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Abstract

It has been shown that multilingual BERT
(mBERT) yields high quality multilingual rep-
resentations and enables effective zero-shot
transfer. This is suprising given that mBERT
does not use any kind of crosslingual sig-
nal during training. While recent literature
has studied this effect, the exact reason for
mBERT’s multilinguality is still unknown. We
aim to identify architectural properties of
BERT as well as linguistic properties of lan-
guages that are necessary for BERT to become
multilingual. To allow for fast experimenta-
tion we propose an efficient setup with small
BERT models and synthetic as well as natu-
ral data. Overall, we identify six elements that
are potentially necessary for BERT to be mul-
tilingual. Architectural factors that contribute
to multilinguality are underparameterization,
shared special tokens (e.g., “[CLS]”), shared
position embeddings and replacing masked to-
kens with random tokens. Factors related to
training data that are beneficial for multilin-
guality are similar word order and comparabil-
ity of corpora.

1 Introduction

Multilingual models, i.e., models that are capa-
ble of processing more than one language with
comparable performance, are central to natural lan-
guage processing. They are useful as fewer models
need to be maintained to serve many languages,
resource requirements are reduced, and low- and
mid-resource language can benefit from crosslin-
gual transfer, thus achieving a higher performance.
Further, having source and target representations
in the same space, multilingual models are useful
in machine translation, annotation projection and
typological research. Given 7000+ languages in
the world, the need for multilingual models seems
obvious.

Figure 1: Three architectural modifications harm mul-
tilinguality (column 2 compared to 1). Together with
overparameterization almost no multilinguality is left
(see column 3). Pairing a language with its inversion
(i.e., inverted word order) destroys multilinguality as
well (column 4).

With the rise of static word embeddings count-
less multilingual embedding algorithms have been
proposed (Mikolov et al., 2013; Hermann and Blun-
som, 2014; Faruqui and Dyer, 2014); for a survey
see (Ruder et al., 2019). Pretrained language mod-
els (Peters et al., 2018; Howard and Ruder, 2018;
Devlin et al., 2019) have been proven to yield ex-
ceptional performance across a variety of tasks and
generally outperform static word embeddings. A
simple multilingual model is multilingual BERT1

(mBERT). It is trained on the concatenation of the
104 largest Wikipedias with a shared subword vo-
cabulary. There is no additional crosslingual signal.
Still, mBERT yields high-quality multilingual rep-
resentations (Pires et al., 2019; Wu and Dredze,
2019; Hu et al., 2020).

The reason for mBERT’s multilinguality is – to
the best of our knowledge – still unknown. Wang

1https://github.com/google-research/
bert/blob/master/multilingual.md
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et al. (2019) provide an extensive study which in-
vestigates properties of languages and model archi-
tecture. They conclude that a shared vocabulary is
not necessary, but that the model needs to be deep
and languages need to share a similar “structure”.
Artetxe et al. (2019) show that neither a shared vo-
cabulary nor joint pretraininig is required for BERT
to be multilingual.

We continue this line of research and investigate
the reason for BERT’s multilinguality. In total we
find indications that six elements influence the mul-
tilinguality of BERT. Figure 1 provides a summary
of our main findings.

Contributions: i) BERT is a large model that
consumes tremendous resources. We propose an
experimental setup with small BERT models and a
mix of synthetic and natural data that allows for fast
experimentation. ii) We hypothesize that BERT is
multilingual because of a limited number of param-
eters. Thus the model is forced to use its parameters
efficiently, share parameters across languages and
thus exploit common structures by aligning repre-
sentations. We provide experimental evidence for
this hypothesis. ii) We show that shared special
tokens, shared position embeddings and replacing
masked tokens with random words contribute to
multilinguality. iii) We show that structural similar-
ity across languages in form of similar word order
is essential for BERT to be multilingual. Further
we provide an initial results of how word order
similarity across languages influences performance.
iv) We provide initial experiments showing that the
degree of comparability of training corpora influ-
ences the degree of multilinguality. v) Using above
insights we perform initial experiments to create
better multilingual models.

