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Abstract 

Stroke is one of the leading causes of death and disability. Muscle weakness (or loss of 

voluntary muscle strength) in the paretic arm and leg is one of the most common impairments 

after stroke. Muscle weakness has been identified as one of the main contributors to activity 

limitations (such as walking or reaching and manipulation) and participation restrictions. Many 

people who are very weak and immobile after stroke have few options for exercising 

independently and few studies have specifically investigated this issue. Many people after 

stroke also have difficulty standing up due to weakness and poor coordination. The inability to 

stand up can be very disabling and can lead to increased burden of care. Again, few studies 

have specifically investigated this issue in people who are very weak and immobile.  

This thesis includes a systematic review that investigated the effects of commonly-used 

interventions to improve strength and activity after stroke. This thesis also includes a 

randomised controlled trial investigating the effects of providing a strengthening intervention 

(Functional Electrical Stimulation cycling) that can provide more opportunities for people who 

are very weak and immobile after acquired brain injury to exercise independently, and a 

randomised controlled trial investigating if intensive sit-to-stand training improves lower limb 

strength and the ability to stand up in people who are unable to stand up independently after 

stroke.  

Study one was a systematic review of 52 randomised controlled trials with meta-analysis, 

investigating if interventions involving repetitive practice improve strength after stroke, and if 

any improvements in strength are accompanied by improvements in activity. Forty-six studies 

with a total of 1928 participants investigated the effects of repetitive practice on strength. The 
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overall SMD of repetitive practice on strength when the upper and lower limb studies were 

combined was 0.25 SD (95% CI 0.16 to 0.34, I2 = 44%) in favour of repetitive practice. These 

results indicate that interventions involving repetitive practice do improve strength after stroke, 

and improvements in strength are accompanied by improvements in activity.  

 

Study two was an assessor-blinded, multi-centre randomised controlled trial investigating the 

effects of Functional Electrical Stimulation (FES) cycling on mobility and strength after 

acquired brain injury caused by stroke or trauma. Forty patients from three hospitals with 

recently acquired brain injury were randomised to an experimental group which received four 

weeks of FES cycling in addition to usual care, or a control group which received usual care 

only. The mean between-group differences (95% CI) for mobility and strength of the knee 

extensors of the paretic lower limb were –0.3/21 points (–3.2 to 2.7) and 7.5 Nm (–5.1 to 20.2), 

respectively, where positive values favoured the experimental group. These results indicate that 

FES cycling does not improve mobility in people with acquired brain injury and its effects on 

strength are unclear. 

 

Study three was an assessor-blinded, multi-centre randomised controlled trial investigating the 

effects of intensive sit-to-stand training on sit-to-stand ability and gross lower limb extension 

strength in people who are unable to stand up independently after stroke. Thirty patients from 

two hospitals, less than three months after stroke were randomised to an experimental group 

which received two weeks of intensive sit-to-stand training in addition to usual care, or a control 

group which received usual care only. The mean between-group differences (95% CI) for 

clinicians’ impressions of sit-to-stand change and gross lower limb extension strength were 

1.57/15 points (0.02 to 3.11) and 6.2 degrees (0.5 to 11.9), respectively. These results indicate 

that two weeks of intensive sit-to-stand training in addition to usual care improves sit-to-stand 
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ability and gross lower limb extension strength in people who are unable to stand up 

independently after stroke. 

The results from this research program suggest that: 

1. Interventions involving repetitive practice should be prioritised in stroke rehabilitation

programs because these interventions can improve both strength and activity after

stroke.

2. Functional Electrical Stimulation cycling in addition to usual care may provide more

opportunities for people who are very weak and immobile after acquired brain injury

caused by stroke or trauma to improve lower limb strength, but there are no

accompanied improvements in mobility.

3. Intensive sit-to-stand training in addition to usual care improves sit-to-stand ability and

gross lower limb extension strength in people who are unable to stand up independently

after stroke.

More clinical trials are needed to better understand the effects of different amounts of 

strengthening interventions that promote repetitive practice for different tasks, and in different 

subgroups of people after stroke (i.e. weak versus very weak).   
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Chapter 1 Introduction 

Background and rationale 

Muscle weakness (or loss of voluntary muscle strength) after stroke is a common and important 

impairment. Some studies estimate a loss of 50 to 70% strength in the paretic upper and lower 

limbs when compared to aged-matched controls [1-4]. This loss of strength has been identified 

as one of the main contributors to activity limitations [5-7] (such as limitations in walking or 

reaching and manipulation) and participation restrictions [8] after stroke.  

 

To regain the ability to use the paretic upper and lower limbs, people after stroke participate in 

repetitive practice of tasks such as walking or reaching and manipulation [9]. This repetitive 

practice is a major component of rehabilitation after stroke [10]. Some interventions used to 

promote repetitive practice include constraint-induced movement therapy, body weight 

supported treadmill walking, or robotic devices. There are systematic reviews [11-14] 

supporting the use of these interventions to improve activity of the paretic upper and lower 

limbs, however, less is known about the effects of repetitive practice on strength after stroke 

and no systematic reviews have specifically investigated this issue.  

 

Therefore, the aim of study one (a systematic review) was to determine if interventions 

involving repetitive practice improve strength after stroke, and if any improvements in strength 

are accompanied by improvements in activity.  

 

Whilst it is known that repetitive practice of walking in combination with strengthening 

interventions improves walking [9], many people after stroke never regain the ability to walk. 

One estimate indicates that 40% of people after stroke who are unable to walk on admission to 
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rehabilitation are still unable to walk at three months [15]. One reason for this could be because 

many patients who are very weak and immobile after stroke have few options for exercising 

independently and often require assistance from one or more physiotherapists, which is costly 

and time consuming. These patients often remain inactive for as much as 70% of the day [16-

18] and have less opportunities to improve their lower limb strength, which is a major 

determinant of walking. Systematic reviews indicate that FES improves upper and lower limb 

strength and activity [19 20]. However, these reviews did not include trials investigating the 

effects of FES cycling. There are also very few randomised controlled trials investigating the 

effects of FES cycling on lower limb strength and mobility in people after stroke. The two trials 

that do exist have not conclusively answered this question, that is, one showed improvements 

in lower limb strength but not mobility [21], and the other showed improvements in mobility 

but not lower limb strength [22]. Additionally, few studies have specifically investigated ways 

of providing more opportunities for people who are very weak and immobile to exercise 

independently.  

 

Therefore, the aim of study two (a randomised controlled trial) was to determine if four weeks 

FES cycling in addition to usual care improves mobility and strength in people with a sub-acute 

acquired brain injury caused by stroke or trauma. Functional Electrical Stimulation cycling is 

appealing to physiotherapists because it is a relatively inexpensive intervention that does not 

require direct assistance. Functional Electrical Stimulation cycling also allows people who are 

very weak and immobile after stroke to perform a strengthening intervention independently 

while physiotherapists assist other patients with their rehabilitation programs. 

 

After stroke, many people have difficulty standing up due to weakness and poor coordination. 

The inability to stand up can be very disabling [23] and can lead to increased burden of care 
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[24]. There is some indication from systematic reviews that large amounts of repetitive practice 

improves functional outcomes after stroke [25-28]. However, there are very few randomised 

controlled trials investigating if large amounts of repetitive sit-to-stand training is effective in 

people after stroke. Trials investigating the effects of additional sit-to-stand training have not 

conclusively answered this question, because they recruited people who can already stand up 

independently [29-32] or had methodological issues affecting the validity of the results [33]. 

Furthermore, people in the early stages of rehabilitation after stroke may not be able to tolerate 

large amounts of repetitive sit-to-stand training and this has not been investigated.  

Therefore, the aim of study three (a randomised controlled trial) was to determine if intensive 

sit-to-stand training in addition to usual care improves sit-to-stand ability in people who are 

unable to stand up independently after stroke. Secondary aims were to determine if large 

amounts of sit-to-stand training are well tolerated in the early stages of stroke recovery, and if 

any improvements in sit-to-stand are accompanied by improvements in lower limb strength. 

In summary, the primary objectives of this research program were: 

1. To determine if interventions involving repetitive practice improve strength after stroke,

and if any improvements in strength are accompanied by improvements in activity.

2. To determine if four weeks FES cycling in addition to usual care improves mobility and

strength in people with a sub-acute acquired brain injury caused by stroke or trauma.

3. To determine if intensive sit-to-stand training in addition to usual care improves sit-to-stand

ability and gross lower limb extension strength in people who are very weak and immobile

after stroke.
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Outline of thesis 

This thesis consists of six chapters. 

Chapter 1 

Background and rationale for this research program. 

Chapter 2 

A critical review of the literature relating to the loss of strength after stroke and interventions 

that improve strength and activity. 

Chapter 3 

A systematic review 

Project title: Interventions involving repetitive practice improve strength after stroke: a 

systematic review.  

Chapter 4 

A randomised controlled trial  

Project title: Functional electrical stimulation cycling does not improve mobility in people with 

acquired brain injury and its effects on strength are unclear: a randomised trial. 

Chapter 5 

A randomised controlled trial  

Project title: Two weeks of intensive sit-to-stand training in addition to usual care improves sit-

to-stand in people who are unable to stand up independently after stroke: a randomised trial 

Chapter 6 

A summary of the primary objectives and key findings of this research program and an 

overview of each study conducted in this research program including results, strengths, 

limitations and implications for future research.  
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Chapter 2 Literature Review 

Overview of acquired brain injury 

Acquired brain injury (ABI) refers to any damage to the brain that occurs after birth. This 

damage can be caused by stroke, trauma, infection, cancer, alcohol, drugs, or diseases affecting 

the brain like Parkinson’s disease and Multiple Sclerosis [34]. It is estimated that over 700,000 

Australians are living with ABI with three out of every four aged under 65 years and male [34]. 

Stroke is the leading cause of ABI and disability in Australia [34 35]. Approximately 56,000 

strokes occur each year in Australia, equating to over 1,000 strokes every week or one every 9 

minutes [35]. Globally, stroke is the highest contributor of neurological disability-adjusted life 

years (DALYs: the sum of years of life lost and years lived with disability) (42.2% [38.6–

46.1])[36] and the second leading cause of DALYs [37].  

As much as 65% of people following stroke have a disability that prevents them from carrying 

out daily living activities unassisted [35]. Activity limitation following stroke leads to 

participation restrictions and may impact on quality of life.  

Classification of stroke 

Strokes can be classified into two major categories: Ischaemic and Haemorrhagic. Both 

categories of stroke cause disruption of blood supply to the brain resulting in death to brain 

cells in the area of the infarct. This cell death commonly results in weakness and other 

impairments on the contralateral side of the body [38]. 
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Ischaemic strokes are caused by interruption of the blood supply to the brain through four 

mechanisms:  

2. 1. Thrombosis (obstruction of a blood vessel by a blood clot forming locally) 

3. 2. Embolism (obstruction of a blood vessel by an embolus formed elsewhere in the body)  

4. 3. Systemic hypo-perfusion (systemic decrease in blood supply) 

5. 4. Cerebral venous sinus thrombosis (blood clot in the cerebral veins or sinuses)  

Ischaemic strokes account for approximately 80% of all stroke episodes [38]. There are various 

classification systems for ischaemic stroke. The Bamford (or Oxford) classification system is 

commonly used and categorises stroke based on initial presenting symptoms and clinical signs 

[39]. A classification of stroke is assigned to people based on the findings of a clinical 

neurological examination and a brain computed tomography scan. The following classifications 

are assigned to people:  

- Lacunar infarcts (LACI) - A subcortical stroke (i.e. involving the basal ganglia or pons) 

occurring secondary to small vessel occlusion. Symptoms need to include one of the 

following: 

• Pure sensory impairment 

• Pure motor impairment 

• Sensory-motor impairment 

• Ataxia   

- Total anterior circulation infarcts (TACI) – A cortical stroke affecting areas of the brain 

supplied by both the middle and anterior cerebral arteries. Symptoms need to include all 

three of the following: 

• Unilateral weakness (and/or sensory impairment) of the face, arm and leg 

• Homonymous hemianopia 
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• Higher cerebral dysfunction (i.e. dysphasia or visuospatial disorder)

- Partial anterior circulation infarcts (PACI) – A cortical stroke affecting areas of the

brain supplied by the anterior cerebral artery. Symptoms need to include two of the

following:

• Unilateral weakness (and/or sensory impairment) of the face, arm and leg

• Homonymous hemianopia

• Higher cerebral dysfunction (i.e. dysphasia or visuospatial disorder)

- Posterior circulation infarcts (POCI) – A stroke affecting areas of the brain supplied by

the posterior cerebral artery.  Symptoms need to include one of the following:

• Cranial nerve palsy and contralateral motor sensory impairment

• Bilateral motor/sensory impairment

• Conjugate eye movement disorder

• Cerebellar dysfunction (i.e. ataxia, nystagmus, vertigo)

• Isolated homonymous hemianopia

Haemorrhagic strokes account for the remaining 20% of all stroke episodes and are most 

commonly caused by rupture of small aneurysms. These aneurysms are commonly caused by 

hypertensive small-vessel disease [40]. Other causes of aneurysms are from intracranial 

vascular malformations, cerebral amyloid angiopathy, or infarcts into which secondary 

haemorrhages have occurred [38]. Haemorrhages are divided into two sub-types: Intracerebral 

(bleeding that occurs within the brain) and subarachnoid (bleeding that occurs outside the brain 

tissue, between the pia mater and arachnoid mater). An intracerebral haemorrhage can occur 

within the brain tissue (intraparenchymal) or within the ventricles (intraventricular) [40].    
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Rehabilitation after stroke 

In Australia, people after stroke are admitted to an acute hospital where they are medically 

stabilised and a confirmed medical diagnosis (using brain imaging and physical assessment) is 

provided. Further medical investigations and interventions such as thrombolysis or 

endovascular clot retrieval may be administered, provided these interventions are performed 

within a few hours after stroke. The gold standard for acute stroke care has been well 

established through research, and it is recommended that all people after stroke be cared for by 

a specialised team of health professionals in a stroke unit [41]. Once they have been medically 

stabilised in a stroke unit, some patients who have had a less severe stroke may be discharged 

home (ideally with involvement from a community team of health professionals), and other 

patients who have had a moderate to severe stroke will be transferred to a sub-acute 

rehabilitation unit for ongoing rehabilitation. The broad aims of rehabilitation after stroke are 

to provide the following: a multidisciplinary assessment of the person’s sensorimotor 

impairments, activity limitations and participation restrictions; goal setting with patients and 

carers; provision of an intensive multidisciplinary rehabilitation program through one-to-one 

and/or group therapy (in line with evidence-based guidelines for best practice); education and 

training to patients and carers regarding self-management strategies and re-integration into the 

community. The rehabilitation program should be patient-centred and designed to assist 

patients achieve short and long-term participation goals [42]. 

