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Abstract 
 
The visual system receives a dynamic stream of information, but it has a limited capacity and 

must deploy its resources to behaviourally relevant stimuli - a process referred to as 

“attention”. Rapid serial visual presentation (RSVP) is an experimental method for 

investigating attention’s time course by presenting a rapid sequence of stimuli at a single 

location. Attentional selection in both naturalistic viewing and RSVP is limited by masking, 

and many models of selection in RSVP assume that masking terminates sensory memory for 

stimuli that are no longer present. However, there is indirect evidence that information about 

unselected RSVP stimuli may persist in a buffer despite masking. In this thesis we directly 

investigate buffering and selection of a cued item from one of multiple simultaneous RSVP 

streams. We use mixture modelling to analyse reports from only those trials in which 

participants identified a letter in response to the cue, and outline a novel quantitative test for 

buffering (Chapter 2). This provides new insights into the temporal variability of selection 

with exogenous and endogenous cues (Chapter 3). A series of experiments show that 

participants can select buffered representations, despite masking, and this appears to be 

related to the number of simultaneous RSVP streams (Chapter 4). We also investigate 

possible contributions of crowding and eccentricity to selection (Chapter 5). RSVP provides 

a measure of attention’s timing that replicates classic attentional effects. However, 

participants appear to dedicate attention to the streams prior to the cue’s appearance. When 

there are few streams, this leads to attentional speeds fast enough to select a stimulus 

representation that persists briefly, despite the masking inherent in RSVP. This falsifies 

theoretical claims about masking in RSVP, and demonstrates that the dynamic nature of 

naturalistic viewing does not prevent selection from sensory memory. 
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Chapter 1: Introduction 

 
1.1 Capacity limits in human vision 

Human visual processing is capacity limited, and this capacity is exceeded by the 

stimuli present in many everyday scenes. To circumvent this capacity limit, the visual system 

allocates its resources flexibly in order to process behaviourally relevant stimuli - a 

phenomenon known as “attention”. The way in which attentional resources are allocated and 

the time course of this allocation provide constraints on the ability to respond to a stimulus 

that may be presented only briefly at a particular location, but is important to identify. For 

instance, a driver on a busy road needs to attend and respond to a child about to walk onto a 

pedestrian crossing, but need not allocate their limited attentional resources if the child is, 

say, on the footpath nearby. Here, we are interested in the conditions under which 

attentional selection from a busy display occurs and how the time course of selection 

changes with the amount and kind of information presented to an observer. 

The retina has a massively parallel architecture, but it feeds information to various 

capacity limited processes. Even visual performance based on information that is thought to 

be well represented at the early stages of cortical visual processing, such as orientation 

judgements (Lennie & Movshon, 2005), suffer from limited capacity (Lavie, Beck, & 

Konstantinou, 2014). Simple detection tasks rely on limited capacity.  Response times reveal 

a cost associated with detecting a change in the location of two dots relative to a single dot 

(Hawkins, Houpt, Eidels, & Townsend, 2016). Accuracy for identifying the features in a visual 

display also suffers when those features are split across objects, rather than part of a single 

object (Duncan, 1993)​. ​Memory processes demonstrate capacity limits as well. Visual 

working memory has famously limited capacity (Luck & Vogel, 1997), as does sensory 

memory. When asked to report all the elements in a briefly presented array of stimuli, 
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participants are poor, but they can select a subset for report with a much higher accuracy 

than the whole-report predicts (Averbach & Coriell, 1961; Sligte, Scholte, & Lamme, 2008; 

Sperling, 1960).  

Binding the visual features of an object into a veridical representation is poor when 

participants must simultaneously complete a demanding task. Under these conditions 

participants may report illusory conjunctions - pairings of objects and features that did not 

occur together (Treisman & Schmidt, 1982). These errors demonstrate that the process of 

binding is disrupted when resources are directed elsewhere, or stimuli are presented too 

quickly to recruit them. Such errors occur because the system responsible for binding 

operates on a limited capacity. 

When searching for items that are conjunctions of features that must be bound 

together, people classically exhibit a lengthening in response time as the number of items in 

the display increases (but see Nordfang & Wolfe, 2014). This cost is typically greater than 

that found in searches for targets defined by a single feature (Treisman & Gelade, 1980; 

Wolfe, 1998). The conjunction search cost is thought to either represent a capacity limit for 

processing one item at a time (Treisman & Gelade, 1980; Wolfe & Gray, 2007), or the 

dilution of a limited capacity across the multiple stimuli (Algom, Eidels, Hawkins, Jefferson, & 

Townsend, 2015; McElree & Carrasco, 1999).  

Neurally, simultaneously presented stimuli result in less activation for each item than 

stimuli presented on their own. When participants are shown irrelevant peripheral stimuli 

while they engage in a task at fixation, the activation in visual areas associated with the 

irrelevant stimuli decreases as the number of irrelevant stimuli increase, such that each 

stimulus is associated with weaker signal (Beck & Kastner, 2005, 2007; Kastner, de Weerd, 

Desimone, & Ungerleider, 1998; Kastner et al., 2001). The interference is apparent in later 

visual areas associated with object representations (V4 and the inferior temporal cortex) 
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relative to earlier visual processing areas, where it is often not observed. These suppressive 

interactions between stimuli indicate that representations compete for activation, consistent 

with the idea of a limited resource (Beck & Kastner, 2009; Desimone & Duncan, 1995). 

Similar suppressive interactions between competing stimuli within cortical receptive fields 

were observed in macaques using single-cell recordings by Reynolds, Chelazzi and 

Desimone (1999).  

These neural and behavioural results indicate that the visual system is defined by 

limited capacity. When this capacity is engaged elsewhere, there is a degradation in visual 

processing as assessed by the accuracy of behavioural responses, as indicated by illusory 

conjunctions and the efficiency of visual search for conjunction targets. The capacity of the 

visual system may be taxed or exceeded by the simultaneous presentation of multiple 

stimuli. This leads to behavioural costs, such as the slowing down of accurate responses in 

visual search for conjunction targets. It also leads to neural competition, simultaneously 

presented stimuli elicit weaker activation in the human visual cortex and visual cortical cells 

of primates. 

1.2 Attention 

Given the limited capacity of visual processing, how does the visual system deal with 

the stream of visual information it receives? Naturalistic visual scenes are dynamic, changing 

due to the actions of an observer and movement within a scene. There may be a lot of action 

in a scene, but given limited processing capacity, a human observer must dedicate visual 

processing resources selectively to the aspects of the scene most relevant for their 

behaviour. Furthermore, the aspects of a scene that are relevant to behaviour are not static, 

so the allocation of resources must be dynamic. The visual system’s ability to achieve this is 

referred to as “attention”.  
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Attention is typically associated with the central part of the visual field, which is 

advantaged relative to the periphery in many aspects of visual processing. It has higher 

spatial acuity (Weymouth, 1958), different retinal cell topography (Curcio, Sloan, Kalina, & 

Hendrickson, 1990) and better form vision (Bouma, 1970; Strasburger, Rentschler, & 

Jüttner, 2011). Attentional processing is thus often associated with an observer’s fixation 

location, and changes in the location of fixation brought about by eye movements are 

interpreted as “overt” attention shifts. However, attention can also be allocated to locations in 

the visual field that differ from central vision. These “covert” shifts of attention, described as 

such because they cannot be inferred from eye movements, are of particular interest to 

vision scientists. They indicate the flexible allocation of visual resources that need not be 

related to changes in the retinal signal, but are still associated with changes in visual 

performance. They also seem to operate on a timescale that is faster than that needed for 

an observer to program and execute an overt attention shift, otherwise known as a saccade. 

Saccades occur typically within 250 ms of the appearance of a saccade target (Saslow, 

1967), but covert attention can yield peak performance within 100 ms of a cue (Cheal & 

Lyon, 1991; Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989). In this thesis I am 

concerned with these covert attention shifts.  

Attention is typically studied as a phenomenon in which a particular region of visual 

space is attended to and thus prioritised in the absence of eye movements to that location. 

Attention is manipulated by cues providing information about a spatial location (Posner, 

1980). Such cueing typically leads to an advantage in processing for information in the cued 

region, as shown by psychophysical measures like target detection reaction times or 

contrast thresholds. The idea that visual processing can prioritise particular sources of visual 

information over others is as old as experimental psychology itself. Wundt spoke of attended 

objects as characterised by “sharp discrimination” from other, unattended, objects (Wundt, 

1897, p. 209) and investigated the temporal qualities of attention (Carlson, Hogendoorn, & 
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Verstraten, 2006). Helmholtz described the phenomenology of attending to different 

locations of the visual field and how doing so advantaged information from that region over 

others (Yantis, 1998).  

Sperling’s (1960) classic investigation of sensory memory was an early experimental 

demonstration of how visual resources could be directed in a way that advantaged a subset 

of information in a visual array. He presented subjects with arrays of 6 - 12 letters arranged 

in 2 - 3 rows of equal length. Presentation of these stimuli was brief, 50 ms, and in separate 

experiments participants were instructed to report the whole array or a single row, indicated 

by a tone presented after the array was terminated. Report accuracy for the whole array was 

poor - an average of 4.3 letters. When participants were instructed to report only part of the 

array, their accuracy was much higher, suggesting that participants had on average about 9 

letters available to them at the time of the cue. The accuracy of the partial report condition 

was negatively related to the length of time between the offset of the array and the tone. A 

similar phenomenon was described, independent of Sperling, by Averbach and Coriell 

(1961) using a visual stimulus to indicate the reported subset rather than a tone.  

Sperling’s (1960) work, along with Averbach and Coriell (1961), demonstrated an 

attentional effect. In the whole report condition, the process of recalling the entire array took 

longer than the persistence of the visual information, so that only some proportion of the 

array could be reported before the information was no longer accessible to the observer. In 

the partial report conditions, participants could direct attention to a subset of the persistent 

information and maintain it while the rest of the information about the array decayed. While 

the authors of these studies were mainly interested in the form of memory underlying the 

partial report advantage, the paradigm provided early experimental evidence for an 

attentional effect. Visual resources were dedicated to a particular subset of the information 
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available to the visual system, selecting and maintaining this information while other, 

unselected, information decayed. 

Much of the following work on attention investigated its ability to select information 

based on spatial location. Eriksen and Hoffman (1972; 1973) conducted a series of 

experiments in which they presented participants with letters arrayed about fixation, cued the 

location of a letter to be named by the participant and varied the time between the onset of 

the cue and the onset of the letters. They found that reaction times for identifying the letter 

decreased as the lag between the cue and the letters increased (Eriksen & Hoffman, 1973). 

When the cue and the target letter were simultaneous but there was a lag between those 

stimuli and distracting letters, reaction times decreased as a function of lag (Eriksen & 

Hoffman, 1972).  Posner, Snyder and Davison (1980) presented subjects with a central 

arrow that was informative about the location of a target on the majority of trials (valid trials) 

or uninformative (invalid trials). The cue provided no information about the correct response. 

Participants also saw trials in which the cue did not identify a particular location (neutral 

trials). Responses for target identification were faster in the valid trials than the neutral trials, 

and slower in the invalid trials than neutral trials (See also Posner, 1980). Thus attention can 

be applied to different locations in the visual field. When its location coincides with that of a 

target stimulus, responses are more efficient. When it is directed away from a target 

stimulus, responses are less efficient. Critically for our purposes, the Eriksen and Hoffman 

(1972; 1973) results suggest a temporal component to attention - it takes some period of 

time after the onset of a cue for attention to select a particular region of the visual field.  

1.2.1 Exogenous and Endogenous Attention 

Nakayama and Mackeben (1989) and Müller and Rabbitt (1989) described two 

components of visual attention, now commonly referred to as exogenous and endogenous 

attention (Carrasco, 2011; Posner, 1980). These forms of attention reflect automatic and 

        12 



voluntary orienting of attention, respectively, and they operate at different timescales in 

response to different kinds of cues.  

Nakayama and Mackeben (1989) and Müller and Rabbitt (1989) set out an influential 

method for investigating exogenous attention. In these experiments, participants maintained 

fixation and either saw a 50 ms brightening of one of four peripheral boxes to indicate which 

of the boxes contained a target stimulus (Müller & Rabbitt, 1989) or the onset of a square 

indicating the location of a visual search target, followed by the search target and distractors 

(Nakayama & Mackeben, 1989). Exogenous attention is typically investigated using 

rapid-onset peripheral cues (Carrasco, Giordano, & McElree, 2006; Carrasco & McElree, 

2001; Carrasco & Yeshurun, 1998; Cheal & Lyon, 1991; Giordano, McElree, & Carrasco, 

2009; Hein, Rolke, & Ulrich, 2006). By varying the period of time between the cue’s onset 

and the critical stimulus on each trial and measuring participants’ accuracy, the authors 

assessed the amount of time needed for attention to arrive at the cued location.  

In both Nakayama and Mackeben (1989) and Müller and Rabbitt (1989), accuracy in 

response to the peripheral, exogenous cue increased with cue-target lag to a peak at lags of 

approximately 100-120 ms. After this peak, accuracy declined, indicating that the cueing 

advantage is transient in these circumstances. Peak accuracy of 100 - 120 ms is commonly 

seen with peripheral cues (Carrasco, 2011; Folk, Remington, & Johnston, 1992; Müller & 

Rabbitt, 1989; Nakayama & Mackeben, 1989; Posner & Cohen, 1984; Remington, Johnston, 

& Yantis, 1992). Importantly, the allocation of attention associated with a peripheral cue does 

not appear to be under the observer’s control. The same changes in accuracy in response to 

a peripheral cue can be observed when the participant knows the target’s location - either 

because it does not change (Nakayama & Mackeben, 1989) or an earlier symbolic cue 

indicated the location (Müller & Rabbitt, 1989). When participants know that the cue never 

indicates the target location - information that should produce attempts to ignore it - it still 
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produces a reaction time increase, suggesting that attention oriented to the location of the 

uninformative cue (Remington et al., 1992). Likewise, if a peripheral cue only rarely indicates 

the target’s location, such that participants should have little incentive to attend to it if this 

attention is under their control, there are costs for cueing a location other than that of the 

target and benefits when the target and cue occur at the same location (Folk et al., 1992). 

Finally, manipulating the proportion of trials in which an exogenous cue indicates the target 

stimulus does not appear to affect the cueing benefit (Giordano et al., 2009).  

It is important to note that the peak at cue-target lags of 100 to 120ms does not mean 

that on average, attention arrives at the cued location at this time after the cue on each trial 

with this lag. The relationship between accuracy and lag using this method instead likely 

describes the cumulative distribution of attention’s arrival times from each set of cue-target 

lag trials. An accuracy advantage at a 100 ms lag trial may mean that attention arrived at the 

cued location at or before 100 ms after the cue’s onset. In studies using cue-target lags to 

measure attention’s time course (i.e. Cheal & Lyon, 1991; Müller & Rabbitt, 1989; Nakayama 

& Mackeben, 1989) a number of  lags are used, but this method does not provide a measure 

of attentional arrival times on each trial. Judgements about the timing of exogenous attention 

are also complicated by the decline in accuracy after the peak. For a given cue-target lag 

after the peak, it is not clear when attention arrived at the cued location or when it 

disengaged. Other methods - those used in this thesis and described below - may better 

measure the timing of attention. 

Endogenous attention is slower than exogenous attention, it can be sustained at a 

particular location and reflects a process that is under the observer’s control. Nakayama and 

Mackeben (1989) demonstrated that participants could endogenously apply their attention to 

a particular location and hold it there, resulting in a boost in accuracy at that location. They 

used a cue, present for the entire experiment at this location, or informed participants that 
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the target, when present, would always be at the same location. Other studies manipulated 

endogenous attention with a symbolic cue indicating the likely location of a target stimulus, 

after Posner (1980). Endogenous attention is thought to be voluntary because symbolic cues 

require interpretation, unlike exogenous cues which occur at the cued location. Müller and 

Rabbitt (1989) manipulated endogenous attention with such a symbolic cue. They presented 

an arrow at fixation for 50ms that pointed towards the target location on 50% of trials, which 

were termed the valid trials. On valid trials, accuracy increased over cue-target lag, peaking 

at around 275-300ms.  This increase was thus much slower than with the peripheral, 

exogenous cue. Such a time course is typical of endogenous attention (Cheal & Lyon, 1991; 

Liu, Stevens, & Carrasco, 2007; Müller & Rabbitt, 1989).  

Endogenous attention is under the observer’s control. Manipulations of cue validity 

affect the benefits associated with endogenous cueing. That is, participants appear to learn 

about the probability that the cue indicates the location of the target and allocate their 

attention based on this belief. Endogenous cues that indicate the location of a target 

stimulus on only a small proportion of trials produce a smaller benefit, when valid, than cues 

that are more likely to indicate the target’s location (Eriksen & Yeh, 1985; Giordano et al., 

2009). 

The effects of cued attention brought about by endogenous and exogenous cues 

reflect an important aspect of flexible human visual performance (for a review see Carrasco, 

2011). Cueing attention can result in visual processing that excludes the effects of external 

luminance noise on orientation discrimination (Dosher & Lu, 2000b, 2000a). Cues may 

improve the representation of the cued stimulus, as reflected in by contrast sensitivity 

(Carrasco, Penpeci-Talgar, & Eckstein, 2000; Foley & Schwarz, 1998; Huang & Dobkins, 

2005; Lu & Dosher, 1998, 2000; Solomon, Lavie, & Morgan, 1997). Spatial resolution is 

improved by cueing (Carrasco, Williams, & Yeshurun, 2002; Yeshurun & Carrasco, 1998, 
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1999). Asynchronies in the binding of colour and motion (Moutoussis & Zeki, 1997) can be 

eliminated by an exogenous attention cue (Holcombe & Cavanagh, 2008).  

It is thus well-documented that attentional cueing improves performance, consistent 

with the allocation of visual processing resources. More evidence for this claim comes from 

observations that attentional cueing can attenuate the effects of visual capacity limits. Two 

such capacity limits are the set size effect in visual search and its interaction with the kind of 

search being performed.  

Visual search reaction time increases with the number of items in a display - the set 

size effect. Treisman and Gelade’s (1980) feature integration theory was based in part on 

their observation that set size effects on reaction time are only seen with conjunction 

searches. However, set size effects on accuracy do occur for feature search (Cameron, 

Eckstein, Tai, & Carrasco, 2004; Carrasco & McElree, 2001; Eckstein, 1998). This set size 

relationship is stronger for conjunction searches, where features must be bound together, 

relative to feature searches and this increased inefficiency is thought to reflect attentional 

recruitment in feature binding (Treisman & Gelade, 1980; Wolfe & Gray, 2007).  

When the location of a visual search target is cued, the relationship between set size 

and reaction time is attenuated (Carrasco et al., 2006; Carrasco & McElree, 2001; Giordano 

et al., 2009). This occurs for exogenous cues (Carrasco et al., 2006; Carrasco & McElree, 

2001; Giordano et al., 2009) as well as endogenous (Giordano et al., 2009). Critically, the 

effect is greater for conjunction searches than feature searches (Carrasco et al., 2006; 

Carrasco & McElree, 2001; Carrasco & Yeshurun, 1998), although the latter may only show 

set size effects in measures relating to accuracy (Carrasco et al., 2006; Carrasco & 

Yeshurun, 1998). This demonstrates that attentional cueing directs the visual system’s 

limited resources in a way that eliminate the effects of those limits. Not only does cueing 

        16 



attenuate the effects of distracting information, but also it is most effective for conjunction 

searches which require more processing resources. 

1.3 Temporal Selection in Vision: Measurement 

The attentional cueing literature demonstrates that the visual system’s limited 

resources can be directed, voluntarily and involuntarily, to particular locations in the visual 

field. Doing so improves processing at those locations. The distinction between endogenous 

and exogenous attention has focused not only on the different levels of automaticity 

involved, but also on their different timescales. Endogenous attention requires a longer 

cue-target lag, on average, than exogenous attention. However, as discussed, cue-target 

lags do not provide a measure of attentional arrival times. At best, a set of trials showing a 

statistical advantage for an exogenous cue with, for example, a 100ms cue-target lag over 

an endogenous cue with the same lag tells us that exogenous attention was more likely to 

arrive at the cued location ​at or before ​100ms. Therefore, the relationships between 

cue-target lag and accuracy, such as those described by Müller and Rabbit (1989) and 

Nakayama and Mackeben (1989), likely represent cumulative distributions of attentional 

arrival times. We can infer that, for any given cue-target lag, attention arrived at the cued 

location at or before that lag. Testing a range of cue-target lags lets us plot this cumulative 

distribution. 

This is true, at least, for endogenous attention, which can be sustained at the cued 

location. However, exogenous attention has a transient component, at least in certain 

circumstances. Exogenously cued performance rises rapidly, but declines after a peak 

(Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989; Posner & Cohen, 1984). This 

represents attentional disengagement after cueing and it complicates the interpretation of 

the relationship between cue-lag and accuracy. For cue-lags that are longer than the most 

efficacious cue-lag, we do not know when attention arrived at the cued location and when it 
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disengaged. The accuracy benefits associated with attentional cueing are only observable if 

attention can ​deploy and sustain​ at the cued location over a tested lag. 

In order to investigate the timing of visual attention in a way that gives a more 

informative estimate of its arrival time, researchers have used rapid serial visual presentation 

(RSVP). In RSVP, a sequence of stimuli are shown sequentially at one spatial position in the 

visual field (Potter & Levy, 1969). RSVP was initially developed as a tool to investigate 

comprehension in reading (Forster, 1970; Potter, Kroll, & Harris, 1981) and memory 

processes in sequences of images (Potter, 1976; Potter & Levy, 1969), but it provides a 

valuable tool for investigating temporal phenomenon in visual attention. Participants are 

instructed to report a target stimulus from a sequence, or “stream”, of stimuli to assess the 

timing of attentional selection. This stimulus may be designated as the target by its 

appearance at the same time as a cue, or determined by some quality that makes it stand 

out (i.e. a red letter among grey letters). Given a rate of presentation that is fast enough - 

typically 8 - 12 items/second is used - participants will make errors in the form of reports of 

stimuli from the stream that were presented at times different from the cue. The period of 

time between the reported stimulus and the cue provides an estimate of the attentional 

selection latency on that trial.  

RSVP is designed to replicate the visual world’s dynamic nature in a controlled 

setting (Potter & Levy, 1969). When we observe a scene, visual stimuli are replaced by new 

stimuli at the same visual locations when we make a saccade, move, or something in the 

scene moves. Stimuli presented close in time at the same location interfere with each other. 

Presenting a pattern at the same location after a target stimulus can result in a reduction in 

detection or accuracy for the target relative to when the target is presented without a 

subsequent stimulus - a phenomenon called “masking” (Enns & Di Lollo, 2000; Kahneman, 

1968). Masking is thought to represent the termination or suppression of the target 
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stimulus’s representation by the mask (Sperling, 1960), and it is a fundamental property of 

RSVP. In an RSVP stream, the sequential presentation of stimuli at the same spatial location 

means that each stimulus is masked by the stimulus following it, with the exception of the 

final stimulus in a stream.  

The presence of masking in RSVP is thought to result in a report of the stimulus 

present when attention oriented to the stream in response to the target. Masking in RSVP is 

thought to prevent the selection of stimuli from sensory memory, which would reduce the 

apparent selection latency of attention by allowing it to select a stimulus that was no longer 

present. Many models of selection from RSVP assume that when a new stimulus is 

presented, the representation of any subsequent stimulus is terminated (Chun & Potter, 

1995; Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 2002) or that 

representations persist briefly despite masking, but are not selected (Olivers & Meeter, 2008; 

Wyble, Bowman, & Nieuwenstein, 2009). Others allow the persistence of only partial 

information about an object upon masking, such as its colour, and this is not available for 

attentional selection (Botella, Barriopedro, & Suero, 2001) or is not bound to an object 

representation (Vul & Rich, 2010).  

In addition to investigating temporal selection under conditions of masking, RSVP 

allows us to assess how other factors of the visual display affect selection. For instance, 

there is evidence that temporal processing is better for stimuli that are further from fixation 

(Carrasco et al., 2006; Carrasco, McElree, Denisova, & Giordano, 2003; Hartmann, 

Lachenmayr, & Brettel, 1979; Tyler, 1987). By manipulating the eccentricity of the cueing 

stimulus and target, we can assess how the time course of attentional selection changes 

with eccentricity. We can also assess how the presence of multiple simultaneous streams of 

information affect selection. By changing the number of simultaneous streams, we can 

assess how increasing the number of potential locations of a cue affects attentional selection 
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in response to it.  RSVP thus allows us to mimic ecological concerns in temporal selection: 

masking, eccentricity and the number of potential locations of a cueing stimulus. 

The serial position of an item that a participant reports from an RSVP stream relative 

to the cued item in that stream is the ​Serial Position Error​ (SPE) and this provides an 

estimate of attentional selection latency. The SPE measures the direction in time and latency 

of selection relative to the target on a particular trial. The target item on each trial has a 

serial position of zero. Selections of items after the target have positive SPEs. Those from 

before the target have negative SPEs.  

 Cue-target lags require comparisons in order to draw inferences about attention’s 

time course, and those inferences provide only cumulative information, as discussed. SPEs 

on the other hand, provide an estimate of the arrival time of attention on each trial. However 

this estimate is qualified somewhat by the quantisation inherent in most RSVP studies. 

Typically, RSVP streams are composed of discrete stimuli, each presented for an equal 

period of time (for an exception see Callahan-Flintoft, Holcombe, & Wyble, 2019). For 

example, if RSVP stimuli are presented at a rate of 12 Hz, each stimulus is presented for 

83.3 ms . If attention is triggered by the onset of the cue and a participant reports the letter 

following the cued stimulus, all we can infer is that attention selected an item between 

83.3ms and 166.6ms after the onset of the cue. That is, the discrete nature of RSVP stimuli 

provides a quantised estimate of attentional arrival times. This is not a direct measure of 

attention’s timing qualities, but it is better than the cumulative estimate provided by 

cue-target lag manipulations and gives a more readily interpretable distribution of attentional 

arrival times than such manipulations.  

Furthermore, RSVP does not require attention to sustain at the cued location longer 

than is necessary to select a letter, unlike cue-target lags. In RSVP, attentional resources 

are no longer necessary at the cued location once the stimulus is selected, whereas in 
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cue-target lag studies attention must deploy to the cued location and be sustained there until 

the target is presented.  

1.4 Temporal Selection in Vision: Phenomena 

Much of the use of RSVP to investigate temporal phenomena in vision has 

concentrated on the attentional blink (AB). The AB is observed when participants must select 

two targets presented at different times in a single RSVP stream. The classic finding is that 

successful selection of a first target from the sequence inhibits the selection of another target 

presented 200 - 500 ms afterwards (Broadbent & Broadbent, 1987; Raymond, Shapiro, & 

Arnell, 1992; Weichselgartner & Sperling, 1987). Most theorists believe that this so-called 

blink reflects the time course of attentional allocation (Martens & Wyble, 2010). 

Early attempts to explain the AB hypothesised that it was due to resource limitations. 

These theories posited that the locus of the blink was a bottleneck at the stage of working 

memory consolidation, a stage subsequent to much perceptual processing (Chun & Potter, 

1995). Consistent with this, behavioural and electrophysiological evidence shows that 

blinked stimuli are processed to a high level. Semantic aspects of blinked words makes the 

detection of subsequent, semantically-related, words more efficient (Shapiro, Driver, Ward, & 

Sorensen, 1997) and electrophysiological correlates of semantic processing are present for 

blinked stimuli (Luck, Vogel, & Shapiro, 1996; Vogel, Luck, & Shapiro, 1998), while those for 

working memory consolidation are attenuated for blinked stimuli (Vogel et al., 1998). 

However, findings that the blink is not present when participants report a sequence of 

several targets with no intervening distractors are difficult to explain in terms of resource 

limitations (Di Lollo, Kawahara, Ghorashi, & Enns, 2005; Olivers, van der Stigchel, & 

Hulleman, 2007).  
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Some recent theories explain the blink in terms of a suppressive mechanism. 