Note that this paper is work in progress. Given
our limited compute infrastructure we experi-
mented in a setup that allows gaining insights
quickly. We are currently working on transferring
the experiments from the small laboratory setting
to real-world data, and examing whether we can
verify our findings there. Our code is publicly avail-
able.2

2 Setup and Hypotheses

2.1 Setup

BERT’s size and training time hinders fast exper-
imentation. Thus we propose a setup that allows

2https://github.com/pdufter/minimult

'He ate wild honey. '

['He', 'ate', 'wild', 'hon', '##e', '##y', '.']

[195, 1291, 1750, 853, 76, 80, 8] [2243, 3339, 3798, 2901, 2124 ,2128, 2056]

['::He', '::ate', '::wild', '::hon', '::##e', '::##y', '::.']
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Figure 2: How to create a Fake-English sentence using
an index shift of 2048.

for fast experimentation and for validating multilin-
guality. We hypothesize that we can gain insights
in such a reduced setup faster. Our assumption
is that those insights then transfer to a larger real
world setup – this obviously needs to be verified.

Languages. Wang et al. (2019) propose to con-
sider English and Fake-English, a language that is
created by shifting unicode data points by a large
constant. Fake-English in their case has the exact
same linguistic properties as English, but is repre-
sented by different unicode data points.

We follow a similar approach, but instead of
shifting unicode datapoints we simply shift token
indices after tokenization by a constant; shifted
tokens are prefixed by “::” and added to the vocab-
ulary. Shifting token indices by a large constant
doubles the size of the vocabulary. See Figure 2
for an example of how to create a Fake-English
sentence.

We prefer shifting token indices rather than uni-
code code points and argue that this is a cleaner
setup. For example, the BERT tokenizer treats
some punctuation as special symbols (e.g., “dry-
cleaning” is tokenized as [“dry”, “-”, “##cleaning”],
not as [“dry”, “##-”, “##cleaning”] ). Thus, with
a unicode shift, tokenizations of English and Fake-
English might differ.

Training Data. For our setup, aimed at support-
ing fast experimentation, a small corpus with lim-
ited vocabulary and limited character range is de-
sirable. We work on the English language and use
the English Easy-to-Read version of the Parallel
Bible Corpus (Mayer and Cysouw, 2014). The cor-
pus is structured into verses and is word-tokenized.
As each verse can contain multiple sentences we
perform sentence splitting using NLTK (Loper and
Bird, 2002). The final corpus has 17178 sentences,
228K words, a vocabulary size of 4449 and 71 dis-
tinct characters. The median sentence length is 12
words.

By creating a Fake-English version of this corpus



we get a shifted replica and thus a sentence-parallel
corpus.

Vocabulary. We create a vocabulary of size
2048 from the English corpus with the wordpiece
tokenizer.3 We use the same vocabulary for English
and Fake-English. Thus, our final vocabulary size
is 4096.

Model. We use the BERT-Base architecture (De-
vlin et al., 2019) with only minor modifications
to achieve a smaller model: we divide the hidden
dimension, the intermediate dimensions of the feed
forward layer as well as the number of attention
heads by 12 to obtain hidden size: 64, intermedi-
ate size: 256, number of attention heads: 1. Note
that this leaves us with just a single attention head.
However, Wang et al. (2019) found that the num-
ber of attention heads is neither important for the
overall performance nor for the multilinguality.

Training Parameters. We tuned the training
parameters to achieve a reasonable perplexity on
the training corpus. Unless indicated differently we
use a batch size of 256, train for 100 epochs with
AdamW (Loshchilov and Hutter, 2018) (learning
rate 2e-3, weight decay 0.01, epsilon 1e-6), and
use 50 warmup steps. We only use the masked-
language-modeling objective and do not use next-
sequence-prediction as it has been found to be
harmful (Wang et al., 2019). With this setup we
can train a single model in under 40 minutes on
a single GeForce GTX 1080Ti. To accomodate
for stochasticity we run each experiment with 5
different seeds and report the mean and standard
deviation across runs.

2.2 Evaluation

We evaluate two properties of our trained language
models: the overall model fit (i.e., is the trained
language model of high quality) and the degree of
multilinguality.

2.2.1 Model Fit

MLM Perplexity. To verify that BERT was suc-
cessfully trained we evaluate the models with per-
plexity (using e as base) on the training data. Note
that perplexity is only computed on randomly
masked tokens. Given a set of masked tokens in
a text w1, . . . , wn and probabilities pw1 , . . . , pwn

that the correct token was predicted by the model,

3We use https://github.com/huggingface/
tokenizers

perplexity is given by

perpl. = e−1/n
∑n

k=1 log(pwk
).

