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Abstract: Underground pipelines are vital means of transporting fluid resources like water, oil and gas.
The process of locating buried pipelines of interest is an essential prerequisite for pipeline maintenance
and repair. Acoustic pipe localization methods, as effective trenchless detection techniques, have
been implemented in locating underground utilities and shown to be very promising in plastic
pipeline localization. This paper presents a comprehensive review of current acoustic methods and
recent advances in the localization of buried pipelines. Investigations are conducted from multiple
perspectives including the wave propagation mechanism in buried pipe systems, the principles
behind each method along with advantages and limitations, representative acoustic locators in
commercial markets, the condition of buried pipes, as well as selection of preferred methods for
locating pipelines based on the applicability of existing localization techniques. In addition, the key
features of each method are summarized and suggestions for future work are proposed. Acoustic
methods for locating underground pipelines have proven to be useful and effective supplements to
existing localization techniques. It has been highlighted that the ability of acoustic methods to locate
non-metallic objects should be of particular practical value. While this paper focuses on a specific
application associated with pipeline localization, many acoustic methods are feasible across a wide
range of underground infrastructures.

Keywords: acoustic localization methods; buried pipelines; wave propagation mechanism;
vibro-acoustics

1. Introduction

Buried pipe systems play an important role in modern life, providing essential utility services
especially in the transportation of resources for daily use. The latest data from 2014 [1] gives a total of
slightly less than 2,175,000 miles of pipeline in 120 countries of the world [2]. The number of buried
pipelines is growing rapidly in response to the demand from communities, which makes the task of
locating these buried pipes highly difficult. Correspondingly, various detection techniques have been
developed in order to rectify this problem.

Traditionally, metal detectors [3,4] and ground penetrating radar (GPR) [5–7] have been the
primary means of locating buried pipelines. However, plastic pipes have been increasingly used
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in recent decades because of their low cost and low failure rates [8], which makes metal detectors
inapplicable in most scenarios. GPR is serviceable for both metallic and non-metallic objects detection;
nevertheless, the high attenuation of electromagnetic wave in conductive materials renders it inefficient
in the presence of wet soil. An alternative option is to employ acoustic locating techniques, which rely
on the mismatch of buried objects and surrounding medium in terms of acoustic properties, as well as
the propagation of mechanical waves instead of electromagnetic waves.

The acoustic transmission method, as a trenchless technique, has been applied in underground
utility detection and proven as a useful and effective approach for locating both metallic and non-metallic
buried utilities [9–11]. Recently vibro-acoustic methods [12] have been developed under the frame
of ‘Mapping the Underworld’ [13,14], which has shown very promising in locating buried pipelines,
especially for plastic pipes. Compared with electromagnetic-based techniques, such as metal locators
and GPR, acoustic methods possess the advantage of efficiency for a wide range of soil types and
non-metallic object detection.

This paper reviews the acoustic methods pertaining to the localization of buried pipes.
The investigation starts with the literature review on the theoretical study of wave propagation
mechanism in buried pipe systems in Section 2, followed by a detailed description of the state-of-the-art
acoustic techniques for locating buried pipes in Section 3. The principles behind the techniques, as
well as the applicability and limitation of each method are discussed. Section 4 presents several
representative acoustic locators that are commercially available to provide references for practical
use. Factors which may influence on the measurement results are discussed in Section 5. Following
this, decision analysis of preferred pipeline localization methods is presented in Section 6. Finally, the
conclusions and recommendations for future research are given in Section 7.

2. Theoretical Study on Wave Propagation Mechanism in Pipe Systems

Theoretical studies on the behaviours of wave propagation in pipe structures have received
much attention to date, and have been carried out by many researchers. Better understanding of the
wave propagation mechanism in pipe systems is essential not only for pipeline locating, but also for
leakage detection [15–17] and condition assessment [18–21]. Here, a comprehensive literature review
of fundamental studies on wave propagation mechanism in pipe structures is presented to provide
physical insights into the development of acoustic detection techniques.

Earlier research on wave propagation in tubes or liquid cylinders [22–24] provides the theoretical
basis for localization of water pipes, with attention to low-order mode waves or relatively low frequency
range. Mcfadden investigated radial vibrations of hollow cylinders with thick wall with particular
emphasis on axisymmetric motion [25]. Further investigation was carried out by Gazis [26] on the
plane-stain vibration of hollow cylinders covering the cases from a thin shell to the Pochhammer [27]
case of a solid cylinder. Both axisymmetric and non-axisymmetric motions were then studied in
the framework of the theory of elasticity. This led to a three-dimensional solution to a characteristic
equation of wave propagation in hollow circular cylinder [28], and corresponding numerical results [29].
Del Grosso has solved the exact formulation of the characteristic equation for tubes with arbitrary
thickness, focusing on axisymmetric waves [30,31]. Based on this theoretical analysis, Lafleur and
Shields conducted research on two mode waves (ET0 and ET1) in a liquid-filled elastic tube at low
frequencies [32], where the dispersion characteristics and particle displacement profiled in both
plastic and aluminum tubes were presented. Sinha et al. [33] have investigated axisymmetric waves
propagation in fluid-loaded cylindrical shells, where five cases were considered including a cylindrical
shell in vacuum, a cylindrical shell surrounded by a liquid, a hypothetical liquid column, a cylindrical
shell filled with liquid, and a cylindrical shell immersed in an infinite liquid. The numerical results
of dispersion curves, attenuation due to radiation, displacement distribution and stress distribution
were presented. To validate the theory foundation, experiments were then carried out [34], where the
dispersion curves was inverted from experimental time waveforms through Prony’s method [35].
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To address a special case where the thickness is much smaller than the radius, various
approximations have been adapted to develop various thin shell theories, which range from Love’s
first approximation [36,37], Donnell and Mushtari’s theory [38–41] to ‘Timoshenko-type ’ theories [42].
A representative work based on Timoshenko-type theory was carried out by Lin and Morgan [43],
extending to high modes at higher frequencies in a fluid-filled cylindrical shell. The study was confined
to axisymmetric waves with purely sinusoidal variation, in comparison with the wave propagation
through a cylindrical bore contained with fluid in [44]. Two modes were found to exist at all frequencies,
which challenges Thomson’s erroneous conclusion [45] that only one mode exists at lower frequencies.
Fuller and Fahy [46] investigated more comprehensive dispersion and energy distribution of waves
in shells containing fluid on the basis of Donnell–Mushtati shell equations, where branches in the
real, imaginary and complex planes were observed. The vibration behaviour of shells excited by an
internal monopole source was studied further in [47–49]. More references regarding different thin shell
theories can be found in [50], with useful writings from the standpoint of comparison of various thin
shell theories such as [51–56] being recommended in the book.