The multidisciplinary rehabilitation team in Australia usually includes physiotherapists. 

Physiotherapists assess and treat people with sensorimotor impairments and activity limitations 

caused by stroke. To maximise physical recovery, it is recommended that people after stroke 

participate in an intensive program of task-specific training which addresses activity limitations 
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[10]. However, many people after stroke cannot perform task-specific training due to profound 

muscle weakness, and therefore require interventions to improve strength prior to, or in 

combination with task-specific training. Physiotherapists typically provide these strengthening 

interventions aimed at restoring movement to weak limbs in combination with repetitive 

practice of tasks, such as standing up, walking, and reaching and manipulation.  

Weakness after stroke 

Weakness after stroke can be attributed to neural and muscular changes. The following sections 

will briefly discuss the causes of weakness, the neural and muscular changes associated with 

weakness, and the distribution of muscle weakness after stroke. 

Neural changes 

Neural changes after stroke are a consequence of the damage to upper motor neurones, 

following ischaemia in the brain. The damage to the upper motor neurones reduces excitability 

of lower motor neurones, which in turn, prevents the high frequency neural impulses required 

to produce tetanic muscle contractions that are needed to produce sufficient force to move a 

limb [43]. This has been called voluntary activation failure and has been observed in both the 

paretic and non-paretic limbs; however, voluntary activation failure is greater in the paretic 

limb/s after stroke [44 45]. As a consequence of voluntary activation failure, a significant 

amount of lower motor neurones innervating the paretic upper and lower limbs cease to 

function [46]. Voluntary activation failure has been observed to remain unchanged over six 

months, in a small sample of people after stroke [45]. Other neural changes include changes in 

order of motor unit recruitment and changes in firing rates of motor units [47-49]. For example, 

a loss of 37% [46] and 38% [50] of the motor units of the extensor digitorum brevis and 
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abductor pollicis brevis (respectively) on the paretic side have been observed in the first 2 to 6 

months after stroke.  

Muscular changes 

Muscular changes after stroke can be a consequence of denervation of the motor units causing 

morphological and mechanical changes to muscle tissue [51]. For example, some studies have 

reported changes in lean muscle mass of the paretic lower limb as early as three weeks [52] and 

two months [53] after stroke. However, there is conflicting evidence from other studies that 

have not reported similar results [54]. A systematic review of studies with people at least 6 

months after stroke helped to clarified this issue by providing estimates for lean muscle mass 

and cross-sectional area of muscles in the paretic upper and lower limbs [55]. This review found 

that there was 249g (95% CI 182 to 298) and 342g (95% CI 247 to 438) less lean muscle mass 

in the paretic upper and lower limbs, respectively, when compared to the non-paretic limbs 

[55].  There was also less cross-sectional area of the mid-thigh in the paretic lower limb when 

compared to the non-paretic lower limb (MD 15cm2, 95% CI 14 to 17). A similar estimate of 

20% less cross-sectional area of the mid-thigh in the paretic lower limb (compared to the non-

paretic lower limb) was found in a more recent study of a small cohort (n = 16) of people in the 

late stages of stroke recovery [56]. This study also found that intramuscular fat was much higher 

in the paretic lower limb when compared to the non-paretic lower limb.  

Another suggested cause for loss of muscle mass in people after stroke is the presence of 

spasticity [46 57]. The presence of spasticity can result in muscles remaining in a shortened 

position leading to soft tissue plastic changes, i.e. progressive loss of sarcomeres and 

contracture [58 59]. Muscle contracture resulting from these soft tissue plastic changes has been 
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proposed to further aggravate spasticity, thus perpetuating the cycle of immobilisation, 

contracture, and spasticity [60]. 

Decreased activity and disuse are also contributors to loss of muscle mass (atrophy) and 

weakness after stroke [61 62]. Muscle atrophy has been described as a decrease in muscle 

protein content and muscle fibre diameter, which in turn reduces force production and fatigue 

resistance of the muscle fibres [63].       

Distribution of muscle weakness 

Historically it was assumed that distal muscle groups of the paretic upper and lower limbs were 

weaker than proximal after stroke (i.e. wrist extensors were weaker than shoulder abductors). 

This assumption was based on early studies investigating the distribution of muscle weakness 

[64 65]. However, since then, several studies have reported contradictory results, that is, either 

proximal muscle groups of the paretic upper and lower limbs were weaker than distal muscle 

groups [2 3], or there were no statistical differences between the proximal and distal muscle 

groups of the paretic limb [66 67]. The reasons for these contradictory results could be due to 

earlier studies recruiting small, non-representative samples or due to investigators not 

measuring the strength of all muscle groups in the paretic limb [66]. 

Relation between strength and activity 

The relation between strength and activity has been investigated in older people without 

disability with an apparent association between the two. Buchner et al investigated this 

association in a large cross-sectional study (n = 409) of community dwelling older people (age 

= 60 to 90 years) without muscular pathology [68]. These investigators found that age-related 

loss of strength explained 17 – 22% of the decline in walking speed. Buchner et al also 

identified a curvilinear relationship between lower limb strength and walking speed, and 
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hypothesised that changes in strength have associated effects on activity in weaker adults; 

however, changes in strength have little or no effect on activity in stronger adults [68]. This 

curvilinear relationship can be seen in Figure 1 below. Area A represents no association 

between strength and walking speed as typically seen in strong young adults. Area B represents 

a strong association between strength and walking speed with small changes in strength 

resulting in large changes in walking speed. This is what is typically seen in weaker and older 

adults. Area C represents profound weakness that prevents walking as typically seen in adults 

after stroke or older adults that are extremely weak.  

Figure 1. Hypothesized relationship between lower limb strength and walking speed. (Buchner 

et al, 1996) 

In people after stroke with muscle weakness, it is reasonable to assume the association between 

strength and activity is larger than in older people without disability. A narrative review 

identified more than 50 studies with significant correlations between strength and activity after 

stroke [69]. Some of the studies included in this review found correlation co-efficients as high 
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as 0.85 [70-72]. However, all of these studies measured strength in different combinations of 

muscles and no study measured strength in all muscles of the upper or lower limb [73]. This 

may be an issue when prioritising which muscles to strengthen after stroke because different 

tasks will require different amounts of strength from the same muscle group. For example, 

walking may require less strength in the knee extensors than standing up [74-76].  Dorsch et al 

measured strength all main muscle groups in the paretic lower limb of 60 people, one to six 

years after stroke [73]. These investigators found that the ankle dorsiflexors accounted for 31% 

of the variance in walking speed [73]. Another observational study of similar size found 

comparable results between dorsiflexor strength and walking speed (r = 0.50 – 0.73) [77], 

suggesting there is a moderate correlation between lower limb strength and activity after stroke. 

Similar correlations between upper limb strength and activity have also been observed (r = 0.71 

– 0.88) in other studies [78-80]. Faria-Fortini et al investigated the association between upper

limb strength and activity in 55 community dwelling people, at least 6 months after stroke. This 

study found moderate to high correlations between hand-grip and lateral pinch strength, and 

activity (r = 0.50 – 0.82) [7].  

These studies all suggest a moderate to strong relationship between the loss of strength and 

activity. However, many observational studies investigating the relationship between strength 

and activity are small, recruited samples of convenience, and do not measure strength in all 

muscle groups of the paretic limb being investigated. Therefore, these studies need to be 

interpreted with caution as they may not be representative of the population of people after 

stroke. More importantly, there may be confounding factors explaining the observed 

relationship between strength and activity that have not been controlled for in many 

observational studies.   
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In summary, studies in older people and people after stroke have concluded that there is a clear 

relationship between strength and activity. However, this relationship may not be as simple as 

depicted in Figure 1, because there may be possible confounders that were not considered in 

these studies. The findings of these studies do provide interim data that should be further 

explored in well-designed observational studies using more complex modelling that considers 

confounders. In absence of these data, the results of the reviewed studies have implications for 

people who are weak after stroke, because muscle weakness may lead to activity limitations 

and participation restrictions, which in turn, may lead to reduced quality of life. It is therefore 

important that people after stroke participate in strengthening interventions in rehabilitation 

programs, in conjunction with interventions that focus on improving activity. 

Measurement of strength 

There are a several ways to measure muscle strength ranging from simple methods involving 

no equipment to methods involving complex machinery. This section will define and discuss 

the two methods of strength measurement used in the clinical trials (studies two and three) 

associated with this research program: hand-held dynamometry and manual muscle testing. 

There will also be a discussion about why these strength measures were used and the different 

issues encountered whilst using these measures in this research program.  

Hand-held dynamometry 

Hand-held dynamometry involves using a portable device that measures force. Two types of 

tests can be used to measure muscle force: Break tests or Make tests. Break tests require the 

examiner to push against the subject’s limb until the subject’s maximal muscular effort is 

overcome and the limb gives way [81]. Make tests involve the examiner holding the 

dynamometer against the limb while the subject exerts maximal force against it [81]. In both 
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tests, torque is then calculated by multiplying the force by the perpendicular distance between 

the axis of rotation and the place at which force is measured. Torque is expressed in Newton 

Meters (Nm).  

 

Hand-held dynamometry has been shown to have “very good” inter-rater reliability with 

patients in the rehabilitation setting [82], as well as “very good” intra-rater reliability for 

measurements of strength in patients with neurological conditions [83]. Make and Break tests 

have been tested for reliability in the elbow flexors and although Break tests were associated 

with higher force production, both tests were considered reliable, provided the examiner had 

sufficient strength to match the strength of the participant [81]. Wikholm and Bohannon (1991) 

found that the strength of the examiner affected the inter-rater reliability of hand-held 

dynamometry [84], therefore, a Make test was used in study two to improve inter-rater 

reliability with multiple assessors.   

Manual Muscle Testing 

Manual muscle testing is the most widely used method of measuring muscle strength in the 

clinical setting. Clinicians assign a score ranging from zero to five, where zero represents no 

muscle activation and five represents normal muscle strength [85]. Grades zero to three are 

examined in relation to the force of gravity acting against the limb, whereas, grades four and 

five are examined in relation to force applied to the limb by the tester [85]. One of the criticisms 

of manual muscle testing is its poor sensitivity to detect differences in muscle strength at grades 

four and five [86]. This is because grades four and five encompass a large range of possible 

strength measurements [87] and the amount of resistance provided by the tester for grades four 

and five can be variable and hard to quantify [88 89]. For this reason, the strength considered 

a grade five (normal strength) could be substantially lower when compared to normal strength 
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for that muscle group [86]. Despite this issue, the inter- and intra-rater reliability of manual 

muscle testing has shown to be mostly “very good” in a group of older individuals following 

stroke [90]. These investigators used a strict protocol for measurement in their study, which 

improves reliability; however, in clinical practice there are sometimes great differences 

between clinicians when performing manual muscle testing. Therefore, manual muscle testing 

may not be the most reliable method of testing muscle strength in clinical practice.  

Hand-held dynamometry and manual muscle testing were used in studies two and three of this 

research program due to ease of use in a clinical setting. However, given the limitations of 

manual muscle testing it was used as a secondary outcome measure to explore possible 

mechanisms underlying the observed effects of the interventions on activity. In an attempt to 

improve intra- and inter-rater reliability of these measurements of strength a strict protocol was 

used in the two studies [85]. For example, to improve the intra- and inter-rater reliability of 

hand-held dynamometry with multiple assessors, a Make test was used in study two. 

Assessments were standardised by ensuring that participants were positioned in the same way 

for baseline and follow-up assessments. Assessors were positioned so that the dynamometer 

would remain still when force was applied by the participant. In study two it was identified that 

manual muscle testing is not sensitive enough to use as a screening tool to detect neurological 

weakness. Since one of the inclusion criteria for study two was hemiparesis (i.e. ≤ grade 4), 

some patients may have been incorrectly classified as grade 5 and hence excluded from 

participation in the study when in fact they were grade 4. This is because, patients may have 

presented with neurological weakness that was undetectable with manual muscle testing alone. 

Furthermore, screening was performed over three hospital sites with multiple staff, and there 

may have been much inter-rater variability when conducting the screening. However, it would 
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have been too time-consuming to use hand-held dynamometry when screening patients on a 

daily basis and training many staff over multiple sites was not feasible.  

Management of weakness after stroke 

This section will discuss five strengthening interventions to manage weakness after stroke. This 

is not an exhaustive list and only includes interventions most commonly used in stroke 

rehabilitation. Progressive Resistance Training (PRT) will be discussed as one of the five 

interventions and although PRT is not commonly used in stroke rehabilitation it is considered 

to be the most effective strengthening intervention for people without disability. For each 

intervention there will be a review and discussion of the studies investigating the effects of that 

intervention on strength and activity.  

Studies that have reported effect sizes using SMD will be interpreted using Cohen’s 

interpretation of effect size, i.e. effect size values of 0.00 to ≤0.49 indicate a small effect size, 

values of 0.50 to ≤0.79 indicate a medium effect size and values ≥0.80 indicate large effect 

sizes [91].  

Electrical Stimulation 

Electrical stimulation (ES) is the application of an electrical current, usually via electrodes 

placed on the skin. Electrical stimulation can be broadly divided into two types based on 

whether the stimulation targets sensory neurones only, or both sensory and motor neurones to 

elicit a muscle contraction. The strength of the sensory stimulus and/or muscle contraction 

depends on the number of neurones stimulated, and also on the frequency, pulse width and 

intensity of the current [92]. There are many names given to ES, however, there is no 

consistency in the literature regarding the use of these names. Therefore, ES that only targets 
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sensory neurones will be called Transcutaneous Electrical Neuromuscular Stimulation and will 

not be discussed in this thesis. Electrical stimulation that targets both sensory and motor 

neurones will be called ES.  