In our corpus on average n = 68K tokens are
masked.

Our research goal is to investigate the reason for
BERT’s multilinguality. Creating language models
that generalize well is only secondary. Therefore
we do not see an immediate need to introduce val-
idation or test data for computing the perplexity.
While this might be easily critisized, we do not
see major problems for the purpose of this study at
the moment. Note that all multilingual evaluations
are parameter-free and thus safe to perform on the
training data.

2.2.2 Multilinguality
We evaluate the degree of multilinguality with three
tasks. Representations from different layers of
BERT can be considered. We evaluate representa-
tions from layer 0 (uncontextualized) and layer 8
(contextualized). Several papers have found layer
8 to work well for semantic and multilingual tasks
(Tenney et al., 2019; Hewitt and Manning, 2019;
Sabet et al., 2020). Note that representations from
layer 0 include position and segment embeddings
as well as the layer normalization which is applied
in the initial embedding layer of BERT.

Word Alignment. The way we created the cor-
pus, we have a sentence-aligned corpus with En-
glish and Fake-English. The gold word alignment
between two sentences is simply the identity align-
ment. We can use this automatically created gold-
alignment to evaluate BERT on a word alignment
task. (Sabet et al., 2020) have found that mBERT
performs generally well on the word alignment
task.

To create word alignments using BERT we fol-
low Sabet et al. (2020). Consider the parallel sen-
tences s(eng), s(fake), with length n. We extract
d-dimensional wordpiece embeddings from the l-
th layer of BERT for the corresponding words to
obtain the embedding matrices E(s(k)) ∈ Rn×d

for k ∈ {eng, fake}. By considering cosine
similarity we obtain the similarity matrix S ∈
[0, 1]n×n induced by the embeddings where Sij :=
cosine-sim

(
E(s(eng))i, E(s(fake))j

)
. We then align

two wordpieces i and j if

(i = argmax
l

Sl,j) ∧ (j = argmax
l

Si,l).



The alignments are then evaluated using preci-
sion, recall and F1 as follows:

prec. =
|P ∩G|
|P |

rec. =
|P ∩G|
|G|

F1 =
2 prec. rec.
prec. + rec.

where P is the set of predicted alignments and G
the set of true alignments.

Sentence Retrieval. Sentence retrieval is a pop-
ular way in evaluating crosslingual representations
(e.g., (Artetxe and Schwenk, 2019)). In a parallel
corpus, sentence retrieval is another possible way
of evaluating multilinguality. Again, we obtain the
embeddings E(s(k)) as before. Now, we obtain
the sentence embedding e

(k)
s simply by averaging

vectors across all tokens (ignoring CLS and SEP to-
kens) in a sentence. Computing cosine similarities
between English and Fake-English sentences yields
the similarity matrix (rij)i,j∈[m] = R ∈ Rm×m for
m sentences (m = 17178 in our case).

Given a query sentence s(eng), we obtain the re-
trieved sentences in Fake-English by ranking them
according to similarity. We compute precision as

p =
1

m

m∑
i=1

1{argmin
l

ril = i}.

Note that we can do the retrieval step in two
directions: using English as query language and
using Fake-English as query. We report the mean
precision of those two directions and call the mea-
sure retr.

Word Translation. Last, we consider word
translation. Again, by having shifted the vocab-
ulary we have a ground-truth dictionary by con-
struction. We obtain word vectors by feeding each
word in the vocabulary individually to BERT. That
is, we input “[CLS] {token} [SEP]”.

We evaluate word translation in the same way as
sentence retrieval and again average the translation
scores of the two directions (English and Fake-
English as query language). We call this measure
trans.

2.3 Architectural Properties
In this section we formulate hypotheses as to which
components of BERT’s architecture contribute to
multilinguality.

ENGLISH

195 1291 1750 853 76 80 8

1 2 3 4 5 6 7

0 0 0 0 0 0 0

2243 3339 3798 2901 2124 2128 2056

129 130 131 132 133 134 135

1 1 1 1 1 1 1

FAKE-ENGLISH

Token 
Indices

Position 
Indices

Segment 
Indices

Figure 3: Input indices to BERT with language specific
position and segment embeddings.

