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Abstract 

Gliomas are considered to be the most common primary adult malignant brain tumor. 

With the dramatic increases in computational power and improvements in image 

analysis algorithms, computer-aided medical image analysis has been introduced into 

clinical applications. Precision tumor grading and genotyping play an indispensable 

role in clinical diagnosis, treatment and prognosis. Gliomas diagnostic procedures 

include histopathological imaging tests, molecular imaging scans and tumor grading.  

Pathologic review of tumor morphology in histologic sections is the traditional method 

for cancer classification and grading, yet human study has limitations that can result in 

low reproducibility and inter-observer agreement. Compared with histopathological 

images, Magnetic resonance (MR) imaging present the different structure and 

functional features, which might serve as noninvasive surrogates for tumor genotypes. 

Therefore, computer-aided image analysis has been adopted in clinical application, 

which might partially overcome these shortcomings due to its capacity to quantitatively 

and reproducibly measure multilevel features on multi-parametric medical information. 

Imaging features obtained from a single modal image do not fully represent the disease, 

so quantitative imaging features, including morphological, structural, cellular and 

molecular level features, derived from multi-modality medical images should be 

integrated into computer-aided medical image analysis. The image quality 

differentiation between multi-modality images is a challenge in the field of computer-

aided medical image analysis.  
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In this thesis, we aim to integrate the quantitative imaging data obtained from multiple 

modalities into mathematical models of tumor prediction response to achieve additional 

insights into practical predictive value. Our major contributions in this thesis are: 

1. Firstly, to resolve the imaging quality difference and observer-dependent in 

histological image diagnosis, we proposed an automated machine-learning brain tumor-

grading platform to investigate contributions of multi-parameters from multimodal data 

including imaging parameters or features from Whole Slide Images (WSI) and the 

proliferation marker KI-67. For each WSI, we extract both visual parameters such as 

morphology parameters and sub-visual parameters including first-order and second-

order features. A quantitative interpretable machine learning approach (Local 

Interpretable Model-Agnostic Explanations) was followed to measure the contribution 

of features for single case. Most grading systems based on machine learning models are 

considered “black boxes,” whereas with this system the clinically trusted reasoning 

could be revealed. The quantitative analysis and explanation may assist clinicians to 

better understand the disease and accordingly to choose optimal treatments for 

improving clinical outcomes. 

2. Based on the automated brain tumor-grading platform we propose, multimodal 

Magnetic Resonance Images (MRIs) have been introduced in our research. A new 

imaging–tissue correlation based approach called RA-PA-Thomics was proposed to 

predict the IDH genotype. Inspired by the concept of image fusion, we integrate 

multimodal MRIs and the scans of histopathological images for indirect, fast, and cost 

saving IDH genotyping. 
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The proposed model has been verified by multiple evaluation criteria for the integrated 

data set and compared to the results in the prior art. The experimental data set includes 

public data sets and image information from two hospitals. Experimental results 

indicate that the model provided improves the accuracy of glioma grading and 

genotyping.  
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CHAPTER 1. Introduction 

1.1. Motivation 

The widespread use of computer-aided medical image analysis dates back to the 

emergence of digital breast cancer in the early 1990’s [2]. Today, computer-aided 

design (CAD) has become an integral part of medical imaging and diagnostics [3, 4]. 

According to recent research, the possibilities of combining multimodal medical images 

with computer-aided image analysis is very broad [5, 6]. This technology can improve 

the accuracy of disease classification and can reduce the workload of clinicians. 

Histopathological images contain a wealth of structural information, and pathologists 

can not only diagnose tumors but also the extent of cancer cells, the degree of 

malignancy, and the extent of tumor spread [7, 8]. At present, how to build a platform 

for automatically extracting useful information from medical images for diagnosis is an 

area of great interest to many researchers. Compared to magnetic resonance images, the 

extraction of whole slide images (WSIs) is damaging to the human body. Therefore, 

with the development of medical imaging technology, non-invasive magnetic 

resonance images have also begun to be included in the method of tumor diagnosis. For 

clinical medicine, accurate glioma grading is important. It is usually obtained by a 

pathologist manually grading histopathological images. In order to improve the 

accuracy and repeatability, and reduce the empirical differences between different 

observers, computer-aided imaging analysis has been introduced into this area. 

Accurate tumor grading and genotyping are an integral part of clinical cancer research 

and may affect the patient's clinical diagnosis and prognosis [9]. Gliomas diagnostic 
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procedures include imaging tests and tumor grade determination. Although the cause 

of glioma is still unclear, there are still some factors that may increase the risk of glioma, 

including age, radiation exposure, and family genetic history. 

With the continuous development and advancement of medical imaging technology and 

computer technology, medical image analysis has become an indispensable tool and 

technical means in medical research, clinical disease diagnosis, and treatment. In recent 

years, machine learning has rapidly developed into a research hotspot in medical image 

analysis, which can automatically distinguish the characteristics of disease diagnosis 

from the medical image big data. This thesis first briefly describes the characteristics 

of medical image analysis; secondly, the basic principles of machine learning, then 

introduces the main machine learning algorithms mainly used for medical image 

analysis; and finally discusses their research status in the field of medical image 

applications. 

Accurate tumor grading and genotyping play a significant role in oncology [9]. For 

instance, computational-aid tumor histopathological grading may help the junior 

pathologists improve their diagnose accuracy. Tumor grading and genotyping are the 

basis for the treatment of clinical diagnosis. As in clinical diagnose procedure, the 

whole process are depend on the experience of clinicians, which may contain subjective 

and not easy for junior doctors. Compared with traditional methods predicted by 

pathologists, computer-aided grading and genotyping have the advantages of 

repeatability and low labor consumption. 
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1.2. Challenges 

Multi-parametric medical image analysis faces some serious challenges. 

Comprehensive diagnostic information cannot be obtained from a single medical alone. 

In computer-aided medical image analysis, different modal medical information with 

different qualities make it difficult to accurately integrated and fully utilized. 

1.2.1. Multimodal Medical Image Fusion 

The digital processing of medical images has become a practical clinical technique, 

which is widely used in various medical imaging disciplines, such as histopathological 

images, MRI and PET. Different imaging modalities are highly specific and can be 

divided into anatomical images (CT, MRI) and functional images (PET) from a medical 

perspective [10, 11]. Anatomical images can clearly show the anatomy of internal 

organs and bones with high spatial resolution and geometric characteristics, but does 

not have the function information display; while functional images can display the 

transformation of the human body's metabolic function, providing the body function 

information, but the image is blurred. It is impossible to clearly reflect the 

morphological structure, it is difficult to obtain accurate anatomical structure and 

stereoscopic positioning, and it is difficult to distinguish the boundaries of tissues and 

organs. Therefore, comprehensive diagnostic information cannot be obtained from a 

single image alone. For example, through image registration, images of different 

modalities are mapped into the same coordinate system, which reflects the 

corresponding tumor regions are in the same position in space. This can reflect the 

comprehensive information of various forms and functions of the human body, so that 

the lesion or ROI has clear visibility, which has important application value in the 
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positioning of the lesion, design of the radiotherapy plan, guiding the operation and 

checking the therapeutic effect. 

Common multimodal medical image fusion methods found in recent researches 

including intensity-hue-saturation (IHS) and principal component analysis (PCA) 

method [12], fuzzy set method (type-2 fuzzy logical method [13] and fuzzy transform 

method [14]), Neural network method (non-subsampled contour-let transform and 

pulse-coupled neural network [15]), and wavelet transform method [11, 16, 

17].Heterogeneity of medical information 

In conventional clinical image acquisition, differences in various imaging parameters, 

such as pixel size, matrix size, slice thickness, tumor position, and reconstruction 

algorithms, need to be considered. When meaningful data is extracted digitally to 

analyses the image phenotypes, discrepancies in these imaging parameters may lead to 

some changes that are not due to potential biological effects. It is therefore necessary 

to use standardized imaging protocols to eliminate the variability of unnecessary 

confounding factors. 

1.3. Contributions 

In this thesis, we target at integrating the quantitative imaging data obtained from 

multiple modalities into mathematical models of tumor prediction response to achieve 

additional insights into practical predictive value. Our major contribution in this thesis 

are summarized below: 

1. We proposed an automated machine-learning brain tumor-grading platform to 

investigate contributions of multi-parameters from multimodal data including 
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imaging parameters or features from the Whole Slide Images (WSI) and the 

proliferation marker KI-67. For each WSI, we extract both visual parameters 

such as morphology parameters and sub-visual parameters including first-order 

and second-order features. On the basis of machine learning models, our 

platform classifies gliomas into grades II, III, and IV. 

2. A quantitative interpretable machine learning approach (Local Interpretable 

Model-Agnostic Explanations) was proposed to measure the contribution of 

features for single case. Most of the grading systems based on machine learning 

models are considered “black boxes,” and it would be valuable for patient 

management if clinically trusted reasoning could be revealed. The quantitative 

analysis and explanation may assist clinicians to better understand the disease 

and accordingly to choose optimal treatments for improving clinical outcomes. 

3. Based on the automated brain tumor-grading platform we proposed above, 

multimodal MRIs have been introduced in our research. A new imaging –tissue 

correlation based approached called RA-PA-Thomics was proposed to predict 

the IDH genotype. Inspired by the concept of image fusion, we integrate 

multimodal MRIs and the scans of histopathological images for indirect, fast, 

and cost saving IDH genotyping. 

1.4. Thesis Organizations 

This thesis has been organized to follow the normal procedures of the multi-modality 

biomedical imagery. As shown in Figure 1, the overview plan of this thesis has been 

listed. Computer-aided biomedical images analysis is reviewed and discussed in 

Chapter 2. Also, in this chapter, we introduced the machine-learning application in the 
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computer-aided biomedical imaging analysis field. As for Chapters 3 and 4 are present 

the proposed models we figure out. In the end, Chapter 5 summarise our conclusions 

and forecasts the research trend of multi-parametric imaging data processing analysis 

for brain tumour diagnoses. 

 

Figure 1 Outline of Thesis 
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CHAPTER 2. Background 

In this chapter, we have summarized related work on multi-parametric medical image 

analysis. We first briefly introduce the applications of computer-aided medical image 

analysis, followed by the image description (histopathological images and MRIs) 

techniques that we will typically utilize for model validation. Finally, we provide the 

literature review of computer-aided multi-parametric medical image analysis procedure. 

2.1. Applications of Multi-parametric Medical Image 

Analysis 

Computational Analysis for Clinical Diagnose: At present, the most widely 

used machine learning application in biomedical imaging field is the use of computer-

aided biomedical imaging analysis and diagnosis. For example:  

1) Targeting in the field of radiotherapy, the first half of radiotherapy should first 

outline the boundary between the surrounding organs and the tumor. In terms 

of computer-aided medical analysis, machine-learning based segmentation can 

better to figure out the edge of the tumor. 

2) Automated analysis of pathological images, pathological diagnosis is the gold 

standard, but usually, the picture pixels are very high, where AI can effectively 

prevent missed diagnosis and accelerate diagnosis; 

3) Early screening for disease, such as early screening for pulmonary nodules. 

Image retrieval applied in medical applications: Machine-learning 

algorithms in computer-aided biomedical imaging fields have been widely used. 
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Content Based Image Retrieval (CBIR) is an image retrieval algorithm that is widely 

used in the medical field. CBIR is also known as Query by Image Content (QBIC), 

which provides technology that allows digital images to be organized through their 

visual features.  The implementation of this technology depends on two aspects:  

1) Computer vision technology,  

2) An image library with a large amount of data.  

