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PREFACE 

 

Project title 

Gene expression and survival analysis of breast cancer subtypes defined by 

immunohistochemistry 

 

Location and dates 

The project was conducted at the Systems Biology Initiative, School of Biotechnology and 

Biomolecular Science, University of New South Wales, between February and November 

2019. 

 

Relevant BCA Units 

Survival Analysis (SVA) 

Bioinformatics (BIF) 

 

Context 

I am a senior staff specialist at the Department of Anatomical Pathology, NSW Health 

Pathology – Randwick, Prince of Wales Hospital. I am also a conjoint lecturer at the 

Faculty of Medicine, University of New South Wales. I am routinely involved in the 

diagnosis, subtyping and staging of breast cancer as part of my work. Subtyping of breast 

cancer by immunohistochemistry is vital for prognostication and treatment in the clinical 

setting. This project seeks to understand the gene expression signatures underlying the 

breast cancer subtypes defined by immunohistochemistry. It also investigates the effect of 

subtyping on survival. 

 

Dr Kenneth Beath (Department of Mathematics and Statistics, Macquarie University) is the 

statistical supervisor.  

 

The bioinformatic analyses were supervised by Dr Susan Corley and Prof Marc Wilkins 

(Systems Biology Initiative, School of Biotechnology and Biomolecular Science, 

University of New South Wales)  
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Student’s role 

I am the principal investigator, and am responsible for the conception, design and conduct 

of the project. This includes: 

- Obtaining RNA-seq and clinico-pathological data for 105 clinical breast cancer 

specimens from the National Cancer Institute online database, plus data entry into a format 

suitable for subsequent analyses. 

- Analysis of RNA-seq data via edgeR, limma and R studio, including drafting and 

execution of the required R scripts. 

- Analysis of survival data via STATA. 

- Drafting of the manuscript, including the preparation of tables, heatmaps and figures. 

 

Reflections on learning 

Communication 

Communication of statistical and bioinformatics results in a clear and concise manner was 

of great importance. Care was taken to ensure the language used in the results section was 

readily understandable by the intended target audience of clinicians and pathologists. 

Tables were formatted and annotated in a manner to ensure accurate and concise visual 

representation of data. Complex statistical data, not regarded as essential for understanding 

of the key findings, were referred to the appendix to facilitate interpretation of results. 

 

Work patterns/planning 

Time management and organizational skills were vital. Self-imposed deadlines for specific 

tasks were set throughout the 10 month period, to ensure that the project was completed in 

a timely manner. For the bioinformatics portion of the project, a large number of data files 

(> 150) were generated. These had to be organized into folders and labeled with the 

appropriate headings to ensure that they were readily accessible for bioinformatics 

analysis. Throughout the project I maintained regular contact with my supervisors, who 

provided guidance in regards to the direction of the project. They were also vital in helping 

me answer many of the statistical and bioinformatics questions that arose during the 

project. They also gave much needed assistance with the drafting of the manuscript. 
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Statistical issues 

For RNA-seq analysis, issues included importing, organizing, annotating, transforming, 

filtering and normalizing data via the edgeR package, removing heteroscedascity from 

count data via the voom function, and fitting linear models for comparisons of interest. 

This project has been invaluable in teaching me the R programming language, the use of 

the various bioconductor packages and the organisation of information in R via data 

frames and matrices. I have also gained exposure to gene set testing via online databases 

such as DAVID. Issues arising from the multivariable survival analysis included testing for 

interactions and the proportional hazards assumption, plus the identification of influential 

observations. This project has consolidated the STATA programming skills I have learnt 

during the course. 

 

Ethical considerations 

The project was carried out in accordance with NHMRC ethics guidelines. The data for the 

survival analyses were collected by Prof Sandra O’Toole and Dr Ewan Millar at the 

Garvan Institute, with ethics approval provided by St Vincent’s Hospital HREC. All data 

received were de-identified to maintain confidentiality.  De-identified data for the PAM50 

and RNA-seq cohorts were obtained from publicly available databases. 

 

  



5 
 

Student Declaration 

I declare this project is evidence of my own work, with direction and assistance provided 

by my project supervisors. This work has not been previously submitted for academic 

credit. 

 

Max Yan 

November 2019 

 

Supervisor Statement 

I can confirm that Max conducted this work independently. This project incorporated a 

number of analyses both bioinformaticsand survival analysis based on the bioinformatics 

results. He has shown an excellent ability to construct the analyses and present them. He 

has also been rigorous in sticking to his time-line, on what has been a large project. 

 

Dr Kenneth Beath 
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PROJECT REPORT 

Title 

Gene expression and survival analysis of breast cancer subtypes defined by 

immunohistochemistry 

 

Abstract 

 

Introduction:  

Breast cancer in the clinical setting may be divided into four subtypes (luminal A, luminal 

B, HER2 and basal) by immunohistochemical (IHC) analysis. This project aims to 1) 

compare subtype classification by IHC vs. the PAM50 gene classifier, 2) investigate the 

gene expression profiles of the IHC subtypes and 3) investigate the prognostic implications 

of the IHC subtypes. 

 

Method: 

The concordance between the IHC and PAM50 classifiers was assessed in a group of 405 

breast cancers used in a previous study by Breffer et al. [1]. For RNA-seq analysis, data for 

a group of 105 cancers subtyped by IHC were obtained from The Cancer Genome Atlas 

Program (TCGA), National Cancer Institute (NCI) [2]. The data were analysed with limma 

and edgeR to obtain the gene expression profiles for the IHC subtypes.  An exploratory 

unsupervised hierarchical cluster analysis was performed to help understand the usefulness 

of these gene sets in providing information on IHC cancer subtypes. Lastly, breast cancer 

specific overall survival among the IHC subtypes was assessed in a cohort of 292 cancers 

from the Garvan Insititute. 

 

Results: 

The concordance between subtyping by PAM50 and IHC among the 405 tumours was 

59%. For cancers classified as HER2 by IHC (HER2 IHC cancers), 94% (16 out of 17) 

were also classified as HER2 by PAM50. For basal IHC cancers the concordance with 

PAM50 was 86% (54 out of 63). For luminal A and luminal B IHC cancers, the 
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concordance with PAM50 was 59% (148 out of 251) and 28% (21 out of 74) respectively. 

Linear modeling of RNA-seq data showed basal IHC cancers were enriched for genes 

associated with tumour hypoxia, activation of the beta-catenin pathway, progression 

through the cell cycle and stem cell proliferation.  Whereas as luminal A cancers showed 

down-regulation of genes associated with progression through the cell cycle and cell 

migration. An exploratory unsupervised hierarchical cluster analysis by the PAM50 gene 

set supported the usefulness of these genes in understanding the differences between the 

subtypes. Survival analysis using the Cox regression model showed, compared to luminal 

A IHC cancers, basal (HR = 4.08, 95% CI: 2.02 – 5.77), and HER2 (HR = 4.08, 95% CI: 

2.14 – 7.78) cancers were associated with shorter breast cancer specific overall survival (p 

= 0.018).  A tendency for poorer survival was seen for luminal B IHC cancers (HR = 2.04, 

95% CI: 0.98 – 4.25) was observed.  

 

Conclusion: 

Breast cancer IHC subtypes have distinctive gene expression profiles that relate to their 

biological behaviour. Subtyping by IHC yields important prognostic information that may 

aid the clinical management of breast cancers. 
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Glossary 

 
Bioconductor package Bioconductor package provides tools for the analysis of high-

throughput genomic data. It uses the R statistical programming 

language, is open source and allows for open development.  
 

camera Correlation Adjusted MEan RAnk gene set test. This test for enrichment 

of a particular gene annotation category among a gene set (composed of 
genes that are differentially expressed). Unlike previous methods, 

camera does not assume the genes within the set are independent (i.e. 

not correlated). 
 

cDNA microarray A cDNA microarray allows the measurement of a large number of 

genes simultaneously. mRNA is reverse transcribed into cDNA. The 

cDNA, attached with a dye, binds to a matching sequence on a spot 
within the array, and is visualised.  It has largely been replaced by 

RNA-seq.  

 

Counts per million 

(cpm) 

In RNA-seq analysis, cpm is the count of the sequenced fragment of 

interest divided by the total number of reads times one million.  

 

DAVID Database for Annotation, Visualization and Integrated Discovery. 
DAVID provides a set of functional annotation tools to understand 

biological meaning behind large list of genes. 

 

Distant metastasis Breast cancers that have spread to distant sites, beyond the breast and 

local axillary lymph nodes. 

 

edgeR Empirical Analysis of Digital Gene Expression Data in R. This is a 

Bioconductor package used for differential expression analysis of gene 

expression data. 

 

Endocrine (hormone) 

therapy 

Treatment that stop estrogen from attaching to its receptor. An example 

would be the drug Tamoxifen. 

 

Estrogen receptor Receptor for the hormone estrogen found on normal breast cells.  In 

breast cancer cells, binding of estrogen to its receptor promotes cell 

proliferation. 
 

Formalin fixed, 

paraffin embedded 

(FFPE) tissue 

Method for preserving tissue in formalin and wax. It is a cost effective 

method for preserving tissue at room temperature. Disadvantages 

include denaturation of proteins, plus the degradation of DNA and 
RNA, thus limiting the number of genetic tests that may be performed. 

 

Fresh frozen tissue Tissue is frozen in liquid nitrogen and stored in a -80 C freezer. It is the 
method of choice for preserving the integrity of DNA, RNA and 

proteins. Disadvantages include the costs and logistics involved in 

freezing the tissue immediately and storage in a -80 C freezer. In 

addition, morphology is suboptimal due to freezing artefact, rendering 
the specimen more difficult to interpret for the pathologist. 
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Functional annotation 

clustering 

This is a tool on DAVID which uses an algorithm to group similar, 

redundant annotation (GO terms) from different resources into a single 
group, facilitating biological analysis. 

 

GO term Gene Ontology term. This is a defined term used to represent the 

properties of a particular gene product. A GO term may relate to one of 
three domains: 1) Molecular function performed by the gene product 

(e.g. adenylate cyclase activity), 2) Cellular component (e.g. ribosome) 

and 3) Biological process, which is a larger process accomplished by 
multiple molecular activities (e.g. DNA repair) 

 

HER2 Human epidermal growth receptor 2 is a protein that appears on the 
surface of some breast cancer cells. This protein is involved in breast 

cancer cell growth and survival. Testing for HER2 may be performed 

via immunohistochemistry or in situ hybridisation. HER2-positive 

breast cancers can benefit from therapies which directly targets the 
HER2 receptor, such as trastuzumab. 

 

High throughput 

sequencing 

DNA and RNA sequences have traditionally been elucidated using a 
low throughput technique called Sanger sequencing. High throughput 

sequencing technologies are capable of sequencing multiple DNA 

molecules in parallel, enabling hundreds of millions of DNA molecules 
to be sequenced at the same time. 

 

Immunohistochemistry 

(IHC) 

Immunohistochemistry uses antibodies to bind to and identify specific 

proteins in a tissue section. Antibodies bound to the antigen on a tissue 
section may then be visualised under a microscope. 