Pavic [57] studied the vibro-acoustic energy flow through a straight pipe, revealing that four
wave types are responsible for most energy transmission including three axisymmetric waves (n = 0)
and one flexural wave (n = 1). Of the axisymmetric waves, the fluid-dominated wave (s = 1) and the
shell-dominated wave (s = 2) have coupled axial and radial motion. The third one is a torsional wave
(s = 0), which is uncoupled from the fluid and does not have significant radial motion [58]. These
mode shapes in cylindrical co-ordinates are demonstrated in the Figure 1. More recently, research
carried out by University of Southampton has focused mainly on wave propagation in pipe structures
regarding these four modes at low frequencies well below the pipe ring frequency.
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Figure 1. Illustration of the low-frequency mode shapes in cylindrical co-ordinates: (a) wave motion;
(b) longitudinal mode; (c) torsional mode; (d) flexural mode [59].

Pinnington and Briscoe [60] derived motion equations of two axisymmetric waves in a fluid filled
pipe based on a simplified form of Kennerd’s equation [61], and calculated the relative sizes of these
two waves in different boundary conditions. Following the findings, an externally applied piezoelectric
sensor, which is sensitive only to axisymmetric waves, was proposed to monitor the radial wall motion.
Further study measuring the axisymmetric vibrational power in empty and fluid-filled pipes was
carried out in [62], where practical measurements using four methods was investigated through various
combinations of axially aligned accelerometers and circumferential sensors. The aforementioned
research work has mainly focused on the pipes in vacuo. To understand the wave propagation
mechanism in buried pipe in practical applications, the analytical model in [60] was extended to a
fluid-filled pipe surrounded by infinite elastic medium [63]. To simplify the calculation, the outer
medium was treated as fluid that can sustain both shear and longitudinal waves. The expressions



Appl. Sci. 2020, 10, 1031 4 of 30

for the wavenumbers of the fluid-dominated and shell-dominated waves were then derived in terms
of stiffness components of the contained fluid and pipe wall, a pipe wall mass component, and the
impedances of the waves in the surrounding medium. In this way, the effects of the surrounding
medium can be investigated through depicting the real and imaginary parts of component impedances.
Experimental measurements were subsequently conducted to validate the theoretical predictions [64].
A special case with submerged plastic water pipes was further investigated in [65]. Based on the
PVDF (Polyvinylidene fluoride) wire sensor proposed in [60], a novel configuration of ring sensors
was modified and installed to monitor the acoustic pressure in the main pipe. In the previous model
established in [63], the surrounding infinite soil was treated as fluid. The wavenumber prediction
model of axisymmetric waves was improved by including the shear coupling at a lubricated pipe/soil
interface [66,67]. However, at low frequencies, the pipe is more likely to be in perfect bond with
the surrounding soil. Simplified dispersion relationships for the fluid-dominated wave [58] and the
shell-dominated wave [68] have been presented, where both shear coupling and perfect bonding at the
pipe/soil interface were considered. The co-ordinate systems as well as stresses acting at the pipe–soil
interface of the analytical model used in this dispersion relationships are demonstrated in Figure 2.
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Recent studies have shown that the fluid-dominated wave can radiate effectively into surrounding
soil, based on which the location of buried pipes can be inferred through monitoring the ground surface
vibration using for example geophones [69]. To clarify the wave propagation in surrounding soil, the
ground surface vibration due to the fluid-dominated wave in buried water pipes was studied [70],
following an investigation of surface displacements accompanying transmission of plane progressive
waves in a buried gas pipe [71]. These papers have only focused on the displacements of ground surface
directly above the pipe. Salami [72] further extended this work to the general surface location and
presented an analytical model of fluid-dominated wave radiation from a buried water pipe. Torsional
wave has been studied mainly for condition assessment and monitoring [73,74].

In addition to different analytical models, professional software has also been employed to
investigate the mechanism of wave propagation in pipes. Long et al. investigated the dispersion
behaviour of acoustic mode waves in buried iron water pipes and the displacement contribution in
systems based on the DISPERSE, which is a software developed by Imperial College London [75,76].
The effects of soil properties [77] and attenuation characteristics [78] were also presented. Alternatively,
finite-element methods are commonly used to model the wave propagation in buried pipe systems.
Relevant research can be found in [79].

The representative theoretical studies on wave propagation mechanism in pipe systems are
summarized in Table 1.
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Table 1. Summary of the theoretical study on wave propagation in pipe systems.

Refs. Model Description Experimental Set-Up Study Summary

[26] Infinite hollow cylinders covering the transition from the case of a thin shell to
the Pochhammer case of a solid cylinder - Plane-strain vibrations both axially symmetric and non-axially symmetric

[28,29] A hollow circular cylinder of infinite extent - Three-dimensional investigation of the most general type of
harmonic waves

[32] Liquid-filled elastic tubes waveguides: PVC (Polyvinyl chloride) and
aluminum

A thick-walled aluminum tube containing water with its lower end
closed by a Lucite plate;

A PVC water pipe dosed by a thin plastic insert at its bottom

Low-frequency propagation modes ET0 and ET1, dispersion behaviours
and particle displacement profiles

[33,34]

Five cases including a cylindrical shell in vacuum (V/S/V), a cylindrical shell
surrounded by a liquid (V/S/L), a hypothetical liquid column(L/V), a

cylindrical shell filled with liquid (L/S/V), and a cylindrical shell immersed in
an infinite liquid (L/S/L)

Steel cylindrical shells of 1 m suspended in either a water tank for
the (L/S/L) measurements or in air for the (V/S/V) measurements;

The shells filled with air or water and suspended in water or air for
the cases (V/S/L) and (L/S/V).