Overparameterization: overparam. We hy-
pothesize that if BERT is severely overparameter-
ized the model should have enough capacity to
model each language separately without creating
a multilingual space. Conversely, if the number of
parameters is small, the model has a need to use
parameters efficiently. In that case, it would be
beneficial for BERT to identify common structures
common among languages, align their “embedding
manifolds” and model them together, consequently
creating a multilingual space.

To test this we train a version of BERT, that has
the same configuration as BERT-base (i.e., hidden
size: 768, intermediate size: 3072, number of at-
tention heads: 12) and is thus much larger than our
standard configuration. Given our small training
corpus size and the low number of languages we
argue that this model is severely overparameterized.
Note that for this overparameterized version we use
a learning rate of 1e-4 (which was also used for the
original BERT training). With the larger learning
rate that we use for the small model we found that
the overparameterized model does not converge.

Shared Special Tokens: shift-special. It has
been found that a shared vocabulary is not essen-
tial for mBERT to be multilingual (Wang et al.,
2019; Artetxe et al., 2019). Similarly, in our set-
ting the vocabulary is not shared. However in prior
studies, special tokens are usually shared across
languages. Those include [UNK], [CLS], [SEP],
[MASK], [PAD]. We investigate whether having
shared special tokens contributes to multilingual-
ity. This could be the case as those tokens are very
frequent and could serve as “anchor points” for the
languages. To investigate this, we shift the spe-
cial tokens with the same shift as applied to token
indices (shift-special).

Shared Position Embeddings: lang-pos. Posi-
tion and segment embeddings are usually shared
across languages. We investigate their contribution
to multilinguality by using language-specific posi-
tion (lang-pos) and segment embeddings. For an
example see Figure 3.

Random Word Replacement: no-random.



The masked language modeling task as pro-
posed by Devlin et al. (2019) masks out 15% of
tokens in a sentence. These tokens are replaced
with ”[MASK]” with probability p[mask] = 80%,
remain unchanged with p[id] = 10% and are re-
placed with a random word of the vocabulary with
p[rand] = 10%. Replacement with a random word
is not constrained to be from the same language:
the randomly sampled token can come from any
language. Thus Fake-English tokens could appear
in an English sentence and vice-versa. We hypoth-
esize that this random replacement contributes to
multilinguality.

We denote the triple p = (p[mask], p[id], p[rand])
and investigate how setting p = (0.9, 0.1, 0.0) (no-
random) affects multilinguality.

Note that this affects the perplexity evaluation as
well (as masked words are never replaced with ran-
dom words). Thus perplexity numbers are not com-
parable with other approaches. The BERT models
coming out of this approach are most likely less
robust towards random noise in input sentences.
We plan to investigate this effect in future work.

2.4 Linguistic Properties

Inverted Word Order: inv-order. Wang et al.
(2019) shuffled word order in sentences randomly
and found that word order has some, but not a se-
vere effect on multilinguality. They conclude that
“structural similarity” across languages is important
without further specifying this term.

We investigate the extreme case where word or-
der is completely flipped (inv-order). To this end
we invert each sentence in the Fake-English cor-
pus such that the last word becomes the first word.
Note that, besides the reading order, all properties
of the languages are preserved (including ngram
statistics). Thus we argue that the structural simi-
larity among English and inverted Fake-English is
very high.

Degree of Comparability of Corpora: no-
parallel. We argue that the similarity of the train-
ing corpora influences “structural similarity” of the
languages as well. That is, if we train on a par-
allel corpus we expect the language structures to
be more similar than when we train on two inde-
pendent corpora, potentially coming from different
domains. For the original mBERT one can argue
that Wikipedias across languages are at least in the
same domain, share some articles and thus are com-
parable, yet not parallel data. To test this hypothesis

Figure 4: Principal component analysis of the token
embeddings for the original model for a single seed.
One can clearly see that the representations of the two
languages are separated yet have a similar structure.
The nearest neighbor of almost all tokens are the re-
spective tokens in the other language (i.e., the nearest
neighbor of “go” is “::go”). This is quantitatively con-
firmed in Table 1

we train on a non-parallel corpus (no-parallel). We
achieve this by splitting the Bible into two halves,
using the first half for English and the second half
for Fake-English, thus avoiding any parallel sen-
tences. We still evaluate this model on the complete
Bible.