Exogenous attention is triggered upon detection of the target feature, sustained by the 

presentation of subsequent targets and suppressed upon processing of a distractor. This 

serves to protect working memory from encoding distractors (Olivers & Meeter, 2008) or to 

ensure the episodic nature of visual experience (Wyble et al., 2009). 

SPEs have been measured in AB tasks to reveal that temporal selection during the 

blink is disrupted. Chun (1997) demonstrated that at lags that frequently yield the attentional 

blink, when the target was not reported the responses were often items presented near to 

the target in time. Popple and Levi (2007) explained such responses, and the AB generally, 

as errors in temporal binding. Vul, Kanwisher and Nieuwenstein (2008) assessed SPE 

distributions in response to blinked targets and observed that selection was delayed and 

more variable for targets presented during the blink. Goodbourn et al. (2016) analysed SPE 

data from multiple studies and fit mixture models to assess changes in temporal selection. 

These revealed that guessing increased during the blink and demonstrated a delay in 

selection that became smaller as the time between targets increased. Unlike the cruder 

analysis conducted by Vul, Kanwisher and Nieuwenstein (2008), mixture modeling did not 

find a change in the variance of selection.  

The AB reflects changes in the ability to deploy attention over time and attentional 

selection during the AB is disrupted, but this does not tell us about the time taken to deploy 

attention in response to a cue. Early RSVP evidence about the latency of attentional 

deployment came from Lawrence (1971), who asked participants to report a word written in 

upper-case letters in an RSVP stream of lower-case words and found that they would often 

report the word following the target at presentation rates of 16-20Hz. Another relatively early 

investigation of attentional timing using RSVP is that of Reeves and Sperling (1986). In their 

study, participants viewed two simultaneous RSVP streams, one on either side (left and 
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right) of a fixation point at eccentricities of .935º. The left stream consisted of letters and the 

right consisted of numerals. Participants were instructed to detect a target letter in the left 

stream and, upon doing this, report the earliest four numerals they could from the right 

stream while maintaining fixation. This method presumably requires a covert shift of 

endogenous attention from one stream to the other. The serial position of the numerals 

reported on each trial provides information about the timing of this attention shift.  

The detection and report of several stimuli in quick succession in Reeves and 

Sperling’s (1986) method is similar to the report of two targets in an AB design. However, 

given that participants can successfully report a sequence of targets if there are no 

intervening distractors, detecting a target and then shifting attention to a new set of targets 

may not result in the blink (Di Lollo et al., 2005). Consistent with this, Reeves and Sperling’s 

(1986) participants often successfully reported items from the 200-500ms period during 

which the blink is typically observed.​ ​However there were errors in the order reported for the 

items, much like those observed in AB experiments where multiple successive targets must 

be reported and participants can report the identity of the targets, but not their temporal 

order (Chun & Potter, 1995; Wyble et al., 2009).  

The participants of Reeves and Sperling (1986) reported numerals from 200 to 

600ms after the onset of the target stimulus in the left stream. As mentioned, there were 

systematic errors in the serial order of items reported by participants. Participants tended to 

first report numerals that occurred around 400ms after the onset of the target, and 

subsequently reported items did not reflect the serial order of the numerals in the RSVP 

stream.  

Reeves and Sperling (1986) explained their results with a theory of attentional 

selection in which attention operates like a gate. Attention is initially focused on detecting the 

target letter in the other RSVP stream. Upon detection of the target, attention is directed to 
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the numeral stream. Attention gates access to central cognitive processes and operates like 

a gate. The attention gating function rises and falls over time, leading to the encoding of 

numerals from the stream. The strength attention at a particular time determines the strength 

of the representation of a numeral present at this time. The order of reported items is 

determined by the rank order of encoded numerals’ activations. The first reported item is that 

which receives the most activation because its representation coincided with the time that 

attention was most active. Temporal errors arise because there is a variance in the strength 

of item activations. Items with low activation thanks to the low level of the attentional gate at 

the time they were processed have a poor signal-to-noise ratio and are likely to be reported 

in the wrong order. 

In a similar investigation of the time course of attentional selection of multiple stimuli 

from an RSVP stream, Weichselgartner and Sperling (1987) used a method that did not 

require shifting attention between streams. Participants in that study viewed a single RSVP 

stream of numerals, presented at a rate of 10 or 12 Hz. One of these numerals was cued 

with an outline of a square or by virtue of having higher contrast than the rest of the stream 

and participants were instructed to report the target stimulus along with three subsequent 

stimuli. The probability of recalling an item from a particular time after the target had a 

bimodal distribution. The probability of recalling the target and the subsequent item (0 to 200 

ms) was relatively high, but there was a reduction in reporting at 200 ms. From this point, a 

second peak emerged around 300-500ms after the onset of the target. To investigate the 

source of this bimodality, Weichselgartner and Sperling asked participants whether their 

reports seemed perceptually bound to the target. The early selections appeared perceptually 

attached to the target, whereas those from 300-500ms did not. The second, later, 

component had a similar temporal distribution as reports by the same participants generated 

from Reeves and Sperling’s (1986) method.  
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Weichselgartner and Sperling (1987) argued that the distribution of responses in their 

single stream task was made up of two components. The first was an automatic process 

triggered by the detection of the target. This process was rapid. Participants reported the first 

two items with high accuracy, indicating that selection occurred over a period of less than 

200ms from the onset of the target. The automatic process’ timing is consistent with the 

peak timing of exogenous attention, which is often triggered with abrupt luminance 

increments like the cues that Weichselgartner and Sperling (1987) used (i.e. Jonides & 

Yantis, 1988). The second component reflected a voluntary process. It shared temporal 

properties with the voluntary deployment of attention prompted by Reeves and Sperling’s 

(1986) task, and participants did not perceive these stimuli as perceptually attached to the 

target.  

1.5 Temporal Selection in Vision: Buffering 

These results demonstrate selection of stimuli presented after or with a cue in an 

RSVP stream, which is to be expected if the selection process is attention triggered by the 

cue. However, some results indicate that participants may report items from RSVP streams 

with a timing that is inconsistent with cued attentional selection. Specifically, it appears as if 

participants are making reports of items from before the time of the cue that are not guesses.  

The inspiration for the current thesis came from Goodbourn and Holcombe (2015). 

Those authors were interested in the selection of simultaneous targets from multiple RSVP 

streams. They presented participants with two streams of letters, cued one or both of them 

with a white ring and calculated the SPE of participants’ responses for each stream and trial. 

They observed robust effects of the spatial arrangement of streams on guessing rate when 

participants had to select two simultaneous targets. However it is their temporal results that 

are most relevant here. When selections were not a guess, the distributions of SPEs 
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participants produced appeared to include items from before the time of the target. This 

pattern of results was replicated in Holcombe, Nguyen and Goodbourn (2017). 

To explain the presence of pre-cue items, Goodbourn and Holcombe (2015) 

hypothesised that information about unattended stimuli is buffered so that it persists beyond 

the presentation of a subsequent stimulus. RSVP stimuli from different points in time are 

represented in this buffer and one is bound with the cue, a process that is distinct from 

attentional sampling from stream that is triggered by the cue. The bound representation is 

tokenised, consolidated into working memory, and reported. Selection from the buffer is 

error-prone and may sometimes result in a report of an item that was presented before the 

onset of the cue. Such responses are unlikely under an attention shift and thus constitute 

critical evidence for buffering. 

1.6 Buffering is a problem for our understanding of visual selection 

Goodbourn and Holcombe’s (2015) data implied a buffer in which stimulus 

representations persist beyond the presentation of a subsequent stimulus, despite masking. 

This is at odds with assumptions regarding the effect of masking in models in which 

representations of unattended stimuli are terminated by masking (Chun & Potter, 1995; 

Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 2002) or are briefly 

sustained, but are not available for selection (Olivers & Meeter, 2008; Wyble et al., 2009). 

The buffer, however, implies that unattended stimulus representations persist beyond the 

onset of a subsequent stimulus and that this information is available for selection. Evidence 

for pre-cue selections would require us to rethink the role of masking in RSVP by allowing 

information to be selected from sensory memory.  

The presence of pre-cue items would also require us to rethink the way in which 

attention selects an item from an RSVP stream. It is typically assumed that stimuli from an 
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RSVP stream are not processed until the cue is presented and detected. The cue triggers 

attention, which samples an item from the stream (Chun & Potter, 1995; Olivers & Meeter, 

2008; Weichselgartner & Sperling, 1987; Wyble et al., 2009). However, buffering suggests 

that there is processing of stimuli prior to the onset of the cue because without this, pre-cue 

stimuli could not be reported.  

The visual world is dynamic and full of stimulation. Attention allows us to flexibly 

allocate our visual resources to stimuli within a scene, but what we observe at one point may 

be masked by stimuli at the same visual location when we make a saccade, move, or there 

is movement in the scene. RSVP, with its inherent masking, mimics this process of attending 

to relevant stimuli in a stream of visual information, but in a controlled environment. Theories 

about how this is achieved are violated by buffering, which suggests that stimuli are 

processed regardless of their relevance and that sensory information is resilient in the face 

of masking. Investigating how attention can select relevant information from buffering despite 

masking provides key information regarding how attention samples the visual world.  

1.6.1 Assessing buffering. 

Goodbourn and Holcombe (2015) were not the first to observe reports of stimuli from 

before the time of the cue in RSVP, and to suggest that these reports occur more often than 

chance. Such observations also appear in previous literature on the time course of selection 

in RSVP both with a single cue (Botella, 1992; Botella & Eriksen, 1991; Gathercole & 

Broadbent, 1984; McLean, Broadbent, & Broadbent, 1983) and in the attentional blink 

literature (Vul, Nieuwenstein, et al., 2008). However, this thesis describes the first 

quantitative test of such responses. The published evidence for pre-cue selections, which 

will be described in more detail in Chapter Four, relies on observations that there appear to 

be more reports of stimuli from before the cue than could be expected by guessing alone. 

However none of the cited papers provide a test of whether or guessing may explain these 
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reports. To distinguish between guesses and non-guesses one must first estimate the rate of 

guessing in the task, and secondly develop some statistical measure of the deviation 

between the proportion of responses from before the cue and the same proportion as 

predicted by guessing. 

The first issue is what we refer to as estimating the ​efficacy ​of selection given the 

cue. That is, how well participants can detect the cue and accurately identify a letter from 

around that time. In each trial, the RSVP items are presented in a random order. Failing to 

detect the cue or misidentifying a letter will lead to reports of stimuli that are uniformly 

distributed in time relative to the cue because of this random presentation. This can lead to 

reports of items from before the time of the cue, and the presence of responses of items 

from before the cue is critical evidence for buffering. We thus need some way to account for 

non-efficacious responses. 

What is needed is to estimate the proportion of trials in which participants made an 

efficacious response - that is, where they identified a letter from around the time of the cue. 

Mixture modelling achieves this (Zhang & Luck, 2008). In mixture modelling applied to SPEs, 

the distribution of SPEs is modelled as a mixture of two probability distributions (Goodbourn 

& Holcombe, 2015). One of these distributions represents efficacious responses and the 

other represents non-efficacious responses - where the cue was missed or the selected 

letter misidentified. Mixture modelling of SPE distributions in this manner allows us to 

estimate the proportion of responses that were efficacious and those that were not. This also 

allows us to estimate the temporal properties of the efficacious distribution - the mean and 

standard deviation of selection in time after accounting for responses that were not 

efficacious. I will discuss mixture modelling more in Chapter 2. 

The second necessary condition for detecting buffering is a statistical procedure that 

allows us to test whether responses from before the cue are more frequent than would be 
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expected by guessing. Goodbourn and Holcombe (2015) observed that the distribution of 

SPEs expected for responses that are not efficacious is a windowed uniform distribution. 

This insight allowed us to develop a test for deviations from this distribution at SPEs before 

the time of cue, based on the observation that the frequency of responses at a particular 

SPE relative to those at all other SPEs will have a binomial distribution. Doing so allows us 

to generate a probability for the count of responses at a particular SPE if responses there 

are not efficacious.  

1.7 Aims 

This thesis is an examination of the temporal properties of visual selection using 

RSVP, mixture modelling, and the binomial test. The main aim is to investigate the presence 

of buffered information. When do we see responses of RSVP stimuli that were presented 

before the time of the cue? This is important because many models of visual selection from 

RSVP streams assume an exogenous attentional component, triggered by the cue and 

termination of unattended item representations by masking. These factors should not result 

in pre-cue reports that are efficacious, but the results observed by Goodbourn and Holcome 

(2015) and Holcombe, Nguyen and Goodbourn (2017) suggest that such reports exist. This 

implies that attention can select information about the rich stream of visual information we 

observe in naturalistic viewing from sensory memory, despite masking.  

The thesis is also concerned with the temporal properties of visual selection. What is 

the latency and variability of selection across eccentricity, with central or peripheral cues and 

under conditions in which the cue may interfere with the target? Investigating these 

questions using mixture modelling and the binomial procedure allows us to account for trials 

in which the cue was missed or the selected letter was misidentified, and instead estimate 
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the properties of successful visual selection from an RSVP stream. Doing so provides the 

first direct evidence of buffered responses in RSVP.  

The second chapter of the thesis will describe mixture modelling fitting and the 

binomial test, as well as our attempts to validate the mixture models with parameter and 

model recovery. Chapter 3 investigates voluntary contributions to buffered reports with an 

experiment comparing selection distributions when the cue is a central, symbolic cue and 

those in which the cue is a peripheral, spatial cue - a white ring at the location of the target. 

Chapter 4 describes changes in the frequency of buffered items with changes in the number 

of simultaneous RSVP streams, and provides evidence that buffered reports are affected by 

the number of monitored streams. In Chapter 5 we test for changes in the temporal qualities 

of selection across eccentricity, because previous investigations of vision’s temporal 

properties indicate that visual processing may be faster outside the fovea. 
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Chapter 2: Analyses 
 

All the experiments in this thesis use RSVP and all analyses are based on the serial 

position error (SPE) of the stimulus reported by participants. The SPE refers to the temporal 

position of the reported stimulus, in item units, relative to the target on a particular trial 

(Figure 1). The SPE gives a quantised measure of the timing of selection on a particular trial, 

so over many trials the distribution of SPEs produced by a participant under particular 

stimulus conditions (i.e. the number of streams, the kind of cue, or the eccentricity of the 

target) provides information about the temporal qualities of selection under those conditions. 

 

Figure 1​. The top row shows a schematic example of an RSVP stream of letters, presented at one 

spatial location, with each stimulus presented with a stimulus onset asynchrony of 83 ms (roughly 12 

Hz). The target stimulus is the letter “E”, as indicated by its co-occurrence with the cue, a ring around 

the letter. Each stimulus is associated with an SPE representing its serial position relative to the target 

stimulus.  

However, the distribution of SPEs does not only include responses that were 

informed by the cue. Instead, it is a mixture of responses resulting from trials in which 

participants misidentified a selected letter or failed to detect the cue and responses from 

trials in which the participant selected a letter based on the timing of the cue. The former 

sorts of responses are errors, which we term ​identification failures​ because they result from 

a failure to identify a letter or the cue. These failures do not tell us anything about the 
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temporal qualities of selection in RSVP, but we want to account for them in order to 

investigate the temporal characteristics of ​efficacious​ ​selections​, those responses that are 

based on the timing of the cue.  

This distinction between efficacious responses and identification errors is critical to 

the analyses we use in this thesis. In this chapter I describe two analyses based on SPEs, 

one of which is novel. The first, mixture modelling (Zhang & Luck, 2008), allows us to 

estimate the proportion of SPEs resulting from identification failures and efficacious 

selections. In doing so, the mixture modelling procedure allows us to make inferences about 

efficacious selection’s temporal qualities, its distribution, mean and standard deviation. The 

second analysis we describe is a test for whether the number of responses with a certain 

SPE - that is, at a certain time - is more frequent than would be predicted based on 

identification failures alone. This allows us to test for the presence of buffered responses - 

efficacious reports of stimuli from before the cue. To do this we use the distribution of SPEs 

expected under identification failures as the null hypothesis for a test statistic.  

2.1 Mixture Modelling and Model Comparison 

We model the distribution of SPEs as the mixture of two distributions using the 

mixture modelling procedure described by Goodbourn and Holcombe (2015). The observed 

distribution of SPEs generated by a participant is assumed to be the output of two 

processes: efficacious responses, or responses informed by the cue, and identification 

failures. The latter component represents reports that were guesses because the participant 

did not detect the cue on that trial, or errors caused by participants misidentifying the 

selected letter. We fit two models to each participant’s data, one representing buffering and 

the other representing attention shifts. Each model consists of a mixture of the distribution of 

identification errors with a distribution that reflects efficacious responses (Zhang & Luck, 

2008). We fit the models using maximum likelihood estimation in a custom R package 
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(​https://doi.org/10.5281/zenodo.3545085​) and compare their fits in order to assess the 

relative evidence for buffering and attentional selection.  

Both models, the model representing buffering and the model representing attention 

shifts, contain a component representing identification failures. When participants make a 

response that is the result of an identification failure, their response is unrelated to the time 

of the cue and thus can come from any SPE with a uniform probability. As explained by 

Goodbourn & Holcombe (2015), the fact that the serial position of the cue differs across trials 

means that the minimum and maximum possible SPEs varies across trials as well. For 

instance, when the cue is in the sixth of 24 of serial positions, the maximum SPE is 18, but 

when it is in the 10 serial position the maximum SPE is 14. This means that the distribution 

of SPEs is tapered at its extremes, due to changes in the serial position of the cue. In 

practice, this windowing mainly affects the distribution of identification errors, because those 

may result in very extreme SPEs, whereas efficacious responses appear to be concentrated 

within a few hundred milliseconds of the cue. Thus the distribution of identification failures is 

a windowed uniform distribution (Figure 2). 
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Figure 2. ​The distribution of responses associated with identification errors. 

We assume that responses produced by attentional selection or buffering impart 

distributions with different shapes to the observed temporal distribution. Our mixture 

modelling procedure fits models with different shaped efficacious distributions in order to 

detect these shapes in the observed SPE distributions (Figure 3). 

The shape of the efficacious distribution should differ depending on whether items 

are selected with an attention shift or from the buffer (Figure 3). An attention shift should 

produce a positively skewed distribution with no responses of items from before the cue. 

This is because the onset of the cue triggers the shift, imposing a lower bound on selection 

times so that variance in selection times will be distributed in the right tail of the distribution. 

The SPE distributions that have been interpreted as evidence for buffering, on the other 

hand, appear symmetric (Goodbourn & Holcombe, 2015; Holcombe et al., 2017). 
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Figure 3. Example mixtures for the different models. Both models combine a distribution of 

identification failures (the light grey shaded area) with a distribution of efficacious selections (the dark 

grey shaded area). The dashed line represents the probability of report resulting from summing these 

distributions. The efficacious distribution differs between the models. In the left model, the efficacious 

distribution is a gamma distribution, which we use to model attention shifts. The right model 

represents buffering by using a Gaussian distribution as the efficacious distribution.  

We model attentional selection using a gamma distribution , which has positive skew 1

and does not produce responses from before the cue. For the buffering model, the assumed 

efficacious distribution is a Gaussian, as in Goodbourn and Holcombe (2015). Combining 

these efficacious distributions with the distribution corresponding to identification failures 

produces two mixture models, a symmetric model where the efficacious distribution is a 

Gaussian distribution (Figure 3, right side), and a skewed model where the efficacious 

distribution is a gamma distribution (Figure 3, left side). 

The Gamma distribution has two parameters: shape (α) and scale (θ) (Thom, 1958). 

Its probability density function is given by, 

amma(x, , )  x  eG α θ = 1
 Γ(α)θα

α−1 − x
θ  

Where Γ(α) is the gamma function. This density function is defined for non-negative values 

of  ​only and has a positive skew controlled by the shape parameter (α), where smaller x  

values of the shape parameter lead to more skew. The mean of the distribution is, 

θM = α  

Its standard deviation is, 

D θS = √α  

1We also attempted to model this distribution with a log-normal and a Gaussian truncated to 
provide skew. The log-normal mixture models performed poorly in a parameter recovery test, and the 
Gamma was preferred to the truncated Gaussian because the latter required an arbitrary choice about 
truncation point’s location 

        35 



Combining the gamma distribution with the uniform creates a mixture model  with three()  h  

parameters: α, θ and p,  

(x; , , ) W (x)[( )Gamma(x, , ) )U (x)]h p α θ =  p
Cg

α θ + ( Cu

1−p  

Here, x is the time of the response relative to the cue in SPEs, W(x) is the windowing 

function, described in Goodbourn and Holcombe (2015), which tapers the mixture model 

near its extremes to account for the fact that extreme SPEs are not possible on every trial 

due to changes in the temporal position of the cue. The remaining elements of the model 

are: α and θ, the parameters of the gamma distribution; p, the probability of an efficacious 

response, and U(x), the uniform distribution. The values C​u​ and C​g​ are normalising constants 

for the uniform and gamma distributions, respectively, so that the integral of the distribution 

is equal to one.  

The Gaussian mixture model, described in detail in Goodbourn and Holcombe 

(2015), combines the uniform distribution with a Gaussian. This allows efficacious responses 

from before the cue, because unlike the gamma distribution the Gaussian is defined for 

negative numbers. It is also symmetric, a quality associated that appears to be associated 

with buffering, although this has yet to be tested​ ​(Goodbourn & Holcombe, 2015; Holcombe 

et al., 2017). The model has the form, 

(x; , , ) W (x)[( )N (x, , ) )U (x)]f p μ σ =  p
Cn

μ σ + ( Cu

1−p  

Where N(x,μ, σ) is the normal distribution, μ and σ are the mean and standard 

deviation of the normal, and C​n​ is the normalising constant for the normal distribution. All 

other elements are the same as those in the gamma-uniform mixture.  

We fit both these models using maximum likelihood estimation. For each kind of 

model, this process yield three parameter estimates: ​Efficacy​, the proportion of reports that 

        36 



are efficacious, ​Latency, ​the mean time of the efficacious distribution relative to the cue, and 

Precision​, the standard deviation of the efficacious distribution. Latency and precision are 

thus estimates of the temporal properties of selection, whereas efficacy estimates the extent 

to which participants can detect the onset of cue and identify a letter from around that time. 

To compare how well the two different models fit each participant’s data, we used the 

Bayes factor – the probability of the data under one model divided by the probability under 

the other model. The Bayes factor, with an uninformative prior over the model parameters, 

can be estimated using the Bayesian information criterion for each model (Raftery, 1999; 

Wagenmakers, 2007). We calculate the BIC for each model, and the bayes factor estimated 

from the BICs to assess which model is a better fit to each participant’s data. This mixture 

model comparison gives us a ratio for the evidence of one model relative to the other. Bayes 

factors with a ratio greater than 3 in favour of a particular model are taken as evidence for 

that model. 

2.2 Model and Parameter Recovery 

To test how well our mixture model could estimate the parameters of an SPE 

distribution, we simulated participants with different efficacies, latencies, precisions, and 

efficacious distributions (gamma or Gaussian) and fit the mixture model to these simulated 

response distributions. Generating data where the ground truth was known in this manner 

allowed us to test the error in parameter estimates associated with the maximum likelihood 

estimation procedure. It also allowed us to assess the ability of the model comparison 

procedure to discriminate between these two shapes of the efficacious distribution.  

The parameters with which we simulated data are presented in Table 1. Latency and 

precision values were chosen based on the range of parameter estimates observed in 

Goodbourn and Holcombe (2015). Latency parameters were chosen based on the latency 
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one may expect for an exogenous attention shift (120 ms = .84 SPE with an 83ms SOA; 

Cheal & Lyon, 1991; Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989) with a longer 

value included to test a range of latencies. Each parameter value was combined with the 

values of all other parameters in the table. For each combination of efficacy, latency, 

precision and efficacious distribution, we simulated 100 participants, resulting in 1600 

simulated participants, with 200 trials per participant.  

Table 1 

Parameter values for simulations. Latency and precision are in SPEs. All combinations of 
parameters and efficacious distribution were tested 

Efficacy Latency Precision Efficacious distribution 

.7 1.5 .84 Normal 

.9 2 1.2 Gamma 

 

The first step for simulating a trial involved sampling a cue position in time over the 

range we use in our task (serial positions from 6 to 10, inclusive). Next, we determined 

whether or not the simulated trial was efficacious (probability = efficacy). If the trial was 

efficacious, we sampled an SPE from the efficacious distribution being used by that 

simulation (gamma or Gaussian). If the sampled SPE was outside the possible range of 

SPEs in our task, we sampled the SPE again. For the Gaussian efficacious distribution, 

latency and precision were the mean and standard deviation, respectively. For the gamma 

distribution, latency and precision needed to be transformed into shape and scale, that 

distribution’s parameters. The shape and scale of the gamma distribution were calculated by 

the equations below, which follow from those provided for the mean and standard deviation 

of the distribution: 

hape S =  Latency2

Precision2  
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cale S =  Latency
Precision2  

If the trial was not efficacious and thus was an identification error, we sampled an 

SPE from a uniform distribution with bounds at the minimum and maximum possible SPE on 

that trial, given the temporal position of the cue.  

Once we had simulated a set of 200 trials, we fit the mixture models to the simulated 

data. For each simulated participant, which had efficacious trials drawn from only one kind of 

efficacious distribution, we fit both models.  

2.2.1 Results 

Model recovery. ​We calculated Bayes factors to assess which model best fit a set of 

simulated data. A Bayes factor that indicated that the data favoured a particular model over 

the other by a ratio of three or greater was taken as evidence for that model. There are three 

outcomes for a particular pair of models fit to the same data. If the Bayes factor fell between 

.33 and 3, we concluded that the evidence for the models was equivocal and we could not 

decide in favour of either model (Jeffreys, 1998). If the evidence is no equivocal, the Bayes 

factor may favour the correct model, which we term the “generative” model, because it was 

the kind of distribution that generated the data. The Bayes factor may otherwise favour the 

wrong model (the distribution that did not generate the data). The proportion of model fits 

that fall into either of these categories is presented in Table 2. These proportions do not 

consider differences in efficacy, latency or precision. The model comparison procedure 

identified the correct model in over 90% of cases and was more likely to be unable to 

facilitate a decision than to facilitate the wrong decision.  

Table 2    

Model comparison results. 

Generative Model Correct Model Incorrect Model Neither Model 
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Gamma .915 .023 .062 

Gaussian .918 .008 .075 

 

Parameter estimates​.  

We report the parameter estimates based on the model that generated the data and 

the model fit to the data. This allows us to assess not only how well the correct model can 

recover the parameters associated with the data, but any deviations in parameter estimation 

that can be expected by analysing data based on a model fit that does not match the 

generative model. Fortunately, such deviations are small, even when the generative model 

and the model fit to the data do not match.  

The deviation between the parameter estimates produced by the model fitting and 

the parameters used to generate the data is calculated as  

rror Parameter Estimate enerating Parameter  E =  − G  

Negative errors mean that the model fitting procedure underestimated the value of a 

parameter. Positive errors mean that the value was overestimated.  

Efficacy.​ Efficacy estimates showed only small errors. Efficacy errors are 

summarised in Table 3 for the different generative models and the models fit to the data. The 

data are also presented in Figure 4. These values do not account for differences in the 

values of latency and precision used to generate the data. The error in efficacy estimates 

was indistinguishable from zero when the generative model and the analysis model 

matched. When there was a mismatch between the models, efficacy was underestimated, 

however this was only a small underestimate. 

Table 3       

Summary statistics for efficacy estimate errors and quantiles 
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Generative 
Model 

Model fit to 
data 

Mean Error SD 2.5% 
Quantile 

97.5% 
Quantile 

Gamma Gamma 0.001 0.031 -0.057 0.063 

Gamma Gaussian -0.017 0.033 -0.083 0.052 

Gaussian Gamma -0.014 0.038 -0.083 0.057 

Gaussian Gaussian 0.003 0.034 -0.063 0.061 

 

 

Figure 4. ​Efficacy estimates based on the true efficacy used to simulate the data, the generative 

model, and the model fit to the data. The columns of the grid represent the model used to generate 

the data. The rows represent the model fit to the data. The orange points are the estimates for each 
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simulated participant, with a small amount of horizontal jitter. The yellow points and error bars 

represent the mean±SE. The dashed lines extending from the y axis show the true efficacy values for 

reference. 

