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Using the Brink-Axel hypothesis we derive the rate R for nuclear dipole excitation by a laser pulse carrying

N ≫ 1 photons with average energy ~ω0 ≈ 5 MeV. As expected R ∝ (~ω0)
3. The rate is also proportional

to the aperture α of the laser pulse. Perhaps less expected is the fact that R ∝ N , irrespective of the degree of

coherence of the laser pulse. The expression for R, derived for a nearly stationary laser pulse, is valid also for

short times and can, thus, be used in simulations via rate equations of multiple nuclear dipole excitations by a

single pulse. The explicit dependence of R on the parameters of the laser pulse and on nuclear parameters given

in the paper should help to optimize experiments on laser-nucleus reactions.

I. PURPOSE

This paper is triggered by recent experimental, computa-
tional and theoretical advances in the production of high-
energy laser pulses. Intense pulses with photon energy ~ω0

in the 5 MeV range and with a typical energy spread σ in the
10 keV range are expected to become available in the near fu-
ture. Efforts are presently undertaken in this direction at the
Nuclear Pillar of the Extreme Light Infrastructure under con-
struction in Romania [1] and in the development of so-called
Gamma Factories at the Large Hadron Collider of CERN [2].
For the theoretical description of nuclear reactions induced by
such pulses, the use of rate equations is called for. One of the
input parameters needed is the rateR for laser-induced nuclear
dipole absorption. In previous works [3–5] a plausible guess
for the value of R was used. Here we derive an expression for
R which displays the dependence ofR on the parameters char-
acterizing the laser pulse and the target nucleus. These are, for
the laser pulse, in addition to ~ω0 and σ, the total numberN of
photons in the pulse, and the opening angle α of the aperture
of the pulse. For the target nucleus we use the Brink-Axel
hypothesis. The Giant Dipole Resonance (GDR) built upon
every state of the target nucleus is then characterized by the
mean energy Ed and by the spreading width Γ↓. The depen-
dence of R on these parameters (essential for optimizing fu-
ture experiments) basically confirms previous estimates [4, 5].
The rate is boosted by the factor N . We show that coherence
of the laser pulse is not a necessary requirement for that boost.
We compare our approach based on rate equations and valid
for nuclear targets with the standard approach to laser-atom
interactions that uses the electrical field strength.

Knowledge of the rate is important also in another respect.
It allows us to specify the conditions on the laser pulse (and
thereby on the mode of its production) that must be fulfilled to
guarantee significant nuclear excitation. As explained below
in Section II, one of the basic mechanisms for the production
of a high-energy laser pulse is Compton backscattering of a
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standard laser pulse on a “flying mirror” of electrons. We em-
phasize that coherent Compton backscattering is not a require-
ment. And it suffices thatN ≈ 108 photons are backscattered,
out of a total of perhaps ∼ 1011 or more [6] in the primary
pulse. The resulting conditions on the flying mirror seem real-
istic.

We explore the dependence of the rate on photon energy, on
photon number, and on coherence properties of the laser pulse.
We do not address details such as the actual aperture of the
laser pulse or the precise form of the GDR for spherical versus
deformed nuclei. Addressing such aspects (which will surely
become important eventually for the analysis of data) would
be premature since until now, the Brink-Axel hypothesis has
not been confirmed for nuclear states far above the yrast line.
A more precise estimate of the rate will be called for only after
our approach has been confirmed semiquantitatively by data.

The paper is structured as follows. Section II describes
the physical background and introduces the physical picture
used in our approach. In Section III we define the interaction
Hamiltonian, and we give the expression for the total dipole
transition probability and for the rate. The laser-nucleus in-
teraction is not a standard topic in nuclear physics. There-
fore, our presentation is rather explicit. The transition rate
for dipole absorption is calculated stepwise. In Section IV
we calculate the transition probability in photon space in the
long-time limit. The full transition probability (including the
nuclear dipole transition) is worked out in Section V. In the
following two Sections the transition probability is converted
into a rate by summing over final states. In Section VI we per-
form the sum over final nuclear states, assuming that dipole
excitation at energies in the MeV range occurs predominantly
via the GDR. The sum over final photon states is performed in
Section VII. Our result for the rate is discussed and physically
interpreted in Section VIII. The implications of the quasista-
tionary approximation for the laser pulse are investigated in
Section IX. In Section X we address the question whether co-
herence of the laser pulse is necessary for obtaining the boost
factor N . The long-time limit used in Section IV to calculate
R is not obviously appropriate if R is used in rate equations.
In Section XI we show that the expression forR applies essen-
tially also in that case. In Section XII we briefly address the
difference between the laser-nucleus interaction based on nu-
clear equilibration treated here and the standard approach to
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the laser-atom interaction where equilibration typically does
not play a role.

II. BACKGROUND AND PHYSICAL PICTURE

One of the possible production mechanisms for intense
high-energy laser pulses uses the concept of a relativistic
flying mirror whose original idea goes back to Einstein [7].
A first intense infrared laser pulse ejects electrons from a
nanometer-thin carbon foil. The electrons attain relativistic
energies and form a “flying mirror”. On that mirror, a sec-
ond laser pulse is Compton backscattered [6, 8–14]. That in-
creases both the energy and the energy spread of the photons
in the second pulse by a factor 4/(1 − (ve/c)

2) = 4γ2e [6],
where c is the speed of light, ve is the velocity of the ejected
electrons, and γe their relativistic Lorentz factor. In princi-
ple, photon energies ~ω0 in the MeV range and beyond can be
reached, accompanied by corresponding energy spreads σ in
the 10 keV range. Backscattering of photons on a “flying mir-
ror” of electrons has produced coherent photons in the far ul-
traviolet regime [6] but not yet MeV photons. Attaining such
energies apparently requires a further step. The electrons in
the relativistic flying mirror must be compressed to a mean
density that is close to condensed-matter values [11, 15].

Another proposed production mechanism involves Gamma
Factories, more precisely, the atomic degrees of freedom of
highly charged ion beams accelerated and stored at CERN [2].
Also here, the main idea is to exploit the relativistic speeds
reached at the Large Hadron Collider and harness that energy
for production of intense high-energy gamma rays. An optical
laser is used to resonantly drive electronic transitions in the
highly charged ion beam. Due to the Doppler-effect boost of
the laser-photon frequency in the ion’s rest frame, that is pos-
sible even for highly charged relativistic ions with high atomic
number Z. Spontaneously emitted photons in the subsequent
atomic decay experience an additional boost, such that in the
process the initial laser frequency gets amplified by a factor
of up to 4γ2i , where γi is the relativistic Lorentz factor of the
ions. At the Large Hadron Collider, this mechanism opens
the possibility of producing gamma rays with energies from
approximately ten to few hundreds of MeV.

A laser pulse with photon energies comparable to typical
nuclear excitation energies is expected to lead to a novel class
of nuclear reactions. Multiple absorption of photons will lead
to high excitation energies at low spin values, i.e., to states
far above the yrast line, because at the photon energies here
considered, dipole transitions dominate (the product of mean
photon wave number k0 = ω0/c and nuclear radiusRN obeys
k0RN ≪ 1). That domain of the nuclear spectrum has not
been experimentally accessible so far. Interesting open ques-
tions [5] relate to the density of states, to the nuclear equilibra-
tion process, and to decay properties. It is likely that multiple
neutron evaporation from such states leads to the formation of
proton-rich nuclei.

At excitation energies in the 10 MeV range, nuclei are
known to equilibrate on very short time scales. That is ex-
pected to be true a forteriori at the excitation energies in the

100MeV range and beyond that can be reached by multiple ab-
sorption of photons with energies of several MeV each. Rapid
equilibration calls for a theoretical treatment of the process in
terms of rate equations, see Refs. [3–5]. We derive an expres-
sion for the rate by combining the nuclear equilibration pro-
cess with the description of the laser pulse as a wave packet.
We thereby determine the requirements on the laser pulse that
must be obeyed to efficiently excite medium-weight and heavy
nuclei.