2.5 Baseline: untrained

As a consistency check for our experiments we
consider random embeddings in the form of an
randomly initialized but untrained BERT model.

3 Results

3.1 Architectural Properties

Table 1 shows results for vectors extracted from
layer 0 (uncontextualized) and from layer 8 (con-
textualized). One can see that the original model
(line/ID 0) fits the data well (perpl = 7.42). As
expected it shows a high degree of multilingual-
ity. Alignment is an easy task with shared position
embeddings (as the gold standard alignment is the
identity alignment): Align. = 1.00. Retrieval works
better with contextualized representations on layer
8 (0.97 vs. 0.54), whereas word translation works
better on layer 0 (0.88 vs. 0.79), as expected. Over-
all the embeddings seem to capture the similarity of
English and Fake-English exceptionally well (see
Figure 4 for a PCA of the token embeddings). The
random BERT models perform poorly (lines 18
and 19), except for the alignment task with shared



position embeddings. We need to keep this arte-
fact of the alignment task in mind when comparing
results.

When applying our architectural modifica-
tions (lang-pos, shift-special, no-random) individu-
ally we see slight decreases in multilinguality (lines
1, 2, 4), but for no-random we even see an increase
(line 4). Apparently, applying just a single modifi-
cation is not enough, as this can be compensated by
the model. Indeed, when using two modifications
at a time (lines 5–7) multilinguality goes down and
when using all three modifications (line 8) one can
see that the degree of multilinguality is drastically
lowered. Note that the language model quality in
terms of perplexity is stable across all models (6.60
– 7.89). Keep in mind that perplexity is not directly
comparable when considering the no-random mod-
ification.

Compared to the original, the overparameter-
ized model (ID 15) exhibits lower scores for word
translation, but higher ones for retrieval. Gener-
ally it fits the data better by showing even lower
perplexity (2.10). However, when we apply our
three architectural modifications (ID 17), multi-
linguality drops to 0. We thus conclude that by
decoupling languages with the proposed modifica-
tions and severely increasing the number of param-
eters, it is possible to get a language model with
the comparable performance that is not multilin-
gual. Conversely, this result indicates that the four
architectural properties are necessary for BERT to
be effectively multilingual.

3.2 Linguistic Properties

As mentioned above we assume that having the
same “positional structure” in two languages helps
BERT to align embedding spaces. Table 1 shows
the effect of inverting Fake-English (lines 3, 9).
Multilinguality breaks almost completely – inde-
pendently of any architectural modifications (ID
3 vs. 9). Having a language with the exact same
structure (same ngram statistics, vocabulary size
etc.), only with inverted order, seems to block
BERT from creating a multilingual space – even in
the most favorable conditions. Most importantly
though, the language model fit is unchanged: per-
plexity is almost the same as for the original model.
We conclude that having a similar word order struc-
ture is necessary for BERT to create a multilingual
space. Our hypothesis is that the positional encod-
ing hinders the learning of a multilingual space,

Figure 5: Cosine similarity matrices of position em-
beddings. The maximum length after tokenization in
our experiments is 128. If language specific position
embeddings are used, the range 0-127 is used by En-
glish and 128-255 by Fake-English. Note that similar-
ity matrices are symmetric by definition and thus we
only show the upper triangular matrix.



Layer 0 Layer 8
ID Experiment MLM Perpl. Align. Retr. Trans. Align. Retr. Trans.

0 original 7.42 0.15 1.00 0.00 0.54 0.08 0.88 0.02 1.00 0.00 0.97 0.00 0.79 0.03

1 lang-pos 7.73 0.11 0.98 0.02 0.68 0.15 0.40 0.09 0.99 0.00 0.61 0.20 0.09 0.05
2 shift-special 7.47 0.13 1.00 0.00 0.49 0.03 0.88 0.01 1.00 0.00 0.97 0.00 0.63 0.13
4 no-random *6.83 0.35 1.00 0.00 0.58 0.05 0.87 0.02 1.00 0.00 0.96 0.01 0.82 0.04
5 lang-pos;shift-special 7.89 0.40 0.84 0.17 0.36 0.30 0.27 0.20 0.88 0.16 0.38 0.32 0.05 0.04
6 lang-pos;no-random *7.42 0.29 0.99 0.01 0.47 0.21 0.36 0.12 0.99 0.01 0.47 0.26 0.25 0.12
7 shift-special;no-random *6.60 0.19 1.00 0.00 0.58 0.04 0.85 0.01 1.00 0.00 0.97 0.00 0.79 0.04
8 lang-pos;shift-special;no-random *7.51 0.43 0.63 0.34 0.22 0.31 0.18 0.22 0.68 0.38 0.23 0.36 0.11 0.13