Electrical stimulation has been further divided into two categories: cyclical ES and Functional 

Electrical Stimulation (FES) [93]. Cyclical ES involves repeated electrical stimulation of an 

isolated muscle (or muscle group) at maximally tolerated levels of contraction, with the primary 

aim of strengthening that muscle [20]. Functional Electrical Stimulation involves electrical 

stimulation of a muscle (or several muscle groups) during the performance of an activity, with 

the primary aim of improving performance of that activity [94]. It is important to note that 

people can remain passive (i.e. not contract their muscles in synchrony with ES) with both 

cyclical ES and FES, because it is difficult to know if a person is consciously attempting to 

contract their muscles. However, it is thought that contracting or attempting to contract muscles 

in synchrony with ES results in better outcomes [19]. Therefore, in this thesis, the main 

differentiation between cyclical ES and FES is that FES is combined with an activity, whereas 

cyclical ES is not. 

Electrical stimulation may be particularly useful for people who are very weak and who cannot 

voluntarily contract their own muscles. In this case, it is thought that ES stimulates the large 

diameter motor units (Type II), causing a tetanic contraction of the muscle [92]. This however 

is not the order of motor unit recruitment seen when muscles are voluntarily contracted. Type 

I motor units are usually recruited first as they are slow-twitch (slow to contract and relax) and 

are fatigue resistant [92]. Type II motor units are then recruited if more force is required or 

Type I motor units begin to fatigue. This is because Type II motor units are fast-twitch and 

produce large amounts of force (particularly useful when performing strenuous movements like 
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lifting heavy objects or climbing flights of stairs), but fatigue quickly and cannot be relied on 

for prolonged periods [92]. Thus, theoretically, ES used to produce muscle contractions will 

fatigue muscles faster than a normal physiological muscle contraction. For this reason, many 

clinicians will instruct patients to use ES for regular short periods of exercise or activity. Over 

time, ES may increase the activation of motor units and/or the cross sectional area of a muscle 

by increasing recruitment of muscle fibres [92]. 

Effects of electrical stimulation on strength after stroke  

There is evidence that ES improves strength after stroke. A systematic review (Nascimento et 

al) investigating the effects of cyclical ES on muscle strength after stroke found a small effect 

on strength (SMD 0.47, 95% CI 0.26 to 0.68) in favour of ES, when ES was compared to no 

intervention/placebo [20]. The improvement in strength was maintained beyond the 

intervention period (SMD 0.33, 95% CI 0.07 to 0.60), although there is a fair amount of 

uncertainty associated with this estimate. This review was unable to pool studies comparing the 

effects of cyclical ES with other strengthening interventions due to insufficient post-

intervention data. However, interestingly, Nascimento et al was able to differentiate studies that 

recruited weak (able to move the paretic limb through full range of movement against gravity, 

but had less than normal strength) and very weak (unable to move the paretic limb through full 

range of movement against gravity) participants in the included studies. Meta-analyses on both 

of these sub-groups revealed that cyclical ES had a small effect on strength of very weak 

participants (SMD 0.40, 95% CI 0.17 to 0.65) and a moderate effect on weak participants (SMD 

0.66, 95% CI 0.21 to 1.11). When trials were grouped according to time after stroke, cyclical 

ES had a moderate effect on strength (SMD 0.55, 95% CI 0.28 to 0.81) in people less than 6 

months after stroke, and a small effect on strength (SMD 0.33, 95% CI -0.02 to 0.69) in people 

more than 6 months after stroke. Similar to the review conducted by Howlett et al, there was 
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potential for bias in the included studies. All but three of the included studies (13/16) did not 

conceal group allocation, and 6/16 did not blind assessors to intervention groups. 

In summary, we can be fairly confident that there is a small to moderate effect of cyclical ES 

on strength after stroke, immediately after and beyond the intervention period. There appears 

to be larger effects on strength in people who are weak versus people who are very weak, and 

in people less than 6 months after stroke. However, there is insufficient evidence that cyclical 

ES is better than other strengthening interventions for improving strength and further trials are 

needed to investigate the effectiveness of ES versus other strengthening interventions after 

stroke. 

Effects of electrical stimulation on activity after stroke 

Two systematic reviews have investigated the effects of ES on activity in people after stroke 

[19 20]. Both of these reviews reported a small treatment effect when pooling studies that 

compared ES to no intervention/placebo. However, there was considerable uncertainty 

associated with both estimates (SMD 0.30, 95% CI 0.05 to 0.56) [20] (SMD 0.40, 95% CI, 0.08 

to 0.72) [19] making it difficult to establish the effect size of ES on activity for the whole 

population of people after stroke. Both reviews also used SMD, making it difficult to interpret 

the clinical importance of these improvements on activity in real terms. One important 

difference between these two reviews is how the ES was applied to people. One review 

(Nascimento et al) included all studies that investigated the effects of cyclical ES on muscle 

strength [20], and did not state if the included studies required participants to actively contract 

their weak muscles. The other review (Howlett et al) only included studies investigating the 

effects of ES when combined with active (or attempts of active) practice of an activity (FES). 

[19] This distinction may be important because the former review may have included studies
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where participants were not required to actively contract their weak muscles in synchrony with 

the ES (i.e. passive ES). Passive ES without attempts to perform an activity may not be the 

optimal way to improve activity, given our understanding of neuroplasticity and the context-

specific adaptions to the central nervous system that occur with active practice. Interestingly, 

when Howlett et al performed a meta-analysis on studies that compared FES with active 

practice versus active practice alone, the effect size was greater than the estimate comparing 

FES versus no intervention/placebo (SMD 0.56, 95% CI 0.21 to 0.92) versus (SMD 0.40, 95% 

CI 0.08 to 0.72). It is unclear why the effect size was greater in one analysis compared to the 

other. It would make more sense for the effect to be greater when FES is compared to no 

intervention/placebo, however this was not the case. One possible explanation is that there may 

be important differences in the studies included in these different analyses. For example, the 

analysis of FES versus no intervention/placebo included six trials of upper-limb training and 

two trials of lower-limb training, and all but one trial included participants in the late stage of 

stroke recovery. Whereas, the analysis of FES versus active practice alone included six trials 

of lower-limb training and three trials of upper-limb training, and only three of the nine trials 

included participants in the late stage of stroke recovery. There may be differences in the way 

people respond to FES depending on which limb (upper versus lower) or what stage of stroke 

recovery (early versus late). Therefore, the results of subgroup analyses may help clinicians 

decide when to use FES, particularly because FES is not always easy to apply or use, not always 

tolerated by people, and may not deliver clinically important outcomes when compared with 

active practice without FES. A very important issue with the review conducted by Howlett et 

al is the quality of the included studies. Over half of the included studies (10/18) did not conceal 

group allocation, and half (9/18) did not blind assessors to group allocation. These issues may 

have introduced bias into the included studies, which may have inflated the treatment effects. 
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In summary, there is uncertainty regarding the effects of cyclical ES or FES on activity due to 

the content of interventions (i.e. active ES or passive ES) of included studies in the review of 

cyclical ES, imprecision of estimates (reviews of cyclical ES and FES), and quality of the 

included studies (review of FES). There appears to be a small to moderate effect of FES when 

applied to weak muscles while practicing an activity [19]. However, it is not clear whether 

these estimates are clinically meaningful because results are expressed as SMD. 

Robotics 

Robotics or electromechanical training has been used in recent years to facilitate large amounts 

of repetitive training of the paretic upper and lower limbs after stroke. This intervention reduces 

dependency on therapists, particularly for people who are too weak and disabled to perform 

independent training. Robot-driven devices, such as exoskeletons or gait orthoses with a 

harness over a treadmill, are used to mechanically assist people move the paretic lower limb 

during gait training [95]. Other robotic devices assist people move the paretic upper limb during 

reaching activities or manipulation tasks, and can provide varying amounts of assistance, 

resistance to active movement, and greater amplitudes of movement [12]. 

Effects of robotics on strength after stroke 

The effects of robotic-assisted or electromechanical training on strength after stroke has only 

been investigated in one recent systematic review of the upper limb [12]. This review found a 

small effect of robotic-assisted or electromechanical training on strength of the paretic upper 

limb (SMD 0.46, 95% CI 0.16 to 0.77), when compared to other interventions to improve ADLs 

or upper limb function. However, there was considerable statistical heterogeneity (I2 = 76%) in 

the studies included in this analysis suggesting that a meta-analyses was not appropriate. 

Therefore the results should be interpreted with caution. One interesting aspect of this review 

is the comparison, namely robotic-assisted or electromechanical training versus any other 
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intervention. As the authors identified, most studies in this review were dose-matched with an 

active control group. This means that robotic-assisted or electromechanical training was 

superior to other forms of active upper limb therapy. The reasons for this superiority could not 

be fully explored in the review due to the lack of reporting of the interventions in the included 

studies. However, the authors suggested that the robotic devices may have increased the amount 

of repetitions of active practice over the same amount of time as the other forms of therapy, 

thus increasing the dose of upper limb therapy delivered to participants.  

 

In summary, there is some evidence to suggest that robotic-assisted or electromechanical 

training improves upper limb strength more than other therapies after stroke. The exact 

mechanism by which this happens is unclear, but may be due to a larger amount of repetitions 

of active practice facilitated by the robotic device.  

Effects of robotics on activity after stroke  

There are two Cochrane systematic reviews investigating the effects of robotic-assisted or 

electromechanical training on activity after stroke [11 12]. One review specifically investigated 

the effects of electromechanical-assisted training on walking [11]. This review found that when 

provided in addition to physiotherapy the odds of people becoming independent walkers 

increased (OR 1.94, 95% CI 1.39 to 2.71). However, there was no significant increase in 

walking velocity or walking capacity with this intervention. The other review investigated the 

effects of robotic-assisted or electromechanical training on activities of daily living (ADL), 

upper limb function and strength [12]. This review found that when compared to other 

interventions to improve ADLs or upper limb function, there is a small effect of robotic-assisted 

or electromechanical training on ADLs (SMD 0.31, 95% CI 0.09 to 0.52) and upper limb 

function (SMD 0.32, 95% CI 0.18 to 0.46). While these results both represent a small treatment 
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effect, they need to be interpreted with caution since 31/45 trials in the review did not report 

methods of concealed allocation and only 3/45 trials had reported all outcomes according to the 

registered protocol. These methodological issues in the included studies may have introduced 

bias and therefore we should have less confidence in the results.  

In summary, there is some indication that robotic or electromechanical training of walking, in 

addition to usual physiotherapy, increases the odds of people becoming independent walkers. 

There is also evidence that ADLs and upper limb function are improved with robotic-assisted 

or electromechanical training. However, these results need to be interpreted with caution due 

to small sample sizes and methodological issues of the included studies. Further large high-

quality trials are needed to clarify the effects of robotic or electromechanical training on activity 

after stroke. 

Constraint-Induced Movement Therapy 

Constraint-induced induced movement therapy (CIMT) of the upper limb is described as 

therapy consisting of two fundamental principles: 

• Restraint of the non-paretic upper limb (i.e. using an arm sling and a resting hand splint).

A behavioural contract is drawn up between the participant and therapist with the goal of

restraining the non-paretic upper limb for approximately 90% of waking hours.

• Mass practice of the paretic upper limb over several hours per day, using a method called

‘shaping’. The shaping procedure has been described as follows: (a) providing explicit

verbal feedback and verbal reward for small improvements in task performance; (b)

selecting tasks that are tailored to address the motor deficits of the individual patient; (c)

helping the patient to carry out parts of a movement sequence, if they are incapable of
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completing the movement on their own at first; and (d) systematically increasing the 

difficulty level of the task performed [96]. 

Constraint-induced movement therapy aims to overcome learned non-use of the paretic upper 

limb by forcing the person to use their paretic upper limb to perform motor tasks. Early studies 

of CIMT proposed between six and eight hours of training per day [97 98]. However, more 

recent studies have investigated modified approaches of delivering CIMT, i.e. reducing the 

amount of motor training while the restraint is in-situ, or restraining the non-paretic upper limb 

without additional motor training [99-102]. Clinical trials and systematic reviews have divided 

CIMT into three different types, based on the dosage or content of training. Studies that 

performed CIMT for more than three hours are considered to have provided usual CIMT. 

Studies that performed CIMT for less than three hours are considered to have provided 

modified CIMT (mCIMT), and studies that restrained the non-paretic upper limb without 

additional training of the paretic upper limb are considered to have provided Forced Use 

therapy [13].  

Effects of constraint-induced movement therapy on strength after stroke  

Prior to this research program, the effects of CIMT on muscle strength had not been 

investigated in a systematic review. One systematic review investigated the effects of CIMT 

on different aspects of motor impairment, but did not focus specifically on voluntary muscle 

strength, and combined data from different motor impairments in a SMD [13]. Unsurprisingly, 

there was considerable statistical heterogeneity in the analysis on motor impairment (I2 = 77%) 

in this review. This review also combined studies that provided an active control group with 

those that provided no intervention/placebo, making it difficult to determine the effects of 

CIMT alone. One randomised controlled trial compared six hours of CIMT per day with a 30 

minute per day independent exercise program [103]. After two weeks, the mean between-group 
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difference (95% CI) for hand-grip strength was 0.8 kg (0.26 to 1.34) in favour of CIMT. This 

was a small study of 18 participants, and it is unclear if investigators or assessors were blinded 

to group allocation. Therefore, these results need to be interpreted with caution.  

In summary, there appears to be evidence that CIMT improves upper limb strength more than 

providing an independent exercise program. However, the results of this small trial with unclear 

methods needs to be interpreted with caution. A systematic review including more trials will 

clarify the effects of CIMT on upper limb strength. 

Effects of constraint-induced movement therapy on activity after stroke  

A Cochrane systematic review comparing CIMT to usual care or no intervention found that 

CIMT improves upper limb motor function (SMD 0.34, 95% CI 0.12 to 0.55), motor 

impairment (SMD 0.82, 95% CI 0.31 to 1.34) and dexterity (SMD 0.42, 95% CI 0.04 to 0.79) 

[13]. Despite these improvements in impairment and motor function there was no reduction in 

disability (SMD 0.24, 95% CI -0.05 to 0.52). The results for disability were derived from 11 

small studies of 344 participants. It is difficult to understand how CIMT can improve motor 

function of the upper limb, but have no impact on disability. There could be several reasons to 

explain this. Firstly, the insignificant estimate on disability may reflect how disability was 

measured in the review. The authors limited this outcome to the Functional Independence 

Measure and the Barthel Index. There may be other outcome measures that measure disability 

that were not included in the meta-analysis. Alternatively, there may not be an effect on 

disability with CIMT. However, the imprecise estimate on disability suggests that the sample 

size was too small (i.e. too few participants or too few studies) to attain a precise estimate of 

the treatment effect, indicating that the effect of CIMT on disability is inconclusive, rather than 

ineffective. Estimates from sub-group analyses were also imprecise in this review. For 
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example, when comparing studies that provided more than 30 hours of CIMT to those that 

provided less, there were only 3 studies with 91 participants that provided more than 30 hours 

of CIMT. However, there were 8 studies with 253 participants that provided less than 30 hours 

of CIMT. Whilst both estimates for these sub-groups were imprecise (>30 hours, SMD 0.25, 

95% CI -0.18 to 0.67) versus (<30 hours, SMD 0.18, 95% CI -0.07 to 0.44), the estimate of the 

subgroup with more participants was more precise. Many studies in the analysis on disability 

were also dose-matched with an active control group performing functional training of the 

upper limb. This may have introduced clinical heterogeneity into the analysis, since people in 

the control groups of some studies could have performed large amounts of active practice, 

whilst people in other studies performed no active practice. The quality of included studies in 

this review was highly variable with many studies subject to high or uncertain amounts of bias. 