Latency.​ Latency error was also small. The error for this parameter is summarised in 

Table 4 and Figure 5, where it is presented in SPEs. When the generative model and the 

model fit to the data match, there is very little error. In this case the true value and the 

estimate deviate by less than .01 of an SPE. When there is a mismatch between the 

generative model and the model fit to the data, the deviation between the estimate and the 

true value is about .1 of an SPE. This corresponds to less than ten milliseconds error with 

the stimulus onset asynchronies we use in our experiments (66 to 83 ms).  
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Figure 5. ​Latency estimates, in SPE, based on the true latency used to simulate the data, the 

generative model, and the model fit to the data. 

Table 4      

Summary statistics for latency estimate errors in SPEs 

Generative 
Model 

Model fit to 
data 

Mean Error SD 2.5% 
Quantile 

97.5% 
Quantile 

Gamma Gamma -0.003 0.098 -0.183 0.212 

Gamma Normal -0.108 0.107 -0.343 0.089 

Normal Gamma 0.118 0.104 -0.06 0.339 
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Normal Normal 0.007 0.085 -0.156 0.172 

 

Precision​. A similar pattern of errors was found for precision (Table 5, Figure 6). 

Error was small, less than .01 of an SPE, when the generative model and the model fit to the 

data matched. When the generative model and the model fit to the data did not match, the 

error was larger, but even the largest mean error (-0.13) does not correspond to more than 

11ms with the presentation rates used in the experiments described in this thesis. 

Table 5 

Summary statistics for precision estimate errors in SPEs  

Generative 
Model 

Model fit to 
data 

Mean Error SD 2.5% 
Quantile 

97.5% 
Quantile 

Gamma Gamma -0.006 0.109 -0.203 0.232 

Gamma Normal -0.132 0.111 -0.368 0.051 

Normal Gamma 0.058 0.105 -0.119 0.274 

Normal Normal -0.008 0.08 -0.165 0.156 
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Figure 6. ​Precision estimates, in SPE, based on the true latency used to simulate the data, the 

generative model and the model fit to the data. 

2.2.2. Discussion.  

This parameter recovery study indicates that the maximum likelihood estimation 

procedure that we use to fit mixture models to our data and our model comparison analysis 

performs well. The model comparison identifies the true efficacious distribution in 

approximately 90% of cases. Parameter estimation results in errors with small magnitudes. 
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Errors are largest when the generative model and the model fit to the data do not match, but 

the errors resulting from such mismatches are small. In the temporal domain they 

correspond to 1 to ten ms with the presentation rates used in our designs, and for efficacy 

they result in an underestimate that is at most approximately .02.  

2.3 The Binomial Test 

Previous studies provided no direct evidence for efficacious pre-cue selections. They 

relied on the indirect evidence of a best-fitting Gaussian mixture model having latency and 

precision estimates such that the Gaussian included some responses that were before the 

cue (Goodbourn & Holcombe, 2015). We developed a more ​direct test, which we call the 

binomial test, for efficacious reports of stimuli before the cue.  

The binomial test provides a liberal estimate of the probability of a particular number 

of pre-cue reports assuming that such reports are due to identification failures. This provides 

a conservative null hypothesis test for each SPE – if the data reject it, we conclude that 

efficacious responding contributed to that serial position. That is, ​we use the binomial test​ ​to 

assess whether the observed count of SPEs at -1 (the item presented before the target) is 

hard to account for (p<.05) with identification failures. The SPE = -1 response is a particular 

proportion of the pseudo-uniform identification failure distribution. Under the null hypothesis 

of all responses being identification failures, this proportion is the probability of making an 

SPE=-1 response, and the binomial distribution indicates the probability of any particular 

count of SPE=-1 responses, given the total number of trials. This allows calculation of a 

p-value that tells us the probability of observing a count of SPEs at -1 at least as extreme as 

the observed count if participants’ responses are entirely comprised of identification failures. 

We will illustrate this before making the test more realistic by not assuming that all responses 

are identification failures. 
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To illustrate the binomial test, the distribution of selection errors of a participant from 

Chapter 4’s first experiment is shown in Figure 7A. Identification failure responses have a 

nearly uniform distribution of SPEs, and SPEs of -1 make up some proportion of this 

distribution (Figure 7B). To test whether there are more responses at -1 than expected from 

identification failures, we use the binomial distribution, where hits are SPEs of -1 and misses 

are all other SPEs (Figure 7C). The proportion of the identification failure distribution at -1 is 

used as the probability of a hit in this distribution and the number of responses recorded by a 

participant as the number of observations. The p-value is the orange region of Figure 7C – 

the probability of a count of -1 SPEs at least as extreme as the observed count in the 

binomial distribution. As discussed below, we adjust the identification distribution to account 

for the fact that participants’ SPE distributions are unlikely to be entirely due to identification 

failures. We interpret a p-value below .05 as good evidence against the null hypothesis that 

the SPE=-1 responses are entirely due to identification failures. 

 

Figure 7. ​The process for testing whether the count at a particular SPE is greater than expected by 

identification failures. Panel ​A​ shows one participant’s SPE histogram. The highlighted bar shows the 

five SPEs of -1 in this histogram. Panel ​B​ shows the distribution of SPEs associated with identification 

failures; the highlighted component is the proportion of the distribution corresponding to an SPE of -1. 

The points and lines of panel ​C​ show the binomial distribution associated with an SPE of -1 using the 

proportion of the identification failure distribution at -1 as the probability of success. The highlighted 

points in panel ​C​ show the proportion of the distribution with a count at least as extreme as that 
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shown in panel ​A​. The probability of a random draw in this highlighted region corresponds to the 

p-value for the highlighted component in panel ​A​, according to the test. 

2.3.1 Making the binomial test less conservative 

The distribution of selections is extremely unlikely to be comprised entirely of 

identification failures because previous work has repeatedly found that selection error 

distributions depart from the identification failure distribution. They have a peak around the 

time of the target, indicating that in some trials participants successfully identify the target 

and suggesting that they sometimes identify a letter near the time of the target (Goodbourn 

& Holcombe, 2015; Holcombe et al., 2017; Vul, Nieuwenstein, & Kanwisher, 2008; Martini, 

2013). Using their Gaussian mixture model, Goodbourn and Holcombe (2015) estimated that 

identification failures (which they referred to as “guessing”, although the concept also 

includes misidentifications) accounted for about a quarter of their participants’ responses.  

Given that not all responses are identification failures, the assumption of the binomial 

test (as described so far) that all responses are identification failures is wrong, and this 

makes the test overly conservative. That is, by assuming that all responses are identification 

failures, the probability we assign to a particular count of SPE = -1 responses is too high 

because the identification failure rate assumed, 1, is higher than the actual value. 

 To make the test less conservative, a more realistic estimate of the proportion of 

responses that are identification failures is needed. However, we should avoid using an 

estimate expected to be lower than the actual value, because that would result in a liberal 

test (one for which the p-values are too low). To account for the fact that not all responses 

are identification failures we need some proxy for efficacy. This proxy for efficacy should be, 

if it is wrong, an underestimate to avoid yielding an identification failure rate that is too low, 

which would result in a liberal test.  
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We used the proportion of responses with SPEs of 0 as a conservative estimate of 

efficacy and its complement, 1 - p(SPE = 0), as a liberal estimate of the rate of identification 

failures. The identification failure rate liberal estimate is used to make the estimated 

proportion of SPEs of -1 expected from identification failures more realistic. This more 

realistic estimate of the proportion of trials with an SPE of -1 for a particular participant is the 

product of the proportion of the identification failure distribution at -1 for that participant and 

the estimate of the failure rate. This adjusts the proportion of identification failures down from 

an unrealistic 100%.  Doing so does not underestimate the proportion of non-efficacious 

responses, because efficacy estimated in this manner is conservative, as shown below. In 

this way we do not make the likely-untrue assumption that all responses are guesses. 

How can we be sure the proportion of responses at zero is a conservative estimate of 

efficacy? One can imagine conditions in which this would not be true. Firstly, it could happen 

that all efficacious responses might fall at zero. In this case the observed count of responses 

at this point over-estimates efficacy, because the observed count includes all efficacious 

responses plus some of the non-efficacious responses. Another undesirable situation is that 

in which all efficacious responses fall somewhere other than zero, in which case the count at 

zero contains only identification failures, and our measure of accuracy actually represents 

the proportion of guesses at 0. These two scenarios represent extreme conditions under 

which we cannot use the count of responses with an SPE of 0 as a measure of efficacy. In 

other words, we want efficacious responses to be spread over multiple SPEs, one of which 

is zero.  

Finally, the combination of efficacious responses and identification failure responses 

at zero may overestimate efficacy even if neither of the extreme conditions are met. In this 

situation the proportion of efficacious responses at zero and the proportion of identification 
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failure responses at that SPE sum to greater than efficacy, in which case efficacy is 

overestimated and guessing is underestimated by this measure.  

To investigate whether or not these undesirable conditions are present in an RSVP 

experiment similar to our own, we used data from the two-stream single-target condition of 

Goodbourn and Holcombe (2015). The experiments described in the current thesis involve 

multiple simultaneous RSVP streams, one of which is cued at one point in time. In 

Goodbourn and Holcombe’s two-stream single-target condition, participants saw two RSVP 

streams, one of which was cued with a white ring indicated the target letter. The analyses 

reported in that paper for this condition analysed responses based on the spatial position of 

the cued stream in order to investigate potential spatial asymmetries in selection. However, 

there were no effects of spatial position on the efficacy, latency or precision of selection. We 

therefore collapsed the streams together and analysed the distribution of selections in the 

cued stream, regardless of the spatial position of that stream on particular trials. This is the 

same analysis we use in the present experiments. 

The proportion of efficacious and identification failure responses at zero can be 

estimated by fitting a mixture model to the SPE data. Doing so allows us to investigate 

whether SPE = 0 is a conservative measure of efficacy in a dataset that is independent of 

the data used in the present experiments. After fitting mixture models to the Goodbourn and 

Holcombe data, we looked at the proportions of the efficacious and identification 

components of the mixture corresponding to an SPE of 0. The proportion of the efficacious 

distribution at SPE = 0 for each participant was, on average, 0.44 (SD = .1, min = .2, max = 

.7). The proportion of the total number of identification failures at 0 was 0.042 for each 

participant. The proportion at zero is the same for each participant because they each 

observed the same distribution of cue times (Goodbourn and Holcombe, 2015). Summed, 
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the proportions of estimated efficacious responses and estimated identification failures at an 

SPE of zero did not exceed efficacy for any participant in this experiment.  

The majority of responses at zero are, according to this analysis, efficacious and any 

non-efficacious responses represent only a proportion of the total non-efficacious distribution 

for each participant. Summing the proportion of efficacious and non-efficacious responses at 

an SPE of zero does not overestimate efficacy for any of the participants in this analysis. 

The conditions necessary for using the proportion of SPEs of zero as a conservative 

estimate of efficacy are met. 

The complement of this conservative estimate of efficacy, 1 - p(SPE = 0), is a liberal 

estimate of non-efficacious responding. That is, while this allows us to account for the fact 

that not all responses are likely to be non-efficacious, it does not underestimate the rate of 

non-efficacious responding.  

Given a particular participant’s efficacy (the proportion of trials where SPE = 0), we 

assume that the probability of a non-efficacious response with an SPE of -1 was 

p(SPE=-1|non-efficacious) * (1 - p(SPE = 0)). For each participant, we generated a binomial 

distribution predicting SPEs at - 1 with this proportion. From this distribution we calculated a 

p-value for the observed count of -1 SPEs. The p-value is the proportion of the binomial 

distribution with a count equal to or greater than the observed count, given that the 

probability of an SPE at -1 is that expected by identification failures. 

2.3.2 Model comparison and binomial analysis of data from Goodbourn and 

Holcombe (2015) 

As discussed in the introduction, Goodbourn and Holcombe (2015) modelled their 

participants’ SPE distributions (generated in a task with two simultaneous RSVP streams) 

with a Gaussian-uniform mixture. The mixture model parameter estimates produced by 
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maximum likelihood estimation resulted in the appearance that the efficacious distribution 

contained a substantial proportion of items presented before the cue. However, it is not clear 

if the Gaussian mixture best fits the data. It may be that the efficacious distribution is not 

characterised by symmetry and some proportion of pre-cue items, but instead is skewed and 

post-cue. We hypothesise that attentional selection will result in a distribution with these 

qualities, represented by our gamma-uniform mixture model. To investigate whether 

buffering (the Gaussian mixture) or attentional selection (the gamma mixture) best explain 

these data, we fit the mixture models to the single target condition of Goodbourn and 

Holcombe’s (2015) Experiment 1.  

In this condition, participants saw two RSVP streams at a rate of 12 items/second. 

On each trial, one stream was cued with a white ring and participants were instructed to 

report this letter. We chose this condition over the others because the other conditions in this 

experiment involved simultaneous selections when two cues were presented and thus 

attention was divided over two locations, but in this condition attention was cued to a single 

location. The temporal characteristics of selection were found to be the same in the 

dual-target condition. However there is an efficacy deficit in the rightmost or inferior stream 

with two targets, depending on the spatial arrangement (Goodbourn & Holcombe, 2015). To 

analyse a condition in which the probability of an efficacious selection is high, which provides 

more data for the efficacious distribution fitting, we chose the condition without divided 

attention.  

There were 26 participants (5 psychophysically-experienced) in this condition. 

Because Goodbourn and Holcombe (2015) found no spatial effects in this condition, we 

ignored the spatial location of the cue and collapsed the SPE data from the left or right 

stream into a single stream. We fit the buffering and attention mixture models and analysed 

the frequency of responses with SPEs of -1 with the binomial test.  
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The SPE distributions of twenty-three participants were best fit by the Gaussian 

mixture model, indicating buffering, one participant’s SPE distributions was best fit by the 

skewed gamma mixture model, and two participants’ SPE distributions were favoured by 

neither model. Thus, the majority of participants in this experiment, who produced data 

interpreted by Goodbourn and Holcombe (2015)  as evidence for a buffer, had SPE 

distributions that were symmetric rather than skewed, one quality associated with buffering.  

Likewise, 19 of the 26 participants had more responses with an SPE of -1 than could 

be explained by identification errors. The binomial test for these participants yielded p-values 

ranging from 1.4 x 10​-13​ to .02. This suggests that these participants responded with letters 

represented in a buffer, because their reports of stimuli from before the cue were more 

frequent than expected under identification failures. The remaining participants had p-values 

ranging from .12 to .62. 

The results of this analysis indicates that participants in Goodbourn and Holcombe 

(2015) did indeed produce SPE distributions likely reflecting buffered information. The 

distributions were largely symmetric, with the exception of one participant, and the majority 

of participants had more SPEs of -1 than could be accounted for by a liberal estimate of the 

incidence of identification failures.  

2.4 Experiment 1: Many RSVP Rates 

We believe that the mixture modelling procedure can recover the temporal properties 

of efficacious selections while accounting for those responses that result from identification 

failures. To test this, we employ a manipulation that increases identification errors and thus 

should result in changes in the efficacy estimates but no changes in the temporal 

parameters. Changes in efficacy could result in changes in the temporal estimates of the 

model (latency and precision) if responses that are identification errors are modelled as 
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efficacious by the model fitting procedure. To affect efficacy, we alter the rate of 

presentation. 

This chapter also constitutes a test that the latency and precision values estimated by 

the mixture modelling procedure are temporal, rather than item based. One theory of 

attentional selection in RSVP states that all stimuli are processed to a conceptual level, and 

that attention operates on these item-based representations (Chun & Potter, 1995). That is, 

the deployment of attention occurs on a scale defined by items (and thus serial positions) 

rather than being truly temporal. In this case, changing the presentation rate should result in 

selection of the item at the same serial position across different presentation rates. If 

however, selection is temporal rather than based on item serial position, changing the 

presentation rate should result in selection at a constant time across the different rates.  

Manipulating the rate of presentation should affect the rate of identification errors, but 

the temporal properties of selection should not differ. Bowman and Wyble (2007) 

manipulated the rate of presentation in an RSVP task with two targets to investigate the time 

course of the attentional blink, a reduction in the probability of reporting the second of two 

RSVP targets if the first target was presented 200 to 500 ms prior and successfully reported. 

They presented stimuli at SOAs of 54 ms or 94 ms and found that the millisecond time 

course of the blink, which is thought to result from changes in the ability to deploy attention 

over time, was steady across presentation rates. However the accuracy of selection was 

poorer for the faster presentation rate. Vul, Hanus and Kanwisher (2008) found that correct 

identifications of the first target in an attentional blink paradigm are less frequent at a fast 

presentation rate (60 ms/item) relative to a slower rate (120 ms/item), but the center of mass 

of the temporal distribution of reports was the same. The Vul, Hanus and Kanwisher (2008) 

measure of the centre of mass is based on measuring the probability of reports within a fixed 

temporal window around the target. However, this analysis - which does not control for 
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identification failures - has been shown to produce different estimates of the temporal 

qualities of selection in the AB for the second target, relative to mixture modelling 

(Goodbourn et al., 2016). 

Thus, we expect that manipulating the presentation rate of RSVP streams should 

result in decreases in efficacy as the presentation rate increased. There should be no 

change in latency or precision of selection, because these variables correspond to the timing 

properties of visual selection and should be constant regardless of the probability of an 

efficacious selection.  

Temporal, rather than item-based, selection in RSVP also could help answer an 

effect observed by Botella and Eriksen (1991) regarding the symmetry of SPE distributions. 

The presence of symmetric distributions of SPEs around the target has been interpreted as 

evidence for parallel processing of the cue and target  (Botella & Eriksen, 1992; Broadbent & 

Broadbent, 1986; Gathercole & Broadbent, 1984; McLean et al., 1983). However, Botella 

and Eriksen (1991) observed that the pattern of SPEs for selections from a single stream 

shifted from symmetric around the target to post-target with increases in presentation rate. 

This according to the literature on parallel processing, should be interpreted as a shift in 

strategy, but participants did not know the presentation rate prior to each trial and thus could 

not have changed their strategy accordingly.  

Botella and Eriksen’s (1991) result suggests that we may observe skew when the 

presentation rate increases. They did not propose a reason for their effect. It may be that 

slow presentation rates provide coarse temporal information, which obscures skew in the 

data. However, Botella and Eriksen (1991) analysed their data in terms of SPEs rather than 

milliseconds and this may explain why they interpreted their results as demonstrating 

evidence for skew. They considered there to be evidence for a symmetric distribution when 

the proportion of SPEs from before the target was not significantly different from the 
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proportion from after the target. However, their results are consistent with a mean latency of 

selection in time, rather than in SPEs, that is positive and does not change with the 

presentation rate. For slow presentation rates, the latency of selection may coincide with the 

target. As presentation rates increase, attentional selection with an unchanged temporal 

latency may select a later item. This would lead to a greater proportion of post-target reports 

than pre-target reports with faster presentation rates - a phenomenon that Botella and 

Eriksen (1991) interpret as evidence for skew. We compare model fits for the skewed 

gamma mixture and the symmetric Gaussian mixture and analyse our latency estimates in 

milliseconds rather than SPEs to assess whether there is evidence for a change in symmetry 

as the presentation rate increases.  

2.4.1 Method 

Participants. ​The data were collected by Patrick Goodbourn in 2012, and comprised 

six psychophysically-experienced participants including Patrick Goodbourn himself and Alex 

O. Holcombe.  

Stimuli​. Participants viewed two streams consisting of white 4º high Menlo letters on 

a black background. The streams were presented above a central fixation point (a 0.125º 

radius white circle) at eccentricities of 6.0º with a center-to-center distance of 6.0º between 

streams. The cues were 4.5º diameter white circles with line widths of 0.1º centered on the 

streams. The streams were random samples of the alphabet with no repeats and the letters 

V and N removed.  

Stimuli were presented at one of four rates: 6, 8, 12 or 24 items/second, 

corresponding to SOAs of 166.67, 125.00, 83.33 and 41.67 ms, respectively. Each stimulus 

was presented for two-thirds of the SOA for that trial, with a one-third SOA blank period 

between stimuli.  
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Procedure. ​The program instructed participants to maintain their gaze on the fixation 

point and report the letters that were cued by the white ring on each trial. The onset of the 

ring cues were always simultaneous and their serial position on each trial was a sample from 

a uniform distribution bounded at 7 and 18. 

After the streams had completed for a particular trial, participants saw the stimuli 

presented on each trial vertically arrayed on the left and right of fixation in alphabetical order. 

These were response arrays and participants clicked on the letter they wished to report for 

that trial. One side was randomly chosen to query first by presenting it in high contrast, while 

the array on the opposite side was presented in low contrast and could not be clicked on.  

Design. ​Trials with a particular rate were blocked in sets of 100 trials. Participants 

completed one block of each rate and performed the blocks in a random order. 

2.4.2 Results 

Model Comparison​. There was very little change in the model favoured by the data 

as the presentation rate increased. Most participants produced data that were favoured by 

the Gaussian mixture model. More of the fits were ambiguous when stimuli were presented 

at a rate of six items/second than in faster conditions.  

Table 6 

The number of fits favouring each type of model by rate and stream. “Neither” refers to a 
Bayes factor between .33 and 3. 

Rate Stream Gaussian Gamma Neither 

6 Items/second Left 3 0 3 

6 Items/second Right 2 1 3 

8 Items/second Left 5 0 1 

8 Items/second Right 4 0 2 

12 Items/second Left 5 0 1 
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12 Items/second Right 4 1 1 

24 Items/second Left 4 0 2 

24 Items/second Right 4 1 1 

 

Parameter Estimates 

Efficacy​. The descriptive statistics for the estimates of efficacy, the probability of a 

response informed by the cue, from the Gaussian model are presented in Table ​7 ​and 

Figure ​8​. To investigate whether efficacy decreased as rate of presentation increased, we fit 

a series of linear models using the BayesFactor package in R (Morey & Rouder, 2018). 

These models estimated the relationship between efficacy and stream (left or right) and rate, 

with random intercepts by participant. After fitting the models, we computed inclusion Bayes 

factors for each independent variable. An inclusion Bayes factor for a particular variable 

compares the likelihood of the observations under models including that variable to the 

likelihood under those models in which the variable was absent, a form of Bayesian model 

averaging (Hinne, Gronau, van den Bergh, & Wagenmakers, 2019). The inclusion Bayes 

factor is a ratio of these likelihoods, where values greater than one indicate evidence for a 

particular variable, and values less than one indicate evidence against it.  

The inclusion BFs favour a difference in efficacy between streams, the left stream 

has a higher efficacy than the right (BF​10​ = 9.45 x 10​10​) - this is Goodbourn and Holcombe’s 

(2015) pseudoextinction effect. Likewise, There is a decrease in efficacy as the rate of 

presentation increases (BF​10​ = 10047.9). These factors do not interact (BF​10​ = 0.18). The 

Bayes factor for their interaction is less than 1, indicating evidence for the null.  

Table 7     

Descriptive statistics for efficacy by rate and stream position 

Rate Left Mean (SD) Right Mean (SD) 
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6 Items/Second 0.92 (0.03) 0.77 (0.11) 

8 Items/Second 0.86( 0.03) 0.72 (0.18) 

12 Items/Second 0.78 (0.07) 0.62 (0.07) 

24 Items/Second 0.53 (0.11) 0.27 (0.18) 

 

 

Figure 8. ​Efficacy estimates for the different rate conditions. The small points represent the data. The 

larger points with error bars are the means±SE. Efficacy decreases with faster presentation rates and 

the left stream is more efficacious than the right, but these factors do not interact.  

Latency​. The data for Latency, the mean timing of efficacious selections relative to 

the onset of the cue, were consistent with the null hypothesis of no change as the rate of 

presentation increased. Descriptive statistics for the latency estimates are presented in 

Table 8 and the data are presented in Figure 9. We fit the same kind of models as those 

described in the efficacy analyses, but this time latency, in milliseconds was the dependent 

variable. Inclusion Bayes factors for the predictors in the models indicated that the data 

favoured no effect for rate (BF​10​ ​= 0.43). or the interaction between rate and stream (BF​10​ ​= 
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0.45). However the inclusion Bayes factor for the effect of stream is close to one (BF​10​ = 

1.21), indicating that the present data do not allow us to distinguish between the null and 

alternative hypotheses for this effect.  

Table 8 

Descriptive statistics for the latency estimates in milliseconds 

Rate Left Mean (SD)  Right Mean (SD) 

6 Items/Second 25.54 (35.90) 46.13 (38.96) 

8 Items/Second 39.78 (32.40) 52.41 (24.65) 

12 Items/Second 45.39 (32.28) 67.32 (73.54) 

24 Items/Second 56.64 (46.91) 58.31 (53.32) 

 

Figure 9​. Latency estimates for the different rates and streams. Latency does not vary as the rate of 

presentation increases. 

Precision.​ Precision estimates are presented in Table 9 and Figure 10. Inclusion 

BFs demonstrated that the data were consistent with no change in the rate of presentation 
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(BF​10​ = 0.37) and no effect of the position of the stream (BF​10​ = 0.29). However, the Bayes 

factor for the interaction between these variables is close to 1 (BF​10 ​= .85), so we cannot 

draw any conclusions about the interaction between rate and stream in this experiment. 

Table 9 

Descriptive statistics for the precision estimates in milliseconds 

Rate Left Mean (SD)  Right Mean (SD) 

6 Items/Second 53.6 (8.88) 61.15 (41.12) 

8 Items/Second 60.67 (10.38) 60.88 (9.67) 

12 Items/Second 65.13 (19.35) 94.02 (77.27) 

24 Items/Second 82.22 (28.58) 51.19 (12.97) 

 

 

Figure 10.​ Precision estimates for the different rates and streams. The large points and error 

bars are means ±SE. The small points are the individual estimates. 
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2.4.3. Discussion 

As expected, efficacy decreased as the rate of presentation increased, but latency 

and precision - estimates of the temporal properties of selection in this task - did not change. 

Likewise, the extent to which the Gaussian mixture model was favoured by participants’ data 

did not depend on the rate of presentation in any systematic fashion.  

The results of this study confirm that the latency and precision estimates of the 

mixture model reflect the temporal dynamics of selection rather than the selection of stimuli 

based on their serial position, as might be predicted by Chun and Potter (1995). Selection 

occurs based on time. Estimates of latency, the mean time of efficacious selections, were 

more likely under the null hypothesis than the alternative when compared across 

presentation rates. The temporal estimates were also steady as the rate of efficacious 

selections changed, demonstrating that the mixture modelling procedure can distinguish 

between efficacious reports and identification errors. 

We also demonstrated that for the participants whose data were favoured by either 

the Gaussian or the gamma mixtures, there was not more evidence for skewed SPE 

distributions as the presentation rate increased. This is inconsistent with Botella and 

Eriksen’s (1991) observations. However we analyse our data in terms of time (milliseconds) 

rather than SPEs and observe that the latency of efficacious selections is steady across 

presentation rates. This suggests that Botella and Eriksen’s (1991) data do not indicate 

changes in the shape of the SPE distribution, but instead represent the fact that if the latency 

of selection is steady and positive, increasing the presentation rate will result in the selection 

of items with a greater SPE.  
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2.5 Summary 

In this chapter, we outline a mixture modelling procedure for identifying the different 

temporal distributions of responses predicted by buffering and attention shifts. We also 

outlined a procedure for testing the frequency of a particular SPE, relative to the frequency 

expected when participants make identification failures. These tests reveal evidence for 

buffering in data from Goodbourn and Holcombe (2015). SPEs of -1 in these data were more 

frequent than expected based on identification failures, and the shape of the efficacious 

distribution was symmetric - both qualities associated with buffering. We also show that the 

latency and precision estimates of the mixture model are temporal, because they are robust 

to changes in efficacy. 
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Chapter 3: Endogenous and Exogenous Cues 
 

The literature on attentional effects in vision distinguishes between different sources 

of attentional orienting. Attentional orienting can be elicited reflexively by a stimulus or 

voluntarily directed by an observer. One difference between these processes for deploying 

attention - named exogenous and endogenous attention, respectively - is their timing. 