In the main part of the paper we calculate the rate for dipole
absorption for a pulse with a typical mean energy ~ω0 ≈ 5
MeV per photon and with a typical energy spread σ in the 10
keV range, using a very general form for the density matrix
of the pulse and applying the approximation of a stationary
pulse. Specification of that form to either a coherent or an
incoherent pulse is deferred until Section X. There we show
that, all other parameters being equal, the rates for a coherent
and an incoherent laser pulse are the same.

We use the following estimates for the characteristic time
scales of the process. With σ ≈ 10 keV, the laser pulse has a
spatial extension in flight direction given by ~c/σ, and the in-
teraction time with the target nucleus is τ = ~/σ. The nuclear
equilibration time is given by ~/Γ↓ where the spreading width
Γ↓ is of the order of 5 MeV. We show that for a sufficiently in-
tense laser pulse, the induced dipole width Γdip = ~R is also
in the MeV range. We consider the regime σ ≪ Γdip < Γ↓.
Each photon absorption process increases the nuclear excita-
tion energy by ~ω0 and is quickly followed by internal nuclear
equilibration. The consecutive multiple absorption of photons
that occurs during the interaction time τ is described by a rate
equation [5] with the rate R = Γdip/~ as input. We derive
an expression forR for a single dipole absorption process that
starts either from the ground state or from an equilibrated ex-
cited state of the target nucleus.

To calculate the single photon absorption process, we ex-
pand the electromagnetic field (and, in its wake, the density
matrix of the laser pulse) in a basis of orthonormal states.
These states are defined in a cube of side length L and by peri-
odic boundary conditions. The target nucleus is located at the
center ~r = 0 of the cube. The laser pulse carrying N photons
is described by means of the density matrix as a wave packet
that traverses the cube. Dipole excitation takes place during
the time τ when the wave packet overlaps the target nucleus.
For that picture to apply, the side length L of the cube must
obviously be large compared to the linear dimensions of the
wave packet. We eventually take the limit L→ ∞.

III. TRANSITION PROBABILITY AND RATE

Let~j be the operator of the nuclear current density and ~A be
the vector potential of the electromagnetic field. In Coulomb

gauge (A4 = 0, div ~A = 0), the interaction Hamiltonian is

H = −1

c
~j · ~A . (1)

We use the interaction representation. Then ~j is time depen-
dent and carries the factor exp{iωfit}, with ωfi = (Ef −
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Ei)/~ > 0 and Ef (Ei) the energies of the initial and final nu-

clear states, respectively. We expand ~A in a set of orthonormal
modes, defined in a large but finite cubic quantization volume
of side length L with periodic boundary conditions and the
target nucleus at its center. The modes are polarized plane

waves L−3/2~eλ exp{i~k~r − iωkt} with discrete wave vectors
~k = {kx, ky, kz} and with ωk = c|~k|. The two (real) polar-

ization vectors ~eλ(~k) with λ = ±1 are orthogonal upon ~k and
upon each other. Then

~A =
∑

λ,~k

c

iωk

√

2π~ωk

L3
~eλ(~k)

[

a~kλ exp{i~k~r − iωkt} − h.c.

]

.

(2)
Upon quantization, the expansion coefficients a†~k,λ

and a~k,λ
become bosonic creation and annihilation operators, respec-

tively. For simplicity we label each mode by k = (~k, λ).
The rate for a dipole transition induced by H(t)

is calculated in second-order perturbation theory. We
start with the time-dependent transition amplitude. To
first order as a function of time T it is given by

(1/(i~))
∫ T

0
M(iP ,iN )→(fP ,fN )(t)dt, where the matrix ele-

ment

M(iP iN )→(fP fN )(t)

= 〈fP ; fNJfMf |H(t)|iNJiMi; iP 〉 (3)

is the amplitude for the transition from an initial state
(iN , iP ) to a final state (fN , fP ). Explicitly, the initial state
|iNJiMi; iP 〉 is the product of the initial nuclear state |iN 〉
with energy Ei, spin Ji and magnetic quantum number Mi

and of the initial state |iP 〉 of the photon field, and correspond-
ingly for the final state |fNJfMf ; fP 〉. The final nuclear state
|fN 〉 has energy Ef , spin Jf and magnetic quantum number
Mf . The final photon state |fP 〉 corresponds to the field af-
ter the absorption of one photon. The transition amplitude (3)
factorizes, one factor describing the transition of the photon
field, the other, the nuclear transition.

For our semiquantitative estimate of the rate, we
parametrize (the square of) the nuclear transition matrix ele-
ment using the Brink-Axel hypothesis. That is done in Sec-
tion VIII. There we also address the limitations of our ap-
proach. Use of the Brink-Axel hypothesis makes it unneces-
sary to introduce a specific model for initial and final nuclear
states. Such models can be found, for instance, in Ref. [16].
For the photon field we use Fock states with fixed photon num-
ber [35]. For mode k, the normalized state carrying nk pho-
tons, with nk = 0, 1, . . ., is

|nk〉 = (nk!)
−1/2(a†k)

nk |0〉 , (4)

with |0〉 the photon vacuum. In the Hilbert space of orthonor-

mal multi-photon states |i〉 = |n(i)
1 〉|n(i)

2 〉 × . . .× |n(i)
M 〉, with

i = 1, 2, . . . and 〈i|j〉 = δij , each state |i〉 is the product of

M modes, each mode carrying n
(i)
k photons. We consider an

incident laser pulse carrying N photons and use the notation
|iP 〉 = |i, N〉 for the initial photonic state. The final photon
state after absorption of a photon is then |fP 〉 = |f,N − 1〉.

The total transition probability P (T ) is obtained in second
order perturbation theory by averaging (summing) the prod-

uct
∫ T

0 dt M(iP iN )→(fP fN )(t)
∫ T

0 dt′ M∗
(iP iN )→(fP fN )(t

′)

over the initial (final) photonic and nuclear states. Fol-
lowing common usage [17] we describe the incoming laser
pulse in terms of a density matrix ρN . That matrix is built
from photon states |i, N〉 each carrying N photons so that
∑

k〈i, N |a†kak|i, N〉 =
∑

k n
(i)
k = N for all i = 1, . . ..

Within that framework the most general expression for the
density matrix is

ρN =
∑

ij

ρij |i, N〉〈j,N | . (5)

Here ρ∗ij = ρji, and
∑

i ρii = 1. The coefficients ρij must be
chosen such as to best model the shape of the incident laser
pulse (i.e., of the “wave packet” mentioned in Section II).

With the initial distribution of photon states given by the
density matrix (5), the total transition probability P (T ) reads

P (T ) =
1

(~)2

∫ T

0

dt

∫ T

0

dt′
1

2Ji + 1

∑

fNfP

∑

MiJfMf

∑

ij

ρij

×M(iP iN )→(fP fN )(t)M∗
(jP iN )→(fP fN )(t

′) . (6)

The sum over (fNJf ) extends over all nuclear states that can
be reached via dipole absorption from the single initial nuclear
state (iNJi). The sum over fP comprises the states |f,N−1〉.
As shown below, for sufficiently large times T , P (T ) is linear
in T . That fact allows for a definition of the rate R and of the
dipole width Γdip given by

R =
P (T )

T
, Γdip = ~

P (T )

T
. (7)

In the following Sections we evaluate and discuss the expres-
sions for P (T ), R, and Γdip. These are the objects of central
interest. We now outline these steps.

We start by evaluating the photonic part of the matrix ele-
ment in Section IV. We use a stationarity condition for the den-
sity matrix that is justified later in Section IX. In Section V we
use the result so obtained in the expression for P (T ). For the
evaluation of the nuclear part of the matrix element we sim-

plify the operator~j of the current density using the dipole ap-
proximation in the long wave-length limit. We use the Wigner-
Eckart theorem to introduce the reduced nuclear dipole ma-
trix element. We perform the two time integrations and sum
over (Mi,Mf). For the remaining sum over fN we use in
Section VI the Brink-Axel hypothesis. In Section VII we cor-
rect an oversimplification introduced via the stationarity con-
dition in Section IV, and we perform the ensuing additional
summation over photon states that was omitted in Section IV.
The resulting final expression for the rate is discussed in Sec-
tion VIII.