 

In summary, there is evidence that CIMT improves upper limb activity more than usual care 

after stroke. However, there is still uncertainty regarding the effects of CIMT on disability. 

Further large high-quality trials comparing CIMT with usual care are needed to clarify the 

effects of CIMT on disability after stroke. 

Task-specific training 

Task-specific training is a term that has evolved from movement science and motor skill 

learning literature [104]. This type of training or therapy is where participants practice motor 

tasks whilst receiving feedback (i.e. visual or verbal feedback) [105]. The focus of task-specific 

training is on goal-directed practice and repetition of a task to improve performance of that 

task, rather than purely focusing on improving impairments, such as strength [105]. Task-

specific training incorporates active cognitive involvement of the participant in tasks that are 
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relevant and meaningful (i.e. standing up or walking practice), and feedback of the performance 

of tasks to enhance motor skill acquisition [106 107].  

Effects of task-specific training on strength after stroke 

There is no systematic review specifically investigating the effects of task-specific training on 

strength after stroke. Systematic reviews on the topic have included studies of progressive 

resistance training [108-112] or an artificial drive of muscle contraction [20 113] (i.e. electrical 

stimulation without attempts to move a limb) as an intervention. Combining these interventions 

in a systematic review is problematic, since there may be differences in the mechanisms 

underlying the observed effects on strength. There may also be differences in the samples of 

the included studies of each review. For example, people participating in a clinical trial of 

progressive resistance training may be far stronger and less disabled than people who 

participate in a trial of task-specific training. This is due to the emphasis on low repetition and 

added resistance with progressive resistance training (see next section). Some people after 

stroke are too weak to contract their muscles against added resistance, and therefore cannot 

participate in a trial investigating the effects of progressive resistance training. One randomised 

controlled trial investigating the effects of a 52-week task-specific lower limb exercise class 

reported a non-significant mean between-group difference (95% CI) in knee extensor strength 

of 0.95 kg (-1.2 to 3.1) in favour of task-specific training (18.3 kg = mean baseline strength) 

[114]. This high-quality trial with minimal bias was conducted with 133 people, approximately 

6 years after stroke and compared task-specific lower limb training to no intervention/placebo. 

Another randomised control trial investigating the effects of a four-week task-specific upper 

limb exercise program reported a statistically significant mean between-group difference (95% 

CI) in hand-grip strength of 2.1 kg (0.49 to 3.71) in favour of task-specific training (8.8 kg =

mean baseline strength) [115]. This high-quality trial with minimal bias was conducted with 
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103 people, approximately less than one month after stroke and compared task-specific upper 

limb training to no intervention/placebo. Based on these two trials there are clear differences 

in the effects of task-specific training on strength. These differences in effects are probably due 

to the time after stroke (early versus late) and the limbs that were trained (lower limb versus 

upper limb). However, we would be more certain of the effects of task-specific training on 

strength if these results were repeated in other clinical trials or confirmed in a systematic review 

of multiple trials. 

 

In summary, based on these trials, there appears to be evidence that task-specific training of the 

upper-limb improves hand-grip strength in the early stages of stroke recovery. There is also 

evidence that task-specific training does not improve lower limb strength in the late stages of 

stroke recovery. However, these results need to be interpreted with caution because they are 

only from two trials. A systematic review including more trials will clarify the effects of task-

specific training on upper and lower limb strength, in the early and late stages of stroke 

recovery. 

Effects of task-specific training on activity after stroke  

Task-specific training of the paretic upper and lower limbs is recommended in evidenced-based 

guidelines as the primary therapy to improve activity and reduce disability after stroke [10]. 

These recommendations are based on multiple systematic reviews investigating the effects of 

repetitive task-specific training on various tasks after stroke. The reviews found improvements 

in upper limb activity (SMD 0.25, 95% CI 0.01 to 0.49) [9], walking distance (MD 35m, 95% 

CI 18 to 51) [9], walking speed (MD 0.06 m/s, 95% CI 0.03 to 0.09) [14], functional ambulation 

(SMD 0.35, 95% CI 0.04 to 0.66) [9] and sit-to-stand ability (OR 4.86, 95% CI 1.43 to 16.50) 

[116] with task-specific training. All but one [14] of these estimates refer to a comparison of 
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the task being trained versus no intervention/placebo. Each systematic review individually 

assessed the quality of the evidence based on the GRADE criteria, taking into consideration 

risk of bias, imprecision, inconsistency, indirectness, and publication bias of the included 

studies. Overall, the estimates for upper limb activity and sit-to-stand ability represent low and 

very low-quality evidence, respectively. Whereas, the estimates for walking distance, walking 

speed and functional ambulation represent moderate quality evidence. The main reasons for 

downgrading evidence to low and moderate quality were due to poor reporting of methods. For 

example, one review found that only eight of the 33 trials included in their meta-analysis, 

reported adequate methods of allocation concealment [9]. Another review, only found one trial 

investigating the effects of sit-to-stand training on sit-to-stand ability. The reviewers 

downgraded the evidence to very low-quality due to the high risk of bias in random sequence 

generation and allocation concealment in the trial [116]. These methodological issues need to 

be taken into consideration when deciding if task-specific training (or any other intervention) 

is effective for improving activity after stroke. As discussed in other sections, it is also 

important to consider the precision and clinical importance of these estimates. For example, it 

is easier to decide if the estimates for walking distance and walking speed are clinically 

worthwhile, since the estimates are reported as a MD. However, the imprecision of the 

estimates and the use of SMD (i.e. upper limb activity and functional ambulation) make it 

difficult to determine if task-specific training of those tasks is clinically worthwhile.  

 

In summary, there is moderate quality evidence that task-specific training of walking improves 

walking. There is also low-quality evidence for task-specific upper limb training and very low-

quality evidence for sit-to-stand training. Further clinical trials are needed to clarify the clinical 

importance of treatment effects for task-specific upper limb training and sit-to-stand training. 
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Progressive Resistance Training 

Progressive resistance training (as defined by the American College of Sports Medicine) is 

characterised by muscles working at high loads with low repetitions, that is, a load of 8 to 12 

repetitions of 60-70% of 1 repetition maximum, for at least two sets, with a progressive increase 

of the load [117]. Progressive resistance training can be performed using large machines, free 

weights, or rubber resistance bands, and commonly involves single- or multi-joint muscle 

groups [117 118]. 

Progressive resistance training is commonly used to improve strength in people without 

disability [117] and frail older people [119]. However, PRT is not commonly used in stroke 

rehabilitation despite the large improvements in strength that have been observed in frail older 

people and people without disability [119 120]. Therefore, this section will discuss the evidence 

for PRT in these three populations suggesting reasons why PRT may not be commonly utilised 

as a strengthening intervention after stroke.   

People without disability 

The American College of Sports Medicine (ACSM) is considered by many as the leading 

authority on guidelines for prescription of PRT. The ACSM guidelines recommend that adults 

perform resistance training for each of the major muscle groups 2 to 3 times per week [117]. 

The evidence underpinning these guidelines comes from randomised controlled trials and 

systematic reviews about PRT in adults without disability. Interestingly, the systematic reviews 

referred to in the ACSM guidelines have largely compared doses of PRT regimes rather than 

investigating the effects of PRT versus no training [121-123]. A more recent systematic review 

not included in the ACSM guidelines investigated the effects of PRT versus no training in older 

(≥ 60 years) adults without disability [120]. This review of 25 randomised controlled trials and 
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a total of 819 participants reported a between-subject standardised mean difference (SMDbs) of 

1.57, 95 % CI 1.20 to 1.94 in favour of PRT when upper and lower limb studies were combined. 

Subgroup analyses of upper and lower limb were SMDbs 1.61, 95 % CI 0.95 to 2.27 and SMDbs 

1.76, 95 % CI 1.20 to 2.31, respectively. These point estimates represent large effects of PRT 

on upper and lower limb strength in older adults without disability when compared to no 

training. However, these estimates need to be interpreted with caution due to the high levels of 

statistical heterogeneity in the analyses (I2 = 80 % - upper and lower limb combined, I2 = 86 % 

- upper limb, I2 = 87 % - lower limb), suggesting that meta-analyses should not have been 

performed. Furthermore, most studies in this systematic review were of low methodological 

quality with an average PEDro scale rating of 4.6/10 points. Studies with low methodological 

quality may have introduced bias into the meta-analyses, therefore, this issue should also be 

taken into consideration when interpreting the results. Taken together, the results from this 

systematic review and the systematic reviews referred to in the ACSM guidelines suggest that 

PRT is an effective strengthening intervention for people without disability. 

Older people 

One systematic review investigating the effects of PRT in older people living in the community 

(including frail and disabled people) found a moderate to large improvement in strength (SMD 

0.84, 95% CI 0.67 to 1.00) when PRT was compared to no intervention/placebo [119]. 

Interestingly, large improvements in strength with PRT translated into small reductions in 

disability (SMD 0.14, 95% CI 0.05 to 0.22) and small improvements in activity (walking speed 

= MD 0.08 m/s, 95% CI 0.04 to 0.12; mobility (TUG) = MD -0.69 secs, 95% CI -1.11 to -0.27; 

chair rise time = SMD -0.94, 95% CI -1.49 to -0.38). This finding supports the hypothesis of a 

curvilinear relationship between strength and activity, suggested by Buchner et al 1996, where 

small improvements in muscular strength in people who are weak translate into large 
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improvements in activity [68]. However, decisions regarding the clinical importance of effects 

on activity are subjective, dependent on the activity, and need to take into account clinical 

implications, such as harm, costs and inconvenience to participants and clinicians. 

Effects of progressive resistance training on strength after stroke  

The effect of PRT on strength after stroke has been investigated in several systematic reviews 

[109-112 124]. However, all but one of these reviews [124] included studies that did not follow 

a strict definition of PRT, as defined by the ACSM [117]. The systematic review by Dorsch et 

al 2018, compared PRT to no intervention/placebo. This review found large improvements in 

strength of the paretic upper and lower limbs with PRT (SMD 0.98, 95% CI 0.67 to 1.29). 

These results were from a meta-analysis of six trials (with an average methodical quality score 

of 5.8/10 (PEDro scale)) involving 163 participants. The precision of the point estimate was 

fairly wide but still ranged from a moderate to large treatment effect. One limitation of this 

review was that it excluded three trials because they did not report change data. Inclusion of 

these trials might have increased precision around the point estimate, thus providing a more 

precise estimate of PRT on strength. More importantly, excluding these three trials from the 

systematic review may have introduced bias into the analysis, because there may be important 

differences in these studies that should be included in the estimates. Another limitation of this 

review is generalisability. All but one of the studies in the meta-analysis on strength included 

participants more than one year after stroke. Therefore, these results can only be generalised to 

people in the later stages of stroke recovery. None-the-less, given these results from a high-

quality systematic review, we can be confident that PRT improves strength after stroke.  
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In summary, there is high-quality evidence that PRT improves strength after stroke. However, 

these results are only applicable to people in the late stages of recovery and cannot be 

generalised to people in the early stages.  

Effects of progressive resistance training on activity after stroke  

A recent systematic review investigating the effects of PRT on strength and activity after stroke 

found that PRT improved strength, but these improvements in strength did not translate into 

improvements in activity (SMD 0.42, 95% CI -0.08 to 0.91) [124]. It is difficult to understand 

how improvements in strength do not translate into improvements in activity, since people after 

stroke can be very disabled as a result of muscle weakness. However, there are a few issues to 

consider when interpreting these findings. Firstly, there is great imprecision around the point 

estimate on activity, therefore, we cannot rule out a treatment effect as these results appear to 

be inconclusive. Secondly, the primary outcome for this review was voluntary strength; 

therefore, studies that only measured activity were excluded from this review. Thirdly, the 

outcome measures used to measure activity in the included studies may not have accurately 

reflected the muscles that were trained with PRT. For example, improving knee extension 

strength in people who already have sufficient knee extension strength to weight-bear may not 

improve walking speed (a common measure of lower limb activity). Taken together, these 

issues suggest that there may be improvements in activity with PRT in people after stroke. 

Other important issues to consider when interpreting these results are 1) how the included 

studies administered PRT and 2) how activity was measured. For example, on closer 

examination of the three studies demonstrating a statistically significant treatment effect on 

activity, investigators from one study administered PRT as part of a package of exercises that 

included repetitive task training [125]. Repetitive task training is conceptually very different to 

PRT and it would be impossible to separate the effects of one intervention from the other when 
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measuring activity. In other words, the effects of PRT on activity in that study were from a 

package of repetitive task training and PRT combined, and not the effects of PRT alone. 

Another study [126] in this meta-analysis measured activity using an impairment scale which 

also measures voluntary muscle strength. This may have inflated the treatment effect of PRT 

on activity in this study, since PRT improves strength. The third study [127] demonstrating a 

treatment effect in the meta-analysis on activity measured activity with many other outcome 

measures and it was not clear what the primary outcome measure was or when it was 

determined. This issue may have produced a Type II error, meaning that the observed effect on 

activity in that study may have purely been due to chance. These issues all affect the 

interpretation of the results from this meta-analysis causing more uncertainty regarding the 

effect of PRT on activity.  

 

Finally, one other issue to consider is that it is possible that there are no improvements in 

activity with PRT after stroke. That is, it could be that people who are strong enough to 

participate in PRT may already have higher levels of activity. Therefore, merely improving 

muscle strength may not be enough to improve activity in those who are stronger after stroke. 

However, this explanation is difficult to reconcile with evidence from another large systematic 

review that found a treatment effect of PRT on activity in frail older people [119]. This is 

because it is possible that frail older people have higher levels of activity than people after 

stroke; therefore, improving muscle strength in a population that is less active is more likely to 

affect activity than improving strength in a population that is more active.  

