,~ε)-coalgebras.

Lemma 2.11. Let (L,R) be an accessible weak factorization system on M.

(1) UL : Clov(L)→ M2 is a left adjoint isofibration between locally presentable
categories, and the objects in its image are precisely the L-maps.

(2) UR : Clov(R)→ M2 is a right adjoint isofibration between locally presentable
categories, and the objects in its image are precisely the R-maps.

Recall here that a functor F : A → B is an isofibration when, for every
isomorphism f : b→ Fa in B, there exists an isomorphism f ′ : a′ → a in A with
Ff ′ = f . These are the fibrations of the “folk” model structure on CAT [18].

Proof. It follows from the identification of Clov(L) and Clov(R) with Coalg(L,~ε)

and Alg(R,~η) that UL and UR are isofibrations, that UL creates colimits and that
UR creates limits (cf. [3, Theorem 3.4.2]). In particular, Clov(L) is complete and
Clov(R) cocomplete, and so by [1, Theorem 2.47], both will be locally presentable
so long as they are accessible categories [21]. We show this using Theorem 5.1.6 of
ibid., which states that the 2-category ACC of accessible categories and accessible
functors is closed in CAT under bilimits. This implies the accessibility of Clov(L)
and Clov(R), because the passage from a (co)pointed endofunctor to its category
of (co)algebras can be realized using bilimits (cf. [9, Appendix A]), and because
the accessibility of E implies that L,R, ~η and ~ε all live in ACC.

Now UL is a cocontinous functor between locally presentable categories, and so
by [20, Theorem 5.33] has a right adjoint; while UR is a continuous and accessible
functor between locally presentable categories—accessible due to its construction
from bilimits in ACC—and so by [10, Satz 14.6] has a left adjoint.

For the final claim, if f is an L-map, then it lifts against Rf , and so admits a
cleavage; conversely, if f is endowed with a cleavage, then it is an L-map as a
retract of the L-map Lf . So the image of UL comprises precisely the L-maps,
and dually the image of UR comprises the R-maps. �

We will require one final result relating to cloven maps. We state it here only
for L-maps, and leave the dualization to the right case to the reader.

Lemma 2.12. Let (f, s) : A → B be a cloven L-map and g : B → C an L-map.
There is a cleavage t for gf : A→ C such that (1, g) : (f, s)→ (gf, t) in Clov(L).
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Proof. Take t be any filler for the square

B
E(1,g).s

//

g

��

E(gf)

R(gf)
��

C
t

::

C .

We have R(gf) ◦ t = 1C and tgf = E(1, g) ◦ sf = E(1, g) ◦ Lf = L(gf), so t is a
cleavage. Moreover, (1, g) : (f, s)→ (gf, t) is a map in Clov(L) by commutativity
of the top triangle above. �

2.3. Lifting accessible weak factorization systems. We are now ready to give our
first proof of Theorem 2.6. In order to exhibit the desired factorizations into the
lifted classes, we consider the following pullback diagrams:

(2.13)

Clov( ~L) //

U ~L
��

Clov(L)

UL
��

Clov( ~R) //

U ~R
��

Clov(R)

UR
��

K2

V 2
// M2 C2

U2
// M2 .

The notation for the categories defined by these pullbacks is slightly abusive; the
meaning cannot be the one asserted by Definition 2.8, since we do not yet have
functorial factorizations for ( ~L, ~R) or ( ~L, ~R). Indeed, the whole point is to find
such factorizations, and we will do this with the aid of the above pullbacks.

The abuse of notation is justified by the observation that an object of, say,
Clov( ~L) is a pair (f, s) where f is a map of K and s is a cleavage for V f—thus,
by Lemma 2.11, a witness that V f is an L-map and so equally, a witness that f
is an ~L-map. This proves the final clauses in the two parts of the following result.

Lemma 2.14. Let (L,R) be an accessible weak factorization system on M, and
suppose given adjunctions (1.2) with C and K also locally presentable.

(1) U ~L : Clov( ~L)→ K2 is a left adjoint isofibration between locally presentable
categories, and the objects in its image are precisely the ~L-maps.