In the main part of the paper we use the general expres-
sion (5) for the density matrix of the laser pulse. That expres-
sion allows for the pulse to be fully or partially coherent, or
to lack coherence altogether. Therefore, the resulting expres-
sion for the absorption rate applies irrespective of the degree
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of coherence of the laser pulse. That fact is confirmed, and
the reason is analyzed, in Section X. In Section XI we show
that our result for the rate applies also for short times and can,
therefore, be used in rate equations.

IV. TRANSITION PROBABILITY IN PHOTON SPACE

For clarity of presentation we first deal with the transition
induced by the operator (1) in photon space only. Anticipating
that the transition time ~/Γdip calculated within our approach
is very short in comparison with the duration time ~/σ of the
laser pulse, we assume that the laser pulse is stationary. Ob-
viously, that assumption strictly applies only for a laser beam
which is infinitely extended in time. It holds only approxi-
mately for the actual duration time ~/σ of the laser pulse. In
Section IX we show that, except for factors of order unity, our
result for the rate holds even for the short times characteris-
tic of multiple nuclear photon excitation due to a single laser
pulse.

We write the vector potential in Eq. (2) as the sum of two

components, ~A+ ( ~A−) carrying the annihilation operators (the
creation operators, respectively),

~A =
∑

k

(

~A+
k ak +

~A−
k a

†
k

)

. (8)

Inserting Eq. (8) into expressions (3) and (6) and using the
notation introduced in the equation above, we find that the
transition probability from an initial state |i, N〉 to a final state
|f,N − 1〉 is given by

∑

kl

~A+
l
~A−
k 〈f,N − 1|alρNa†k|f,N − 1〉 . (9)

To evaluate this term we use the general definition (5) and
write the density matrix as the sum of three terms,

ρN = ρdiagN + ρ
(1)
N + ρ

(2)
N . (10)

Here ρdiagN =
∑

i ρii|i, N〉〈i, N | is the diagonal contribution.

The term ρ
(1)
N contains pairs of states i 6= j such that state

|j,N〉 is obtained from state |i, N〉 by transferring a single

photon from some mode to another mode. The term ρ
(2)
N con-

tains pairs of states i 6= j such that state |j,N〉 is obtained
from state |i, N〉 by the transfer of at least two photons. In-

spection shows that the term ρ
(2)
N in Eq. (10) does not con-

tribute to Eq. (9): No final state |f,N − 1〉 exists that could
be reached via absorption of a single photon from both states

|i, N〉 and |j,N〉 occurring pairwise in ρ
(2)
N . That statement

does not apply to ρ
(1)
N . However, the physical parameters of

the problem allow for a further simplification based on station-
arity.

The time during which the pulse interacts with the target
nucleus located at ~r = 0 (the “length in time” of the pulse) is
τ = ~/σ. We assume that τ is large compared with the charac-
teristic time ~/Γdip of dipole excitation. It is then reasonable

to take the density matrix for the laser pulse as (almost) sta-
tionary. That implies [17]

Tr[ρNa
†
kal] = δkln̄k . (11)

The coefficient nk gives the mean photon number in the
mode k of the density matrix ρN . Intuitively speaking, con-
dition (11) rules out contributions that would give rise to an
oscillatory time dependence of the form exp{i(ωk−ωl)t}, vi-
olating the stationarity condition. Rather than a constraint on
the density matrix, Eq. (11) actually defines the time scale be-
yond which conclusions based on stationarity apply, see Sec-
tion IX.

With the stationarity condition (11) the only part of the
density matrix ρN that gives a non-zero contribution to the

transition probability is ρdiagN =
∑

i ρii|i, N〉〈i, N |. For
a single term in that sum, we calculate the transition prob-
ability to any final state |f,N − 1〉 carrying N − 1 pho-

tons. For ~A+ ( ~A−) we first consider in the sum (8) the
contribution due to a single term carrying the label k (the
label l, respectively). The transition probability is given by

〈f,N − 1|ak|i, N〉〈i, N |a†l |f,N − 1〉. For k 6= l, the prob-
ability vanishes for every state |f,N − 1〉. For k = l it van-

ishes for n
(i)
k = 0. For n

(i)
k ≥ 1 there is exactly one state

|f(i, k), N − 1〉 = (n
(i)
k )−1/2ak|i, N〉 for which the proba-

bility does not vanish. The resulting transition probability is

δkln
(i)
k for all n

(i)
k ≥ 0. The total transition probability due to

photon absorption from the state |i, N〉 is

∑

kl

{ ~A+
k
~Al〈f(i, k), N − 1|ak|i, N〉

×〈i, N |a†l |f(i, k), N − 1〉}
=

∑

k

n
(i)
k
~A+
k
~Ak . (12)

Each transition in the sum (12) involves a single final state
|f(i, k), N − 1〉 only. The photon part of the transition prob-
ability for a general stationary density matrix (5) obeying
Eq. (11) is

∑

k

∑

i

ρiin
(i)
k
~A+
k
~Ak =

∑

k

n̄k
~A+
k
~Ak . (13)

Eq. (13) provides the most general expression of the transition
probability in photon space for a stationary laser pulse. The

coefficients n̄k =
∑

i ρiin
(i)
k are the average occupation prob-

abilities of the mode k in the laser pulse. They obey

∑

k

n̄k = N . (14)

With increasing side length L of the normalization volume
in Eq. (2), the density of modes increases. The number of
terms in the sums (13) and (14) increases likewise while the
average occupation numbers nk decrease. The invariant and
physically meaningful quantity here is N , the total number of
photons in the pulse.
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In quantum optics the photoabsorption process often in-
volves optical photons in a finite cavity. Then the number
of photons N is replaced by the photon density in the cav-
ity [18, 19]. However, that approach is less appropriate in
our case which lacks a cavity volume. In the discussion in
Section VIII we identify the parameter equivalent to the pho-
ton density and, thereby, display agreement with the quantum-
optics approach.

V. TOTAL TRANSITION PROBABILITY

We return to the total transition probability P (T ) in Eq. (6),

using the result (13) and the full notation k → (~k, λ). To
keep the notation simple we first suppress spin and magnetic
quantum numbers in the nuclear wave functions. The matrix
elements in the integrand of Eq. (6) are written as

∑

~k,λ

2π~

ωkL3
n~k,λ〈iN |~j′†~eλ(~k) exp{−i~k~r′ + iωkt

′}|fN〉

×〈fN |~j~eλ(~k) exp{i~k~r − iωkt}|iN〉 . (15)

The operator ~j (~j′) of the current density depends only on the
unprimed variables (the primed variables, respectively). We
confine ourselves to electric dipole transitions. We use the
Siegert theorem [20] and the long wave-length limit for each
of the two factors in big round brackets. We recall that the
target nucleus is at the centers ~r = 0 = ~r′ of the two coordi-
nate systems. In cgs (centimeter-gram-seconds) units, expres-
sion (15) then becomes

∑

~k,λ

8π2

3

e2~ωk

L3
n~k,λ〈iN |r′Y λ∗

1 (~k|Ω′)|fN 〉 (16)

×〈fN |rY λ
1 (~k|Ω)|iN 〉 exp{i(ωk − ωfi)(t

′ − t)} .