 

In summary, there is uncertainty regarding the therapeutic effects of PRT on activity after 

stroke. Evidence from systematic reviews is conflicting and trials have not conclusively 
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answered this question. Further large trials with minimal bias are needed to clarify the effects 

of PRT on activity after stroke. 

 

This section has reviewed the evidence for PRT after stroke. It is interesting that there are 

comparatively few studies (n = 9) investigating the effects of PRT, especially when large 

improvements in strength can be made in a population where muscular weakness is common.  

However, there may be several reasons for this. One reason could be due to the historical belief 

that effortful muscular contractions increased spasticity, which in turn increased activity 

limitations and disability [128]. This belief has since been disproven [108 109], however, it is 

possible that this belief still exists to some extent in clinical practice, despite the research 

evidence. It could also be that clinicians who once believed PRT increased spasticity do not 

know how to apply the principles of PRT. These clinicians then go on to train students and less 

experienced clinicians using incorrect principles and techniques. Another reason could be that 

PRT is difficult to perform correctly in people with very weak muscles. That is, due to 

neurological activation failure people may be too weak to move a limb against external 

resistance, or may not be able to consistently move a limb through full range of movement 

against gravity. These criteria are required to perform PRT as defined by the ACSM [118 129]. 

Therefore, studies investigating the effects of PRT would require participants to be strong 

enough to participate in the intervention. However, muscular weakness is often not the only 

impairment people experience after stroke and clinicians (or researchers) may choose to 

prioritise repetitive task training which incorporates strength, coordination, sensory input and 

cognitive demands, whilst training a task that is challenging for the participant. Unlike PRT, 

there is also an established evidence base from high-quality systematic reviews that repetitive 

task training improves activity after stroke. Therefore, clinicians may choose to prioritise 

repetitive task training in the clinic (or in research) over PRT as the most effective and efficient 
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intervention to improve activity. This prioritisation of repetitive task training may be 

appropriate for individuals who are too weak to participate in PRT, however, repetitive task 

training may not be the optimal intervention for people who are strong enough to participate in 

PRT. Since there is uncertainty regarding the effectiveness of PRT on activity, further large 

randomised controlled trials with minimal bias are needed to clarify the effects of PRT on 

activity in this group of people after stroke. 

Summary 

This section has critically reviewed five strengthening interventions in the management of 

weakness after stroke. Four of these interventions (ES, Robotics, CIMT, and Task-specific 

training) are commonly used in stroke rehabilitation programs because they can facilitate 

repetitive training in very weak muscles. These four interventions also have evidence from 

meta-analyses that they improve activity after stroke. However, there is less evidence that these 

interventions improve strength and systematic reviews have not investigated this issue for any 

of these interventions. Progressive resistance training on the other hand is not commonly used 

in stroke rehabilitation, probably because PRT is difficult to perform correctly in people with 

very weak muscles, and is conceptually very different to the other four interventions. That is, 

PRT requires low repetitions with muscles working against high loads with progressive 

overloading of the muscles being trained. Contrary to the other four interventions, there is 

strong evidence that PRT improves strength after stroke, however there is no clear evidence 

that PRT improves activity. All five interventions have systematic reviews of their effects on 

activity with robust methodologies, however, many of the included studies are subject to high 

or uncertain amounts of bias. Included studies are also small and estimates on activity are often 

imprecise. Few of the included studies reported how weak participants were or how many 
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repetitions of training participants performed. This lack of reporting prevented sub-group 

analyses in systematic reviews.  

 

This literature review has highlighted the gap in current knowledge of the effects of repetitive 

practice on strength and the possible mechanisms underlying the observed improvement in 

activity after stroke. A systematic review of interventions involving repetitive practice is 

needed to determine if improvements in strength are accompanied by improvements in activity. 

This knowledge will assist therapists and healthcare providers when prioritising which 

interventions are more likely to improve both strength and activity in stroke rehabilitation 

programs. 

Dosage of motor training  

The dosage (amount) of motor training required to reduce activity limitation after stroke is 

difficult to determine. Systematic reviews have quantified dosage of training using time spent 

in therapy or practice [25-27 130 131]. However, time spent in therapy is a poor indicator of 

dosage. For example, an observational study in people after stroke found that the range of 

repetitions of exercise in 30-minute sessions of therapy was 4 to 369 repetitions [132]. 

Therefore, repetitions of active exercise (or movement) are a far better indicator of dosage of 

motor training than time spent in therapy. 

 

To quantify the amount of repetitions required to reduce activity limitation, researchers initially 

performed studies in rats and monkeys [133-135]. These studies demonstrated structural 

neurological changes in the primary motor cortex of the brain and improvements in upper limb 

function with 400 to 600 repetitions of upper limb motor training per day. In humans, 

observational studies investigating the effects of repetitive upper limb motor training reported 
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improvements in upper limb function with 300 to 800 repetitions of motor training per session 

[136 137]. However, results from clinical trials of dosage have been conflicting. One trial in 

the early phase [138] and one trial in the late phase (>6 months) [139] after stroke did not 

demonstrate significant improvements in upper limb function with different doses of task-

specific motor training. The intervention groups in the trial in the early phase ranged from usual 

therapy (control) to three hours of CIMT per day for two weeks, whereas the intervention 

groups in the trial in the late phase ranged from 100 repetitions to 300 repetitions of motor 

training per session over eight weeks. Similarly, another recent trial which randomised 45 

participants into four intervention groups ranging from 0 to 60 hours of motor training in the 

late phase of stroke recovery, did not demonstrate improvements in upper limb function. 

Interestingly, this trial demonstrated improvements in upper limb use, rather than function, with 

60 hours of motor training over three weeks [140]. There could be several reasons for the lack 

of a treatment effect in these trials, however, the most obvious reason could be that 3 hours of 

CIMT or 300 repetitions of upper limb motor training per session may not be sufficient to 

improve upper limb function.  

 

In the lower limb, there are few studies that have reported amount of repetitions of motor 

training. Two randomised controlled trials investigating the effects of sitting balance training 

in the early [141] and late [142] phases of stroke recovery reported improved sitting balance 

with approximately 300 repetitions of sitting balance training per day for two weeks. A cohort 

study designed to predict walking outcomes after stroke found that people who performed more 

than 700 repetitions of lower limb exercises in the first week of rehabilitation were much more 

likely to walk 20 days after commencing rehabilitation than people who had not [143]. 

Furthermore, of those who performed more than 700 repetitions of lower limb exercise in the 

first week, 80% were able to walk independently at 20 days. However, in contrast, only 20% 
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of those who did not perform more than 700 repetitions of lower limb exercise were able to 

walk independently at 20 days. This study was designed to predict walking outcomes and 

should not be used to imply causation. Nonetheless, these results in combination with the other 

evidence point to a dose-response relationship between amount of repetitions of motor training 

and improvement in activity in the lower limb.  

Summary  

Together these studies do not provide specific amounts of repetitions required to improve 

individual upper and lower limb tasks such as reaching and manipulation, sitting, or walking. 

To do this, many larger randomised controlled trials testing different amounts of training with 

different sub-groups of people (i.e. weak versus very weak) after stroke are needed. However, 

when making decisions regarding amount of motor training clinicians need to take into 

consideration the costs involved in providing an intervention, harms, and inconvenience to a 

person (therapist providing or person receiving the intervention). There is a difference between 

the amount of motor training needed to reduce activity limitation and what is clinically feasible 

or safe for a person after stroke.  For example, in the case of upper limb training, 3 hours of 

CIMT per day or 300 repetitions of upper limb motor training per session in addition to other 

therapies (such as speech or lower limb motor training) may not be feasible. Furthermore, the 

potential benefits of larger amounts of upper limb motor training may be too small to be 

meaningful to people who have other impairments and activity limitations that they want to 

improve. None-the-less, these studies of dosage indicate that large amounts (hundreds per day) 

of repetitions are required to improve functional tasks, and possibly larger amounts of 

repetitions of motor training are required to improve the upper limb tasks than lower limb tasks. 

The conflicting results between observational studies and randomised controlled trials of the 

upper limb may be due to study design. That is, cohort studies are not the appropriate research 
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designs for investigating causal links unless they are large and have appropriately controlled 

for confounding factors.  
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Chapter 3 Interventions involving repetitive practice improve strength after 

stroke: a systematic review 

 

Published manuscript 

This project is presented as a published manuscript: 

de Sousa DG, Harvey LA, Dorsch S, Glinsky JV. Interventions involving repetitive practice 

improve strength after stroke: a systematic review. Journal of Physiotherapy. 2018;64(4):210-
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Conference proceedings 

This study has been presented at two conferences. It appears in the conference proceedings as: 

 

1. de Sousa DG, Harvey LA, Dorsch S, Glinsky JV. Do interventions involving repetitive 

practice improve strength after stroke? A systematic review. Proceedings of the World 

Confederation for Physical Therapy, Geneva, Switzerland, 2019. 

 

2. de Sousa DG, Harvey LA, Dorsch S, Glinsky JV. Do interventions involving repetitive 

practice improve strength after stroke? A systematic review. Smart Strokes, Hunter 

Valley, Australia, 2019. 
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Introduction

The loss of strength after stroke is a common and important
impairment. The average strength of the affected upper and lower
limb in people who have had a significant stroke ranges from 30 to
50% of age-matched controls.1–4 This loss of strength can result in
profound activity limitations5–7 and participation restrictions.8

Therefore, it is important to know which interventions are
effective for improving strength after stroke. Progressive resistance
training is commonly used to improve strength in people without
disability9 and can be used to improve strength in people after
stroke.10 Progressive resistance training is characterised by
muscles working at high loads with low repetitions, that is, a
load of 8 to 12 repetitions maximum (RM) for at least two sets with
a progressive increase in the load.9 However, progressive resis-
tance training is not commonly used after stroke, and often when
strengthening programs claim to be using progressive resistance
training they are not adhering to the guidelines.11 This may be
because progressive resistance training is time-consuming to set
up and difficult to implement in people with very weak muscles. In
contrast, repetitive practice of tasks can be set up with minimal

equipment and modified so that even people with very weak
muscles can do some form of training.

Repetitive practice of tasks, such as walking, reaching and
manipulation of objects, is a major component of rehabilitation
after stroke. Some interventions used to promote repetitive
practice include constraint-induced movement therapy, treadmill
walking with body-weight support, or robotic devices. These
interventions are typically performed with an emphasis on high
repetitions and no added resistance to movement; hence, the
principles of repetitive practice are very different to the principles
of progressive resistance training. Repetitive practice is known to
be effective for reducing activity limitations, with many systematic
reviews confirming this.12–15 However, less is known about the
effects of repetitive practice on strength after stroke, and no
systematic reviews have specifically investigated this issue. Eight
systematic reviews with meta-analyses have investigated the
effects of strengthening interventions on strength after stroke.
These reviews included studies that used progressive resistance
training10,16–20 or an artificial drive of muscle contraction21,22 (ie,
electrical stimulation without attempts to move a limb) as an
intervention and did not focus specifically on repetitive practice.
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Since repetitive practice is widely used and recommended in
rehabilitation after stroke,23 it is important to understand if
interventions involving repetitive practice are effective for
improving strength.

Therefore, the research questions for this systematic review
were:

1. Do interventions involving repetitive practice improve strength
after stroke?

2. Are any improvements in strength accompanied by improve-
ments in activity?

Method

Identification and selection of studies

Participants
Studies involving adult participants of either gender at any time

after stroke were included. Studies that also involved participants
with other types of acquired brain injury (eg, trauma) were
excluded unless > 80% of participants had a diagnosis of stroke.

Intervention
Studies that examined the effectiveness of interventions that

involved repetitive practice on land or in water (ie, hydrotherapy or
aquatic physiotherapy) were included. Repetitive practice was
defined as repetitive voluntary contraction of muscles of the
affected upper or lower limb and included repetitive practice of a
whole task (eg, sitting, standing up, walking) or components of a
task (eg, elbow extension/flexion as a component of reaching and
manipulation). Where constraint-induced movement therapy was
used, studies that merely constrained the unaffected upper limb
without active practice using the affected upper limb were
excluded. Studies were excluded if: the intervention only included
an artificial drive of muscle contraction (eg, passive robotics or
electrical stimulation without attempts to move a limb), the
intervention did not require voluntary muscle contraction (eg,
mental practice, massage, passive movement), or the intervention
involved progressive resistance strength training (ie, 1 to 3 sets,
8 to 12 repetitions of 60 to 70% 1RM with progression of
resistance).

Comparison
The comparisons of interest were no intervention or a sham

intervention. Studies with co-interventions were included provid-
ed the co-intervention was delivered to both groups (eg, repetitive
practice plus usual therapy versus usual therapy).

Outcome measures
The primary outcome for this systematic review was strength.

Studies were included if one of their outcomes was strength of the
affected upper or lower limb in muscles that were trained. Strength
could be measured in a number of ways, including: maximum force,
maximum torque, manual muscle testing using the Medical
Research Council (MRC) scale, or composite scales of multiple
musclegroupssuchastheMotricityIndex.Wheremultiplemeasures
of strength were reported, the measure that best reflected the
training was used. For example, if upper limb training primarily
involved manipulation tasks, then hand grip strength was chosen
rather than elbow extension strength. If studies reported outcomes
at multiple time-points, then data collected at the time-point closest
to the end of the intervention were extracted.

The secondary outcomes for this systematic review were
activity of the affected upper and lower limb, measured using any
continuous or ordinal measure of activity. These secondary
outcomes were only collected from studies that met the inclusion
criteria for the review. That is, studies that measured activity were
only included if they also measured strength, because the analysis

of activity was a secondary analysis used to determine whether
improvements in strength were accompanied by improvements in
activity. Where multiple measures of activity were reported, the
measure that best reflected the training was used. For example, if
the repetitive practice targeted the lower limb, a lower limb
measure such as the 10-m walk test was used rather than a
measure of upper limb activity. Priority for the upper and lower
limb measures of activity were given to the Action Research Arm
Test and the 10-m walk test, respectively, because these outcome
measures have been recommended for use in clinical studies by the
international research community.24

Searches were conducted of MEDLINE (Ovid) (1946 to 24
January 2017), EMBASE (Ovid) (1947 to 24 January 2017), AMED
(1985 to 24 January 2017), CINAHL (Ebsco) (1982 to 24 January
2017), SCOPUS (inception to 24 January 2017), SPORTDiscus
(Ebsco) (inception to 24 January 2017), Web of Science (inception
to 24 January 2017), Cochrane Central Register of Controlled Trials
(CENTRAL) (1986 to 24 January 2017) and PEDro (inception to 13
February 2017) for relevant studies written in English with no date
restrictions. Search terms included words related to stroke,
randomised trials, repetitive practice and muscle strength (see
Appendix 1 on the eAddenda). Hand searching of the reference lists
of the included studies and relevant systematic reviews was
undertaken. Authors of conference abstracts were contacted for
full reports of unpublished studies. One reviewer independently
screened all titles and abstracts to identify relevant studies. All
titles and abstracts were also equally divided and independently
screened by three other reviewers, ensuring that all titles and
abstracts were screened by two people. Full-text copies of relevant
studies were retrieved and reviewed independently by each
reviewer using predetermined eligibility criteria (Box 1). If two
reviewers disagreed about the eligibility of a study, a third
reviewer arbitrated until a consensus was reached.