(2) U ~R : Clov( ~R)→ C2 is a right adjoint isofibration between locally presentable
categories, and the objects in its image are precisely the ~R-maps.

Proof. It remains to prove the first clauses. By Lemma 2.11, UL is an isofibration;
whence by [17], its pullback along V 2 is also a bipullback (= homotopy pullback in
CAT). By [6, Theorem 3.15], the 2-category of locally presentable categories and
left adjoint functors is closed under bilimits in CAT, so that, in particular, U ~L is a
left adjoint between locally presentable categories. Similarly, by [6, Theorem 2.18],
the 2-category of locally presentable categories and right adjoint functors is closed
under bilimits in CAT, and so U ~R is a right adjoint between locally presentable
categories. �

We now show that the adjoints asserted by this lemma provide the desired
functorial ( ~L, ~R)- and ( ~L, ~R)-factorizations. The argument from this point is
completely dualizable, so we concentrate on the case of left-lifting.
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Proposition 2.15. Under the hypotheses of Theorem 2.6, the counit of the adjunc-
tion U ~L a G : K2 → Clov( ~L) at an object f may be taken to be of the form:

(2.16)

X

~Lf
��

X

f

��
~Ef

~Rf

// Y

Proof. It suffices to prove that, for any right adjoint G for U ~L, the counit maps
U ~LGf → f have invertible domain-components; then we may transport the values
of G along these invertible maps to get a right adjoint with counit as in (2.16).

So let (g, s) ∈ Clov( ~L) be the value at f of some right adjoint for U ~L, with the
corresponding counit map given by the square in K left below.

X ′
x //

g

��

X

f

��

1X′

(x,x)

��

(1,g)
// g

(x,y)

��

U ~L(1X′ , L1FX′)

U ~L(x,x)

��

U ~L(1,g)
// U ~L(g, s)

(x,y)

��

Y ′ y
// Y 1X

(1,f)
// f U ~L(1X , L1FX)

(1,f)
//

U ~L(z,w)

66

f

This square in K yields one in K2 as centre above, and a short calculation shows
that we can lift its top and left sides to Clov( ~L) as in the solid square right above.
Since the counit (x, y) is, by definition, terminal in the comma category U ~L ↓ f ,
we induce a unique diagonal filler as displayed making both triangles commute.
In particular, both zx = 1 and xz = 1 so x is invertible as desired. �

The naturality of the counit means that the factorization f 7→ ( ~Lf, ~Rf) in (2.16)
is functorial; and in fact, as the notation suggests, we have:

Proposition 2.17. Under the hypotheses of Theorem 2.6, the factorization (2.16)
is a functorial ( ~L, ~R)-factorization.

Proof. The diagram (2.16) provides the counit at f : X → Y of an adjunction
U ~L a G : K2 → Clov( ~L). In particular, each ~Lf = U ~LGf is in the image of U ~L
and so is an ~L-map by Lemma 2.14. It remains to show each ~Rf ∈ ~R.

We can write Gf = ( ~Lf, s), where s is a cleavage for V ~Lf : V X → V ~Ef . Now
since V ~L ~Rf : V ~Ef → V ~E ~Rf is an L-map, there is by Lemma 2.12 a cleavage t
for V ( ~L ~Rf. ~Lf) such that (1, ~L ~Rf) : ( ~Lf, s)→ ( ~L ~Rf. ~Lf, t) in Clov( ~L). This gives
a square as to the left of:

U ~L( ~Lf, s)
U ~L(1,1)

//

U ~L(1, ~L ~Rf)
��

U ~L( ~Lf, s)

(1, ~Rf)

��

~Ef

~L ~Rf
��

~Ef

~Rf

��

U ~L( ~L ~Rf. ~Lf, t)
(1, ~R ~Rf)

//

U ~L(1,µ)

77

f ~E ~Rf

µ
==

~R ~Rf

// Y

in K2. Since the counit is terminal in U ~L ↓ f , we induce a unique diagonal filler as
displayed making both triangles commute; and on taking the codomain projection,
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we obtain the commuting diagram above right. We are now ready to show that
~Rf ∈ ~R = ~L�

. So suppose ` ∈ ~L, and we are given a square as to the left in:

A
h //

`

��

~Eg

~Rg

��

A
h //

`

��

~Eg

~L ~Rf
��

~Ef

~Rf

��

B
k
// Y B

k′
// ~E ~Rf

~R ~Rf

// Y .