CBIR is implemented by matching similar images to a fixed image in a massive 

database. CBIR is widely used in medical imaging, including segmentation and 

diagnosis of region of interest. For example, pathologists and researchers can use CBIR 

for tumor grade prediction by retrieving ROI in pathological images and extracting 

relevant features [18-24]. CBIR can be considered as unsupervised learning [23]. Due 

to the insufficient number of labelled data, this unsupervised learning algorithm is more 

suitable for biomedical field [21, 22].  

Discovering the Relationships between Multimodalities Biomedical Images 

and Clinical Information: According to research, pathologists and researchers obtain 

important findings in the current clinical diagnosis of diseases such as invasive tumors 

by observing histopathological images. At the same time, along with the advancement 

of medical information digital and genomic analysis techniques, and the development 

of missiology, multi-modalities of medical imaging (MRI, WSIs, CT), genomic 

information, and clinical information are integrated into the final diagnosis [25]. 

Researchers and clinicians attempted to analyze the relationship between these data and 

discover the relationships between medical images of different modalities and the 

relationships between images in the same modality [26, 27]. However, a single whole 



21 
 

slide image may contain millions of nuclei information. It is unrealistic for researchers 

and clinicians to observe, identify and analyze such a large amount of data. At the same 

time, the analysis is considered subjective and non-repeatable. Machine learning has 

the potential to help with analyses that are instead both objective and repeatable. This 

is already being used in several fields, for example, prognostic analysis of current 

common cancer patients [28-31], genotype prediction [31, 32], and tumor grading [33-

35]. 

2.2. Multi-parametric Biomedical ImagesWhole Slide images 

As a gold standard for pathological diagnosis, histopathological images have important 

applications in clinical and scientific research [36-38]. The pathologist performs a 

pathological diagnosis and a prognostic evaluation by microscopic examination of the 

pathological section, but this process is usually time consuming and laborious. The 

advent of digitization of pathological sections is considered an important turning point 

in the pathological development process [39, 40]. The production of digital pathology 

sections first requires tissue staining and subsequent digitization into digital pathology 

sections by a microscopy camera [41]. However, due to the low quality of the original 

digital slice, its popularity was limited. In 1999, the whole digital image appeared, 

making the preservation and transmission of pathological slices more convenient and 

safe [42]. 

Whole slide images (Figure 2) refer to the cutting of a certain size of the diseased tissue, 

using hematoxylin and blush (H & E) and other staining methods to make the sliced 

tissue into a pathological slide, and then microscopic imaging technology to 

microscopic cells and glands. By analyzing the pathological images, the causes, 
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pathogenesis, and pathogenesis of the lesions can be explored to make a pathological 

diagnosis. 

 

Figure 2 Huge size of Histopathological Images 

Histopathological images are usually scanned at high resolution and the images we 

collected may exceed 1GB in size (Figure 3) [43, 44]. This kind of large tissue contains 

a large amount of redundant information.  

 

Figure 3 Multi-resolution of the same whole slide images. The left image was 

scanned at 10X resolution; it is difficult for pathologists to extract enough 

information directly from them. The image on the right is the field of view under 

40x resolution. 
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2.2.2. Magnetic resonance imaging (MRI)  

Human glioma is a common primary malignant tumor of the brain. The current 

treatment is still mainly surgical resection. After surgery, it is supplemented with 

radiotherapy and chemotherapy. However, different pathological grades have different 

malignant degrees and different responses to treatment. Recent studies have shown a 

relationship between MRI features and pathological grades of human gliomas and cell 

proliferation, genotype, and prognosis, which could be used to improve these outcomes. 

Compared with WSIs, MRI of the brain is a safe and non-invasive medical imaging 

method that uses electromagnetic waves to draw detailed images of the brain. MRI [45], 

which is a measure of the magnitude of a magnetic resonance signal generated by a 

hydrogen atomic nucleus in human tissues and organs under the action of an strong 

external magnetic field, and is performed by the computer on the information data 

received by the external nuclear magnetic resonance signal detector. The concentration 

of atoms in the body, most commonly hydrogen, can be used to map the density of 

tissue in the body. Nuclear magnetic resonance can be used to identify where these 

atoms are concentrated, and the results can be mapped into an image of the body by a 

computer.  3D image reconstruction. It provides very clear images of human soft tissue 

anatomy and lesions. 

Multimodal MRI imaging, a method in which multiple functional magnetic resonance 

imaging modes are fused together to diagnose and examine patients, is a rapidly 

evolving technique in brain imaging (Figure 4), including T1, T1 contrast, T2 and Fluid 

attenuation inversion recovery (FLAIR) [46, 47]. It provides information on tissue 

anatomy, functional metabolism, etc. [48] It is characterized by high resolution, high 
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precision, and non-invasiveness, which is helpful for a more accurate depiction of the 

edge of the lesion before surgery. 

 

 

Figure 4 Multimodal MR Images. Brain MR Images using different imaging 

modalities: T1, T1 contrast, T2 and T2/FLAIR. 

2.3. Multi-modality Image Analysis Procedure 

The process of multi-modality image analysis can be divided into five steps as follows 

(Figure 5): image acquisition, the region of interest (ROI) extraction, features 

extraction, feature selection, consequence interpretation and analysis. 
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Figure 5 The procedure of multi-modality biomedical images analysis. The first 

step is to collect multi-modality biomedical images, including the scans of 

histopathological images, multi-modal MR images. Next, applying these images 

into segmentation algorithms. Furthermore, based on the ROIs, we automatically 

and quantitatively extract multi-parametric features. Then, through feature 

selection algorithms, we select optimal features and implement into machine-

learning algorithms to predict the outcomes.  

2.4. Segmentation  

Medical image segmentation is the process of dividing an image into regions based on 

similarities or differences between regions. At present, images of various cells, tissues 

and organs are mainly used as objects of treatment. The traditional image segmentation 

technology has a region-based segmentation method and a boundary-based 

segmentation method. The former relies on the spatial local features of the image, such 

as the uniformity of grayscale, texture and other pixel statistical properties. The latter 

mainly uses gradient information. The latter mainly uses gradient information to 
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determine the boundaries of the target. With the combination of specific theoretical 

tools, image segmentation technology has been further developed. 

In recent years, with the development of other emerging disciplines, some new image 

segmentation techniques have emerged such as statistical methods [49-51], fuzzy 

theory-based methods [52, 53], neural network-based methods [54, 55], wavelet 

analysis-based methods [56], model-based snake models (dynamic contour models [57, 

58]), combined optimization models and other methods. Although new methods of 

segmentation have been proposed, the results are not satisfactory. The current research 

hotspot is a knowledge-based segmentation method, which introduces some 

transcendental knowledge into the segmentation process by some means, thus 

constraining the segmentation process of the computer so that the segmentation result 

is controlled within the range we can recognize. For example, when the intrahepatic 

mass and the normal liver gray value are very different, the mass and the normal liver 

are not regarded as two independent tissues. 

The research of medical image segmentation method has the following remarkable 

features: any single image segmentation algorithm has difficulties obtaining 

satisfactory results for general images – more attention should be paid to the effective 

combination of multiple segmentation algorithms. Although there have been studies to 

distinguish the required organs, tissues or methods to find the lesions by automatic 

segmentation of medical images, currently available software packages generally still 

cannot complete fully automatic segmentation and still require anatomical aspects 

manual intervention [59]. In the current situation that the image segmentation task 

cannot be completely completed by a computer, the human-computer interactive 

segmentation method has gradually become the research focus; the new segmentation 
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methods have several goals: automatic, precise, fast, adaptive and robust segmentation. 

The comprehensive utilization of classical segmentation technology and modern 

segmentation technology (integration technology) is an appropriate goal for the future 

development of medical image segmentation technology [49, 60]. 

Compared to the 2-dimensional histopathological image, the Volume of Interest (VOI) 

outlined on the MRI is 3-dimensional. The specific steps are as follows: First, two 

experienced radiologists will outline the VOI of the image. When the two opinions are 

inconsistent, they are judged by another senior title physician. Secondly, using the 

MATLAB (R2017b)-based boundary sketching program, based on the enhanced T1WI 

image and other modal sequences as a reference, manually extract the maximum extent 

of the diseased tissue at each level of the visible lesion as the ROI of the layer. Stacking 

multiple levels of ROI together generates a VOI on the patient's enhanced T1WI image. 

Finally, the VOI boundary on the enhanced T1WI image is automatically copied to 

several other parameter maps that have been registered, and finally the multimodal VOI 

of each patient image is obtained. 

Segmentation algorithms are usually divided into three categories; manual, 

semiautomatic, and automatic segmentation. There is no absolutely perfect algorithm 

for image segmentation as each category faces different opportunities and challenges. 

Firstly, manual segmentation relies on physician experience; they evaluate each slice 

of the radiologic imaging sequence or pathological cell subtype information to delineate 

the ROIs. Although it is time-consuming and tiresomeness, it is very effective in 

reproducibility and reliability for tumors with large morphological variations and 

partially blurred volumes.  
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Secondly, in the face of the large number of data that is needed to delineate the ROIs, 

it is often necessary to rely on the assistance of semi-automatic algorithms to reduce 

the number of human interactions as much as possible and improve the segmentation 

efficiency.  

Thirdly, with the development of segmentation algorithms based on artificial networks, 

many fully automated algorithms overcome the challenges of unclear boundaries and 

different shapes. 

For clinical diagnosis, accurate histopathological grading and subtyping are critical, 

which may further influence the surgical treatment and prognosis analysis. From Figure 

4, we can see that a single histopathological image may contain different kinds of 

features. 

2.5. Feature Extraction 

At present, there are many feature extraction methods, and the feature extraction 

methods used according to different purposes and different targets are also different. 

Commonly used image feature types can be divided into： 

1) Grayscale features of the image [61, 62], such as the mean or variance of the 

image or local;  

2) Texture features of the image [58, 63], such as co-occurrence matrix, equal 

grayscale run length, Fourier spectrum, random field model, etc.;  

3) Spectral features of the image [64] Gradient features of image grayscale 

transformation;  



29 
 

4) Image object shape features [65, 66] such as area, perimeter, circularity, aspect 

ratio, moment, edge moment, Fourier descriptor, eccentricity, compactness, etc.;  

5) Image information description and Signal to noise ratio and so on. 

2.5.1. Features used in Histopathological Image Analysis 

The WSI pathology image contains massive structural information [67, 68]. Therefore, 

converting images into mineable feature data is a necessary step in the pathological 

analysis [69, 70]. The method of feature extraction can be divided into artificial feature 

design and automatic feature learning. Artificial feature design refers to the selection 

and simplification of low-dimensional vectors that can best express image content from 

images. These features include gray histograms [71], shape features [72, 73], texture 

features, and relationships with surrounding tissues. Digital pathology slice analysis of 

traditional machine learning algorithms requires manual extraction of features. 

However, the application of artificial features has the following disadvantages: First, 

feature selection relies heavily on professional experience, objectivity is poor, and it is 

impossible to represent comprehensive information of pictures; second, there is a lack 

of principle criteria for integrating multiple artificial features. 