Water is the liquid and air is the equivalent of the vacuum

Dispersion curves, attenuation due to radiation, displacement distribution
and stress distribution

[46–49] Cylindrical elastic shells (steel, hard rubber[46]) filled with fluid; an infinite
cylindrical elastic shell (steel) [49] - Wave propagation behaviours, energy distribution, vibration and

radiation from monopole excitation

[63,64] Fluid-filled pipes surrounded by an infinite elastic medium which can support
both longitudinal and shear waves

A water-filled MDPE (Medium-density polyethylene) pipe of 2 m in
air, secured vertically, with the lower end sealed;

The MDPE pipe is terminated at each end in a large tank, being laid
in the standard manner in a mostly sand backfill

Two axisymmetric wave types: fluid dominated wave and an axial
shell wave

[65] A submerged plastic water pipe A water-filled MDPE pipe of 2 m, secured vertically, with the lower
end sealed and suspended in water tank The low-frequency acoustic propagation and attenuation characteristics

[66] Buried fluid-filled pipes: inclusion of shear coupling at a lubricated pipe/soil
interface Same as [63,64] The effects of shear coupling in lubricated contact condition

[58,68,70] Fluid-filled pipes (PVC and cast iron) buried in sandy soil and clay soil, with
no slippage between the soil and the pipe wall

Same as [63,64];
A 150 mm diameter PVC pipe of 200 m, buried in soft clay soil at a

depth of 2.4 m [80]

Fluid-dominated wave; shell-dominated wave, structure and fluid
motions; ground displacements due to fluid-dominated wave

[71] A buried gas-filled steel pipe The steel pipe with diameter of 5.08 cm m and a wall thickness of
4.76 mm, buried 0.762 m beneath the surface Surface displacements due to gas-dominated wave

[75–78] Buried iron water pipes

A 21.8 m long section of 4-inch bore pipe; A 19.8 m long section of 6
inch bore pipe; A 18.8 m long section of 10 inch bore buried street

mains; A longer 49.1 m section of 6 inch bore pipe [75]; Buried 6 inch
bore ductile iron water mains [76–78].

The dispersion behaviour, displacement contribution, the effects of soil
properties and attenuation characteristics
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3. Acoustic Methods for Locating Buried Pipelines

The basic principle behind acoustic methods is that when one part of the pipe or the medium
structure is excited by a specially designed source in a controlled way, waves can be produced and then
travel away from the excitation point to the external medium surrounding the pipe or internal medium
inside the pipe. After the interaction between these structures, wave signals will be captured by the
measurement equipment located on the ground surface. Location of the object then can be determined
by processing and analysing these responses, reference [12]. The block diagram of principle of acoustic
methods is depicted in Figure 3.
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In addition to the traditional acoustic transmission technique, vibro-acoustic methods for locating
buried utilities have been developed rapidly on the basis of wave propagation mechanism. These
acoustic locating methods can be broadly divided into two categories based on access to pipe being
present or not. The overview of primary acoustic localization methods is presented in Figure 4, including
traditional acoustic transmission method, pipe excitation method, point vibration measurements as
well as three seismic wave methods: compressional wave method, shear wave method and surface
wave method. In this section, these methods are of great interest and will be reviewed in detail.
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3.1. Traditional Acoustic Transmission Technique

The traditional acoustic transmission technique has its origins in water leak detection [69]. The leak
noise propagates along the pipe and through the soil to the ground surface where it can be picked up
by a listening rod [15], and then the leakage point can be located. A similar principle is employed in
the acoustic transmission technique to determine the location of buried utilities, as shown in Figure 5a.
In this case, acoustic waves are generated into the pipeline or the in-pipe product. In addition,
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they travel through the soil medium until they reach the surface, and thereby they can be detected
using sensors such as geophones. The vibration will be strongest directly over the pipe because of the
shortest travel distance and less signal attenuation. Therefore, the location of the buried facility can be
determined by tracing the strongest sound level intensity. A prototype acoustic transmission system
was assembled and evaluated by conducting field tests at four sites [11]. The excitation frequency
ranged from 10 Hz to 300 Hz as it is known that the attenuation of soil to sound waves is low in this
frequency range. It was found that the frequency range from 50 Hz to 150 Hz was most effective
depending on the soil type. A test result is displayed in Figure 5b as an example, where the peaks of
the sound level correspond to the location of the pipe.
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generating pressure waves. Most of the commercially available acoustic locators are based on active 
sonic and resonant sonic methods, see examples of Fuji NPL100 [81], Radiodetection RD500 [82] and 
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There are three methods to generate the acoustic wave into buried structures, including active
sonic, passive sonic (relying on the ability of the pipe’s product to escape, like water leakage) and
resonant sonic [10]. Active sonic method involves inducing a sound onto or into a pipe, which can be
realized by attaching a source at an exposed point (like a hydrant) or by inserting a noise source into a
pipe. Resonant sonic method relies on the in-pipe medium being a non-compressional fluid (water in
most cases), where detectable motion of the pipe can be created by interfacing the fluid surface and
generating pressure waves. Most of the commercially available acoustic locators are based on active
sonic and resonant sonic methods, see examples of Fuji NPL100 [81], Radiodetection RD500 [82] and
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SEWERIN System Combiphon [83]. The detailed information of these locators will be demonstrated in
Section 4.

Studies show that the traditional acoustic transmission method proves useful in locating
underground utilities and can be an effective supplement to currently existing techniques for locating
both metallic and non-metallic buried facilities [11]. However, the requirement of access to the utility
systems and its inability of depth-estimation limits the acoustic transmission method as a standard trace
technique instead of an effective search technique. In addition, the detection results are susceptible to
interference from noise and distortion from surrounding medium properties [10].

3.2. Pipe Excitation Method—Improved Acoustic Transmission Technique

As stated earlier, the traditional acoustic transmission method employs rather crude ways of
excitation and only a single receiver is used to collect the resultant vibration signals on the ground
surface. Moreover, only magnitude information of the gleaned signals is processed for interpretation of
the detection results. Consequently, most acoustic locating systems for commercial use suffer from poor
performance. To overcome these drawbacks, exploiting the phase of the ground vibration data has been
proposed [84]. Previous studies show that in a buried fluid-filled pipe, the fluid-dominated wave can
be well-coupled with surrounding soil and radiate effectively towards the ground surface [63,64,85],
which means this mode is the ideal wave type for detection at ground surface. Therefore, a dedicated
pipe rig was designed and several excitation methods were tested to find out the most effective means
to generate the fluid-dominated wave [86]. Based on the findings mentioned above, pipe excitation
method was proposed and elaborated in [69], providing a robust and promising technique in buried
water pipe localization, especially for plastic pipes.