Choose a cleavage r for V `. By terminality of the counit (1, ~R ~Rf) : ~L ~Rf → ~Rf

in U ~L ↓ ~Rf , we may now factor (h, k) : U ~L(`, r) → ~Rf as right above, and so
obtain the desired filler as µk′ : B → ~Ef . �

Putting the above results together, we obtain:

Proof of Theorem 2.6. In the left-lifted case, Proposition 2.17 exhibits (2.16) as a
functorial ( ~L, ~R)-factorization, so that the lifted weak factorization system exists.
To show accessibility, it suffices to show that ~E in (2.16) is an accessible functor;
but this is so since it is the composite of accessible functors:

K2 G−→ Clov( ~L)
U ~L−−→ K2 cod−−→ K .

The case of right-lifting is entirely dual. �

3. The previous proof

In the rest of the paper, we revisit the proof of Theorem 2.6 given in [14] in
order to explain where it goes wrong, and to suggest a way of fixing it. This proof
starts from a different, though equivalent, formulation of accessibility for a model
structure, given in terms of the algebraic weak factorization systems of [12], and
we begin by explaining this.

3.1. Accessible algebraic weak factorization systems. Lemma 2.11 tells us that
we can recapture a weak factorization system (L,R) from any of its functorial
realizations (L,R): indeed, L and R are the classes of maps admitting (L,~ε)-
coalgebra, respectively (R, ~η)-algebra, structure. However, not every functorial
factorization realizes a weak factorization system; the additional structure required
to ensure this was identified in [26, Theorem 2.4]:

Lemma 3.1. A functorial factorization (L,R) realises a weak factorization system
(L,R) if and only if each Lf admits (L,~ε)-coalgebra structure and each Rf admits
(R, ~η)-algebra structure.

Choosing such coalgebra and algebra structures amounts to choosing sections
~δf : Lf → LLf for each ~εf , and retractions ~µf : RRf → Rf for each ~ηf ; or, in
more elementary terms, to choosing fillers δf : Ef → ELf and µf : ERf → Rf
for all squares as in (1.4). If this is done carefully enough, we may obtain an
instance of the following structure.
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Definition 3.2. An algebraic weak factorization system (L,R) on a category M
comprises a comonad L = (L,~ε, ~δ) and a monad R = (R, ~η, ~µ) on M2 such that
L,R,~ε and ~η arise from a functorial factorization (2.5) in the manner of (2.10),
and such that the canonical map (δ, µ) : LR⇒ RL is a distributive law.

By Lemma 3.1, any algebraic weak factorization system (L,R) has an underlying
weak factorization (L,R) whose classes are the maps admitting (L,~ε)-coalgebra
or (R, ~η)-algebra structure. However, equally important in this context are the
L-maps and R-maps : the coalgebras for the comonad L and the algebras for the
monad R. The data for L- or R-map structure is the same as that for (L,~ε)-
coalgebra or (R, ~η)-algebra structure—a choice of filler as to the left or right
in (2.9)—but an additional (co)associativity axiom is required; so not every L- or
R-map need admit L- or R-map structure. The general situation is that:

Lemma 3.3. If (L,R) is an algebraic weak factorization system, then its underlying
weak factorization system has classes L = Retr(∃L) and R = Retr(∃R), where
we write Retr(–) for the operation of retract-closure, and write

∃L = {f ∈ M2 : f admits L-map structure}
and ∃R = {g ∈ M2 : g admits R-map structure}.

Proof. Each L-map is a fortiori an (L,~ε)-coalgebra and so has underlying map
in L; whence Retr(∃L) ⊆ Retr(L) = L. Conversely, each L-map admits by
Lemma 2.11 a coalgebra structure exhibiting it as a retract of Lf ; as Lf underlies
the L-map (Lf,~δf ), we thus have L ⊆ Retr(∃L). The right case is dual. �

Remark 3.4. It was shown in [11] that, in the locally presentable setting, each
weak factorization system (L,R) generated by a set of maps J has an algebraic
realization (L,R), in which the R-maps are morphisms f : X → Y equipped with
chosen lifts against each map in J . In this case, we have ∃R = R, but typically
∃L ( L; in fact, ∃L often comprises precisely the J-cell complexes of which the
L-maps are retracts (cf. [2]). On the other hand, [7, Proposition 17] gives an
example of an algebraic weak factorization system on CAT for which ∃R ( R.

