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 Time Domain Analysis of Homogenized Finite Element Method for 

Eddy Current Analysis with Reduced Unknown Variables 
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This paper presents a new method for time-domain analysis based on the homogenized finite element method (FEM). The permeability 

in the homogenized domain is expressed by the Cauer equivalent circuit. The auxiliary unknowns relevant to the Cauer circuit are then 

eliminated using the finite difference method. The homogenized FE equation without the auxiliary unknowns can be effectively solved. 

 
Index Terms—Cauer equivalent circuit, Complex permeability, Homogenization method, Multi-scale problem, Time-domain analysis.  

 

I. INTRODUCTION 

N electric apparatus, fine structure material such as a silicon-

steel sheet, litz wire, and soft magnetic composite are widely 

used to reduce eddy current losses. Recently, it has become 

more important to evaluate the eddy current losses because of 

increase in the switching speed of electric power devices. It 

needs, however, large computational cost to evaluate them in 

the fine structure materials using the conventional finite 

element method (FEM) because substantial number of finite 

elements, which have to be smaller than the skin depth, are 

involved. This problem, referred to as the multi-scale problem, 

is attributed to the scale difference between the overall size of 

electric apparatus and size of components such as the wire and 

magnetic powder. 

To tackle this problem, homogenization method [1]–[5] has 

been proposed. In the method, fine structure material is 

modeled as uniform material which has the complex 

permeability. Thanks to the homogenization method, the fine-

structured materials can be modeled by FEM without 

considering skin depth, and thus they can be analyzed with 

lower computational costs. The homogenization method has, 

however, a weak point that it is not straightforward to perform 

the time domain analysis because the complex permeability is 

a complex function formulated in frequency domain. The time 

domain analysis is indispensable when quasi-static 

electromagnetic field is analyzed considering the magnetic 

saturation. Although the time-domain homogenized FEM has 

been already proposed [6], [7], it depends on the low frequency 

approximation of the complex permeability. Therefore, its 

accuracy would be deteriorated as the driving frequency 

becomes higher. 

To overcome this difficulty, the complex permeability is 

represented by the Cauer circuit which is accurate over wide 

frequency range [8], [9]. In [8], the circuit equations for several 

auxiliary unknowns are coupled with the FE equation. Because 

the circuit equation is considered in all the finite elements in the 

homogenized region, a number of auxiliary unknowns are 

involved. To solve this problem, we propose here a new method 

for the homogenized FEM in time domain which avoids 

solution of the circuit equation in the transient computation. We 

apply the proposed method to the analysis of an inductor with a 

multi-turn coil. The numerical results are compared with the 

result obtained by the conventional FEM. 

II. FORMULATION 

A. Frequency domain homogenized FEM 

Let us consider the homogenized FE equation which includes 

the complex permeability ⟨�̇�⟩(𝑠) that is a function of complex 

frequency 𝑠 

𝐾(⟨�̇�⟩)�̇�(𝑠) = 𝒃𝑖̇, (1a) 

(𝐾�̇�)𝒊 =∑𝐾𝑖𝑗�̇�𝑗
𝑗

=∑∫rot𝑵𝑖 ⋅ 𝜈rot𝑵𝑗𝑑Ω
Ω

�̇�𝑗
𝑗

, (1b) 

𝑏𝑖 = ∫𝑵𝑖 ⋅ 𝒋𝑑Ω
Ω

 (1c) 

where �̇�(𝑠) = [�̇�1, �̇�2, ⋯ ]T is the vector of the unknown field 

variables, and 𝑖,̇ 𝑁𝑖 , 𝒋 denote the external current, interpolation 

function and normalized current density defined so that 𝑖̇𝒋 
corresponds to the current density. In addition, 𝜈  is the 

magnetic reluctivity which is the reciprocal of the permeability. 

In the homogenized region, we set ⟨�̇�⟩ = ⟨�̇�⟩−1  which 

represents the eddy current effect. 

B. Time domain homogenized FEM 

We convert (1) to time domain without introducing the 

auxiliary valuables relevant to the circuit equations. To do so, 

it is assumed that ⟨�̇�⟩ is expressed in the form of the continued 

fraction as 
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⟨�̇�⟩ =
1

𝜅0
+

1

1
𝑠𝜅1

+
1

1
𝜅2

+
1
⋱

 

≜ [
1

𝜅0
;
1

𝑠𝜅1
,
1

𝜅2
,
1

𝑠𝜅3
, ⋯ ,

1

𝜅2𝑞−2
,

1

𝑠𝜅2𝑞−1
] 

(2) 

which can be obtained by the unit cell approach proposed in [9] 