Exogenous attention is often observed to be faster than endogenous attention. In Chapter 2, 

we demonstrated that the mixture modelling procedure reliably estimates the temporal 

qualities of selection in RSVP. In the present chapter, we investigate endogenous and 

exogenous attention shifts in RSVP and use mixture modelling to assess the efficacy, 

latency and precision of selection in response to such cues.  

Comparisons between endogenous and exogenous attention in RSVP are rare, we 

have found no statistical comparisons. The majority of investigations of the time course of 

endogenous attention shifts have been cue-target lag studies, where the time between a cue 

and a static stimulus is varied (Cheal & Lyon, 1991; Liu et al., 2007; Müller & Rabbitt, 1989; 

Nakayama & Mackeben, 1989). This has provided valuable information about the time 

course of attentional enhancement. However, as we have noted, cue-target lag studies 

provide cumulative distributions of attentional timing. RSVP may also reveal phenomena not 

observed with cue-target lag. Goodbourn and Holcombe (2015) observed efficacious 

selections from RSVP streams that included items from before the cue - a phenomenon that 

cue-target lag studies do not observe.  

Endogenous shifts of attention are named such because they are believed to be 

voluntary. To elicit an endogenous shift, researchers often train participants to interpret a 

central symbolic cue - such as an arrow - that indicates the location of an upcoming 

peripheral target stimulus with some probability. To attend to the target stimulus, the 

observer must interpret this stimulus, which provides only symbolic information about the 
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target’s location, and voluntarily shift their attention to the cued location. When a symbolic 

cue indicates the location of a target stimulus, responses are faster and more accurate than 

when the cue indicates the wrong location or the cue is uninformative about the target’s 

location (Cheal & Lyon, 1991; Cheal, Lyon, & Hubbard, 1991; Eriksen & Yeh, 1985; 

Giordano et al., 2009; Ling & Carrasco, 2006; Müller & Rabbitt, 1989; Posner, 1980).  

Key evidence for the voluntary nature of shifts in response to symbolic cues comes 

from manipulations of the probability that the cue indicates the location of a target stimulus, 

known as cue validity. Participants appear to allocate endogenously oriented attention based 

on the validity of the cue. More valid cues lead to faster processing at the cued location 

relative to less valid cues, as demonstrated by reaction times (Eriksen & Yeh, 1985; 

Madden, 1992; Vossel, Thiel, & Fink, 2006) and speed-accuracy tradeoff analyses 

(Giordano et al., 2009). Increasing validity is also associated with greater costs if the target 

appears at an uncued location (Eriksen & Yeh, 1985; Giordano et al., 2009; Vossel et al., 

2006).  

Exogenous shifts of attention indicate no such effects of validity. Instead, they appear 

to be reflexive. To elicit an exogenous shift of attention, a rapidly appearing (Remington et 

al., 1992; Yantis & Jonides, 1984) stimulus is presented at the location of the target stimulus. 

This stimulus yields, like endogenous attention, faster reaction times and improved accuracy 

at the cued location (Cheal & Lyon, 1991; Cheal et al., 1991; Ling & Carrasco, 2006; Müller 

& Rabbitt, 1989; Nakayama & Mackeben, 1989; Remington et al., 1992). However, unlike 

endogenous cueing, the exogenous cueing effect does not appear to be under participants’ 

control. Nakayama and Mackeben (1989) demonstrated that the cue-target lag of an 

exogenous cue still affected visual search performance when participants already knew the 

location of the target. Manipulating exogenous cue validity produces no change in the effect 

of the cue on the speed of information accrual or signal sensitivity (Giordano et al., 2009). 
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Even when exogenous cues are uninformative about the location of a target stimulus (50% 

validity), cueing a stimulus location with an exogenous cue still causes improvements in 

contrast thresholds (Pestilli & Carrasco, 2005), acuity (Montagna, Pestilli, & Carrasco, 2009), 

and the speed and accuracy of orientation judgements (Liu, Pestilli, & Carrasco, 2005). This 

advantage is reflected in the larger magnitude of the fMRI response to cued stimuli with an 

uninformative cue (Liu et al., 2005). These results indicate that exogenous cueing is 

reflexive, participants cannot ignore exogenous cues based on the probability that they are 

informative. 

Much of the literature on exogenous and endogenous attention has concentrated on 

their speed, measured by changes in performance with different lags between a cue and a 

subsequently presented static stimulus, such as a visual search array or Gabor patch. 

Endogenous cueing effects require a longer cue-target lag than exogenous cues. For 

endogenous cues, participants’ accuracy reaches its maximum when a valid cue is 

presented around 300 ms before the target stimulus (Cheal & Lyon, 1991; Liu et al., 2007; 

Müller & Rabbitt, 1989). Exogenous attention, on the other hand, seems most effective when 

the cue precedes the target stimulus by around 120 ms (Cheal & Lyon, 1991; Folk et al., 

1992; Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989; Posner & Cohen, 1984; 

Remington et al., 1992). 

The cue-target lag studies, in which the cue precedes the target stimulus by some 

lag, hints at the distribution of attentional arrival times. However, as discussed in Chapter 1, 

changes in performance with different cue-target lags tell us only that attention arrived at the 

cued location at or before the target on some set of trials. This is further complicated by 

exogenous attention’s transient nature. Accuracy reduces after the peak at around 120 ms 

as cue-target lags increase, indicating that attention arrives at the cued location and then 

disengages (Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989). 
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RSVP studies, in which participants view a sequence of stimuli and select one for 

report based on some targeted feature, yield more insight into the timing of attention 

because the time at which a reported item was presented likely reflects the timing of 

attention on that trial. Weichselgartner and Sperling (1987) assessed the timing of 

exogenous selection from a single RSVP stream in which the cue was the presentation of a 

brightened letter or the appearance of a square around the stream. Participants in this task 

reported four stimuli from the stream, but the earliest reported stimulus can be taken as a 

measure of the attentional arrival time. The earliest reports tended to come from the cued 

stimulus, suggesting an attentional latency that was between 0 ms and 80 ms. Reeves and 

Sperling (1986) assessed selection latencies in a similar paradigm, but with an endogenous 

cue. In their task, participants monitored one peripheral RSVP stream for the onset of a 

target, then shifted their attention to another stream and reported four stimuli. This resulted 

in selection latencies of around 300ms, a result replicated by a control condition in 

Weichselgartner and Sperling (1987). Unfortunately, Weichselgartner and Sperling (1987) do 

not report statistical tests comparing exogenous and endogenous attention shifts.  

These experiments provided insight into attentional selection latencies in RSVP, but 

they did not separate out the contribution of identification failures to the SPE distribution. 

Identification failures, responses where participants misidentified a selected letter or made a 

guess because they did not detect the cue, contaminate the SPE distribution because they 

result in responses of items from an almost-uniform range of times relative to the cue 

(Goodbourn & Holcombe, 2015). In the current experiments we used RSVP and mixture 

modelling to account for the contribution of identification errors. In doing so we can also 

estimate the temporal properties of endogenous and exogenous selection, as well as the 

efficacy of the different cues.  

        67 



Investigations of the way in which endogenous attention can result in temporal 

selection in RSVP are rare. We have already mentioned Reeves and Sperling (1986) and 

Weichselgartner and Sperling (1987), in which participants reported several stimuli after an 

exogenous or endogenous attention shift. However because the SPE distributions in these 

tasks were not mixture modelled, it is unclear what the efficacy, latency and precision of 

selection were under these conditions. In an RSVP task with a central cue, Du and Abrams 

(2010) used an investigated voluntary attentional orienting during the attentional blink, but 

only measured participants’ accuracy for reporting the second of two RSVP targets located 

in the same stream and did not report temporal measures of selection.  

In this chapter, we investigate the temporal properties and efficacy of endogenous 

and exogenous cued selection from one of several RSVP streams. Such an investigation 

matters because the majority of RSVP research uses exogenous cues such as a cue that 

surrounds the target (i.e. Goodbourn & Holcombe, 2015; Vul & Rich, 2010; Weichselgartner 

& Sperling, 1987) or does not model the SPE distributions from endogenous selection in a 

manner that accounts for efficacy. Furthermore, investigations of endogenous attention’s 

temporal property typically use a static target stimulus - like a visual search array -  and 

manipulate cue-target lag such that the time of attentional selection on a particular trial is 

unclear (i.e. Cheal & Lyon, 1991; Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989).  

3.1 Method 

Participants: ​Participants were seven psychophysically-experienced observers (five 

graduate students, one professor, and one undergraduate), including the author of this 

chapter and his supervisor. Due to a computer error, data for one participant in the 

endogenous condition were lost. This participant was excluded from the analysis, leaving six 
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participants with complete data. The sample size was not based on power calculations or a 

Bayesian stopping rule, and was instead determined by the availability of participants. 

Stimuli:​ Stimuli were 26 Arial letters, the tallest of which were 3º of visual angle high. 

There were six simultaneous RSVP streams in this experiment. Each stream was made up 

of a random sequence of the letters of the alphabet, with no repeats. The order of items 

within a stream was a random shuffle on each trial.  The streams were presented equally 

spaced around an imaginary circle, centered on a fixation, with a radius of 6º. The fixation 

point was also a circle and subtended 0.62º.  

The streams were presented at a rate of approximately 15Hz. Every stream 

appeared and was updated synchronously with the others. The monitor refreshed at a rate of 

60Hz. Each letter in the stream was presented for three monitor refreshes (50 ms), followed 

by a blank of one monitor refresh (16.67 ms) before the onset of the next stimulus. The 

target item was indicated by the onset of a cue (described below), which was simultaneous 

with the onset of the target item and indicated its position.  

In endogenous trials, the cue was a red pixel (RGB: 255,0,0), 0.03º in diameter, 

presented 0.07º from the center of the fixation point in the direction of the stream containing 

the target. Its duration was the same as a frame of the stimuli, 50 ms. 

In exogenous trials, the cue was a circle with a diameter of 5º and a line-width of .07º 

presented centred on the target letter so that it surrounded it. Its duration was the same as a 

frame of the stimuli, 50 ms. 

Apparatus: ​Participants viewed the stimuli from a distance of 57 cm in a darkened 

room. Stimuli were presented on a Mitsubishi Diamond Pro 2070SB CRT monitor at a 

resolution of 1024 x 768. The width of the monitor was 40.5 cm and its refresh rate was 60 

Hz. The central fixation point was presented at the centre of the screen, 512 pixels below 
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and 384 pixels to the right of the top left corner of the screen. This experiment was not 

eyetracked 

Procedure: ​Participants were told to maintain fixation on the point at the center of 

the screen and report the cued item on each trial. They were instructed that the cue 

designating the target would either be a circle around the letter, or a small point at fixation 

offset in the direction of the target item. On each trial, participants first saw the fixation point. 

After a random interval between 300 ms and 800 ms, the RSVP streams appeared and 

began the sequence. The cue appeared at a random interval of 7 to 11 serial positions (467 

to 733ms) from the start of the trial. The cued stream was randomly chosen on each trial. 

At the end of each trial, the alphabet was horizontally arrayed on the screen, and the 

participant had to select the cued letter with the mouse. 

Design: ​There were two conditions in this experiment: endogenous and exogenous. 

Each participant was presented with both conditions, which were blocked. Each condition 

consisted of 200 trials. Each of the possible temporal positions of the cue occurred 40 times 

in each condition, with the trial order of temporal positions random.  

Analysis:​ We fit two mixture models, a gamma mixed with a windowed-uniform 

model and a Gaussian mixed with a windowed-uniform model, to each participant’s SPE 

data in each condition. The first 20 trials were not included in the analyses because the early 

trials are likely to reflect changes in participants’ ability to perform the task. The model fitting 

was performed in R (R Core Team, 2019) with maximum-likelihood estimation using a 

custom package (​https://doi.org/10.5281/zenodo.3545085​).  

We compared model fits for each set of SPEs using Bayes factors estimated from the 

Bayesian Information Criterion for each model (Wagenmakers, 2007 Eq. 10). The Bayesian 

Information Criterion allows us to estimate the Bayes factor with an uninformative prior over 
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the model parameters (Raftery, 1999; Wagenmakers, 2007). The Bayes factor provides the 

ratio of the weight of the evidence for each model in the data and thus can be used for 

model comparison. We will refer to Bayes factors that were greater than 3:1 favouring either 

model as providing evidence for one of the models. Those that do not exceed 3:1 in favour 

of either model we will describe as providing equivocal evidence.  

We compared the parameter estimates between conditions using paired Bayesian 

t-tests with a JSZ prior on the effect size (Rouder, Speckman, Sun, Morey, & Iverson, 2009) 

using the BayesFactor package (Morey & Rouder, 2018) in . 

3.2 Results 

Model Fits. ​For the exogenous cue, four of the six participants produced SPE 

distributions that were best fit by the symmetric, Gaussian mixture model. One participant in 

this condition produced data that were best fit by the skewed, Gamma model, and one 

participant produced data that did not favour either model. 

For the endogenous cue, three participants produced data that were best fit by the 

Gaussian model, two participants were best fit by the Gamma model, and one participant’s 

data did not favour either model. 
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Figure 1. ​ SPE histograms for the six participants who had data from both conditions. The best-fitting 

efficacious distribution is shown, scaled to near the height of the histograms. In instances where the 

data did not favour either model, we plot both efficacious distributions. 

Parameter estimates. ​We report the parameter estimates for the Gaussian model 

here, but the direction of the differences in estimates between conditions do not change 

when the estimates of the Gamma distribution are reported.  

Efficacy. ​Efficacy, the probability of making a response informed by the successful 

identification of the cue (as captured by the gamma or Gaussian distribution), was 

substantially lower for the endogenous condition (M = .61, SD = .10) than for the exogenous 

condition (M = .82, SD = .07, BF​10​ = 19.08) 
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Figure 2. ​ Efficacy estimates for the different kinds of cue. The yellow points represent individual 

participants’ estimates. The dark points and error bars represent mean ± SE. Participants are less 

likely to make an efficacious selection with an endogenous cue than an exogenous cue. 

Latency. ​The mean time of a reported efficacious item was much later when 

participants selected items in response to an endogenous cue (M = 212.0 ms, SD = 47.6 

ms) than with an exogenous cue (M = 58.2 ms, SD=28.2 ms, BF​10​ = 334.90) 
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Figure 3. ​ Latency estimates for the different kinds of cue. Efficacious responses come from a later 

point in time, relative to the cue’s onset, with an endogenous cue than with an exogenous cue. The 

yellow points represent individual participants’ estimates. The blue points and error bars represent 

mean ± SE. 

Precision. ​The distribution of efficacious selections was broader in the endogenous 

condition – precision, the standard deviation of efficacious selections, was greater (M = 

109.0 ms, SD = 28.4 ms) than for the exogenous condition (M = 56.2 ms, SD = 9.3 ms, BF​10 

= 12.5)  
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Figure 4. ​ Precision estimates for the two cues. Efficacious responses are less variable with an 

exogenous cue than with an endogenous cue. The yellow points represent individual participants’ 

estimates. The dark points and error bars represent mean ± SE. 

Binomial Analysis. ​We used the binomial analysis to assess the extent to which 

either cue led to efficacious selections of items presented prior to the target. In the 

exogenous condition, two participants produced more selections of items with an SPE of -1 

than could be explained by non-efficacious responses, p = 5.6 x 10​-13​ and .007. The same 

two participants had more selections with an SPE of -1 than expected by non-efficacious 

responding in the endogenous condition as well, p = .01 and .049.  

3.3 Discussion 

Exogenous cueing of an RSVP stream is more likely to result in an efficacious 

selection than endogenous cueing. When participants make an efficacious selection, they 

are faster and less variable in time with an exogenous cue than an endogenous cue. The 

data do not indicate not much change in the shape of the efficacious distribution when 
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participants select an item with an endogenous cue. Only one more participant 

demonstrated a skewed efficacious distribution with an endogenous cue than an exogenous.  

This is the first comparison of the latency and precision of endogenous and 

exogenous cueing in RSVP with a procedure that accounts for failures to detect the cue or 

identify a relevant stimulus. As we predicted, the latency of endogenous cueing was greater 

than that of exogenous cueing, consistent with previous observations that endogenous 

attention takes longer to orient to a cued location than does exogenous attention (Cheal & 

Lyon, 1991; Müller & Rabbitt, 1989).  

Endogenous cues are less likely to result in an efficacious selection than exogenous 

cues. This effect mirrors the observations by Müller and Rabbitt (1989) and Cheal and Lyon 

(1991) that exogenous cues lead to a higher peak accuracy than endogenous cues when 

locating a target. We believe that the reflexive nature of exogenous attention shifts and the 

voluntary nature of endogenous shifts explain this. Upon detection of the exogenous cue, 

participants involuntarily shift attention to the cued location (Giordano et al., 2009; Müller & 

Rabbitt, 1989; Pestilli & Carrasco, 2005). On the other hand, the detection of an endogenous 

cue is not a sufficient condition for an endogenous attention shift. Participants must interpret 

the cue - in this experiment a judgement about where the line is pointing - and make a 

voluntary shift of attention to the cued location. These additional steps may fail, resulting in 

the reduction in efficacy observed in this experiment.  

The attentional latency estimates reported here are smaller than those reported in a 

test of exogenously- and endogenously-cued attention with many simultaneous dynamic 

stimuli. The participants in an experiment by Carlson, Hogendoorn and Verstraten (2006) 

viewed 10 clock faces arranged in a circle, much like our six RSVP streams, each with a 

rotating hand. One of these was cued with an endogenous cue (a central line) or an 

exogenous cue (a change in colour), and participants reported the orientation of the hand at 
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the time of the cue. Exogenous and endogenous cueing resulted in mean latencies of 140 

ms and 250 ms respectively - almost double the latency estimates observed in our 

experiment. The increased latency of selection with the clock hands relative to RSVP 

streams is likely related to the continuous movement of the clock hands. When participants 

must select from a stream of temporally autocorrelated stimuli, like a smoothly changing 

clock hand, attentional selection latencies are longer than when those stimuli change 

randomly, as in RSVP (Callahan-Flintoft et al., 2019).  

Precision, the variability of attentional selection in time, has not received much 

attention in the literature. Using the same clock stimuli as Carlson, Hogendoorn and 

Verstraten (2006), Hogendoorn et al. (2010) found that when participants had to monitor six 

simultaneous clocks for the onset of a cue, precision was approximately 120 ms 

(Hogendoorn et al, 2006, Figure 2). When participants make an identification error, their 

responses have a uniform distribution. This means that attempts to estimate precision 

without accounting for identification failures will overestimate precision, such that selections 

appear more variable than they are when identification failures are accounted for. This 

means that Hogendoorn et al.’s (2006) precision estimates are overestimates, because they 

represent variance in both identification failures and efficacious selection, as the authors 

note. Weichselgartner and Sperling (1987) briefly note that the timing of an endogenous shift 

of attention from one RSVP stream to another typically has a standard deviation of 100ms. 

This estimate also fails to account for efficacy and thus is an overestimate.  

Here, accounting for identification failures, we find a wider precision - more temporal 

variance - with an endogenous cue than an exogenous cue. The wider variance of 

efficacious responses in the endogenous condition matters, because increasing the range of 

possible selection times means than endogenous selection more likely to result in a very 

delayed selection, one that misses a target in our task. The cueing stimulus within a 
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condition was the same across trials, with minor differences in foveal location. Thus changes 

in precision estimates correspond to the effect of internal noise in the process of identifying 

the cue, interpreting it, and voluntarily shifting attention to the cued stream.  

Noise is a fundamental property of neural information processing (Faisal, Selen, & 

Wolpert, 2008). It appears at all levels of the visual system from the absorption of photons by 

photoreceptors (Bialek, 1987), neurons’ spiking rates (White, Rubinstein, & Kay, 2000), and 

sensory representations (Swets, Tanner, & Birdsall, 1961; Verghese, 2001). Much effort has 

been expended investigating noise in the visual system, because visual sensitivity depends 

not only on the physical properties of a stimulus, but the noise in visual processing as well 

(Pelli & Blakemore, 1990; Pelli & Farell, 1999). Investigating visual performance with a 

model that incorporates internal noise (Lu & Dosher, 1999) has provided valuable insight into 

changes in perceptual template associated with attention (Dosher & Lu, 2000a, 2000b; Lu & 

Dosher, 1998).  

Our precision estimates indicate that there is more temporal noise in endogenously 

cued attentional orienting than exogenously cued orienting, but where in processing might 

this noise occur? In the exogenous cueing condition, the location of the target is given by the 

cue, because the cue surrounds the cued stream. Endogenous cues are symbolic, and the 

location they refer to must be interpreted, as we discussed above. This interpretation time is 

likely to be the source of the additional variance in endogenous orienting we observe here. It 

corresponds to the process of making a decision about the direction indicated by the cue 

(i.e. Palmer, Huk, & Shadlen, 2005), prior to attending to the stream located in that direction. 

We believe this because we can rule out spatial errors as contributing to precision 

differences between the conditions.  

It is reasonable to expect more spatial errors with an endogenous cue than an 

exogenous. This is because the exogenous cue provides precise spatial information about 
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the cued stream - the cue appears near the cued stream. The endogenous cue, on the other 

hand, requires interpretation in order for a participant to understand which stream is cued. 

This interpretation can fail, directing attention to the wrong stream, but this would result in a 

decrement in efficacy in our study, because the order of stimuli in the uncued streams is 

randomly distributed relative to the target in the cued stream. We observe such a decrement, 

so we do not rule out the possibility that this occurred in our experiment. However it is not 

the source of the precision changes because changes in efficacy do not affect precision 

estimates, as shown in Chapter 2 of this thesis. If misdirection of attention based on an 

ambiguous cue cannot explain the precision difference, then what remains is variance in the 

time taken to interpret the cue. Thus it is variability in the decision process related to the 

endogenous cue that we believe is likely to explain this increased variance. 

Thus we propose that it is the interpretation component of endogenous attentional 

orienting that accounts for the decrease in efficacy and widening of precision in the 

endogenous condition relative to the exogenous condition, in which orienting is reflexive. 

One way in which to test the relationship between the precision of selection and cue 

interpretation is to instruct participants to make a motor response indicating the position 

indicated by the cue on a particular trial. Motor response times reflect a decision about the 

location of the cued stream - that is, cue interpretation - prior to any attempt to shift attention 

to that stream. Thus they should share variance with the attention shift to the cued location, 

which is informed by cue interpretation (Shih & Sperling, 2002).  Changes in cue 

interpretation time, which should vary between different cues, will lead to different 

correlations between SPE and motor reaction time. Shih and Sperling (2002) found small but 

positive correlations between motor reaction time to an auditory cue and the timing of 

attentional selection in response to the same cue, suggesting that endogenous attentional 

orienting and the motor decision do share some component.  

        79 



The correlations in Shih and Sperling (2002) include trials in which participants made 

identification failures. Ideally, we would correlate motor RTs and efficacious trials, but the 

mixture modelling procedure does not allow us to identify those trials that were efficacious 

and those that were not. Thus we would not be able to directly analyse the relationship 

between precision and motor RT variability. This would attenuate the correlation somewhat, 

because we would, on some trials, be associating motor RT and identification failures. 

However, such an analysis would still allow us to assess the relationship between 

interpretation and attentional selection’s variability. 
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Chapter 4: Buffering depends on the number of streams 

The brain cannot fully process all the stimuli in a busy visual scene. Therefore, 

resources must be selectively allocated to the most behaviorally relevant stimuli. We refer to 

this ability as “attention”. In this chapter we investigate a phenomenon that is hard to 

reconcile with many theories of attentional selection RSVP - reports of items from before the 

time of a cue that cannot be explained by guessing or target misidentification. These reports 

occur when there are only a few possible streams that can be cued, but not when there are 

many.  

Deploying attention in response to a cue takes time. Aspects of the time-course have 

been inferred from the timing of reported stimuli and changes in performance over cue-target 

lags. In studies that varied the time between when a cue was presented and a lone 

post-masked target, the effect of the cue-target interval on performance is interpreted as 

representing the dynamics of attentional allocation (Carrasco, 2011; Cheal & Lyon, 1991; 

Eriksen & Hoffman, 1973; Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989).  

In RSVP, stimuli are presented in rapid succession, and the time to complete an 

attention shift can be inferred from the temporal position of the stimulus reported by a 

participant on a particular trial (Reeves & Sperling, 1986). In a typical RSVP task, 

participants view a sequence of stimuli presented at a single spatial location and must report 

one item’s identity based on some target feature. For example, a stream of individual letters 

may be presented with a random letter cued by a change in color or an enclosing circle. If 

the sequence of stimuli contains no repeated letters, the time at which selection occurred 

can be inferred from the identity of the reported item. Over many trials, this method produces 

a distribution of selection errors that facilitates inferences about the timing of attentional 

selection under particular conditions (i.e Chun, 1997; Reeves & Sperling, 1986; 

Weichselgartner & Sperling, 1987). However, these inferences assume that any given 
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response was not a lucky guess - an assumption that may not be true. We will return to this 

point later.  

At least in some circumstances, a cue in an RSVP task appears to elicit reports of 

stimuli that seem inconsistent with a time-consuming shift of attention. A few researchers 

have suggested that the cue can result in participants selecting and report stimuli that were 

presented before the cue (Botella et al., 2001; Goodbourn & Holcombe, 2015; Holcombe et 

al., 2017). Such findings suggest that stimulus representations in those circumstances are 

maintained in a buffer so that they are still available when the cue is presented later. 

Storage of irrelevant stimuli, also known as incidental memory, is not surprising in 

certain circumstances. Apart from a few papers, however, the literature on selection of a 

cued item from a stream of rapidly presented stimuli has not considered a role for memory of 

items presented before the cue. Already mentioned above were the papers that took the 

temporal distribution of performance as measuring the dynamics of a shift of attention– this 

assumes that stimuli reported are not drawn from memory. More recently, a large literature 

has developed around theories of the attentional blink and other RSVP tasks involving the 

report of multiple stimuli from a stream (Broadbent & Broadbent, 1987; Dux & Marois, 2009; 

Martens & Wyble, 2010; Reeves & Sperling, 1986; Shih & Sperling, 2002; Weichselgartner & 

Sperling, 1987). Yet very few have attempted to explain or model reports of stimuli from 

before the cue, and several assume that the quick succession of stimuli in RSVP causes 

masking, which prevents the selection of stimuli that are no longer presented (Chun & 

Potter, 1995; Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 2002). 

Goodbourn and Holcombe (2015) proposed the involvement, in RSVP tasks, of a 

buffer containing visual representations that were not entirely overwritten by the next letters, 

but rapidly decayed. Unlike an attention shift, which in RSVP is not assumed to operate on 
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information stored in memory, the action of this buffer is not triggered by the cue. Instead, it 

is in operation before the cue appears, storing stimuli.  

As a cue, Goodbourn & Holcombe (2015) presented a white ring around one of the 

letters in an RSVP stream. The resulting data were mixture modelled and the estimates of 

latency and precision suggested that the efficacious distribution included reports of items 

before the cue. Goodbourn & Holcombe suggested that such reports were evidence that the 

activation of letters prior to the cue can persist (buffering), and also that binding of the cue 

with an active letter representation is imprecise and sometimes results in temporal errors 

such as report of a still-active pre-cue letter. These pre-cue reports are the critical evidence 

for a buffering process. Such responses are unlikely under an attention shift, as that should 

be somewhat time-consuming, and thus they constitute critical evidence for buffering.  