 

In situ hybridisation In situ hybridisation uses complementary DNA strands to bind to and 
identify a DNA sequence of interest in a tissue section. The bound DNA 

strand is then visualised under a microscope. In HER2 ISH testing, this 

is used count the number of HER2 DNA copies in a cell. HER2 is said 

to be amplified if there are too many copies of HER2 DNA. HER2 
amplification leads to overproduction of HER2 protein. 

 

Ki67 index Ki67 is a protein expressed by proliferating cells. The Ki67 index is 
based on the proportion of tumour cells expressing Ki67. A Ki67 index 

of > 14% is associated with increased proliferation and a worse 

prognosis. 
 

limma Linear Models for Microarray Data is an R/Bioconductor software 

package that provides an integrated solution for analysing data from 

gene expression experiments. 
 

Lymph node status Lymph (tissue fluid) from the breast drains to lymph nodes in the axilla 

(arm pit). This is the first place breast cancer will spread to outside of 
the breast. Involvement of these lymph nodes is associated with a worse 

prognosis. 

 

PAM50 assay Prediction Analysis of Microarray 50. This assay looks at the activity of 

50 genes to identify the breast cancer subtype and to estimate the risk of 

distant recurrence.   
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Progesterone receptor Receptor for the hormone progesterone. Strong expression for both 
estrogen and progesterone receptors in breast cancer increases the 

effectiveness of anti-estrogen (endocrine) therapy. 

 

RNA-seq RNA-seq (RNA-sequencing) is a technique that can examine the 
quantity and sequences of RNA in a sample using high throughput (next 

generation) sequencing. 

 

Tumour grade Breast cancers are assigned a grade out of 3 based on their appearance 

under a microscope. Grade 1 cancers are well differentiated (i.e. most 

resembles normal tissue) and are associated with a better prognosis. 
Grade 3 cancers are poorly differentiated and are more likely to behave 

aggressively. 

 

Tumour status This describes the tumour's size and extent of local invasion. The four 
stages are - T1: < 2cm in size, T2: between 2cm and 5cm, T3: > 5cm, 

T4: Tumour involves skin or chest wall 

 

voom Voom stands for variance modeling at the observational level. Linear 

modelling in limma assumes variance is independent of the mean. This 

is not the case for log-cpm counts in RNA-seq. The voom method 
estimates the mean-variance trend of the log-cpm counts, and uses this 

mean-variance relationship to predict the variance of each log-cpm 

value. The predicted variance is then encapsulated as an inverse weight 

for the log-cpm value. Application of voom to the data results in the 
elimination of the mean-variance relationship.  
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Introduction 

Breast cancer is a heterogenous disease that can be divided into four intrinsic subtypes 

(luminal A, luminal B, HER2 and basal) with important prognostic and therapeutic 

implications [1-3]. Early classifiers were based on gene expression data obtained from 

cDNA arrays.  However, the difficulties and costs associated with obtaining fresh frozen 

tissue required for the arrays, have limited its use to the research setting. Currently all 

breast cancers undergo routine testing for ER (Estrogen receptor), PR (Progesterone 

receptor), HER2 and Ki67 proliferative marker expression via immunohistochemistry 

(IHC) performed on formalin fixed, paraffin embedded (FFPE) tissue. This IHC biomarker 

panel offers a cost-effective (< $100) and rapid (< 1 day) alternative for breast cancer 

subtyping.  It has also been shown to be effective in predicting response to targeted therapy 

and prognosis [4].  

 

In view of the difficulties associated with obtaining frozen tissue, the PAM50 panel, 

composed of 50 genes (appendix 1), was developed for the subtyping of tumours using 

FFPE tissue. The usage of FFPE tissue, which is readily available from the pathology 

laboratory, has allowed increased use of gene expression analysis in the clinical setting [5]. 

The PAM50 Prosigna® assay (Nanostring technologies™) was approved for clinical use 

by the FDA in 2013. There is evidence to suggest it may add additional prognostic 

information to the IHC panel [6]. Despite its utility, the cost of the assay ($2900) precluded 

its routine use in clinical practice [7]. This may be an important issue, as a recent study by 

Kim et al. suggests the discordance between IHC and PAM50 subtypes may be as high as 

38.4% [8].  
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More recently, RNA-seq data have become available for breast cancer analyses. This has 

provided a further source of quantitative data for the analysis of biomarkers. It has become 

the method of choice for gene expression analysis in view of a number of technical 

advantages over microarrays, such as the ability to detect novel transcripts and superior 

detection of genes with low expression [9]. While RNA-seq has traditionally been 

performed on high quality RNA derived from frozen tissue, more recent studies have 

suggested it may also be accurately performed on FFPE tissue [10].  

 

This study will therefore aim to: 

1) Compare intrinsic subtype classification derived from IHC vs. the PAM50 gene 

classifier. 

2) Investigate the gene expression profiles underlying the breast cancer subtypes defined 

by IHC, and define any classifier genes. This will be performed using RNA-seq data. 

3) Investigate the overall survival of the intrinsic breast cancer subtypes defined by IHC. 
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Methods 

 

Classification of immuniohistochemical (IHC) intrinsic subtypes by ER, PR and HER2 

Cases were classified into four IHC intrinsic subtypes based on immunohistochemistry for 

ER and PR, plus HER2 ISH (in situ hybridization) [3, 4]: luminal A (ER+ and/or PR+ and 

HER2-), luminal B (ER+ and/or PR+ and HER2+), HER2 (ER- and PR-, HER2+) and 

basal (ER-, PR- and HER2-) [4]. Tumors were considered HER2 positive if there was 3+ 

staining for HER2 on IHC, and/or they were amplified on ISH using a HER2: chromosome 

17 ratio higher than 2.2. 

 

Comparison of intrinsic subtype classification via IHC and PAM50 gene classifier 

IHC data (ER, PR, HER2 ISH) and intrinsic subtypes as defined by the PAM50 gene 

classifier were obtained for a cohort of 405 breast cancers, from a publically available 

database (GEO accession: GSE81538).  The data were derived from a previous breast 

biomarker study by Brueffer et al. [1]. The patient characteristics of this cohort are as 

previously described.  
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Table 1. Clinicopathological characteristics of 105 breast cancers with RNA-Seq data, number and 

percentages (in brackets) unless otherwise stated. 

Characteristic All cases Lum A Lum B HER2 Basal 

Age, median 

(range, years) 

56 

(29 – 90) 

56 

(37 -90) 

57.5 

(29 – 90) 

55.5 

(43 – 80) 

48 

(40 – 66) 

Tumour status 

  T1 

  T2 

  T3 

  T4 

  Unknown 

  Total 

 

22 (21.0) 

65 (61.9) 

14 (13.3) 

3 (2.9) 

1 (1.0) 

105 (100) 

 

10 (22) 

24 (53) 

8 (18) 

2 (4) 

1 (2) 

45 (100) 

 

8 (27) 

19 (63) 

3 (10) 

0 

0 

30 (100) 

 

3 (15) 

14 (70) 

2 (10) 

1 (5) 

0 

20 (100) 

 

1 (10) 

8 (80) 

1 (10) 

0 

0 

10 (100) 

Lymph node 

status 

  N0 

  N0 (i+) 

  N1 

  N2 

  N3 

  Unknown 

  Total 

49 (46.7) 

6 (5.7) 

28 (26.7) 

10 (9.5) 

9 (8.6) 

3 (2.9) 

105 (100) 

 

 

22 (49) 

3 (7) 

11 (2) 

5 (11) 

3 (7) 

1 (2) 

45 (100) 

 

 

14 (47) 

1 (3) 

8 (27) 

4 (13) 

2 (7) 

1 (3) 

30 (100) 

 

 

8 (40) 

0 

7 (35) 

1 (5) 

3 (15) 

1 (5) 

20 (100) 

 

 

5 (50) 

2 (20) 

2 (20) 

0 

1 (10) 

0 

10 (100) 

Distant 

metastases 

  M0 

  M1 

  Unknown 

  Total 

 

96 (91.4) 

3 (2.9) 

6 (5.7) 

105 (100) 

 

 

42 (94) 

1 (2) 

2 (4) 

45 (100) 

 

 

25 (83) 

1 (3) 

4 (13) 

30 (100) 

 

 

20 (100) 

0 

0 

20 (100) 

 

 

9 (90) 

1 (10) 

0 

10 (100) 

TNM Stage 

  I 

  IIa 

  IIb 

  III 

  IV 

  Unknown 

  Total 

 

17 (16.2) 

38 (36.2) 

28 (26.7) 

18 (17.1) 

3 (2.9) 

1 (1.0) 

105 (100) 

 

9 (20) 

12 (27) 

14 (31) 

8 (18) 

1 (2) 

1 (2) 

45 (100) 

 

6 (20) 

11 (37) 

6 (20) 

6 (20) 

1 (3) 

0 

20 (100) 

 

1 (5) 

9 (45) 

6 (30) 

4 (20) 

0 

0 

20 (100) 

 

1 (10) 

6 (60) 

2 (20) 

0 

1 (10) 

0 

10 (100) 

Relapse 

  No 

  Yes 

  Total 

90 (85.7) 

15 (14.3) 

105 (100) 

 

40 (89) 

5 (11) 

45 (100) 

 

27 (90) 

3 (10) 

30 (100) 

 

17 (85) 

3 (15) 

20 (100) 

 

6 (60) 

4 (40) 

10 (100) 

Death 

  No 

  Yes 

  Total 

95 (90.5) 

10 (9.5) 

105 (100) 

 

43 (96) 

2 (4) 

45 (100) 

 

28 (93) 

2 (7) 

30 (100) 

 

17 (85) 

3 (15) 

20 (100) 

 

7 (70) 

3 (30) 

10 (100) 

Median follow-

up (range, 

months) 

19.3 (0 – 

125.5) 

 

19.1 (0 – 

125.6) 

 

15.0 (0 – 

125.6) 

 

25.8 (0 – 

67.5) 

 

21.1 (8.3 

– 42.3) 
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Gene expression analysis of IHC intrinsic subtypes via RNA-Seq 

RNA-Seq data (in the form of counts per million (cpm)), ER, PR and HER2 status were 

obtained for a second cohort of 105 breast cancers (The Cancer Genome Atlas Program 

(TCGA), National Cancer Institute (NCI)) [2]. Details regarding the platforms used for 

high-throughput sequencing may be obtained from the TCGA website [5]. As defined by 

IHC, there were 45 luminal A, 30 luminal B, 20 HER2 and 10 basal cancers. The available 

clinic-pathological data for this cohort included age at diagnosis, lymph node status, distant 

metastases, TNM stage, relapse-free and overall survival. These are summarized in table 1. 

 

Analysis of RNA-Seq gene expression data 

Analysis of RNA-Seq data was performed using limma (release 3.9) and edgeR (release 

3.8) as previously described by Law et al.[6], using RStudio (version 1.2.1335) and R 

(version 3.6.0). Genome wide annotation data was obtained from the Bioconductor 

Package org.Hs.eg.db, (release 3.9)[7]. Genes with low counts were filtered out by only 

retaining the rows where the cpm is at least 1 in at least ten samples. Normalisation was 

performed by the method of trimmed mean of M-values (TMM)[8]. The normalisation 

factors calculated were used as a scaling factor for the library sizes. A preliminary 

multidimensional scaling (MDS) plot was used to explore whether the samples cluster by 

intrinsic IHC subtypes.  