The pipe excitation method shares similar principles with the traditional acoustic transmission
method. When compared with each other, there are three main improvements employed in the pipe
excitation method. Firstly, the acoustic source is specially designed and installed, with an inertial
shaker mounted on a plastic end-plate bolted to the flanged end to the pipe as it come up to the ground
surface, as shown in Figure 6a,b. In this way, the fluid-dominated wave can be excited to most extent.
The shaker was excited with a stepped sine input from 10 Hz to 400 Hz. Secondly, the ground vibration
is measured using an array of I/O SM-24 geophones over a rectangular measurement grid depicted in
Figure 6c, which enables the multiple vibrations to be measured simultaneously. Most importantly,
the phase information of ground vibration is employed to map the run of the buried pipes, which is
proved to be more robust than magnitude estimates in presence of noise and different types of ground
surfaces [69].

The pipe excitation technique has been shown to be successful for locating both plastic and metal
water pipes, laid under grass and under tarmac [12]. Figure 7 shows detection results at a single
frequency of 62 Hz for the same MDPE water pipe, with the unwrapped phase clearly revealing the
entire run of the pipe. Magnitude information can supplement this and may be particularly useful in
identifying discontinuities where reflections can occur, for example a bend in the pipe, a change in
pipe material or dimensions, even a leak.

When unwrapping the phase in the frequency domain at a single location above the pipe, abrupt
phase changes occur, which may not be properly accounted for. To rectify this problem, an analytical
model was established to predict the ground surface displacements due to fluid-dominated wave
motion in a buried water pipe [70,87]. This work extended the study conducted by Jette and Parker [12],
where the ground surface displacements accompanying the propagation of acoustic waves in a buried
gas-filled pipe was initially investigated. The theoretical model in [70] explained the reason for abrupt
phase changes by demonstrating the radiated wave interference that occurs in some soil conditions,
and underpins the pipe excitation method for locating buried pipes.
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A recent application of the vibro-acoustic was to locate the tree root from ground surface vibration
measurements [88,89], where, fortuitously, the run of a plastic pipe adjacent to the tree root was plainly
visible in the contour plots at low frequencies. This finding implies new possibilities for non-touching
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excitation of the pipe excitation method in locating buried plastic pipes [88]. The excitation may be
achieved via nearby trees or possibly by exciting the ground in the vicinity, without resorting to directly
access to pipes. Additionally, the effect of burial depth on ground surface vibration has been studied,
offering additional insight into the possibility that the pipe excitation method might be improved to
glean depth information of buried pipes [70].

3.3. Point Vibration Measurements

Point vibration measurements for locating pipes buried in shallow depth were first proposed
in [90]. The basic rationale implemented by point vibration measurements to determine the location of
buried objects is elaborated as follows. When excited by a harmonic load over low frequency range,
the ground, which is a homogeneous elastic half space, behaves as a classical single degree of freedom
system with three components in terms of mass, stiffness and damping, as shown in Figure 8. This
system possesses the intrinsic resonance characteristic at the resonance frequency governed by the
elastic properties of the soil and the excitation radius, which are altered by the presence of a buried
object with properties differ from the surrounding soil. The location of buried objects can be inferred
through analysing these alterations.
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Experimental measurements were conducted on a dedicated pipe rig and a domestic waste pipe.
Both of them were buried at a depth of approximately 30 cm. In this paper [90], the procedure of the
measurements carried out on the dedicated pipe rig as shown in Figure 9a is introduced as an example.
The ground was excited by an electrodynamic shaker with a built-in impedance head as shown in
Figure 9b, which enabled the applied force and ground acceleration to be measured straightforwardly.
The shaker was driven by a sweep input over a frequency range from 10 Hz to 800 Hz. The sketch of
the location of measurement points over the buried pipe rig is depicted in Figure 9c.

Figure 10 displays the measurement results of three lines. More details about the measurements
can be found in [90]. It is clear from the figure that both the resonance frequency and the magnitude
of the response at the resonance are changed due to the presence of the buried pipe, from which the
location may be identified in both resonance frequencies and accelerance magnitudes at the resonance
along the measurement lines, even though the peak magnitude was not always a useful indicator.

The main advantage of point measurements is that it can be conducted straightforward without
resorting to sensor arrays, which is more practical in congested areas. In addition, the measurement
results are easy to interpret. Importantly, the detection depth may be improved by increasing the
excitation contact radius. The experiment results are encouraging and there is evidence to suggest that
point vibration measurement could be a quick and feasible supplement to conventional buried pipe
detection techniques.



Appl. Sci. 2020, 10, 1031 11 of 30Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 34 

 

 

 

(a) 

 
(b) (c) 

Figure 9. Point vibration measurements: (a) pipe rig prior to burial; (b) acoustic source (shaker); (c) 
measurement lines (the cross are for illustrative purposes only) [90]. 

Figure 10 displays the measurement results of three lines. More details about the measurements 
can be found in [90]. It is clear from the figure that both the resonance frequency and the magnitude 
of the response at the resonance are changed due to the presence of the buried pipe, from which the 
location may be identified in both resonance frequencies and accelerance magnitudes at the 
resonance along the measurement lines, even though the peak magnitude was not always a useful 
indicator. 

  

(a) (b) 

Figure 10. Detection results of point vibration measurements: (a) resonance frequencies along 
measurements lines; (b) accelerance magnitude at the resonance along measurement lines [90]. 

Figure 9. Point vibration measurements: (a) pipe rig prior to burial; (b) acoustic source (shaker); (c)
measurement lines (the cross are for illustrative purposes only) [90].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 34 

 

 

 

(a) 

 
(b) (c) 

Figure 9. Point vibration measurements: (a) pipe rig prior to burial; (b) acoustic source (shaker); (c) 
measurement lines (the cross are for illustrative purposes only) [90]. 

Figure 10 displays the measurement results of three lines. More details about the measurements 
can be found in [90]. It is clear from the figure that both the resonance frequency and the magnitude 
of the response at the resonance are changed due to the presence of the buried pipe, from which the 
location may be identified in both resonance frequencies and accelerance magnitudes at the 
resonance along the measurement lines, even though the peak magnitude was not always a useful 
indicator. 