(see Appendix). We can obtain the time domain representation 

by applying the inverse Laplace transform ℒ−1[⋅] to both side 

of (1). Then, we evaluate the term ℒ−1[⟨�̇�⟩�̇�𝑗] by analogy with 

the circuit theory; we consider the correspondence ⟨�̇�⟩ s⁄ = �̇� , 

𝑠�̇�𝑗 = �̇� , ⟨�̇�⟩�̇�𝑗 = 𝐼̇  where �̇�, �̇�, 𝐼̇  are the admittance, current 

flowing �̇� , and voltage across �̇� , respectively. This analogy 

leads to the Cauer circuit shown in Fig. 1 because the continued 

fraction representation of �̇� corresponds to the admittance of 

the Cauer circuit. From Fig. 1, we readily obtain the circuit 

equations for the unknowns 𝑎𝑗 as follows: 

𝐼(𝑡) = ℒ−1[⟨�̇�⟩�̇�𝑗] =
𝑎𝑗(𝑡)

𝐿1
+ 𝐼1(𝑡), 

(3a) 

(𝑅 +
d

d𝑡
𝐿) 𝑰(𝑡) = 𝑉(𝑡)𝒆1 =

d𝑎𝑗(𝑡)

d𝑡
𝒆1, (3b) 

𝑅 = diag[𝑅1, 𝑅2, ⋯ , 𝑅𝑞], (3c) 

𝐿 =

[
 
 
 
 
 
 
𝐿2 −𝐿2
−𝐿2 𝐿2 + 𝐿3 −𝐿3

−𝐿3 𝐿3 + 𝐿4 −𝐿4
−𝐿4 ⋱ ⋱

⋱ −𝐿𝑞
−𝐿𝑞 𝐿𝑞 ]

 
 
 
 
 
 

 (3d) 

where  𝑅𝑖 = 1 𝜅2𝑖−1⁄ ,  𝐿𝑖 = 𝜅2𝑖−2 ,and 𝑰 = [𝐼1, 𝐼2, ⋯ , 𝐼𝑞]
T

 are 

the resistances, inductances and loop currents in the Cauer 

circuit, and 𝒆1 denotes the first column of the unit matrix. By 

applying finite difference method to (3), we can express the 

current 𝐼𝑛 at the n-th step in terms of the past variables as 

𝐼𝑛 =
𝑎𝑗
𝑛

𝐿1
+ 𝐼1

𝑛 

= ⟨𝜈⟩𝑎𝑗
𝑛 + 𝒆1

T (𝑅 +
1

Δ𝑡
𝐿)

−1−𝑎𝑗
𝑛−1𝒆1 + 𝐿𝑰𝑛−1

Δ𝑡
, 

(4a) 

⟨𝜈⟩ = [
1

𝜅0
;
Δ𝑡

𝜅1
,
1

𝜅2
,
Δ𝑡

𝜅3
, ⋯ ,

1

𝜅2𝑞−2
,
Δ𝑡

𝜅2𝑞−1
], (4b) 

𝑰𝑛 = (𝑅 +
1

Δ𝑡
𝐿)

−1

(
𝑎𝑗
𝑛 − 𝑎𝑗

𝑛−1

Δ𝑡
𝒆1 +

1

Δ𝑡
𝐿𝑰𝑛−1) (4c) 

where Δ𝑡 denotes the time difference. Note that the first-order 

accurate backward difference is applied to (3) whereas the 

second-order accurate backward difference is used in the 

numerical result in Sec. III. By inserting (4a) into (1a), we 

obtain the time-domain equation which does not include the 

auxiliary valuables as follows: 

𝐾(⟨𝜈⟩)𝒙𝑛 = 𝒃′𝑖𝑛, (5a) 

(𝐾𝒙𝑛)𝑖 = ∑ 𝐾𝑖𝑗𝑎𝑗
𝑛

𝑗

= ∑∫rot𝑵𝑖 ⋅ 𝜈rot𝑵𝑗𝑑Ω
Ω

𝑎𝑗
𝑛

𝑗

, (5b) 

𝑏𝑖
′ = ∫𝑵𝑖 ⋅ 𝒋𝑑Ω

Ω

+∑∫rot𝑵𝑖 ⋅ 𝑐𝑗
𝑛−1rot𝑵𝑗𝑑Ω

Ω𝑗

, (5c) 

𝑐𝑗
𝑛−1 = 𝒆1

T (𝑅 +
1

Δ𝑡
𝐿)

−1 𝑎𝑗
𝑛−1𝒆1 − 𝐿𝑰𝒋

𝑛−1

Δ𝑡
 (5d) 

where 𝜈 = ⟨𝜈⟩ in the homogenized domain Ωℎ . Note that we 

introduce the suffix 𝑗 such as 𝑰𝑗
𝑛−1 because (3) holds for each 

unknown 𝑎𝑗. It is remarkable that the FE matrix in (5b) has the 

same form as that in (1b) while the former and latter are 

formulated in frequency and time domains, respectively. 