15 overparam 2.10 0.03 1.00 0.00 0.68 0.06 0.63 0.05 1.00 0.00 0.96 0.01 0.47 0.06
16 lang-pos;overparam 2.40 0.02 0.33 0.14 0.00 0.00 0.01 0.00 0.41 0.15 0.00 0.00 0.00 0.00
17 lang-pos;shift-special;no-random;overparam *1.65 0.02 0.09 0.05 0.00 0.00 0.00 0.00 0.09 0.07 0.00 0.00 0.00 0.00

3 inv-order 8.71 0.19 0.08 0.01 0.00 0.00 0.01 0.00 0.08 0.02 0.01 0.00 0.00 0.00
9 lang-pos;inv-order;shift-special;no-random *7.66 0.16 0.12 0.03 0.00 0.00 0.00 0.00 0.10 0.04 0.00 0.00 0.00 0.00

18 untrained 3479.62 31.49 0.98 0.01 0.00 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.00
19 untrained;lang-pos 3482.45 65.13 0.03 0.01 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00

Table 1: The table shows model fit and evaluation of multilinguality for architectural and linguistic modifications.
We report the mean and standard deviation (subscript) across 5 different random seeds. Models are trained with
the same hyperparameters. *: perplexity only comparable to other methods marked with star.

as BERT needs to learn that the word on position
0 in English is similar to word on position n in
Fake-English. However, n (the sentence length)
varies from sentence to sentence. This might be an
argument that relative position embeddings rather
than absolute position embeddings might benefit
multilinguality

Figure 5 shows the similarity among position
embeddings for three models. The top panel shows
the similarity for the original model without modifi-
cations. The middle panel shows the similarity with
language specific position embeddings (positions
0-127 are for English 128-255 for Fake-English).

1) One can see that despite having language spe-
cific position embeddings the embeddings live in
a similar space and exhibit a similar structure: in
the upper right quadrant there is a clear yellow di-
agonal at the beginning which gets weaker at the
end (barely visible here, see appendix for a large
version). The bottom panel shows that for a non-
multilingual model where Fake-English has been
inverted the position embeddings live in different
spaces: there is no diagonal visible in the simi-
larity between English and Fake-English position
embeddings.

2) Another effect one can spot is that smaller
position embeddings are trained much more than
larger ones (which occur less frequently). Espe-
cially in the range from 90-128 the similarities
look almost random (a sentence length which oc-
curs rarely). We suspect that embedding similarity
correlates with the number of gradient updates a
single position embedding receives. The positions
0 and 1 receive a gradient update in every step

Layer 0 Layer 8
Experiment MLM Perpl. Al. Retr. Trans. Al. Retr. Trans.

original 7.42 0.15 1.00 0.00 0.54 0.08 0.88 0.02 1.00 0.00 0.97 0.00 0.79 0.03
no-p. 11.48 0.28 0.99 0.00 0.21 0.02 0.28 0.01 0.99 0.00 0.70 0.05 0.15 0.03
lang-pos;no-p. 12.65 0.45 0.86 0.09 0.15 0.15 0.07 0.05 0.92 0.07 0.16 0.18 0.02 0.01

Table 2: Results showing the effect of having a
sentence-parallel training corpus.

and can thus be considered an average of all gradi-
ent updates (disregarding the random initialisation).
Smaller position embeddings receive the majority
of gradient updates as well. This might be the main
reason for the clear diagonal pattern in the upper
left corners.

3.3 Corpus Comparability

So far we have always trained on a sentence-
parallel corpus. To train on a non-parallel corpus
we use the first half of our parallel corpus for En-
glish and the second half for Fake-English. To
alleviate the reduction of training data we train for
twice as many epochs.

Table 2 shows that indeed multilinguality de-
creases as the training corpus becomes non-parallel.
However, perplexity almost doubles indicating that
the model fit deteriorates drastically. This is not
unexpected.