As shown in Figure 6, we can figure out that a single histopathological image may 

contain different kind of features. 
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Figure 6 Presentation of different features in the histopathological image. 
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2.5.1.1 Pixel-level Features [68, 72]: Pixel-level image features refer to 

features that are unexplained in biology, which lied in the bottom of the information 

hierarchy. Pixel-level image features usually refer to some small details in the image, 

such as edge, corner, color, pixels, gradients, etc., which can be obtained by filter, 

SIFT or HOG. 

2.5.1.2 Object-level Features [72, 74]: Compared with pixel-level 

characteristics, characterized in object-level information of the higher level hierarchy. 

This layer is characterized mainly described the histopathological characteristics of 

the image in the cell structure, for example, nuclei and glands. Generally, object-level 

features can be divided into the following categories: size and shape, radiometric and 

densitometry, texture, and chromatin-specific [43].  

2.5.1.3 Spatially Related Features [75]: Spatially related features refer 

to the topological features of image structure information. This kind of feature was 

introduced as early as the 1990s, but it has only recently appeared in medical image 

analysis [76]. Such features provide a wealth of structure information to describe 

histopathological images, including cell distribution and image globalist. 

2.5.2. Features used in Magnetic Resonance Imaging Analysis 

In the field of biomedical imaging analysis, radiomics is a method of extracting massive 

features from emission images using different data feature algorithms. Radiomics 

features can be divided into shape-based features, first-order statistics features, texture 

features and features extracted by using different filters [77]. 
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2.5.2.1 Shape-based Features: Measures include the description of the 

volume of tumor areas, such as volume, surface area, maximum diameter in two and 

three dimensions, and effective diameter, and features describing the degree of 

similarity between the ROI and the sphere, such as Surface volume ratio, density, 

eccentricity, sphericity, etc. In short, it is a feature of geometry, which has the same 

meaning as the volume we calculate. For example, sphericity describes the measure 

of the roundness of the tumor area relative to the sphere. The higher value (0 <

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 ≤ 1) implies the higher the roundness of the ROI. The value is calculated 

as: 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
√36𝜋𝑉23

A
 (2.1) 

Where V is the volume of ROI and A is the surface of ROI. 
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2.5.2.2 First-order Statistics Features: The first-order statistics 

features, also named intensity features, which measures the intensity distribution 

characteristics in ROIs (it is a feature that can be calculated statistically on the grey 

value of an image), do not include spatial features between pixels. These intensity 

features are obtained by histogram analysis, including the mean, median Number, 

minimum, maximum, standard deviation, skewness, and kurtosis. These features 

reflect the symmetry, uniformity, and local intensity distribution of the measured 

voxels. For example, energy describes the magnitude of voxel values in the ROI [78].  

A larger value implies a greater sum of the squares of these values. The function is 

defined as below: 

𝑒𝑛𝑒𝑟𝑔𝑦 = ∑(𝑋(𝑖) + 𝑐)2

𝑁𝑝

𝑖=1

 (2.2) 
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2.5.2.3 Texture Features: The texture features describe the intensity of 

the voxel spatial distribution, which can also be called as the second-order statistics 

features. Image texture refers to a spatial change that is perceptible or measurable at 

the intensity level. It is treated as a gray level and is a combination of local features 

of visual perception. The second-order features include Gray Level Co-occurrence 

Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length 

Matrix (GLRLM), Neighboring Gray Tone Difference Matrix (NGTDM) and Gray 

Level Dependence Matrix [78, 79]. These kinds of statistical features reflect the 

inhibition between different parts of the tumor region by quantifying the difference in 

grayscale regions in the image. For example, the GLDM features quantify the grey 

level dependences in an image. The function as below: 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑁𝑜𝑛 − 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)

2
𝑁𝑑
𝑗=1

𝑁𝑧
2

 (2.2) 

Where 𝑁𝑔 be the number of discreet intensity values in the image, 𝑁𝑑 be the number of discreet 

dependency sizes in the image, 𝑁𝑧 be the number of dependency zones in the image, which is 

equal to∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
, and 𝑃(𝑖, 𝑗) be the dependence matrix. 

2.6. Feature Selection 

In the practical application of machine learning, massive features are usually extracted, 

and there may be irrelevant features. There may also be interdependencies between 

features, which may lead to the following consequences: 1) The more features extracted, 

the longer it takes to analyze features and train the model; 2) The more features are 

extracted, the more complex the model will be and the lower the promotion ability. 



35 
 

Feature selection can reduce redundant information by removing invalid features, 

thereby improving model prediction capabilities. On the other hand, the model is 

simplified by selecting the optimal features to facilitate understanding and visualization 

of the data. 

Feature selection has two main functions: 1) Reduce feature quantity and dimension 

reduction, make the model generalization ability stronger, and reduce over-fitting; 2) 

Enhance understanding between features and eigenvalues. 

In this section, I will simply introduce several feature selection algorithms: 

Removing Features with Low Variance: This should be the simplest feature 

selection method: suppose the eigenvalues of a feature are only 0 and 1, and in all input 

samples, 95% of the instances have a value of one, then it can be considered that this 

feature does not work. Big. If 100% is one, then this feature is meaningless. This 

method can be used when the eigenvalues are discrete variables. If it is a continuous 

variable, the continuous variables need to be discretized before they can be used. In 

practice, generally, 95% or more will take a certain value. The characteristics exist, so 

this method is simple but not very useful. It can be used as a pre-processing for feature 

selection. First, the features with small changes in value are removed, and then the 

appropriate feature selection is selected from the feature selection methods mentioned 

below for further feature selection. 

Univariate Feature Selection: Univariate feature selection tests each feature 

measures the relationship between the feature and the response variable and discards 

bad features based on the score. For regression and classification problems, features can 

be tested by means of the chi-square test. This method is relatively simple, easy to run, 
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easy to understand, and usually has a good effect on understanding the data (but not 

necessarily effective for feature optimization and generalization); there are many 

improved versions and variants of this method. 

Radom Forest: First, it will shuffle the original features and add them to the 

dataset as new features. Then, the random forest model is trained based on all features 

and the importance of each feature is evaluated. In each iteration, the method detects 

whether the real feature is more important than its shadow feature and removes features 

with the least difference in importance. Finally, the algorithm stops after all features are 

judged to be important or useless (or stops after a given number of iterations). 

Recursive Feature Elimination (RFE): The coef_ attribute returned by the 

learner or the feature_importances_ attribute is used to get the importance of each 

feature. Then, remove the least important feature from the current feature set. This step 

of recursively is repeated over the set of features until the desired number of features is 

finally reached. This algorithm optimizes the model by continuously recursively 

removing features and re-establishing the model on the features. The stability of an RFE 

depends largely on which model is used at the bottom of the iteration. For example, if 

the ordinary regression used by RFE is unstable without regularization, then RFE is 

unstable; if Ridge is used, and the regression with Ridge regularization is stable, then 

RFE is stable. 
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2.7. Machine-Learning Models Establishment and 

Prediction 

As shown in Figure 7, we can directly see that the normal procedure in biomedical 

imaging analysis field via machine-learning algorithms. As mentioned before, several 

procedures have been adopted include multi-modality biomedical images acquisition, 

the selection of region of interests, features extraction and optimal feature selection 

before establish predictive machine-learning models. 

 

Figure 7 Prediction Model Establishment via machine learning algorithms. After 

the biomedical imaging pretreatment process, the commonly used machine 

learning algorithms in the biomedical imaging analysis field can be divided into 
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the following categories: (a) supervised learning, (b) unsupervised learning, (c) 

semi-supervised learning, and (d) multiple instance learning 

As figured out in recent researches, machine-learning algorithms implemented into 

computer-aided biomedical imaging analysis field can be simply divided into the 

following categories: supervised learning, unsupervised learning, semi-supervised 

learning and multiple instance learning. 

Supervised Learning: Supervised learning is a machine learning method in 

which a training model can be learned or established and a new instance can be inferred 

from this model. Training data consists of input objects (vectors) and expected outputs. 

The output of a function can be a continuous value (regression analysis) or a prediction 

of a classification label (classification). 

The task of a supervised learner, after observing some training paradigms (inputs and 

expected outputs), predicts the output of this function for any possible input values. To 

achieve this goal, learners must generalize from existing sources to non-observed 

situations in a "reasonable" (see induction bias) manner. In human and animal 

perception, it is often referred to as concept learning. 

Supervised learning has two models of morphology. Most generally, supervised 

learning produces a global model that maps input objects to expected output. The other 

is to implement this correspondence in a regional model. (such as case inference and 

nearest neighbor law). 
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The most widely used classifiers are artificial neural networks [80, 81], support vector 

machines [82], nearest neighbor [83], Gaussian mixture models [62], naive Bayesian 

methods [84], decision trees [85], and radial basis function classification [86]. 

Unsupervised Learning: No samples were labelled. In fact, unsupervised 

learning can't carry out targeted classification, fitting, and can only do some analytical 

tasks, such as clustering [87, 88], PCA [89], dictionary learning [90, 91]. 

Unsupervised Learning is an algorithm of artificial intelligence networks. Its purpose 

is to classify the original data in order to understand the internal structure of the data. 

Unlike the supervised learning network, the unsupervised learning network does not 

know whether the classification result is correct when learning, that is, it is not 

supervised (it tells it which learning is correct). It is characterized by providing input 

examples for only one type of network, and it automatically finds its potential category 

rules from these examples. After learning and testing, you can also apply it to new cases. 

A typical example of unsupervised learning is clustering [87]. The purpose of clustering 

is to bring together similar things, and we do not care what this class is. Therefore, a 

clustering algorithm usually only need to know how to calculate the similarity and can 

start working. 

Semi-supervised Learning: One part has a mark, and the other part only has 

data not marked. At this time, it is necessary to combine unmarked data with marked 

data for machine learning. This is semi-supervised learning. 

The basic idea of semi-supervised learning is to use the model assumptions on the data 

distribution to create a learner to label unlabeled samples. 
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From the perspective of the sample, the semi-supervised learning problem is machine 

learning using a small number of labeled samples and a large number of unlabeled 

samples. From the perspective of probability learning, it can be understood as a study 

of how to use the correlation between the input edge probability and the conditional 

output probability of the training sample. Classifier. The existence of this connection is 

based on certain assumptions, namely the cluster assumption and the manifold 

assumption. 

Multiple Instance Learning: The data is tagged, but the target of the tag is not 

a sample, but a packet. When the mark of a bag is negative, the mark of all samples in 

the bag is negative. When a bag is marked positive, at least one of the samples in the 

bag is marked as positive. Our goal is to learn to get a classifier so that the positive and 

negative signs can be given to the newly entered sample. One such type of problem is 

the multiple example problem. For example, to do detection problems, when marking 

the training picture sample, you need to give a rectangular box to indicate the position 

of the target. It is possible that the target is not accurate enough, resulting in different 

samples being misaligned. At this time, the marked rectangular frame can be partially 

disturbed. Get some new rectangles and think of them together as a bag, where there is 

always one that is the best positive sample, which is marked as positive. And take a 

picture without a target, as a negative sample package: no matter how the picture is 

intercepted inside, it is a negative sample. 
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CHAPTER 3. Machine Learning 

Models for Multi-parametric 

Glioma Grading With Quantitative 

Result Interpretations 

3.1. Abstract 

Gliomas are the most common primary malignant brain tumors in adults. Accurate 

grading is crucial as therapeutic strategies are often disparate for different grades and 

may influence patient prognosis. This study aims to provide an automated glioma 

grading platform on the basis of machine learning models. In this paper, we investigate 

contributions of multi-parameters from multimodal data including imaging parameters 

or features from the Whole Slide images (WSI) and the proliferation marker Ki-67 for 

automated brain tumor grading. For each WSI, we extract both visual parameters such 

as morphology parameters and sub-visual parameters including first-order and second-

order features. On the basis of machine learning models, our platform classifies gliomas 

into grades II, III, and IV. Furthermore, we quantitatively interpret and reveal the 

important parameters contributing to grading with the Local Interpretable Model-

Agnostic Explanations (LIME) algorithm. The quantitative analysis and explanation 

may assist clinicians to better understand the disease and accordingly to choose optimal 

treatments for improving clinical outcomes. The performance of our grading model was 
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evaluated with cross-validation, which randomly divided the patients into non-

overlapping training and testing sets and repeatedly validated the model on the different 

testing sets. The primary results indicated that this modular platform approach achieved 

the highest grading accuracy of 0.90 ± 0.04 with support vector machine (SVM) 

algorithm, with grading accuracies of 0.91 ± 0.08, 0.90 ± 0.08, and 0.90 ± 0.07 for grade 

II, III, and IV gliomas, respectively. 