 

Two different linear models were used to investigate differential gene expression: 

Model 1. This is a linear model on log-cpm counts with the contrasts between the four IHC 

subtypes being the independent variables (predictors of gene expression). Contrasts for all 
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six pairwise comparisons between the four subtypes were entered into the contrast matrix. 

The contrast matrix obtained can be seen in Table 2. 

 
Table 2. Contrast matrix used to obtain a gene set that may predict the IHC subtype of a sample  

 

 

Model 2. This is a linear model on log-cpm counts with one particular IHC subtype (e.g. 

luminal A) being the independent variable.  For each subtype, the contrast matrix is 

composed of a pairwise comparison between the subtype of interest versus all other 

subtypes. For example, to obtain the gene expression signature of luminal A cancers, 

luminal A cancers are compared to all other cancers (Table 3). 

 

Table 3. Contrast matrix for obtaining the gene expression signature of luminal A cancers 

 

 

In limma, linear modeling assumes log-cpm values are normally distributed [6]. This 

assumption is violated by raw log-cpm data obtained by high throughput sequencing, 

where the variance is not independent of the mean. To eliminate the mean-variance 

relationship, the voom “variance modeling at the observational level” function was used to 

calculate weights that were incorporated into the models [9]. Plots of the mean-variance 

trends were performed, before and after the application of voom, to ensure this source of 

heteroscedascity was removed. Linear modeling in limma was carried out using the lnFit 
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and contrasts.fit functions. These functions fit a separate model to the expression values for 

each gene. Empirical Bayes moderation is then carried out by borrowing information 

across all genes to obtain an estimate of gene-wise variability. This approach is equivalent 

to shrinking the estimated sample variances towards a pooled estimate, resulting in more 

stable inference when the number of arrays is small [10]. Heatmaps were generated, via the 

heatmap.2 function in R, to explore the usefulness of the gene sets in providing 

information on the IHC subtypes. In this method, Euclidean distances between the samples 

are calculated using the transformed cpm values. Clustering along both the x and y axis is 

then performed via the complete agglomeration method. 

 

Gene set testing with camera and DAVID 

Gene set testing was performed by applying the camera method [11], to the c2 gene 

signatures and the c5 gene ontology sets from the Broad Institute’s MSigDB c2 collection 

[12].  The c2 collection is composed of curated gene sets from online databases, 

publications from PUBMED and knowledge of domain experts. The camera function 

performs competitive gene testing to assess whether genes in a given set are highly ranked 

in terms of differential expression relative to genes that are not in the set. It uses limma’s 

modeling framework and also incorporates weights derived from voom. Competitive gene 

set testing, adjusted for inter-gene correlation, is used to obtain a p value, corrected for 

multiple tests via the false discovery rate (FDR). Functional Annotation Clustering was 

performed in The Database for Annotation, Visualization and Integrated Discovery 

(DAVID version 6.8)[13, 14]. Fisher exact tests were performed to assess whether the GO 

terms were more enriched in the list of differentially expressed genes.  
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Table 4. Clinico-pathological characteristics of  271 breast cancers 

Characteristic Number (%) 

Age (yrs) 

 ≤ 50 

 > 50 

 

101 (37.4) 

169 (62.6) 

Tumour size 

 ≤ 20mm 

 > 20mm 

 

160 (59.3) 

110 (40.7) 

Lymph node status 
 Negative 

 Positive 

 Not available 

 
149 (55.6) 

119 (44.4) 

2 

Grade 

 1 

 2 

 3 

 

45 (16.7) 

102 (37.8) 

123 (45.6) 

Estrogen receptor 

 Negative 

 Positive 
 Not available 

 

82 (30.5) 

187 (69.5) 
1  

Progesterone receptor 

 Negative 

 Positive 

 

113 (41.9) 

157 (58.1) 

HER2 FISH 

 Not-amplified 

 Amplified 

 

219 (81.1) 

51 (18.9) 

Endocrine therapy 
 No 

 Yes 

 
134 (49.6) 

136 (50.4) 

Chemotherapy 

 No 
 Yes 

 

164 (60.7) 
106 (39.3) 

 

Patient cohort for survival analysis 

Two hundred and ninety-two (292) invasive breast cancers, with survival and treatment 

data, were obtained from the Garvan Institute, courtesy of Prof Sandra O’Toole and A/Prof 

Ewan Millar. None of the patients had distant metastatic disease at the time of diagnosis. 

Twenty-one cases were excluded due to the absence of complete data for estrogen receptor 

(ER), progesterone receptor (PR) or HER2 amplification status.  The final cohort was 

composed of 271 cancers. This study has ethics committee approval (HREC SVH H94/080 

and 06336 H00036).  
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The clinico-pathological data available for survival analysis included: age at diagnosis 

(≤50 or > 50 years of age), tumour size (≤ 20mm or > 20mm), axillary lymph node status 

(positive or negative), Elston and Ellis grade (out of 3), endocrine therapy (Yes or No), 

chemotherapy (Yes or No), ER, PR and HER2 status (positive or negative), relapse free 

survival (defined by distant metastasis) and overall survival (defined as death from breast 

cancer). The median follow-up period was 87 months (defined as time from diagnosis to 

death or last follow-up). The clinico-pathological characteristics of the cohort are 

summarised in Table 4. 

 

Statistical analysis of survival data 

The distribution of the clinico-pathological characteristics between the four breast cancer 

subtypes was assessed via a chi square test. Kaplan Meier curves for overall survival, 

stratified by breast cancer subtypes, and by clinico-pathological characteristics were 

charted. A multivariable analysis, using the Cox proportional hazards model, was 

performed to assess differences in overall survival between the four breast cancer subtypes. 

For this analysis, luminal A was used as the reference subtype as previous published data 

suggests this subtype may have the most favourable prognosis [4]. Six other standard 

clinico-pathological variables in the multivariable model included age, tumour size, lymph 

node status, grade, endocrine therapy and chemotherapy.  Interactions between breast 

cancer subtypes and clinic-pathological variables were assessed. Scaled Schoenfeld 

residuals were used to test for the validity of the proportional hazards assumption. Cox-

Snell residuals were calculated and a plot of the Nelson-Aalen estimate of the cumulative 

hazard function vs. the Cox-Snell residuals was performed to test overall goodness of fit. 
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Influential observations were identified using DFBETA approximation of Cook’s 

distances. 
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Results 

 

PART 1. COMPARISON OF INTRINSIC SUBTYPE CLASSIFICATION VIA IHC 

AND THE PAM50 GENE CLASSIFIER 

 

For the 405 tumours in the study by Brueffer et al. [1], the distribution of the PAM50 

subtypes within each IHC subtype is shown in figure 1. Discordance between IHC and 

PAM50 subtyping was seen in 166 out of 405 cancers (41.0%). Agreement was greatest for 

HER2 cancers as defined by IHC, where 16 out of 17 (sensitivity = 94%, 95% CI: 71 -

99%) cancers were also defined as HER2 by PAM50. For basal cancers defined by IHC, 

agreement with the PAM50 subtype was seen in 54 out of 63 cancers (sensitivity = 86%, 

95% CI: 75 – 93%). For cancers defined as luminal A by IHC, the majority of cases (148 

out of 251 cancers, sensitivity = 59%, 95% CI: 52 – 65%) were concordant with the 

PAM50 classifier.  Of the 103 cases defined as luminal A by IHC, but not by the PAM50 

classifier, the majority (n = 83) were reclassified as luminal B by PAM50. Discordance 

was greatest for luminal B cancers as defined by IHC, where a minority of cases (21 out of 

74, sensitivity = 29%, 95% CI: 19 – 40%) were concordant with the PAM50 classifier.  Of 

the 53 discordant luminal B IHC cases, the majority were reclassified as HER2 (42 out of 

53), followed by luminal A (8 out of 53) on the PAM50 classifier. 
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Figure 1. Distribution of PAM50 subtypes within each immunohistochemistry subtype 

 

 

PART 2. RNA-SEQ ANALYSIS OF BREAST CANCER IHC SUBTYPES 

 

Using RNA-Seq data, a preliminary multidimensional scaling (MDS) plot of all 105 

cancers was performed to explore whether the samples cluster by intrinsic IHC subtypes 

(figure 2). The 10 basal type cancers were found to form a basal dominated cluster on the 

MDS plot. The majority of the luminal A cancers (30 out of 45) were also found to form a 

luminal A dominated cluster. The remaining 15 luminal A cancers overlapped with the 

other three subtypes. Similarly, the majority of the HER2 cancers (15 out of 20) formed a 

HER2 dominated cluster, with a minority (5 out of 15) overlapping with the basal cluster. 

For luminal B cancers, most of the cases (17 out of 20) formed a loose cluster interposed 

between the luminal A and HER2 clusters. There were two outlying luminal B cancers 

within the luminal A cluster (LumB-14 and 19) and one in the basal cluster (LumB-13). 
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Figure 2. Preliminary multidimensional scaling plot of all 105 cancers with RNA-Seq data, colour 

coded by IHC subtype, red = luminal A (n = 45), green = luminal B (n = 30), blue = HER2 (n = 

20), black = basal (n = 10).  

 
 

 

Figure 3. The residual variances of the log-CPM values in the linear model are plotted 
against the means for each gene. (A) Before voom is applied to the data. (B) After voom 

is applied to the data. 
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In limma, linear modelling assumes that log-cpm values are normally distributed [6].  The 

mean variance relationship of log-cpm values was therefore explored using a voom plot 

(figure 3). Prior to the application of voom, a distinct relationship existed between the 

means and variances. As can be seen in figure 3a, a decrease in the mean log-cpm count is 

associated with a rise in variance. The voom method estimates the mean-variance trend of 

the log-cpm counts, and uses this mean-variance relationship to predict the variance of 

each log-cpm value. The predicted variance is then encapsulated as an inverse weight for 

the log-cpm value [9]. As shown in figure 3b, application of voom to the data results in the 

elimination of the mean-variance relationship. 
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Figure 4. Heatmap of log-CPM values of all 105 breast cancers using the contrast matrix from model 1 (see text above), for 105 breast cancers. The 

differentially expressed genes were chosen based on their adjusted p value being < 0.001. 
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Figure 5. Heatmap of log-CPM values for the PAM50 gene set, for all 105 breast cancers.  
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Differentially expressed genes among the IHC subtypes 

The number of significantly up- and down-regulated genes, with an adjusted p value of < 

0.05, between the subtypes is listed in table 5. 

 

Table 5. Numbers of up- and down-regulated genes, with an adjusted p value of < 0.05, between the 

subtypes. 

