
Debiasing the crowd: how to select social1

information to improve judgment accuracy?2

Short title: How to select social information to improve judgment accuracy?3

Bertrand Jayles1,∗, Clément Sire2, Ralf H.J.M Kurvers1
4

1Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94,5

14195 Berlin, Germany6
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Abstract9

Cognitive biases are widespread in humans and animals alike, and can sometimes10

be reinforced by social interactions. One prime bias in judgment and decision making11

is the human tendency to underestimate large quantities. Former research on social12

influence in estimation tasks has generally focused on the impact of single estimates on13

individual and collective accuracy, showing that randomly sharing estimates does not14

reduce the underestimation bias. Here, we test a method of social information sharing15

that exploits the known relationship between the true value and the level of under-16

estimation, and study if it can counteract the underestimation bias. We performed17

estimation experiments in which participants had to estimate a series of quantities18

twice, before and after receiving estimates from one or several group members. Our19

purpose was threefold: to study (i) whether restructuring the sharing of social infor-20

mation can reduce the underestimation bias, (ii) how the number of estimates received21

affects sensitivity to social influence and estimation accuracy, and (iii) the mechanisms22

underlying the integration of multiple estimates. Our restructuring of social interac-23

tions successfully countered the underestimation bias. Moreover, we find that sharing24

more than one estimate also reduces the underestimation bias. Underlying our results25

are a human tendency to herd, to trust larger estimates than one’s own more than26

smaller estimates, and to follow disparate social information less. Using a computa-27

tional modeling approach, we demonstrate that these effects are indeed key to explain28

the experimental results. Overall, our results show that existing knowledge on biases29

can be used to dampen their negative effects and boost judgment accuracy, paving the30

way for combating other cognitive biases threatening collective systems.31
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Authors summary32

Humans and animals are subject to a variety of cognitive biases that hamper the quality of33

their judgments. We study the possibility to attenuate such biases, by strategically selecting34

the pieces of social information to share in human groups. We focus on the underestimation35

bias, a tendency to underestimate large quantities. In estimation experiments, participants36

were asked to estimate quantities before and after receiving estimates from other group37

members. We varied the number of shared estimates, and their selection method. Our38

results show that it is indeed possible to counter the underestimation bias, by exposing39

participants to estimates that tend to overestimate the group median. Subjects followed40

the social information more when (i) it was further away from their own estimate, (ii) the41

pieces of social information showed a high agreement, and (iii) it was on average higher42

than their own estimate. We introduce a model highlighting the core role of these effects in43

explaining the observed patterns of social influence and estimation accuracy. The model is in44

good agreement with the data. The success of our method paves the way for testing similar45

interventions in different social systems to impede other cognitive biases.46

Introduction47

Human and non-human animal judgments and decisions are characterized by a plethora48

of cognitive biases, i.e., deviations from assumed rationality in judgment [1]. Biases at49

the individual level can have negative consequences at the collective level. For instance,50

Mahmoodi et al. showed that the human tendency to give equal weight to the opinions51

of individuals (equality bias) leads to sub-optimal collective decisions when groups harbor52

individuals with different competences [2]. Understanding the role of cognitive biases in53

collective systems is becoming increasingly important in modern digital societies.54

The recent advent and soar of information technology has substantially altered human55

interactions, in particular how social information is shared and processed: people share56

content and opinions with thousands of contacts on social networks such as Facebook and57

Twitter [3, 4, 5], and rate and comment on sellers and products on websites like Amazon,58

TripAdvisor, and AirBnB [6, 7, 8]. While this new age of social information exchange carries59

vast potential for enhanced collaborative work [9] and collective intelligence [10, 11, 12,60

13], it also bears the risks of amplifying existing biases. For instance, the tendency to61

favor interactions with like-minded people (in-group bias [14]) is reinforced by recommender62
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systems, enhancing the emergence of echo chambers [15] and filter bubbles [16] which, in63

turn, further increases the risk of opinion polarization. Given the importance of the role of64

biases in social systems, it is important to develop strategies that can reduce their detrimental65

impact on judgments and decisions in social information sharing contexts.66

One promising, yet hitherto untested, strategy to reduce the detrimental impact of biases67

is to use prior knowledge on these biases when designing the structure of social interactions.68

Here, we will test whether such a strategy can be employed to reduce the negative effects of a69

specific bias on individual and collective judgments in human groups. We use the framework70

of estimation tasks, which are well-suited to quantitative studies on social interactions [17,71

18, 19, 20], and focus on the underestimation bias. The underestimation bias is a well-72

documented human tendency to underestimate large quantities in estimation tasks [20, 21,73

22, 23, 24, 25, 26, 27, 28, 29]. The underestimation bias has been reported across various74

tasks, including in estimations of numerosity, population sizes of cities, pricing, astronomical75

or geological events, and risk judgment [20, 26, 27, 28, 29]. Previous research—using a76

dot estimation task—showed that this effect already starts when the actual number of dots77

exceeds 10 [22]. This study (and others) suggest that the tendency to underestimate large78

quantities could stem from an internal compression of perceived stimuli [22, 23, 24]. The79

seminal study by Lorenz et al. (2011) has shown that the effects of the underestimation80

bias could be amplified after social interactions in human groups, and deteriorate judgment81

accuracy [19].82

We here investigate the effects of different interaction structures, aimed at counteracting83

the underestimation bias, on individual and collective accuracy (details are given below).84

Moreover, we investigate how these structures interact with the number of estimates shared in85

shaping accuracy. Previous research on estimation tasks has largely overlooked both of these86

factors. Thus far, research on estimation tasks mostly discussed the beneficial or detrimental87

effects of social influence on group performance [19, 30, 31, 32, 33, 34, 35, 36]. Moreover,88

most previous studies focused on the impact of a single piece of information (one estimate or89
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the average of several estimates), or did not systematically vary their number. In addition, in90

most studies, subjects received social information from randomly selected individuals (either91

group members, or participants from former experiments) [17, 18, 19, 20, 31, 35, 36, 37, 38,92

39]. In contrast to these previous works, in many daily choices under social influence, one93

generally considers not only one, but several sources of social information, and these sources94

are rarely chosen randomly [40]. Even when not actively selecting information sources, one95

routinely experiences recommended content (e.g., books on Amazon, movies on Netflix, or96

videos on YouTube) generated by algorithms which incorporate our “tastes” (i.e., previous97

choices) and that of (similar) others [41].98

Following these observations, we confronted groups with a series of estimation tasks, in99

which individuals first estimated miscellaneous (large) quantities, and then re-evaluated their100

estimates after receiving a varying number of estimates τ (τ = 1, 3, 5, 7, 9, and 11) from other101

group members. Crucially, the shared estimates were selected in three different manners:102

• Random treatment: subjects received personal estimates from τ random other group103

members. Previous research showed that when individuals in groups receive single, randomly104

selected estimates, individual accuracy improves because estimates converge, but collective105

accuracy does not [19, 20]. Since several random estimates do not, on average, carry higher106

information quality than a single random estimate, we did not expect collective accuracy to107

improve when individuals received multiple random estimates. However, we predicted that108

increasing the number of estimates shared would lead to a higher imitation rate and thus to109

increased improvements in individual accuracy.110

• Median treatment: subjects received as social information the τ estimates from other111

subjects whose logarithm1 are closest to the median log estimate m of the group (excluding112

their own). This selection method thus selects central values of the distribution and removes113

extreme values. Since median estimates in estimation tasks are generally closer to the true114

value than randomly selected estimates (Wisdom of Crowds) [42, 43, 44], we expected higher115

1Logarithms are more suitable because humans perceive numbers logarithmically (order of magni-
tudes) [45].
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improvements in collective and individual accuracy than in the Random treatment.116

• Shifted-Median treatment: as detailed above, humans have a tendency to underestimate117

large quantities in estimation tasks. Recent works have suggested aggregation measures118

taking this bias into account, or the possibility to counteract it using artificially generated119

social information [20, 26]. Building on this, we here test a method that exploits prior120

knowledge on this underestimation bias, by selecting estimates that are likely to reduce its121

effects. We define, for each group and each question, a shifted (overestimated) value m′ of122

the median log estimate m that approximates the log of the true value T (thus compensating123

the underestimation bias), exploiting a relationship between m and log(T ) identified from124

prior studies using similar tasks (for details see Experimental Design). Individuals received125

the estimates of which logarithms were closest to m′ > m (except their own). This selection126

method also tends to eliminate extreme values, but additionally favors estimates that are127

slightly above the center of the distribution. Given the overall underestimation bias, values128

slightly above the center of the distribution are, on average, closer to the true value than129

values at the center of the distribution. Therefore, we expected the highest improvements in130

collective and individual accuracy in this treatment. Note that our method uses prior domain131

knowledge (to estimate the true value of a quantity) but does not require a priori knowledge132

of the true value of the quantity at hand. That is, the accuracy of the selected estimates is133

a priori unknown, and they are only statistically expected to be closer to the truth.134