We say that an algebraic weak factorization system (L,R) is accessible if M
is locally presentable and the functor E : M2 → M underlying the functorial
factorization is accessible. In this circumstance, the underlying weak factorization
system is clearly accessible. In the other direction, we have the following result;
for the proof, see §3.1 of [14], in particular Remark 3.1.8.

Proposition 3.5. Every accessible weak factorization system is the underlying weak
factorization system of an accessible algebraic weak factorization system.

In light of this, we can equally define an accessible model structure on a
locally presentable category M to be one whose underlying weak factorization
systems admit accessible algebraic realizations. This is the choice made in [14,
Definition 3.1.6], in order to exploit known results on lifting accessible algebraic
weak factorization systems; it is to these that we now turn.
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3.2. Lifting algebraic weak factorization systems. To explain left- and right-lifting
of algebraic weak factorization systems, we first need to recall the manner in
which L- and R-maps compose. This is governed by certain functors into the
categories CoalgL and AlgR of L- and R-maps, as in the dotted parts of:

CoalgL ×M CoalgL
◦ //

UL×MUL
��

CoalgL

UL
��

tUL
//

sUL //
Mioo

id

��

CoalgL
UL
��

M3 ◦ // M2

t
//

s //
Mioo Sq(M)

AlgR ×M AlgR
◦ //

UR×MUR

OO

AlgR

UR

OO

tUR
//

sUR //
Mioo

id

OO

AlgR .

UR

OO

These functors exhibit the top and bottom rows as double categories—i.e., internal
categories in CAT—over the double category Sq(M) of objects, morphisms, morph-
isms and commutating squares in M. We display this to the right above. In more
detail, objects and horizontal morphisms of these double categories CoalgL and
AlgR are just objects and arrows of M; vertical arrows are L-coalgebras (respect-
ively, R-algebras); while squares are commutative squares—maps in M2—that
lift to maps of L-coalgebras (respectively, R-algebras).

This is relevant due to a powerful and slightly surprising result: an algebraic
weak factorization system (L,R) is completely determined by either of the double
categories UL : CoalgL → Sq(M) or UR : AlgR → Sq(M) over Sq(M); see [24, The-
orem 2.24]. This result was strengthened in [7] to give a complete characterization
of when a double category over Sq(M) is isomorphic to the double category of
left or right maps for an algebraic weak factorization system.

Theorem 3.6 ([7, Theorem 6]). A double category U : A→ Sq(M) over Sq(M) is
isomorphic to the double category of left (resp., right) maps for an algebraic weak
factorization system on M if and only if:

(i) The object-level functor U : A0 → M is an isomorphism, and the arrow-level
functor U : A1 → M2 is strictly comonadic (resp., monadic); and

(ii) for every f ∈ A1, the square left below (resp., right below) in Sq(M) is in
the image of U:

a
1 //

1

��

a

Uf
��

a
Uf
// b

a
Uf
//

Uf
��

b

1
��

b
1
// b .

This result allows for a straightforward definition and a straightforward con-
struction of left- and right-liftings for algebraic weak factorization systems.

Definition 3.7. Given an algebraic weak factorization system (L,R) on M, its
left-lifting along a left adjoint V or its right-lifting along a right adjoint U as
in (1.2) are, when they exist, the algebraic weak factorization systems ( ~L, ~R) on
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K and (~L, ~R) on C characterised by the following pullbacks of double categories:

(3.8)

Coalg ~L
//

U ~L
��

CoalgL
UL
��

Sq(K)
Sq(V )

// Sq(M)

and

Alg~R //

U~R
��

AlgR

UR
��

Sq(C)
Sq(U)

// Sq(M) .