The buffer putatively responsible for reports of letters before the cue may be a brief 

store of visual information. Both iconic memory (Averbach & Coriell, 1961; Sperling, 1960) 

and the more recently-developed construct of fragile memory (Pinto, Sligte, Shapiro, & 

Lamme, 2013; Sligte et al., 2008) could explain this. However, these memory stores are 

thought to be overwritten by subsequent stimuli presented in the same location, which 

implies they will not outlast the appearance of the next letter in an RSVP stream. This 

assumption about masking has been included in several models of selection from RSVP 

(Chun & Potter, 1995; Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 

2002). Thus neither iconic nor fragile memory can explain Goodbourn and Holcombe’s 

suggestion that a cue in an RSVP stream of letters results in people sometimes reporting the 

letter before the cue.  
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4.1 Contributions to theory 

We identify several models that attempted to explain performance in RSVP tasks 

below. However, for each of these models, either the presence of pre-cue reports or 

changes in the temporal distribution of reports constitutes phenomena that are relevant but 

unexplainable, or falsify assumptions about the persistence of representations. 

One influential theory used a task of reporting multiple successive items from a 

stream after a cue (Reeves and Sperling, 1986). In this and some later theories (Grossberg 

& Stone, 1986; Shih & Sperling, 2002), information is buffered in iconic memory and 

attention acts as a gating mechanism through which this information can enter visual short 

term memory. This, in theory, allows for selections of items from before the cue if their 

representations persist long enough for the attention gating mechanism to open. However 

these models assume that the representation of one stimulus is overwritten by the 

appearance of another stimulus in the stream, consistent with the theory of iconic memory. 

Chun and Potter’s (1995) theory of the attentional blink in RSVP shares this assumption. 

Thus, evidence for reports of pre-cue items that are efficacious falsifies these models’ 

assumption that stimulus representations from RSVP are terminated by new stimulus.  

Some published theories, however, do posit stimulus representations that persist 

during the processing of the next stimulus (Olivers & Meeter, 2008; Wyble, Bowman, & 

Nieuwenstein, 2009). These theories were designed to explain the attentional blink, and 

seem to have made little contact with literature on iconic memory and fragile memory. The 

persistence of representations despite subsequent stimuli in these models has the potential 

to explain pre-cue responses. However these models have no process that can result in 

errors in temporal selection, so they predict that there will be no reports of pre-cue stimuli, 

apart from those explainable by random guessing. 
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Work by Botella and colleagues directly addresses the possibility of reports of 

pre-cue stimuli. Botella, Suero & Barriopedro (2001) set out to explain the presence of pre- 

and post-cue responses in RSVP response distributions. In this model, following the ideas of 

Treisman & Gelade (1980), attention on some trials successfully focuses on the target, and 

in those cases there is no error. In the remaining trials, responses are made by a guess 

informed by buffered representations of unbound features from the items in the RSVP 

stream. The model’s decay rate for non-target item representations falls from its peak to zero 

over a period of roughly 200-250 ms (Botella et al, 2001; Figure 6), which accommodates 

the occasional reports of pre-cue items based on incomplete feature information. 

Vul and Rich’s (2010) theory of how participants perform in cued RSVP tasks also 

implies buffered item features. Vul and Rich proposed that visual feature binding, including 

binding a cue to the simultaneous letter in a stream, involves uncertainty about which 

features occurred at the same time as the cue. Binding, on this theory, occurs via sampling 

from a representation of the probability distribution of which features were presented when. 

This theory implies a buffer, because if feature representations did not persist beyond 

stimulus presentation there would be no distribution.  

In this chapter’s experiments, we apply our binomial test to investigate whether 

pre-cue responses are efficacious. This is the first time that a statistical test has been 

applied to investigate the presence of buffered information, even though these responses 

are critical to the theories of Vul and Rich (2010), Botella et al (2001), and Goodbourn and 

Holcombe (2015).None of the published theories that assume a buffer appear to predict 

circumstances for when representations of items from before a single target will or will not be 

accessed. However, Wyble, Bowman, and Nieuwenstein (2009) theorize that during the 
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attentional blink, selection is delayed, which might result in fewer pre-target reports, if their 

theory had a process for producing pre-target reports. 

A further result unaccounted for by published theories is that not knowing which of 

many simultaneous streams will be cued has effects that include reducing the number of 

pre-cue reports. We will suggest that this results from delayed selection due to dilution of 

attention among the streams. 

4.2 Critical Evidence for the buffer: Accounting for guessing 

Reports of items from before the time of the cue are key evidence for buffering. At 

least some of these responses, however, will be identification failures - trials in which a 

participant does not detect the cue and makes a guess or misidentifies a selected letter. 

These failures, when aggregated across trials, result in a nearly-uniform distribution 

spanning all times relative to the cue (Goodbourn & Holcombe, 2015). The remaining trials 

are ​efficacious -​ those in which participants report a letter from a time related to the time of 

the cue as a result of processing that letter .  

To investigate selection from RSVP, like others we use rapid presentation rates to 

avoid ceiling levels of performance. With a presentation rate of 12 items per second, 

Identification failures were estimated as comprising 25% of responses by Goodbourn & 

Holcombe (2015). Some of these identification failures will by chance be letters presented 

shortly before the cue. For example, when a participant makes a complete guess, 

occasionally that guess by chance will happen to be the letter presented just before the cue. 

In order to investigate buffering, we must account for trials in which identification failures led 

to a pre-cue report, because only efficacious pre-cue reports constitute evidence for 

buffering. The Goodbourn & Holcombe (2015) paradigm we use was designed to allow us to 
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use mixture modelling to estimate of the proportion of trials that were identification failures 

and the proportion that were efficacious 

4.3 Binomial Analysis of published data 

To begin with, we assess the evidence for efficacious pre-cue selections in published 

RSVP datasets by applying our binomial test. 

Vul et al. (2008) conducted an attentional blink experiment and implied that their data 

contained pre-cue efficacious responses, including for the first target. Taking their dataset, 

which was made available for the Goodbourn et al. (2016) re-analysis (​https://osf.io/fs93m/​), 

we applied the binomial test to quantitatively assess the evidence against the null hypothesis 

that the pre-cue responses were due to identification failures.  

As an attentional blink experiment, Vul et al.’s (2008) task involved an RSVP stream 

of letters with a cue presented around two of them, separated by different numbers of  items 

(lags). Figure 4 presents SPE distributions from participants for the first target (T1) for lags 

one to six from this experiment. Visual inspection suggests that the number of SPE = -1 

responses exceeds that which could be explained by identification failures. We present the 

distributions for T1 only because items presented before the first target did not receive any 

cueing, whereas items from before the second target may have received cueing from the 

first target and are also subject to distortion from the attentional blink.  
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Figure 4. ​SPE histograms for T1 responses in Vul, Nieuwenstein and Kanwisher (2008), summed 

over participants. The dashed vertical line represents the target. Responses are approximately 

symmetric around the cue and the cluster around each distribution’s mode includes items from before 

the target, suggesting that some responses were drawn from a buffer.  

 For each lag between the first and second targets, we applied our binomial test to 

the data for the first target (T1). Using the p < .05 level, for nine or more of the eleven 

participants (depending upon the condition) we reject the null hypothesis that the SPE = -1 

trials were generated entirely by identification failures (Table 1). ​p​-values for the participants 

ranged from 3.9x10​-18 ​to .047.  

Table 1  

Results of the binomial test applied to the data of the eleven participants in Vul 
et al. (2008) 

Lag Number of participants with p < .05 

1 11 

2 9 

3 10 

4 9 
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5 9 

6 9 

7 10 

8 11 

9 9 

10 11 

 

Goodbourn and Holcombe (2015) also claimed that for their own experiments, some 

of the SPE = -1 trials were a result of efficacious trials rather than misidentifications. We 

applied the binomial test to the data for their two-stream, single-target condition, in which 

participants responded to a single cue in one of two streams. Nineteen of the 26 participants 

had more responses with an SPE of -1 than could be explained by identification failures. 

p​-values for these participants ranged from 1.4x10​-13​ to .03.  

These results provide quantitative evidence for efficacious pre-cue responses in 

RSVP tasks - an indication of buffering despite the presence of masking in RSVP. 

4.4 The present experiments 

To investigate when the buffer is used, we tested various numbers of simultaneous 

RSVP streams, from two (the number used by Goodbourn and Holcombe, 2015) to 18. In 

each condition, we then assess the evidence for buffered letters using the binomial 

procedure. We also compare the fits of the Gaussian to the gamma distributions in mixture 

modelling to assess the evidence for attention shifts.  

Initially, we thought of the manipulation of the number of simultaneous streams as an 

investigation of the capacity of buffering, because limited capacity restricts processing for 

many visual tasks (i.e. Hawkins, Houpt, Eidels, & Townsend, 2016; Luck & Vogel, 1997; 

Treisman & Gelade, 1980; Wolfe, 1998). This is explicit in the pre-registration for our first 
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experiment (​https://osf.io/7hkgd​), where we assumed that increasing the number of streams 

would result in a change from selection from the buffer to attentional selection from the 

stream. However, we came to realise that the use of buffering could reflect the speed of 

attentional engagement as well. If a stimulus representation has not yet decayed during the 

presentation of the next item, then efficacious pre-cue responses may occur when 

attentional engagement is fast enough to select the persisting representation of an item 

presented in the very recent past. The size of the area that attention is dedicated to - in this 

case, a function of the number of RSVP streams - affects the speed of a reaction to a target. 

The larger the area, the slower the reaction time (Castiello & Umiltà, 1990, 1992). Thus 

pre-cue responses occurring when there are few RSVP streams may reflect the faster 

engagement of attention under those conditions. 

The presence of efficacious pre-cue responses is critical evidence for the buffer. If we 

do not observe such responses using the binomial procedure, there is no evidence that 

buffered items are used to perform the RSVP task. We predict that as the number of streams 

increases, we will observe fewer efficacious responses from before the time of the cue, 

delays in the latency of selection and potentially more skew in the efficacious distributions. 

Data and materials for all the experiments and analyses reported in this chapter can 

be found on Github (​https://github.com/cludowici/RSVP_Dynamics/​). 

4.5 Experiment 1 

4.5.1 Method 

Participants. ​Ten University of Sydney first-year undergraduates (9 female) ranging 

in age from 18 - 23 years (​M ​= 18.9 years, ​SD​ = 1.6) participated for credit for a psychology 

course. This experiment was pre-registered, including a data collection stopping rule of the 

Bayes factor for the effect of number of streams on latency exceeding 10:1 in favour of either 
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the null or alternative hypothesis (​https://osf.io/7hkgd​). We did not create the custom prior 

referred to in the pre-registration because there were no existing effect size estimates. 

Apparatus.​ The experiment was controlled by a Macbook Pro running Psychopy 

1.85. Stimuli were presented on a Mitsubishi Diamond Pro 2070SB CRT screen with a 

resolution of 1024 x 768 pixels and a refresh rate of 60 Hz. Participants rested their head on 

a headrest 56.5 cm away from the screen. To enable exclusion of trials in which participants 

broke fixation, movement of the right eye was tracked with an SR Research Eyelink 1000.  

Stimuli. ​The​ ​stimuli were white Sloan letters (Pelli, Robson, & Wilkins, 1988) that 

vertically subtended 0.9º. The cue was a 0.98º radius white ring with a line width of 0.07º. 

The fixation point was a white dot with a radius of 0.14º. On each trial, RSVP streams were 

presented simultaneously at two or eight positions. Each stream consisted of all letters of the 

alphabet except C and W, presented in a random order. The letters of each stream 

appeared at a rate of 15 items per second. Each letter was presented for three monitor 

frames (50 ms) with a blank period of one monitor frame (16.67 ms) in between items. 

The cue appeared around a target letter in one of the streams, chosen randomly on 

each trial. The cue was presented for the same three monitor frames as the target letter. The 

target letter was at a random serial position in the stream between the seventh and the tenth 

items, inclusive. Streams were equally spaced about an imaginary circle with a radius of 

3.0º, centered on fixation. 

In the eight-stream condition, the equal positioning of stimuli about the circle resulted 

in a centre-to-centre spacing of 2.3º of visual angle. In the two-stream condition, the streams 

were presented on opposite sides of fixation with a separation of 6º of visual angle. With that 

constraint, across all experimental trials the two streams occupied all eight positions 
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occupied by the eight-streams stimuli. The two streams appeared in every position the same 

number of trials across the experiment.  

 

Figure 5. ​A schematic display of an eight-streams display, showing the cue.  

At the end of each trial, a response array appeared that contained all 24 letters. 

Participants indicated the target by selecting a letter with the mouse. They were told to click 

with the right mouse button if they were “sure” and the left mouse button if they were 

“unsure” of their response. 

Procedure.​ Participants completed 320 trials. Half were the two-stream condition 

and half were the eight-stream condition, randomly intermixed. On-screen instructions 

informed participants that on each trial they must keep their eyes fixed on the central point 

while “several rapid, randomly-ordered sequences of letters” appeared at two or eight 

locations on the screen. The instructions also informed participants that one letter would 
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appear “with a white ring around it” and that their task was to report this letter by clicking on 

it in the response array.  

Analysis. ​The first twenty trials were treated as practice and excluded from the 

analysis. Mixture models were fit to the remaining 300 trials with a custom R package 

(​https://doi.org/10.5281/zenodo.3545085​). To compare parameters between the two and 

eight streams condition, we computed Bayesian t-tests with JSZ priors (Rouder et al., 2009) 

using the BayesFactor package (Morey & Rouder, 2018) in R (R Core Team, 2019).  

To assess how much the data of each participant, and in each condition, favored the 

Gaussian or skewed gamma distribution, we estimated the Bayes factor – the probability of 

the data according to one model divided by the probability according to the other model. This 

Bayes factor, with an uninformative prior over the model parameters, can be estimated using 

the Bayesian information criterion for each model (Raftery, 1999; Wagenmakers, 2007). We 

calculate the BIC for each model and the Bayes factor estimated from the BICs to assess 

which model is a better fit to each participant’s data. This mixture model comparison gives us 

a ratio for the evidence of one model relative to the other. Bayes factors with a ratio greater 

than three in favour of a particular model are taken as evidence for that model. 

4.5.2 Results 

Fixation data were retrieved from the Eyelink 1000 using the fixation report from 

Eyelink Data Viewer (Version 1.11.900)​.​ Trials on which the participant made a fixation more 

than 1º of visual angle from the centre of the fixation point were excluded from further 

analysis. A mean of 16.9 (SD = 10) trials per participant were rejected in the two-streams 

condition. A similar mean of 14.9 (SD = 7.4) trials were rejected in the eight-streams 

condition. 
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Sure/unsure responses.​ The statistics reported below indicate that when 

participants made a “sure” rather than an “unsure” response, they were more likely to have 

reported the target or a letter close in time to the target. There was, however, substantial 

variance in the number of “sure” responses, and some participants responded “sure” only 

rarely. The number of “sure” responses ranged from 1 to 61 with eight streams and 1 to 64 

with two streams, corresponding to 0.007 to 0.46 and 0.007 to 0.45 of the trials in which 

participants maintained fixation in each condition, respectively. We fit a set of mixed effects 

logistic regressions predicting the odds of responding “unsure” with condition and the 

absolute value of SPE as predictors (see Appendix). The absolute value of SPE was chosen 

as an independent variable to assess whether participants have insight into the extent to 

which their response differs from the target. These data were best explained by a model with 

two predictors, the absolute value of the SPE on each trial and the condition. The odds of 

responding “Unsure” increased by 25% for every serial position increase in distance from the 

target item (​b​ = .23, z= 8.008, p =1.17 x 10​-15​). A similar result of confidence decreasing with 

the absolute value of SPE was reported by Botella (1992). The odds of an unsure response 

in the eight-streams condition were 64% of the odds in the two-streams condition (​b​  = -.45, 

z = 4.57, p = 4.8 x 10​-6​). That is, participants were ​less​ likely to make an “unsure” response 

with eight streams than with two.  

The number of “sure” responses were too few to reliably estimate the parameters of 

the mixture model for the different confidence responses, so “sure” and “unsure” responses 

are collapsed together for the mixture model and binomial analyses. 

Model Comparison. ​The data strongly favored the Gaussian symmetric model with 

two streams, and only with eight streams did they favor the skewed gamma model (Figure 

6). The Bayes factors indicated strong evidence for the Gaussian model for nine out of ten 
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participants in the two-streams condition – Bayes factors ranged from 378 to 1.05 x 10​15 ​in 

favour of the Gaussian model. One participant’s data did not favour either model (1.02).  

Evidence for skew (the gamma model) was seen only in the eight streams condition, 

where data from three participants was fit best by the gamma model (BFs: .05, .26 and .17). 

The remaining seven participants had model fits that did not markedly favor either model 

(BFs ranging from .38 to 2.95).  

 

Figure 6. ​Serial position error (SPE) histograms and model fits for three randomly-selected 

participants (rows) in the different conditions (columns) in Experiment 2. The density of the best fitting 

efficacious distributions are shown as the lines on each plot, scaled to near the height of the 

histograms. For one of these participants, the data did not allow us to discriminate between the 

Gaussian and gamma models, and the density curves from both efficacious distributions are plotted. 

For two of these participants, the skewed gamma distribution fit significantly better than the symmetric 

Gaussian distribution in the eight stream condition. 

Parameter Estimates. ​Because for the majority (seven of ten) of the participants, the 

data for the eight streams condition did not strongly favor either model, we follow Goodbourn 
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and Holcombe (2015) and interpret the parameters of the Gaussian mixture model for both 

conditions. Fortunately, the pattern of the parameter values (described below) is the same 

when the parameters of the skewed (Gamma) model are used instead. The exception to this 

is the gamma mixture’s efficacy estimates, which are higher for the eight stream condition 

than for the two streams condition. This is likely to be because with few streams, participants 

made efficacious selections of items from before the cue, which are not captured by the 

gamma distribution (it has no mass before zero). 

Efficacy. ​Efficacy is the proportion of responses that are efficacious. The mean 

estimated efficacy for the two-streams condition is 0.74 (SD = 0.13), and the mean for the 

eight-streams condition is a very similar 0.76 (SD = 0.11), yielding tentative evidence for no 

difference, according to the Bayesian paired t-test (BF​10​ = 0.38, ​d​ = 0.15, 95% CI [-0.33, 

.65]).  
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Figure 7. ​ Efficacy estimates for the two and eight streams conditions. The dark points and error bars 

indicate the mean ±SE for each condition. The lighter points and lines represent each participant’s 

estimate. 

Latency. ​The latency of the best-fitting efficacious distribution is longer in the eight 

streams (M = 72.5 ms, SD = 16.6) than in the two streams condition (M = 40.0 ms, SD = 18) 

according to a Bayesian paired t-test (BF​10​ = 241, ​d​ = 1.87, 95% CI [0.86, 2.89]). 

 

Figure 8. ​ Latency estimates, the mean time of the efficacious distribution, for the two and eight 

streams conditions. The dark points and error bars indicate the mean ±SE for each condition. The 

lighter points and lines represent each participant’s estimate​. 

Precision.​ Precision was smaller (the efficacious distribution was narrower) for the 

eight streams conditions (M = 41.3, SD = 10.5) than for the two -streams condition (M = 

61.2ms, SD = 13.3), Bayesian paired t-test BF​10​ = 45.9 (​d​ = 1.64, 95% CI [0.56 2.72]). 
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Figure 9. ​ Precision (the standard deviation of the efficacious distribution) for the two and eight 

streams conditions. The dark points and error bars indicate the mean ±SE for each condition. The 

lighter points and lines represent each participant’s estimate. 

Binomial Test. ​The binomial analysis indicates that in the two streams condition, 

eight of the ten participants had more SPEs of -1 than expected from our liberal estimate of 

the rate of identification failures. ​p​-values for these participants ranged from 1.9 x 10​-11​ to 

0.03. In contrast, in the eight streams condition, the null hypothesis that the SPEs of -1 are 

explainable by identification failures was not rejected for any of the participants. 

4.5.3 Discussion 

The experiment yielded evidence for buffering in the two stream condition but not the 

eight stream condition. In addition, in the eight stream condition, the temporal distribution of 

efficacious reports occurs later, is narrower, and is less likely to include reports of items from 

before the time of the cue.  
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Participants were more confident in their responses when there were eight streams 

than when there were two. This finding is similar to observations that participants tend to be 

more confident in their responses for difficult perceptual tasks relative to easier tasks 

(Baranski & Petrusic, 1994). Increasing the set size in a visual search task - a manipulation 

similar to our increase in the number of streams - results in more confident responses 

(Baldassi, Megna, & Burr, 2006). This effect is typically thought to reflect decision processes 

or a lack of insight into task difficulty (Suantak, Bolger, & Ferrell, 1996)​. 

The apparent absence of buffered reports (efficacious reports of items from before 

the cue) in the eight streams condition is consistent with our hypothesis that buffered 

responses would be less frequent as the number of streams increased. Moreover, the 

evidence sometimes favored a skewed efficacious distribution in the eight stream condition, 

which is consistent with selection occurring via attention shifts. 

A finding we were surprised by is that participants appear just as effective (equal 

efficacy) at selecting an item around the time of the cue in the eight stream condition as in 

the two stream condition. We thought that when several streams were presented, the 

selection process would shift from often accessing information from a buffer to requiring an 

attention shift. The evidence for no change in efficacy is surprising under this theory, 

because the two processes should have different efficacies. However, we now believe that 

buffered responses result from changes in the speed of attention’s engagement following the 

cue. When there are few streams, each stream receives more attentional resources and 

attention is faster to select an item in the cued stream than when there are many. Efficacious 

pre-cue reports occur in these conditions because the speed of attention is such that it may 

select a stimulus representation that has not yet decayed despite masking. This explains the 

lack of a change in efficacy, because in both the two- and eight-streams conditions selection 

occurs via the same mechanism - an attention shift to the cued location.  
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In Experiment 2, we further assessed the extent to which efficacy is resilient to an 

increasing number of streams by increasing the number of simultaneous RSVP streams to 

18. 

4.6 Experiment 2 

4.6.1 Method  

Participants. ​Thirteen participants took part in the experiment. Nine were 

undergraduates (six female) aged 18-21 years (​M = ​19.9 years, ​SD​ = 1.4) and four were 

graduate students (two female). The age of the graduate students was between 25 and 32. 

All were students at the University of Sydney. Eye movements for one participant were not 

recorded due to a computer error, so this participant was excluded from the analysis. This 

experiment was not pre-registered. The same Bayesian stopping rule as Experiment 1 on 

the latency parameter was used. Data collection stopped when the ratio of evidence for an 

effect of the number of streams to the null hypothesis exceeded ten in favour of either 

hypothesis. 

Stimuli.​ Participants viewed two, six, or 18 streams on each trial. The 18 streams 

condition comprised three concentric rings of six equally-spaced streams. The eccentricities 

of the rings were 3, 7 and 11.5 degrees. The ring with radius 7º was rotated clockwise by 

half the polar angular separation between the streams.​ The six streams condition consisted 

of six stimuli with equal eccentricity spaced around a circle.​ ​In the two streams condition, the 

streams were presented on opposite sides of fixation, at an angle randomly chosen from 

those occupied the streams of the 18 streams condition. Each stream consisted of the same 

24 letters used in Experiment 1 with no repeats, presented in a random order. 

Stimuli were eccentricity scaled with the parameters used by Strasburger ​(2005)​ for 

scaling numeral stimuli, resulting in letter heights of 0.9º, 1.62º and 2.43º for stimuli at 3, 7 
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and 11.5 degrees of eccentricity respectively. Cue diameter was scaled from 0.98º at 3º of 

eccentricity to 1.77º and 2.65º at 7º and 11º, respectively. The number of presentations of 

the cue at a particular location on the screen (and thus a particular eccentricity) was equal 

across conditions.  

Stimuli were presented at a rate of approximately 12.5Hz – each stimulus was 

presented for 6 monitor frames (60 ms) with a blank period of 2 monitor frames (20 ms) 

between each item. ​The target letter was a random item in the stream between the 7th and 

the tenth items, inclusive. 

Apparatus.​ Participants viewed stimuli in a dark room on a Mitsubishi Diamond Pro 

monitor from a distance of 42 cm, ensured by a headrest. The monitor refreshed at a rate of 

100Hz. Movements of the right eye were measured with an SR Research Eyelink 1000.  

Procedure.​ Thirteen undergraduate participants performed 270 trials, 90 for each 

number of streams (2, 6, and 18), randomly intermixed. One participant was dropped from 

the analysis because an error resulted in their session not being eyetracked. 

Analysis.​ Mixture model fits and model comparisons were computed in the same 

manner as Experiment 1. Parameter estimates were compared using Bayesian 

within-subjects ANOVA implemented in the BayesFactor Package (Morey & Rouder, 2018) 

in R (R Core Team, 2019) 
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Figure 10. ​ A schematic of a display from the 18 streams condition. Stimuli were arranged into three 

rings of six, equally-spaced streams each. Measurements in degrees represent the centre-to-centre 

spacing of objects in the same ring 

4.6.2 Results 

The mean number of trials discarded because of the presence of a fixation that fell 

more than 1º from the fixation point were 13.9 (SD = 11.4), 12.4 (SD = 10.0) and 15.3 (SD = 

9.2) for the 2, 6 and 18 streams conditions, respectively. 

Model Comparisons. ​Participants’ data in the two-streams condition all favoured the 

Gaussian mixture model over the skewed Gamma model with the exception of one 

participant (Table 3). The Gaussian model was also favoured in the six streams condition by 

the data of those participants whose data had Bayes factors that were not ambiguous. In the 

eighteen streams condition, evidence for the skewed gamma distribution emerged, with the 
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data of five of the 12 participants. Example histograms and efficacious distributions are 

presented in Figure 11. 

 

Figure 11. ​Serial position error (SPE) histograms and models fits for three randomly-selected 

participants (rows) from Experiment 2 for different numbers of streams (columns). The density of the 

best fitting efficacious distributions are shown with colored lines, scaled to near the height of the 

histograms. For participants whose data did not allow us to discriminate between the buffering and 

attention shift models, density curves from both efficacious distributions are plotted. For two of these 

participants, selection from one of 18 streams yields data that strongly favors the skewed (attention 

shift) distribution, so only that density is shown. 

Table 3    

The number of participants whose data favoured the symmetric (Gaussian) model versus 
the skewed gamma model.  

Condition Gaussian Gamma Neither 

Two Streams 11 0 1 

Six Streams 6 0 6 

Eighteen Streams 2 5 5 
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Parameter Estimates. ​The parameter estimates are presented in Table 2.  

Table 2    

Means and standard deviations for the parameter estimates for each condition 

Number of Streams Efficacy (SD) Latency (SD) Precision (SD) 

2 .73 (.11) 24.1 (31.9) ms 111.0 (50.0) ms 

6 .74 (.09) 67.6 (30.9) ms 62.5 (17.5) ms 

18 .74 (.08) 90.9 (27.1) ms 56.7 (9.74) ms 

 

Efficacy.​ A Bayesian repeated measures ANOVA indicates no difference in efficacy 

across the three conditions (BF​10​ = .19, 𝜂​2​G​ = 0.003) 

 

Figure 12. ​Efficacy estimates for the different conditions in Experiment 2. Efficacy was not affected by 

the number of streams. 

Latency. ​Latency increased with the number of streams (𝜂​2​G​ = 0.46). A Bayesian test 

of the ordering of the latency estimates in the same direction as Experiment 1 (2-streams < 
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6-streams < 18-streams) conducted in the manner described by 

http://bayesfactor.blogspot.com/2015/01/multiple-comparisons-with-bayesfactor-2.html​ found 

that this ordering was 7.8 x 10​6​ times better able to explain the data than the null model and 

5.98 times more likely than the model with no order restriction. 

 

Figure 13. ​Latency estimates for the different conditions of Experiment 2. Latency increases with the 

number of streams. 

Precision. ​The distributions narrowed (the precision estimates decreased) as the 

number of streams increased (𝜂​2​G​ = 0.40). The data were most likely under a model with an 

order of precision estimates in the same direction as experiment 1a (2-streams > 6 streams 

> 18 streams). The data under this model were 1905 times more likely than under the null 

model and 4.1 times more likely than under a model with no order restriction. 
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Figure 14. ​Precision estimates for the different conditions in experiment 2. Precision narrows (the 

estimates decrease) as the number of streams increases. 