 

Basal 

vs 

Luminal A 

Basal 

vs 

Luminal B 

Basal 

vs 

 HER2 

Lumina A 

vs 

Luminal B 

Luminal A 

vs 

HER2 

Luminal B 

vs 

HER2 

Down 2209 1637 183 54 1700 129 

Not 

significant 
13350 14476 17891 18601 15574 18451 

Up 3140 2586 625 44 1425 119 

 

168 differentially expressed genes were used to create a heatmap via an exploratory 

unsupervised hierarchical cluster analysis. These genes were chosen based on their adjusted p 

value being < 0.001. The usefulness of these gene sets is supported by the heatmap (figure 4). 

Of the 105 cancers, 103 were divided into 4 major clusters. There is a “basal” cluster (n = 18), 

containing all 10 basal IHC cancers, plus 3 luminal A, 1 luminal B and 4 HER2 cancers. The 

remaining cancers may be further divided into 3 clusters. There is a “luminal A” cluster (n = 

32), which includes 23 out of the 45 luminal A cancers, and a “luminal B” cluster (n = 32), 

which includes 19 of the 30 luminal B cancers. Lastly there is a “HER2” cluster (n = 21), 

which includes 9 of the 20 HER2 cancers. 
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Comparison of differentially expressed genes between IHC subtypes versus the PAM50 gene 

set 

After removal of duplicates, 3650 genes were found to be differentially expressed, with an 

adjusted p value of < 0.05, among the 4 subtypes. Of the 50 genes used by the PAM50 

classifier, 43 (86%) were also found to be differentially expressed among the four IHC 

subtypes. An exploratory cluster analysis was then performed using the PAM50 gene set 

(figure 5). There were 5 major clusters. The “basal” cluster (n = 18) again included all 10 

cancers designated as basal type by IHC. The “luminal A” cluster (n = 23) which included 20 

cancers designated as luminal A cancers by IHC, and a “luminal B” cluster (n = 22), which 

included 13 cancers designated as luminal B by IHC. The remaining 2 clusters (n = 8 and 34) 

and were composed of a mixture of luminal A, luminal B and HER2 cancers. HER2 cancers 

did not appear to form a distinct group, and were somewhat evenly distributed among 4 of the 

5 major clusters, including the luminal B and basal groups.  

 

Gene expression signatures of the intrinsic IHC subtypes 

Gene expression signatures for each intrinsic IHC subtype were obtained. For example, in 

order to obtain a luminal A gene expression signature, the luminal A cancers as defined by 

IHC were compared to all other cancers. Gene set testing via camera and DAVID was then 

performed. This was repeated for the luminal B, basal and HER2 IHC subtypes.   

 

Luminal A IHC subtype gene signature 

Nine hundred and sixty-six genes were found to be differentially expressed by the 45 luminal 

A IHC cancers compared to the 60 non-luminal A cancers (adj. p < 0.05). The top 40 
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differentially expressed genes, ranked by adjusted p value, are shown in appendix 2. 

Consistent with their IHC profile, luminal A cancers showed increased gene expression for 

ER (ESR1, fold change (fc) = 7.73, adj. p = 8.1 × 10
-5

) and PR (PGR, fc = 7.18, adj. p = 5.6 × 

10
-6

), and reduced expression for HER2 (ERBB2, fc = 0.271, adj. p = 5.0 × 10
-6

). Selected 

gene sets that were highly ranked by applying the camera method to the C2 gene signatures 

are listed in table 6.  These included gene sets that were associated with estrogen receptor 

expression [15], longer relapse-free survival [16] and well differentiated cancers [17]. While 

their p values were < 0.05, they were no longer significant after adjusting for multiple tests 

(adj. p (FDR) > 0.05). 

 

Functional annotation clustering performed by both DAVID suggests luminal A cancers are 

enriched for gene ontology (GO) terms associated with regulation of mitotic activity/cell 

cycle and cell migration (table 7). Similar GO terms were enriched when the camera method 

was applied to the C5 gene sets, however they were not significant after adjusting for multiple 

tests (adj. p > 0.05). 172 genes linked to the GO terms associated with mitotic activity/cell 

cycle regulation were used to generate an exploratory heatmap (figure 6). This supported 

usefulness of these genes in understanding the pathogenesis of luminal A cancers. Cluster 

analysis divided the 105 cancer into 2 groups. The smaller group of 51 cancers included 39 

(out of 45) luminal A cancers. 
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Table 6. Selected gene sets enriched in luminal A IHC subtype as determined by the camera 

method performed on the C2 gene sets. 

Gene set 

No. 

genes Direction p value FDR Ref. 

YANG_BREAST_CANCER_ESR1_

BULK_DN 5 Down 0.014  0.69 [14] 

SMID_BREAST_CANCER_RELAP

SE_IN_LIVER_DN 8 Up 0.017  0.74 [15] 

RHODES_UNDIFFERENTIATED_

CANCER 19 Down 0.016  0.74 [16] 

 

 

Table 7. Selected gene ontology terms enriched in luminal A IHC subtype, as assessed by 

DAVID and the Camera method performed on the C5 gene sets 

 

 

 

  

GO TERMS ASSOCIATED WITH MITOTIC ACTIVITY/CELL CYCLE 

DAVID  Count PValue 

Fold 

Enrich

ment Benjamini 

GO:0030071~regulation of mitotic 

metaphase/anaphase transition 10 9.70E-05 5.23 0.006 

GO:1902099~regulation of 

metaphase/anaphase transition of cell cycle 10 1.15E-04 5.12 0.007 

GO:0010965~regulation of mitotic sister 

chromatid separation 10 1.36E-04 5.02 0.008 

          

Camera method C5 gene set  Count Direction 

p 

value FDR 

GO_REGULATION_OF_MITOTIC_CELL_CYCLE 32 Down 0.017 0.66 

GO_MITOTIC_SISTER_CHROMATID_SEGREGATI

ON 18 Down 0.033 0.66 
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Table 7 (Cont.) 

 

 

 

 

GO TERMS ASSOCIATED WITH CELL MIGRATION  

DAVID  Count p value 

Fold 

Enrich

ment Benjamini 

GO:0030335~positive regulation of cell 

migration 30 0.002 1.87 0.046 

     

Camera method C5 gene set  Count Direction 

p 

value FDR 

GO_CEREBRAL_CORTEX_CELL_MIGRATION 3 Down 0.009 0.66 

GO_REGULATION_OF_ENDOTHELIAL_CELL_M

IGRATION 4 Down 0.019 0.66 

GO_REGULATION_OF_EPITHELIAL_CELL_MIG

RATION 6 Down 0.049 0.66 

GO_REGULATION_OF_CELLULAR_COMPONEN

T_MOVEMENT 58 Down 0.015 0.66 

GO_REGULATION_OF_ACTIN_FILAMENT_BAS

ED_MOVEMENT 3 Down 0.017 0.66 

GO_ESTABLISHMENT_OF_LOCALIZATION_BY_

MOVEMENT_ALONG_MICROTUBULE 3 Up 0.040 0.66 
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Figure 6. Heatmap of log-CPM values for 172 genes differentially expressed between luminal A and non-luminal A cancers that are associated with 

mitotic activity/cell cycle progression.  
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Figure 7. Heatmap of log-CPM values for 61 genes differentially expressed between basal and non-basal cancers that are associated with tumour 

hypoxia.  
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Basal IHC subtype gene signature 

Basal IHC cancers have a distinctive gene signature. This is reflected by the large number 

of genes (n = 2095) that are differentially expressed by the 10 basal IHC cancers, 

compared to the 95 non-basal cancers (adj. p value < 0.05). Their distinctive gene 

signature is also clearly visible in the preliminary MDS plot (figure 2) and heatmap (figure 

4). The top 40 differentially expressed genes in basal IHC cancers are listed in appendix 3. 

As previously mentioned, basal IHC cancers are negative for ER, PR and HER2 on 

immunohistochemistry/ISH. This is reflected by the low gene expression for estrogen 

receptor (ESR1, fc = 0.023, adj. p value = 0.007) and HER2 receptor (ERBB2, fc = 0.156, 

adj. p = 0.002) compared to the other subtypes. Interestingly progesterone receptor (PGR) 

was not significantly reduced. As expected, gene sets associated with tumour 

hypoxia/HIF1-α expression [18, 19] and beta-catenin pathway activation [20] and were 

highly ranked by the camera method performed on the C2 gene sets (table 8). Gene sets 

associated with poor prognosis [21], relapse in bone [16], metastases [22] and BRCA1 

mutations [23, 24] were enriched, however they did not reach significance after adjusting 

for multiple tests (adj. p > 0.05). 31 genes associated with tumour hypoxia, differentially 

expressed between basal and non-basal cancers, were used to generate an exploratory 

heatmap on all 105 cancers (figure 7). On cluster analysis, there was a subset of 24 

cancers, including all 10 basal cancers, which was enriched for genes associated with 

hypoxia. 

 

Functional annotation clustering was performed via DAVID and the camera method 

applied to the C5 gene sets. DAVID showed basal IHC cancers were enriched for Gene 
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Ontology terms associated with mitotic activity/progression through the cell cycle, stem 

cell/neural precursor cell proliferation and mesenchymal/embryonic/neural development 

(table 9). An association with mitotic activity/progression through cell cycle and neural 

precursor cell proliferation was also seen in the C5 gene set, however this was not 

significant after adjusting for multiple tests (adj. p > 0.05).  

 

Table 8. Selected gene sets enriched in basal IHC subtype as determined by the camera 

method performed on the C2 gene sets. 

Gene Set 

No. 

Genes Direction p value FDR Ref 

Hypoxia        

ELVIDGE_HYPOXIA_BY_DMOG

_UP 28 Up 0.028 0.99 [18] 
ELVIDGE_HYPOXIA_UP 32 Up 0.017 0.99 [18] 

FARDIN_HYPOXIA_9 2 Up 0.005 0.99 [19] 

Prognosis         

NADERI_BREAST_CANCER_PR
OGNOSIS_DN 3 Down 0.078 0.99 [21] 

SMID_BREAST_CANCER_RELA

PSE_IN_BONE_UP 40 Up 0.11 0.99 [16] 
ZUCCHI_METASTASIS_DN 10 Down 0.17 0.99 [22] 

beta catenin pathway         

ST_WNT_BETA_CATENIN_PAT

HWAY 2 Up 0.048 0.99 [20] 

BRCA1         

ONGUSAHA_BRCA1_TARGETS_

UP 2 Up 0.065 0.99 [23] 
VANTVEER_BREAST_CANCER_

BRCA1_DN 5 Down 0.14 0.99 [24] 
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Table 9. Selected gene ontology terms enriched in basal IHC subtype, as assessed by 

DAVID and the Camera method performed on the C5 gene sets 

 

GO TERMS ASSOCIATED WITH MITOTIC ACTIVITY/CELL CYCLE 

DAVID  
Count p value 

Fold 
Enrichment 

Benjamini 

GO:0007049~cell cycle 241 2.9E-15 1.63 1.2E-11 

GO:0000278~mitotic cell cycle 161 1.7E-15 1.88 1.5E-11 

GO:0000280~nuclear division 111 9.2E-15 2.16 2.6E-11 

GO:1903047~mitotic cell cycle process 149 1.3E-14 1.89 2.8E-11 

GO:0007067~mitotic nuclear division 89 4.7E-14 2.34 7.9E-11 

  
   