Proposition 3.9 ([7, Proposition 13]). Let (L,R) be an accessible algebraic weak
factorization system on M, and suppose there are given adjunctions (1.2). If C
and K are also locally presentable, then (L,R) admits both an accessible left-lifting
( ~L, ~R) along V and an accessible right-lifting (~L, ~R) along U , in the sense of
Definition 3.7.

The proof is an application of Theorem 3.6: in the left-lifted case, say, we
first pull back UL along Sq(V ) to obtain a double functor U : A → Sq(K), and
obtain the desired ( ~L, ~R) from this by showing that U satisfies the hypotheses
of Theorem 3.6. The only hypothesis which is non-trivial to verify is that
U1 : A1 → K2 is a left adjoint, and for this, we exploit local presentability and
argue exactly as in the proof of Lemma 2.11.

3.3. The flaw in the previous proof. We are now in a position to explain the error
made in [14] in proving Theorem 2.6. The authors state Proposition 3.9 above
as Theorems 3.3.1 (for the left case) and Theorem 3.3.2 (for the right), but add
clauses which amount to the following:

Claim 3.10. In the situation of Definition 3.7, if the stated left- and right-liftings
( ~L, ~R) and (~L, ~R) of (L,R) exist, then:

(i) The underlying weak factorization system of ( ~L, ~R) is the left-lifting of the
underlying weak factorization system of (L,R); and

(ii) The underlying weak factorization system of (~L, ~R) is the right-lifting of
the underlying weak factorization system of (L,R).

This claim would legitimize the following means of constructing the left- or
right-liftings of an accessible weak factorization system as in Theorem 2.6. One
first chooses an accessible algebraic realization; then lifts that; and then takes
the underlying weak factorization system. The problem with this is that:

Proposition 3.11. Claim 3.10 is false.

As left-lifting along a left adjoint is the same as right-lifting along its opposite,
it suffices to disprove either (i) or (ii). So let us concentrate on (i), the case of
left-lifting (L,R) along a left adjoint V : K→ M. On the one hand, the underlying
weak factorization system of (L,R) has left class Retr(∃L), and so the left-lifting
of this underlying weak factorization system along V has left class V −1(Retr(∃L)).
On the other hand, the left-lifting of (L,R) along V is characterized by a pullback
of double categories as in (3.8); so in particular, we have a pullback of categories



14 RICHARD GARNER, MAGDALENA KĘDZIOREK, AND EMILY RIEHL

as follows; compare with the situation of (2.13):

Coalg ~L
//

U ~L
��

CoalgL

UL
��

K2

V 2
// M2 .

Inspecting the images of the vertical functors, we see that a map f of K admits ~L-
map structure if and only if V f admits L-map structure. So ∃( ~L) = V −1(∃L) and
the underlying weak factorization system of ( ~L, ~R) has left class Retr(V −1(∃L)).
This analysis shows that Claim 3.10(i) is equally the claim that

(3.12) Retr(V −1(∃L)) = V −1(Retr(∃L)) .

Since functors preserve retracts, it will always be the case that Retr(V −1(∃L)) ⊆
V −1(Retr(∃L)); however, the two examples that we give below below show that,
in certain cases, this inclusion is strict. Both of these examples exploit the
following general construction of an algebraic weak factorization system which
originates in [8, §4.1]; we refer the reader to there for more details.

Example 3.13. Let M be a category with finite coproducts, and let P be a comonad
on M with counit υ : P ⇒ 1 and comultiplication ∆: P ⇒ PP . There is an
algebraic weak factorization system on M with functorial factorization:

X
f−→ Y 7→ X

ι1−→ X + PY
〈f,υY 〉−−−−→ Y

and with the fillers δf and µf of (1.4) given by the respective composites

X + PY
1X+Pι2∆Y−−−−−−−−→ X + P (X + PY ) and X + PY + PY

1X+∇PY−−−−−−→ X + PY .

The R-maps of this algebraic weak factorization system are the P-split epis
(p, i) : X → Y , comprising a map p : X → Y together with a “P-section”: a map
i : PY → X such that pi = υY : PY → Y . The L-maps do not in general admit
a direct description, but the “algebraically cofibrant objects”—the L-maps with
domain 0—are precisely the coalgebras for the comonad P.