Updating the right-handed side vector by (5c) and (5d), the time 

domain analysis is performed stepwise. 

C. Treatment of voltage input and power dissipation 

The terminal voltage is computed from 

𝑣 =
d

d𝑡
∫𝑨 ⋅ 𝒋𝑑Ω
Ω

+ 𝑅𝐷𝐶𝑖 =
d

d𝑡
𝒃T𝒙 + 𝑅𝐷𝐶𝑖. (6) 

where 𝑅𝐷𝐶 denotes the DC resistance of the winding. We can 

treat the voltage excitation by coupling (5a) with (6). 

In frequency domain, the complex power is expressed as 

�̇� =
𝑠

2
∫ ⟨𝜈⟩∗|𝑩|2𝑑Ω
Ωℎ

+
𝑠

2
∫ 𝜈|𝑩|2𝑑Ω
Ω\Ωℎ

+
1

2
𝑅𝐷𝐶𝐼

2 

=
𝑠

2
∑ ∫ rot𝑵𝑖 ⋅ rot𝑵𝑗𝑑Ω

Ωℎ

⟨𝜈⟩∗�̇�𝑖
∗�̇�𝑗

𝑖,𝑗∈Ωℎ

+
𝑠

2
∫ 𝜈|𝑩|2𝑑Ω
Ω\Ωh

+
1

2
𝑅𝐷𝐶𝐼

2. 

(7) 

where ∗ represents the conjugate operator. Then, 𝑠⟨�̇�⟩∗�̇�𝑖
∗�̇�𝑗 in 

(7) are expanded as follows: 

𝑠⟨�̇�⟩∗�̇�𝑖
∗�̇�𝑗 = 𝐼�̇�

∗�̇�𝑗  

= 𝑠
𝑎𝑖
∗𝑎𝑗

𝐿1
+ �̇�𝒊

†(𝑅 + 𝑠𝐿)�̇�𝑗 

= �̇�𝑖
†𝑅�̇�𝑗 + 𝑠 (

𝑎𝑖
∗𝑎𝑗

𝐿1
+ �̇�𝑖

†𝐿�̇�𝑗) 

(8) 

 
Fig.1. Continued fraction and corresponding Cauer equivalent circuit. 
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�̇�

can be represented by Cauer ladder 

circuit
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where † denotes the conjugate transpose operator (⋅)∗T . The 

first and second terms are real and purely imaginary because 

𝑅, 𝐿  are the symmetry matrices. Thus, the first term of (8) 

represents the Joule losses due to the eddy current. 

Consequently, we can compute the power dissipation in time 

domain from 

𝑊 = ∑ ∫ rot𝑵𝑖 ⋅ rot𝑵𝑗𝑑Ω
Ωℎ

𝑰𝑖
T𝑅𝑰𝑗

𝑖,𝑗∈Ωℎ

+ 𝑅𝐷𝐶𝐼
2. (9) 

III. NUMERICAL RESULT 

A. Validation on proposed method: linear case 

For validation, we apply the proposed method to the FE 

analysis of the inductor which is composed of the multi-turn 

coil with 50 turns, wire radius 0.2 mm, and magnetic core, as 

shown in Fig. 2. The multi-turn is homogenized with the 

complex permeability in the form of continued fraction which 

represents the proximity effect in the coil. The number of the 

stage of the Cauer circuit 𝑞  is set to 5, and the relative 

permeability of the magnetic core is here assume to be 2000. A 

sinusoidal current, unit amplitude, at 1 MHz is input to the 

inductor. It is assumed that Δ𝑡 = 0.01 [𝜇𝑠], 𝑇 = 3.0 [𝜇𝑠] . 

Although the skin effect can be considered by introducing the 

equivalent skin effect impedance 𝑍𝑠𝑘𝑖𝑛 [2], it is neglected in the 

analysis for simplicity. 

The power dissipation is plotted against time in Fig. 3. The 

relative error of the Joule losses per period is 1.2 % at largest. 

There are 19,485 nodes and 9,845 elements in the conventional 

FE model, whereas 8,073 and 4,151 in the homogenized model. 

The computational time, 2 min 11 sec, for the conventional 

FEM is reduced to 1 min 7 sec for the proposed method. Since 

the proposed method does not include the auxiliary variables in 

the FE equation, it is expected that its computational time is 

shorter than that of the method in [8] which solves the equation 

for the auxiliary variables. The reduction in computing time by 

the proposed method becomes more significant for 3D 

problems as will be shown below. 