  

Camera method C5 gene set  Count Direction p Value FDR 

GO_POSITIVE_REGULATION_OF_CELL_CYCLE_PHAS
E_TRANSITION 

13 Up 0.03 0.99 

GO_NEGATIVE_REGULATION_OF_CELL_CYCLE_G2_
M_PHASE_TRANSITION 

8 Down 0.03 0.99 

GO_MITOTIC_G2_M_TRANSITION_CHECKPOINT 7 Down 0.04 0.99 

GO_MITOTIC_G2_DNA_DAMAGE_CHECKPOINT 4 Down 0.04 0.99 

          

GO TERMS ASSOCIATED WITH STEM CELL/NEURAL PRECURSOR CELL PROLIFERATION 

DAVID  
Count p value 

Fold 
Enrichment 

Benjamini 

GO:2000648~positive regulation of stem cell 
proliferation 

15 2.1E-06 4.47 2.5E-04 

GO:0072091~regulation of stem cell proliferation 18 1.1E-05 3.40 9.6E-04 

GO:0061351~neural precursor cell proliferation 28 1.9E-05 2.46 0.001 

GO:0072089~stem cell proliferation 23 5.7E-05 2.58 0.004 

  
   

  

Camera method C5 gene set  Count Direction P value FDR 

GO_NEURAL_PRECURSOR_CELL_PROLIFERATION 16 Down 0.05 0.99 

          

GO TERMS ASSOCIATED WITH MESENCHYMAL/EMBRYONAL/NEURAL DEVELOPMENT 

DAVID  
Count p value 

Fold 
Enrichment 

Benjamini 

GO:0035295~tube development 101 4.2E-11 1.97 2.5E-08 

GO:0050767~regulation of neurogenesis 109 1.2E-09 1.81 4.6E-07 

GO:0043009~chordate embryonic development 94 7.2E-09 1.84 2.2E-06 

GO:0060485~mesenchyme development 48 6.7E-08 2.32 1.2E-05 

GO:0048762~mesenchymal cell differentiation 40 8.0E-08 2.54 1.4E-05 
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HER2 IHC subtype gene signature 

Two hundred and sixty-two genes were differentially expressed in the 20 HER2 cancers 

compared to the other 85 cancers, with an adjusted p value of < 0.05. This is much fewer 

than the 2096 genes observed for the 10 basal type cancers. As expected, HER2 IHC 

cancers showed increased expression for HER2 (ERBB2, fc = 3.93, adj. p = 0.028) and 

reduced expression for estrogen receptor (ESR1, fc = 0.071, adj. p = 0.014). No difference 

was seen in the expression for progesterone receptor (PGR, adj, p > 0.05). The top 40 

differentially expressed genes are shown in appendix 4. Gene set analysis via camera 

showed enrichment for genes associated with amplification of 17q11-q21 [25]. This is 

concordant with the amplification of HER2 (located in 17q12) as assessed by in situ 

hybridization.  Other enriched gene sets included those associated with a poor prognosis , 

RNA polymerase transcription [26] and telomere maintenance [27] (table 10). No GO 

terms were significantly enriched (adj. p > 0.05 for all terms) on DAVID or the C5 gene 

sets. This may be due to the small number of differentially expressed genes included for 

analysis. 

 

Table 10. Selected gene sets enriched in HER2 IHC subtype as determined by the camera 

method. 

Gene Set 
NGenes Direction 

p 

value 
FDR Ref 

NIKOLSKY_BREAST_CANCER_17

Q11_Q21_AMPLICON 
5 Up 0.045 0.88 [25] 

REACTOME_RNA_POL_I_TRANS

CRIPTION 
8 Up 0.040 0.88 [26] 

REACTOME_TELOMERE_MAINTE
NANCE 

8 Up 0.040 0.88 [27] 
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Luminal B IHC subtype gene signature 

Only 31 genes were differentially expressed by luminal B cancers compared to other 

cancers (appendix 5). This is not an unexpected finding, as luminal B cancers share 

phenotypic features with luminal A (estrogen receptor expression) and HER2 (HER2 

amplification) IHC subtypes. This is also reflected by the preliminary multidimensional 

scaling plot, in which luminal B cancers form a loose cluster between, as well as overlying 

the luminal A and HER2 clusters. As mentioned, luminal B IHC cancers are defined by 

ER and/or PR expression, plus HER2 amplification. As expected, HER2 IHC cancers 

showed increased expression for HER2 (ERBB2, adj. p = 0.041, fc = 3.73). No difference 

in expression for ER (ESR1) or PR (PGR) was seen. Mostly one, and occasionally two, 

matching genes were found in common with the C2 gene sets via the camera method. No 

GO terms were significantly enriched (adj. p > 0.05 for all terms) on DAVID or the C5 

gene sets. 
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PART 3. SURVIVAL ANALYSIS OF IHC SUBTYPES 

 

Preliminary analysis of cohort with survival data 

A comparison of the clinico-pathological variables between the four breast cancer 

subtypes is shown in table 11. There were significant differences in tumour size and grade 

between the four subtypes (both p < 0.001). Luminal A cancers were more likely to be ≤ 

20mm in size (120/171, 70%), compared to luminal B (10/17, 37%), HER2 (11/24, 46%) 

and basal types (19/48, 40%). Luminal A cancers were also less likely to have grade of 3 

out of 3 (42/171, 24%), compared to luminal B (21/27, 78%), HER2 (21/24, 87%) and 

basal types (39/48, 81%). No differences were found among the four subtypes for age, 

lymph node status, endocrine therapy or chemotherapy. 

 

Table 11. Comparison of clinico-pathological variables between the four subtypes 

Clinico-pathological 

variable 

Luminal A 

n = 171 

Luminal B 

n = 27 

HER2 

n = 24 

Basal 

n = 48 
p value 

Age (yrs) 

 ≤ 50 

 > 50 

 

67 (39%) 

104 (61%) 

 

13 (48%) 

14 (52%) 

 

7 (29%) 

17 (71%) 

 

14 (29%) 

34 (71%) 

0.30 

Tumour size 

 ≤ 20mm 

 > 20mm 

 

120 (70%) 

51 (30%) 

 

10 (37%) 

17 (63%) 

 

11 (46%) 

13 (54%) 

 

19 (40%) 

29 (60%) 

 
< 0.001 

Lymph node status 
 Negative 

 Positive 

 Not available 

 
95 (56%) 

74 (44%) 

2 

 
15 (56%) 

12 (44%) 

 
13 (54%) 

11 (46%) 

 
26 (54%) 

22 (46%) 
0.99 

Grade 

 1 

 2 

 3 

 

44 (26%) 

85 (50%) 

42 (24%) 

 

0 

6 (22%) 

21 (78%) 

 

0 

3 (13%) 

21 (87%) 

 

1 (2%) 

8 (17%) 

39 (81%) 

< 0.001 

Endocrine therapy 

 No 

 Yes 

 

76 (44%) 

95 (56%) 

 

14 (52%) 

13 (48%) 

 

14 (58%) 

10 (42%) 

 

30 (63%) 

18 (37%) 

0.12 

Chemotherapy 
 No 

 Yes 

 
112 (66%) 

59 (34%) 

 
15 (56%) 

12 (44%) 

 
11 (46%) 

13 (54%) 

 
26 (54%) 

22 (46%) 

0.17 
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Figure 8. Kaplan-Meier curves of overall survival for age, size, lymph node status, grade, hormone 

therapy and chemotherapy (log rank test). 

 



41 
 

Table 12a. Univariable analysis and final multivariable Cox regression model (stratified by chemotherapy) for overall survival 

Characteristic 

Univariable 

Hazard 

ratio 

 

Univariable 

95% confidence 

interval 

Univariable 

 p value 

Multivariable 

Hazard 

ratio 

 

Multivariable 

 95% confidence 

interval 

Multivariable 

 p value 

Tumour type 

  Luminal A (reference) 
 

  Luminal B 

  HER2 
  Basal 

 

1.00 
 

3.13 

4.08 
3.41 

 

- 
 

1.61 – 6.09 

2.14 – 7.78 
2.02 – 5.77 

< 0.001 

 

1.00 
 

2.04 

2.87 
2.11 

 

- 
 

0.98 – 4.25 

1.39 – 5.94 
1.17 – 3.81 

0.018 

Age 

  ≤ 50 yrs (reference) 

  > 50 yrs 

 

1.00 

1.39 

 

- 

0.87 – 2.23 

 

0.167 

 

1.00 

1.54 

 

- 

0.90 – 2.61 

 

0.11 

Tumour size  

  ≤ 20mm  

  > 20mm 

 

1.00 

2.29 

 

- 

1.48 – 3.55 

 

< 0.001 

 

1.00 

1.20 

 

- 

0.73 – 1.95 

 

0.47 

Lymph node status 
  Negative (reference) 

  Positive 

 
1.00 

2.59 

 
- 

1.65 – 4.08 

 
< 0.001 

 
1.00 

3.50 

 
- 

1.97 – 6.20 

 
< 0.001 

Grade of 3 
  No (reference) 

  Yes 

 
1.00 

3.38 

 
- 

2.13 – 5.37 

 
< 0.001 

 
1.00 

1.96 

 
- 

1.11 – 3.44 

 
0.020 

Endocrine therapy 

  No (reference) 
  Yes 

 

1.00 
0.84 

 

- 
0.54 – 1.29 

 

0.416 

 

1.00 
0.50 

 

- 
0.29 – 0.83 

 

0.008 

Chemotherapy 

  No (reference) 

  Yes 

 

1.00 

1.61 

 

- 

1.05 – 2.49 

 

0.030 

 

NA* 

 

NA* 

 

NA* 

NA* Not available as model is stratified by chemotherapy 
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Table 12b. Preliminary multivariable Cox regression model (including chemotherapy) for overall 

survival 

Characteristic Hazard 

ratio 
95% confidence interval p value 

Tumour type 

  Luminal A (reference) 
 

  Luminal B 

  HER2 

  Basal 

 

1.00 
 

2.15 

3.06 

2.24 

 

- 
 

1.03 – 4.47 

1.48 – 6.35 

1.24 – 4.07 

0.010 

Age  

  ≤ 50 yrs (reference) 

  > 50 yrs 

 

1.00 

1.64 

 

- 

0.96 – 2.79 

 

0.068 

Tumour size  

  ≤ 20mm  

  > 20mm 

 

1.00 

1.25 

 

- 

0.77 – 2.01 

 

0.37 

Lymph node status 
  Negative (reference) 

  Positive 

 
1.00 

3.65 

 
- 

2.08 – 6.38 

 
< 0.001 

Grade of 3 

  No (reference) 
  Yes 

 

1.00 
1.86 

 

- 
1.06 – 3.26 

 

0.030 

Endocrine therapy 

  No (reference) 
  Yes 

 

1.00 
0.47 

 

- 
0.28 – 0.79 

 

0.005 

Chemotherapy 

  No (reference) 

  Yes 

 

1.00 

1.06 

 

- 

0.64 – 1.78 

 

0.82 

 

 

Univariable analysis for overall survival 
 

Kaplan-Meier curves for overall survival were drawn for the standard clinico-pathological 

variables. Significant differences in overall survival were observed for tumour size, lymph 

node status, grade and chemotherapy (log rank test, p < 0.05, figure 9). In view of their 

similarity in survival, grades 1 and 2 were combined into a single category for subsequent 

analyses. The univariable analyses of overall survival, for the clinic-pathological variables 

are shown in table 12. A shorter overall survival was associated with size > 20mm (HR 

2.29, 95% CI: 1.48 – 3.55, p < 0.001), positive lymph node status (HR 2.59, 95% CI: 1.65 

– 4.08, p < 0.001), a grade of 3 (HR 3.38, 95% CI: 2.13 – 5.37, p < 0.001) and 

chemotherapy (HR 1.61, 95% CI: 1.05 – 2.49, p = 0.030). 
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Figure 9. Kaplan-Meier curves for overall survival by breast cancer subtype (log rank test p < 

0.001) 

 

 

The univariable analysis of overall survival for the breast cancer subtypes is listed in table 

12. Compared to luminal A cancers, luminal B (HR = 3.13, 95% CI: 1.61-6.09, p = 0.001), 

HER2 (HR = 4.08, 95% CI: 2.14-7.78, p < 0.001) and basal (HR = 3.41, 95% CI: 2.02-

5.77, p < 0.001) cancers are associated with shorter overall survival. On the Kaplan-Meier 

curves, while luminal A cancers have a more favourable prognosis, no obvious differences 

in overall survival are seen among the luminal B, HER2 and basal cancers (figure 6).   