We now give the first of our examples disproving the equality (3.12).

Example 3.14. If A is any commutative ring, then there is a weak factorization
system (L,R) on ModA cofibrantly generated by the single map 0→ A. The class
L comprises the monomorphisms with projective cokernel—so in particular, the L-
cofibrant objects are the projective modules—whileR comprises the epimorphisms;
see Lemma 2.2.6 and Proposition 2.2.9 of [16].

We obtain an algebraic realization (L,R) for (L,R) using Example 3.13, where
we take the comonad P therein to be the one generated by the forgetful-free
adjunction U : ModA � Set : F . In this case, the R-maps are A-module morphisms
f : M → N endowed with a section at the level of underlying sets; while an
algebraically cofibrant object—a P-coalgebra—is easily seen to be a free A-module
endowed with a choice of generators.
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We now specialize to the case A = Z/6, so that ModA is the category of
abelian groups in which every element is 6-torsion. We will disprove the equality
Retr(V −1(∃L)) = V −1(Retr(∃L)) in (3.12) when V is taken to be the left adjoint:

V : ModZ/6
Z/2⊗Z/6(–)
−−−−−−−→ ModZ/6 .

On the one hand, 0→M lies in ∃L just when M is a free Z/6-module. Since
the objects in the image of V are all 2-torsion, and the only Z/6-module which
is 2-torsion and free is 0, it follows that 0 → M lies in V −1(∃L) just when M
contains no 2-torsion elements. Since such M can be identified with the Z/3-
modules, they are retract-closed and so, finally, 0 → M lies in Retr(V −1(∃L))
just when M contains no 2-torsion elements.

On the other hand, a map 0→M is in Retr(∃L) just when M is projective; it
now follows that 0→ Z/6 lies in V −1(Retr(∃L)), since V (Z/6) = Z/2 is projective
as a direct summand Z/6 ∼= Z/2⊕ Z/3. We have thus shown that 0→ Z/6 is in
V −1(Retr(∃L)) but not in Retr(V −1(∃L)), as desired.

The second example is built on the same principle.

Example 3.15. Let M be the monoid {1, e} with e2 = e and consider the category
M -Set of M -sets endowed with the weak factorization system (L,R) cofibrantly
generated by the single map ∅ →M . The R-maps are the epimorphisms, and as
each M -set is a retract of a coproduct of M ’s, each object is cofibrant.

We obtain an algebraic realization (L,R) for (L,R) using Example 3.13, where
we take the comonad P therein to be the one generated by the free-forgetful
adjunction U : M -Set � Set : F . Now R-maps are maps of M -sets endowed with
a section of underlying sets; while an algebraically cofibrant object is one with
free M -action (the coalgebra structure is, in this case, uniquely determined).

In this situation, we will show Retr(V −1(∃L)) ( V −1(Retr(∃L)) with V taken
to be the left adjoint functor Set→M -Set which endows each set with its trivial
M -action. On the one hand, ∅ → X lies in ∃L just when X is a free M -set.
Since the trivial action is only free on the empty set, we see that ∅ → X lies in
V −1(∃L), or equally in Retr(V −1(∃L)), only when X = ∅. On the other hand,
every map of the form ∅ → X is in Retr(∃L), and so every map ∅ → X lies in
V −1(Retr(∃L)). So Retr(V −1(∃L)) ( V −1(Retr(∃L)) as desired.

These examples are concerned with lifting factorizations for a single weak
factorization system. If desired, they can be enhanced to examples concerning
lifting factorizations for an accessible model category by taking C = L and
F = R and W = all maps. Of course, the model categories so arising are
homotopically rather uninteresting, but in particular cases we may be able to do
better. For instance, a dg version of Example 3.14 occurs in lifting the (cofibration,
acyclic fibration) weak factorization system of the standard model structure on
Ch(ModZ/6).

4. Fixing the previous proof

In this final section, we describe how the erroneous Claim 3.10 can be corrected
by adding extra hypotheses, and then show that this revised claim allows for a



16 RICHARD GARNER, MAGDALENA KĘDZIOREK, AND EMILY RIEHL

correct proof of the algebraic version of Theorem 2.6. Towards our first goal, let
us define an algebraic weak factorization system (L,R) to be left-retract-closed
(resp., right-retract-closed) if the class of maps ∃L (resp., ∃R) is closed under
retracts.