We first describe the distributions of estimates and sensitivities to social influence in all135

conditions. Doing so, we shed light on the key effects influencing subjects’ response to social136

information, which are: (i) the dispersion of the social information, (ii) the distance between137

the personal estimate and the social information, and (iii) whether the social information138

is higher or lower than the personal estimate. We then build a model of social information139

integration incorporating these findings, and use it to further analyze the impact of the140

number of shared estimates on social influenceability and estimation accuracy. We find, in141

accordance with our prediction, that improvements in collective accuracy are indeed highest142
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in the Shifted-Median treatment, demonstrating the success of our method in counteracting143

the underestimation bias.144

Experimental design145

Participants were 216 students, distributed over 18 groups of 12 individuals. Each individual146

was confronted with 36 estimation questions displayed on a tactile tablet. Questions were a147

mix of general knowledge and numerosity, and involved moderately large to very large quan-148

tities (the list of questions and answers is provided in the Supplementary Information). Each149

question was asked twice: first, subjects were asked to provide their personal estimate Ep.150

Next, they received as social information the estimate(s) of one or several group member(s),151

and were asked to provide a second estimate Es (see illustration in Supplementary Figure S1).152

When providing the social information, we varied (i) the number of estimates shown (τ = 1,153

3, 5, 7, 9, or 11) and (ii) how they were selected (Random, Median, or Shifted-Median treat-154

ments). The subjects were not aware of the three different treatments and were simply told155

that they would receive τ estimates from the other participants. Each group of 12 individuals156

experienced each of the 18 unique conditions (i.e., combination of number of estimates shared157

and their selection method) twice. Across all 18 groups, each of the 36 unique questions was158

asked once at every unique condition, resulting in 12 × 36 = 432 estimates per condition159

(both before and after social information sharing). Students received course credits for par-160

ticipation and were, additionally, incentivized based on their performance. Full experimental161

details can be found in the Supplementary Information.162

Compensating the underestimation bias163

Previous research on estimation tasks has shown that the distributions of raw estimates164

is generally right skewed, while the distribution of their logarithm is much more symmet-165

ric [19, 30, 38, 46]. Indeed, when considering large values, humans tend to think in terms of166
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order of magnitude [45], making the logarithm of estimates a natural quantity to consider in167

estimation tasks [20].168

The mean or median of log estimates is often used to measure the quality of collective169

judgments in such tasks (Wisdom of Crowds). Since distributions of log estimates for most170

quantities are closer to Laplace distributions than to Gaussian distributions [47], the median171

is more reliable than the mean2 in estimating the Wisdom of Crowds [21].172

Figure 1a shows that, within our domain (data are from a previous study [20]), there173

is a linear relationship between the median log estimate m and the log of the true value174

T : m ∼ γ log(T ), where γ ≈ 0.9 is the slope of the relationship (the “shifted-median175

parameter”). Note that γ < 1 denotes the underestimation bias.176
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Figure 1: The relationship between the logarithm of the correct answer and the median of the
logarithm of estimates for (a) 98 questions (one dot per question) taken from a former study [20]
and (b, c) 36 questions from the current experiment. Among the 36 questions, 18 were already
asked in the above cited study (b) and 18 were new (c). The slopes of the linear regression lines
are 0.91 (a), 0.88 (b) and 0.91 (c), underlining the robustness of this linear trend. Note that slopes
lower than 1 reflect the underestimation bias.

We used this relationship to construct, for each group and each question, a value m′ (the177

“shifted-median value”) aimed to compensate the underestimation bias, i.e., to approximate178

the (log of the) truth: m′ = m/γ ∼ log(T ), with γ = 0.9. m′ then served as a reference to179

select the estimates provided to the subjects in the Shifted-Median treatment.180

2The median and the mean are the maximum likelihood estimators of the center of Laplace and Gaussian
distributions, respectively.
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Visual inspection confirms that the previously identified linear relationship not only holds181

for the same questions as in the previous study (half of our questions; Figure 1b), but also182

carries over to new questions (other half; Figure 1c), underlining its consistency. Supplemen-183

tary Figure S2 shows that this relationship is present in general knowledge and numerosity184

questions, as well as for moderately large and very large quantities. All questions and par-185

ticipants’ answers are included as Supplementary Material.186

Results187

Distribution of estimates188

Following previous studies, we use the quantity X = log
(
E
T

)
to represent estimates, where E189

is the actual estimate of a quantity and T the corresponding true value [19, 20, 21, 48]. This190

normalization ensures that estimates of different quantities are comparable, and represents191

a deviation from the truth in terms of orders of magnitude. In the following, we will, for192

simplicity, refer to X as “estimates”, with Xp referring to personal estimates and Xs to193

second estimates. Figure 2 shows the distributions of Xp (filled dots) and Xs (empty dots)194

in each treatment and number of shared estimates τ .195

Confirming previous findings [20, 21, 48], we find narrower distributions after social infor-196

mation sharing across all conditions. This narrowing amounts to second estimates Xs being,197

on average, closer to the truth than the Xp. The distributions of Xp (solid lines) are simu-198

lated by drawing the Xp from Laplace distributions, the center (median) and width (average199

absolute deviation from the median) of which are taken from the experimental distribution200

of estimates for each question. Former studies have shown that distributions of estimates are201

indeed well approximated by Laplace distributions [47, 21]. In Supplementary Figure S3, we202

show the distribution of Xp when all conditions are combined. The good agreement between203

the data and the simulation further supports the Laplace distributions assumption. The204

distributions of Xs (dashed lines) are the predictions of our model presented below. One205
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Figure 2: Probability density function (PDF) of personal estimates Xp (filled dots and solid lines)
and second estimates Xs (empty dots and dashed lines) in the Random (black), Median (blue), and
Shifted-Median (red) treatments, for each value of τ . Dots are the data and lines correspond to
model simulations.

additional constraint was added in our simulations of both personal and second estimates:206

since in our experiment, actual estimates Ep,s are always greater than 1, we imposed that207

Xp,s > − log(T ), leading to a faster decay of the distribution for large negative log estimates.208

Distribution of sensitivities to social influence SSS209

Consistent with heuristic strategies under time and cognitive constraints [49, 50, 51], we210

assume that subjects, in evaluating a series of estimates, focus on the central tendency and211

dispersion of the estimates they receive as social information. These assumptions are also212

supported by other studies on estimation tasks [39, 52, 53]. Consistent with the logarith-213

mic representation and Laplace distribution assumptions, we quantify the perceived central214

tendency and dispersion by the mean and average absolute deviation from the mean of the215

logarithms of the pieces of social information received, respectively.216
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We consider a subject’s second estimate Xs as the weighted arithmetic mean3 of their217

personal estimate Xp and the mean M = log(G) of the estimates received (G is the geometric218

mean of the actual estimates received): Xs = (1 − S)Xp + SM , where S is defined as the219

weight subjects assign to M , that we call the sensitivity to social influence. S = 0 thus220

implies that a subject keeps their personal estimate, and S = 1 that their second estimate221

equals the geometric mean of the estimates received. As we will show below, S depends on222

the number of estimates received and their dispersion.223

In the following analysis of S, we will restrict S to the interval [-1, 2]4, thereby removing224

large values of S that may disproportionately affect measures based on S, in particular its225

average. Such large values of S are indeed meaningless as they are contingent on the way S226

is defined, and do not reflect a massive adjustment from Xp to Xs. Consider, for example,227

the case where Xp = 5 and M = 5.001. Then, Xs = 5.1 gives S = 100, while Xs is not very228

different from Xp. Such a restriction amounts to removing about 5.3% of the data.229

Figure 3 shows that the distribution of S, in all treatments and values of τ , consists of a230

peak at S = 0 and a part that resembles a Gaussian distribution.231

We thus assume that with probability P0, subjects keep their initial estimate (S = 0),232

and with probability Pg, they draw an S in a Gaussian distribution of mean mg and standard233

deviation σg. This assumption imposes the following relation:234

〈S〉 = Pg mg, i.e., Pg = 〈S〉/mg. (1)

To determine the values of Pg, mg and σg per condition (i.e., treatment and value of τ),235

we fit the distributions of S with the following distribution (using the “nls” function in R):236

3Note that the arithmetic mean of the logs is equivalent to the log of the geometric mean.
4For plotting reasons, we actually restrict S to the interval [-1.05, 2.05].
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Figure 3: Probability density function (PDF) of sensitivities to social influence S in the Random
(black), Median (blue), and Shifted-Median (red) treatments, for each value of τ . Solid lines are
experimental data, and dashed lines fits using eq. 2. The experimental probabilities to contradict
the social information (S < 0), to reject it (S = 0), to compromise with it (0 < S < 1), to adopt it
(S = 1), and to overreact to it (S > 1) are shown on top of each graph.

f(S) = (1− Pg) δ(S) + Pg Γ(S,mg, σg),with (2)

Γ(S,mg, σg) =
1√

2π σg

exp

[
−(S −mg)2

2σ2
g

]
, (3)

where Pg is fixed by eq. 1, δ(S) is the Dirac distribution centered on 0, and Γ(S,mg, σg) is237

the Gaussian distribution of mean mg and standard deviation σg.238

Note that in previous studies, another peak was measured at S = 1, amounting to about239

4% of answers [20, 21]. However, in our experiments, this peak was absent in almost all240

conditions, because when more than one estimate is shared, the second estimate is very241

unlikely to land exactly on the geometric mean of the social information. We, therefore, did242

not include it in the fit.243
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Dependence of PgPgPg, mgmgmg and σgσgσg on τττ244

Figure 4 shows Pg, mg and σg against τ in each treatment. At τ = 1, Pg and σg are comparable245

in all treatments, whereas mg is higher in the Median and Shifted-Median treatments than246

in the Random treatment, indicating a higher tendency to follow the social information.247
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Figure 4: Pg, mg and σg against the number of shared estimates τ , in the Random (black), Median
(blue), and Shifted-Median (red) treatments. Error bars are computed using a bootstrap procedure
described in the Materials and Methods, and roughly represent one standard error.