Assessment of risk of bias

One reviewer independently assessed risk of bias of the
included studies using the Cochrane Risk of Bias Tool. Each study
was rated as high risk, unclear risk or low risk on the following
domains: sequence generation; concealed allocation; blinding of
participants and therapists; blinding of outcome assessors;
incomplete outcome data; selective outcome reporting; and other
bias. Studies were checked online against published PEDro scores
to assist with decisions regarding bias, and disagreements were
resolved by a second reviewer. Studies that reported incomplete
data in more than 15% of participants were deemed to have high
risk of bias from incomplete outcome data. Studies that did not
report a clinical trial registration number or registered the protocol
retrospectively were deemed to have unclear risk of bias in the
category of ‘other bias’.

Box 1. Inclusion criteria.

Design
� Randomised

Participants
� Adults (> 18 years old)
� Diagnosis of stroke

Intervention
� Repetitive practice

Comparisons
� Repetitive practice versus no intervention
� Repetitive practice versus a sham intervention

Outcome measures
� Muscle strength measured as maximum force/torque, or

composite scales of multiple muscle groups, or manual
muscle testing, measured immediately after the interven-
tion in the muscles that were trained
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Data extraction and analysis

Two reviewers independently extracted outcome data and
details of the experimental and control interventions. The number
of participants, age and time since stroke were recorded to
describe the participants. Post-intervention data were retrieved in
preference to change data because these were the most commonly
provided data and the data needed to be in the same format for
meta-analyses expressed as standardised mean differences (SMD).
Authors were contacted if there were missing outcome data or
post-intervention data were not provided. Differences between the
two reviewers were resolved by discussion, and when necessary,
arbitrated by a third reviewer.

Separate meta-analyses were performed on studies involving
the same intervention for strength, upper limb activity and lower
limb activity. Meta-analyses were only considered if there were
sufficient data to pool and there was not excessive between-trial
heterogeneity (ie, I2 values were not � 75%). A fixed-effect model
was used if there was no apparent clinical heterogeneity and the I2

value was � 50%. A random-effects model was used if there was no
apparent clinical heterogeneity and the I2 value was > 50%. Pooled
estimates were reported as SMD (95% CI) for all analyses because
outcomes were measured in different ways. If post-intervention
data were not available, separate meta-analyses were conducted of
studies that only provided change data. This was done to avoid
pooling of post-intervention data with change data, given that the
results of all analyses were reported as SMD.

Sensitivity analyses
Sensitivity analyses were conducted to examine the robustness

of the primary meta-analysis for strength. The sensitivity analyses
explored the effects of various methodological aspects of the
included studies, including: methods for generating the rando-
misation sequence (only trials with adequate methods); effects of
allocation concealment (only trials with concealed allocation);
blinding of assessors (only trials with blinded assessors); selective
outcome reporting (only trials without selective outcome report-
ing); incomplete outcome data (only trials with � 15% missing
data); and other bias (only trials without other bias).

Subgroup analyses
Subgroup analyses on the strength data were performed to

explore four factors. The first subgroup comparison was based on
the limbs that were trained (upper limb versus lower limb)
because the upper limb may respond differently to repetitive
practice than the lower limb. The second comparison related to
time since stroke (< 6 months versus > 6 months) because people
early after stroke may respond differently to people late after
stroke. The third comparison was based on dosage (� 24 hours
versus > 24 hours of repetitive practice) because people may
respond differently to higher doses of repetitive practice than
lower doses. If actual dosage (frequency plus duration of therapy
sessions) was reported, these data were used in preference to
scheduled therapy time. The last subgroup comparison was based
on initial strength (weak ie, � 3/5 MRC versus strong ie, � 4/5 MRC)
since people who are weaker may respond differently to repetitive
practice than those who are stronger.

All data were analysed using Review Manager softwarea.

Results

Flow of studies through the review

The electronic search strategy identified 4533 studies (exclud-
ing duplicates). After screening titles, abstracts, and reference lists,
129 full reports of studies were retrieved. After inspecting the full
reports, 52 studies were included. Seventy-seven studies were
excluded and the reasons for exclusion are summarised in Figure 1.

Characteristics of included trials

Fifty-two studies investigated the effect of repetitive practice
on strength after stroke, and some of these studies also included
measures of activity (see Table 1). Additional information was
requested from the authors for 15 studies25–39 and received from
eight authors.26,29–31,33,34,38,39 Two studies met the inclusion
criteria; however, strength measures were either not reported
or authors were unable to provide the data.25,40 These studies were
included in the review but excluded from all meta-analyses. Four
studies only reported change data for strength, and authors were
unable to provide post-intervention data.27,28,35,38 These studies
were included in the review but data were analysed separately.
Forty-six studies reported post-intervention data and were used to
determine the overall SMD of repetitive practice on strength.

Risk of bias
The risk of bias in the 52 included studies in this systematic

review was variable (see Figure 2 for details). Thirty-six studies
(69%) used adequate methods for generating the randomisation
sequence. Sixteen studies (31%) used adequate methods to conceal
allocation. No studies were able to blind participants or therapists
due to the nature of the intervention. Thirty-seven studies (71%)
blinded assessors of outcomes to group allocation. Forty-three
studies (83%) had complete outcome data. Forty-six studies (89%)
were free of selective outcome reporting, and twelve studies (23%)
were free of other bias.

Participants
The mean age of participants across the studies ranged from

47 to 79 years. The mean time since stroke ranged from 6 days to

Records identified (n = 7703)
Pre-Medline and Medline (n = 1054)
EMBASE (n = 1465)
CENTRAL (n = 1129)
AMED (n = 161)
CINAHL (n = 1328)
SCOPUS (n = 642)
SPORTDiscus (n = 190)
Web of Science (n = 14)
PEDro (n = 1720)

Duplicates removed (n = 3170)

Records screened by title and abstract (n = 4533)

Full-text articles excluded (n = 77) a

ineligible comparison intervention (n = 24)
ineligible experimental intervention (n = 20)
strength not measured or measured but not 
reported (n = 16)
not a randomised controlled trial (n = 15)
not written in English (n = 2)

Trials included in the review (n = 52)
Trials included in the meta-analysis (n = 46)

Records excluded (n = 4404)

Full-text articles assessed for eligibility (n = 129)
from electronic databases (n = 113)
from reference lists (n = 16)

Figure 1. Flow of studies through the review.
a Studies may have been excluded for failing to meet more than one inclusion
criterion.
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Table 1
Characteristics of included studies (n = 52).

Study Participantsa Comparison Outcome measuresb

Alberts (2004)25 n = 10/10
Exp age (yr) = 65 (8)
Con age (yr) = 63 (16)
Exp time since stroke (mth) = 6.4 (1.1)
Con time since stroke (mth) = 5.6 (1.5)

Exp = CIMT
360 min � 5/wk � 2 wk
Con = no intervention

Strength = hand grip – force (N)
Activity = WMFT (sec)
Endpoint: 2 wk

Almhdawi (2016)26 n = 20/20
Exp age (yr) = 61 (10)
Con age (yr) = 63 (9)
Exp time since stroke (mth) = 62.3 (45.2)
Con time since stroke (mth) = 61.9 (49.4)

Exp = task-specific UL training
90 min � 2/wk � 6 wk
Con = no intervention

Strength = EE – isometric force (lb)
Activity = WMFT (sec)
Endpoint: 7 wk

An (2016)67 n = 18/38
Exp age (yr) = 51 (10)
Con age (yr) = 47 (11)
Exp time since stroke (mth) = 50.6 (34.6)
Con time since stroke (mth) = 62.7 (41.0)

Exp = weight-bearing exercise + cycling
30 min � 3/wk � 5 wk
Con = no intervention
Both = usual therapy

Strength = KE – isokinetic torque (Nm/kg)
Activity = self-selected walking speed (m/s)
Endpoint: 5 wk

Atteya (2004)60 n = 4/4
Exp age (yr) = 55 (3)
Con age (yr) = 56 (16)
Exp time since stroke (mth) = 5.6 (0.3)
Con time since stroke (mth) = 4.7 (1.2)

Exp = CIMT
60 min � 3/wk � 10 wk
Con = no intervention

Strength = hand grip – force (kg)
Activity = ARAT (/57 points)
Endpoint: 10 wk

Barker (2008)68 n = 23/33
Exp age (yr) = 67 (8)
Con age (yr) = 69 (11)
Exp time since stroke (mth) = 40.8 (31.2)
Con time since stroke (mth) = 36.0 (30.0)

Exp = SMART arm training
60 min � 3/wk � 4 wk
Con = no intervention

Strength = UL reaching – force (N)
Activity = MAS (/7 points)
Endpoint: 4 wk

Bi (2008)41 n = 37/77
Exp age (yr) = 58 (9)
Con age (yr) = 60 (7)
Exp time since stroke (mth) = 45.5 (30.1)
Con time since stroke (mth) = 42.9 (34.7)

Exp = task-specific UL training + placebo-TENS
60 min � 5/wk � 8 wk
Con = no intervention

Strength = hand grip – force (N)
Activity = WMFT (sec)
Endpoint: 8 wk

Bowman (1979)40 n = 30/30
Exp age (yr) = NR
Con age (yr) = NR
Exp time since stroke (mth) = NR
Con time since stroke (mth) = NR

Exp = position-triggered FES
30 min � 2/day � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = WE – isometric torque (Nm)
Activity = nil
Endpoint: 4 wk

Burgar (2011)27 n = 36/54
Exp age (yr) = 59 (10)
Con age (yr) = 63 (9)
Exp time since stroke (mth) = 0.5 (0.3)
Con time since stroke (mth) = 0.6 (0.4)

Exp = high-dose robotic training
60 min � 30 over 3 wk
Con = low-dose robotic trainingc

Both = usual therapy

Strength = composite UL
(14 muscle groups) – MMT (/70 points)
Activity = WMFT (sec)
Endpoint: 3 wk

Chan (2015)28 n = 25/37
Exp age (yr) = 56 (7)
Con age (yr) = 59 (10)
Exp time since stroke (mth) = 41.8 (28.7)
Con time since stroke (mth) = 47.3 (29.8)

Exp = task-specific trunk training + placebo TENS
60 min � 5/wk � 6 wk
Con = health education on measuring BP and
monitoring fallsc

Strength = TE – isometric torque (Nm)
Activity = lateral seated reach affected (cm)
Endpoint: 6 wk

Chu (2004)76 n = 12/13
Exp age (yr) = 62 (9)
Con age (yr) = 63 (8)
Exp time since stroke (mth) = 36.0 (24.0)
Con time since stroke (mth) = 50.4 (25.2)

Exp = water-based endurance program
60 min � 3/wk � 8 wk
Con = arm function programc

Strength = composite LL (HF/HE/KF/KE)
– isokinetic torque (Nm/kg)
Activity = self-selected walking speed (m/s)
Endpoint: 8 wk

Cooke (2010)29 n = 54/109
Exp age (yr) = 71 (11)
Con age (yr) = 66 (14)
Exp time since stroke (mth) = 1.1 (0.5)
Con time since stroke (mth) = 1.2 (0.7)

Exp = functional strength training
60 min � 4/wk � 6 wk
Con = no intervention
Both = usual therapy

Strength = KE – isokinetic torque (Nm)
Activity = walking speed (m/s)
Endpoint: 6 wk

Cowles (2013)42 n = 22/29
Exp age (yr) = 79 (8)
Con age (yr) = 76 (12)
Exp time since stroke (mth) = 0.6 (0.2)
Con time since stroke (mth) = 0.6 (0.2)

Exp = observation-to-imitate + physical practice
60 min � 5/wk � 3 wk
Con = no intervention
Both = usual therapy

Strength = UL – Motricity Index (/100 points)
Activity = ARAT (/57 points)
Endpoint: 3 wk

de Sousa (2016)52 n = 39/40
Exp age (yr) = 62 (15)
Con age (yr) = 60 (16)
Exp time since stroke (mth) = 1.4 (1.1)
Con time since stroke (mth) = 1.7 (1.4)

Exp = FES cycling
17 to 32 min � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = KE – isometric torque (Nm)
Activity = FIM – mobility (/21 points)
Endpoint: 4 wk

Dean (2000)43 n = 9/12
Exp age (yr) = 66 (8)
Con age (yr) = 62 (7)
Exp time since stroke (mth) = 27.6 (8.4)
Con time since stroke (mth) = 15.6 (10.8)

Exp = UL exercise class
60 min � 3/wk � 4 wk
Con = lower limb exercise classc

Strength = hand grip – force (kg)
Activity = Unimanual Purdue Pegboard
(no. of pegs)
Endpoint: 4 wk
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Table 1 (Continued )

Study Participantsa Comparison Outcome measuresb

Dean (2012)44 n = 133/151
Exp age (yr) = 67 (14)
Con age (yr) = 68 (10)
Exp time since stroke (mth) = 80.4 (80.4)
Con time since stroke (mth) = 62.4 (64.8)

Exp = LL exercise class
45 min � 40 over 52 wk
Con = upper limb exercise classc

Strength = KE – isometric force (kg)
Activity = fast walking speed (m/s)
Endpoint: 52 wk

Donaldson (2009)30 n = 18/30
Exp age (yr) = 73 (12)
Con age (yr) = 73 (15)
Exp time since stroke (mth) = 0.7 (0.6)
Con time since stroke (mth) = 0.4 (0.2)

Exp = functional strength training
60 min � 4/wk � 6 wk
Con = no intervention
Both = usual therapy