This might be an indication that the more com-
parable a training corpus is across languages the
higher the multilinguality. However, as we show in
§3.4 model fit correlates drastically with multilin-
guality. Thus we should take these results with a
grain of salt and verify them in future work.



Figure 6: The longer a model is trained, the more multi-
lingual it gets. x-axis shows training steps. This model
uses language specific position embeddings. We show
the result for a single seed.

3.4 Multilinguality during Training
During experimentation we noticed that multilin-
guality is correlated with perplexity. We investigate
this effect more closely in Figure 6. We plot evalua-
tion measures and perplexity for our original model
configuration with language specific position em-
beddings over training time. Clearly multilingual-
ity rises over time. We hypothesize that once a
model needs to fit the training data, efficient param-
eter usage is beneficial. Thus the model identifies
shared structures across the languages in order to
use parameters more efficiently, and therefore be-
comes multilingual. Again one can see that word
alignment is the easiest task, followed by retrieval
and then word translation.

This might raise suspicion that our overaparam-
eterized models in Table 1, especially ID 17 is
simply not trained enough and are therefore not
multilingual. Note, that perplexity for the overpa-
rameterized models is already much lower com-
pared to our standard model. To provide additional
evidence that multilinguality does not appear at a
later training stage we train this model configura-
tion for 250 epochs and report results in Table 3.

4 Improving Multilinguality

Up to now we tried to destructively break the mul-
tilinguality of BERT to identify the reason why it
produces multilingual representations. The overall
objective, however, is to identify components that
are important for multilinguality and steer them in
a way to create better multilingual models.

The standard BERT architecture already has
shared position embeddings, and shared special to-

Figure 7: Showing the performance over training steps
for a model with language specific position embed-
dings and p = (0.4, 0.06, 0.54). Multilinguality starts
to kick in much earlier, but has chaotic drops in the
middle.

kens and we cannot change linguistic properties of
languages. Thus our takeaways reduce to training
smaller BERT models in order to get multilingual
spaces – however, BERT-base might already be
underparameterized given that it is trained on 104
large Wikipedias with 104 languages.

We suspect that increasing p[rand], i.e., how of-
ten a masked word is replaced with a random word
increases multilinguality. In our experiments, we
could not get an overall increase, but Figure 7 com-
pared to Figure 6 clearly shows that a model with
increased p[rand] becomes multilingual much ear-
lier in the training process. This is particularly
important for training BERT on large amounts of
data. Given how expensive training is, it may not
be possible train a model long. In general, BERT
has been found to be undertrained by several stud-
ies (Liu et al., 2019; Rönnqvist et al., 2019). Thus
achieving multilinguality early in the training pro-
cess most probably yields higher quality models.

On the downside, training does seem to be unsta-
ble (with unexplainable drops in multilinguality).
Random replacements might be too noisy for a
trained model. In future work, we thus plan to
modify this by not replacing masked words ran-
domly, but with nearest neighbours in a different
language in the initial embedding space.

4.1 Real World Word Order

To verify whether similar word order across lan-
guages influences the multilinguality we propose
to compute a word reordering metric and correlate
this metric with the performance of 0-shot transfer



Layer 0 Layer 8
Experiment N Epochs MLM Perpl. Align. Retr. Trans. Align. Retr. Trans.

0 original 100 7.42 0.15 1.00 0.00 0.54 0.08 0.88 0.02 1.00 0.00 0.97 0.00 0.79 0.03
17 lang-pos;shift-special;no-random;overparam 50 *3.51 0.05 0.09 0.04 0.00 0.00 0.00 0.00 0.09 0.08 0.00 0.00 0.00 0.00
17 lang-pos;shift-special;no-random;overparam 100 *1.65 0.02 0.09 0.05 0.00 0.00 0.00 0.00 0.09 0.07 0.00 0.00 0.00 0.00
17 lang-pos;shift-special;no-random;overparam 250 *1.13 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0.09 0.07 0.00 0.00 0.00 0.00

Table 3: Even when continuing the training for a long time and most likely overfitting the training data, overpa-
rameterized models with architectural modifications do not become multilingual. *: perplexity only comparable to
other methods marked with star

capabilities of mBERT. To this end we consider
the performance of mBERT on XNLI. We follow
Birch and Osborne (2011) in computing word re-
ordering metrics between parallel sentences (XNLI
is a parallel corpus). More specifically we compute
the Kendall’s tau distance. To this end, we compute
word alignments between two sentences using the
Match algorithm by Sabet et al. (2020), which di-
rectly yield a permutation between sentences as re-
quried by the distance metric. We compute the met-
ric on the test data of XNLI and average Kendall’s
tau distance across sentences to get a single score
per language.