A similar pattern of social influence strength is observed at intermediate values of τ (τ = 3,248

5, 7, or 9), where Pg and mg are substantially higher in the Median and Shifted-Median249

treatments than in the Random treatment. For σg, we observe a higher value in the Random250

treatment than both other treatments at τ = 3 and 5, but not at higher levels of τ . Finally,251

at τ = 11 the three measures are similar across treatments. This was expected since all three252

treatments are equivalent in this case (i.e., subjects receive all pieces of social information).253

It is worth noting that a previous study conducting a similar Random treatment [48], found254

very similar results.255

Dependence of the dispersion σσσ on τττ256

One major difference between treatments that could help explain the above results lies in257

the dispersion σ = 〈|XSI −M |〉 of the estimates XSI received as social information. Recall258

that the estimates received in the Median and Shifted-Median treatments were selected by259
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proximity to a specific value (see Experimental Design), and are thus expected to be, on260

average, more similar to each other (i.e., to have a lower dispersion) than in the Random261

treatment. Figure 5 shows that, as expected, the average dispersion 〈σ〉 is substantially lower262

in the Median and Shifted-Median treatments than in the Random treatment.263

3 5 7 9 11
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1

τ

〈σ
〉

Figure 5: Average dispersion 〈σ〉 of the estimates received as social information against the number
of shared estimates τ , in the Random (black), Median (blue), and Shifted-Median (red) treatments.
〈σ〉 is mostly independent of τ in the Random treatment, while it increases with τ in the Median
and Shifted-Median treatments. Dots and error bars are the data and solid lines model simulations.

Moreover, 〈σ〉 increases with τ in these treatments, while it remains close to constant in264

the Random treatment. Expectedly, 〈σ〉 reaches a similar value in all treatments at τ = 11.265

We thus expect the dependence of Pg, mg and σg on τ observed in Figure 4 to be mediated266

by a dependence of these measures on σ.267

Dependence of PgPgPg, mgmgmg and σgσgσg on the dispersion σσσ268

Figure 6 shows Pg, mg and σg as functions of the average dispersion of estimates received as269

social information 〈σ〉, for each combination of treatment and value of τ .270

We find that Pg and mg decrease linearly with 〈σ〉, reflecting a decreasing tendency to271

compromise with the social information as the dispersion of estimates received increases. On272
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Figure 6: Pg, mg and σg against the average dispersion of estimates received as social information
〈σ〉, in the Random (black), Median (blue) and Shifted-Median (red) treatments. Each dot corre-
sponds to a specific value of τ . Values at τ = 1 were excluded since there is no dispersion at τ = 1.
Dashed lines show linear fits per treatment.

the contrary, σg increases linearly with 〈σ〉, suggesting that the diversity of subjects’ response273

to social influence increases with the diversity of pieces of social information received.274

Dependence of SSS on the dispersion σσσ: similarity effect275

As described above, Pg and mg combined determine the average sensitivity to social influence.276

Figure 7 shows how 〈S〉 = Pg mg – where the values of Pg and mg are taken from Figure 6a277

and b – varies with the average dispersion of estimates received 〈σ〉.278

Consistently with Figure 6a–b, 〈S〉 decreases linearly with 〈σ〉 in all treatments. We279

call this the similarity effect. Moreover, this linear dependence of 〈S〉 on σ appears to be280

treatment-independent, as a linear regression over all points fits the data very well.281

Note that since we found a linear dependence of Pg (Pg = a + b 〈σ〉) and mg (mg =282

a′ + b′ 〈σ〉) on 〈σ〉, the dependence of 〈S〉 = Pg mg on 〈σ〉 could have been quadratic. Yet,283

the quadratic term b b′ 〈σ〉2 is of the order 0.2× 0.2× 0.52 = 0.01, and thus negligible.284

Dependence of SSS on D = M −XpD = M −XpD = M −Xp: distance and asymmetry effect285

In previous studies where subjects received as social information the average estimate of other286

group members, S depended linearly on the distance D = M − Xp between the personal287
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Figure 7: Pg mg against the average dispersion of estimates received as social information 〈σ〉 in
the Random (black), Median (blue), and Shifted-Median (red) treatments. Pg mg decreases linearly
with 〈σ〉 in all treatments. Each dot corresponds to a specific value of τ . The purple dashed line
shows a linear regression over all points.

estimate Xp and the average social information M [20, 21]. This effect is known as the288

distance effect :289

〈S〉(D) = α + β |D|. (4)

Figure 8 shows the distance effect per condition, showing that the further the social infor-290

mation is away from the personal estimate, the stronger it is taken into account.291

For each condition (and in agreement with a recent study [48]), we find that the center292

of the cusp relationship is located at D = D0 < 0, rather than at D = 0. Moreover, the293

left and right slopes (coined β− and β+ respectively) are not always similar, requiring us294

to fit the slopes separately. These effects combined result in an asymmetric use of social295

information whereby social information that is higher than the personal estimate is weighted296

more than social information that is lower than the personal estimate. This effect is known297

as the asymmetry effect and we will discussed it in more detail below.298
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Figure 8: Average sensitivity to social influence 〈S〉 against the distance D = M −Xp between the
personal estimate Xp and average social information M , in the Random (black), Median (blue), and
Shifted-Median (red) treatments for all values of τ . Dots are the data, and shaded areas represent
the error (computed using a bootstrap procedure described in the Materials and Methods) around
the data. Dashed lines are fits using eq. 5, and dotted lines at the bottom of each panel show the
density distribution of the data (in arbitrary units).

Finally, Figure 7 shows that we need to include a dependence of 〈S〉 on σ. Following299

Figure 7, we assume this dependence to be linear (with slope β′). Taking these results300

together, we thus arrive at the following fitting function:301

〈S〉(D, σ, τ) = α(τ) + β±(τ) |D −D0(τ)|+ β′(τ) σ, (5)

where α, β±, β′ and D0 can a priori depend on τ . Visual inspection was used to fix D0, with302

a precision of less than 0.1, while all other parameters were fitted by minimizing least squares303

analytically (see Materials and Methods for details of the fitting procedure). At τ = 1, σ = 0,304

therefore, β′ was excluded from the parameter fitting for this case.305

Figure 9 shows the fitted values against τ for each treatment, and suggests that these pa-306

rameters do not systematically vary with τ . We next introduce a model of social information307

integration, in which we will, therefore, assume that these parameters are independent of τ ,308
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and equal to their average (when τ > 1, see below).309
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Figure 9: Fitted parameter values of D0, α, β−, β+, and β′ against τ in the Random (black), Median
(blue), and Shifted-Median (red) treatments. Parameters do not show any clear dependence on τ
in any treatments. Dashed lines are averages over all values of τ > 1.

Model of social information integration310

The model is based on eq. 5 and is an extension of a model developed in [48] (which itself311

builds on [20, 21]). The key effect we add is the dependence of subjects’ sensitivity to312

social influence on the dispersion of estimates received as social information. This is done313

because the Median and Shifted-Median treatments select relatively similar pieces of social314

information to share, which heavily impacts social influence (Figures 6 and 7).315

The model uses log-transformed estimates X as its basic variable, and each run of the316

model closely mimics our experimental design. For a given quantity to estimate in a given317

condition (i.e., treatment and number of shared estimates), N = 12 agents first provide their318

personal estimate Xp. Following Figure 2, these personal estimates are drawn from Laplace319

distributions, the center and width of which are respectively the median mp and dispersion320

σp = 〈|Xp −mp|〉 of the experimental personal estimates of the quantity.321
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Next, agents receive as social information τ personal estimates from other agents in322

the group, selected according to the selection procedure of the respective treatment (see323

Experimental Design). Following Figure 3, agents either keep their personal estimate (S = 0)324

with probability P0, or draw an S in a Gaussian distribution of mean mg and standard325

deviation σg with probability Pg. According to eq. 1, Pg = 〈S〉/mg, and P0 = 1 − Pg. The326

calculation of 〈S〉 is based on the mean M and dispersion σ of these estimates received, and327

follows eq. 5:328

Pg(D, σ, τ) = 〈S〉(D, σ, τ)/mg(σ) =
(
α(τ) + β±(τ) |D −D0(τ)|+ β′(τ) σ

)
/mg(σ), (6)

Finally, once an S is drawn for each agent, agents update their estimate according to:329