 

Multivariable analysis for overall survival 

The final multivariable model was stratified by chemotherapy to prevent violation of the 

proportional hazards assumption (table 12a). Diagnostic testing for the assumptions 
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underlying model, and the rationale for the final model are described in appendix 6. 

Compared to luminal A cancers, HER2 (HR 2.87, 95% CI: 1.39 – 5.94, p = 0.004) and 

basal (HR 2.11, 95% CI: 1.17 – 3.81, p = 0.014) cancers were associated with a shorter 

overall survival. There was a tendency for luminal B cancers to be associated with a 

shorter overall survival, however this p value was > 0.05 (HR 2.04, 95% CI: 0.98 – 4.25, p 

= 0.056). Lymph node positivity (HR 3.5, 95% CI: 1.97 – 6.20, p < 0.001) and a grade of 3 

(HR 1.96, 95% CI 1.11 – 3.44, p = 0.020) were also associated with a poorer outcome. 

Treatment with endocrine therapy was associated with a favourable outcome (HR 0.50, 

95% CI: 0.29 – 0.83, p = 0.008). A hazard ratio for chemotherapy was not available in the 

final model due to stratification. However in a preliminary model including chemotherapy 

(table 12b), when adjusted for other factors, chemotherapy no longer correlated with a 

shorter overall survival (HR 1.06, 95% CI: 0.64 – 1.78, p = 0.817). 
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Discussion 

The importance of subtyping by immunohistochemistry is supported by the St Galen 

guidelines, which states that the adjuvant treatment of breast cancers should be based on 

pathological determination of ER, PR and HER2 immunohistochemistry (IHC) and HER2 

in situ hybridization (ISH) [28]. Any ER expression on IHC (i.e. luminal A or B by IHC) 

warrants endocrine therapy with tamoxifen (or an aromatase inhibitor if the patient is 

postmenopausal). Over-expression of HER2 (i.e. luminal B or HER2 by IHC) justifies the 

use of anti-HER2 treatment (such as trastuzumab). Chemotherapy should be considered for 

all basal and HER2 cancers except for very low risk cancers. Guidelines for the use of 

chemotherapy in luminal A cancers (determined by IHC) is difficult to define, however 

relative indications include low ER/PR expression, grade of 3, high Ki67 proliferation 

index (>30%), lymphovascular invasion and a tumour size of > 5cm.  

 

Subtyping by gene expression assays (e.g. PAM50 (Prosigna), Oncotype DX, 

MammaPrint) may be useful in luminal A IHC cancers, where the use of chemotherapy is 

uncertain after consideration of pathological data mentioned above. There is evidence to 

suggest gene expression analysis by PAM50 may yield additional prognostic data over 

conventional IHC subtypes in these instances [29]. The findings derived from the data of 

Brueffer et al. [1], may offer an explanation for this – 33% of cancers defined as luminal A 

by IHC were re-classified as luminal B (with a worse prognosis) by PAM50. Furthermore, 

11% of cancers defined as luminal B by IHC were re-classified as luminal A (with a better 

prognosis) by PAM50. In this study, HER2 expression was used to distinguish between 

luminal A (HER2 negative) and luminal B (HER2 positive) IHC subtypes.  Our analysis of 
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RNA-seq data has revealed additional biomarkers which may potentially be used to 

improve the classification of luminal A and B cancers by IHC. Cluster analysis with the 

PAM50 gene set suggests, in addition to HER2, luminal B cancers show increased 

expression of ANLN (Anillin), CCNB1 (Cyclin B1), MKI67 (Ki67) and MYBL2 (MYB 

Proto-Oncogene Like 2). Of these biomarkers, Ki67 is already in routine clinical use, with 

a Ki67 index of > 14% being associated with increased risk of relapse [30]. Cyclin B1 is 

not in routine clinical use, but its expression has been linked to poor prognosis in ER 

positive cancers [31]. Addition of these biomarkers may improve the identification of ER+ 

HER2- cancers that are at increased risk of progression. 

 

Our overall rate of discordance between IHC and PAM50 was 41%, which was similar to 

38% obtained by Kim et al. [32].  In practice, treatment decisions are driven by assessment 

of protein receptor expression by IHC. Nevertheless the discordance between subtyping by 

IHC and PAM50 raises clinically relevant issues regarding the potential under and over-

treatment of a small proportion of breast cancers. For example: 

- 6% of luminal A cancers defined by IHC were reclassified as HER2 by PAM50. Would 

these cancers benefit from the addition of anti-HER2 therapy? 

- 57% of luminal B cancers defined by IHC were reclassified as HER2 by PAM50. Are 

these cases being overtreated with endocrine therapy? 

- 7% of basal type cancers defined by IHC were reclassified as cancers where targeted 

therapy is available (Luminal A and B, HER2) by PAM50. It is uncertain whether these 

cases may respond to targeted therapy despite the absence of corresponding protein 

receptor expression on IHC. 
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In this study, cluster analysis was used as a supervised learning technique on a training 

dataset only (with no testing dataset). This was an exploratory analysis which sought to 

understand the usefulness of particular genes in providing information on IHC cancer 

subtypes. It should be noted that regular supervised learning techniques, beyond the scope 

of this study, would need to be employed to 1) understand the structure underlying the 

data, 2) predict IHC cancer subtypes in a testing dataset and 3) quantitively describe how 

well the gene information re-creates the IHC subtypes. Nevertheless, our findings suggest 

differences in gene expression profiles underlie the different IHC subtypes.  Basal IHC is 

the most distinctive subtype, with the largest number of up and down-regulated genes 

(table 5 and fig 4).  Of the 6 pair-wise comparisons between the IHC subtypes, the 

comparison between basal vs. luminal A yielded the largest number of differentially 

expressed genes (3140 up and 2209 down, table 5). The differences in gene expression 

between basal and luminal A cancers are reflected by their different clinico-pathological 

characteristics. Basal cancers are characterized by triple negativity for ER, PR and HER, 

higher grade, larger size and a poorer prognosis, whereas luminal A cancers are associated 

with ER expression, a lower grade, smaller size and better survival (tables 11, 12a and 

figure 8).   

 

Gene set analysis provides an insight into the molecular mechanisms underlying the 

aggressive behavior of basal cancers. Our data shows basal cancers are enriched for genes 

linked to:  
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1) Tumour hypoxia: The link between basal cancers and hypoxia is supported by their 

microscopic morphology. Basal cancers often have central areas of necrosis as a 

consequence of tumour hypoxia [33]. Furthermore, activation of the hypoxia-inducible 

factor (HIF) pathway has been linked to the aggressive behaviour of basal cancers and 

chemotherapy resistance [34].  

2) Beta-catenin pathway activation:  Activation of b-catenin pathway in basal cancers has 

been linked to tumour proliferation, survival, matrix remodeling and a worse prognosis 

[35].  

3) Stem cell phenotype: Basal cancer cells with a stem cell phenotype are responsible for 

driving intratumoral cellular heterogeneity, continued proliferation, resistance to therapy 

and metastasis [36]. 

4) Mesenchymal development: Basal breast cancers cells may lose their epithelial 

characteristics and polarity, resulting in a mesenchymal phenotype with increased 

migratory behavior [37].  

 

The two most similar subtypes with the least number of differentially expressed genes 

were luminal A vs luminal B (44 up and 54 down).   This is not an unexpected finding 

since both tumour types are driven by ER expression. Similarly, comparison between the 

two HER2 expressing subtypes (luminal B vs. HER2) yielded a relatively small number of 

differentially expressed genes (119 down and 129 up). Only 31 genes were differentially 

expressed between 30 luminal B and 75 non-luminal B cancers. No gene sets or GO terms 

were significantly enriched on DAVID or camera testing on C2 and C5 gene sets.  This 
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may be due to luminal B cancers sharing phenotypic features with luminal A (ER 

expression) and HER2 (HER2 amplification) cancers. 

 

Regarding the prognosis of the different breast cancer IHC subtypes, our findings are 

broadly in line with previous studies [3, 4, 38]. Luminal B, basal and HER2 cancers are 

associated with higher grade and larger tumour size (both p < 0.001). These three subtypes 

also have a worse prognosis compared to luminal A cancers in a univariable analysis. 

After adjusting for standard prognostic parameters such as grade and lymph node status, 

basal (HR 2.11, 95% CI: 1.17 – 3.81, p = 0.014) and HER2 (HR 2.87, 95% CI: 1.39 – 

5.94, p = 0.004) IHC subtypes were independent predictors of shorter breast cancer 

specific overall survival. The luminal B IHC subtype was associated with a shorter overall 

survival; however this was not significant in a multivariable analysis (HR 2.04, 95% CI: 

0.98 – 4.25, p = 0.056). Our findings justify the rationale for the use of adjuvant 

chemotherapy in these aggressive subtypes. In a univariable analysis, chemotherapy was 

associated with shorter overall survival (p = 0.022). This effect disappeared after adjusting 

for other clinico-pathological factors and IHC subtype (HR 1.06, 95% CI: 0.64 – 1.78, p = 

0.817). The shorter survival in patients given chemotherapy is likely to be due to this 

treatment being administered to patients with poor prognostic variables, rather than an 

adverse effect from the treatment itself. Endocrine therapy was effective in improving 

overall survival (HR 0.50, 95% CI: 0.29 – 0.83, p = 0.008).  

 

The main limitation of this study is the availability of only three IHC biomarkers (ER, PR, 

HER2) in the NCI cohort. Previous studies have suggested a five biomarker panel with the 
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addition of CK5/6 and EGFR IHC may be superior in defining basal phenotype. The 

addition of CK5/6 and EFGR may result in an improved specificity of 100%, and a 

sensitivity of 76%, when compared to the “gold standard” of gene expression analysis. 