We have simplified the notation by suppressing sums over pro-
ton and neutron coordinates carrying effective charges. That
fact is properly taken into account in the order-of-magnitude
estimate given below in Section VIII. For each term in the sum

over (~k, λ) the spherical harmonic Y λ
1 (~k|Ω) is defined with re-

spect to a Cartesian coordinate system spanned by the vectors
~k, ~e1, ~e2, with ~k pointing in the direction of the z-axis. The
magnetic quantum numbers λ = ±1 correspond to the polar-

ization vectors ~eλ(~k) in Eq. (2). The argument Ω comprises
polar and azimuthal angles in that system. The occupation

numbers n~k,λ restrict the summation over ~k in Eq. (16) by the

apertureα of the laser pulse. Throughout the paper we assume
that the pulse is well collimated so that α ≪ 1. Then, the di-

rections of the vectors ~k differ by less than α from each other

and from the mean direction ~k0 of the laser pulse, defined as

~k0 =
∑

~k,λ

n~k,λ
~k . (17)

Without loss of generality we assume that, for each value of

λ = ±1, the directions of the unit vectors ~eλ(~k) also differ by

less than α from each other and from suitably defined vectors

~eλ(~k0) that are orthogonal upon ~k0 and their scalar product

obeys (~e1(~k0), ~e2(~k0)) = 0. The nuclear states with initial (fi-
nal) spins Ji (Jf ) and z-components Mi (Mf ) are quantized

in the coordinate system spanned by ~k0, ~e1(~k0), ~e2(~k0). The

nuclear matrix element 〈fN |rY λ
1 (~k|Ω)|iN 〉 is evaluated by ro-

tating the spherical harmonic Y λ
1 so that the quantization axis

coincides with the direction ~k0 of nuclear quantization. Using
Wigner D-functions [21] we have

Y λ
1 (~k|Ω) =

∑

µ

Y µ
1 (~k0|ζ)D1

µλ . (18)

The arguments Ω and ζ are connected by the rotation. The
arguments of D1

µλ are the Euler angles characterizing the ro-
tation that carries the Cartesian coordinate system spanned by

the vectors ~k,~e1(~k), ~e2(~k) to the system spanned by the vec-

tors ~k0, ~e1(~k0), ~e2(~k)0. Every one of these angles is bounded
by α. The angular dependence of D1

µλ is simple and involves
only sin and cos functions. These change over a typical range
of π/2. Since α ≪ π/2 we may, to leading order in α, then

replace Y λ
1 (~k|Ω) → Y λ

1 (~k0|Ω).
We return to the full notation of the nuclear states. Expres-

sion (16) becomes

∑

~k,λ

8π2

3

e2~ωk

L3
n̄~k,λ|〈fNJfMf |rY λ

1 (~k0|Ω)|iNJiMi〉|2

× exp{i(ωk − ωfi)(t
′ − t)} . (19)

We apply the Wigner-Eckart theorem [21] introducing the re-
duced nuclear matrix element (indicated by a double bar) and
perform the average (sum) over initial (final) nuclear magnetic
quantum numbers. The probability PfN iN (T ) at time T for
the particular dipole transition |iN 〉 → |fN 〉 is obtained by
integrating expression (19) over t and t′ from zero to T and
multiplying by ~

−2,

PfN iN (T ) =
8π2

32
e2

~c

∑

~k,λ

ωkc

L3
n̄~k,λ

[

4
sin2[(ωk − ωfi)T/2]

(ωk − ωfi)2

]

× |〈iNJi||rY1(~k0|Ω)||fNJf 〉|2 . (20)

Expression (20) for PfN iN (T ) holds for a stationary laser
pulse with sufficiently small aperture and for a dipole tran-
sition in the long wave-length limit. Because of the sum over
~k and λ, Eq. (20) gives the average transition probability for
dipole absorption.

The total transition probability is obtained by summing ex-
pression (20) over the final nuclear states (fNJf ). That sum is
carried out using the Brink-Axel hypothesis in Section VI. Ex-
pression (20) vanishes in the continuum limit L → ∞ where
n̄~k,λ → 0. That is a consequence of considering a stationary

pulse via Eq. (11). We show in Section IX that the rate is
actually obtained by summing expression (20) over the pho-
ton states occupied in the primary laser pulse. We refer to
that sum as to a sum over final states (which is actually a
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misnomer). We thereby follow common usage. The expres-
sion is used, for instance, in the standard derivation of Fermi’s
Golden Rule as discussed in many textbooks on quantum me-
chanics, see, for instance, Ref. [22]. This sum over photon
states is carried out in Section VII.

VI. SUM OVER FINAL NUCLEAR STATES

The summation over final nuclear states (fNJf ) in Eq. (6)
is carried out using the Brink-Axel hypothesis [23, 24]. The
hypothesis states that dipole absorption from any initial nu-
clear state iN (ground or excited state) populates preferen-
tially the GDR built upon that state. The GDR is the normal-
ized mode d(iN ) obtained by applying the dipole operator to
the initial state iN . The GDR is not an eigenstate of the nu-
clear Hamiltonian nor of total spin or isospin. It is a mode
that is shared by a large number of eigenstates. The probabil-
ity distribution of the GDR over the eigenstates (fNJf ) of the
nuclear Hamiltonian at energies Ef is described by a normal-
ized Lorentzian Γ↓/{(2π)[(Ef − Ed)

2 + (1/4)(Γ↓)2]}. We
consider the same GDR expression for all final spin values Jf
and, if applicable, for all final isospin values. The mean en-
ergy Ed of the GDR is defined as the expectation value of the
nuclear Hamiltonian for the mode d(iN ), with typical values
Ed − Ei ≈ 12 MeV for medium-weight and Ed − Ei ≈ 8
MeV for heavy nuclei. Nuclear dissipation is characterized by
the spreading width Γ↓ ≈ 5 MeV introduced in Section II. We
accordingly use the replacement

|〈iNJi||rY1(~k0|Ω)||fNJf 〉|2

→ |〈iNJi||rY1(~k0|Ω)||d(iN )Jf 〉|2

× Γ↓

2π[(Ef − Ed)2 + (1/4)(Γ↓)2]
. (21)

We insert that into Eq. (20) and integrate over final energies
Ef . That gives

PiN→d(iN )(T ) =
8π2

32
e2

~c

×
∑

~k,λ

ωkc

L3
n̄~k,λ

∑

Jf

|〈iNJi||rY1(~k0|Ω)||d(iN )Jf 〉|2

×
∫ Ed+2Γ↓

Ed−2Γ↓

dEf
Γ↓

2π[(Ef − Ed)2 + (1/4)(Γ↓)2]

×4
sin2[(ωk − ωfi)T/2]

(ωk − ωfi)2
. (22)

In the interval [Ed − 2Γ↓, Ed + 2Γ↓], the Lorentzian pro-
vides a semiquantitative description of the spreading of the
GDR over the eigenstates of the nuclear Hamiltonian. The
distant tails of the Lorentzian are not physically relevant. For
better control over the approximations that are to follow, we
have indicated that fact by assigning these limits to the inte-
gration over Ef . The sum over Jf extends over the spin val-
ues that can be reached via dipole absorption from the initial

spin value Ji. A possible sum over final isospin values is sup-
pressed.

Clearly the assumption of a Lorentzian in Eq. (21) which
is, moreover, common to all final spin and isospin values is a
rough approximation to reality. If the initial state is the ground
state, that approximation can be much improved with the help
of more detailed nuclear models and/or refined theoretical ap-
proaches. The literature on the subject is very extensive. With-
out any claim to completeness we mention chapters 8.3.3 and
8.5 in the book by Ring and Schuck [16] where the GDR is
treated in the framework of the nuclear shell model and, by
way of example, Refs. [25–31]. These discuss the influence on
GDR properties of Landau damping, of nuclear ground-state
deformation, of the Skyrme force, of the pairing force within
various versions of the random-phase approximation and/or
of the nuclear density functional. It would be premature to
address such issues here, for two reasons. First, it is not clear
(and probably not known) if and how such nuclear-structure
properties would affect the GDR built upon states |iNJi〉 far
above yrast. Second, as discussed in the introductory Section,
our approach is based on the Brink-Axel hypothesis, whose
validity far above yrast has not been established so far. This is
why we aim at a semiquantitative estimate for the rate.