Xs = (1− S)Xp + SM. (7)

At τ = 1, the values given to Pg, mg and σg were taken from Figure 4. When sharing more330

than 1 estimate (i.e., τ > 1), the linear dependences of these parameters on the dispersion of331

the social information 〈σ〉, shown in Figure 6, were used. Similarly, the values of D0, α, β−332

and β+ at τ = 1 were directly taken from Figure 9, while values of D0, α, β± and β′ at τ > 1333

were averaged over τ , and these averages were implemented in the model. This separation is334

done because the fitting was qualitatively different for τ > 1 and τ = 1, β′ being absent in335

the latter (no dispersion at τ = 1).336

Next to this full model, we also evaluated two simpler models, leaving out either the337

similarity effect (β′σ term) or the asymmetry effect (D0 < 0 and β− 6= β+), to evaluate the338

importance of both effects in explaining the empirical patterns. Supplementary Figures S4 to339

S8 show the predictions when excluding the similarity effect, and Supplementary Figures S9340

to S13 when excluding the asymmetry effect.341

All model simulations results shown in the figures are averages over 10,000 runs. The full342
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model reproduces well the distributions of estimates (Figure 2), and the dependence of 〈σ〉343

on τ (Figure 5). We now use the model to analyze the impact of τ on sensitivity to social344

influence and estimation accuracy in each treatment.345

Impact of τττ on sensitivity to social influence SSS346

Figure 10a shows how 〈S〉 varies with τ in all treatments. We find that in the Median and347

Shifted-Median treatments, 〈S〉 increases sharply between τ = 1 and τ = 3, before decreasing348

steadily, consistent with the patterns of Pg and mg in Figure 4. In the Random treatment349

〈S〉 is largely independent of τ . At τ = 11, all conditions (again) converge.350
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Figure 10: Average sensitivity to social influence 〈S〉 against (a) the number of shared estimates τ
and (b) the average dispersion of estimates received 〈σ〉 , in the Random (black), Median (blue), and
Shifted-Median (red) treatments. (a) In the Random treatment there is only a minor dependence
of 〈S〉 on τ . In the Median and Shifted-Median treatments, we find an inverse-U shape relationship
with τ . This is due to the similarity effect as shown in (b): a linear decrease of 〈S〉 with 〈σ〉 when
τ > 1. Filled dots are the data, while empty dots and solid lines are model simulations.

These patterns result from the similarity effect shown in Figure 10b: 〈S〉 decreases as351

the dispersion of estimates received increases, when τ > 1. Whereas in the Median and352

Shifted-Median treatments the different levels of τ correspond to different levels of dispersion353

(Figure 5), and thus different levels of 〈S〉, this effect is not present in the Random treatment.354

19



Note that consistently with the relation 〈S〉 = Pg mg, the experimental values in Figure 10b355

are the same as those of Figure 6.356

The full model reproduces the empirical results well. When removing the dependence357

on σ from the model (and re-fitting the parameters accordingly), the inverse-U shape in the358

Median and Shifted-Median is attenuated, and the decrease of 〈S〉 with 〈σ〉 is underestimated359

(Figure S4). This demonstrates that the similarity effect is key to explaining the patterns of360

sensitivity to social influence.361

Impact of τττ on SSS when D < 0D < 0D < 0 and D > 0D > 0D > 0362

A more intuitive way to understand the result that D0 < 0 and β+ > β−, is that subjects’363

sensitivity to social influence is on average higher when D > 0 (i.e., when the average social364

information received by subjects is higher than their personal estimate) than when D < 0365

(i.e., when the average social information received by subjects is lower than their personal366

estimate). Figure 11 shows this so-called asymmetry effect, which is reproduced well by the367

full model.368
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Figure 11: Average sensitivity to social influence 〈S〉 against the number of shared estimates τ , in
the Random (black), Median (blue), and Shifted-Median (red) treatments, when the average social
information M is higher than the personal estimate Xp (D = M −Xp > 0; squares) and when it is
lower (D < 0; triangles). Subjects follow the social information more on average when M is higher
than Xp, than when it is lower. Filled symbols represent the data, while solid lines and empty
symbols are model simulations. Supplementary Table S1 shows the percentage of cases when D < 0
and D > 0 in all conditions.
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Below, we will show that this effect also drives improvements in estimation accuracy369

after social information sharing. Supplementary Figure S8 shows that the model without the370

asymmetry effect is unable to reproduce the higher sensitivity to social influence when D > 0371

than when D < 0.372

Improvements in estimation accuracy: herding effect373

In line with previous works [20, 21, 48] we define, for a given group in a given condition, (i)374

the collective accuracy as the absolute value of the median of all individuals’ estimates of all375

quantities in that group and condition:
∣∣Mediani,q(Xi,q)

∣∣ (where i runs over individuals and376

q over quantities/questions), and (ii) the individual accuracy as the median of the absolute377

values of all individuals’ estimates: Mediani,q

(
|(Xi,q)|

)
. The closer to 0, the higher the378

accuracy. Collective accuracy represents the distance of the median estimate to the truth,379

and individual accuracy the median distance of individual estimates to the truth. Figure 12380

shows how collective and individual accuracy depend on τ in each treatment.381

Collective accuracy improves mildly – but not negligibly – in the Random and Median382

treatments. This improvement is due to the asymmetry effect (Figure 11), which partly383

counteracts the human tendency to underestimate quantities [20, 26, 27, 28]. Indeed, giving384

more weight to social information that is higher than one’s personal estimate shifts second385

estimates toward higher values, thus improving collective accuracy. The model without the386

asymmetry effect is unable to predict this improvement in collective accuracy (Supplementary387

Figure S9).388

In the Shifted-Median treatment the improvement in collective accuracy is substantially389

higher, especially at low values of τ . This is a consequence of the selection procedure of390

the pieces of social information. As shown in Figure 10, participants have a tendency to391

partially follow the social information (0 < 〈S〉 < 1 in all conditions, a.k.a. herding effect).392

Although there are no substantial differences in 〈S〉 between the Median and Shifted-Median393

treatment, the estimated received as social information overestimate the group median in the394
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Figure 12: Collective and individual accuracy against the number of shared estimates τ , before
(filled dots) and after (empty circles) social information sharing, in the Random (black), Median
(blue), and Shifted-Median (red) treatments. Values closer to 0 indicate higher accuracy. Solid and
dashed lines are model simulations before and after social information sharing, respectively.

Shifted-Median treatment. A similar level of 〈S〉 thus shifts seconds estimates toward higher395

values (compared to the Median treatment), thereby partly countering the underestimation396

bias and boosting collective accuracy.397

For individual accuracy we find substantial improvements in all conditions, with slightly398

higher improvements in the Median and Shifted-Median treatments than in the Random399

treatment, due to the similarity effect which boosts social information use in these treatments400

(Figure 10). This confirms previous studies showing that higher levels of social information401

use (when 0 < 〈S〉 < 0.5) increase the narrowing of the distribution of estimates (Figure 2),402

thereby increasing individual accuracy [19, 20].403
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Impact of DDD on estimation accuracy404

Because subjects behave differently when receiving social information that is higher (D > 0)405

or lower (D < 0) than their personal estimate, we next study how these different scenarios406

impact accuracy. Figure 13 shows this for individual accuracy.407
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Figure 13: Individual accuracy against the number of shared estimates τ , before (filled dots) and
after (empty circles) social information sharing, in the Random (black), Median (blue), and Shifted-
Median (red) treatments. The population was separated into subjects’ answers where the average
social information received M was lower than their personal estimate Xp (D = M − Xp < 0)
and subjects’ answers where the average social information received was higher than their personal
estimate (D > 0). Solid and dashed lines are model simulations before and after social information
sharing, respectively. Individual accuracy improves mildly for D < 0, but substantially for D > 0.