3.2. Introduction 

Gliomas are the most common primary malignant brain tumours in adults, accounting 

for 30% of all primary central nervous system (CNS) tumours and 80% of all malignant 

brain tumours [92]. According to their histopathological characteristics, such as 

cellularity, pleomorphism, nuclear atypia, necrosis, and endothelial proliferation, 

gliomas can be classified into WHO grades I–IV [93]. Correctly differentiating tumor 

grades is critical because they are widely used to predict patient outcomes and 

determine the use of adjuvant therapy protocols including aggressive radiotherapy and 

concomitant chemotherapy [94]. A precise prediction of the prognosis depends on an 

accurate pathology diagnosis. Compared to glioblastoma (GBM), low-grade gliomas 

(LGGs; WHO II) have greater chemotherapy sensitivity and a better post-therapy 

prognosis [95-97]. 

Considered as one of the “gold standards” and conventionally used by pathologists for 

tumor grading, haematoxylin and eosin (H&E) stained images provide specific 

histopathological characteristics and patterns to differentiate gliomas grades [98]. The 

parameters extracted by clinicians from WSIs mostly focused on the cellular level, 

including the number and size of nuclei, which reflects the proliferation and 
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differentiation of the nuclei per unit area and heterogeneity of different levels of the 

tumor cells. For instance, compared to grade II gliomas, grade III, and grade IV both 

exhibit microvascular proliferation (MVP), indicating the presence of proliferation of 

enlarged blood vessels in the tissue [99]. Grade IV gliomas can be further distinguished 

from grade III by examining H&E stained images for the presence of highly 

pleomorphic cells with hyperchromatic, irregular nuclei and brisk mitotic activity. 

Grade IV gliomas are often more mitotically active, necrosis prone, and generally 

associated with neovascularity, infiltration of surrounding tissue and a rapid 

postoperative progression [9]. However, the conventional grading procedure based on 

H&E pathology images is often subjective and operator-dependent and of low 

reproducibility due to the inter-observer variability. 

Apart from H&E stained images, immunocytochemical staining with Ki-67 antibodies 

has been widely accepted as an alternative reference for assessing the proliferative 

potential in tumor cells. Strictly associated with cell proliferation, Ki-67 nuclear antigen 

is present during all active phases of the cell cycle (Gap 1, Synthesis, and Gap 2 phases 

of the cell cycle) and mitosis but absent in resting (quiescent) cells (Gap 0) [100]. The 

proliferative index (PI), determined by Ki-67 immunohistochemistry (IHC), correlates 

well with the histopathological malignancy grade of gliomas [101]. PI values may assist 

in differentiating grade II from III or grade II from IV; however, due to the overlapping 

PI values of grades III and IV, PI itself would not be considered as sufficient evidence 

to adequately determine these two malignancy grades [101]. 

Computer-assisted grading systems are capable of mining a large number of 

quantitative features from digital pathology slide images to sort out the most important 

patterns for grading. This ability provides the opportunity for better quantitative 
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modeling of the disease appearance and hence possibly improves the prediction 

accuracy of tumor grading. In addition, it also provides a more reproducible, less labor-

intensive and more efficient mechanism than manual grading by pathologists. However, 

the compelling opportunities offered by big digital pathology data come with optimal 

computational algorithm challenges [102]. For example, image analysis and computer-

assisted detection models inadequately address the data density in high-resolution 

digitized whole slide images (WSI). Mousavi et al. (2015) [103] proposed to distinguish 

LGGs from GBMs using image features extracted from regions of interest (ROIs) in 

WSIs. However, the manual selection of ROI in this method may introduce a potential 

risk of inter-observer variance. Kong et al. (2009) [104] tiled the WSI into non-

overlapping pieces and analyzed each image tile to grade LGGs from GBMs. While 

fully processing all the image tiles, the method might be less computationally efficient, 

in particular, for high-resolution H&E stained images. To improve computational 

efficiency of the automated prognosis of neuroblastoma from H&E images, Sertel et al. 

(2009) [105] proposed a multiresolution approach to extract local binary pattern and 

texture features of different scales. 

While the above mentioned automated methods process and analyze WSIs for grading, 

the method proposed by Ertosun and Rubin (2015) [80] classified LGGs and high-grade 

glioma (HGGs) on the basis of automated segmentation and analysis of cell nuclei and 

morphological features [106] but neglected the tumor patterns important for manual 

grading. To systematically compare the performance of classic machine learning 

models on grading, Huang and Lee (2009) [107] implemented three machine learning 

models, Bayesian, k-nearest neighbors (KNN) and support vector machine (SVM), and 

concluded that KNN and SVM both achieved the highest accuracy. Apart from 
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conventional machine learning, Reza and Iftekharuddin (2016) [108] proposed a deep 

learning-based grading system, characterizing each tile type with convolutional neural 

network (CNN). However, these machine learning and deep learning models are 

considered as “black boxes” without transparent interpretation of either the models 

themselves or the grading results. 

To improve reproducibility and avoid inter-operator variance in conventional manual 

grading, in this study, we design and implement a platform for automated grading 

gliomas into grades II, III, and IV from digital pathology images. In our approach, 

discriminative visual, sub-visual and IHC parameters are identified, and a reliable 

machine learning model is selected. With the machine learning based models, we 

integrate information from both histopathological morphology images and proliferation 

biomarkers into a single unified framework to predict the glioma grade in 116 

patients,which surpass the current clinical paradigm for patients diagnosed with glioma. 

Our platform provides interpretation on the grading outcomes to disclose the 

contributions of multiparametric features to individual cases and presents an alternative 

for objective, accurate, and interpretable prediction of glioma grading in the clinic. 

3.3. Materials and Methods 

The dataset used in this study involves 146 cases of glioma grading from grades II to 

IV: 49 grade II, 45 grade III, and 52 grade IV images. All cases were from Shandong 

Provincial Hospital affiliated to Shandong University, and the pathology diagnoses of 

the cases were based on the 2007 WHO standards [93]. Paraffin-embedded samples 

were cut into three μm thick sections and stained with H&E stain. All H&E images in 

this study were obtained from WSIs scanned by a Leica SCN400 slide scanner (Leica 
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Biosystems, Nussloch, Germany) with multiresolution varying from 20× to 40×. Ki-67 

immunohistochemical staining was prepared using an automated staining instrument 

(Ventana, Benchmark Ultra). As defined in Eq. 1, Ki-67 PI is the percentage of the 

number of immunoreactive tumor cells in relation to the total number of cells. At least 

1000 tumor cells or alternatively, three high-power fields (HPFs) were examined by 

two independent experienced observers. The mean of Ki-67 PI is the average of the 

values calculated by different observers. 

𝑃𝐼 =  
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑒𝑙𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑒𝑙𝑙𝑠
 × 100 

3.4. Automated interpretable Glioma grading with 

Machine-Learning Models 

As illustrated in Figure 8, our automated grading framework is composed of five major 

components including automated ROI identification, feature extraction, important 

feature selection, automated grading, and result interpretation. 
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Figure 8 Schematic flowchart of the automated grading framework. We first 

automatically selected the representative regions of interest (ROIs) from the H&E 

images. Based on these ROIs, we extracted and selected important visual, sub-

visual, and immunohistochemically features. We established automated machine 

learning models with these features for glioma grading. The grading results output 

from the model were further explained with the LIME algorithm. 

3.4.1. Automated ROI Identification 

Our proposed computational method automatically identifies the ROIs that reflect cell 

proliferation and cellular density based on the number of nuclei in the regions. H&E 

images were first partitioned as tiles, each with a resolution of 5120∗5120 pixels to 

enable the process of high-resolution imaging [104, 109]. Then, we detected nuclei 

using watershed nuclei detection algorithm in each tile [110, 111] and based on the 

density of the detected nuclei, the five tiles with the highest densities of nuclear were 

identified as the ROIs. 

3.4.2. Multi-Parameter Extraction and Important Parameter Selection 

From the identified ROIs, we extracted multi-parameters including visual features and 

sub-visual features as the inputs for automated grading. The visual features, including 

seven nuclear morphological features, five nuclear staining features, and nuclei clusters 

or patterns, were extracted to reflect a basis for observation when pathologists make 

diagnostic decisions [106]. For instance, nuclear morphological characteristics such as 

shape, size, and circularity that reflect cellular atypia have been commonly used by 

pathologists to distinguish different grades of glioma. 
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In addition to the visual features, sub-visual features also contribute to accurate glioma 

grading. The sub-visual features are the computerized high-throughput intensity and 

texture image features that have been proved to have diagnostic, predictive, and 

prognostic power, although these features are somehow beyond human perception 

capabilities [112]. In our method, for instance, intensity features describe the first-order 

statistical information of the image intensity distribution, while the second-order grey-

level co-occurrence matrix (GLCM) features capture both statistical intensity and 

relationship between neighbourhood pixels, revealing information such as homogeneity, 

contrast and entropy [113]. As illustrated in Figure 6, we used a random forest (RF)-

based feature selection method combined with backward feature elimination to choose 

the most representative and informative features [114]. 

3.4.3. Machine Learning Model for Automated Grading 

To select the best machine learning model for grading, we compared the performance 

of four types of classic machine learning models including RF [115], gradient boosting 

decision tree (GBDT) [116], SVM [117] and neural network (NN) [72, 118, 119]. To 

achieve the best performance for each grading model, the hyper-parameters of the 

model need to be optimized, for example, the tree number in RF model. The framework 

for automatically tuning the hyper-parameters is provided in Figure 9. 
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Figure 9 Machine learning model with hyper-parameter tuning. The original data 

were randomly separated into training data and testing data. Training data were 

used to train the machine-learning model, while testing data were used to evaluate 

the model performance. The hyper-parameters of the model can be continuously 

tuned with information acquired from testing results until the optimal model is 

obtained. 
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3.4.4. Validation and Evaluation 

The 116 patients out of 146 was used to train the model while the other 30 patients was 

used for further validate the model. The 116 patients were randomly divided into 

training datasets (75%) and testing datasets (25%) to test performance and validate the 

models [120]. The corresponding training set was used to train the classifier, and the 

test set was used to verify the model performance. This procedure was repeated 30 times 

by changing random states while maintaining the same train-test split ratio. Apart from 

accuracy, other measurements including precision, recall, F1 score and confusion 

matrix were calculated to more completely validate grading performance. In addition, 

extra 30 cases were used as validation dataset with 30 times of cross-validation to 

further test the performance of our proposed model. 