We define the mean frequency ω0 of the laser pulse by

ω0 =

∑

~k,λ n~k,λωk
∑

~k,λ n~k,λ
. (23)

The occupation numbers n̄~k,λ and the frequences ωk are con-

centrated within a frequency interval of width σ/~ centered at
ω0. That interval is very small compared to Γ↓/~. Likewise,
the square of the Bessel function in Eq. (22) is, for values of
T ≫ ~/Γ↓, sharply peaked at ωk = ωfi. In contradistinc-
tion and because of the large value of the spreading width, the
Lorentzian factor under the integral is a very smooth function
of Ef . Therefore, it is legitimate to pull the Lorentzian out
from under the integral, replacing Ef → Ei + ~ω0. Thus,

PiN→d(iN )(T ) = (24)

8π2

32
e2

~c

∑

Jf

|〈iNJi||rY1(~k0|Ω)||d(iN )Jf 〉|2

× Γ↓

2π[(Ei + ~ω0 − Ed)2 + (1/4)(Γ↓)2]

×
∑

~k,λ

ωkc

L3
n̄~k,λ

∫ Ed+2Γ↓

Ed−2Γ↓

dEf4
sin2[(ωk − ωfi)T/2]

(ωk − ωfi)2
.

We assume that ω0 is located well within the integration inter-
val. The same is then true for each one of the ωk values. It is,
thus, legitimate for T ≫ ~/Γ↓ to extend the integral over Ef

from −∞ to +∞. Then every one of the resulting integrals in

the sum over ~k, λ (each one carrying a different variable ωk)
has the value 2π~T . With the help of Eqs. (14) and (23), the
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sum over (~k, λ) can be carried out. We obtain

PiN→d(iN )(T ) =
8π2

32
e2

~c

×
∑

Jf

|〈iNJi||rY1(~k0|Ω)||d(iN )Jf 〉|2

× Γ↓

(Ei + ~ω0 − Ed)2 + (1/4)(Γ↓)2
cTN~ω0

1

L3
.(25)

The transition rate R (transition probability per unit time)
becomes

RiN→d(iN )

=
8π2

32
e2

~c

N~ω0c

L3

∑

Jf

|〈iNJi||rY1(~k0|Ω)||d(iN )Jf 〉|2

× Γ↓

(Ei + ~ω0 − Ed)2 + (1/4)(Γ↓)2
. (26)

VII. SUM OVER FINAL PHOTON STATES

The rate (26) depends via the factor L−3 upon the (unphys-
ical) quantization volume. Moreover, the rate vanishes in the
limit L → ∞. That is because we have used the stationarity
condition (11). As shown in Section IX, the Kronecker delta
in that condition is physically meaningful only if the resulting

expression for the rate is summed over the photon states (~k, λ)
occupied in the laser pulse. For L → ∞, the number of such
states grows like L3, compensating the factor L−3 in Eq. (26).
That gives

R =
∑

~k,λ

RiN→d(iN ) =

8π2

32
e2

~c
N~ω0c

∑

Jf

|〈iNJi||rY1(~k0||Ω)|d(iN )Jf 〉|2

× Γ↓

(Ei + ~ω0 − Ed)2 + (Γ↓)2

∑

~k,λ

1

L3
. (27)

We use the identity (valid for L→ ∞) [18, 19]

∑

~k,λ

1

L3
→ 2

(2π)3

∫

d3k . (28)

The factor 2 accounts for the two directions of polarization.
As mentioned at the end of Section V and as explained in
detail in Section IX, the integral runs over the photon states
occupied in the incident laser pulse. These states comprise
a segment of a shell in three-dimensional k-space with cen-

tral radius k0 = |~k0| = |ωif |/c, thickness δk = σ/(~c), and
aperture α ≪ π/2. These parameters obviously depend on
the way the pulse is generated. We use spherical polar co-
ordinates. The integral over solid angle yields 2πα, and for

δk ≪ k0 the right-hand side of expression (28) becomes

2α

(2π)2

∫ k0+δk/2

k0−δk/2

dk k2 ≈ α

2π2
k20δk . (29)

Thus,

R =
1

9π

e2

~

∑

Jf

|〈iNJi||rY1(~k0||Ω)|d(iN )Jf 〉|2 (30)

× Γ↓

(Ei + ~ω0 − Ed)2 + (1/4)(Γ↓)2

[

N~ω04παk
2
0δk

]

.

Expression (30) for the transition rate R holds for a station-
ary laser pulse carrying N photons with mean energy ~ω0 =
~ck0, energy spread σ = ~cδk, and aperture α. It applies
for induced dipole transitions governed by the giant dipole
resonance, i.e., for photon energies well within the interval
[Ed − Ei − 2Γ↓, Ed − Ei + 2Γ↓] where Γ↓ ≫ σ is the
spreading width. Furthermore, expression (30) holds for times
T ≫ ~/Γ↓.

VIII. DISCUSSION

A. Parameter Dependence of the Rate

The rate (30) has all the features that characterize a dipole
transition for a stationary driving field: It is independent of
time, it is proportional to the fine structure constant, to the
third power of the transition energy, and to the square of the
nuclear transition matrix element (the Lorentzian guarantees
evaluation at the correct energy). Less obviously but not un-
expectedly, the rate is proportional to the aperture of the pulse
and to the total number of photons in the pulse. Combining
the factor ~cδk = σ with the Lorentzian and approximating
the latter by 1/Γ↓, we interpret the ratio σ/Γ↓ as the fraction
of the total energy range of the GDR available for dipole tran-
sitions that is actually illuminated by the width σ of the laser
pulse.

In quantum optics [18, 19] the rate is often written as
the product of three factors: The fine structure constant, the
square of the transition matrix element, and the energy den-
sity of the laser at the position of the atom. Eq. (30) can also
be written in that way. Indeed, aside from a factor (2π)3, the
factor in big square brackets can be read as the energy density
of the laser pulse at the position of the nucleus. The total
energy of the pulse is N~ω0, the first factor in big square
brackets. The second factor in big square brackets αk20δk
can be read as the inverse of the effective volume Veff of the
pulse. From a formal point of view that is plausible because
this factor is equal to (2π)3

∑

~k,λ(1/L
3), see Eqs. (28) and

(29). The identification of the factor with the effective volume
Veff of the laser pulse is made physically plausible as follows.
Eq. (2) shows that at ~r = 0 (the location of the target nu-

cleus), the spatial parts of all modes (~k, λ) have value unity,
the laser field has maximum intensity. We identify Veff with
the volume of the region surrounding the point ~r = 0 where
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the laser intensity is not significantly reduced by destructive
interference. At ~r = 0 the intensity remains maximal dur-
ing the entire duration time τ of the pulse. The extension of

Veff in the direction ~k0 of propagation is, therefore, given by

τ/c = 1/δk. In the plane perpendicular to ~k0, the minimum
distance from the point ~r = 0 for destructive interference to
become effective is given by the wave length λ0 = (2π)/k0.
The area of the resulting circle centered at ~r = 0 is bounded
from below by 2πλ20 = (2π)3/k20. Such destructive interfer-
ence can happen only if sufficiently many modes perpendic-

ular to ~k0 are available, i.e., for sufficiently large values of
the aperture α of the pulse. Decreasing α reduces the set of
such transverse modes and increases the area of the circle. For
α → 0 the pulse consists of plane waves all traveling in the

direction ~k0. Destructive interference in the direction perpen-

dicular to ~k0 is impossible, the area of the circle diverges. For
α ≪ 1 and to lowest order in α, the area is, therefore, of or-
der (2π)3/(αk20), and Veff/(2π)

3 is of order 1/(αk20δk). That
confirms our identification of the second factor in big square
brackets with (2π)3/Veff where Veff is the inverse (effective)
volume of the laser pulse. Although we have not used the en-
ergy density in our derivation, that concept naturally emerges
in the interpretation of our result.