We find that, in the Random and Median treatments, subjects were significantly more408

accurate when D < 0 than when D > 0 before social information sharing. This is a conse-409

quence of the underestimation bias, as estimates in the former (latter) case are, on average,410

more likely to be above (below) the median estimate of the group – and therefore closer411
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to (farther from) the truth. In the Shifted-Median treatment, however, we observe a more412

complex pattern: (i) at low values of τ , individual accuracy is worse before social information413

sharing in this treatment than in the Random and Median treatments when D < 0, while it414

is better when D > 0. This reversed pattern suggests that the shifted-median values tend,415

on average, to slightly overestimate the truth; (ii) individual accuracy improves with τ when416

D < 0, but declines with it when D > 0. As τ increases, the average social information417

indeed decreases until it is the same as in both other treatments at τ = 11. In all conditions,418

individual accuracy improves mildly after social information sharing when D < 0, while it419

improves substantially when D > 0. The model is in good agreement with the data. Supple-420

mentary Figure S10 shows the equivalent figure for collective accuracy, showing qualitatively421

similar results.422

Impact of SSS on estimation accuracy423

Finally, we studied how subjects’ sensitivity to social influence affects estimation accuracy,424

by separating subjects’ answers into those for which S was either below or above the median425

value of S in that condition. Figure 14 shows individual accuracy for both categories.426

Subjects in the below-median category provided more accurate personal estimates than427

those in the above-median category. It is well-known that more accurate individuals use less428

social information, and this insight has also been used to improve collective estimations [36].429

This result is tied to the distance effect (Figure 8): subjects use social information the430

least when their initial estimate is close to the average social information, which is itself, on431

average, close to the truth.432

Because subjects in the below-median category disregard, or barely use, social informa-433

tion, they do not improve in accuracy after social information sharing. On the contrary, sub-434

jects in the above-median category tend to compromise with the social information, thereby435

substantially improving in individual accuracy after social information sharing, and reaching436

similar levels of accuracy as the below-median category. The model accurately reproduces437
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Figure 14: Individual accuracy against the number of shared estimates τ , before (filled dots) and
after (empty circles) social information sharing, in the Random (black), Median (blue), and Shifted-
Median (red) treatments. In each condition, the subjects’ answers were separated according to
their corresponding value of S with respect to the median of S. Solid and dashed lines are model
simulations before and after social information sharing, respectively. When S is lower than the
median, the subjects tend to keep their initial estimate, and individual accuracy therefore does
not change. When S is higher than the median, the subjects tend to compromise with the social
information, resulting in high improvements.

these results, which also are in agreement with former findings [20, 21, 48]. Supplementary438

Figure S11 shows the equivalent figure for collective accuracy, showing qualitatively similar439

patterns, albeit with substantially higher improvements in the Shifted-Median treatment for440

the above-median category.441
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Discussion442

We studied the impact of the number of estimates presented to individuals in human groups,443

and the way they are selected, on collective and individual accuracy in estimating large444

quantities, and identified four key mechanisms underlying social information integration:445

(i) subjects give more weight to the social information when the distance between the446

average social information and their own personal estimate increases (distance effect). This447

effect has been found in several previous studies [20, 21, 48];448

(ii) subjects give more weight to the central tendency of multiple estimates when it is449

higher than their own personal estimate, than when it is lower. This asymmetry effect, also450

found in [26, 48], shifts second estimates toward higher values, thereby partly compensating451

the underestimation bias and improving collective accuracy. The asymmetry effect suggests452

that people are able to selectively use social information in order to counterbalance the453

underestimation bias, even without external intervention (Random treatment);454

(iii) subjects follow social information more when the estimates are more similar to each455

other (similarity effect). Previous studies have shown that similarity in individuals’ judg-456

ments correlates with judgment accuracy [54, 55], suggesting that following pieces of social457

information more when they are more similar is an adaptive strategy to increase the quality458

of one’s judgments. Our selection method in the Median and Shifted-Median treatments459

capitalized on this effect as it selected relatively similar pieces of social information, thereby460

counteracting the human tendency to underuse social information [20, 56, 57], resulting in461

higher individual improvement in both treatments than in the Random treatment;462

(iv) subjects tend to partially copy each other (herding effect), leading to a convergence463

of estimates after social information sharing, and therefore to an improvement in individual464

accuracy in all treatments. This effect is adaptive in most real-life contexts, as personal465

information is often limited and insufficient, such that relying on social information, at least466

partly, is an efficient strategy to make better judgments and decisions. Moreover, note that467
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contrary to popular opinion, convergence of estimates need not yield negative outcomes (like468

impairing the Wisdom of Crowds [19, 31, 36]): even if the average opinion is biased, sharing469

opinions may temper extreme ones and improve the overall quality of judgments [58]. This470

tendency to follow the social information has another important consequence: it is possible to471

influence the outcome of collective estimation processes in a desired direction. In the Shifted-472

Median treatment, we showed that subjects’ second estimates could be “pulled” towards the473

truth, thus improving collective accuracy. This is an example of nudging, also demonstrated474

in other contexts [59]. Previous studies have shown that the same tendency can also lead,475

under certain conditions, to dramatic situations in which everybody copies everybody else476

indiscriminately (“herd behavior”) [60].477

Next, we developed an agent-based model to study the importance of these effects in478

explaining the observed patterns. The model assumes that subjects have a fast and intuitive479

perception of the central tendency and dispersion of the estimates they receive, coherent with480

heuristic strategies under time and computational constraints [49, 50, 51], and consistent with481

previous findings [39, 52, 53]. By using simpler models excluding either the asymmetry effect482

or similarity effect, we demonstrated that these effects are key to explaining the empirical483

patterns of sensitivity to social influence and estimation accuracy. It is conceivable that484

the strategies used by people when integrating up to 11 pieces of social information in their485

decision-making process are very diverse and complex. Yet, despite its relative simplicity,486

our model is in good agreement with the data, underlining the core role of these effects in487

integrating several estimates of large quantities.488

Our goal was to test a method to improve the quality of individual and collective judg-489

ments in social contexts. The method exploits available knowledge about cognitive biases in a490

given domain (here the underestimation of large quantities in estimation tasks) to select and491

provide individuals with relevant pieces of social information to reduce the negative effects492

of these biases. A previous study also manipulated the social information presented to the493

subjects in order to improve the accuracy of their second estimates [21]. However, at variance494
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with our study, the correct answer to each question was known a priori, and exploited by495

“virtual influencers” providing (purposefully) incorrect social information to the subjects,496

specifically selected to counter the underestimation bias. Our method avoids such deception,497

and extends to situations in which the estimation context is known, but not the truth itself.498

Another previous study exploited the underestimation bias by recalibrating personal esti-499

mates, thereby also successfully counteracting the underestimation bias [26]. Supplementary500

Figure S12 compares our Shifted-Median treatment to a direct recalibration of personal es-501

timates, where all Xp are divided by γ = 0.9. Collective accuracy improves similarly under502

both methods. Individual accuracy, however, degrades with the recalibration method, while503

it strongly improves with the Shifted-Median method. Our method thus outperforms a mere504

recalibration of personal estimates. Moreover, note that recalibrating initial estimates may505

be useful from an external assessor’s point of view, but does not provide participants with506

an opportunity to improve their accuracy, individually or collectively.507

Our method may, in principle, be applied to different domains. Future work could, for508

instance, test this method in domains where overestimation dominates, by defining a shifted-509

median below the group median; or in domains where the quantities to estimate are negative510

(or at least not strictly positive) or lower than one (i.e., negative in log). Another interesting511

direction for future research would be to explore ways to refine our method. Supplementary512

Figure S13 and S14 show that collective and individual accuracy improved more for very large513

quantities than for moderately large ones, although the levels of underestimation are similar in514

both cases (Figure S2b). This suggests that the linear relationship between the median (log)515

estimates and the (log of the) true value may be insufficient to fully characterize this domain516

of estimation tasks. Considering other distributional properties, such as the dispersion,517

skewness and kurtosis of the estimates received, could help to fine tune the selection method518

to further boost accuracy.519

Finally, let us point out that our population sample consisted of German undergraduate520

students. A previous cross-cultural study conducted in France and Japan, using a similar521
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paradigm, found similar levels of underestimation in both countries, albeit slightly higher522

levels of social information use in Japan [20]. This suggests that our observed underestimation523

bias is widespread in this domain, though systematic comparison of the levels of bias and524

social information use in different (sub-)populations is still lacking. Filling this gap could525

represent a major step forward in research on social influenceability and cognitive biases.526

To conclude, we believe that the mechanisms underlying social information use in esti-527

mation tasks share important commonalities with related fields (e.g., opinion dynamics [61]),528

and that our method has the potential to inspire research in such fields. For instance, one529

could imagine reducing the in-group bias by extending the amount of discrepant/opposite530

views presented to individuals in well-identified opinion groups. Implementing methods simi-531

lar to ours in recommender systems and page-ranking algorithms may thus work against filter532

bubbles and echo chambers, and eventually reduce polarization of opinions [62]. Similarly, it533

is conceivable that the effects of well-known cognitive biases such as the confirmation [63] or534

overconfidence bias [64] could be dampened by strategically sharing social information.535

Materials and Methods536

Computation of the error bars537

The error bars indicate the variability of our results depending on the NQ = 36 questions538

presented to the subjects. We call x0 the actual measurement of a quantity appearing in the539

figures by considering all NQ questions. We then generate the results of Nexp = 1, 000 new540

effective experiments. For each effective experiment indexed by n = 1, ..., Nexp, we randomly541

draw N ′Q = NQ questions among the NQ questions asked (so that some questions can appear542

several times, and others may not appear) and recompute the quantity of interest which now543

takes the value xn. The upper error bar b+ for x0 is defined so that C = 68.3 % (by analogy544

with the usual standard deviation for a normal distribution) of the xn greater than x0 are545

between x0 and x0 + b+. Similarly, the lower error bar b− is defined so that C = 68.3 % of546
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the xn lower than x0 are between x0− b− and x0. The introduction of these upper and lower547

confidence intervals is adapted to the case when the distribution of the xn is unknown and548

potentially not symmetric.549

Fitting procedure used in Figure 8550

Each combination of treatment and number of shared estimates contains 432 estimates.551