3.5. Results 

3.5.1. Multi-Parameter Extraction and Selection 

In the multi-parameter extraction phase, we extracted 24 visual parameters and 171 sub-

visual parameters. Since the large size of the sub-visual features may suppress 

important morphological features, we performed the feature selection process on the 

sub-visual features twice to eventually choose 15 features from this category. The 

predictive performance of the selected 11 visual features, 15 sub-visual features and 

one IHC characteristic – Ki-67 in this study – were assessed with separate RF models. 

The box-plot in Figure 10A shows that visual features had the highest predictive power 

with 0.76 accuracy, while the accuracy for sub-visual features and Ki-67 only reached 

0.62 and 0.53, respectively. 
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Figure 10 Predictive capability of selected important features and models. (A) 

Predictive accuracy of different categories of selected important features. In each 

category, features were assessed for accuracy separately. (B) Accuracy of different 

grading models. 

3.5.2. Automated Grading Performance with Different Models 

We fed these selected important parameters into the four machine learning models RF, 

GBDT, SVM, and NN to sort out the best grading model. Based on cross-validation, 
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SVM achieved the most accurate and stable grading performance, with the accuracy of 

0.90 ± 0.04, while the other three models had lower but nearly the same performance 

with accuracy stabilized at approximately 0.87 (Figure 10B). Table3 shows the results 

of other measurements including F1, precision and recall, among which the SVM model 

maintained the best performance. 

Table 1 F1, accuracy, precision, and recall for different machine learning models. 

Method F1 Accuracy Precision Recall 

Random Forest 0.86±0.07 0.87±0.06 0.86±0.07 0.87±0.06 

GBDT 0.86±0.08 0.87±0.07 0.86±0.07 0.86±0.07 

Neural 

Network 

0.86±0.05 0.86±0.06 0.87±0.06 0.87±0.05 

SVM 0.90±0.07 0.90±0.04 0.91±0.04 0.91±0.04 

 

3.5.3. Further Investigation of SVM Performance 

To better understand the performance of the SVM model for grading histologic grades 

of glioma II, III, and IV, we calculated a confusion matrix to uncover misclassification 

cases. As illustrated in Figure 11A, grade II had the highest accuracy (0.91) in the SVM 

model while the other two grades both had the accuracy of 0.90. As shown in the 

confusion matrix for the SVM model (Figure 11B), grade III gliomas may share 

common histological characteristics with both grade II and grade IV gliomas and 

thereby may lead to misclassification. In addition, we added 30 new patients of grade 
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II to IV for the further validation. The validation performance achieved 0.88 ± 0.14 with 

30 times cross-validation. 

 

Figure 11 Assessment of grading results with the support vector machine (SVM) 

model. (A) Prediction accuracy for different histological grades in the SVM model. 

The accuracy for each grade was obtained by separating the results by grades in 
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the 30 times cross-validation. (B) Confusion matrixes for different models. The 

confusion matrixes reveal the number of misclassified cases for each grade. 

3.5.4. Quantitative Grading Results Interpretation 

The machine learning algorithm is usually complex and considered as a “black box” 

without explicit interpretation of the learning process or the outputs. To provide a better 

quantitative interpretable explanation for the grading results, we used Local 

Interpretable Model-Agnostic Explanations (LIME) algorithm [121] to reveal the 

importance of features and their underlying contribution to the grading decision. In this 

section, we illustrated three case studies to interpret the automated grading results and 

the underlying reasoning for our SVM model with the LIME algorithm. 

As Ki-67 has been proved to be a clinically significant indicator for grading, we 

predicted the grading results by machine learning models while also taking the 

influence of Ki-67 into consideration. To highlight this strategy, we chose three cases 

to elucidate the workflow of SVM for precise grading. As shown in Figure 12A, Case 

1 is a relatively easy case to classify, being grade II with low Ki-67 (0.05). However, 

Case 2 and Case 3 are more ambiguous, both with a value of 0.2 for Ki-67, but one is 

grade III while the other is grade IV. We established a result explainer with LIME 

algorithm for the SVM model and then calculated the feature contribution for each case. 
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Figure 12  Grading result explanation of representative cases with the LIME 

algorithm for the SVM model (part 1) (A) Distribution of Ki-67 by different grades. 

Three selected cases had Ki-67 PI values of 0.08, 0.2, and 0.2. (B) Prediction 

probability for three cases. 

Case 1 (Figure 12C) was correctly classified as grade II with a high probability. As Ki-

67 has been clinically proved to have the discriminative capacity to distinguish between 

LGG and HGG, it is not surprising that Ki-67 has the dominant influence underlying 

this correct decision. Apart from Ki-67, visual features such as cell pattern and sub-

visual features such as GLCM texture features also can correctly guide the grading. The 

result also shows that although some morphological features such as perimeter do not 

support the decision of grade II, they excluded grade III, which also contributed to 

accurate grading. 

For the more ambiguous Case 2 (Figure 13) and Case 3 (Figure 14), with regard to Ki-

67 itself, our classification model demonstrated its capability for an accurate decision. 

Case 2 (Figure 13) was the most challenging case among these three cases because in 

this case, Ki-67 had only a negative influence on the grading decision; however, with 

the strong support of GLCM texture features and the morphological nuclei count feature, 

our grading system made a correct decision. In Case 3, Ki-67 was the major contributor 

to the correct decision, while the morphological features such as standard deviation of 

cells’ max axis and standard deviation of cells’ perimeter were the second and third 

contributors. 



58 
 

 

Figure 13 Grading result explanation of representative cases with the Local 

Interpretable Model-Agnostic Explanations (LIME) algorithm for the SVM model 

(part 2) (A) Glioma Case 2 for grade III with Ki-67 PI value of 0.2 while texture 

features and morphological nuclei count feature were the major contributors.  
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Figure 14 Grading result explanation of representative cases with the Local 

Interpretable Model-Agnostic Explanations (LIME) algorithm for the SVM model 
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(part 3) (B) Glioma Case 3 for grade IV also with Ki-67 PI value of 0.2 accounting 

for the dominant contribution. 

3.6. Discussion 

Given the well-recognized difficulties associated with the grading of gliomas, in this 

study, we developed an automated and interpretable grading of gliomas with a machine-

learning platform to provide an additional reference for diagnostic decision-making and 

patient management and prognosis, which is more efficient, effective, and objective 

than currently used methods. Our major findings were that (1) our method achieved a 

high grading accuracy of 90% for classifying gliomas into grades II, III, and IV; and (2) 

more importantly, for the first time, an interpretable insight into the grading outputs 

was provided for the histology grading system with the “black-box” machine learning 

models. 

Computerized image perception in tissue histology is much more difficult due to the 

complexity of the cell patterns and inherent structural associations between different 

tissue components. Accurate histopathological diagnosis determines patient 

management, treatment, and follow-up, so any method that results in more objective 

glioma grading may be of great value. In the current literature, automated grading either 

was based on texture patterns extracted from the selected ROIs [103] to capture the 

histological structures in the histological images or utilized morphological features 

extracted from segmented tumor cells [80, 105]. Our method achieved high accuracy 

through fully utilizing the selected informative visual and sub-visual features from 

H&E images combined with the Ki-67 PI value. To take into account the visual cues 

used by pathologists for manual grading, visual features such as texture patterns and 
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cell morphological characteristics were extracted from selected ROIs. The sub-visual 

features that are beyond human perception capacities can help the precise grading 

through quantitative analyses that are more comprehensive. Furthermore, we 

innovatively integrated the IHC indicator Ki-67 PI into our grading platform, which 

contributed to boosting our grading accuracy with high discriminatory power. 

Generally, the aim of this research was to objectify, standardize and quantify features 

that are already widely accepted as important by pathologists. Inter-observer 

discrepancies, which had long been a diagnostic problem in the past, could be partly 

overcome by employing the morphometric analysis used in the present study [122]. The 

ability of the system to objectively identify regions of tumor may additionally 

complement the pathologist’s diagnosis and assist in tailored treatment. In this study, 

we attempted to automatically clarify the cellular composition and histopathological 

features of different grades of gliomas by utilizing morphometric- and 

immunohistochemically-based machine learning models. We assessed the importance 

of visual features, sub-visual features and Ki-67 separately, and the highest predictive 

power was achieved by visual features, achieving an accuracy of 0.76, which indicates 

that the histomorphology of glioma, such as nuclear morphological features and nuclear 

staining features and patterns play an important role in glioma grading. 

The interpretability of the individuals’ grading results provided quantitative insights 

into the feature contributions of each individual case. Most of the grading systems based 

on machine learning models are considered “black boxes,” and it would be valuable for 

patient management if clinically trusted reasoning could be revealed. In our study, we 

used the LIME algorithm to provide an explanation for each individual grading result. 

Case 1 and Case 3 in Figure  12C and Figure 14 endorse the important role that Ki-67 
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plays in grading decisions, which is in accordance with the clinical fact that Ki-67 PI is 

positively correlated with the histopathology grades [123]. However, Ki-67 sometimes 

has a detrimental influence on the grading process, as shown in Case 2, because Ki-67 

PI of grade III gliomas largely overlaps with that of grade IV [101, 124-126]. As a result, 

Ki-67 itself cannot be the only determinant of grading. It has been accepted that the Ki-

67 PI value is 3.0 ± 2.1% in grade II gliomas, 11.8 ± 3.4% in grade III anaplastic gliomas 

and 15.8 ± 7.4% in grade IV GBMs [126]. Furthermore, the Ki-67 PI values of grade 

III anaplastic glioma can overlap with values of grade II glioma at one end of the range 

and with those of GBM at the other in the diagnostic practice of pathologists. Apart 

from Ki-67, morphological features including the standard deviation of cells’ max axis 

and perimeter were also found to be a significant contributor to glioma grading because 

HGG often exhibits strong heterogeneity with irregular cell shapes [9, 127]. The precise 

morphological features extracted from the most aggressive regions help to investigate 

intratumoral histological heterogeneity for precise histopathology grading [128]. The 

primary grading results still support the conclusion that the only sure way to determine 

the histopathological WHO grade remains the histopathology evaluation of the H&E 

stained tumor sample [129]. 

With three representative cases we could gain a deeper understanding of why 

misclassified grade III cases are often labelled as grade II, while grade IV cases could 

be wrongly labelled grade III as shown in the confusion matrix. Actually, the Ki-67 PI 

values of the GBM group can be as low as those for grade II tumours, indicating the 

limitation of Ki-67 values in the overlap region. In our work, we introduced a number 

of histological sub-visual features such as the intensity and GLCM texture features to 

distinguish these three grades of gliomas. These insights become easy once it is 



63 
 

understood what the algorithm models are actually doing, which in turn leads to models 

that generalize much better results. In many applications of machine learning, users are 

asked to trust a model to help them make decisions. There has always been a focus on 

“trust” in any type of modelling methodology, but with machine learning, many people 

feel that the black-box approach taken with these methods is not trustworthy. Through 

this machine learning-based approach, we could use the LIME algorithm to explain 

individual predictions to the decision-maker (the pathologist), and that understanding 

of the model’s predictions can be an additional useful tool when deciding whether a 

model is trustworthy or not for the final diagnosis from a pathologist. 