  

(a) (b) 

Figure 10. Detection results of point vibration measurements: (a) resonance frequencies along 
measurements lines; (b) accelerance magnitude at the resonance along measurement lines [90]. 
Figure 10. Detection results of point vibration measurements: (a) resonance frequencies along
measurements lines; (b) accelerance magnitude at the resonance along measurement lines [90].

3.4. Seismic Wave Methods

Seismic wave methods are well-developed detection techniques that have been widely used in
reservoir (oil and gas) exploration [91]. In this case, hydrocarbon deposits usually are at a depth of
hundreds of meters or even kilometres below the surface. The common depth point (CPD) stacking
technique [92] is usually employed to image the location of reservoirs. However, these techniques are
not suitable for detection of shallow-buried objects due to the shorter separation of travel time [93],
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requirements of higher frequencies [94], and the presence of wave speed variation near surface [95].
Therefore, studies have been conducted in order to modify the seismic wave method for shallow
depth detection [96–98]. More recently, research has been performed to assess the applicability of
seismic reflection in buried pipe detection [99,100]. Consequently, a compressional wave method and
a shear wave method applied for locating buried pipes have been elaborated in [101] respectively.
The detection results have been shown to be encouraging, suggesting the efficacy of using seismic
wave methods in locating underground utilities.

The basic principle behind seismic wave methods is briefly outlined in Figure 11. When the
ground is mechanically excited, acoustic waves are generated and propagate away from the source
point into the soil, after which they are scattered by buried objects with mechanical properties different
from the surrounding soil. The scattered waves carrying the information of object location can be
captured by an array of geophones at the ground surface. Accordingly, detection and analysis of these
scattered waves allow the buried objects to be located [102].
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In principle, three main types of seismic waves coexist in the systems of buried objects, including
compressional wave, shear wave and Rayleigh wave. This leads to three seismic wave methods
including a compressional wave method, a shear wave method and a surface wave method, each of
which has one predominant wave excited by selecting the specific forms of excitation.

3.4.1. Compressional Wave Method

A compressional wave method has been proposed to detect objects buried at a shallow depth [101].
The experimental set-up is shown in Figure 12a. In this set-up, the shaker was placed on the ground
surface as the acoustic source, using a specially designed platform (see Figure 12b) to achieve well
coupling with the soil and to generate a compressional wave. This method is a modified work based
on [103], where the CDP method was adapted to locate buried point-like objects. One modification of
the compressional wave method is that a time extended signal, instead of impulses, was used to drive
the shaker vibration. In this way, the excitation signal can be constructed to input the desired frequency
content. In addition, the energy can also be supplied to the ground over a sufficient period without
resorting to input amplitudes that produce a non-linear response in the ground [101]. However, the
employment of time-extended signal renders the time-domain approach inapplicable. Consequently,
the cross-correlation function with additional signal processing has been used in the imaging algorithm
to produce a cross-sectional image of the buried object.
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Field tests have been undertaken to validate the efficiency of the compressional wave method,
where a concrete pipe with diameter of 0.6 m buried at a depth of 1 m was selected as a target.
The time-extended signal was a linear chirp with the frequency range of the input varying from 50 Hz
to 2 kHz. The imaging result displayed clear location of the pipe, as illustrated in Figure 13, despite the
limited resolution.
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3.4.2. Shear Wave Method

Shear waves in underground imaging has been proposed were used to detect relics, based on
the stacking of reflected scattered waves. However, the resolution of the image is not sufficient [96].
Accordingly, studies have been conducted to improve imaging of underground objects, by using a
high-pass filter and peak position correction of received waves [104], adopting the envelope display
method [105] and the deconvolution method [106]. As reported in [103], experimental work was
carried out to validate the feasibility of the proposed method.
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A method proposed by Sugimote et al. [103] was then modified to the compressional wave
method as we introduced previously. However, the imaging results have poor resolution, as shown
in Figure 13. To overcome this problem, a shear wave was suggested to be employed to illuminate
the object, as it has lower speed than compressional wave which implies a smaller wavelength for a
given frequency [101]. Consequently, a shear wave ground surface vibration technique was proposed
and presented in [102] for the detection of buried pipes. The experimental set-up is displayed in
Figure 14a. Another advantage of using shear wave is that time separation between the Rayleigh
wave and reflected shear wave can be maximised, thus preventing the smaller reflected signal from
being obscured by the dominant surface wave [99]. The rationale of this technique is similar to the
compressional wave method while a shear wave is the predominant wave type among the main seismic
waves. This was achieved by attaching the shaker to a specially designed rake (see Figure 14b) to
preferentially excite horizontally polarised shear waves. The excitation signal was a swept sine from
10 Hz to 400 Hz.
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In addition to the modification of hardware, the signal processing algorithms have also been
improved. A modified form of the cross correlation, which includes the excitation signal as an
additional reference, was employed to mitigate the contaminants from clutter. The smoothed coherence
transform was used to pre-whiten the signals to improve the resolution of the image. Figure 15 shows
the cross-sectional staking images revealing the location of a buried plastic pipe. The experimental
results have demonstrated that the shear wave method is successful in locating both plastic and cast
iron pipe despite the low resolution of images.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 34 

 

 

Figure 15. Cross-sectional image produced from shear wave method using two different wave speeds. 
The black bold line shows the location of the target [102], Copyright Elsevier, 2014. 

3.4.3. Surface Wave (Rayleigh Wave) Method 

A major application of the surface wave method is landmine detection [107]. When the ground 
is insonified by an acoustic source, the motion of the landmine can be distinguished from that of 
surrounding soil since the structural resonances possessed by landmines are excited by Rayleigh 
waves. This results in larger motion in the region directly above the landmines. Accordingly, the 
location of landmines can be determined by measuring local seismic displacements. A diagram of the 
mine detection system is shown in Figure 16. Generally, a remote source and non-contact sensor are 
employed in this case, leading to substantial research on acoustic-to-seismic coupling for landmine 
detection [108-110]. 

 
Figure 16. Mine detection system using surface wave method [107], Copyright IEEE, 2001. 