When binning data, one has to trade off the number of bins (thus displaying more detailed552

patterns) and the size of the bins (thus avoiding too much noise). In Figure 8, the noise553

within each condition was relatively high when using a bin size below 1. However, bins of554

size 1 were hiding the details of the relationship between 〈S〉 and D, especially the location555

of the bottom of the cusp.556

To circumvent this problem, we use a procedure that is well adapted to such situations.557

First, remark that a specific binning leaves one free to choose on which values the bins are558

centered. For instance, a set of 5 bins centered on -2, -1, 0, 1 and 2 is as valid as a set of 5559

bins centered on -2.5, -1.5, -0.5, 0.5, and 1.5, as the same data are used in both cases. Both560

sets of points produced are replicates of the same data, but we now have 10 points instead561

of 5.562

In each panel of Figure 8, we used such a moving center starting the first bin at -2, and563

the last one at +2, producing histograms (of bin size 1) in steps of 0.1 for the bin center.564

This replicated the data 9 times, thus having overall 10 replicates and 50 points, instead of565

5. We then removed the values beyond D = 2, thus keeping 41 points (D = −2 to D = 2).566

Next, we fitted these points using the following function at τ = 1:567

Sfit = α + β± |D −D0|,

where α, β− and β+ are the fitting parameters, while D0 was fixed using visual inspection.568

At τ > 1, we used the following function, including the dispersion σ:569
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Sfit = α + β± |D −D0|+ β′ σ,

where α, β−, β+ and β′ are the fitting parameters, while D0 was fixed using visual inspection.570

For the fitting, we used the entire interval shown in Figure 8, namely [-2.5, 2.5] (bins are571

of size one, so the dot at D = 2, for instance, shows the average of S between 1.5 and 2.5). In572

a few cases only did we slightly restrict the fitting interval in order to obtain better results:573

• Random treatment, τ = 1: [-1.65, 2.5]574

• Median treatment, τ = 7 and Shifted-Median treatment, τ = 3 and 5: [-1.5, 2.5]575

• Shifted-Median treatment, τ = 9: [-1.2, 1]576

For the fitting, we wrote a program to perform the minimization of least squares. Let577

Q =
∑

i

(
Si−Sifit

)2
=
∑

i

(
Si − α − β± |Di−D0| − β′ σi

)2
be the sum, over all the data in578

the chosen interval (indexed by i), of squared distances between S and Sfit. We then equated579

to 0 the partial derivatives of Q with respect to α, β−, β+ and β′ (when τ > 1) to obtain the580

values of these parameters.581
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in the organization of our study. We are grateful to the ARC research group for their584

constructive feedback. This work was partly funded by the Deutsche Forschungsgemeinschaft585

(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2002/1586

“Science of Intelligence” – project number 390523135.587

Author contributions: B. J. and R. K. designed research; B. J. and R. K. performed re-588

search; B. J. and C. S. analyzed the data and designed the model; the three authors wrote589

the article.590

Corresponding author: Correspondence to Bertrand Jayles – jayles@mpib-berlin.mpg.de591

31



Competing interests: The authors declare no competing interests.592

Data accessibility: The data supporting the findings of this study are available at figshare:593

https://doi.org/10.6084/m9.figshare.12472034.v1594

References595

[1] Ehrlinger J, Readinger WO, Kim B (2016) Decision-making and cognitive biases. Ref-596

erence Module in Neuroscience and Biobehavioral Psychology, Encyclopedia of Mental597

Health (Second Edition), pp. 5–12598

[2] Mahmoodi A, et al. (2015) Equality bias impairs collective decision-making across cul-599

tures. Proceedings of the National Academy of Science of the USA 112(12):3835–3840.600

[3] Cha M, et al. (2010) Measuring user influence in twitter: The million follower fallacy.601

Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media602

pp. 10–17.603

[4] Jansen BJ, et al. (2009) Twitter power: Tweets as electronic word of mouth. Journal604

of the American Society for Information Science and Technology 60(11):2169–2188.605
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[28] Hertwig R, Pachur T, Kurzenhäuser S (2005) Judgments of risk frequencies: Tests of659

possible cognitive mechanisms. Journal of Experimental Psychology: Learning, Memory,660

and Cognition 31(4):621–642.661

34



[29] Scheibehenne B (2018) The psychophysics of number integration: Evidence from the lab662

and from the field. Decision. Advance online publication.663

[30] Mavrodiev P, Tessone CJ, Schweitzer F (2013) Quantifying the effects of social influence.664

Scientific Reports 3:1360.665

[31] Kerckhove CV, et al. (2016) Modelling influence and opinion evolution in online collective666

behaviour. PLoS ONE 11(6):e0157685.667

[32] Becker J, Brackbill D, Centola D (2016) Network dynamics of social influence in the668

wisdom of crowds. Proceedings of the National Academy of Sciences of the United States669

of America 114(26), E5070–E5076.670

[33] Luo Y, Iyengar G, Venkatasubramanian V (2018) Social influence makes self-interested671

crowds smarter: an optimal control perspective. IEEE Transactions on Computational672

Social Systems 5(1):200–209.673

[34] Faria JJ, Dyer JR, Tosh CR, Krause J (2010) Leadership and social information use in674

human crowds. Animal Behaviour 79(4).675

[35] King AJ, et al. (2012) Is the true ’wisdom of the crowd’ to copy successful individuals?676

Biology Letters 8(2):197–200.677

[36] Madirolas G, de Polavieja GG (2015) Improving collective estimations using resistance678

to social influence. PLOS Computational Biology 11(11):e1004594.679
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Supporting information captions740

Table S1: Distribution of cases when the social information provided to an individual was741

higher (D > 0) or lower (D < 0) than their personal estimate, for each combination of742

treatment and number of estimates received τ . As expected, the proportions are roughly743

equal in the Random treatment, while the social information is more often lower than the744

personal estimate in the Median treatment, and more often higher in the Shifted-Median745

treatment.746

Figure S1: Experimental procedure for an example question. The left panel shows the first747

screen in which subjects had to provide their personal estimate. The question was asked748

on the first line, and the answer could be typed on the second line, using a keyboard that749

appeared when clicking on “Ihre Antwort” (“Your answer” in German). Subjects submitted750

their estimates by pushing the “OK” button. A timer was displayed in the top right corner of751

the screen to remind subjects to answer within 30 seconds. The right panel shows the second752

screen in which subjects could revise their estimate after observing answers from other group753

members (in this example 5 answers). As a reminder, the original question, as well as the754

subject’s personal estimate were shown. Subjects provided their second estimate in the same755

way as the first one and the countdown timer was again set on 30 seconds.756
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Figure S2: Median of the logarithm of estimates against the logarithm of the correct answer757

for the 36 questions asked in our experiment (one dot per question). (a) Green colors represent758

general knowledge questions, and orange numerosity questions, i.e., estimating the number759

of objects in an image. The slopes of the linear regression lines are 0.9 and 0.93 respectively,760

suggesting a similar relationship for both classes; (b) Green colors represent the 18 questions761

with the largest true values, and orange the 18 questions with the smallest true values. The762

slopes of the linear regression lines are 0.91 and 0.86 respectively, suggesting that the degree763

of underestimation is robust across different magnitudes.764

Figure S3: Probability density function (PDF) of personal estimates Xp for all conditions765

combined. Dots are the data and the line model simulations.766

Figure S4: Average sensitivity to social influence 〈S〉 against (a) the number of shared767

estimates τ and (b) the average dispersion 〈σ〉 of the social estimates, in the Random (black),768

Median (blue), and Shifted-Median (red) treatments. Filled dots are the data, while empty769

dots and solid lines are simulations of the model without the similarity effect. This model770

underestimates the inverse-U shape in panel a and the decrease of 〈S〉 with 〈σ〉 in panel b.771

Figure S5: Average sensitivity to social influence 〈S〉 against the number of shared estimates772

τ , in the Random (black), Median (blue), and Shifted-Median (red) treatments, when the773

average social information M is higher than the personal estimate Xp (D = M − Xp > 0;774

squares) and when it is lower (D < 0; triangles). Filled symbols represent the data, while775

solid lines and empty symbols are simulations of the model without the similarity effect. This776

model is unable to reproduce the empirical results and predicts flatter curves instead.777

Figure S6: Collective and individual accuracy against the number of shared estimates778

τ , before (filled dots) and after (empty circles) social information sharing, in the Random779

(black), Median (blue), and Shifted-Median (red) treatments. Values closer to 0 indicate780

higher accuracy. Solid and dashed lines are simulations of the model without the similarity781
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effect, before and after social information sharing, respectively.782

Figure S7: Average sensitivity to social influence 〈S〉 against (a) the number of shared783

estimates τ and (b) the average dispersion 〈σ〉 of the social estimates, in the Random (black),784

Median (blue), and Shifted-Median (red) treatments. Filled dots are the data, while empty785

dots and solid lines are simulations of the model without the asymmetry effect.786

Figure S8: Average sensitivity to social influence 〈S〉 against the number of shared estimates787

τ , in the Random (black), Median (blue), and Shifted-Median (red) treatments, when the788

average social information M is higher than the personal estimate Xp (D = M − Xp > 0;789

squares) and when it is lower (D < 0; triangles). Filled symbols represent the data, while790

solid lines and empty symbols are simulations of the model without the asymmetry effect.791