B. Numerical Estimate

We give an order-of-magnitude estimate of the dipole width
Γdip, defined as the product of ~ and the rate (30). Grouping
the factors appropriately for our discussion, we obtain

Γdip =

(

4πα

9π

e2

~c

)

Γ↓σ

(Ei + ~ω0 − Ed)2 + (1/4)(Γ↓)2

×
(

k20
∑

Jf

|〈iNJi||rY1(~k0||Ω)|d(iN )Jf 〉|2
)

×N~ω0 . (31)

In Eq. (31), all factors but the last one are dimensionless, and
Γdip has the dimension energy. For medium-weight (heavy)
nuclei, the excitation energy Ed − Ei of the GDR has val-
ues around 12 MeV (8 MeV), respectively. Theoretical esti-
mates of the spreading width Γ↓ [25–31] depend on nuclear-
structure properties but lie in the range 4 to 8 MeV. As men-
tioned below Eq. (30) our derivation applies for photon ener-
gies well within an interval I defined by Ed − Ei − 2Γ↓ ≤
~ω0 ≤ Ed − Ei + 2Γ↓.

Assuming 4πα to be of order 10−1, we find that the
first factor in big round brackets is approximately given by
(1/4) · 10−5 and is independent of photon energy. Within the
interval I the second factor changes little with photon energy
(provided that σ is independent of ~ω0) and is roughly given
by 2σ/Γ↓ ≈ 20 keV / (5 MeV) = 4 · 10−3. For a single
nucleon, the dipole matrix element is of order RN (the nu-
clear radius), and we have k0RN ≈ 10−1. With A the mass
number, with RN ∝ A1/3, and for photon energies at the
center of the GDR, the product k0RN changes by the factor

[(200)1/3·8]/[(100)1/3·12] ≈ 0.9 asA changes from medium-
weight to heavy nuclei. It also changes little for values of ~ω0

within the interval I . As mentioned below Eq. (16) we have
so far suppressed in our notation the sum over the contribu-
tions of neutrons and protons with effective charges for each
type of nucleon. According to the dipole sum rule [32] (ex-
hausted by the GDR if the sum over Jf is included) that sum
yields the factor NZ/A where Z (N ) is the number of pro-
tons (neutrons), respectively, in the target nucleus, and where
A = Z + N . We have NZ/A ≈ 25 (50) for A = 100
(A = 200, respectively). The second line in Eq. (31) is,
thus, of order unity and depends weakly on photon energy.
The combination of these factors yields 10−8. That factor is
weakly dependent on energy, mainly via the Lorentzian in the
first line of Eq. (31).

We conclude that the dipole width is of order 10−8N~ω0.
To significantly induce nuclear dipole transitions, the dipole
width must lie in the MeV range. That value is attained for
N ≈ 108. In other words, for inducing significant dipole tran-
sitions it suffices that the pulse contains about 108 photons -
for backscattered photons a small fraction of the photon num-
ber in the original pulse prior to backscattering!

In the derivation we have assumed that ~/Γ↓ defines the
smallest time scale in the dipole absorption process. That is
the case as long as Γdip < Γ↓. Otherwise, nuclear equilibra-
tion itself must be included in the time-dependent description
of dipole absorption. That would require a modification of the
rate equations describing the laser-nucleus interaction.

C. Influence of Finite Nuclear Lifetime

How is the result (30) influenced by the finite lifetimes of
the excited nuclear states? We focus attention on the state
fN . The time evolution of fN carries the factor exp{−γt}.
Here γ is twice the total width for spontaneous gamma decay
in units of ~ [not to be confused with the spreading width
introduced in Eq. (22)]. We accordingly replace in Eq. (16)
the factor exp{i(ωk −ωfi)(t

′ − t)} by exp{i(ωk −ωfi)(t
′ −

t)} exp{−(t+ t′)γ}. Integrating that expression over t and t′

from zero to T gives

1

(ωk − ωfi)2 + γ2

(

1 + exp{−2γT }

−2 exp{−γT } cos[(ωk − ωfi)T ]

)

. (32)

That expression replaces the last line in Eq. (20). It is obvious
that we must require γT ≪ 1 as otherwise the excited state
will undergo decay before the excitation process terminates.
Then expression (32) reduces to the last line of Eq. (20), and
we recover the result (30). The time for laser-nucleus interac-
tion is bounded by T ≤ ~/σ. For nuclear decay to be unim-
portant we must have ~/σ ≪ γ. That constraint may not be
strictly fulfilled in practice.
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IX. STATIONARITY

The derivation of Eq. (30) for the rate R is based upon the
stationarity condition (11). We identify the conditions of va-
lidity of that equation. As mentioned at the end of Section V,
use of the stationarity condition necessarily implies a summa-
tion over photon states, in Section VII referred to as the sum
over final photon states. We display the origin of that neces-
sity and show that the sum extends over the states occupied in
the incident laser pulse and is, therefore, actually a sum over
initial photon states.

First, we simplify the presentation by considering the one-
dimensional case. We are well aware, of course, of the fact
that this does not do justice to the case of electromagnetic
waves. We continue to speak of the quanta in one dimension
as of photons. We deviate from Section IV and begin with a
laser pulse carrying a single photon only. In analogy to Eq. (5)
we write the density matrix as

ρ1 =
∑

kl

ρkl|k, 1〉〈l, 1| . (33)

In space representation, the single-photon state |k, 1〉 is a

normalized plane wave (1/
√
L) exp{ikx)} with quantized

values of k = 2πm/L and integer m. In second (field)

quantization, the state |k, 1〉 = a†k|0〉 is obtained by ap-

plying the photon creation operator a†k to the vacuum state
|0〉. It is instructive to have a model for the elements
ρkl of the density matrix. For the wave function ψ(x) =

(1/
√
2πd) exp{ik0x} exp{−x2/(2d2)} of the laser pulse we

take a normalized Gaussian of width d and mean momentum
k0. In space representation the density matrix is |ψ(x)〉〈ψ(x)|.
In the representation (33) the elements ρkl of the density ma-
trix factorize and for large normalization volume L ≫ d are
given by

ρkl = ρkρ
∗
l with ρk = (2d/L)1/2 exp{−(k − k0)

2d2/2} .
(34)

In the continuum limit these obey
∑

k |ρk|2 = 1. We calculate
the total contribution of the k-dependent terms to Eq. (20) in-
cluding the normalization factor without using the stationarity
condition. The contribution consists of the terms analogous
to the left-hand side of Eq. (11) and the terms proportional

to ρ
(1)
1 . We use Tr[ρ1a

†
kal] = ρkρ

∗
l = nkl. We follow Sec-

tions IV and V. The total contribution to the transition proba-
bility is

1

L

∣

∣

∣

∣

∑

k

√
ωkρk exp{i(ωk−ωfi)T/2}

sin[(ωk − ωfi)T/2]

ωk − ωfi

∣

∣

∣

∣

2

.

(35)
By construction of the laser pulse, the summation over k is
confined to values of ωk in an interval of width σ/~ centered
at ω0, the mean frequency.

To display the consequence of the stationarity condi-
tion (11), we write expression (35) as a double sum over k
and l. Use of the stationarity condition (11) reduces that dou-

ble sum to a single sum over k and yields

1

L

∑

k

ωknk
sin2[(ωk − ωfi)T/2]

(ωk − ωfi)2
, (36)

with the notation nk = |ρk|2. That expression is analogous to
the right-hand side of Eq. (20). As in Section VII, the factor
1/L is eventually removed by an additional summation over
final states followed by (1/L)

∑

k′ → (1/2π)
∫

dk′.
To show how that prescription comes about, we write the

modulus squared in expression (35) as a double sum over k
and l and consider T ≫ ~/σ. The arguments of both ex-
ponentials nearly cancel, the arguments of the two sin func-
tions are almost identical, and so are the values of

√
ωk and

of
√
ωl. Moreover, Eq. (34) shows that in the considered

frequency interval, ρl changes very little, and we may put
ρkρ

∗
l ≈ |ρk|2 = nk. Taking all that together expression (35)

becomes equal to

∑

k

ωknk
sin2[(ωk − ωfi)T/2]

(ωk − ωfi)2
1

L

∑

l

. (37)

The summation over l is restricted to ωl-values that lie
in the above-mentioned frequency interval, i.e., it extends
over the states occupied in the laser pulse. With

∑

l →
(L/(2π))

∫

dk′ we retrieve the result (36) obtained from the
stationarity condition provided that the latter is augmented by
the summation over final states. In hindsight it is obvious that
the Kronecker delta in condition (11) does not arise naturally
in the quasi-continuous description appropriate for largeL val-
ues. The Kronecker delta must be supplemented by the sum-
mation over states occupied in the primary laser pulse.