B. Validation on proposed method: nonlinear case 

We apply the proposed method to the inductor considering 

the magnetic saturation. If eddy currents could flow in the core, 

we would introduce the nonlinear current-flux relation to the 

inductance in Fig.1, as presented in [8]. The inductor is excited 

by the sinusoidal voltages, 200 and 400 V, at 100 kHz. It is 

assumed that Δ𝑡 = 0.1 [𝜇𝑠], 𝑇 = 30 [𝜇𝑠] . The power 

dissipation is plotted versus time in Fig. 4. We can see that the 

results obtained by the proposed method is in good agreement 

with those obtained by the conventional FEM. The waveform 

for 400 V is deeply distorted by the magnetic saturation. 

 

C. 3D inductor model 

The proposed method is applied to the 3D inductor model 

shown in Fig. 5. The turn number and wire radius are the same 

as those in the 2D model and magnetic saturation is considered. 

It needs large computing cost to analyze this model using the 

conventional FEM; there would be more than 4,000,000 

elements when skin depth at 100 kHz is considered. On the 

other hand, the homogenized model requires only 173,866 

elements and 210,676 edges. A pulsatile, 1 V, at 100 kHz, duty 

factor 0.5, shown in Fig.6, is input to the inductor. The load 

resistance is assumed 2 Ohm. It is assumed that Δt = 0.1 [𝜇s], 
𝑇 = 30 [𝜇s].  
The power dissipation and current of the inductor are plotted 

against time in Fig. 6 and Fig. 7. For comparison, the Joule 

losses of the inductor due to DC resistance is also plotted in the 

figure. During periods T ∈ [0, 5], [10, 15], [20,25], the current 

increases linearly and the DC loss has the quadratic increase 

Table I 
Values in continued fraction which is computed by unit cell approach 

𝑖 𝜅2𝑖−2 𝜅2𝑖−1 

1 1.000 × 100 3.635 × 10−7 

2 8.246 × 10−1 3.119 × 10−8 

3 2.244 × 100 5.569 × 10−9 

4 5.251 × 100 1.076 × 10−8 

5 1.040 × 102 1.762 × 10−9 

  
Fig.2. Conventional (left) and homogenized inductor model (2D). 

 
Fig. 3. Power dissipation versus time obtained with conventional and 

homogenized FEM. The magnetic core with constant permeability is 

considered with sinusoidal current input at 1 MHz. 

 
Fig. 4. Power dissipation versus time obtained with conventional and 

homogenized FEM. The saturable magnetic core is considered with 

sinusoidal voltage input at 100 kHz. 
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whereas the Joule losses obtained by the proposed method has 

fairly complicated waveform due to the proximity effect. 

During period T ∈ [5, 10], [15,20], [25,30] , the current 

becomes constant, therefore, the Joule losses obtained by the 

proposed method has the nearly same value as the DC loss 

because there is no time variation in the electromagnetic field. 

IV. CONCLUSION 

In this paper, we proposed a new method for the time domain 

homogenization analysis based on the continued fraction 

representation of the complex permeability. The novelty of this 

method is in the elimination of the auxiliary variables for the 

circuit equation. The Joule losses obtained by the proposed 

method has enough accuracy compared with those obtained by 

the conventional FEM. The proposed method is effective 

especially for 3D models. In future, we plan to extend the 

proposed method to treat iron sheets. 

APPENDIX 

The complex permeability in the form of continued fraction 

can be obtained by using the method proposed by the authors 

[9]. The method utilizes the energy representation of the 

complex permeability which is reduced to the continued 

fraction using the Cauer via Lanczos (CVL) [10], one of model 

order reduction techniques. The algorithm of CVL is also 

described in [9]. 

The energy representation of the complex permeability is 

given as 

〈�̇�〉 =
∫ |𝑩0|

2dΩ
Ω

∫
|𝑩|2

𝜇
dΩ

Ω
−

1
j𝜔 ∫  |𝑬|2dΩ

Ω

 

=
∫ |𝑩0|

2dΩ
Ω

∫ 𝑬∗ × 𝑯 ⋅ 𝒏d𝑆
∂Ω

 

(A1) 

which is derived from the requirement that the energies in the 

original and homogenized unit cells are equal. The FE 

discretization of (A1) results in 

〈�̇�〉 =
𝑉

𝒄T(𝐾 + 𝑠𝑁)−1𝒃
 (A2) 

where V = ∫ 𝑑Ω
Ω

 denotes the volume of the unit cell. The 

transfer function in (A2) is approximated by the continued 

fraction using CVL. Therefore, we can obtain the continued 

fraction representation (2). 
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Fig. 5. 3D inductor model. One-eight domain is considered. 

 
Fig. 6. Waveforms of input voltage and output current. 

 
Fig. 7. Power dissipation and current versus time obtained with 
homogenized FEM. The inductor with a saturable magnetic core is excited 

by pulse voltage at 100 kHz, duty factor 0.5, amplitude 3 V. 
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