This model is unable to reproduce the empirical discrepancy between 〈S〉 when D < 0 and792

when D > 0.793

Figure S9: Collective and individual accuracy, against the number of shared estimates794

τ , before (filled dots) and after (empty circles) social information sharing, in the Random795

(black), Median (blue), and Shifted-Median (red) treatments. Values closer to 0 indicate796

higher accuracy. Solid and dashed lines are simulations of the model without the asymmetry797

effect, before and after social information sharing, respectively. This model is unable to798

reproduce the improvement in collective accuracy in the Random and Median treatments.799

Figure S10: Collective accuracy against the number of shared estimates τ , before (filled800

dots) and after (empty circles) social information sharing, in the Random (black), Median801

(blue) and Shifted-Median (red) treatments. The population was separated into subjects’802

answers where the average social information received M was lower than their personal803

estimate Xp (D = M −Xp < 0) and subjects’ answers where the average social information804

received was higher than their personal estimate (D > 0). Solid and dashed lines are model805

simulations before and after social information sharing, respectively.806
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Figure S11: Collective accuracy against the number of shared estimates τ , before (filled807

dots) and after (empty circles) social information sharing, in the Random (black), Median808

(blue) and Shifted-Median (red) treatments. The population was separated, in each condi-809

tion, into subjects whose sensitivity to social influence S was lower than the median value810

of S in that condition, and subjects whose sensitivity to social influence S was higher than811

the median value of S in that condition. Solid and dashed lines are model simulations before812

and after social information sharing, respectively.813

Figure S12: Collective and individual accuracy against the number of shared estimates814

τ , before (filled dots) and after (empty circles) social information sharing, in the Shifted-815

Median treatment. Squares denote the results of the recalibration of personal estimates816

(see Discussion for details). Collective accuracy improves similarly with this recalibration817

method as in the Shifted-Median treatment. However, individual accuracy decays with the818

recalibration method, while it improves substantially in the Shifted-Median treatment.819

Figure S13: Collective accuracy against the number of shared estimates τ , before (filled820

dots) and after (empty circles or squares) social information sharing, in the Random (black),821

Median (blue) and Shifted-Median (red) treatments. Top/bottom panels indicate the results822

of the half of our questions with lowest/highest true values. Before social information sharing,823

collective accuracy is higher (i.e., closer to 0) for moderately large values than for very large824

values, but improves more in the latter than in the former.825

Figure S14: Individual accuracy against the number of shared estimates τ , before (filled826

dots) and after (empty circles or squares) social information sharing, in the Random (black),827

Median (blue) and Shifted-Median (red) treatments. Top/bottom panels indicate the results828

of the half of our questions with lowest/highest true values. Before social information sharing,829

individual accuracy is higher (i.e., closer to 0) for moderately large values than for very large830

values, but improves more in the latter than in the former.831

41



SI Appendix. Belonging to:1

Debiasing the crowd: how to select social2

information to improve judgment accuracy?3

Bertrand Jayles1,∗, Clément Sire2, Ralf H.J.M Kurvers1
4

1Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94,5

14195 Berlin, Germany6

2Laboratoire de Physique Théorique, Centre National de la Recherche Scientifique (CNRS),7

Université de Toulouse – Paul Sabatier (UPS), Toulouse, France8

1 Experimental design9

Participants were 216 students, distributed over 18 groups of 12 individuals, from the Bielefeld10

University, taking an Introductory Biology course (16-18 April 2018). Prior to participation,11

all participants signed an informed consent form and the experiment was approved by the12

Institutional Review Board of the Max Planck Institute for Human Development (A 2018/11).13

Each of the 12 subjects—in each of the 18 groups—was confronted with 36 estimation14

questions (see the list in section 2) on a tactile tablet (Lenovo TAB 2 A10-30). Each question15

was asked twice: first, subjects provided their personal estimate Ep. Next, they received as16

social information the estimate(s) of one or more group members (i.e. other subjects in17

the same room at the same time), and were asked to provide a second estimate Es. As a18

∗Corresponding author – jayles@mpib-berlin.mpg.de
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reminder, their personal estimate was also shown during the second answering of a question.19

Supplementary Fig. S1 illustrates how social information was displayed on the tablets: on20

the right side of the screen was a blue panel showing all pieces of social information, sorted21

in increasing order. All tablets were controlled by a central server, and participants could22

only proceed to the next question once all individuals provided their estimate. A 30 seconds23

count down timer was shown on the screen to motivate subjects to answer within this time24

window, although they were allowed to take more time.25

When providing social information, we varied (i) the number of estimates selected (1, 3, 5,26

7, 9, or 11), and (ii) the selection procedure (Random, Median, and Shifted-Median). In the27

Random treatment, subjects received random estimates from their 11 group members. In the28

Median treatment, we presented the estimates of which logarithm1 was closest to the median29

of the logarithms of the 12 personal estimates. In the Shifted-Median treatment, subjects30

were provided the estimates of which logarithm was closest to a shifted (overestimated) value31

of the median of the logarithms of the 12 personal estimates (see Main Text, Material and32

Methods). The participants were not aware of these different treatments.33

Importantly, in all treatments, subject did not receive their own estimate as social infor-34

mation. In total, there were 6 different numbers of estimates selected × 3 treatments = 1835

unique conditions. In every session, the 36 questions were randomly assigned to six blocks36

of six questions. Across groups, the order of the blocks, and the questions within a block,37

were randomized. A block always contained each number of estimates to be shown (1, 3,38

5, 7, 9 and 11) once and was assigned one of the three treatments (Random, Median or39

Shifted-Median). Each group experienced two blocks of each treatment, and thus each of the40

18 unique conditions twice. The randomization was constrained in such a way that at the41

end of the whole experiment, all 36 questions were asked once in all 18 different conditions,42

resulting in 36 estimates (1 per question) × 12 subjects = 432 estimates (×2: before and43

after receiving social information) per condition.44

1The logarithmic scale is consistent with the logarithmic perception of numbers [43].
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Students received course credits for participation. Additionally, we incentivized them

based on their performance P , defined as:

Pi =
1

2

(
Median q

∣∣∣∣log

(
Epi,q

Tq

)∣∣∣∣ + Median q

∣∣∣∣log

(
Esi,q

Tq

)∣∣∣∣) ,
where i and q index individuals and questions, Ep and Es are estimates before (“personal”)45

and after (“second”) receiving social information, and T is the correct answer to the question46

at hand. This performance criterion measures, for each individual, the median distance (in47

terms of orders of magnitude) of their estimates to the corresponding correct answers to all48

questions, averaged over the two estimates (before and after receiving social information).49

The payments were defined according to the distribution of performances measured in [20]:50

• Pi < 0.4: 5e (∼ 20% of subjects)51

• 0.4 ≤ Pi < 0.5: 4e (∼ 30% of subjects)52

• Pi ≥ 0.5: 3e (∼ 50% of subjects)53

2 List of questions54

Below is the list of questions used in the experiment and the corresponding true values T .55

In the original experiment, the questions were asked in German. Questions were a mix of56

general knowledge and numerosity, i.e., estimating the number of objects (e.g. marbles,57

matches, animals) in an image. Images were shown for 6 seconds. 18 questions were taken58

from a previous study [20], and 18 were new (shown in italic). Questions 21 and 32 were the59

same in [20], but were asked in different units, such that the true answer and corresponding60

estimates were substantially different. Therefore, we considered these as new.61

1. What is the population of Tokyo and its agglomeration? T = 38, 000, 00062

2. What is the population of Shanghai and its agglomeration? T = 25, 000, 00063
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3. What is the population of Seoul and its agglomeration? T = 26, 000, 00064

4. What is the population of New-York City and its agglomeration? T = 21, 000, 00065

5. What is the population of Madrid and its agglomeration? T = 6, 500, 00066

6. What is the population of Melbourne and its agglomeration? T = 4, 500, 00067

7. How many ebooks were sold in Germany in 2016? T = 28 , 100 , 00068

8. How many books does the American library of Congress hold? T = 16, 000, 00069

9. How many people died from cancer in the world in 2015? T = 8, 800, 00070

10. How many smartphones were sold in Germany in 2017? T = 24 , 100 , 00071

11. What was the total distance of the 2016 Tour de France (in kilometers)? T = 3 , 52972

12. How many insured cars were stolen in Germany in 2016? T = 18 , 22773

13. Marbles 1: How many marbles do you think are in the jar in the following image?74

T = 10075

76

14. Marbles 2: How many marbles do you think are in the jar in the following image?77

T = 45078

4



79

15. Matches 1: How many matches do you think are present in the following image? T =80

24081

82

16. Matches 2: How many matches do you think are present in the following image? T =83

48084

85

17. How many people identify as indigenous in Mexico? T = 6 , 000 , 00086

18. How many cars were registered in Germany in 2016? T = 45 , 071 , 00087

19. What is the diameter of the Sun (in kilometers)? T = 1 , 391 , 40088

20. What is the distance between Earth and the Moon (in kilometers)? T = 384, 40089
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21. How many stars does the Milky way hold? T = 235 , 000 , 000 , 00090