The Pearson correlation between Kendall’s tau
distance and the XNLI classification accuracy in
a zero-shot scenario (mBERT only finetuned on
English and tested on all other languages) is 46%.

While this value is lower than expected, there
is still a clear correlation visible. We will extend
this experiment to more results as reported in (Hu
et al., 2020) and examine this effect more closely
in future work.

5 Related Work

There is a range of work analyzing the reason for
BERT’s multilinguality. Singh et al. (2019) use
canonical correlation analysis to show that BERT
stores language representations in different sub-
spaces rather than creating a single common space.
They investigate how subword tokenization influ-
ences multilinguality. Artetxe et al. (2019) show
that neither a shared vocabulary nor joint pretrain-
ing is essential for multilinguality. The initial em-
bedding layer of mBERT can be retrained for dif-
ferent languages given that all other weights are
fixed. Wang et al. (2019) provide an extensive study
to find the reason for multilinguality. In terms of
architecture they research the depth, number of
parameters, number of attention heads, learning ob-
jectives, adding language identify markers as well
as character vs. subword vs. word processing. In
their conclusion deepness is essential, subword pro-

cessing and omitting the next-sequence-prediction
task helps slightly and language identity markers
do not show any effect. They also investigate lan-
guage properties such as word order similarity and
unigram frequencies, and conclude that structural
similarity across languages is important, without
further defining this term. Last, Wu et al. (2019)
find that a shared vocabulary is not required. They
claim that shared parameters in the top layers are
required for multilinguality. Further they show
that different monolingual BERT models exhibit
a similar structure and thus conclude that mBERT
somehow aligns those isomorphic spaces.

We base much of our setup on (Wang et al., 2019)
and try to continue their analysis. In contrast to the
mentioned work we focus on architectural aspects
that have not been explored before.

There is another line of work focusing on cre-
ating better multilingual models. Conneau and
Lample (2019) introduce the translation modeling
objective and propose XLM, a crosslingual model
outperforming mBERT. Conneau et al. (2019) pro-
pose XLM-R, a multilingual Roberta model. We
plan to investigate the multilinguality of this model
in future work. Cao et al. (2020) improve the mul-
tilinguality of mBERT by introducing a regular-
ization term in the objective, quite similar to the
creation of static multilingual embedding spaces.
Huang et al. (2019) extend mBERT pretraining
with 3 additional tasks and show an improved over-
all performance.

Finally, there is a lot of research that analyzes
how multilingual mBERT actually is. Many papers
find that mBERT yields competitive performance
across a huge range of languages and tasks, such
as parsing and NER (Pires et al., 2019; Wu and
Dredze, 2019). Rönnqvist et al. (2019) investigate
language generation capabilities and conclude that
mBERT is undertrained with respect to individual
languages – an aspect that we can confirm with our
experiments. Hu et al. (2020) provide an extensive
evaluation benchmark covering 40 languages and
9 tasks and show that mBERT indeed yields good



performance.

6 Conclusion

In this work-in-progress report we showed which
architectural and lingustic properties are a neces-
sary requirement for BERT to yield crosslingual
representations. The main takeaways are three-
fold: i) Shared position embeddings, shared special
tokens, replacing masked tokens with random to-
kens and having a limited amount of parameters are
necessary elements for a BERT model to be mul-
tilingual. ii) Word order is essential. BERT does
not yield a multilingual space with normal English
and inverted Fake-English. iii) The comparability
of training corpora contributes to multilinguality.

The objective of the paper was to identify those
components and use them in a second step to create
a better multilingual BERT model. Initial exper-
iments in this regard have been presented. All
experiments have been made in a laboratory set-
ting consisting of a mix of natural and synthetic
data and we plan to validate the findings on parallel
corpora with several natural languages.
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Figure 8: Larger version of Figure 5.