Strength = EE – isometric force (N)
Activity = ARAT (/57 points)
Endpoint: 6 wk

Dorsch (2014)53 n = 33/33
Exp age (yr) = 66 (12)
Con age (yr) = 69 (13)
Exp time since stroke (mth) = 0.5 (0.2)
Con time since stroke (mth) = 0.6 (0.2)

Exp = EMG-triggered FES
4 UL muscle groups � 30 reps � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = composite UL
(SF/EE/WE/TA) – MMT (/20 points)
Activity = MAS (/19 points)
Endpoint: 4 wk

GAPS (2004)62 n = 65/70
Exp age (yr) = 68 (11)
Con age (yr) = 67 (10)
Exp time since stroke (mth) = 0.7 (0.5)
Con time since stroke (mth) = 0.8 (0.6)

Exp = additional physiotherapy
60 to 80 min � 5/wk (duration NR)
Con = no intervention
Both = usual therapy

Strength = composite (UL/LL) – MI (/200 points)
Activity = RMI (/15 points)
Endpoint: 12 wk

Gordon (2013)45 n = 116/128
Exp age (yr) = 63 (9)
Con age (yr) = 65 (11)
Exp time since stroke (mth) = 12.8 (3.6)
Con time since stroke (mth) = 11.8 (3.6)

Exp = overground walking
15 to 30 min � 3/wk � 12 wk
Con = massagec

Strength = LL – Motricity Index (/100 points)
Activity = 6MWT (m)
Endpoint: 12 wk

Harris (2009)46 n = 103/103
Exp age (yr) = 69 (12)
Con age (yr) = 69 (15)
Exp time since stroke (mth) = 0.7 (0.2)
Con time since stroke (mth) = 0.7 (0.2)

Exp = GRASP
60 min � 6/wk � 4 wk
Con = education book on stroke recovery and
general healthc

Both = usual therapy

Strength = hand grip – force (kg)
Activity = ARAT (/57 points)
Endpoint: 4 wk

Heckmann (1997)54 n = 28/28
Exp age (yr) = 50 (14)
Con age (yr) = 54 (11)
Exp time since stroke (mth) = 1.8 (0.8)
Con time since stroke (mth) = 2.0 (1.3)

Exp = EMG-triggered FES
4 UL/LL muscle groups � 15 reps � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = DF – MMT (/6 points)
Activity = BI (/100 points)
Endpoint: 4 wk

Higgins (2006)47 n = 91/91
Exp age (yr) = 73 (8)
Con age (yr) = 71 (12)
Exp time since stroke (mth) = 7.1 (2.4)
Con time since stroke (mth) = 7.9 (2.7)

Exp = task-specific UL training
� 90 min � 3/wk � 6 wk
Con = walking trainingc

Strength = hand grip – force (kg)
Activity = Box and Block (no. of blocks)
Endpoint: 6 wk

Hsieh (2011)57 n = 12/18
Exp age (yr) = 56 (14)
Con age (yr) = 52 (2)
Exp time since stroke (mth) = 21.3 (7.2)
Con time since stroke (mth) = 13.0 (7.0)

Exp = high-intensity robotic training
90 to 105 min � 5/wk � 4 wk
Con = low-intensity robotic trainingc

Strength = average UL
(eight muscle groups) – MMT (/48 points)
Activity = FMA (UL) (/66 points)
Endpoint: 4 wk

Hsieh (2012)31 n = 36/54
Exp age (yr) = 57 (10)
Con age (yr) = 52 (12)
Exp time since stroke (mth) = 28.7 (13.7)
Con time since stroke (mth) = 23.3 (15.4)

Exp = high-intensity robotic training
90 to 105 min � 5/wk � 4 wk
Con = low-intensity robotic trainingc

Strength = UL – MMT (/6 points)
Activity = FMA (UL) (/66 points)
Endpoint: 4 wk

Hwang (2012)58 n = 15/17
Exp age (yr) = 50 (4)
Con age (yr) = 51 (3)
Exp time since stroke (mth) = 7.3 (6.3)
Con time since stroke (mth) = 5.3 (5.9)

Exp = active robotic hand training
40 min x 5/wk � 4 wk
Con = passive/active robotic hand trainingc

Strength = hand grip – force (kg)
Activity = Jebsen Taylor Test (sec)
Endpoint: 4 wk

Kim (2015)74 n = 19/29
Exp age (yr) = 58 (8)
Con age (yr) = 62 (1)
Exp time since stroke (mth) = 10.1 (5.6)
Con time since stroke (mth) = 13.7 (7.1)

Exp = mirror therapy + BF-FES
30 min � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = hand grip – force (kg)
Activity = Jebsen Taylor Test (sec)
Endpoint: 4 wk

Kwakkel (1999)32 d

Cooke (2010)78
n = 60/101
Exp age (yr) = 65 (10)
Con age (yr) = 64 (15)
Exp time since stroke (mth) = 0.2 (0.1)
Con time since stroke (mth) = 0.2 (0.1)

Exp = task-specific LL training
30 min � 5/wk � 20 wk
Con = immobilisation of LLc

Both = usual therapy

Strength = LL – Motricity Index (/100 points)
Activity = fast walking speed (m/s)
Endpoint: 20 wk

Lannin (2016)69 n = 9/9
Exp age (yr) = 63 (10)
Con age (yr) = 51 (21)
Exp time since stroke (mth) = 2.5 (1.7)
Con time since stroke (mth) = 4.7 (6.1)

Exp = Saebo-Flex
45 min � 5/wk � 8 wk
Con = no intervention
Both = usual therapy

Strength = hand grip – force (kg)
Activity = Box and Block (no. of blocks)
Endpoint: 8 wk

Lee (2008)65 n = 24/52
Exp age (yr) = 67 (11)
Con age (yr) = 65 (6)
Exp time since stroke (mth) = 52.4 (2.2)
Con time since stroke (mth) = 65.8 (42.3)

Exp = cycling
30 min � 3/wk � 10 to 12 wk
Con = sham cyclingc

Both = sham PRT

Strength = composite LL
(HE/KE/KF/PF/DF) – isometric force (N)
Activity = fast walking speed (m/s)
Endpoint: 12 wk
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Study Participantsa Comparison Outcome measuresb

Lee (2012)71 n = 40/40
Exp age (yr) = 54 (11)
Con age (yr) = 54 (11)
Exp time since stroke (mth) = 13.3 (5.9)
Con time since stroke (mth) = 14.0 (6.3)

Exp = standing balance training (video games)
20 min � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = KE – MMT (/6 points)
Activity = walking speed (s)
Endpoint: 4 wk

Lee (2013)70 n = 14/14
Exp age (yr) = 72 (9)
Con age (yr) = 76 (6)
Exp time since stroke (mth) = 7.3 (1.4)
Con time since stroke (mth) = 8.3 (3.4)

Exp = UL therapy (video games)
30 min � 3/wk � 6 wk
Con = no intervention
Both = usual therapy

Strength = EE – MMT (/10 points)
Activity = FIM (scale NR)
Endpoint: 6 wk

Lee (2016)75 n = 27/30
Exp age (yr) = 56 (7)
Con age (yr) = 54 (6)
Exp time since stroke (mth) = 36.8 (26.1)
Con time since stroke (mth) = 42.5 (33.9)

Exp = mirror therapy + FES
5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = DF – isometric force (lb)
Activity = 6MWT (sec)
Endpoint: 4 wk

Lincoln (1999)63 n = 189/282
Exp age (yr) = 73 (12)
Con age (yr) = 73 (12)
Exp time since stroke (mth) = 0.4 (0.2)
Con time since stroke (mth) = 0.4 (0.2)

Exp = additional physiotherapy
� 2 hrs/wk � 5 wk
Con = no intervention
Both = usual therapy

Strength = hand grip – force (% of unaffected UL)
Activity = ARAT (/57 points)
Endpoint: 5 wk

Masiero (2007)33 n = 30/35
Exp age (yr) = 63 (12)
Con age (yr) = 69 (11)
Exp time since stroke (mth) = NR
Con time since stroke (mth) = NR

Exp = robotic UL training
20 to 30 min � 2/day � 5/wk � 5 wk
Con = unaffected UL exposed to robotc

Both = usual therapy

Strength = ShAbd – MMT (/6 points)
Activity = FIM motor (/79 points)
Endpoint: 5 wk

Ng (2007)48 n = 40/88
Exp age (yr) = 57 (8)
Con age (yr) = 57 (9)
Exp time since stroke (mth) = 56.4 (49.2)
Con time since stroke (mth) = 62.4 (34.8)

Exp = task-specific LL training + placebo-TENS
60 min � 5/wk � 4 wk
Con = no intervention

Strength = PF – isometric torque (Nm)
Activity = self-selected walking speed (cm/s)
Endpoint: 4 wk

Pang (2005)34 n = 60/63
Exp age (yr) = 66 (9)
Con age (yr) = 65 (8)
Exp time since stroke (mth) = 62.4 (60.0)
Con time since stroke (mth) = 61.2 (43.2)

Exp = FAME program
60 min x 3/wk � 19 wk
Con = seated UL programc

Strength = KE – isometric force (N)
Activity = 6MWT (m)
Endpoint: 19 wk

Rodgers (2003)64 n = 105/123
Exp age (yr) = 74 (NR)
Con age (yr) = 75 (NR)
Exp time since stroke (mth) = 0.2 (0.1)
Con time since stroke (mth) = 0.2 (0.1)

Exp = additional physiotherapy
30 min � 5/wk � 6 wk
Con = no intervention
Both = usual therapy

Strength = UL – Motricity Index (/100 points)
Activity = ARAT (/57 points)
Endpoint: 3 mth

Ross (2009)49 n = 37/40
Exp age (yr) = 60 (21)
Con age (yr) = 59 (19)
Exp time since stroke (mth) = 2.3 (2.7)
Con time since stroke (mth) = 0.7 (2.0)

Exp = task-specific UL training
60 min � 5/wk � 6 wk
Con = no intervention
Both = usual therapy

Strength = composite UL
(nine muscle groups) – MMT (/45 points)
Activity = ARAT (/57 points)
Endpoint: 6 wk

Rydwik (2006)59 n = 9/18
Exp age (yr) = 75 (9)
Con age (yr) = 75 (5)
Exp time since stroke (mth) = 42.6 (18.2)
Con time since stroke (mth) = 54.9 (20.0)

Exp = Stimulo robotic therapy
30 min � 3/wk � 6 wk
Con = no intervention

Strength = PF – torque (Nm)
Activity = fast walking speed (m/s)
Endpoint: 6 wk

Sanchez-Sanchez
(2016)50

n = 15/15
Exp age (yr) = 58 (12)
Con age (yr) = 62 (11)
Exp time since stroke (mth) = 41.3 (34.3)
Con time since stroke (mth) = 33.8 (26.3)

Exp = UL exercise program
75 min � 33 over 12 wk
Con = LL exercise programc

Strength = hand grip – force (kg)
Activity = WMFT – average functional
score (/6 points)
Endpoint: 12 wk

Shin (2008)55 n = 14/14
Exp age (yr) = 61 (8)
Con age (yr) = 54 (4)
Exp time since stroke (mth) = 18.6 (4.2)
Con time since stroke (mth) = 19.7 (7.7)

Exp = EMG-triggered FES
30 min � 2/day � 5/wk � 10 wk
Con = no intervention
Both = usual therapy

Strength = isometric MPJ extension force (kg)
Activity = Box and Block (no. of blocks)
Endpoint: 10 wk

Sullivan et al
(2007)35

n = 36/80
Exp age (yr) = 58 (15)
Con age (yr) = 63 (9)
Exp time since stroke (mth) = 23.1 (15.0)
Con time since stroke (mth) = 28.4 (19.0)

Exp = BWSTT
60 min � 4/wk � 6 wk
Con = UL ergometryc

Both = cycling

Strength = composite LL
(HE, KE, PF) – isometric torque (Nm)
Activity = fast walking speed (m/s)
Endpoint: 6 wk

Sunderland
(1992)36

n = 61/132
Exp age (yr) = 67 (NR)
Con age (yr) = 70 (NR)
Exp time since stroke (mth) = 0.3 (NR)
Con time since stroke (mth) = 0.3 (NR)

Exp = additional physiotherapy
Intervention period = NR
Con = no intervention
Both = usual therapy

Strength = UL – Extended Motricity
Index (scale NR)
Activity = Frenchay Arm Test (/5 pass or fail)
Endpoint: 4 wk

Tankisheva
(2014)72

n = 13/15
Exp age (yr) = 57 (13)
Con age (yr) = 65 (4)
Exp time since stroke (mth) = 92.5 (103.2)
Con time since stroke (mth) = 63.4 (43.2)

Exp = whole body vibration training
30 min � 3/wk � 6 wk
Con = no intervention

Strength = KE – isometric torque (Nm)
Activity = Sensory Organisation Test
(condition 6)
Endpoint: 6 wk
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8 years, with 28 of the 52 studies including participants who were
more than 6 months after their stroke.

Intervention
The experimental intervention, repetitive practice, was provid-

ed in the following ways: task-specific training26,28–
30,32,34,35,37,39,41–51 (provided in a group setting or on a one-to-
one basis) (20 studies); electromyography-triggered functional
electrical stimulation (FES) or FES combined with active
movement40,52–56 (six studies); robotics27,31,33,57–59 (six studies);
constraint-induced movement therapy25,60,61 (three studies);
Bobath62–64 (three studies); cycling65,66 (two studies); mixed
therapies that included a number of interventions36,67 (two
studies); assistive technology68,69 (SMART Arm & SAEBO) (two
studies); video games70,71 (two studies); whole body vibration
combined with active movement72,73 (two studies); mirror therapy
and FES combined with active movement74,75 (two studies); mirror
therapy38 (one study); and water-based exercise76 (one study). The
frequency and duration of therapy sessions, and intensity and
progression of practice was variable (see Appendix 2 on the
eAddenda). The duration of therapy sessions ranged from 15 to

360 minutes including rest breaks. Overall average dosage
(frequency plus duration of therapy sessions) ranged from
2.2 hours over 4 weeks to 60 hours over 2 weeks. Sixteen studies
reported total repetitions of active practice ranging from five
repetitions per exercise to 1800 repetitions per therapy session.
These repetitions were counted throughout a session or specified
prior to each therapy session. Thirty-three studies compared
repetitive practice to no intervention25,26,29,30,36,37,39–42,48,49,51–

56,59,60,62–64,66–75 and 19 studies compared repetitive practice to a
sham intervention.27,28,31–35,38,43–47,50,57,58,61,65,76

Outcome measures
Strength of the affected upper or lower limb was

measured in the following ways: maximum
force25,26,30,34,38,41,43,44,46,47,50,51,55,58,60,61,65,68,69,74,75 (21 studies);
torque28,29,35,39,40,48,52,56,59,67,72,73,76 (13 studies); Motricity In-
dex32,42,45,62,64 (five studies); Extended Motricity Index36 (one
study); manual muscle testing27,31,33,49,53,54,57,66,70,71 (10 studies);
and percentage of strength normalised to body-weight37 or
expressed as a percentage of the unaffected side63 (two studies).