In addition to landmine detection, surface wave has been applied for locating underground 
obstacles [97, 111], voids [112] and cavities under pavements [113, 114]. In these studies, the 
experimental set-ups for testing were similar to that displayed in Figure 11, with a source and an 
array of receivers located on ground surface. An example of the experimental set-ups are displayed 
in Figure 17 for the detection of underground voids using the surface wave [112]. 

Figure 15. Cross-sectional image produced from shear wave method using two different wave speeds.
The black bold line shows the location of the target [102], Copyright Elsevier, 2014.



Appl. Sci. 2020, 10, 1031 15 of 30

3.4.3. Surface Wave (Rayleigh Wave) Method

A major application of the surface wave method is landmine detection [107]. When the ground
is insonified by an acoustic source, the motion of the landmine can be distinguished from that of
surrounding soil since the structural resonances possessed by landmines are excited by Rayleigh waves.
This results in larger motion in the region directly above the landmines. Accordingly, the location
of landmines can be determined by measuring local seismic displacements. A diagram of the mine
detection system is shown in Figure 16. Generally, a remote source and non-contact sensor are
employed in this case, leading to substantial research on acoustic-to-seismic coupling for landmine
detection [108–110].
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In addition to landmine detection, surface wave has been applied for locating underground
obstacles [97,111], voids [112] and cavities under pavements [113,114]. In these studies, the experimental
set-ups for testing were similar to that displayed in Figure 11, with a source and an array of receivers
located on ground surface. An example of the experimental set-ups are displayed in Figure 17 for the
detection of underground voids using the surface wave [112].
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Although the sizes and burial depths of some targets mentioned above may be different from
those of buried pipelines, progress in this area has been simulated by the desire to apply surface wave
method in buried pipe detection. The studies relevant to the surface wave detection method have
validated its potential capability for locating buried pipelines, which might be a research direction for
future work.
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3.4.4. Summary of Seismic Wave Methods

An advantage of seismic wave methods is that access to the pipe of interest is not required as the
excitation source is located at ground surface. Moreover, burial depth of the target can be determined
from cross-sectional stacking images, which is greatly superior to other previously introduced acoustic
methods. However, imaging of underground objects usually suffers from insufficient resolution and
heavily depends on the wavespeed of the soil used in signal processing. Consequently, determination
of wave velocities through in-situ ground is necessary, which unfortunately, is not always accurate due
to the dispersion behaviours and the coexistence of multi-type waves.

All three main types of seismic waves (compressional wave, shear wave and Rayleigh wave)
have been evaluated individually [115] with the choice of wave depending mainly on the depth of
target. In general, seismic wave methods are effective for locating buried objects larger than about
half a wavelength. More detailed background theory behind seismic methods and signal processing
algorithms can be found in [99,100].

4. Commercially Available Acoustic Locators

4.1. Pipe Locators Based on the Traditional Acoustic Transmission Method

As mentioned in preceding section, the traditional acoustic transmission method lays the
foundation for most commercially available acoustic locators for pipe. In this section, three pipe
locators are introduced, including non-metallic pipe locator NPL-100 produced by FUJI TECOM
INC (Tokyo, Japan) [81], plastic water pipe locator RD500 produced by RADIODETECTION (Bristol,
UK) [82] and System Combiphon produced by SEWERIN (Gütersloh, Germany) [83].

The traditional acoustic transmission method involves acoustic generator and receiver parts.
Usually the acoustic source systems consist of a transmitter or a vibrator with oscillators, where more
than one transmitters or oscillators may be included in kits to suit different applicational conditions.
Response signals can be picked up by the high sensitive geo-sensor and headphones. The region with
most intensity of signals corresponds to the location of buried pipes. Figure 18 shows the operation
procedure of buried pipelines localization using the System Combiphon [116]. All the locators based
on the traditional acoustic transmission method require access to pipes like fire hydrant, tap and so on.
The effective scope and the main features according to the brochure are summarized in Table 2.
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4.2. Ultra-Trac® Acoustic Pipe Locator (APL)

The Ultra-Trac® APL is an acoustic pipe locator produced by SENSIT Technologies (Indianapolis,
USA) [117], based on acoustic impedance mismatch between buried pipes and surrounding soil.
The difference in sound speed of soil makes the pipe detectable using the Ultra-Trac® APL. The acoustic
wave pattern of specific timing and frequency is monitored and processed using the device’s
accelerometers. By analysing the signature of the received signals, a pipe being present or not
is determined within the minimum requirements as set in the software. The basic principle and the
display window are shown in Figure 19a,b respectively [118]. Depth estimation is possible, but it
is fraught with potential error due to site conditions. APL can be used for most surfaces and pipe
materials. However, its effectiveness is largely affected by several considerations. The operator
should not mix surface types in a single scan, nor perform a slice on large cracks or expansion joints.
In addition, narrow slices are required on soft soil, like loose or freshly excavated soil. More detailed
features of APL are summarized in Table 2.
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4.3. Seismograhhy/Surface Wave Tester

Seismic wave methods are well-established in the application of hydrocarbon exploration.
Seismography has been developed for petroleum prospecting, engineering inspection, water reservoir
monitoring, environmental and geologic hazards detection and evaluation, as well as other geological
applications [119]. Devices for surface wave technique [120] are currently commercially available in
the determination of road layer or pavement system profiles, soil profiles, condition assessments of
concrete liners in tunnels and other structural concrete conditions as well as determining crack depth
in monolithic concrete [121].

To date, however, the application of seismic wave methods in buried pipeline detection is still at
an early stage. There are still a number of gas in the existing designs to fulfil the commercial needs.
where no commercial pipe locators based on seismic wave methods are commercially available at this
time. Nevertheless, test results show some promise and thus commercial products are expected to be
commenced in near future.
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Table 2. Main features of different acoustic pipe locators according to their brochures.