Binomial Test.​ Ten of the 12 participants made significantly more SPE = -1 

responses than predicted by our liberal estimate of identification failures in the two streams 

condition (2.5 x 10​-11​ ≤ ​p​ ≤ 0.02), four in the six streams condition (1.2 x 10​-5​ ≤ ​p​ ≤ 0.01) and 

none in the 18 streams condition (all ​p​s > 0.3). 

4.6.3 Discussion 

The pattern of results is consistent with those of Experiment 1. The binomial test and 

model fits found evidence for buffering only with few streams. Efficacious selections were 

delayed and less variable in time as the number of streams increased, but there was no 

change in the efficacy of selection.  

The lack of change in efficacy argues against separate processes for selection from 

the buffer and attentional selection from the cued stream proposed by Goodbourn and 

Holcombe (2015). This pattern of results, observed in the current experiment and 

Experiment 1, suggested to us that efficacious pre- and post-cue reports are the result of the 

same mechanism. One possible explanation is that participants are dedicating attention to 
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the locations of the streams before the cue occurs. Attending to few streams, relative to 

many, at a location may have a number of benefits when it comes to detecting and 

responding to the cue (Castiello & Umiltà, 1990, 1992). With few streams, there are more 

attentional resources are endogenously allocated to each stream prior to the onset of the 

cue. This may result in selection in response to the cue occuring more quickly than when 

attention is diluted among many streams. Under this account, participants are less likely to 

make an efficacious response of a pre-cue letter as the number of streams increases 

because their attentional resources are spread over a larger area, causing cue-triggered 

selection to be delayed.  

Both pre- and post-cue reports seem to be selected with the same process. Efficacy 

is unchanged with few streams where there are efficacious pre-cue reports relative to when 

there are many and the efficacious distribution is delayed. In conditions where attention 

engages quickly with the stream, it appears that it can sometimes select the representation 

of a pre-target stimulus if that stimulus’ representation has not yet decayed. Thus, despite 

the masking inherent in RSVP, letter representations persist beyond the presentation of a 

subsequent letter. ​This result is inconsistent with assumptions about the effect of marking in 

certain published theories of RSVP. Some models assume that stimulus representations are 

terminated when a new stimulus is presented at the same location (Chun & Potter, 1995; 

Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 2002).  

4.7 Experiment 3 

In the preceding discussion, we attributed the effects of increasing the number of 

streams as due to there being more streams in which the target might occur. But the effects 

may instead have occurred simply because there were more streams physically present on 

the screen. The presence of more streams might result in changes to the dynamics of 
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selection through interference among stimulus representations, even if those streams were 

not potential locations for the cue and target. 

In some circumstances, simultaneously presented visual stimuli certainly do interfere 

with each other. One form of interference is known as “crowding”. In crowding, flanking 

stimuli markedly impair identification performance (Agaoglu & Chung, 2016; Bouma, 1970; 

Pelli & Tillman, 2008; Rosenholtz, Yu, & Keshvari, 2019; Whitney & Levi, 2011). The size of 

the region in which stimuli crowd each other scales approximately linearly with eccentricity. 

Stimuli with a centre-to-centre spacing of less than 0.4 to 0.5 of their eccentricity will be 

crowded (Pelli & Tillman, 2008). However, it is unlikely that crowding can explain our results 

because our stimuli were widely spaced enough to fall outside of the crowding zone. The 

centre-to-centre spacing in the eight-streams condition of Experiment 1 is 0.77 of the 

eccentricity. The closest items in the 18-streams display of Experiment 2 are those in the 

inner ring, which have a spacing of 3º, the same as their eccentricity. 

Although crowding is unlikely to have occurred in our experiments, even stimuli with 

large spacings may compete for processing resources that are limited (Desimone & Duncan, 

1995). To investigate whether this is the reason for the effect of number of streams in 

Experiments 1 and 2, we hold constant the level of potential interference between stimulus 

representations in Experiment 3 by always presenting the same number of streams on each 

trial. We pre-cued the potential locations of the target on each trial and varied the number of 

potential locations. Any effect of number of potential locations can be attributed to dilution of 

attentional resources, with less resources devoted to each stream. 

Eight streams were presented on each trial, and participants were instructed to 

monitor two or eight streams for the cue. This mimics experiment 1 but controls for any 

interference effects as there are always eight streams. Thus any differences we observe in 

the latency and precision of these results are due to changes in attentional spreading rather 
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than interference, which is fixed on these trials. A replication of the pattern of findings in 

experiment 1 would be evidence for the idea that these effects reflect participants spreading 

endogenous attention over many locations for the presence of the cue, rather than an effect 

of the amount of interference between stimuli. 

4.7.1 Method 

The method, analysis and apparatus (including eyetracking) for this experiment were 

the same as that of Experiment 1, including the Bayesian stopping rule (10:1 in favour of the 

null or the alternative hypothesis), with the exception that eight streams were always 

displayed and a precue indicated the possible spatial positions of the cue on each trial. Prior 

to the presentation of the RSVP streams on each trial, eight hash marks appeared on the 

screen for 250ms, occupying the same positions as the RSVP streams. Two or eight of 

these hash marks had white rings around them, representing the possible positions of the 

cue on that trial. The two-precue condition precued the same locations as those occupied by 

the two streams in Experiment 1 (either side of fixation). A blank screen was presented for 

500 ms after the precues. 13 undergraduate students from the University of Sydney 

participated and received course credit. This experiment was not preregistered. 

4.7.2. Results 

A mean of 18 (SD = 13) trials were rejected based on eye movement away from 

fixation in the two-precue condition. A mean of 15 (SD = 12) trials were rejected in the 

eight-precue condition. 

Model Comparisons. ​Model fits largely favoured the Gaussian mixture model or did 

not distinguish between the models. See table 4 for the frequency of each fit in each 

condition. 

Table 4    
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The results of the model comparisons. The number of participants whose data favoured 
each model.  

Condition Gaussian Gamma Neither 

Two Precues 6 1 6 

Eight Precues 6 2 5 

 

Parameter Estimates.  

Efficacy. ​The mean efficacy in the two-cues condition was 0.75 (SD = 0.07), and in 

the eight-precues condition was 0.71 (SD = 0.13; BF​10​ = .65, ​d​ = 0.28, 95% CI [-0.13, 0.70]). 

A Bayesian paired t-test comparing efficacy estimates between conditions produced a Bayes 

factor close to 1, indicating that the test favored neither the null hypothesis of no difference 

nor the alternative hypothesis of a difference.  

 

 

Figure 15. ​ Efficacy estimates for Experiment 3 
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Latency. ​Latency was shorter for the two-precues condition (M = 84.84, SD = 72.35) 

than the eight-precues condition (M = 108.12, SD = 69.37; BF​10​= 21.9, ​d​ = 0.33, 95% CI 

[0.15, 0.50]). One participant had very high latencies - around 280 ms - in both conditions 

and also large precision estimates of 180 ms and 162 ms in the two and eight-precue 

conditions, respectively. But removing this participant from the efficacy, latency and 

precision analyses did not change the pattern of results. 

 

 

Figure 16. ​ Latency estimates for Experiment 3 

Precision. ​The null hypothesis of no no difference in precision between the two 

conditions explained the data best, BF​10​ = 0.35. The two-precues condition had a mean of 

90.3 ms (SD = 49.5). The eight-precues condition had a mean of 85.5 ms (SD = 39.3, ​d​ = 

0.08, 95% CI [-0.16, 0.33]). 
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Figure 17. ​ Precision estimates for Experiment 3 

Binomial Test.​ Three participants in the two-precues condition had more SPEs of -1 

than are easily explained by identification failures (​p​s < .001). One participant showed more 

SPEs of -1 than would be predicted by identification failures in the eight-precues condition (​p 

= .01). 

Comparison of effects between experiments (Exploratory Analysis).​ To compare 

the effect of pre-cueing and the effect of the number of streams, we combined the data from 

Experiments 1 and 3 and tested for differences between them in an exploratory analysis. We 

fit two linear mixed-effects models for each of the three mixture model parameters using the 

lme4 package in R (Bates, Mächler, Bolker, & Walker, 2015). The models always contained 

random intercepts by participant and predicted each parameter with main effects of condition 

and experiment, or the main effects and an interaction between condition and experiment. 

This interaction term represents a test of the hypothesis that changing the number of 

pre-cued streams (Experiment 3) is different from changing the number of streams 

(Experiment 1). If that is the case for a given parameter estimate, then the best fitting model 
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for that estimate should contain an interaction term. To assess model fit, we calculated 

Bayes factors from each model’s BIC using the approximation described by Wagenmakers 

(2007).  

The Bayes factors produced by this analysis represent the ratio of evidence for the 

interactive model to the model without an interaction. This analysis indicated no change 

between experiments in the effect of condition on efficacy (BF​10​ = .46) but was inconclusive 

for latency (BF​10​ = 1.13). For precision, there is some evidence for a difference between the 

experiments – more streams narrowed the efficacious distribution in Experiment 1 but not 

Experiment 3 (BF​10​ = 3.77). 

 The effect of spreading attention over many streams, as manipulated by precuing, 

does not completely explain the changes in temporal processing in experiment 1 because 

the effect of condition on precision differs between the experiments. 

4.7.3 Discussion 

By manipulating the number of relevant streams, while keeping the number 

presented constant, we replicated the findings of Experiment 1 in that more candidate 

streams yielded longer latencies and fewer efficacious reports of the item before the cue. 

Our test that Experiment 3’s latency change was quantitatively the same as that observed in 

Experiment 1 yielded equivocal evidence. However, both experiments produced strong 

evidence for an increase in latency as either the number of streams increased (Experiment 

1) or the number of relevant streams increased (Experiment 3). This suggests that the 

increase in latency in Experiment 1 is due, at least in part, to changes in the number of 

locations that participants must dedicate their attention to. When participants spread their 

attention over many simultaneous streams, they are slower to orient their attention to the 

cued location than when there are fewer streams. Not all the changes in the temporal 
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qualities of selection can be explained by participants spreading attention over the potential 

locations of the cue, however. There was no change in precision for different numbers of 

streams in Experiment 3, whereas in Experiment 1 precision was narrower for higher 

numbers of stream. The evidence for this difference between the experiments was only 

moderate, however, so more work is needed to confirm it. 

The proportion of participants for which there was evidence of efficacious responses 

of pre-cue items was higher when there were only two pre-cued locations, suggesting that 

such responses reflect the application of endogenous attention over the possible locations of 

the cue. In other words, reports of letters from before the cue that are efficacious are more 

likely to occur when participants monitor a small number of locations for the cue.  

4.8 General Discussion 

The present experiments and analyses provide the strongest evidence to date for 

efficacious responses of pre-cue items despite the presence of masking in a cued RSVP 

task. Our binomial procedure tests whether pre-cue responses are more frequent than 

predicted by identification failures. Our mixture models estimate the rate of identification 

failures and allow us to assess changes in the latency and shape of the selection distribution 

across conditions.  

Together these analyses indicate that participants often make an efficacious 

response of a pre-cue item when there are few streams. This is consistent with previous 

suggestions that such responses may occur (Botella et al., 2001; Goodbourn & Holcombe, 

2015; Holcombe et al., 2017; Vul & Rich, 2010), but is the first to directly test whether the 

number of responses from before the cue could be explained by identification failures. 

By investigating this issue with more than two RSVP streams, we discovered that 

evidence for efficacious pre-cue responses diminishes rapidly with more streams. Previous 
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theories of human performance in RSVP either cannot account for this finding, in the case of 

theories of the attentional blink and theories that assume some sort of buffer, or are explicitly 

falsified if they assume that stimulus representations are overwritten due to masking (Chun 

& Potter, 1995; Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 2002). 

We suspect that when only a few streams are presented, attention is engaged with those 

streams prior to the cue, so that attention swiftly orients to the target’s location. We argue 

below that in this situation, the item before the cue can be reported because the speed of 

selection is sometimes fast enough to select a pre-cue item’s representation before it 

decays.  

Experiments 1 and 2 demonstrated pre-cue responses only with few streams, but 

using larger numbers of streams in those experiments potentially also altered the 

interference among stimuli in the display. To avoid this confound, we held the number of 

streams presented constant while changing the number of potential cue locations 

(Experiment 3). In this experiment the number of responses from before the cue dropped as 

the number of potential cue locations increased. This suggests that pre-cue responses are 

the result of the voluntary application of attention to the potential cue locations. Participants 

can control the application of attention to the relevant streams, and this affects the speed of 

selection as well as the likelihood of reporting an item from before the cue. 

Goodbourn and Holcombe (2015) assumed that buffering was distinct from the 

process of attention shifts to the location of the cue, based on their (untested) observation of 

efficacious responses from before the cue. Our results, however, argue against separate 

buffering and attentional selection processes despite the presence of pre-cue responses. 

Selection may be parsimoniously explained as the result of a single process in all cases: 

exogenous attentional selection triggered by the cue. It does not appear that efficacious pre- 

and post-cue responses are produced by separate processes because there are no 
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systematic changes in efficacy as the number of streams changes in our experiments. If a 

different process were involved when there were few streams, we would expect to observe a 

change in efficacy between conditions because different processes seem unlikely to have 

the same probability of success. There is no such change here, and thus items are selected 

by attention in all conditions.  

We suggest that selection in all cases here is a result of cued attentional shifts. 

Increases in the selection latencies occur because participants apply endogenous attentional 

resources to the RSVP streams prior to the onset of the cue. Thus, the time of selection is a 

function of the attentional resources endogenously dedicated to the cued stream prior to the 

cue. When there are few streams, each stream receives a larger proportion of the available 

attentional resources. This speeds selection at the cued location relative to conditions with 

greater numbers of streams. That this pre-cue resource allocation is endogenous is 

supported by our finding that latency is manipulated by providing participants with 

information about the upcoming location of the cue (Experiment 3). 

One may expect that masking would terminate the representation of the SPE -1 

stimulus, eliminating the possibility that attention selects that item. Several models of 

selection in RSVP tasks assume this (Chun & Potter, 1995; Grossberg & Stone, 1986; 

Reeves & Sperling, 1986; Shih & Sperling, 2002) based on observations that attentional 

selection of from sensory memory is not observed when stimuli are followed by a postmask 

(Averbach & Coriell, 1961; Sperling, 1960). However our results indicate that sensory 

information about stimuli persists in RSVP despite masking and can be selected by 

attention, falsifying this assumption. This claim is supported by recent neural decoding work 

demonstrating that information about RSVP stimuli persists beyond the presentation of a 

subsequent stimulus at the same location (King & Wyart, 2019; Marti & Dehaene, 2017) and 

behavioural work indicating that selection from a post-masked static display is possible 
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(Smithson & Mollon, 2006). However, our results are the first to show that such information 

can inform behaviour in RSVP. 

Our theory explains the pattern of results found for latency, efficacy, and precision. 

As explained above, latency increases because with more streams, the endogenous 

application of attention must be spread over more locations, leading to a smaller attentional 

advantage for each stream and delaying selection. Diluting attentional resources changes 

selection latency, but not the probability of detecting the cue and identifying a letter. The 

latter process always proceeds via the same mechanism, and thus efficacy does not change 

across conditions in the three experiments.  

The temporal distributions of the serial positions reported were narrower with larger 

numbers of streams in Experiments 1 and 2, but not in Experiment 3 where the number of 

streams was constant but the number relevant to the task was varied. Perhaps there is 

competition among streams for cortical processing, whether they are relevant or not, and this 

causes stimulus representations to not persist as long as with fewer streams. The range of 

presentation times of stimuli that are simultaneously activated, and available for selection, 

should then be narrower when more streams are presented. One caveat is that the previous 

evidence for long-range interference in visual cortex is thin. The relevant neuroimaging 

studies that we are aware of all spaced stimuli closely enough that stimuli may have 

crowded each other, unlike our RSVP streams (Beck & Kastner, 2005, 2007; Kastner et al., 

1998, 2001; Scalf & Beck, 2010). However, there is some neurophysiological evidence for 

long-range interference (Falkner, Krishna, & Goldberg, 2010; Schall et al., 2004; but see 

Holcombe, Chen, & Howe, 2014 on interpretation of these).  

This explanation for the change in precision may seem inconsistent with the lack of 

any changes in efficacy in the present experiments. Narrowing the temporal range of stimuli 

available for attentional selection might be expected to result in a lower probability of an 
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efficacious selection. However, selection is fast enough that even when it cannot select a 

long-lasting persistent representation, it still has ample time to select from the incoming 

stream of stimulus information. That is, the latency of selection never approaches the end of 

the stream. The longest latencies are found in the 18-streams condition of Experiment 2. In 

that condition, the shortest possible time between the target’s onset and the end of the 

stream was 1120 ms (14 serial positions), and the mean latency was 90 ms. Evidently 

participants are able to select an item from the stream well before the stream ends, and thus 

their efficacy does not suffer even when persistence of item information is reduced. This may 

also explain why we were more likely to observe skew in the efficacious distribution with 

many streams relative to few. If representations decay faster when there are many streams, 

this will only affect the efficacious distribution’s left tail. Attention can still select items 

presented after the cue, leading to skew in the distribution. However, as we have noted, the 

evidence for stimulus interference may reflect crowding, so this is a tentative conclusion.  

4.8.2 Relation to published theories of temporal selection 

No published theory of attentional selection appears capable of explaining the results 

of the present experiments. ​Most theories contain no process for attentional selection 

capable of resulting in a response of anything other than the target item. Those that do have 

such a facility include no role for endogenous attention, which is unfortunate as our results 

suggest it reduces latency.  

As discussed, our results argue against Goodbourn and Holcombe’s (2015) theory of 

separate processes for buffering and attentional selection from an RSVP stream. The 

efficacy of our participants is steady, regardless of the presence of efficacious pre-cue 

reports, suggesting that a single process is responsible for the pre- and post-cue efficacious 

selections.  
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 Most theories of selection from RSVP streams were designed primarily to explain the 

attentional blink. These models do not consider errors in the timing of selection and are 

instead focussed on modelling the ability to report a second target soon after a first. When 

deployment of attention is successful, these models always predict a report of the target item 

(Olivers & Meeter, 2008; Wyble, Bowman, & Nieuwenstein, 2009). As such, there is no 

consideration of changes in the temporal properties of selection, despite the fact that the 

attentional blink not only affects the efficacy of selection, but also its latency (Chun, 1997; 

Goodbourn et al., 2016; Popple & Levi, 2007; Vul, Nieuwenstein, & Kanwisher, 2008). Here, 

we show that even when there is one target and thus no attentional blink, the endogenous 

allocation of attention to streams prior to the onset of a target stimulus can affect processing 

latency. The presence of efficacious pre-cue reports when there are few streams and the 

change in latency as the number of possible cue positions increases cannot be reconciled 

with these models, which predict no errors in temporal selection. 

One manner in which these attentional blink models could explain this chapter’s 

results is if attention was deployed not only in response to the cue, but in accordance with 

the temporal properties of the stream that a participant has learned. In this case, a pre-target 

item could be selected if attention was deployed in anticipation of the cue. Attention can be 

deployed according to temporal expectations about a stimulus (i.e. Nobre, Correa & Coull, 

2007). However, participants would have to guess the location of the cue on each trial if they 

were deploying attention in this manner. This would reduce efficacy as the number of 

streams increased, as participants would be more likely to select the wrong stream. Because 

we don’t observe this effect, we do not think temporal expectations can explain our results.  

Reeves and Sperling (1986), Shih and Sperling (2002), and Grossberg and Stone 

(1986) modeled the data from RSVP tasks in which participants attempted to report several 

stimuli in succession. In these models, if a stimulus is not selected, sensory information 
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about it is extinguished by the presentation of a subsequent stimulus at the same location. 

Our results demonstrate that this assumption is wrong. Stimulus representations are not 

terminated by the presentation of a subsequent RSVP item. They persist such that they are 

sometimes selected and reported even when the cue occurs after the reported stimulus.  

Reeves and Sperling (1986) note that modelling stimulus representations so that they 

overlap with the presentation of the next item did not improve model fits. Their task involved 

monitoring one RSVP stream for a target and then shifting attention to another stream in 

order to report the letters appearing there. This presumably involves an endogenous shift of 

attention, whereas the present experiments used a peripheral cue which most likely induced 

an exogenous shift of attention. Endogenous attentional orienting is, on average, slower than 

exogenous orienting (Cheal & Lyon, 1991), so it may be that the speed of attentional 

selection was not fast enough to yield evidence of overlapping stimulus representations in 

their task. It remains to be seen whether Reeves and Sperling’s (1986) model fits would be 

improved by assuming overlapping representations for a task with an exogenous cue.  

Other theories of RSVP selection do provide for attentional selection of buffered 

items, but do not include a role for endogenous attention. Botella et al. (2001) tasked 

participants with selecting target words from RSVP streams. They argued that pre-target 

items may be selected if attention fails to focus and participants make a “sophisticated 

guess” about which of the features in a buffer was closest in time to the cue. They conceived 

of the buffer as comprising unbound feature representations activated by the items in the 

stream. In their theory, like ours, the time taken to process the cue is correlated with 

selection latency. But their model includes no endogenous mechanism that affects the cue 

processing time and does not assume that whole items can be reported from the buffer – 

whereas in our experiments this component has been shown to affect selection latency. 

Similarly, Vul & Rich (2010) propose a buffer of activated stimulus representations, as 
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reviewed in the Introduction, but do not discuss a role for the allocation of attention prior to 

the cue. 

4.8.3 Limitations 

Our binomial test does not directly compare conditions, but we make an assumption 

that these conditions differ from each other. The binomial test allows us to infer that certain 

SPEs are more frequent than expected from identification failures. The test, unfortunately, 

does not compare across conditions, so it is possible that the different conditions do not 

differ in their proportion of buffered results (Gelman & Stern, 2006).   
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Appendix 

To investigate how confidence ratings changed as a function of SPE and condition, 

we fit five generalised linear mixed effects models, each of which predicted the odds of 

making an ‘unsure’ response. The predictors varied between models. These were: the 

absolute value of the SPE on each trial (|SPE|), the number of streams, and an interaction 

term. We fit five models using lme4 (Bates et al., 2015). The models all contained random 

intercepts by participant. The models were: 

1) Intercept only 
2) |SPE| 
3) Number of Streams 
4) Number of Streams & |SPE| 
5) Number of Streams, |SPE| and an interaction between these two variables 

We interpreted the model with the lowest Bayesian Information Criterion (BIC) as the best 

fitting model. BIC values are presented in Table A1. The best fitting model contained |SPE| 

and the number of streams as predictors. Fixed effects for the model are presented in table 

A2. Both variables had an effect on the odds of responding “unsure”. As |SPE| increased, 

the odds of responding unsure increase by 0.25 (B = 0.23, z = 8.008, ​p​ =1.17 x 10​-15​). 

Indicating that participants had some insight into whether or not their report was the target 

item. The odds of responding “unsure” decreased in the eight-streams condition by .36 (B  = 

-0.45, z = 4.57, ​p​ = 4.8 x 10​-6​). Indicating that participants in this condition where, in general, 

more sure of their answers. 

Table A1  

Bayesian Information Criterion (BIC) values for the generalised mixed-effects models. The 
best fitting model is highlighted 

Model BIC 

Intercept-only 2717.36 

|SPE| 2629.42 

Number of Streams 2707.84 
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|SPE| + Number of Streams 2616.39 

|SPE| + Number of Streams + Interaction 2624.20 

 

Table A2     

Fixed Effects Estimates from the best fitting model 

 Estimate Standard Error z p 

Intercept 1.58856  0.44099  3.602  0.000315 

Number of 
Streams 

-0.44869  0.09811 -4.573  4.80e-06 

|SPE|  0.23420  0.02925 8.008  1.17e-15 
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Chapter 5: Crowding and Eccentricity 

Visual scenes may contain many objects. This can lead to clutter, which makes it 

harder to detect stimuli (Rosenholtz, Li, & Nakano, 2007) and can lead to “crowding” - 

interference between objects that are close together. Crowding is impaired accuracy when 

attempting to identify a target stimulus in the presence of flanking stimuli, despite the fact 

that the target stimulus is larger than the acuity threshold for its position in the visual field 

(Bouma, 1970). Crowding is apparent, on average, when stimuli have a centre-to-centre 

spacing that is less than approximately half the target’s eccentricity (Bouma, 1970). That is, 

the size of the crowding regions scales with eccentricity. Average identification performance 

improves when the target-flanker spacing is increased beyond this distance - the target is no 

longer crowded.  

Crowding’s eccentricity scaling property has been referred to as a law (Pelli & 

Tillman, 2008). However, the critical spacing can be less than half the eccentricity if the 

target and flankers differ in contrast polarity, shape or colour (Chakravarthi & Cavanagh, 

2007; Kennedy & Whitaker, 2010; Kooi, Toet, Tripathy, & Levi, 1994). Crowding has been 

the focus of substantial empirical and theoretical effort (For reviews, see Pelli & Tillman, 

2008; Whitney & Levi, 2011). The dominant models of crowding posit that features within the 

crowded area are pooled, and that these pooling regions increase with eccentricity (Agaoglu 

& Chung, 2016; Freeman & Simoncelli, 2011; Harrison & Bex, 2015; Rosenholtz et al., 

2019). 

Crowding has typically been investigated in terms of spatial or featural properties, 

such as the effects of target-flanker similarity discussed above, with only a few investigations 

of its temporal properties. In their review of the crowding literature, Whitney and Levi (2011) 

propose empirical phenomena thought to be diagnostic of crowding, as do Pelli, Palomares 

and Majaj (2004). Almost all of these diagnostic criteria refer to either features of the stimuli 
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and percept or their spatial arrangement. One exception is their suggestion that crowding’s 

temporal properties may distinguish it from the effects of masking displays that are spatially 

similar to crowding displays, such as object substitution or metacontrast masking (Enns & Di 

Lollo, 1997). 

The few existing investigations of crowding’s temporal properties use different 

methodologies and find somewhat inconsistent results. Ng and Westheimer (2002) asked 

their participants to identify the location of the gap in a Landolt C flanked by four lines, each 

one flanking a potential position of the gap. They varied the SOA between the C and the 

flankers and found that the threshold gap size was highest when the flankers were 

presented 50 - 100 ms after the C. However, this temporal relationship is more diagnostic of 

object-substitution masking, as was their stimulus display. Ng and Westheimer (2002) found 

almost no crowding when their flanking stimuli preceded the target stimulus, a typical pattern 

in masking which uses flankers that do not overlap with the target (Enns & Di Lollo, 1997). 

When crowding is created using traditional letter triplet stimuli, flankers that appear before 

the target can cause crowding. This was demonstrated by Huckauf and Heller (2004), who 

varied the time between a target letter and two flankers and found that identification 

accuracy decreased as SOA decreased, even when the flankers appeared before the target. 

5.1 Temporal Crowding 

 Some investigations of crowding have manipulated the distance between stimuli in 

time and named the resulting reduction in identification accuracy as temporal crowding. 

However, it is not clear whether this is a phenomenon different from masking. Bonneh, Sagi 

and Polat (2007) investigated crowding in amblyopes and controls with normal or 

corrected-to-normal vision. Their temporal crowding paradigm consisted of size threshold 

measurements for the identification of a digit presented in a single RSVP stream at fixation 

where the target digit was smaller than the distractor digits. They found that the size 
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threshold for detecting the target increased with the presentation rate (2.5 Hz or 5 Hz) for 

strabismic amblyopes more than controls, although they do not report statistical tests of 

whether the threshold increases were significantly greater than zero. They named this 

phenomenon “temporal crowding”, and found that the extent of the threshold increase 

correlated with the threshold increase for spatial crowding, as measured with tumbling Es 

and Gabor alignment displays. Yeshurun, Rashal and Tkacz-Domb (2015) also investigated 

temporal crowding by varying the presentation rate of a short, three-item RSVP stream, and 

found that accuracy for identifying the orientation of a target letter decreased with the time 

between stimuli. 

An issue with the notion of “temporal” crowding is that the authors do not attempt to 

distinguish it from masking. Masking is a reduction in identification accuracy when a briefly 

presented target stimulus is followed or preceded by another stimulus at the same location 

(Enns & Di Lollo, 2000; Kahneman, 1968). The extent of the reduction in accuracy 

decreases as the lag between the mask and target increases (Spencer & Shuntich, 1970). 