Proposition 4.1. Claim 3.10(i) holds for any (L,R) which is left-retract-closed,
while Claim 3.10(ii) holds for any right-retract-closed (L,R).

Proof. The two cases are dual, so it suffices to consider a left-retract-closed (L,R)
on M and a left adjoint V : K→ M along which the left-lifting ( ~L, ~R) exists. We
must prove the equality (3.12). We already noted that

Retr(V −1(∃L)) ⊆ V −1(Retr(∃L))

since functors preserve retracts. Conversely, because ∃L = Retr(∃L), we have

V −1(Retr(∃L)) = V −1(∃L) ⊆ Retr(V −1(∃L)) . �

This suggests the following legitimate construction of the left- or right-liftings
of an accessible weak factorization system (L,R). One first chooses a left-retract-
closed (resp., right-retract-closed) accessible algebraic realization; then lifts that;
and then takes the underlying weak factorization system.

In order for this to work, the required left- and right-retract-closed algebraic
realizations of (L,R) must exist. Since we already know that at least one accessible
algebraic realization (L,R) exists, it suffices to show that this can be adjusted to
a left-retract-closed one (L],R]) and a right-retract-closed one (L[,R[) with the
same underlying weak factorization system.

The idea is to construct the adjustment (L],R]) in such a way that the L]-maps
are precisely the cloven L-maps: for then, by Lemma 2.11, ∃(L]) = L, which is
indeed closed under retracts; moreover, the underlying weak factorization system
is clearly the same. Dually, we will construct (L[,R[) such that the R[-maps
are the cloven R-maps. In fact, by Theorem 2.6, these motivating descriptions
of (L],R]) and (L[,R[) are nearly sufficient for their construction. The only
additional aspect that is required is:

Proposition 4.2. Let (L,R) be an accessible algebraic weak factorization system.
The cloven L-maps admit a composition law Clov(L)×MClov(L)→ Clov(L) making
them the vertical morphisms and squares of a double category Clov(L)→ Sq(M)
over Sq(M) whose objects and horizontal morphisms are those of M. Dually, the
cloven R-maps constitute a double category Clov(R)→ Sq(M).

Proof. By duality, we need only consider the left case. Our proof follows [7, §2.7].
To begin with, we define an algebra lifting operation for a map f : A→ B to be
the choice, for each R-algebra (g, p) : C → D and each map (h, k) : f → g in M2

of a diagonal filler ϕ(g,p)(h, k) : B → C:

(4.3)

A
h //

f

��

C

g

��

B
k
//

ϕ(h,k)

??

D ,
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subject to the naturality condition that, for any map (u, v) : (g, p) → (h, r) of
R-algebras, we have uϕ(g,p)(h, k) = ϕ(h,r)(uh, vk).

Now, a square like (4.3) is equally an object of the comma category f ↓ UR,
and the unit map (Lf, 1) : f → UR(Rf, µf ) is initial in this comma category; so
to give ϕ is equally to give a single map ϕ(Rf,µf )(Lf, 1) : B → Ef filling the left
square of (2.9). In this way, we obtain an isomorphism Clov(L) ∼= LiftR over M2,
where LiftR is the category of maps endowed with algebra lifting operations and
squares commuting with the lifting operations.

We may now exploit this isomorphism to define the desired composition law on
algebra lifting operations rather than on cloven L-maps. Given maps f : A→ B
and g : B → C endowed with lifting operations ϕ and ψ, we obtain a composite
lifting operation ψϕ on gf by first lifting against f and then against g:

ψϕ(h,p)(u, v) = ψ(h,p)(ϕ(h,p)(u, vg), v)

A

f
��

u // D

h

��

B

ϕ(u,vg)

44

g

��

C v
//

ψ(ϕ(u,vg),v)

::

E .