Our study did, however, have its limitations. First, grade I gliomas are not included in 

our studies. They are accurately considered benign in clinical practice, in that complete 

surgical excision is considered curative. Therefore, grade I gliomas are different from 

grade II-IV gliomas in biological behaviour. The results of our discrimination of grade 

III and grade IV are just reasonable preliminary results but leave much room for 

improvement. Considering that necrosis is one of the remarkable features of GBM, we 

plan to use cell necrosis as an input feature to further train models to distinguish grade 

III from grade IV GBM. Actually, morphometric data research has indicated that the 

cellularity of oligodendroglia’s type II was significantly higher than that of diffuse 

astrocytoma’s and that the conditional entropy of oligodendroglia’s type III was 

significantly lower than that of diffuse astrocytoma’s [123] so further stratification of 

LGG (grade II) will lead to tailored glioma management according to their different 

biological behaviour. Hence, future work will focus on improvements utilizing larger 

datasets, including multi-centre cases. In addition, there is still much room to improve 

the grading performance and generalization of the algorithm model. 
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3.7. Chapter summary 

In conclusion, our approach provides an objective alternative for quantitative pathology 

research and for the implementation of morphological data in routine diagnostic 

practice. The machine-learning model utilized multi-parameters including 

morphometric and sub-visual parameters as well as Ki-67 PI information to ensure high 

accuracy, efficiency and consistency in glioma grading. Interpretable grading platform 

has the potential to facilitate personalized medicine in the setting of malignant gliomas. 

With different important features identified for different patients, specific phenotypic 

tumor characteristics can be uncovered for optimal treatment selection. In addition, as 

our method is fully automated and quantitative with high reliability, it becomes easier 

for our platform to be introduced in routine clinical practice. 
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CHAPTER 4. RA-PA-Thomics: A 

new approach to glioma genotype 

prediction  

4.1. Abstract 

Glioma is the common primary brain tumor in adults. Preoperative identification of 

isocitrate dehydrogenase 1 (IDH1) mutations in gliomas may aid the classification of 

glioma and predict the clinical outcome. In this study, we aim to integrate multi-modal 

biomedical imaging information comprising both magnetic resonance image and digital 

histopathological scans, to predict IDH1 phenotypes and improve the accuracy. To deal 

with the multi-modal biomedical images, we have developed an automated framework 

for fast and cost saving IDH1 phenotypes prediction. Data from 217 histopathological 

diagnosed glioma patients were used. In contrast to most studies that solely relied on 

MRI radiomics features to predict glioma IDH1 phenotypes, we have also included 

digitized histopathological data to enhance the accuracy. Firstly, a random forest (RF)-

based algorithm was used to identify and quantitatively analyze features in multi-modal 

biomedical images of radiological (RA) and pathological (PATH) origin. Then we 

integrated these RA- and PATH-omics data employing a machine-learning algorithm 

(Random Forest) to test the performance of IDH1 genotyping. We found that RF-based 

machine-learning model, which succeeds in using a combined pattern of RA and PATH 

images, is capable of predicting IDH1 phenotypes with high accuracy and reliability. 
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This combination-based prediction algorithm, RA-PATH-omics, is a supplement to the 

previous method. Accuracy achieved was 0.90 with multi-model medical images 

compared to 0.78 (brain tumor segmentation from the multi-slices FLAIR  MR images), 

0.68 (edema extraction from the FLAIR images), 0.72 (brain tumor segmentation from 

the T1CE MR images) and 0.73 (the edema area segmentation from the T1CE MR 

images), respectively, 0.82 for radiomics features alone and 0.86 for PATH-omics 

features. The integration of RA-PATH-omics in a single combined machine-learning 

model provides a new way of predicting glioma IDH1 phenotypes with great accuracy. 

The new method could thus be useful as a routine screening procedure for patients who 

do not have easy access to the lab IDH1 genotyping. 

4.2. Introduction 

Based on studies and clinical researches, the  2016 WHO classification has considered 

two more molecular anomalies included isocitrate dehydrogenase (IDH) and 1p/19q 

into adult glioma diagnostics [9, 130]. Competing with single histopathology character, 

genotype features in molecular level can achieve a higher accuracy of the classification 

and better prediction of clinical outcome [9]. According to recent researches, key 

molecular markers like IDH mutation plays a dominated character in the description of 

brain tumors. Because the molecular diagnosis is part of the diagnostic classification, 

clinical doctors suggest that gliomas with IDH mutation may have more value for 

diagnostic and prognostic [32, 131]. Therefore, accurate IDH genotype prediction paly 

a dominated role in the prognosis of glioma patients. 

Histopathology images have been brought into clinical cancer research and 

conventionally used by pathologists in the area of tumor grading [132-134]. In addition, 
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pathologists can observe the cellular and sub-cellular level features from whole slide 

images [81]. However, for the IDH genotyping, recent researches have more focused 

on the analysis of the multimodality MRIs. Therefore, compared with most of the 

current experiments, we have included pathological images in this experiment. 

Although current predictions are increasingly dependent on different genomic 

biomarkers, histology continues to play an important role in predicting disease 

progression in glioma patients. Because, compared to radiology, histology reflects a 

variety of information at the cellular level. However, competing with computational-

aid imaging diagnoses, the traditional method by different pathologists are much more 

subjective and unreproducible. Computationally imaging analysis based on histology 

images can reduce the bias between different pathologists [31, 135, 136]. 

Machine learning algorithms are currently widely used in glioma research, and most 

are based on the analysis of features extracted from MRIs [135, 137-139]. 

Computationally biomedical imaging analysis could mine massive features from 

multimodality images for IDH genotyping. Zhou et al. [28] proposed to distinguish the 

IDH genotype with primary grade II and III glioma using clinical and pathological 

variables and textures features extracted from region of interest (ROI) in four sequences 

of MRI, including T1W，T2W，T1CE and T2F, which reached the accuracy of 0.86. 

Competing with the method mentioned by Zhou, Eichinger et al. [140] have designed 

local binary pattern texture features for IDH genotyping, which increase the accuracy 

to 92%. Apart from the traditional machine learning algorithm, the method proposed 

by Xing et al. [141] classified IDH mutation and IDH wild type (IDHwt) using 

conventional machine learning algorithm to extracted deep features from 4 sequence of 

MRI (T1W，T2W，T1CE，T2F). 
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As mentioned before, there are many researches have focused on lower-grade gliomas. 

Zhang et al. [31] aims to distinguish IDH mutation and IDHwt by the primary grade III 

and IV glioma with important features (age, intensity, texture and shape features) 

extracted from multimodality MRIs (T1, T1c, T2, T2/FLAIR and DWI), which the 

accuracy arrived at 0.8830 with random forest algorithm.  

In this study, we predict the IDH genotype based the preoperative MRIs and whole slide 

images of patients diagnosed with low- and high-grade gliomas. In our research, the 

integration of WSIs, multimodality MRIs and clinical information via the machine-

learning algorithm help us to improve the accuracy of IDH genotyping. Through the 

machine-learning algorithm, we combine the different modality of biomedical images 

into a single framework for IDH prediction. 

4.3. Materials and Dataset 

4.3.1. Patient Enrolment 

The imaging data of 217 subjects with glioma were collected from two different sources. 

126 cases were from Shandong Provincial Hospital Affiliated to Shandong University, 

comprising 41 histological grade III cases and 85 histological grade IV cases. The 

remaining 91 cases were retrieved from The Cancer Imaging Archive (TCIA), 

comprising 25 histological grade III cases and 66 histological grade IV cases (Table 2). 

The criteria for image acquisition in this study are as follows: (I) available histology, 

age at diagnosis and sex, and IDH1 status; (II)MR imaging data, including post-contrast 

T1-weighted images (T1CE), and T2-FLAIR, and (III) histopathological images. 
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This study was approved by the institutional review board of Shandong Provincial 

Hospital affiliated to Shandong First Medical University (NSFC NO: 2019-272), and 

the informed consent requirement was waived from each enrolled patient. 

Table 2 Patient Characterizes 

 Shandong provincial hospital TCGA 

Grade III (n; %) 41 25 

IDH-mutated in Grade 

III (n; % column) 

20, 48.9% 17, 68% 

Grade IV (n; %) 85 66 

IDH-mutated in Grade 

IV (n; % column) 

20; 23.5% 12, 18.2% 

Age (years; mean; 

range) 

49; [5, 79] 53; [18, 81] 

Sex (n male; % column) 55; 43.7% 55; 60.4% 

4.3.2. Dataset 

4.3.2.1 Imaging Data Acquisition and Pre-processing 

Histopathological Images: Shangdong provincial hospital’s cohort: Cases 

were diagnosed according to WHO criteria [142]. Paraffin-embedded samples were cut 

into three μm thick sections and stained with H&E stain for all patients in this cohort. 
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All H&E images were scanned by a Leica SCN400 slide scanner (Leica Biosystems, 

Nussloch, Germany) with multi-resolution varying from 20× to 40× for analysis.  

Genomic DNA was isolated was performed to enrich for neoplastic cells from 

formalin-fixed paraffin-embedded glioma tissues. DNA was extracted using the 

QIAamp DNA micro kit (Qiagen GmbH, Hilden, Germany) as previously described 

[143]. 

Expression of IDH1-R132H mutant was firstly analyzed by IHC as previously 

described [144]. IDH1 and IDH2 gene mutations were identified by Sanger sequencing 

[145]. IDH status was defined according to the absence of IDH1-R132H 

immunopositivity and/or mutations in IDH1 and IDH2 genes. 

The Cancer Genome Atlas cohort: Digital pathology slides diagnosed of diffuse 

glioma were downloaded from The Cancer Genome Atlas (TCGA) Data Portal 

(http://cancergenome.nih.gov.) with IDH status, and the corresponding MRI images 

were acquired from the The Cancer Imaging Archive (TCIA) Data Portal 

(https://www.cancerimagingarchive.net).   

Multimodal MR Images: All patients were imaged in the supine position with 

a 3.0-T MRI machine (Magnetom, Skyra; Siemens Healthcare, Erlangen, Germany) 

using a transmit/receive quadrature 20-channel head-and-neck coil. The imaging 

protocol was the same for all patients. 

T1-contrast: TR: 1820 ms, TE: 13 ms, slice number: 19, FOV: 230 mm, slice 

thickness: 5 mm, distance factor: 30%, FA: 150 deg, inversion time (TI): 825 ms, voxel 

size: 0.4×0.4×5.0 mm, accelerate factor: 2, bandwidth: 260 Hz/Px, echo spacing: 13 ms. 
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Fluid-attenuated inversion recovery imaging (T2-FLAIR): TR: 8000 ms, TE: 81 

ms, slice number: 19, FOV: 220 mm, slice thickness: 5 mm, distance factor: 30%, FA: 

150 deg, inversion time (TI): 2370 ms, voxel size: 0.7×0.7×5.0 mm, accelerate factor: 

2, bandwidth: 289 Hz/Px, echo spacing: 9.02 ms. 

All MRI sequences of each patient from our own datasets and from TCIA have 

the same imaging scale, position，slices and slice thickness. 

4.4. Computer Analysis 

An automated framework was designed to predict IDH1 genotype, consisting of the 

following steps, which were carried out in sequence: (I) automated image pre-

processing to select the regions of interest (ROIs), (II) feature extraction, (III) feature 

selection, and (IV) automated IDH1 genotype prediction and results interpretation. 