When the rate of presentation is changed in an RSVP task, as in Bonneh et al. (2007) and 

Yeshurun et al. (2015), the lag between successive stimuli is increased. This results in a 

reduction in accuracy as expected if RSVP stimuli are masking the target.  

In the present experiment, we use a spatial manipulation of crowding - the size of the cue - 

rather than varying the presentation rate in order to produce what Bonneh et al. (2007) 

called “temporal crowding”. Most investigations of crowding have caused crowding by 

manipulating the spacing between stimuli and, as discussed above, attempts to determine 

the criteria that are diagnostic of crowding have relied almost entirely on spatial, rather than 

temporal, phenomena. It is not clear to what extent the decrease in accuracy with faster 

rates is a similar phenomenon to spatial crowding, rather than due to backward masking or 

briefer presentation of stimuli. Bonneh et al (2007) attempt to answer this with correlations 
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between measures of temporal and spatial crowding, but this does not rule out that their 

temporal crowding results are due to masking. 

5.2 Eccentricity and temporal processing 

In addition to investigating crowding, we test for effects of eccentricity on efficacy, 

latency and precision. The way in which form vision changes with eccentricity is well known 

(see Strasburger et al., 2011 for a review) and is thought to reflect structural changes in the 

retina and visual cortex. Photoreceptors become sparser with eccentricity, ganglion cell 

receptive fields become larger, and there is less cortical area dedicated to a given area on 

the retina (Curcio et al., 1990; Daniel & Whitteridge, 1961; Westheimer, 2004). Typically, 

performance degrades as stimuli become more eccentric (but see Kehrer, 1989; Yeshurun & 

Carrasco, 1999). As stimuli become more eccentric, acuity decreases (Low, 1951), contrast 

thresholds for letter and numeral identification increase (Strasburger, Harvey, & Rentschler, 

1991; Strasburger, Rentschler, & Harvey, 1994), and crowding occurs over larger regions 

(Bouma, 1970; Pelli & Tillman, 2008; Whitney & Levi, 2011). However, the possible 

relationships between temporal processing and eccentricity are less well described and the 

results from different tasks are inconsistent. It is well known that critical flicker fusion 

frequencies increase with eccentricity, such that faster flicker can be detected in peripheral 

vision than foveal vision (Hartmann et al., 1979; Tyler, 1987). However, the threshold for 

detecting a blank period between two flashes of light at the same location increases with 

eccentricity (Poggel & Strasburger, 2004), suggesting poorer temporal resolution in the 

periphery, but this may reflect the diffusion of attention over a larger area with increasing 

stimulus eccentricity (Poggel, Treutwein, Calmanti, & Strasburger, 2006).  

Carrasco, McElree, Denisova and Giordano (2003) found evidence that visual 

processing became faster as stimuli became more eccentric. They investigated participants’ 

sensitivity for identifying the orientation of a tilted Gabor patch among isoeccentric vertical 
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distractors. To assess the time course of processing, they instructed participants to respond 

at different times and estimated the rate of processing by fitting exponential functions to 

increases in sensitivity over time. Sensitivity increased at a faster rate for stimuli presented 

9º from fixation relative to 4º from fixation, and asymptotic sensitivity was higher at the more 

eccentric locations. Scaling the 9º stimuli in an attempt to equate the amount of cortical 

space associated with stimuli across eccentricities slowed processing, but did not eliminate 

the eccentricity differences. Participants are still faster at identifying peripheral stimuli in this 

paradigm when the target location is pre-cued with a transient peripheral cue (Carrasco et 

al., 2006).  

5.3 The current experiment 

The effect of eccentricity on temporal qualities of visual processing may be more 

complicated than eccentricity’s effect on spatial vision, which typically shows a consistent 

degradation of spatial vision in the periphery. In some conditions, selection of more 

peripheral stimuli is faster even when those stimuli are cued (Carrasco et al., 2006, 2003), 

and temporal discrimination tasks provide conflicting evidence about temporal resolution in 

the periphery (Hartmann et al., 1979; Poggel & Strasburger, 2004). RSVP provides a way to 

test the speed of selection. Given the much-studied relationship between eccentricity and 

spatial vision, further investigations of the relationship between eccentricity and the temporal 

aspects of vision are needed. Indeed, the wider receptive fields, decreased photoreceptor 

density and decreased acuity associated with eccentricity predict that evidence accumulation 

should slow in the periphery, because eccentric visual information may be less precise and 

take longer to facilitate a decision.  

The current experiment compares temporal selection in RSVP across different 

eccentricities and also investigates a potential role of crowding in our results up until this 
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point. This is the first investigation of spatial crowding’s contribution to temporal selection 

from RSVP streams.  

This chapter investigates crowding in RSVP by varying the spacing between the cue 

- a white circle - and the target stream. This experiment was prompted by the realisation that 

the spacings between cues and targets used in the previous experiments in this thesis were 

smaller than half the eccentricity of the target and thus should have caused crowding. For 

instance,the spacing between the centre of the cue’s line and the centre of the target letter in 

Chapter 4 were 0.08º, 0.15º and 0.22º at eccentricities of 3º, 7.5º and 11º, respectively. 

Despite this, even in the conditions where latency was most delayed, participants reported a 

letter on average 100 ms after the cue with an average efficacy of around 75%, even though 

crowding should occur up to 150 ms before or after the onset of a crowding stimulus 

(Huckauf & Heller, 2004). These efficacy and the latency estimates suggest that participants 

can report the target letter despite a centre-to-centre distance between the cue and the 

target letter of less than half the eccentricity. This suggests that crowding was not as strong 

as we might expect with letter flankers, however it may have still contributed to our results 

and other studies in which the stream was cued with a ring (Goodbourn & Holcombe, 2015; 

Holcombe et al., 2017; Vul & Rich, 2010). To test this, we increase the spacing to greater 

than the crowding range in this experiment in order to test for temporal changes associated 

with crowded and uncrowded targets. 

Because it is not clear whether temporal crowding is masking, rather than crowding, 

the most relevant investigation of crowding’s temporal qualities to our experiment is Huckauf 

and Heller (2004). This study used a spatial manipulation of crowding and found impaired 

identification of a target letter when flanking letters were presented up to 150 ms before or 

after the target. 
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When the target stimulus is crowded in an RSVP task, identification of the target will 

be impaired. This might cause participants to select a letter after the target, rather than 

decreasing efficacy. Crowding impairs identification much more than it impairs detection 

(Levi, Hariharan, & Klein, 2002b, 2002a; Pelli et al., 2004) and a flanking stimulus is less 

crowded than the flanked target (Agaoglu & Chung, 2016) so we do not expect crowding to 

interfere with the detection of the cue. Instead, if the cue crowds the target, identification of 

the target should be impaired and participants may select a subsequent letter. This predicts 

a delay in selection, as identification of the crowded target is unlikely and participants select 

the next stimulus instead.  

As for eccentricity, the predictions from theory are less clear. Increasing eccentricity 

may result in faster processing as predicted by Carrasco et al. (2003; 2006). However, we 

expect that the eccentricity benefit will result in faster accumulation of letter identity, but 

detection of the cue will show little benefit because stimulus detection is simpler than letter 

identification (Pelli, Burns, Farell, & Moore-Page, 2006). This is consistent with cue-target lag 

studies with static displays, which find no effect of eccentricity on the time course of 

attentional selection (Cheal & Lyon, 1989; Hamilton, Stark, & Coslett, 2010). Faster 

processing of letters, counterintuitively, results in a delay in latency. If evidence 

accumulation is delayed for stimuli closer to the fovea than more peripheral stimuli, then - 

assuming letters are processed serially - evidence accumulation about earlier letters will still 

be taking place when the cue is detected for less eccentric stimuli. 

5.4 Method 

Participants​. Sixteen participants from the University of Sydney participated in this 

experiment. Five of these participants were graduate students, including the author of this 

thesis. The remaining 10 participants were psychology undergraduates participating in the 
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experiment for course credit. The sample size was determined by the availability of 

participants. This experiment was not pre-registered. 

Apparatus​. Stimuli were presented on a Mitsubishi Diamond Pro 2070SB CRT 

monitor, which was 40.5 cm wide with a resolution of 1024 x 768 pixels and a refresh rate of 

100 Hz. Participants viewed the monitor in a headrest from a distance of approximately 36.5 

cm. The experiment was conducted in a darkened room. Fixation was not monitored using 

an eyetracker. 

Stimuli​. Participants viewed two simultaneous RSVP streams on each trial. Each 

stream was made up of the letters of the alphabet, with the exception of C and W, presented 

in a random order. The letters were white Sloan font and the cue was a white circle with a 

line width of 0.09º. Stimuli were presented so that their centres were either 3, 7 or 11.5º from 

a central fixation point, which was a white circle with a radius of 0.18º. On each trial, the two 

streams were presented at the same eccentricity. The streams were always on opposite 

sides of the fixation point such that a line drawn from the centre of one stream to the centre 

of the other would pass through fixation. The positions of the streams were varied between 

trials in order to occupy each of the six equally spaced locations around fixation equally 

often.  

The letters were presented at a rate of 12.5 Hz. Each letter was presented for 6 

monitor frames (60 ms) with a blank period of 2 monitor frames (20 ms). On a particular trial, 

the cue appeared in a random stream with the same duration and onset time as a random 

letter between the 7th and 11th items, inclusive.  

The size of the letters were M scaled with the equation and values used by 

Strasburger (2005) to scale numerals with eccentricity: 

1 ) S  S = ( + E
E2 0  
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Where S is the stimulus size, E is the stimulus eccentricity, S​0​ is the foveal size and E​2​ is the 

size at which the scaled size is twice the foveal value. Our letter stimuli were never 

presented foveally. Previous experiments in this thesis presented 0.9º high letters at 3º 

eccentricity, so if we had presented letters at the fovea they would have been 0.36º high 

according to this function and this is the value we used for S​0​. Scaling with this function then 

produces letter heights of 0.9º, 1.62º and 2.43º for stimuli at 3º, 7º, 11.5º of eccentricity. 

There were two conditions for the crowding manipulation of our experiment. In the 

crowded condition - which refers to the cue-target spacings used in all previous experiments 

- the radius of the cue was ​0.98º, 1.77º and 2.65º at eccentricities of 3º, 7º and 11.5º, 

respectively. The letter and crowded cue radii at 3º are the same as those used in 

Experiment 1 of Chapter 2 and the inner ring of Experiment 2 of Chapter 2. The sizes at 7º 

and 11.5º are the same as the middle and outer rings of Experiment 2 of Chapter 2.  

For the uncrowded condition, we increased the radii of the cues so that the spacing 

between the cue’s line and the centre of the target was more than half the target’s 

eccentricity. To do this, we scaled the radius of the cue with the equation 

adius .5 ccentricity .5 etter Height  R = 0 × E + 0 × L + 1  

The distance between a cue in the uncrowded condition and the centre of its corresponding 

target letter was thus one degree greater than half the target’s eccentricity, and thus outside 

the range in which crowding is typically observed. This leads to cue radii of 2.95º, 5.31º and 

7.97º at 3, 7, and 11.5 degrees of eccentricity, respectively. 

Procedure.​ Participants were instructed to maintain fixation and report the letter that 

appeared within the cue on each trial. Trials of different eccentricities and cue radii were 

randomly intermixed. Participants performed 360 trials, which corresponds to 60 trials at 

each pairing of eccentricity and cue radius.  
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Analysis.​ We fit the Gaussian and gamma mixture models to each participant’s data 

and computed model comparisons in the manner described in Chapter 2. Parameter 

estimates were compared using Bayesian linear models implemented in the BayesFactor 

Package (Morey & Rouder, 2018) in R (R Core Team, 2019). Specifically, for each kind of 

parameter estimate, we computed linear models in which one parameter (efficacy, latency, 

or precisio​n) ​was the dependent variable. We computed five models for each parameter, 

each predicting the parameter with different dependent variables. These models were: 

1. Intercept only 

2. Eccentricity  

3. Ring size  

4. Eccentricity and ring size 

5. Eccentricity, ring size and their interaction 

 These models were produced with the generalTestBF function from the BayesFactor 

package. We then computed the Bayes factor for each independent variable by calculating 

the inclusion Bayes factor, the ratio of the posterior model probabilities for all models 

containing a particular variable relative to all models without that variable (Hinne et al., 

2019). Model coefficients are sampled from the posterior for the model with all predictors, 

although we only interpret coefficients for which there is evidence according to the inclusion 

Bayes factor. 

5.5 Results 

Excluded participants.​ One participant produced responses with very low efficacy 

(0.2 - 0.4) on all conditions. Collecting more data from this participant did not improve 

efficacy above 0.5 on all but one condition, so they were excluded from the analysis. A 

further 5 participants in the 11º eccentricity condition had precision estimates that 
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consistently went to the upper bound of the range of values in which  the mixture model 

fitting procedure searched for parameter estimates, even when those bounds were 

increased to reflect potentially wider precisions for those participants. These data were 

excluded from the parameter analyses. It is not clear to us why these participants data could 

not be fit by the model. 

Model Comparisons. ​In all conditions, the majority of participants’ SPE data were 

more likely under the mixture model with a Gaussian efficacious distribution than the mixture 

model with a gamma distribution. The results of the model comparison procedure is 

presented in Table 1. Because the data were most likely under the Gaussian model in the 

majority of cases, we used the parameter values from this model for further analysis.  

Table 1.  

The number of participants whose data were most likely under the different models 

Cue Radius Eccentricity of stimulus 
in degrees  

Normal Gamma Neither 

Uncrowded 3 14 0 1 

Uncrowded 7 15 0 0 

Uncrowded 11.5 14 0 1 

Crowded 3 11 0 4 

Crowded 7 13 0 2 

Crowded 11.5 13 1 1 

  

Efficacy 

Efficacy - the proportion of responses that were not identification failures - decreased 

with eccentricity (BF​eccentricity​ = 1600). The magnitude of this decrease was about .01 per 

degree of eccentricity. The crowding manipulation yielded evidence that was nearly equally 

well explained under the null of no effect as it was under the alternative (BF​crowding​ = .64). 
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There was evidence against an interaction between crowding and eccentricity (BF​interaction​
 ​= 

.25).  

 

Figure 1. ​Efficacy estimates for each eccentricity and crowding condition. The coloured 

points are the estimates for each participant. The black points and error bars are the means 

for each eccentricity ±SE​. 

Latency​. Latency was affected by crowding. When the cue was within the crowding 

region, latency was on average 13.8 ms later than when the cue had a radius beyond the 

crowding region (BF​crowding ​= 5.22). The results provided little evidence of whether eccentricity 

(BF​eccentricity​ = 0.75) or its interaction with crowding had an effect of eccentricity  (BF​interaction​ = 

0.62). 

Latencies were very low in this experiment. Mean latency was 12.6 ms (SD = 48 ms) in with 

the larger cue, and 30.2 ms (SD = 41.2 ms) with the crowding cue. The mean latency for the 

crowding cue is consistent with latencies in similar previous experiments. For instance, in 

Goodbourn and Holcombe’s (2015) first experiment, presenting two RSVP streams with a 
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single cue yielded a mean latency of around 25 - 30 ms, based on visual inspection of their 

figure. The cue radius used in that experiment (5º at 6º of eccentricity) was within the 

crowding region.  

 

Figure 2. ​Latency estimates for the crowding and eccentricity conditions. The small points 

are individual participants’ estimates. The large points and error bars are the means ±SE. 

In Carrasco et al. (2003) and Carrasco et al. (2006), processing was faster at 9º than 4º. In 

an unplanned, exploratory analysis, we compared the effect of eccentricity on latency in the 

present study with with the rate of change observed by Carrasco et al. (2006). We compared 

the relationship between latency and eccentricity observed in our experiment to the change 

observed in Carrasco et. al.’s (2006) conjunction search condition, in which participants 

searched for a Gabor patch with a particular orientation and spatial frequency. We chose the 

conjunction search condition because our task requires detection and localisation of multiple 

features (the ring and the letter), more similar to the processing necessary for accurate 

performance in a conjunction search task than a pop-out oddball task. Selecting a cued 

RSVP stimulus also requires participants to orient attention to a particular location. 
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Conjunction search is thought to require more focused spatial attention than feature search 

(Carrasco & Yeshurun, 1998; McElree & Carrasco, 1999; Treisman & Gelade, 1980; Wolfe & 

Gray, 2007).  

The speed difference between the conditions we have been discussing – 4º and 9º in 

Carrasco et al.’s (2006) conjunction search task – was 106 ms , which corresponds to a 21.6 

ms decrease with each degree of eccentricity. This was the greatest speed difference of any 

condition in either Carrasco et al (2003) or Carrasco et al (2006) by 19 ms, which may bias 

our results against the null. But when the following analyses are conducted using the 

smallest speed difference, which was 17.4 ms/degree in Carrasco et al.’s (2003) feature 

search condition, the conclusions are the same.  

The speed difference observed by Carrasco et al. (2006) is approximately 21.2 ms/degree, 

which corresponds to a 84.8 ms decrease in latency between our 3º and 7º conditions, or a 

95.4 ms decrease between 7º and 11.5º. Using these values as the nulls for paired Bayesian 

t-tests demonstrated that our latency changes differed from this. In our crowded condition, 

the difference between 3º  and 7º (M = 2.35 ms, 95% 95% confidence interval [-13.53, 

18.23]) was less than the 84.8 ms (BF​10​ = 5.1 x 10​4​) of the corresponding Carrasco 

conditions. For the participants with data in both the 7º and 11.5º conditions, the difference 

between the conditions (M = 3.93 ms, 95% CI [-17.40, 25.28]) was less than the 95.4 ms 

(paired t-test BF​10​ = 12949) of the corresponding Carrasco et al. (2006) conditions. 

The pattern of results was the same in the crowded condition. The difference between 3º 

and 7º (M = 1.77, 95% CI [-17.00,  20.55]) was less than 84.8 ms (BF​10​ = 83028). For the 

participants with data at both 7º and 11.5º, the difference between the conditions (M = 18.6 

ms, 95% CI [-6.04,  43.26]) was less than 95.4 ms (paired t-test BF​10​ = 890). 
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Thus, our analysis of the latency estimates in this experiment yielded ambiguous evidence 

regarding a change in latency with eccentricity. However, the results were inconsistent with 

the sort of latency decrease expected according to the observations of Carrasco et al. 

(Carrasco et al., 2006, 2003) 

Precision​. Precision increased with eccentricity (BF​eccentricity​ = 4530), meaning that the 

distributions at the larger eccentricities were wider. The increase in precision was about 4.0 

ms with every degree increase in eccentricity according to the linear model fit. Crowding 

yielded data that appeared almost as likely under the null hypothesis as under the alternative 

hypothesis (BF​crowding​ = 0.60) and for the interaction between crowding and eccentricity, the 

evidence favors the null hypothesis (BF​interaction​ = 0.28) 

 

Figure 3. ​Precision estimates for the eccentricity and crowding conditions. 

The Binomial Test 

All participants showed efficacious reports at an SPE of -1 in the Bouma-scaled 

condition (​p​s ranged from 1.0 x 10​-71​ to 0.006). In the crowded condition, 14 of the 15 
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participants showed efficacious pre-cue reports at an SPE of -1 (​p​s ranged from 2.6 x 10​-28 

to 0.03); the p-value of the remaining participant and was 0.6. 

5.6 Discussion 

In this experiment, we found that increases in eccentricity resulted in decreases in 

efficacy and increases in precision. We could not make a decision about the presence or 

absence of a latency difference over eccentricity. However, a post-hoc analysis revealed the 

small or nil effect of eccentricity on latency here was smaller than the speed difference 

observed by Carrasco et al (2006). The only detectable effect of crowding was on latency, in 

which a smaller, crowding ring yielded a slight (18 ms) delay in latency.  

5.6.1 Crowding 

The effect of crowding was small, in the order of 18 ms for the crowding cue relative 

to the larger, non-crowding cue. The small effect of cue size observed here suggests that the 

cue sizes used in the other experiments in this thesis were not causing crowding to the 

extent observed by Huckauf and Heller (2004) with letter flankers. Huckauf and Heller (2004) 

observed impaired identification performance for crowded letters in triplets when the flanking 

letters were presented 150 ms before to 150 ms after the target letter, relative to 

identification performance for an isolated letter. When the flankers were presented with the 

target, identification accuracy was around 20% to 40%. This suggests that our cue does not 

crowd the letter at all, despite falling within the crowding region. If crowding were occurring, 

we would expect a much larger delay in selection because participants would report the first 

identifiable stimulus after the onset of the cue.. 

In our task, the complexity of the cue, a circle, is likely to be quite small relative to the 

complexity of our Sloan letter stimuli. The target stimulus is flanked on each side by the 

curves of the circle, rather than complex letters as in Huckauf and Heller (2004). When 
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flankers and a target are dissimilar in shape, colour or contrast polarity, the critical spacing 

for identification performance is smaller than when they are similar (Chakravarthi & 

Cavanagh, 2007; Kennedy & Whitaker, 2010; Kooi et al., 1994). It is also the case that 

targets are more crowded by flanking stimuli that are more complex, relative to those that 

are less complex (Bernard & Chung, 2011). Because of this, the extent to which the cue 

crowds the target letter may be small. This means that, provided attention arrives at the cued 

location before the target has been replaced, participants need not select the subsequent 

RSVP stimulus as frequently as would be expected if the flankers were letters and crowding 

was strong. Attention but can sometimes select the target for identification, leading to a 

mean latency that is shorter than the presentation of the target stimulus.  

5.6.2 Eccentricity.  

As stimuli became more eccentric, the efficacy of selection decreased and precision 

became wider, indicating more temporal variability in selection. We were unable to make a 

decision about the relationship between eccentricity and the latency of selection based on 

our data. However, a post-hoc analysis revealed that the extent to which latency changed 

over eccentricity in our task was smaller than that observed by Carrasco et al (2003; 2006). 

Despite M-scaling the size of our stimuli with eccentricity in an attempt to equate the 

cortical area dedicated to stimulus processing across eccentricities, we observed lower 

efficacy for more eccentric stimuli. That is, the probability of misidentifying the cue or a 

selected letter decreased with increasing eccentricity. The observation that M-scaling stimuli 

in order to account for cortical magnification fails to equate identification performance has 

been made before. Strasburger et al. (1994) M-scaled numerals in an identification task and 

observed that this was not enough to equate contrast thresholds for identification across 

eccentricities. It is possible that if a steeper M-scaling function were used, efficacy would be 

equated across eccentricities. However, the theory that cortical magnification can explain 
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performance across eccentricities is beset by failures to scale and contradictory evidence, 

despite its popularity (Strasburger et al., 2011). 

The variability in the timing of selection of an RSVP item when the cue is detected 

and an item is identified- an efficacious response - was greater for more eccentric stimuli in 

our experiment. This widening of precision with increasing eccentricity may reflect the 

increase in processing noise with eccentricity. Hess, Baker, May, & Wang (2008), by 

measuring contrast thresholds for letter identification in the presence of luminance noise, 

found evidence that more eccentric stimuli are subject to more internal noise, although their 

stimuli were not scaled with eccentricity. Internal noise is variation that differs with each 

presentation of a stimulus, which for these experiments could manifest as  trial-to-trial 

variation in processing of the cue, resulting in variation of its detection time.  

We failed to replicate Carrasco et al.’s (2003; 2006) findings of faster letter 

processing with increased eccentricity. This result must be taken with a grain of salt, 

because our precision was not great enough to lead to a decision in favour of either the null 

or the alternative hypothesis and the comparison with Carrasco et al.’s (2006) results was 

post-hoc. We did not run any unreported tests before deciding on the comparison with 

Carrasco et al.’s (2006) results, but it is possible that observing the data led us - 

unconsciously - to a test that we knew would detect a difference (Gelman & Loken, 2013).  
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Chapter 6: Discussion 

Attention, the ability to selectively process visual information based on location or 

feature, is an important determinant of human visual performance (Carrasco, 2011). This 

thesis was an investigation of the timing properties of attention as measured by RSVP - in 

which participants must report one stimulus from a sequence. This paradigm was designed 

to mimic the stream of information presented to the visual system in natural viewing. Here 

we showed that attention has access to sensory memory when stimuli are presented in rapid 

succession, despite the masking inherent in such displays. This is inconsistent with certain 

published theories of RSVP. For example, some models assume that stimulus 

representations are terminated when a new stimulus is presented at the same location 

(Chun & Potter, 1995; Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 

2002). Others assume that some information persists, but that attention either does not 

sample it in a way that would result in temporal errors or that the persistent information 

consists of unbound features (Botella, Barriopedro, & Suero, 2001; Olivers & Meeter, 2008; 

Vul & Rich, 2010; Wyble, Bowman, & Nieuwenstein, 2009). Our results show that such 

assumptions may be wrong.  Attention can select persistent information about stimuli that 

are masked and no longer presented, suggesting that visual resources can be flexibly 

applied to sensory memory as well as the incoming stream of visual information.  

Typically, attention is studied by varying the lag between an attentional cue and a 

target stimulus, which has provided reliable information about the relative speed of different 

kinds of attentional orienting (Cheal & Lyon, 1991; Müller & Rabbitt, 1989; Nakayama & 

Mackeben, 1989). However, such studies reflect a cumulative distribution of attentional 

arrival times and do not provide trial-level information about the timing of attention in 

response to a stimulus. Using RSVP, rather than cue-target lag, allows researchers to 

estimate the timing of attention in a manner that mimics the dynamism of visual scenes 
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(Potter & Levy, 1969; Reeves & Sperling, 1986; Weichselgartner & Sperling, 1987). 

However, inferences about attention’s timing from RSVP data are qualified by the possibility 

of ​identification failures​, responses that are misidentifications of a selected letter or guesses 

that occur when participants miss the cue. Identification failures can result in responses from 

any time within a particular trial, rather than being informed by the occurrence of the cue, 

and thus they impair our ability to draw inferences about attentional selection based on the 

temporal distribution of SPEs.  

Mixture modelling the distribution of SPEs (Goodbourn & Holcombe, 2015) allows us 

to account for identification failures and draw inferences only about ​efficacious​ reports, those 

responses that are informed by the timing of the cue. This leads to a surprising finding under 

some conditions - the distribution of efficacious reports seems to include items from before 

the time of the cue (Goodbourn & Holcombe, 2015; Holcombe, Nguyen, & Goodbourn, 

2017). This is surprising because many theories of attentional selection, even those that 

attempt to explain RSVP, assume that attention is triggered by the cue and that it cannot 

select information about stimuli that are no longer presented (Chun & Potter, 1995; Olivers & 

Meeter, 2008; Weichselgartner & Sperling, 1987; Wyble et al., 2009). Goodbourn and 

Holcombe (2015) argued that efficacious pre-cue reports were evidence for a perceptual 

buffer, a process distinct from attentional selection from the incoming stream of visual 

information. This thesis investigated the presence of buffering, as evidenced by pre-cue 

reports that were not identification failures.  

6.1 The mixture model measures the temporal aspects of selection 

In Chapter 2, we outlined our analyses for the SPE data. Our mixture modelling 

technique extended Goodbourn and Holcombe’s (2015) approach to analysing SPE data 

and investigated the presence of skew, which we predicted would be present in efficacious 

selections when items were selected using an attention shift, rather than the buffer. To 
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compare the evidence for skewed, rather than symmetric (Goodbourn & Holcombe, 2015; 

Holcombe et al., 2017), efficacious distributions we fit two models to each participant, one 

with a skewed, gamma distributed efficacious distribution, and one in which the efficacious 

distribution was a Gaussian.  

In that chapter, we showed that selection from the RSVP streams was temporal, 

rather than based on items, and that the seeming-symmetric efficacious distributions 

observed in earlier studies were not due to slow presentation rates which provide coarse 

information. Mixture modelling applied to the data from a two-stream RSVP task with 

presentation rates that ranged from six letters/second to 24 letters/second revealed that the 

mixture models estimates of the timing properties of efficacious selection were truly temporal 

and were not affected by changes in the probability of an efficacious response. As the 

presentation rate increased, efficacy dropped, but the precision and latency of selection 

were consistent with the null hypothesis of no change across rates. Increasing the rate of 

presentation did not produce data that were more likely to be skewed.  