This argument can straightforwardly be generalized to the
three-dimensional case and to the laser pulse (5) involving
N photons. In Section IV, the normalized states |i, N〉 =

|n(i)
1 〉|n(i)

2 〉 × . . . × |n(i)
M 〉 are used to define in Eq. (5) the

density matrix ρ =
∑

ij ρij |i, N〉〈j,N |. Introducing the nota-

tion ρN,lm = Tr[a†lamρN ], this expression differs from zero

only if |j,N〉 = a†l am|i, N〉. We denote that special state by
i(l,m). Thus,

Tr[a†lamρN ] = ρN,lm =
∑

i

ρi,i(l,m) (38)

Obviously,
∑

l ρN,ll = N . The factor analogous to expres-
sion (35) becomes

1

L3

∑

lm

√
ωl
√
ωmρN,lm exp{i(ωl − ωfi)T/2}

× exp{−i(ωm − ωfi)T/2}
sin[(ωl − ωfi)T/2]

ωl − ωfi

× sin[(ωl − ωfi)T/2]

ωl − ωfi
. (39)

The arguments now are parallel to the ones for the one-
dimensional case. For large T the sums in expression (39) are
confined to values specified by the longitudinal and the lateral
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extension of the laser pulse in k-space, respectively. For fixed
l the dependence of the factor ρN,lm on m is smooth because
ρN,lm is effectively the element of a one-photon (not an N -
photon) density matrix. (In comparison to the one-photon case
of Eq. (34), the summation over the states i can only increase
the smoothnes of ρN,lm). For the same reason the sum over
final states is a sum over single photon (and not N -photon)
states. Thus, expression (39) becomes

∑

l

ωlρll
sin2[(ωl − ωfi)T/2]

(ωl − ωfi)2
1

L3

∑

kx,ky,kz

. (40)

With ρll = nl that is exactly the expression used in Eq. (20),
were the latter augmented, however, by the summation over
final states. These extend over the photon states occupied by
the laser pulse.

X. COHERENCE

We have stated above that our result (30) for the dipole ab-
sorption rate is independent of the state of coherence of the
pulse. For clarity we here define coherence as used in this pa-
per. Doing so is perhaps necessary because naively, one might
argue that the matrix element of the photon annihilation opera-
tor for a transition from a single-mode quantum state carrying
N photons to another state carrying N − 1 photons is propor-
tional to

√
N , its square is proportional to N . The factor N

in Eq. (30) would, thus, seem to be tied to the pulse carrying
only a single mode and, hence, being coherent.

We consider a set of n orthonormal wave packets

|Ψ(k)〉 =
∑

i

Φ
(k)
i |i, N〉 , (41)

with k = 1, . . . , n and
∑

i Φ
(k)
i Φ

(l)∗
i = δkl. Each of these car-

ries N photons. Needless to say, the localization in space and
time of each of the n wave packets Ψ(k) should be very simi-
lar. We compare two density matrices ρ1 and ρ2 constructed
from the set {|Ψ(k)〉} and defined by

ρ1 =
∑

k

αk|Ψ(k)〉
∑

l

〈Ψ(l)|α∗
l ,

ρ2 =
∑

k

αk|Ψ(k)〉〈Ψ(k)|α∗
k . (42)

The n complex coefficients αk obey
∑

k |αk|2 = 1. Both

density matrices obey Tr(ρ) = 1, Tr(
∑

k a
†
kakρ) = N , and

ρ = ρ†. The matrix elements 〈Ψf |O|ρ|O|Ψf 〉 of these two

density matrices, taken of an operator O with respect to some
final state |Ψf 〉, are

〈Ψf |O|ρ1|O|Ψf 〉 =
∑

k,l

αkα
∗
l 〈Ψf |O|Ψ(k)〉〈Ψ(l)|O|Ψf 〉 ,

〈Ψf |O|ρ2|O|Ψf 〉 =
∑

k

|αk|2|〈Ψf |O|Ψ(k)〉|2 . (43)

In Eq. (43) the matrix elements of ρ1 allow for interference
of the states |Ψ(k)〉 and |Ψ(l)〉 with k 6= l. Such interference
terms are absent in the matrix elements of ρ2 where only in-
tensities are added. Therefore, the density matrix ρ1 is said
to be coherent, while ρ2 is incoherent. That usage of the term
coherence is completely consistent with Glauber’s [17]. [The
difference is that, instead of the basis states |Ψ(k)〉, Glauber
uses coherent states. But his distinction between a coherent
density matrix (leading to interference fringes) in Eq. (2.322)
and an incoherent one in Eq. (2.289) of Ref. [17] corresponds
exactly to our distinction between ρ1 and ρ2, respectively, in
our Eq. (42)].

A coherent (incoherent) laser pulse has a density matrix of
the form ρ1 (ρ2, respectively). Suppose we repeat the calcula-
tion in previous Sections for these two pulses, each carrying
N photons. In the first case we obtain directly the result (30).
In the second case, each term in the sum over k in Eq. (42)
yields for the rate the result (30), multiplied by |αk|2. The
sum over k then yields Eq. (30). That shows very clearly that
the factorN in the rate (30) is not due to coherence but results
from the presence ofN photons in the pulse. We conclude that
the rates for a completely coherent and for an incoherent laser
pulse are the same. Coherence is not a necessary requirement

for the boost factor N to appear in Eq. (30) for the rate.

XI. SHORT TIMES

In Ref. [5], the rate R is used to calculate sequential multi-
ple dipole absorption during the action of a single laser pulse.
The difference in time between these absorption processes is
of the order of ~/Γ↓ and, thus, about two orders of magnitude
smaller than ~/σ. The form of R derived in Eq. (30) for large
times does not obviously apply in that case. We now show
that, except for numerical factors of order unity, the rate (30)
does indeed apply also for times T ≈ 2π~/Γ↓, irrespective of
the degree of coherence of the laser pulse. These are the times
relevant for use of R in rate equations.

We use Eq. (39) and confine ourselves to the relevant factors
in Eq. (22). That gives

N

L3

∫ Ed+2Γ↓

Ed−2Γ↓

dEf
Γ↓

2π[(Ef − Ed)2 + (1/4)(Γ↓)2]

∑

kl

ρkl

(

2
√
ωk

sin[(ωk − ωfi)T/2]

(ωk − ωfi)
exp{i(ωk − ωfi)T/2}

)

×
(

2
√
ωl

sin[(ωl − ωfi)T/2]

(ωl − ωfi)
exp{−i(ωl − ωfi)T/2}

)

. (44)
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With ωk = ω0 + δωk, the frequency increment δωk in the
sum over k ranges over an interval of size σ/~ ≪ ω0 and
analogously the same holds for ωl. Thus,

√
ωk ≈ √

ω0 ≈√
ωl. For T ≈ 2π~/Γ↓, the ranges of δωkT ≈ 2πσ/Γ↓ and of

δωlT ≈ 2πσ/Γ↓ are very small compared to unity. Therefore,
we neglect δωk and δωl in the exponentials and in the Bessel
functions. We obtain

NT 2ω0

L3

∫ Ed+2Γ↓

Ed−2Γ↓

dEf
Γ↓

2π[(Ef − Ed)2 + (1/4)(Γ↓)2]

×
(

sin[(ω0 − ωfi)T/2]

(ω0 − ωfi)(T/2)

)2
∑

kl

ρkl . (45)

We estimate the last double sum by assuming that the wave
packet describing the laser pulse is a product of three nor-
malized Gaussians with widths dl, d⊥, d⊥ in the longitudi-
nal (z) and in the transverse (x, y) directions, respectively.
Then ρkl factorizes as in Eq. (34), with each factor ρk given
by (8dld

2
⊥/L

3)1/2 exp{−(kz−k0)2d2l } exp{−(k2x+k
2
y)d

2
⊥}.