Representative Locators Source and Receiver Limitations Optimal Detection Range Advantages

FUJI NPL-100
[122]

Piezoelectric acceleration sensor;
vibrator oscillator

• The filter built in receiver intercepts the
external noises

• The automatic adjustment function for tuning
in a resonance frequency of each pipe

RADIO
DETECTION RD500

[123,124]

3 transmitters to suit different application points;
2 devices for probing the soft and hard surface,
respectively

Locating reduced for the pipe under pavement or
concrete;
Locate range reduced at the point where the pipe
goes into a tee or joins a larger pipe

• A single pipe running under grass or soil
• Between 30 psi/2 bar and 75 psi/5 bar water

pressure and adequate flow
• Distances up to 150 m may be traced
• Locate up to 2 m depth

• The unit is low cost, quick and easy to use

SEWERI System Combiphon
[116,125]

Generator G5 central control unit and various
impulse generators;
2 oscillators (Knocker, Stopper)

• Innovative filter optimisation function
• Provides an accurate visual and acoustic

comparison of the noise intensities

Ultra-Trac® APL
[118,126]

Cannot detect objects less than 12” deep

• Locate 1/2” pipe at a depth of 12” to 30”; 2”
pipe at a depth of 12” to 48.”; 4” pipe at a
depth of 12” to 96.”

• The accuracy is within ±18” plus the selected
slice distance from pipe location

• Locate pipe through most surfaces, most
pipe materials

• Incorporate noise filtering technology that
eliminates false readings;

• Allow the user to view scan data and 3D
images of the surveyed underground area;

• No system access required
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5. Factors Affecting Acoustic Methods in Pipeline Localization

According to the principles behind acoustic methods, to successfully locate buried pipes, three
aspects are necessary in the process of detection, including generation of elastic waves, wave propagation
through pipe-soil systems, and signals collection after wave travel. Several factors can be controlled
for wave generation, including the frequency range, the coupling between the wave generator
to the points to be vibrated, as well as the pressure of in-pipe medium [10]. Once the sound is
introduced, wave propagation through pipe-soil systems goes beyond the technician’s control, due to
the differences/uncertainties in coupled pipe systems including the pipe material, pipe size, burial
depth, surrounding soil and in-pipe medium. In addition, the quality of collected signals may also
be affected by the condition of ground surface and background noise. The availability of adequate
information concerning the condition of buried pipes provides the prerequisite for selecting appropriate
acoustic methods. In this section, several main factors are briefly discussed as follows.

5.1. Background Noise

There is no doubt that detection results of acoustic methods can be susceptible to interference
from noise, such as that produced by aircraft, automobiles, trains, and electrical transformers. For most
locators in commercial use, filters are often built in receivers to intercept external noises. In addition,
the employment of phase information rather than sound intensity provides an option to obtain rather
robust results against the interference of background noise.

5.2. In Pipe Medium and Pipe Material

Previous work has shown that fluid-dominated wave can be selected as the target wave when
applying the pipe excitation method to locate buried plastic water pipes [69]. However, the feasibility of
this method may be different for various in-pipe medium and pipe materials. Studies on the feasibility
of the pipe excitation method in locating buried gas pipe has been conducted in [127]. The numerical
results revealed that vibro-acoustic detection may not work well in gas pipe detection because of
the weak coupling between gas and pipe wall, making the gas-dominated wave not radiate into the
surrounding soil as effectively as the water-dominated wave. In addition, plastic pipes are easier to
excite than metal pipes as they possess less density and less inertia. Therefore, the rank of feasibility
on locating buried pipes from high to low is plastic water pipes, metal water pipes, plastic gas pipes,
and finally metal gas pipes. For detection techniques with rationales based on the property difference
between the presence of buried pipe and surrounding soil, like point vibration measurements [90],
gas pipes are easier to locate than water pipes, as the property of gas is more different from the
surrounding soil.

5.3. Pipe Structure: Discontinuity and Bend

Another factor which can greatly affect wave propagation is pipe configuration. Common pipe
structures, in addition to straight single pipes, are comprised of joints, bends and discontinuity, like a
change in wall thickness or pipe materials. Current acoustic methods for locating buried pipes are still
in development, where few field tests have been conducted on pipe rigs containing discontinuities.
This is despite the fact that the effects of discontinuity on wave propagation in pipe structure have
been studied by many researchers.

Early studies on wave propagation in a cylindrical shell with discontinuity were carried out
by Harari [128,129], where discontinuity was treated as a line insert or attachment. Fuller [130] has
investigated the effects of wall discontinuities on flexural waves in the framework of thin shell theory,
where the discontinuity was considered as the finite section of pipe. However, Fuller’s study was
limited to thin-walled shell in vacuo. To study a more common scenario, Muggleton and Brennan [131]
established an analytical model of a buried fluid-filled pipe, in which three types of axisymmetric pipe
wall discontinuities were taken into consideration, as shown in Figure 20. The wave transmission and
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reflection behaviours of two axisymmetric waves, including fluid-dominated wave and shell-dominate
wave, were investigated theoretically. Approaches to estimating the reflection and transmission
coefficients of discontinuities were also developed [132]. The reflection behaviour of leak noise signals
as they encounter discontinuities has been investigated in [133], where the effects of reflection on time
delay estimation for water leak detection has been highlighted.Appl. Sci. 2020, 10, x FOR PEER REVIEW 23 of 34 
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In addition to pipe wall discontinuity, another common pipe structure is bend. A preliminary
research [134] has been conducted on the effects of bends on the propagation of axisymmetric mode
L(0,2) in pipes surrounded by vacuum by using the membrane finite element model, where the reflection
behaviour and mode conversion of guided waves were studied. It was found that L(0,2) mode would
convert into flexural modes when transmitted through the bend. Demma et al. have studied guided
waves in curved pipes [135], calculating the dispersion curves for toroidal structures [136]. Since
ordinary finite element methods are demanding in computational time and memory, a semi-analytical
finite element method was introduced by Hayashi et al. [137] in calculating guided wave transmission
through a pipe elbow. More recently, an analytical modelling approach has been put forward in [138].
Further study on the transmission behaviours of specific modes can be found in [139,140].

More detailed study regarding the effects of discontinuity or bends on the propagation of guided
waves in pipes can be found in [141].

5.4. Soil Property

It is well known that electromagnetic propagation suffers from heavy attenuation in the presence
of conductive medium, like water. Therefore, detection techniques that rely on the induction or
reflection of electromagnetic radiation, such as metal detectors and ground penetrating radar, do
not work well for locating objects buried in wet soil. Generally, acoustic detection methods do not
experience this limitation [100]. However, the saturation of the soil together with porosity and degree
of compaction, has strong connection with the speed of soil, which can impact on acoustic wave
radiation or interpretation of results.