This is supported by our RNA-Seq data which shows these genes are up-regulated in basal 

cancers (KRT5 and EGFR, see figure 5). The use of a three biomarker panel may 

potentially misclassify luminal and normal-like breast cancers as basal-like [30]. There is 

also data to suggest a six biomarker panel, with the addition of Ki67 IHC, may be helpful 

in identifying high risk luminal A cancers which should be reclassified as HER2 negative 

luminal B cancers [30]. 

 

In summary, breast cancer IHC subtypes have distinctive gene expression signatures. 

Subtyping by IHC also provides important data that may help guide prognostication and 

treatment decisions. 
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Appendix 1. List of PAM50 genes 

 

ACTR3B KNTC2 

ANLN KRT14 

BAG1 KRT17 

BCL2 KRT5 

BIRC5 MAPT 

BLVRA MDM2 

CCNB1 MELK 

CCNE1 MIA 

CDC20 MKI67 

CDC6 MLPH 

CDCA1 MMP11 

CDH3 MYBL2 

CENPF MYC 

CEP55 NAT1 

CXXC5 ORC6L 

EGFR PGR 

ERBB2 PHGDH 

ESR1 PTTG1 

EXO1 RRM2 

FGFR4 SFRP1 

FOXA1 SLC39A6 

FOXC1 TMEM45B 

GPR160 TYMS 

GRB7 UBE2C 

KIF2C UBE2T 
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Appendix 2. Top 40 differentially expressed genes for luminal A IHC subtype 

 

SYMBOL logFC AveExpr t p  value adj. p  val B

N4BP2L1 1.04 3.26 6.69 1.1E-09 1.2E-05 11.8

LINC00173 2.48 -1.09 6.65 1.3E-09 1.2E-05 11.0

JADE2 1.12 5.29 6.37 4.7E-09 1.5E-05 10.4

NAGS 1.60 1.18 6.39 4.3E-09 1.5E-05 10.4

TTC34 1.97 -1.21 6.45 3.3E-09 1.5E-05 10.1

AZU1 2.49 -2.63 6.42 3.7E-09 1.5E-05 9.27

C5AR2 2.12 2.74 6.27 7.7E-09 1.8E-05 9.96

TPRG1 2.58 3.06 6.19 1.1E-08 2.0E-05 9.60

ACBD4 1.03 2.86 6.18 1.2E-08 2.0E-05 9.55

NA 3.47 -3.78 6.21 1.0E-08 2.0E-05 7.69

MAPT-IT1 2.91 -3.45 6.14 1.4E-08 2.1E-05 7.66

MAPT 2.33 4.98 6.03 2.3E-08 2.7E-05 8.89

NA 1.41 0.94 6.04 2.3E-08 2.7E-05 8.84

DNA2 -1.01 3.08 -6.02 2.5E-08 2.7E-05 8.86

NA 2.27 -2.99 5.96 3.3E-08 3.2E-05 7.31

HMGB3 -1.21 6.03 -5.90 4.4E-08 3.9E-05 8.26

WNK4 2.96 2.29 5.82 6.1E-08 4.1E-05 8.01

PRX 1.12 2.41 5.81 6.5E-08 4.1E-05 7.94

MIR497HG 1.25 -0.33 5.86 5.2E-08 4.1E-05 7.91

MSL3P1 -2.03 -1.44 -5.86 5.2E-08 4.1E-05 7.43

MCM10 -1.54 3.35 -5.79 7.2E-08 4.2E-05 7.85

CEP55 -1.40 4.15 -5.79 7.2E-08 4.2E-05 7.84

ZNF516 1.29 3.93 5.75 8.7E-08 4.7E-05 7.66

EXO1 -1.56 3.35 -5.74 8.9E-08 4.7E-05 7.66

UGCG 1.23 6.31 5.75 8.7E-08 4.7E-05 7.59

SUSD3 2.34 3.61 5.73 9.5E-08 4.8E-05 7.58

PYY 2.67 -2.89 5.73 9.3E-08 4.8E-05 6.53

MELK -1.48 4.04 -5.70 1.1E-07 4.9E-05 7.48

CCNE1 -1.70 2.35 -5.70 1.1E-07 4.9E-05 7.47

CBX7 1.04 4.42 5.70 1.1E-07 4.9E-05 7.43

LINC01843 2.38 -2.38 5.70 1.1E-07 4.9E-05 6.65

PER1 1.15 4.88 5.68 1.2E-07 5.1E-05 7.34

LAD1 -1.67 5.95 -5.67 1.2E-07 5.3E-05 7.26

HMGA1 -1.06 7.03 -5.65 1.4E-07 5.5E-05 7.16

GLIPR1L2 1.49 -0.26 5.64 1.4E-07 5.5E-05 7.05

TMEM229B 1.21 3.81 5.61 1.6E-07 6.0E-05 7.08

SOX11 -2.96 2.54 -5.61 1.6E-07 6.0E-05 7.07

ECE2 -1.13 3.53 -5.58 1.9E-07 6.3E-05 6.95

MYBL2 -1.71 5.45 -5.58 1.8E-07 6.3E-05 6.92

NA 2.24 -2.96 5.59 1.8E-07 6.3E-05 5.99  
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Appendix 3. Top 40 differentially expressed genes for basal IHC subtype 

SYMBOL logFC AveExpr t p  value adj. p  val B

SRSF12 3.99 -0.95 11.79 4.4E-21 8.3E-17 37.0

UGT8 5.24 0.33 11.55 1.6E-20 1.1E-16 36.1

LINC02487 4.31 -2.68 11.52 1.8E-20 1.1E-16 35.3

ROPN1 6.24 -2.51 11.02 2.4E-19 9.0E-16 33.2

NA 5.41 -4.20 11.05 2.1E-19 9.0E-16 32.6

ART3 5.63 -1.61 10.08 3.2E-17 9.9E-14 28.6

EN1 4.65 1.52 9.84 1.2E-16 3.1E-13 27.4

SLC6A15 6.12 -3.03 9.66 2.9E-16 6.7E-13 26.3

VGLL1 5.81 -0.43 9.52 6.1E-16 1.1E-12 25.8

MAPK4 5.20 -1.71 9.53 5.7E-16 1.1E-12 25.7

AFAP1-AS1 4.51 -1.27 9.41 1.1E-15 1.9E-12 25.1

INA 5.01 -3.03 9.17 3.7E-15 5.8E-12 23.7

LOC1019294274.43 -4.45 9.09 5.8E-15 8.3E-12 22.8

LEMD1 4.18 -2.95 9.06 6.8E-15 9.1E-12 23.1

NA 5.46 -2.94 9.04 7.3E-15 9.1E-12 23.2

PCDH8 4.63 -3.75 9.02 8.4E-15 9.8E-12 22.8

OPRK1 4.59 -3.70 8.91 1.5E-14 1.6E-11 22.2

C1QL2 5.04 -3.54 8.86 1.9E-14 2.0E-11 22.1

LINC02188 5.30 -0.88 8.67 5.1E-14 5.0E-11 21.5

C6orf15 4.51 -2.71 8.59 7.4E-14 6.9E-11 20.9

HPDL 3.49 0.06 8.58 8.0E-14 7.2E-11 21.0

RSPO4 3.99 -1.77 8.54 9.8E-14 8.3E-11 20.7

POLR2F 3.59 -2.21 8.48 1.3E-13 1.1E-10 20.4

NA 4.93 -2.69 8.45 1.5E-13 1.2E-10 20.3

DLL3 4.09 -2.68 8.39 2.1E-13 1.6E-10 19.9

CELF4 3.20 -1.14 8.35 2.6E-13 1.9E-10 19.8

KIF1A 6.24 0.66 8.33 3.0E-13 2.0E-10 19.7

FZD9 3.58 -1.37 8.26 4.1E-13 2.8E-10 19.4

CASC8 3.75 -1.87 8.24 4.5E-13 2.9E-10 19.2

LYAR 1.33 3.76 8.22 5.0E-13 3.0E-10 19.2

NKX1-2 5.02 -3.03 8.23 4.8E-13 3.0E-10 19.1

TAFA3 3.60 -1.94 8.21 5.2E-13 3.0E-10 19.1

CXCL5 4.09 -2.49 8.22 5.1E-13 3.0E-10 19.1

UPF3B 1.36 3.75 8.19 5.8E-13 3.2E-10 19.1

CCNE1 2.80 2.35 8.19 6.0E-13 3.2E-10 19.0

CDKN2A 3.12 3.22 8.17 6.7E-13 3.5E-10 18.9

CA9 5.42 -0.94 8.08 1.1E-12 5.3E-10 18.5

CRHR1 3.72 -1.68 8.03 1.4E-12 6.7E-10 18.2

COMMD2 1.20 5.09 8.01 1.5E-12 7.0E-10 18.1

CHODL 3.74 -1.24 7.94 2.2E-12 1.0E-09 17.8  
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 Appendix 4. Top 40 differentially expressed genes for HER2 IHC subtype 

 

SYMBOL logFC AveExpr t p  value adj. p  val B

NCALD 1.78 4.37 6.75 7.9E-10 1.5E-05 12.1

PRAC2 3.41 -3.81 6.28 7.5E-09 7.0E-05 8.17

GSDMC 2.75 0.49 5.95 3.4E-08 0.00021 8.40

IGF1R -2.03 6.88 -5.69 1.1E-07 0.00043 7.41

KRT4 3.86 -2.11 5.67 1.2E-07 0.00043 6.84

NA 2.95 -3.13 5.64 1.4E-07 0.00043 6.21

PADI2 2.52 5.85 5.55 2.1E-07 0.00055 6.84

NCCRP1 3.00 1.74 5.51 2.5E-07 0.00056 6.66

SCCPDH -1.53 5.91 -5.46 3.1E-07 0.00056 6.47

SLC6A11 3.04 0.21 5.45 3.3E-07 0.00056 6.32

SEL1L3 1.42 4.89 5.40 4.1E-07 0.00056 6.19

LOC1019273183.27 -2.62 5.39 4.2E-07 0.00056 5.58

ZP2 3.39 -4.12 5.42 3.6E-07 0.00056 5.06

CRISP2 3.10 -4.12 5.41 3.8E-07 0.00056 4.91

NANOS1 1.83 2.53 5.34 5.3E-07 0.00065 5.99

TMEM65 1.04 5.24 5.31 6.0E-07 0.00070 5.83

SLC12A1 3.12 -1.02 5.28 6.9E-07 0.00076 5.51

SYT16 2.62 -2.59 5.22 8.8E-07 0.00091 4.88

KDM4B -1.15 6.49 -5.19 1.0E-06 0.00098 5.32

AQP5 3.95 0.35 5.18 1.1E-06 0.00098 5.31

SOX11 2.68 2.54 5.13 1.3E-06 0.0010 5.16

SCEL 3.09 -2.87 5.14 1.3E-06 0.0010 4.55

LINC02159 2.24 -3.64 5.14 1.3E-06 0.0010 4.05

RNF145 1.16 5.40 5.06 1.8E-06 0.0013 4.81

SMCO4 1.10 3.50 4.98 2.4E-06 0.0016 4.55

LOC1053693401.51 -0.04 4.98 2.4E-06 0.0016 4.45

A2ML1 3.05 0.49 4.96 2.7E-06 0.0017 4.43

NA 1.94 -1.94 4.93 3.0E-06 0.0019 3.96

LCT 2.46 -2.16 4.87 3.9E-06 0.0023 3.76

B3GNT7 1.68 2.40 4.83 4.6E-06 0.0026 3.98

CHRM1 2.35 0.97 4.81 4.9E-06 0.0026 3.90

NA 1.04 -0.36 4.74 6.7E-06 0.0034 3.49

HSD17B2 2.45 -0.13 4.73 6.9E-06 0.0034 3.54

EVL -1.40 7.28 -4.71 7.3E-06 0.0035 3.45

HIST1H2BG 2.09 1.29 4.70 7.8E-06 0.0036 3.48

TUBA4A 1.35 5.01 4.70 7.9E-06 0.0036 3.40

ATP10B 2.20 -2.49 4.66 9.3E-06 0.0041 2.91

C1orf116 2.29 4.00 4.64 9.8E-06 0.0042 3.21

RERG -2.18 4.80 -4.62 1.1E-05 0.0044 3.19

CDKN3 1.13 3.05 4.57 1.3E-05 0.0052 3.00  
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Appendix 5. 31 differentially expressed genes for luminal B IHC subtype 