The double sum becomes
∑

kl ρkl = L3/(π3dld
2
⊥). That can-

cels the factor L−3 in Eq. (45).

As done before we assume that ω0 is located in an inter-
val centered at Ed − Ei of width Γ↓. The Bessel function
depends on the integration variable Ef via ωfi. For times
T ≤ ~/Γ↓ the square of the Bessel function has a broad dis-
tribution which overlaps the range of the Lorentzian. The
entire integral in Eq. (45) is then of order unity. The tran-
sition probability grows roughly quadratically with the time
T . It is not possible then to give a meaningful definition of
the rate. For increasing T and T > ~/Γ↓ the width of the
Bessel function becomes narrower than that of the Lorentzian.
Eventually it is legitimate to pull the Lorentzian factor ahead
of the integration, with Ef replaced by ω0 + Ei. Then one
of the factors T in expression (45) is absorbed by replacing
dEf → d(TEf/~), the time dependence of the transition
probability becomes linear, and it is meaningful to define a
rate. The transition between the two regimes is obviously
smooth but happens around T = 2π~/Γ↓. It is, thus, meaning-
ful to evaluate the short-time rate Rshort at time T = 2π~/Γ↓.
It is given by

Rshort = c
8π2

32
e2

~c
|〈iNJi||rY1(~k0||Ω)|d(iN )Jf 〉|2

× Γ↓

(Ei + ~ω0 − Ed)2 + (1/4)(Γ↓)2

[

N~ω0

π3d0d2⊥

]

. (46)

We compare that result with expression (30) forR obtained for
T ≫ ~/Γ↓. Since δk0 is inversely proportional to the length
of the laser pulse and αk20 is inversely proportional to the area
in the lateral direction, the two expressions agree except for a
numerical factor of order unity. We conclude that - except for
a factor of order unity - the full rate (30) is attained already
at short times of order 2π~/Γ↓. The use of that expression in
nuclear rate equations is, thus, fully justified. It makes sense
that the rate cannot be meaningfully defined for times smaller
than ~/Γ↓ because that time marks the end of the equilibra-
tion process following dipole absorption. Likewise it is not

surprising that after equilibration the rate changes little up to
very large times.

We note that in the present Section, it was necessary to use
explicitly an assumption on the shape of the laser pulse. No
such assumption was needed in the derivation of Section IX,
which makes use only of general properties (energy spread
and aperture) of the pulse. We also note that Eq. (46) holds
irrespective of the coherence properties of the laser pulse.

XII. COMPARISON WITH ATOMIC PHYSICS

A comparison with the treatment of laser-induced photon
absorption processes in atoms reveals striking and illuminat-
ing differences. In atoms the relevant photon energies are of
order eV, and the product of wave number k and atomic radius
R also obeys kR ≪ 1, justifying the use of the dipole approx-
imation. In that approximation and in the interaction picture
the Hamiltonian is customarily written as [18]

Hint = −e~q(t) · ~Eop(~r, t) , (47)

where ~Eop denotes the operator of the electric field strength,
taken at the position ~r of the atomic nucleus and for times t
defined by the presence of the laser pulse, while ~q denotes the
sum of the position operators of the electrons relative to the
atomic nucleus. It is easily seen that in dipole approximation
the forms (1) and (47) for the Hamiltonian are equivalent.

An approximation commonly used in atomic physics re-

places the operator ~Eop by the classical field strength ~E. [The

expectation value of ~Eop for the density matrix of Section IV

actually vanishes, and the classical field strength ~E must be

defined via the equality of ( ~E)2 and the expectation value of

( ~Eop)
2]. That approximation has the great advantage that the

action of the classical field on the atomic electrons can be fol-
lowed beyond ionization threshold [33]. Why don’t we adopt
the same approach for nuclei? Scaling arguments yield the an-
swer. In the scenario of the flying mirror, scaling is due to the
factor η = 4γ2e that describes backscattering of the incident
laser pulse. (A similar relativistic boost factor is involved in
production of MeV photons at the Gamma Factories.) Both
the mean photon energy ~ω and the energy spread prior to
backscattering are multiplied by η, the pulse length l in the
direction of propagation is multiplied by η−1. We assume
that in the radial direction the width r of the pulse remains un-
changed. Thus the volumeV = 2πlr2 of the pulse is scaled by
the factor η−1. The scaling of the classical field strength fol-
lows from Poynting’s theorem (eE)2 = N0~ω/(2V ). Under
the unrealistic assumption that all N0 ≈ 1011 photons in the
incident pulse are backscattered,E2 is scaled by the factor η2

and the field strength itself by the factor η. With η ≈ 106−107

that converts a realistic atomic field strength of 1 eV/Å into
less than 10−4 MeV/fm for an almost planar backscattered
wave with minimal aperture α ∝ (δk/k0)

2. The value 10−4

MeV / fm is much too small to cause substantial nuclear ex-
citation. That is confirmed by explicit numerical simulations
using a three-dimensional Hartree-Fock code [34].
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In conclusion, the standard approach used in atomic physics
would yield negligible excitation probabilities for nuclei. Nu-
clear equilibration comes to the rescue. It requires the use
of rate equations and leads to multiple photon absorption pro-
cesses. Thanks to the sum over final states, the rate for dipole
excitation is substantial, even if only a minute fraction of the
N0 photons in the incident laser pulse is backscattered.

XIII. SUMMARY

At excitation energies of several MeV or more, medium-
weight and heavy nuclei tend to equilibrate on very short time
scales of the order of ~/Γ↓. Here Γ↓ ≈ 5 MeV is the spread-
ing width of the nuclear GDR and accounts for equilibration
after dipole excitation. Due to this fast equilibration, a nuclear
reaction induced by a laser pulse carryingN photons of mean
energy ~ω0 ≈ 5 MeV or more should be described in terms of
rate equations, in striking contrast to the laser-atom interaction
which is often described in terms of a standard Hamiltonian
involving the (classical) electromagnetic field strength. In the
nuclear context, that approach would yield negligibly small
excitation probabilities. Rate equations are the only viable al-
ternative. Such equations use the rate R for laser-induced nu-
clear dipole excitation as input. For photons with energies in
the 5 to 10MeV range the dipole approximation is appropriate.
We have used the Brink-Axel hypothesis: A GDR exists as a
viable mode of excitation not only for the nuclear ground state
but also for every excited state of the nucleus. The expression
derived for R and given in Eq. (30) constitutes the central re-
sult of the paper. We have used the long-time limit T ≫ ~/Γ↓,
and the ensuing stationarity condition on the density matrix of
the laser pulse. The rate is proportional to (~ω0)

3 and to N .

The factorN applies independently of the degree of coherence
of the laser pulse.

We have extensively discussed the physical interpretation
of the rate R and its dependence on laser and nuclear param-
eters. Examining the stationarity condition, we have shown
why that condition has to be supplemented by a summation
over final states. We have shown that, except for factors of
order unity, expression (30) for R holds also for short times
of the order 2π~/Γ↓. That is a sensible result because nu-
clear equilibration essentially terminates at that time. In con-
sequence the values of the rate at time 2π~/Γ↓ and at very
large time T ≥ ~/σ differ only by a numerical factor of order
unity. It follows that estimates based upon expression (30) can
reliably be used in nuclear rate equations simulating multiple
photon absorption from a single laser pulse. Equally impor-
tant, Eq. (30) should help in optimizing laser pulses for the
experimental investigation of such processes. An important
element is the dependence of R on the aperture α of the inci-
dent pulse. For the “flying mirror”, coherent backscattering is
not required, and only a small fraction of the photons in the
secondary laser pulse need be Compton backscattered. Con-
versely, experimental results on the laser-nucleus interaction
would provide a test of the basic assumptions that underly our
approach, and on the results obtained. These are the Brink-
Axel hypothesis for highly excited nuclear states and, in the
calculations reported in Refs. [4, 5], the values of the nuclear
level density.
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