22. How many kilometers is one light-year (in billion kilometers)? T = 9, 46091

23. How much is the per-day income of Mark Zuckerberg (in dollars)? T = 4 , 400 , 00092

24. How many cells are there in the human body (in billion cells)? T = 100, 00093

25. How many bees do you think are in this picture? T = 97694

95

26. What is the average annual salary of a player in the Bundesliga (in euros)? T = 1 , 456 , 56596

27. How many gnus do you think are in this picture? T = 48397

98

28. How many bikes do you think there are in Germany? T = 62 , 000 , 00099

29. What is the distance from planet Mercury to the Sun (in kilometers)? T = 58, 000, 000100

30. What is the total length of the metal threads used in the braided cables of the Golden101

Gate Bridge (in kilometers)? T = 129, 000102

31. What is the mass of the pyramid of Cheops (in tons)? T = 5, 000, 000103
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32. How much did the building of the Burj Khalifa tower in Dubai cost (in dollars)?104

T = 1 , 500 , 000 , 000105

33. What is the average salary for players at Bayern Munich (in euros)? T = 5 , 460 , 000106

34. What is the distance from Berlin to New-York (in kilometers)? T = 6 , 188107

35. How many tourists were recorded in France in 2016? T = 82 , 600 , 000108

36. How many UFO sightings have been reported to the National UFO Reporting Center in109

its history? T = 90 , 000110

3 Supplementary table111

Treatment τ D > 0 (%) D < 0 (%)
Random 1 50 50
Random 3 52 48
Random 5 52 48
Random 7 49 51
Random 9 56 44
Random 11 53 47
Median 1 48 52
Median 3 44 56
Median 5 37 63
Median 7 32 68
Median 9 41 59
Median 11 52 48

Shifted-Median 1 68 32
Shifted-Median 3 65 35
Shifted-Median 5 56 44
Shifted-Median 7 45 55
Shifted-Median 9 42 58
Shifted-Median 11 49 51

Table S1: Distribution of cases when the social information provided to an individual was higher
(D > 0) or lower (D < 0) than their personal estimate, for each combination of treatment and
number of estimates received τ . As expected, the proportions are roughly equal in the Random
treatment, while the social information is more often lower than the personal estimate in the Median
treatment, and more often higher in the Shifted-Median treatment.
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4 Supplementary figures112

Fig. S1: Experimental procedure for an example question. The left panel shows the first screen in
which subjects had to provide their personal estimate. The question was asked on the first line,
and the answer could be typed on the second line, using a keyboard that appeared when clicking
on “Ihre Antwort” (“Your answer” in German). Subjects submitted their estimates by pushing the
“OK” button. A timer was displayed in the top right corner of the screen to remind subjects to
answer within 30 seconds. The right panel shows the second screen in which subjects could revise
their estimate after observing answers from other group members (in this example 5 answers). As
a reminder, the original question, as well as the subject’s personal estimate were shown. Subjects
provided their second estimate in the same way as the first one and the countdown timer was again
set on 30 seconds.
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Fig. S2: Median of the logarithm of estimates against the logarithm of the correct answer for the
36 questions asked in our experiment (one dot per question). (a) Green colors represent general
knowledge questions, and orange numerosity questions, i.e., estimating the number of objects in an
image. The slopes of the linear regression lines are 0.9 and 0.93 respectively, suggesting a similar
relationship for both classes; (b) Green colors represent the 18 questions with the largest true values,
and orange the 18 questions with the smallest true values. The slopes of the linear regression lines are
0.91 and 0.86 respectively, suggesting that the degree of underestimation is robust across different
magnitudes.
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Fig. S3: Probability density function (PDF) of personal estimates Xp for all conditions combined.
Dots are the data and the line model simulations.
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Model without similarity effect: Figures S4 to S6113
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Fig. S4: Average sensitivity to social influence 〈S〉 against (a) the number of shared estimates τ
and (b) the average dispersion 〈σ〉 of the social estimates, in the Random (black), Median (blue),
and Shifted-Median (red) treatments. Filled dots are the data, while empty dots and solid lines
are simulations of the model without the similarity effect. This model underestimates the inverse-U
shape in panel a and the decrease of 〈S〉 with 〈σ〉 in panel b.
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Fig. S5: Average sensitivity to social influence 〈S〉 against the number of shared estimates τ , in
the Random (black), Median (blue), and Shifted-Median (red) treatments, when the average social
information M is higher than the personal estimate Xp (D = M −Xp > 0; squares) and when it
is lower (D < 0; triangles). Filled symbols represent the data, while solid lines and empty symbols
are simulations of the model without the similarity effect. This model is unable to reproduce the
empirical results and predicts flatter curves instead.
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Fig. S6: Collective and individual accuracy against the number of shared estimates τ , before (filled
dots) and after (empty circles) social information sharing, in the Random (black), Median (blue),
and Shifted-Median (red) treatments. Values closer to 0 indicate higher accuracy. Solid and dashed
lines are simulations of the model without the similarity effect, before and after social information
sharing, respectively.
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Model without asymmetry effect: Figures S7 to S9114

1 3 5 7 9 11

0.25

0.3

0.35

0.4

0.45

τ

〈S
〉

0.2 0.4 0.6 0.8 1
〈σ〉

Fig. S7: Average sensitivity to social influence 〈S〉 against (a) the number of shared estimates τ
and (b) the average dispersion 〈σ〉 of the social estimates, in the Random (black), Median (blue),
and Shifted-Median (red) treatments. Filled dots are the data, while empty dots and solid lines are
simulations of the model without the asymmetry effect.
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Fig. S8: Average sensitivity to social influence 〈S〉 against the number of shared estimates τ , in
the Random (black), Median (blue), and Shifted-Median (red) treatments, when the average social
information M is higher than the personal estimate Xp (D = M −Xp > 0; squares) and when it
is lower (D < 0; triangles). Filled symbols represent the data, while solid lines and empty symbols
are simulations of the model without the asymmetry effect. This model is unable to reproduce the
empirical discrepancy between 〈S〉 when D < 0 and when D > 0.

12



0.1

0.2

0.3

0.4

0.5
C

ol
le

ct
iv

e 
A

cc
ur

ac
y

Data before SI
Data after SI

Model before SI
Model after SI

1 3 5 7 9 11
0.3

0.4

0.5

0.6

0.7

0.8

τ

In
di

vi
du

al
 A

cc
ur

ac
y

1 3 5 7 9 11
τ

1 3 5 7 9 11
τ

Fig. S9: Collective and individual accuracy, against the number of shared estimates τ , before (filled
dots) and after (empty circles) social information sharing, in the Random (black), Median (blue),
and Shifted-Median (red) treatments. Values closer to 0 indicate higher accuracy. Solid and dashed
lines are simulations of the model without the asymmetry effect, before and after social information
sharing, respectively. This model is unable to reproduce the improvement in collective accuracy in
the Random and Median treatments.
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Fig. S10: Collective accuracy against the number of shared estimates τ , before (filled dots) and
after (empty circles) social information sharing, in the Random (black), Median (blue) and Shifted-
Median (red) treatments. The population was separated into subjects’ answers where the average
social information received M was lower than their personal estimate Xp (D = M − Xp < 0)
and subjects’ answers where the average social information received was higher than their personal
estimate (D > 0). Solid and dashed lines are model simulations before and after social information
sharing, respectively.
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Fig. S11: Collective accuracy against the number of shared estimates τ , before (filled dots) and
after (empty circles) social information sharing, in the Random (black), Median (blue) and Shifted-
Median (red) treatments. The population was separated, in each condition, into subjects whose
sensitivity to social influence S was lower than the median value of S in that condition, and subjects
whose sensitivity to social influence S was higher than the median value of S in that condition. Solid
and dashed lines are model simulations before and after social information sharing, respectively.
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Fig. S12: Collective and individual accuracy against the number of shared estimates τ , before (filled
dots) and after (empty circles) social information sharing, in the Shifted-Median treatment. Squares
denote the results of the recalibration of personal estimates (see Discussion for details). Collective
accuracy improves similarly with this recalibration method as in the Shifted-Median treatment.
However, individual accuracy decays with the recalibration method, while it improves substantially
in the Shifted-Median treatment.
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Fig. S13: Collective accuracy against the number of shared estimates τ , before (filled dots) and
after (empty circles or squares) social information sharing, in the Random (black), Median (blue)
and Shifted-Median (red) treatments. Top/bottom panels indicate the results of the half of our
questions with lowest/highest true values. Before social information sharing, collective accuracy is
higher (i.e., closer to 0) for moderately large values than for very large values, but improves more
in the latter than in the former.
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Fig. S14: Individual accuracy against the number of shared estimates τ , before (filled dots) and
after (empty circles or squares) social information sharing, in the Random (black), Median (blue)
and Shifted-Median (red) treatments. Top/bottom panels indicate the results of the half of our
questions with lowest/highest true values. Before social information sharing, individual accuracy is
higher (i.e., closer to 0) for moderately large values than for very large values, but improves more
in the latter than in the former.
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