 

SYMBOL logFC AveExpr t p  value adj. p  val B

PLAAT2 1.91 0.90 5.15 1.2E-06 0.015 5.06

UNC5A 2.14 1.48 5.02 2.1E-06 0.015 4.63

AKAP5 1.42 2.60 4.92 3.1E-06 0.015 4.31

TINAGL1 -1.31 4.84 -4.89 3.6E-06 0.015 4.20

IYD 2.66 -0.17 4.87 3.9E-06 0.015 3.87

GSDMB 1.60 3.75 4.62 1.1E-05 0.024 3.18

ORMDL3 1.50 7.37 4.60 1.1E-05 0.024 3.10

CT62 2.74 0.22 4.60 1.2E-05 0.024 3.00

LRFN2 1.85 -1.02 4.60 1.2E-05 0.024 2.77

RDM1P5 1.28 -0.90 4.55 1.4E-05 0.027 2.60

ABCC12 3.00 -1.44 4.51 1.7E-05 0.028 2.43

FFAR2 1.81 0.85 4.48 1.9E-05 0.029 2.61

PPFIBP2 0.69 5.49 4.42 2.4E-05 0.030 2.43

RIMS1 2.15 -0.34 4.41 2.4E-05 0.030 2.28

NA 1.90 -1.01 4.43 2.3E-05 0.030 2.22

GDPD1 0.98 2.23 4.39 2.7E-05 0.032 2.34

TEKT5 1.31 -1.07 4.37 2.9E-05 0.032 1.98

SUCO 0.69 6.65 4.31 3.6E-05 0.036 2.03

NA 1.37 -0.66 4.31 3.6E-05 0.036 1.87

HEATR6 0.94 4.69 4.28 4.1E-05 0.039 1.92

TBC1D1 -0.66 5.79 -4.23 4.9E-05 0.041 1.75

ELAC1 -0.78 2.00 -4.21 5.3E-05 0.041 1.72

SLC50A1 0.89 6.46 4.22 5.1E-05 0.041 1.71

MYRFL 1.44 -0.32 4.23 5.0E-05 0.041 1.66

PGAP3 1.44 6.41 4.20 5.6E-05 0.041 1.61

ATG16L1 0.52 5.60 4.18 5.9E-05 0.041 1.57

ERBB2 1.90 9.42 4.17 6.1E-05 0.041 1.56

RHBG 1.45 -1.07 4.18 6.1E-05 0.041 1.39

NA 1.58 -2.68 4.16 6.4E-05 0.041 0.93

EPYC 2.31 -0.04 4.15 6.7E-05 0.041 1.46

NA 0.75 3.14 4.12 7.6E-05 0.046 1.42  
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Appendix 6. Statistical appendix for survival analysis 

Preliminary multivariable model 

A preliminary multivariable analysis of overall survival is shown in table 12b. Adjusted for 

other clinico-pathological variables, Luminal B (HR 2.15, 95% CI: 1.03 – 4.47, p = 0.040), 

HER2 (HR 3.06, 95% CI: 1.48 – 6.35, p = 0.003) and basal (HR 2.24, 95% CI: 1.24 – 4.07, 

p = 0.008) cancers are associated with a poorer overall survival. Shorter overall survival was 

also associated with positive lymph node status (HR 3.65, 95% CI: 2.08 – 6.38, p < 0.001) 

and a grade of 3 (HR 1.86, 95% CI: 1.06 – 3.26, p = 0.030). A more favourable overall 

survival was seen in patients treated with endocrine therapy (HR 0.47, 95% CI: 0.28 – 0.79, 

p = 0.005). When adjusted for other factors, chemotherapy no longer correlated with a 

shorter overall survival (HR 1.06, 95% CI: 0.64 – 1.78, p = 0.817). 

 

Interactions between breast cancer subtypes and clinico-pathological variables 

An interaction term composed of cancer type and age was added to the multivariable model. 

No significant interactions were seen between the cancer subtypes and age (p > 0.05). This 

analysis was repeated for the other five clinico-pathological variables (size, lymph node 

status, grade, endocrine therapy and chemotherapy). No significant interactions were found 

(all p > 0.05). 

 

Testing of proportional hazards assumption  

Scaled Schoenfeld residuals were used to test for the validity of the proportional hazards 

assumption in the preliminary model. This was tested for each co-variate and the whole 

model (table 13). The global test showed the model violated the proportional hazards 

assumption (p = 0.031). For the individual co-variates, lymph node status (p = 0.124) and 
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chemotherapy (p = 0.129) came closest to violating the assumption. For these two co-

variates, the scaled Schoenfeld residuals were plotted against time (figure 9). For 

chemotherapy a pronounced downward slope was observed, which suggests the effect of 

chemotherapy on survival is not constant over time. 

 

Table 13. Test of proportional hazards assumption for each co-variate and the whole preliminary 

model 

Characteristic p value 

Tumour type 
   Luminal A 

   Luminal B 

   HER2 

   Basal 

 
- 

0.55 

0.87 

0.17 
Age (≤ or > 50yrs) 0.85 

Tumour size (≤ or > 20mm) 0.37 

Lymph node status 0.12 
Grade of 3 0.37 

Endocrine therapy 0.42 

Chemotherapy 0.13 
  

Whole model 0.031 

 

 
Figure 9. Plots of scaled Schoenfeld residuals over time for lymph node status and chemotherapy 
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Table 14. Test of proportional hazards assumption for each co-variate and the whole model, 

multivariable model stratified by chemotherapy 

Characteristic p value 

Tumour type 

   Luminal A 

   Luminal B 
   HER2 

   Basal 

 

- 

0.55 
0.92 

0.14 

Age (≤ or > 50yrs) 0.84 

Tumour size (≤ or > 20mm) 0.36 
Lymph node status 0.14 

Grade of 3 0.39 

Endocrine therapy 0.37 
  

Whole model 0.25 

 

 

Figure 10. Plot of cumulative baseline hazard, stratified by chemotherapy 

 
 

The final multivariable analysis was modified to allow for stratification by chemotherapy, 

resulting in different baseline hazards for cases treated and not treated with chemotherapy 

(table 12a). Interpretation of the effect of chemotherapy may be problematic. However, 

this may not necessarily be an issue, as the preliminary multivariable model suggests 

chemotherapy does not have an effect on overall survival. The global test shows the 
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stratified model no longer violates the proportional hazards assumption (p = 0.245, table 

14). Plots of the cumulative baseline hazards show the two groups (with and without 

chemotherapy) have different baseline hazards, vindicating the decision to stratify by 

chemotherapy (figure 10). 

 

Test of overall goodness of fit and hypothesis testing 

For the multivariable model stratified by chemotherapy, Cox-Snell residuals were 

calculated to assess the overall goodness of fit. A plot of the Nelson-Aalen estimate of the 

cumulative hazard function vs. the Cox-Snell residuals follows an approximately 45 degree 

line, which is supportive of a satisfactory overall model fit (figure 9). There was some 

divergence present for subjects with a longer overall survival. A likelihood ratio test for 

breast cancer subtype resulted in a p value of 0.018, compatible with breast cancer subtype 

having an effect on overall survival, and rejection of the null hypothesis. 

 
Figure 9. Plot of the Nelson-Aalen estimate of the cumulative hazard function vs. the Cox-Snell 

residuals 
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Figure 10. Plots of DFBETA vs. time for each of the variables in the multivariable model. 

 



64 
 

Table 15. List of influential cases, as determined by DFBETA, and their observations 

ID 

Size > 

20mm 

Lymph 

node 

positive 

Age > 

50 yrs 

Grade 

3 IHC type 

Endocri

ne 

therapy 

Chemo

therap

y 

Survival 

(months) Death 

44 Yes No Yes Yes HER2 No Yes 123 No 

50 No Yes No Yes HER2 Yes Yes 133 No 

72 Yes Yes Yes No Luminal B Yes No 150 No 

73 Yes Yes Yes Yes Luminal B Yes No 114 No 

82 Yes Yes No Yes Basal No Yes 150 No 

85 No Yes Yes No Basal Yes No 144 No 

197 No No Yes No Luminal A Yes Yes 98 Yes 

203 Yes Yes Yes Yes HER2 No No 17 Yes 

216 Yes No Yes No Luminal A Yes No 56 Yes 

219 Yes Yes No Yes Luminal A No Yes 11 Yes 

225 No Yes Yes Yes HER2 Yes Yes 9 Yes 

228 Yes No No No Luminal A Yes No 123 Yes 

236 No No Yes No Luminal B Yes No 61 Yes 

238 No No Yes Yes Luminal A No No 44 Yes 

243 No Yes Yes No Basal Yes Yes 5 Yes 

263 No Yes Yes No Luminal A No No 32 Yes 

 

 

Identifying influential observations 

DFBETA approximation of Cook’s distances was used to estimate the influence of each 

observation on the regression estimate. For each variable, the residuals were plotted against 

time (figure 10). Sixteen influential cases were selected for further assessment (table 15). On 

review, subtyping based on ER, PR and HER2 status was correctly performed in all cases. In 

general, these influential observations fell into two groups. The first group was composed of 

cases with poor prognostic parameters (size > 20mm, positive lymph nodes, grade 3, non-

luminal type) that were still alive after more than 10 years (no. 44, 50, 72, 73, 82 and 85). 

The second group was composed of cases with favorable prognostic parameters (size ≤ 

20mm, negative lymph nodes, non-grade 3, luminal A type), but have an overall survival of 

less than 5 years (no. 203, 216, 219, 225, 238, 243, 263). While unusual, the observations 

were regarded as plausible, and were kept in the dataset. 