Botella and Eriksen (1991) observed a shift from a symmetric to a post-target SPE 

distribution when they increased the presentation rate of a single RSVP stream. However, in 

our task participants produced data consistent with a Gaussian efficacious distribution 

across all presentation rates. We attribute the difference between our results and Botella and 

Eriksen’s (1991) to differences in analysis. Botella and Eriksen (1991) analysed their data in 

terms of item serial position. However, If selection has a fixed positive latency, increasing the 

presentation rate of an RSVP stream will result in selection of later items - evidence that 

Botella and Eriksen (1991) interpret as a change in the shape of the SPE distribution. 

Consistent with this claim, we observed evidence that latency, measured in milliseconds, did 

not change across presentation rates 
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Our results also indicated that the presence of SPE distributions in previous studies 

with a seemingly Gaussian component, rather than skew, were not due to coarse temporal 

information produced by presentation rates of eight to 15 letters/second, which may obscure 

skew (Botella & Eriksen, 1991, 1992; Gathercole & Broadbent, 1984; Goodbourn & 

Holcombe, 2015; Holcombe et al., 2017; Lawrence, 1971). Likewise, a reanalysis of 

Goodbourn and Holcombe’s (2015) single-target condition indicated that 23 of the 26 

participants in that experiment produced data that were most consistent with a Gaussian 

efficacious distribution rather than the skewed gamma distribution.  

In Chapter 2 we also outlined our binomial test, which allows us to investigate 

whether a participant’s responses at a particular SPE are more frequent than predicted 

under identification failures. This allows us to test for the presence of buffered information 

while accounting for the fact that some trials are likely to yield identification failures, which 

can result in reports of items from before the cue. Our test is conservative with regards to 

efficacy, so it is biased towards identification failures slightly. Applying this analysis to data 

from previously published experiments (Goodbourn & Holcombe, 2015; Vul, Nieuwenstein, & 

Kanwisher, 2008) yields evidence that reports of items presented one item before the cue 

are more frequent than can be explained by identification failures - evidence of buffered 

information.  

6.2 Endogenous and Exogenous cueing 

Once we observed evidence that our latency and precision estimates are temporal, 

we began to assess the time course of selection. In Chapter 2, we compared selection with 

exogenous and endogenous attentional cues. Comparisons of these kinds of cues are 

common in cue-target lag investigations of attention’s time course and have played an 

important role in the theoretical distinction between endogenous and exogenous sources of 

attentional orienting (i.e. Cheal & Lyon, 1991; Müller & Rabbitt, 1989; Nakayama & 

        146 



Mackeben, 1989; Posner, 1980). However, these comparisons are rare in the RSVP 

literature. When endogenous and exogenous attention are compared in the RSVP literature, 

the data are not mixture modelled and estimates of attention’s temporal properties are likely 

affected by the presence of identification failures (Weichselgartner & Sperling, 1987).  

Comparing a central, endogenous cue with a peripheral, exogenous cue, we found 

that endogenous cueing resulted in lower efficacy and wider precision than exogenous 

cueing. We also replicated the delay in latency associated with endogenous cueing relative 

to exogenous cueing commonly found in cue-target lag studies (Cheal & Lyon, 1991; Müller 

& Rabbitt, 1989; Nakayama & Mackeben, 1989). We believe that the differences in latency 

and precision in this study reflect the need for participants to interpret an endogenous cue 

and voluntarily shift attention to the cued location. This process is longer and more 

temporally variable than selection based on an exogenous cue, which occurs at the cued 

location and requires little, if any, interpretation.  

6.3 Is there a buffer? 

In a dynamic visual scene, representations of information at a given location in the 

visual field may be replaced, either due to the observer’s movements or the movement of 

something in the scene. This replacing of information is thought to result in masking, in 

which accuracy for identifying a target stimulus is impaired when another stimulus is 

presented at the same location shortly before or after the target (Enns & Di Lollo, 2000; 

Kahneman, 1968). Masking limits the time frame during which stimulus information can be 

selected by attention. Without masking, information about stimuli may persist in sensory 

memory and may be available for attentional selection even when stimuli are no longer 

presented, but upon presentation of a mask this information is no longer available (Averbach 

& Coriell, 1961; Pinto, Sligte, Shapiro, & Lamme, 2013; Sligte, Scholte, & Lamme, 2008; 

Sperling, 1960). RSVP mimics the dynamic stream of visual information and masking 
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present in a visual scene by presenting a sequence of stimuli quickly at one spatial location, 

and models of selection from RSVP assume that masking either terminates sensory memory 

(Chun & Potter, 1995; Grossberg & Stone, 1986; Reeves & Sperling, 1986; Shih & Sperling, 

2002), or that persisting information cannot be accessed by attention (Olivers & Meeter, 

2008; Wyble et al., 2009). 

 Goodbourn and Holcombe (2015) found evidence that masking may not prevent the 

selection of information from sensory memory in dynamic visual scenes. In a task where 

participants had to select cued items from two RSVP streams, Goodbourn and Holcombe 

(2015) observed efficacious distributions with latency and precision estimates that suggested 

that some efficacious selections came from before the time of the cue. The presence of 

these efficacious pre-cue reports indicates selection from sensory memory of RSVP letters, 

which Goodbourn and Holcombe (2015) referred to as a buffer. The apparent use of 

buffered information suggests that despite visual representations being subject to masking in 

naturalistic viewing, attention can access sensory information about stimuli that are no 

longer present. However, models of RSVP assume that such selection from sensory memory 

cannot occur (Chun & Potter, 1995; Grossberg & Stone, 1986; Olivers & Meeter, 2008; 

Reeves & Sperling, 1986; Shih & Sperling, 2002; Wyble et al., 2009).  

Goodbourn and Holcombe’s (2015) theory of buffering distinguishes buffering from 

attentional engagement with the stream. The buffering theory assumes that representations 

are activated in the buffer by incoming stimuli, regardless of whether a cue has been 

presented. Selection from the buffer is achieved by binding the representation of the cue 

with the activated representation of a letter from the RSVP stream in Goodbourn and 

Holcombe’s (2015) theory, which can sometimes result in the efficacious report of an item 

from before the time of the cue.  Attentional sampling from the stream, on the other hand, is 

thought to occur when the cue triggers attention to engage with the incoming stream of 
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visual information. Before the onset of the cue, selection does not occur (Chun & Potter, 

1995; Olivers & Meeter, 2008; Weichselgartner & Sperling, 1987; Wyble et al., 2009).  

In Chapter 4 and 5, we investigated the evidence for buffering by investigating the 

circumstances where participants made efficacious reports of stimuli from before the cue. 

Unlike previous papers that had suggested that buffered representations can be selected, 

we directly tested for efficacious reports of pre-cue stimuli using our binomial procedure. 

Chapter 4’s Experiments 1 and 2 and the experiments of Chapter 5 demonstrated 

efficacious pre-cue reports when participants must report a cued item from one of two 

simultaneous RSVP streams. As we increased the number of simultaneous streams in 

Experiments 1 and 2 of Chapter 4, efficacious pre cue reports were less evident, the latency 

of efficacious selections was delayed, and the precision of efficacious selections narrowed. 

Efficacy did not change as the number of streams increased in either experiment, which 

suggested to us that pre- and post-cue reports are the result of the same process, rather 

than separate buffering and attentional selection processes as assumed by Goodbourn and 

Holcombe (2015). Experiment 3 in Chapter 4 provided evidence that the delay in selection 

was due to participants dedicating attention to the potential locations of the cue prior to its 

presentation. In that experiment, we kept the number of streams constant and manipulated 

participants’ knowledge about the location of the cue with a pre-cue. Selection was delayed 

when there were eight possible locations of the cue, relative to two, suggesting that the 

changes in the temporal dynamics observed in Experiment 1 and 2 of Chapter 4 were due to 

participants attending to potential cue locations. 

The results of Chapter 4 changed our theory of the role of buffering in visual 

performance. Initially, we thought of the buffer and attentional selection as separate 

processes, like Goodbourn and Holcombe (2015), but it is hard to reconcile this with the lack 

of an efficacy change as the number of streams increased. One would reasonably expect 
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buffering and attentional selection to have different probabilities of reporting a letter from 

around the time of the cue, but we observed evidence that efficac​y​ did not change as the 

number of streams increased. Instead, we now believe that efficacious pre-cue reports are 

present when attentional engagement is fast enough that it may select a pre-cue letter 

representation before that representation decays.  

Under our account, participants spread attention over all the streams presented on a 

particular trial prior to the onset of the cue. When there are fewer streams, more attentional 

resources are dedicated to a given stream and this speeds selection upon presentation of 

the cue. Diffusing attention over a larger area is associated with decrements in performance, 

such as slower reaction times for detecting a target stimulus (Castiello & Umiltà, 1990, 1992) 

and increased thresholds for detecting a temporal gap between stimuli (Poggel, Treutwein, 

Calmanti, & Strasburger, 2006). Because of this, we believe that when participants view 

multiple simultaneous RSVP streams, they devote some proportion of attention to each one. 

As the number of streams increases, a smaller proportion of attention is dedicated to each 

stream and this delays selection based on the cue. We do not know whether this is due to a 

delay in cue detection, like the delay in stimulus detection in Castiello and Umiltà (1990; 

1992), or a delay in the orienting of attention to the cued location. 

In order for this theory to account for efficacious reports of items from before the cue, 

a stimulus’ representation must persist beyond the onset of the following stimulus at the 

same location. The phenomenon of attentional selection from visual sensory memory stores 

is well-established in research on iconic memory and fragile memory (Averbach & Coriell, 

1961; Coltheart, 1980; Pinto et al., 2013; Sligte et al., 2008; Sperling, 1960) and it has been 

incorporated into theories of selection in RSVP (Grossberg & Stone, 1986; Reeves & 

Sperling, 1986; Shih & Sperling, 2002). However, the literature on sensory memory states 

that it is erased by post-masking when stimuli are presented at the same location in visual 
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space. Under these theories the memory process should be eliminated in RSVP, where 

subsequent items mask previous items from the same stream. However, recently it has been 

observed that selection from sensory memory is possible even in the presence of a post 

mask (Smith, Mollon, Bhardwaj, & Smithson, 2011; Smithson & Mollon, 2006), and neural 

decoding studies indicate that information about stimulus identity in RSVP persists during 

the presentation of a subsequent item in the same location (King & Wyart, 2019; Marti & 

Dehaene, 2017). Our results add to this growing body of literature on the resilience of 

sensory memory to masking. We observed that the efficacy of selection was unchanged by 

the number of simultaneous streams, even though pre-cue selections became less frequent. 

This suggests that the process involved in selecting items from before the cue is the same 

as that involved in selecting items from after the cue. In both cases, attention selects 

stimulus representations, and the pre-cue reports indicate that sensory memory is the 

source of these selections even in the presence of masking. 

Our theory thus differs from that of Goodbourn and Holcombe (2015). They assumed 

that representations of letters and the cue were activated in a buffer and that one 

representation was bound with the cue for report. This is distinct from the cue triggering 

sampling from the stream, which we predicted would dominate at higher numbers of streams 

(​https://osf.io/7hkgd​). Our results prompted a theory that differs from this buffering and 

binding process. The buffer is retained, in the form of a memory story that is resilient enough 

to masking to provide information for selection. However, selection occurs not through a 

process of binding the cue with a letter representation, but instead attention is triggered by 

the cue and if the attentional response is fast enough it can select information from sensory 

memory about a pre-cue letter.  

The idea that masking terminates the representation of stimuli in dynamic displays is 

long standing. Sperling (1960) provided early evidence that this was the case, and 35 years 
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later, Chun and Potter (1995, pp. 109) stated that each RSVP stimulus “eliminates the 

previous item from sensory storage”. The experiments reported in this thesis provided 

evidence that this assumption is wrong. By designing the first direct test of efficacious 

pre-cue reports, we demonstrated that sensory memory in dynamic displays persists despite 

masking and can be selected by attention, provided attention is fast enough. Current 

theories of RSVP cannot account for these results. As discussed in Chapter 4, several 

theories of selection in RSVP assumed that sensory information is inaccessible in the 

presence of post-masking, so these results falsify those theories by demonstrating 

efficacious pre-cue selections (Chun & Potter, 1995; Grossberg & Stone, 1986; Reeves & 

Sperling, 1986; Shih & Sperling, 2002).  

While Chun and Potter (1995) stated that each RSVP stimulus masks the stimulus 

that came before it, one element of their theory may explain the results we observe here. In 

order to explain the attentional blink, Chun and Potter (1995) proposed a two-stage model in 

which RSVP stimuli are first processed for feature detection in a preattentive manner and - if 

a target stimulus is detected - are consolidated with attentive processing. Their preattentive 

stage contains a brief store of conceptual information - such as a stimulus’ category and 

semantic associations - known as conceptual short term memory (CSTM; Potter, 1993). 

CSTM contains conceptual information accessed even when stimuli are presented at fast (8 

to 10 Hz) presentation rates, but it is quickly forgotten. CSTM can explain priming effects in 

the attentional blink, in which accuracy for identifying the second target in an RSVP stream 

is increased when that target is preceded by a semantically related distractor or target (Maki, 

Frigen & Paulson, 1997; Shapiro et al., 1997). These effects can be explained if we assume 

that semantic information about RSVP stimuli is accessed even with brief, masked 

presentations, and this information persists so that if a semantically-related target is 

presented before it decays, it benefits from this activation. 
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CSTM is thus a kind of buffer, in which stimulus information persists and can be used 

for selection. However, conceptual relationships between representations in CSTM are 

critical for information to persist (Potter, 1993). Without conceptual structure, information 

decays quickly, as indicated by observations that recall for targets in RSVP streams of words 

is more accurate when the stream’s words form a coherent sentence relative to when they 

do not (Potter, Nieuwenstein and Strohminger, 2008). The letters that we use in this thesis 

have little conceptual structure, so under this theory they would decay quickly. If the decay 

rate for items with little conceptual structure is long enough that one item’s activation persists 

beyond the next, then CSTM could explain the selection of buffered items that we observe.  

Other theories allow for stimulus information that persists after the next stimulus, but 

none of these contain a role for the allocation of attention prior to the onset of a cue, but we 

demonstrate here that attending to the streams prior to the onset of the cue affects the 

speed with with attention engages with the cued stream (Botella et al., 2001; Olivers & 

Meeter, 2008; Rusconi & Huber, 2018; Vul et al., 2008; Wyble et al., 2009). These theories 

need to be modified in order to account for the results of this thesis.  

6.3 Skew and symmetry in temporal selection 

In conditions with few streams and a ring cue, we consistently observed data that 

were better fit by the mixture model with a symmetric efficacious distribution rather than 

skew. This was surprising, because we assume that selection is the result of attention, 

triggered by the cue. An attentional episode triggered by the cue in this manner should 

impart a positively-skewed efficacious component to the SPE distribution, because selection 

has a lower bound imposed by the presentation of the cue. This assumption was formalised 

in our gamma mixture model, which used a skewed efficacious distribution. The seeming 

absence of skew in the efficacious distributions does not seem to be due to the coarse grain 

of the temporal information that the RSVP paradigm provides. There were no systematic 
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increases in the evidence for skew when the presentation rate increased in Chapter 2 - most 

participants in that experiment produced data that favoured the symmetric Gaussian mixture 

model. 

Symmetric and skewed SPE distributions were previously observed by several 

researchers interested in how the feature and identity of letter or numeral RSVP stimuli were 

processed (Botella, 1992; Botella & Eriksen, 1992; Broadbent & Broadbent, 1986; 

Gathercole & Broadbent, 1984; McLean, Broadbent, & Broadbent, 1983). These data were 

not mixture modelled and inferences about symmetry were drawn by comparing the 

percentage of the SPE distribution before and after the target. Distributions made up 

predominantly of post-cue (i.e. not symmetric) stimulus reports, like those observed in 

Lawrence (1971), were interpreted as evidence for serial processing of the cue feature (i.e. a 

particular stimulus’ colour) before processing stimulus identity (Broadbent, 1977). The 

symmetry of SPE distributions, as measured by comparing the proportion of the SPE 

distribution before and after the target, was interpreted as evidence of parallel processing of 

feature and identity information, and changes from symmetric to post-target SPE 

distributions were interpreted as strategic shifts between serial and parallel processing 

modes (Botella & Eriksen, 1992; Broadbent & Broadbent, 1986; Gathercole & Broadbent, 

1984; McLean et al., 1983). However, as we demonstrate in Chapter 2, these changes are 

consistent with a symmetric distribution fixed positive latency, rather than a change from 

symmetric to skewed SPE distributions. 

We mixture modelled the SPE distributions, compared the evidence for skew using a 

Bayesian model comparison procedure and  observed consistent evidence for symmetric 

efficacious distributions (the Gaussian model was favoured) with few streams and a ring cue 

(Chapter 4 and Chapter 5). We still observed symmetry when selection was cued with a 

central cue (Chapter 3), a condition which we presume resulted in an attention shift from the 
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centre of the display to the cued stream, because participants would need to attend centrally 

to detect the cue and identify its location relative to fixation. A peripheral cue, on the other 

hand, provided the location of the cued stream and participants appeared to attend to the 

streams prior to the cue’s onset. Three of the six participants in the central cue condition 

produced data that were more likely under the Gaussian model. The presence of a central, 

rather than a peripheral, cue had the effect of delaying selection and increasing its variance, 

but the data for half the participants were more likely under the symmetric Gaussian model 

than the skewed Gamma model. 

Symmetry does not appear to allow us to diagnose the presence of triggered 

attention shifts. We believe this is due to persistence in the representations of RSVP stimuli. 

In Chapter 4 and 5, we consistently observed efficacious pre-cue reports, and the results in 

Chapter 4 lead us to believe that attentional selection is responsible for these reports. We 

explain the presence of selection from before the onset of the cue with the informational 

persistence of stimulus representations. Similarly, if there is information about stimuli that are 

no longer presented available for selection, then the decay of these representations may 

explain symmetry in the SPE distributions by allowing the possibility of attentional selection 

of stimulus representations that are no longer presented, contributing to the left tail of the 

SPE distributions.  

We only observed skew in the distributions when there were many streams, but 

because we did not observe a change in efficacy for these skewed distributions, we do not 

believe that these reflect an attention process distinct from that which produces efficacious 

pre-cue selections. One reason we may have observed skew in these conditions relative to 

those in which there were few streams is that the presence of multiple simultaneous RSVP 

streams lead to competition between stimulus representations. With many streams, there is 
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increase competition between stimuli, resulting in stimulus-induced activity returning to 

baseline quicker than with fewer streams.  

6.4 Comparison between cue-target lag and RSVP 

Traditionally, the time course of attentional selection has been inferred from studies 

in which the lag between an attentional cue and some target stimulus is varied and 

participants’ accuracy for responding to the stimulus is measured (Cheal & Lyon, 1991; 

Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989; Posner, 1980). Accuracy typically 

increases as lag is increased from 0 to 100 - 300 ms, depending on whether attention is 

cued with a central (endogenous) or peripheral (exogenous) cue. The lag at which accuracy 

peaks (in the case of exogenous attention) or asymptotes (in the case of endogenous 

attention) provides researchers with an estimate of the earliest time at which attention 

provides maximum benefit for target processing. However, as we have discussed in Chapter 

1, this provides cumulative information about the arrival of attention. If a set of trials with a 

particular lag is significantly more accurate than trials with a shorter lag, then we may infer 

that attention arrived at or before the longer lag, but was unlikely to arrive at or before the 

shorter lag. This inference is complicated somewhat in studies with a peripheral cue, 

because long cue lags can result in accuracy that is worse than that around 100 ms, 

indicating that attention has disengaged from the cued location on some proportion of trials. 

In this case we do not know when attention arrived and when it disengaged. 

We used RSVP and mixture modelling in order to produce a distribution of attentional 

arrival times from trials that were efficacious. RSVP allows (quantised) trial-level inferences 

about the timing of attention based on the stimulus reported by a participant on each trial. 

Identification failures - responses from trials in which the cue or the selected letter were 

misidentified - can result in reports of items from any point in time in a trial, which 

contaminate these estimates of attention’s timing. Our mixture modelling processing 
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accounts for this and allows us to analyse the temporal qualities of efficacious selections. 

Rather than tracing the cumulative distribution of attention across lags, we estimate the 

temporal distribution of attention as demonstrated by efficacious reports.  

In Chapter 3, we compared the distribution of selections from one of six streams 

produced by central and peripheral cues. Comparing these sorts of cues in cue target-lag 

studies has provided important evidence for the theoretical distinction between endogenous 

and exogenous attention (Cheal & Lyon, 1991; Müller & Rabbitt, 1989; Posner, 1980). We 

replicated the observation that central cues yield slower attentional orienting than exogenous 

in our latency estimates (Cheal & Lyon, 1991; Müller & Rabbitt, 1989). However, our latency 

estimates were much shorter than those typically observed in cue-target lag studies.  

Our central cue estimates had a mean of 212 ms, shorter than the ~300 ms typically 

observed with central cues. Differences in latency between experiments could potentially be 

attributed to the use of different central cues - we used a 0.07º pixel at fixation whereas 

Cheal and Lyon (1991) used a 0.8º arrow and Müller and Rabbit (1989) use an arrow of 

unknown size. However, given that our central cue was smaller than Cheal and Lyon’s cue 

and hard to detect (mean efficacy with this cue was .61), the idea that differences in the cue 

would explain our faster latency seems implausible.  

Peripheral cueing led to shorter latency estimates than the 100 - 120 ms peak times 

with peripheral cues observed in cue target lag studies with less than 18 streams in 

Chapters 3, 4 and 5 (Cheal & Lyon, 1991; Folk, Remington, & Johnston, 1992; Müller & 

Rabbitt, 1989; Nakayama & Mackeben, 1989; Posner & Cohen, 1984; Remington, Johnston, 

& Yantis, 1992). Latency increased as we increased the number of streams in Chapter 4 up 

to a mean of 90.9 ms, close to the range of values from cue-target lag studies. Perhaps the 

difference between our latencies and the time of peak accuracy in a cue-target lag study can 

be attributed to the fact that such studies often use a fixed number of items. However, 
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Nakayama and Mackeben (1989) varied the number of items in their search arrays and 

found no effect on the peak timing of attention, which argues against this explanation. 

We believe that the shorter latency estimates can be explained by the persistence of 

visual representations and the allocation of attention prior to the onset of the cue. These 

qualify any attempt to use RSVP in order to investigate the time course of attentional 

selection. We observed efficacious pre-cue selections in Chapters 4 and 5, indicating that 

visual representations persist and can be selected by attention based on the cue. This 

means that the item reported on a particular trial could be an underestimate of the time taken 

for attention to orient in response to the cue on that trial. Attention may select an item that is 

no longer presented, making selection appear faster than it is. This is not only the case for 

efficacious pre-cue selection. Post-cue efficacious selections may result in selection of an 

item that is no longer presented.  

Similarly, the allocation of attention to the streams prior to the onset of the cue 

speeds the attentional response to the cue. When there are few streams and thus few 

potential cue locations, participants can dedicate more attentional resources to the cue 

locations and this speeds their response to the cue. This issue does not occur in cue-target 

lag studies, where participants typically see the cue prior to the onset of any other stimuli 

and cannot allocate their attention to a particular location (other than the display) prior to this 

in a way that would speed attention.  

6.5 Future Directions 

We present evidence for attentional allocation prior to the onset of a cue and 

efficacious reports of items that were presented prior to the cue. Some models of selection 

from RSVP streams assume that attention is not engaged with the stream until it is triggered 

by the cue (Chun & Potter, 1995; Olivers & Meeter, 2008; Weichselgartner & Sperling, 1987; 
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Wyble et al., 2009). Many of these models are designed to explain the attentional blink 

(Chun & Potter, 1995; Olivers & Meeter, 2008; Wyble et al., 2009). Current models of the 

attentional blink assume that the blink’s time course represents encoding time into working 

memory (Wyble et al., 2009) or the time course of inhibition in response to detecting a 

distractor (Olivers & Meeter, 2008). However, there is evidence that the blink is affected by 

the timing of attention due to its spatial diffusion. This may call the assumptions that the blink 

reflects the dynamics of encoding or suppression into question. 

 Diffusing attention over many streams may delay selection and extend the blink. 

There are several attentional studies that use multiple RSVP streams in which the first and 

second targets can appear in different streams. Several of these have investigated how 

selection of one target affects the ability to switch attention to another stream (Jefferies, 

Ghorashi, Kawahara, & Di Lollo, 2007; Kristjánsson & Nakayama, 2002; Lunau & Olivers, 

2010; Shih, 2000). None test whether the number of simultaneous streams changes the 

blink, but two studies provide evidence that the distribution of attention prior to the cue may 

extend the blink. Jefferies et al. (2007) presented participants with two RSVP streams and 

observed that switching from one stream to the other was impaired when participants did not 

know where the first of two targets would appear, so that they had to attend to both streams 

rather than just one. Lunau and Olivers (2010) report evidence that when two successive 

targets appeared in one of 27 simultaneous streams, detection of the second target was 

impaired from 200 to approximately 800 ms after the first target. This is much longer than the 

200 to 500 ms impairment typically observed in attentional blink studies with a single stream 

(Martens & Wyble, 2010). Shih (2000) presented their participants with two simultaneous 

streams and also observed an extended blink. However, Kristjánsson and Nakayama (2002) 

found what appeared to be a typical time course for the blink when the targets appeared in 
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one of eight simultaneous streams, so the effect may not be as robust as the latency 

increases observed in Chapter 4 of this thesis.  

Another potential extension of the work in this thesis is a test of Goodbourn and 

Holcombe’s (2015) pseudoextinction effect - an advantage for making an efficacious report 

in the left or superior stream of two simultaneously cued RSVP streams. Goodbourn and 

Holcomeb (2015) hypothesised that buffered information was the source of 

pseudoextinction. They argued that stimulus representations persist in the buffer, and a 

serial tokenisation process that begins with the left or superior stimulus consolidates 

stimulus information into working memory. Our results suggest that the buffer may not 

operate at high numbers of streams, and thus pseudoextinction may not be present under 

similar conditions.  

The evidence for the lack of a buffer with high numbers of streams comes from the 

skew present in the efficacious distributions in these conditions in Chapter 4. Skew is 

important here, rather than the increased delay we observed, because the delayed selection 

may still selected a persistent representation, but not one that occured before the cue. Skew, 

however, suggests that suggests that earlier items from the stream do not persist long 

enough to be selected. This moves the lower bound on selection closer to the modal time of 

selection, but the right tail of the distribution is preserved due to the incoming stream of 

RSVP stimuli. With few streams, there is symmetry in the efficacious distribution, suggesting 

persistent representations.  

If the buffer requires persistent information, as Goodbourn and Holcombe (2015) 

theorise, then conditions in which information does not persist may not demonstrate a 

pseudoextinction effect. By increasing the number of RSVP streams and cueing two of them 
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simultaneously, we can test this. Participants with skewed efficacious distributions will show 

no pseudoextinction effect if this is the case. 

6.6 Summary 

The visual world is rich and dynamic. However, human visual resources are limited 

and we must flexibly apply them to process important aspects of the stream of incoming 

visual information. RSVP allows us to conduct controlled laboratory investigations of the 

temporal dynamics of attentional selection. Theorists typically assume that masking - 

interference between two stimuli presented sequentially at the same spatial location - 

eliminates sensory information about RSVP stimuli that are no longer presented, or 

attenuates it such that it is not useful. Here, we demonstrate that stimulus representations in 

RSVP persist beyond the presentation of a subsequent stimulus at the same location and 

that attention may select these representations in response to a cue. This violates 

assumptions about masking in RSVP and provides valuable information about how attention 

samples the visual world. Attention has access not only to the incoming stream of visual 

information, but briefly persisting sensory memory as well.  
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