(Figure 15) 
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Figure 15 Machine learning framework for automated prediction of IDH 

glioblastoma genotypes. Representative regions of interest (ROIs) are selected on 

multimodal MR and histopathological images, respectively. After that, 

histopathological and radiomics features were derived from the ROIs. Then, in 

order to reduce the redundant features, the Random Forest model based 

Recursive Feature Elimination (RF-RFE) algorithm was adopt to select the 

relevant features. Following 10-fold cross-validation, the automated machine-
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learning model with relevant features for glioma IDH genotype prediction is 

established. Abbreviations: GCLM, Grey Level Co-occurrence Matrix features; 

GLRLM, Grey Level Length Matrix features; GLSZM, Grey Level Size Zone 

Matrix features; NGTDM, Neighboring Gray Tone Difference Matrix features; 

GLDM, Grey level Dependence Matrix features. mass of features, which may have 

redundant information, are selected and processed improving the predictive 

power of the machine-learning model. 

4.4.1. ROI Extraction 

Our computational algorithm used for the analysis of histological images approaches 

the region of interest at two different levels. First, one tile with the highest cell density 

(5120 * 5120) [105, 109] is extracted employing the watershed nuclei detection 

algorithm [111, 146, 147]. Then, based on Hue, Saturation, and Value of Brightness 

(HSV channel), five tiles representing the whole image [111, 146] at 40X resolution are 

identified. Third, based on the HSV channel, five tiles representing the entire image at 

4X resolution are identified. 

For the analysis of radiological images, we have segmented edema and non-enhanced 

tumors from T2-FLAIR image. In addition, T1CE images were used for enhancing 

tumor volume segmentation. The lesions were separated into three parts, enhancing 

tumor, tumorous necrosis and peritumoral edema. The process of tumor segmentation 

was performed manually using the ITK-SNAP software (version 3.6.0; 

www.itksnap.org). Firstly, all the MRI sequences were retrieved from the Picture 

Archiving and Communication System (PACS). Then we applied N4 bias field 

correction to remove the presence of low frequency intensity non-uniformity. 
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Intermodality co-registration with different 2D MRI sequences was achieved by means 

of ITK-SNAP. Using this method, ROIs of enhancing tumor were delineated on post-

contrast T1WI images by a semi-automatic method, in which only the enhancing area 

was selected. Tumor necrosis was defined as the non-enhancing area within enhancing 

area on post-contrast T1WI. ROIs of peritumoral edema were delineated on T2-FLAIR, 

which was defined as the high-signal region beyond the enhancing area. The process 

was performed by a consultant neuro-radiologist. Finally, the ROIs were registered on 

each slice of each 2D MRI sequence. 

4.4.2. Feature Extraction 

Our computational algorithm used for the analysis of histological images approaches 

the region of interest at two different levels. First, one tile with the highest cell density 

(5120 * 5120) [105, 109] is extracted employing the watershed nuclei detection 

algorithm [111, 146]. Then, based on Hue, Saturation, and Value of Brightness (HSV 

channel), five tiles representing the whole image [1, 111, 146] at 40X resolution are 

identified. Third, based on the HSV channel, five tiles representing the entire image at 

4X resolution are identified. 

For the analysis of radiological images, we have segmented edema and non-enhanced 

tumors from T2-FLAIR image. In addition, T1CE images were used for enhancing 

tumor volume segmentation. The lesions were separated into three parts, enhancing 

tumor, tumorous necrosis and peritumoral edema. The process of tumor segmentation 

was performed manually using the ITK-SNAP software (version 3.6.0; 

www.itksnap.org). Firstly, all the MRI sequences were retrieved from the Picture 

Archiving and Communication System (PACS). Then we applied N4 bias field 
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correction to remove the presence of low frequency intensity non-uniformity. 

Intermodality co-registration with different 2D MRI sequences was achieved by means 

of ITK-SNAP. Using this method, ROIs of enhancing tumor were delineated on post-

contrast T1WI images by a semi-automatic method, in which only the enhancing area 

was selected. Tumor necrosis was defined as the non-enhancing area within enhancing 

area on post-contrast T1WI. ROIs of peritumoral edema were delineated on T2-FLAIR, 

which was defined as the high-signal region beyond the enhancing area. The process 

was performed by a consultant neuro-radiologist. Finally, the ROIs were registered on 

each slice of each 2D MRI sequence. 

4.4.3. Feature Selection 

Although a large number of image features can be used to construct a model that fully 

reflects the characteristics of gliomas, removing redundant information can improve the 

efficacy of the model for glioma genotyping [148]. In order to reduce the amount of 

redundant information inherent to quantitative features, we built a random forest 

algorithm enhanced by a recursive feature elimination (RF-RFE) procedure in order to 

identify the relevant and important characteristics before implementation in a 

classification model all [114]. As shown in Figure 15, the feature with the lowest 

importance for classification calculated by the algorithm will be eliminated.   

4.4.4. Modelling and Validation  

We are proposing a binary classification model to differentiate patients with an IDH1 

mutation from wild type HGGs based on clinical features (age and sex), digital 

histopathological image Pathomics features and MRI Radiomics features. In order to 

achieve this, the Random Forest algorithm was adopted, which is already widely used 
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in medical imaging analysis. The random forest model can deal with a huge feature set, 

especially the data involved in this study, which can obtain satisfactory results. All 

machine-learning methods were implemented with the Statistics and Machine Learning 

package on Python 3.6. 

In addition, 10-fold cross-validation was utilized to evaluate the performance of the 

machine-learning model: cases were first divided into 10 cohorts, where one of the 

cohorts was used as the testing set and the other 9 cohorts were used for training. 

Specific, in the first iteration, the first cohort was used as the testing set and the rest 

cohorts were used as the training sets. In the second iteration, the second cohort was 

used for testing and the rest cohorts were used for training. This procedure was repeated 

untiled the each cohort of 10 cohorts have been used as testing set. The average 

performance of each iteration was used to evaluate the stability of the prediction model. 

4.5. Results 

4.5.1. Feature Extraction and selection 

In this phase, we have extracted a total of 22 morphological features, which were 

identified in the glioma cases studied (Supplementary Materials I. Histopathologic 

Features Extraction), including nuclear shape and staining intensity (Figure 16), such 

as the mean of nuclei perimeter, area, and solidity. On the other hand, we have extracted 

171 sub-visual features [1] from the high resolution of digital histopathology images, 

including intensity features, GLCM features, etc. As for results of IDH1 status 

prediction for HGGs, the histopathological features extracted from histopathology 

images, which reached an accuracy of 0.81 ± 0.03 with 10-fold cross validation.  
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Figure 16 Feature extraction from histopathological images. Based on two 

different ROI extraction criteria, HSV (Hue, Saturation and Value of Brightness) 

and cell density, six ROIs in total per section presenting different resolutions are 

used. Subsequently, two types of features are extracted from these ROIs as shown, 

visual features and sub-visual features. The latter are derived from histopathology 

images at different resolutions. Visual features from the representative tile with 

the highest density of nuclei were obtained at 40X resolution, with density 

referring to the semantic level and features comprising  both  counts and sizes of 
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individual nuclei. In contrast, sub-visual features were derived from ROIs at 4X 

resolution and included high-throughput intensity and texture image features.  

Turns to multimodal MRIs, 1132 features in all were obtained from each patients and 

each sequence, including 234 first order features, 14 shape-based features, 286 grey 

level co-occurrence matrix features, 208 grey level run length matrix features, 208 grey 

level size zone matrix features, 182 grey level dependence matrix features (Figure 17). 

For HGGs, after feature selection phase, for T1C and T2F, four and five features were 

remained. Based on 10-fold cross validation, we fed the selected features into random 

forest model to predict IDH genotype, which achieved the accuracy of 0.75 ± 0.02 and 

0.71 ± 0.03 separately. 

In this research, we did IDH genotyping prediction for HGGs. The AUC for features 

extracted from different histopathologic grade of biomedical images were 0.90±0.09. 
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Figure 17 Measurements obtained from different regions of individual MR images. 

Briefly, the initial segmentation was performed by a clinicians who identified 

enhancing tumor, non-enhancing tumor and edema. Subsequently, quantitative 

radiomics features were derived from multiple volumes of interest (VOIs). The 

VOIs were divided into seven classes (see : first-order statistics features, shape-

based features, GLCM, GLRLM, GLSZM,  NGTDM, and GLDM features. 
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4.5.2. Comparison of Performances Using Different Modalities of Biomedical 

Images and Feature Types 

In order to evaluate the role of different modalities of biomedical images (T1C, 

T2/FLAIR and WSIs) in the prediction of IDH genotype, random forest machine-

learning model with 10-fold cross-validation was adopted in our research. In general, 

scans of histopathological images have better results in IDH genotype prediction than 

other images (Figure 18C). As for quantitative features obtained from different 

modalities of biomedical images, the Visual features show high accuracy and stability 

(Figure 18 B). 

 

Figure 18 Random forest classifier scores for IDH1 genotype prediction. A, 

Prediction results based on Clinical data (age and gender); B, Prediction results 

based on different feature types; C, Prediction results based on different image 
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modalities; D, Receiver Operating Characteristic (ROC) for IDH genotype 

prediction across multi-parametric medical images. 

4.5.3. Univariate Feature Analysis 

For IDH1 genotype prediction, optimal features were selected from the different 

modalities of medical images, including 7 features from the digital histopathological 

images, 4 features form the T1CE images and 5 from the T2-FLAIR images. As shown 

in Figure 18B, GLRLM, Shape-based and GLCM features had the greatest power in 

predicting HGGs IDH1 status. Age, nuclei counts and first-order features were the most 

important factors that contributed to this result. As summarized in Table 3, top-

performing features within different types of image features contributed to IDH1 status 

prediction as shown. 

Table 3 TOP-performing features in IDH1 Status Prediction by means of 

Univariate Analysis 

Types  Mask Feature Name Feature Description Accuracy 

Clinical N/A Age Age at diagnose; 0.74 

Intensity T1C-

edema 

Uniformity Formula: 

𝐹𝑢 =  ∑ 𝑝(𝑖)2

𝑁𝑔

𝑖=1

 

0.69 
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Where p(i)  refers to the 

features calculated form Ng 

discrete pixel levels. 

Measuring the sum of the 

square of image VOI pixel 

value. 

Shape FLAIR-

edema 

Flatness Formula: 

𝐹𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =  
λ𝑙𝑒𝑎𝑠𝑡

λ𝑚𝑎𝑗𝑜𝑟

  

Where λ𝑚𝑎𝑗𝑜𝑟  and λ𝑙𝑒𝑎𝑠𝑡  refer 

to the length of the 

maximum and minimum 

principal component axes, 

respectively. 

Measuring the relationship 

between the largest and 

smallest principal 

components in the VOI 

shape. 

0.67 

Texture T1C-

tumor 

wavelet-

LLL_glrlm_

LRLGLE 

Formula: 0.72 
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𝐹𝐿 =  
∑ ∑

𝑃(𝑖, 𝑗|𝜃)𝑗2

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

Where 𝑁𝑔  refers to the gray 

level distribution within the 

VOI, 𝑁𝑟  refers to the 

maximal length within the 

VOI, 𝑃(𝑖, 𝑗|𝜃)  refers to the 

run length matrix for an 

arbitrary direction 𝜃, 𝑁𝑟(𝜃) is 

the number of runs in the 

image along 𝜃. 