This assignation is easily functorial with respect to maps of lifting operations,
thus yielding a functor LiftR ×M LiftR → LiftR. To see that this gives rise to
the desired double category, we must check associativity and unitality of this
composition law. Associativity is immediate on comparing the formulae for ξ(ψϕ)
and (ξψ)ϕ; while an identity at A is easily seen to be given by the lifting structure
(1A, ιA) : A→ A with (ιA)(g,p)(u, v) = u. �

Remark 4.4. The double categories Clov(L) and Clov(R) are in fact expansions
of the double categories CoalgL and AlgR of L- and R-maps: the above proof
simply repeats the construction of the composition laws on the latter in the
broader context. In particular, this means that there are canonical inclusion
double functors CoalgL ↪→ Clov(L) and AlgR ↪→ Clov(R) over Sq(M).

We now use these double categories to build the desired left- and right-shifted
algebraic weak factorization systems.

Proposition 4.5. Let (L,R) be an accessible algebraic weak factorization system on
a locally presentable category M. There exist accessible algebraic weak factorization
systems (L],R]) and (L[,R[) characterised by isomorphisms of double categories

(4.6) CoalgL]
∼= Clov(L) and AlgR

[ ∼= Clov(R)

over Sq(M). Furthermore, (L],R]) is left-retract-closed, (L[,R[) is right-retract-
closed, and both have the same underlying weak factorization system as (L,R).

Proof. We verified the final sentence above; as for the existence of (L],R]) and
(L[,R[), the arguments involve applying Theorem 3.6 to the double categories
Clov(L) and Clov(R) over Sq(M). We give details only in the left case.
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For hypothesis (i) of Theorem 2.6, the object-level functor 1M : M → M is
clearly an isomorphism, while the arrow-level functor UL : Clov(L) → M2 has
a right adjoint by Lemma 2.11, and is therefore comonadic because it is the
forgetful functor from the category of coalgebras for a copointed endofunctor;
see [19, §5.1], for example.

For hypothesis (ii), note first that the unique cloven L-map structure on an
identity map 1A : A→ A is given by (1A, L1A) : A→ A. To verify (ii) therefore,
we must show that any cloven L-map (f, s) : A→ B, the square left below lifts
to a map (1A, L1A)→ (f, s) of cloven L-maps.

A
1A //

1A
��

A

f
��

E1A
E(1A,f)

// Ef

A
f
// B A

f
//

L1A

OO

B

s

OO

This is equally to show the commutativity of the square above right; for which
we calculate that E(1A, f) ◦ L1A = Lf = sf . �

Remark 4.7. The inclusion double functors of Remark 4.4 compose with the
isomorphisms (4.6) to yield double functors CoalgL → CoalgL] and AlgR → AlgR]

over Sq(M). The existence of these double functors can be equivalently expressed
as saying that we have oplax (= “left Quillen”) morphisms of algebraic weak
factorization systems (L[,R[)→ (L,R)→ (L],R]) with underlying functor the
identity; see [24, Lemma 6.9].

Using the preceding proposition, we can finally give:

Proof of Theorem 2.6 (bis). Given the accessible weak factorization system (L,R)
on M, we first choose an accessible algebraic realization (L,R). In the left-lifted
case, we then replace this with the left-retract-closed realization (L],R]) given
by Proposition 4.5. Now by Proposition 3.9, this admits a left-lifting along
V : K → M to an accessible algebraic weak factorization system ( ~L], ~R]) on K.
Since we are in the left-retract-closed situation, Proposition 4.1 ensures that
the underlying weak factorization system of ( ~L], ~R]) is the desired accessible
left-lifting of (L,R) along V . The case of right-lifting is entirely dual. �

Remark 4.8. In giving the preceding proof, we treated the left- and right-lifted
cases entirely symmetrically; however, in practice there is an asymmetry. The
proof of Proposition 3.5 above, which we omitted, involves the construction of a
particular accessible algebraic realization (L,R) for each given accessible (L,R).
It turns out that this particular (L,R) is always right-retract-closed, since its
category of R-maps is cofibrantly generated by a small category in the sense of [11].
Thus, so long as this particular algebraic realization is chosen, there is no need to
make an adjustment in the right-lifted case. This point was already spelt out by
the third author in [24, Theorem 2.10].
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