Long et al. have investigated the effect of soil property on wave dispersion behaviours and
attenuation characteristics in buried iron water pipes [77,78], concluding that whether a mode creates a
leaky bulk wave into surrounding soil depends on the speed relationship between mode and bulk wave
of soil [76]. Similar findings have been presented in [70,142], where fluid-borne wave in buried plastic
water pipe will not leak compressional waves when the speed of compressional wave in surrounding
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soil is greater. These analyses can shed some light on practical problems that occur when applying
pipe excitation methods in locating buried pipe.

Furthermore, accurate evaluation in-situ acoustic properties of soils, especially wave speed, plays
a significant role in the seismic wave method [101,102] and pipe leakage detection [143], as wave speed
is directly related to the interpretation of measurement results. Therefore, many studies have been
conducted on measurement of soil properties, which can be found in [144–148].

6. Selection of Pipeline Localization Methods

Often a technique is considered most suitable for specific conditions. A key issue governing
the selection of appropriate rehabilitation technologies, is the availability of adequate information
concerning the condition of infrastructure as well as the limitations and applications of different
localization technologies. The main features of the different acoustic methods are summarized in
Table 3, together with their strengths and limitations.

In addition to acoustic techniques (AT) reviewed in this paper, currently existing techniques for
locating buried pipelines includes but not limited to trace wire (TW), ground penetrating radar (GPR),
electromagnetic methods (EM), Magnetic methods and infrared thermography (IF), with the first three
in common use in practice [9]. To provide a better understanding of these non-acoustic techniques,
their limitations and application are briefly summarized in Table 4.

Selecting appropriate locating techniques in accordance with site conditions is of great
significance [149], as it is an indirect way to improve the accuracy of results. Therefore, a decision-tree
approach has been implemented using criteria such as soil type, presence of trace wire, type of material,
and ease of access to the manhole to pinpoint a preferred method [11,150]. More performance criteria
for designating or selecting suitable technologies can be found in [9]. In this section, based on the
features of above-listed locating techniques, as well as the analysis and decision tree in [11,150], a flow
chart for selecting the preferred pipe localization methods is illustrated in Figure 21.
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Trace wires is still the most reliable method when present [150]. When trace wires are missing,
the material of pipelines should be the second criteria for selecting preferred methods. For metallic
pipelines, most of the locating techniques can be applicable. In this way, the environmental factors can
be the next criteria. For non-metallic pipelines, the commonly used locating method are GPR and AT.
An appropriate method can be selected based on whether there is access to systems and the property
of surrounding soil. In addition, a flexible stiff wire can be inserted into the pipelines and used as
a temporary TW [150] to realize good performance in unfavourable site conditions [10], where the
presence of highly conductive soils limits GPR application and the presence of objects distorts the
electromagnetic fields used in conventional locating.
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Table 3. Summary of different acoustic methods.

Acoustic Methods Access to Pipe Data Collection Imaging Type Information of Pipe Location Strengths Limitations

Traditional acoustic transmission method Required Single-sensor Cross-sectional image Run of the pipe

• Measurements are
easily conduct

• Detection results
are straightforward

• Susceptible to noise
• Interpretation of the results depend

heavily on the experience of operators
• Require access to pipe

Pipe excitation method Required Multi-sensors Top view Run of the pipe
• Employment of phase

information, robust in
noisy environment

• Require access to pipe
• Detection results need further processing
• Not suitable for congest area

Point vibration
measurements Not required Single-sensor Cross-sectional

image Run of the pipe

• Measurements are
easily conduct

• Suitable for congest area
• Detection results

are straightforward

• Shallow
detectable depth

• Low accuracy

Seismic wave methods

Compressional wave method

Not required Multi-sensors Cross-sectional image Lateral location and burial depth • Provide burial depth

• Insufficient resolution of image

Shear wave method
• Requirement of measurements on wave

velocities of in-situ soil, which is not
always stable and accurate

Surface wave method • Measurement lines should perpendicular
to the pipe
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Table 4. Applications and limitations of different non-acoustic localization technologies.

Methods Applications and Limitations

Trace wires (TW) [150]
• A reliable method when present
• Multiple trace wires in the same area can affect the locating accuracy
• Trace wire damage or absent frequently happens

Groun penetrating radar (GPR) [5]
• Applicable for both metallic and non-metllic objects
• Greater signal attenuation with conductive soil such as clay and saturated soil
• Detection results require professinal operators to interpret

Electromagnetic methods (EM) [9]
• Can only detect metallic objects
• Suffer from attenuation in the presence of conductive soil
• Possible interference by other near-by metallic pipes

Magnetic mehtods (MM) [151] • Only applicable for detecing and tracing ferrous targets
• The accuracy can be affected by nearby objects

Infrared thermography (IF) [18] • Based on variations in thermal property
• Can be affected by grond cover, wind speed and moisture content of surrounding soil

7. Conclusions and Future Research

The traditional acoustic transmission technique has shown success in locating buried pipelines.
To date, however, vibro-acoustic methods have not been adopted extensively in practice, although this
is now a rapidly growing area of research with encouraging test results. In this paper, these methods
have been reviewed and the main features of each technique have been investigated.

Acoustic methods in locating underground pipelines have proven to be a potential supplement to
the existing techniques for locating both metallic and plastic pipes. It is noteworthy that they have the
ability to accurately locate non-metallic buried pipes.

Future research is suggested as follows:

• The pipe excitation method possesses robust performance in the presence of background noise.
However, it has limitations of access requirement to the pipe and the inability to estimate the
burial depth. It is thus suggested to explore alternative ways to excite the fluid-dominated wave
for pipe localization with no access to the pipe as well as its potential ability to estimate depth.

• The advantages of seismic wave methods are that access to the target is not required and burial
depth can be determined from images. In order to improve the efficiency of seismic methods, both
hardware and signal processing methods are expected to be optimized for better performance.

• The vibro-acoustic localization methods are still at an early stage of development, with gaps
between the exiting designs and commercial needs. Commercial products are expected to be
commenced in near future.

• Each method has its own advantages and drawbacks. Developing ways of combining different
methods is a trend for future research.

While this paper focuses on an applied aspects of pipeline localization, the methods outlined are
applicable to underground infrastructures in that there are significant amount of technique overlaps
and similarities in objects localization. As such, this paper can provide an overview of common practice
and may be a valuable reference resource for practitioners and researchers in the application of locating
underground infrastructures.
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