This feature quantitative 

describes the joint 

distribution of long-run 

lengths with lower gray level 

values after a wavelet filter. 

Wavelet T1C-

tumor 

wavelet-

HHH-glcm-

MP 

Formula: 

𝐹𝑀𝑃 = max (𝑝(𝑖, 𝑗)) 

Where 𝑝(𝑖, 𝑗)  is the 

normalized co-occurrence 

matrix. 

0.69 
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Quantify the occurrences of 

the most predominant pair of 

neighboring intensity values 

through a Gray Level Co-

occurrence Matrix after an 

image filter by a high-

frequency wavelet. 

LoG FLAIR-

tumor 

 

Log-glszm- 

SALGLE 

Formula: 

𝐹𝑆𝐴𝐿𝐺𝐿𝐸 =  

∑ ∑
𝑃(𝑖, 𝑗)

𝑖2𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧

 

Where 𝑁𝑔  refers to the 

distribution values within 

the VOI, 𝑁𝑠  refers to the 

zone sizes quantity within 

the VOI., 𝑁𝑧  refers to refers 

to the zones quantity within 

the VOI, and 𝑃(𝑖, 𝑗)  is the 

size zone matrix. 

Quantify the proportion in 

the mask of VOI by quantify 

the Gray Level Size Zone 

joint distribution of smaller 

size zones with lower gray 

0.65 
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level values after the LoG 

filter. 

Morphol

ogy 

Tile Cell counts Quantitative describes the 

cell intensity in the ROI. 

0.78 

 

The accuracy of IDH1 status prediction was as high as 0.88 ± 0.03 when multi-

parametric features were extracted from different histopathological and radiomics 

images through our implementation of the random forest algorithm. Table 4 reveals the 

features that play important roles in our classification model. As shown in this Table, 

clinical data (sex and age) and histopathological features had a dominant role in our 

classification procedure. 

Table 4 Prediction of IDH1 Genotype Based in High Grade Gliomas. 

Image Modalities Accuracy 

Digital Histopathological Images 0.86 (+/- 0.03) 

T1CE (edema and non-enhanced tumor) 0.73 (+/- 0.06) 

T1CE (enhanced tumor) 0.72 (+/- 0.04) 

T2-FLAIR (edema and non-enhanced 

tumor) 

0.68 (+/- 0.05) 

T2-FLAIR (enhanced tumor) 0.78 (+/- 0.04) 
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Multi-modal Image Data  0.90 (+/- 0.05) 

 

4.5.4. Quantitative IDH1 Status Prediction Results Interpretation 

LIME (Local Interpretable Model-agnostic Explanations) is a tool for facilitating local 

model interpretability. The technique perturbs the input data to understand how the 

predictions are affected. Figure 3 and Figure 4 illustrate two representative cases from 

visual analysis and the machine-learning model. The first case is an IDH1-wt patient 

(Figure 19), who is 43 years old (age at diagnosis), female with a histopathological 

grade IV glioma. The second one is a patient with an IDH1 mutation (Figure 20), who 

is 22 years old (age at diagnosis), male with histopathological grade III glioma. 

 

Figure 19 IDH1 status prediction result explanation of representative cases with 

the LIME algorithm for the RF model (IDH1-Wild type case) 



87 
 

 

Figure 20 IDH1 status prediction result explanation of representative cases with 

the LIME algorithm for the RF model (IDH1-Mutation case) 

Machine learning models taking into account their different contributions, then 

quantitatively combine these functions to predict the results. During model training, the 

LIME model can give weighted coefficients to explain the contributions made by 

different features. The LIME model perturbed the feature values and observed the 

resulted changes in prediction. The predictive ability of this algorithm made the most 

important contribution to achieve a higher weight value of the right. Positive weights 

reflect the increase in the corresponding features may make a positive contribution to 

the IDH1 status prediction. In contrast, negative weights would have negative 

predictive power. As shown in Figure 19 and Figure 20, the feature contribution for 

IDH1 genotyping for two representative cases have been listed, which are derived from 

the LIME model to obtain the linear combination of feature values and weights 
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4.6. Discussion 

The determination of isocitrate dehydrogenase (IDH1) status can help guide clinical 

decision making including post-operative treatment such as radio- and chemotherapy. 

We have developed this framework to integrate two cost saving imaging modalities to 

predict a clinically relevant somatic mutation. Thus, determination of IDH1 phenotypes 

as early as possible during the disease course my guide perioperative counselling, and 

the right choice of treatment option. In this study, we develop a random forest 

algorithm-based genotype classifier that allows the prediction of IDH mutation status 

in glioma patients making use of imaging features derived from pre-surgical MRI scans 

and post-operative digital data obtained from routine H&E slides. The primary results 

show this combined digital platforms will allow very large data sets to be created and 

mined to extract new information for high reliability genotype prediction. 

Going beyond the identification of biomarkers, one of the greatest unmet challenges for 

the successful clinical implementation of AI is to build the bridges that enable 

multiscale imaging integration of radiomics, pathomics into readily available pipelines 

that can transform clinical routine. In this regard, it is very important to integrate two 

cost-effective imaging modalities to make precise key somatic mutation predictions. In 

order to improve the accuracy of IDH1 phenotype prediction before the post-treatment 

plan, visual and sub-visual features extracted from digital histopathological images and 

quantitative radiomics feature extracted from different multimodality MRIs were 

implemented into our RF-RFE feature selection model to select the optimal features for 

further analysis. However, the accuracy of the combined RA-PATH-omics within the 

independent testing set was lower than that of the testing set. The most likely reason for 
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this is the differences in MRI model and scan parameters and in IDH1 mutation rate 

among the different patient cohorts. In an ideal scenario, all patient scans would be 

collected with consistent acquisition parameters, and IDH1 mutation prevalence would 

be the same or similar. However, this would be challenging in practice, as MR scanner 

models and acquisition parameters, as well as the demographics of patient captured 

vary widely from institution to institution. 

Our novel integrated approach, which we have termed RA-PATH-omics, was found to 

be a more accurate predictor of IDH1 genotype than either radiomics or 

histopathological feature recognition alone. RA-PATH-omics characterizes tumor 

properties at different biological scales and meet the need to understand correlations 

between image features, genomics, and clinical outcomes. 

Furthermore, the IDH1 predictive performance of histopathological image analysis was 

found to be superior to T2-FLAIR and T1CE (0.86 vs 0.71, 0.75) in HGGs. Among the 

top histomorphometric features, the mean area of cells and the mean of cells axis were 

most significant, where statistically describe the central tendency of cell shape. (In 

addition, age was a good predictor (Accuracy=0.8)). The top identified features are in 

line with the fact that gliomas with an IDH1 mutation have a more coherent nuclear 

architecture, i.e. they are morphologically less atypical than IDH1 wild type, which is 

associated with ahigher risk of recurrence. Our IDH1 phenotypes prediction achieved 

high accuracy for two reasons: First, we integrated MRIs, digital histopathological 

images and clinical information for IDH1 status prediction. Second, we used a relatively 

data to significantly reduce the number of parameters in the model to avoid overfitting 

while making our model more general. To the best of our knowledge, this study is the 

first to integrate MRI and digital pathology images in a computerized model for 
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predicting IDH1 genotype. It is worth noting that T1CE and T2-FLAIR images 

conferred a higher predictive value than other MR sequences. Our study makes an 

important first step towards achieving the goal of radio-genomic tools be used in a 

clinical setting. 

4.7. Chapter Summary 

Our work is a step towards more effective use of combined Radiomics and Pathomics 

data for genotype prediction by utilizing structural MRI sequences and digital 

pathology images for IDH1 phenotype prediction.  In particular, it should be helpful to 

patients who did not receive molecular diagnosis or for retrospective studies. In a more 

general sense, our results (i) show that machine learning can robustly identify genomic 

features within structural MR imaging and histopathological datasets, (ii) suggest a 

complementary method for the genotyping of gliomas, which is suitable for glioma 

patient screening, and (iii) demonstrate the potential for algorithmic tools within the 

clinic to aid clinical decision-making. Taken together, it is expected that integration of 

multimodality omics in oncology research will become commonplace as technology 

evolves, with significant potential for prognosis prediction and treatment strategies for 

brain tumor management in the future. 



91 
 

CHAPTER 5. Conclusions and 

Future Work 

5.1. Conclusions 

In this thesis, we target to integrate quantitative imaging data obtained from multiple 

modalities into mathematical models of tumor prediction response to achieve additional 

insights into practical predictive value.  

Firstly, we proposed an automated machine-learning brain tumor-grading platform to 

investigate contributions of multi-parameters from multimodal data, including imaging 

parameters or features from Whole Slide Images (WSI) and the proliferation marker 

KI-67. For each WSI we extract both visual parameters, such as morphology parameters, 

and sub-visual parameters, including first-order and second-order features. On the basis 

of machine learning models, our platform classifies gliomas into grades II, III, and IV. 

Secondly, a quantitative interpretable machine learning approach (Local Interpretable 

Model-Agnostic Explanations) was proposed to measure the contribution of features 

for single case. Most grading systems based on machine learning models are considered 

“black boxes,” and it would be valuable for patient management if clinically trusted 

reasoning could be revealed. The quantitative analysis and explanation may assist 

clinicians to better understand the disease and accordingly to choose optimal treatments 

for improving clinical outcomes. 
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Thirdly, based on the automated brain tumor-grading platform we proposed before, 

multimodal MRIs have been introduced in our research. A new imaging–tissue 

correlation based approach called RA-PA-Thomics was proposed to predict the IDH 

genotype. Inspired by the concept of image fusion, we integrate multimodal MRIs and 

scans of histopathological images for indirect, fast, and cost saving IDH genotyping. 

5.2. Future Work 

This chapter introduces the work that we would like to implement into the procedure of 

multimodal medical image analysis; 

1. deep learning algorithms adopted for tumor segmentation and grading 

2. multi-task learning framework established for multi-parametric image features 

obtained from multimodal medical images 

3. correlation between histopathological images and molecular imaging. 

Deep learning: Accurate brain tumor segmentation is based on digital image 

processing. At present, the manual segmentation of clinical experts is still a recognized 

segmentation method, but this work is time-consuming and observe-dependent. Tumor 

incoherence and differences in contrast uptake will affect the segmentation of gliomas. 

It is inevitable to employe the machine-learning algorithm into glioma segmentation. 

For example, the combination of unsupervised classification with FCM and 

Knowledge-based image processing [56] can be applied on gliomas segmentation to 

segment non-enhancing tumors. Recently, deep learning has been implemented into 

automatic gliomas segmentation. For example, a 3D convolutional network [57] can be 

applied on the multimodal MRI glioma segmentation. However, for tumor 

segmentation and staging, the proposed methods need further study. 
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Multi-task learning: Competing with traditionally machine-learning 

algorithms, multi-task learning refers to a method that learns multiple related tasks 

together based on shared representations. As mentioned before, deep learning has been 

introduced into the field of medical image analysis, quantitative deep features have been 

dig out. In the future, we would like to combine the deep features and radiomics features 

we used in chapter 4 to implement into multi-task learning and achieve the better result 

in tumor segmentation or grading. 

Correlation between histopathological images and molecular imaging: On 

the account of vastly different image features of individual modalities, we would like 

to propose an information-theoretic approach to combine the multi-contribute features 

In the end, we hope to identify patterns or features extracted from MRIs that will help 

interpret the features from histopathological images. 
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