Table 1 (Continued )

Study Participantsa Comparison Outcome measuresb

Tian (2007)66 n = 80/80
Exp age (yr) = 58 (NR)
Con age (yr) = 58 (NR)
Exp time since stroke (mth) = NR
Con time since stroke (mth) = NR

Exp = THERA-vital cycling
30 min � 6/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = LL – MMT (/6 points)
Activity = ADL (/8 grades)
Endpoint: 4 wk

Tihanyi (2010)73 n = 20/20
Exp age (yr) = 58 (5)
Con age (yr) = 58 (8)
Exp time since stroke (mth) = 0.9 (0.3)
Con time since stroke (mth) = 0.8 (0.3)

Exp = whole body vibration training
3/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = KE – isometric torque (Nm)
Activity = nil
Endpoint: 4 wk

Tung (2010)37 n = 32/32
Exp age (yr) = 51 (21)
Con age (yr) = 53 (14)
Exp time since stroke (mth) = 26.9 (16.0)
Con time since stroke (mth) = 12.8 (12.3)

Exp = STS training
15 min � 3/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = KE – force (% normalised to
body-weight)
Activity = Berg Balance Scale (/56 points)
Endpoint: 4 wk

Tyson (2015)38 n = 85/94
Exp age (yr) = 64 (15)
Con age (yr) = 64 (13)
Exp time since stroke (mth) = 0.9 (0.6)
Con time since stroke (mth) = 1.2 (0.9)

Exp = patient-led mirror therapy
30 min � 7/wk � 4 wk
Con = patient-led LL exercisec

Both = usual therapy

Strength = hand grip – force (units NR)
Activity = ARAT (/57 points)
Endpoint: 4 wk

Winchester
(1983)56

n = 40/40
Exp age (yr) = 57 (13)
Con age (yr) = 60 (10)
Exp time since stroke (mth) = 1.5 (1.2)
Con time since stroke (mth) = 1.9 (1.3)

Exp = position-triggered FES + ES
30 min � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = KE – isometric torque (Nm)
Activity = nil
Endpoint: 4 wk

Winstein (2004)39 n = 40/64
Exp age (yr) = 58 (10)
Con age (yr) = 50 (10)
Exp time since stroke (mth) = 0.5 (0.2)
Con time since stroke (mth) = 0.5 (0.2)

Exp = task-specific UL training
60 min � 5/wk � 4 wk
Con = no intervention
Both = usual therapy

Strength = composite UL (ShE, ShF, EE, EF, WE,
WF) – isometric torque (kg/cm)
Activity = FTHUE (/18 points)
Endpoint: 4 to 6 wk

Yang (2006)51 n = 48/48
Exp age (yr) = 57 (10)
Con age (yr) = 60 (10)
Exp time since stroke (mth) = 62.7 (27.4)
Con time since stroke (mth) = 64 (40.4)

Exp = task-specific strength training
30 min � 3/wk � 4 wk
Con = no intervention

Strength = KE – isometric force (lb)
Activity = self-selected walking speed (cm/s)
Endpoint: 4 wk

Yoon (2014)61 n = 18/26
Exp age (yr) = 64 (9)
Con age (yr) = 61 (17)
Exp time since stroke (mth) = 0.6 (0.3)
Con time since stroke (mth) = 0.8 (0.4)

Exp = CIMT
360 min � 5/wk � 2 wk
Con = independent exercise programc

Both = usual therapy + independent exercise
program

Strength = hand grip – force (kg)
Activity = WMFT (sec)
Endpoint: 2 wk

ARAT = Action Research Arm Test, ADL = activities of daily living, BI = Barthel Index, BP = blood pressure, BWSTT = body-weight-supported treadmill training, CIMT = constraint-
induced movement therapy, Con = control group, DF = dorsiflexors, EE = elbow extensors, EF = elbow flexors, EMG = electromyography, ES = electrical stimulation,
Exp = experimental group, FAME = Fitness and Mobility Exercise, FES = Functional Electrical Stimulation, FMA = Fugl-Meyer Assessment, FTHUE = Functional Test for the
Hemiparetic Upper Extremity, GRASP = Graded Repetitive Arm Supplementary Program, HAbd = hip abductors, HE = hip extensors, HF = hip flexors, KE = knee extensors,
KF = knee flexors, LL = lower limb, MAS = Motor Assessment Scale, MI = Motricity Index, MMT = Manual Muscle Test, MPJ = metacarpophalangeal joint, NR = not reported,
PF = plantarflexors, RM = repetition maximum, RMI = Rivermead Mobility Index, ShAbd = shoulder abductors, ShAdd = shoulder adductors, ShE = shoulder extensors,
ShER = shoulder external rotators, ShF = shoulder flexors, ShIR = shoulder internal rotators, TA = thumb abductors, TE = trunk extension, TENS = transcutaneous electrical nerve
stimulation, UL = upper limb, WE = wrist extensors, WF = wrist flexors, WMFT = Wolf Motor Function Test.

a n = number of participants analysed/number of participants randomised. Age (yr) and time since stroke (mth) = mean (SD).
b Outcome measures and endpoint used in data analysis.
c Considered to be equivalent to no intervention or of lower dosage when compared with the experimental group.
d Data obtained from Kwakkel (1999) and Cooke et al (2010).
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Activity of the upper and lower limb was measured using various
scales (see Appendix 3 on the eAddenda).

Effects of repetitive practice

Strength
Forty-six studies with a total of 1928 participants investigated

the effects of repetitive practice on strength after stroke. The
overall SMD of repetitive practice on strength when the upper and
lower limb studies were combined was 0.25 (95% CI 0.16 to 0.34,
I2 = 44%) in favour of repetitive practice (Figure 3, see Figure 4 on
the eAddenda for a detailed forest plot). These studies involved
12 different types of interventions that were analysed in separate
meta-analyses. The most common intervention was task-specific
training, with 18 studies and a total of 931 participants. The SMD
was 0.21 (95% CI 0.08 to 0.34, I2 = 36%) in favour of task-specific
training on strength. The intervention with the largest effect on
strength was constraint-induced movement therapy, with two
studies and a total of 22 participants. The SMD was 1.49 (95% CI
0.44 to 2.54, I2 = 57%) in favour of constraint-induced movement
therapy on strength. The intervention with the next largest effect
on strength was assistive technology, with two studies and a total
of 32 participants. The SMD was 1.02 (95% CI 0.26 to 1.78, I2 = 29%)
in favour of assistive technology on strength. Four studies27,28,35,38

with a total of 182 participants only reported change data for
strength; however, statistical heterogeneity was too high to pool
results in a meta-analysis.

Upper limb activity
Twenty-four studies with a total of 912 participants investigat-

ed the effects of repetitive practice on upper limb activity after
stroke. The SMD was 0.15 (95% CI 0.02 to 0.29, I2 = 50%) in favour of
repetitive practice on upper limb activity (Figure 5, see Figure 6 on
the eAddenda for a detailed forest plot). This translates to an
absolute mean increase of 3.1/57 points (95% CI 0.4 to 5.8) on the
ARAT (upper limb activity) when the results are back converted
using the largest, least biased and most representative study of
those included in the analysis.46 These studies involved eight
different types of interventions that were analysed in separate
meta-analyses. The most common intervention involving repeti-
tive practice was task-specific training, with 10 studies and a total
of 392 participants. The SMD was 0.21 (95% CI 0.01 to 0.41, I2 = 0%)
in favour of task-specific training on upper limb activity. Two
studies27,38 with a total of 121 participants only reported change
data for upper limb activity after stroke. The SMD was –0.12 (95% CI
–0.50 to 0.25, I2 = 0%) in favour of no intervention or a sham
intervention.

Lower limb activity
Twenty studies with a total of 952 participants investigated the

effects of repetitive practice on lower limb activity after stroke. The
SMD was 0.25 (95% CI 0.12 to 0.38, I2 = 36%) in favour of repetitive
practice on lower limb activity (Figure 7, see Figure 8 on the
eAddenda for a detailed forest plot). This translates to an absolute
mean increase of 0.13 m/s (95% CI 0.06 to 0.20) in walking speed
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Figure 2. The risk of bias in the included studies (n = 52).
Green = low risk of bias, yellow = unclear risk of bias, red = high risk of bias.
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when the results are back converted using the largest, least biased
and most representative study of those included in the analysis.44

These studies involved 10 different types of interventions that were
analysed in separate meta-analyses. The most common intervention
involving repetitive practice was task-specific training, with nine
studies and a total of 593 participants. The SMD was 0.32 (95% CI
0.16 to 0.48, I2 = 35%) in favour of task-specific training on lower limb
activity. One study with a total of 25 participants only reported
change data for lower limb activity after stroke.28 The MD in lateral
seated reach to the affected side was 4.30 cm (95% CI 1.57 to 7.03) in
favour of repetitive practice on lower limb activity.

Subgroup analyses
When studies were grouped according to upper and lower limb,

there were 25 studies with a total of 973 participants that
investigated the effects of repetitive practice on upper limb
strength and 21 studies with a total of 955 participants that
investigated the effects of repetitive practice on lower limb
strength. The SMD was 0.16 (95% CI 0.03 to 0.29, I2 = 47%) in favour
of repetitive practice on upper limb strength and 0.34 (95% CI
0.22 to 0.47, I2 = 34%) in favour of repetitive practice on lower limb
strength (see Figures 9 and 10 on the eAddenda for the detailed
forest plots). This translates to an absolute mean increase of 1.28 kg
(95% CI 0.24 to 2.32) in hand grip strength and 5.75 Nm (95% CI
3.72 to 7.94) in knee extensor strength when the results are back
converted using the largest, least biased, and most representative
study of those included in the analysis.29,46

When the studies were grouped according to time after stroke,
there were 21 studies with a total of 1054 participants that
investigated the effects of repetitive practice on strength early after
stroke and 25 studies with a total of 874 participants that examined
the effects of repetitive practice on strength late after stroke. The
SMD was 0.32 (95% CI 0.13 to 0.52, I2 = 53%) in favour of repetitive
practice early after stroke and 0.31 (95% CI 0.13 to 0.49, I2 = 36%) in
favour of repetitive practice late after stroke.

When studies were grouped according to dosage, there were
35 studies with a total of 1572 participants that provided repetitive
practice for a total of � 24 hours, and 11 studies with a total of
356 participants that provided repetitive practice for a total
of > 24 hours. The SMD was 0.24 (95% CI 0.14 to 0.34, I2 = 41%) in
favour of repetitive practice provided for a total of � 24 hours and
0.31 (95% CI 0.10 to 0.53, I2 = 53%) in favour of repetitive practice
provided for a total of > 24 hours.
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Figure 3. The effect of repetitive practice versus no intervention or sham on
strength (n = 1928).
Effects are expressed as SMD (95% CI).
a Means (SD) obtained from Cooke et al 2010.
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Figure 5. The effect of repetitive practice versus no intervention or sham on upper
limb activity (n = 912).
Effects are expressed as SMD (95% CI).
A negative time score reflects improvement in speed on the Wolf Motor Function
Test and Jebsen Taylor Test.
a No subtotals are presented for FES or Robotics because the I2 value was > 75%.
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A subgroup analysis was planned for the effects of repetitive
practice on strength in people who are weaker versus people who
are stronger; however, because most studies recruited both weaker
and stronger participants, this analysis was not possible.

Post-hoc analysis
When studies were grouped according to limbs that were

trained and time since stroke, there were 13 studies with a total of
668 participants that investigated the effects of repetitive practice
on upper limb strength early after stroke, and 12 studies with
305 participants that investigated the effects of repetitive practice
on upper limb strength late after stroke. The SMD was 0.22 (95% CI
–0.06 to 0.49, I2 = 59%) in favour of repetitive practice on upper
limb strength early after stroke and 0.23 (95% CI 0.00 to 0.46,
I2 = 29%) in favour of repetitive practice on upper limb strength late
after stroke. There were eight studies with a total of 386 partici-
pants that investigated the effects of repetitive practice on lower
limb strength early after stroke and 13 studies with a total of
569 participants that investigated the effects of repetitive practice
on lower limb strength late after stroke. The SMD was 0.48 (95% CI
0.28 to 0.69, I2 = 0%) in favour of repetitive practice on lower limb
strength early after stroke and 0.25 (95% CI 0.08 to 0.42, I2 = 45%) in
favour of repetitive practice on lower limb strength late after
stroke (see Appendix 4 on the eAddenda).

Sensitivity analysis
Sensitivity analyses were conducted on the primary meta-

analysis for strength to explore the effects of various methodolog-
ical aspects of the included studies. The only substantial difference

on the estimate for strength was found in the analysis of eight
studies with a total of 343 participants that were free from other
bias. The SMD was 0.19 (95% CI –0.03 to 0.40) in favour of repetitive
practice (see Appendix 5 on the eAddenda). This was a smaller and
less precise estimate than the overall SMD on strength when the
upper and lower limb studies were combined (0.25, 95% CI 0.16 to
0.34).

Discussion

This systematic review provides evidence that interventions
involving repetitive practice improve strength after stroke. The
pooled mean treatment effects for upper and lower limbs are
1.28 kg and 5.75 Nm, respectively. This represents a 15% relative
increase in strength in the upper limb, and a 28% relative increase
in strength in the lower limb when compared to mean baseline
strength. These estimates are reasonably precise with the 95% CI
spanning from 0.24 to 2.32 kg (equivalent to a 3 to 26% relative
increase) in the upper limb and 3.72 to 7.94 Nm (equivalent to an
18 to 39% relative increase) in the lower limb. These results suggest
that the effect of repetitive practice on strength is greater in the
lower limb (knee extension) than the upper limb (hand grip). These
findings are similar in the post-hoc analyses that restricted studies
to early after stroke. That is, the effects of repetitive practice on
strength are greater in the lower limb (8.11 Nm, 95% CI 4.73 to
11.66) compared to the upper limb (1.76 kg, 95% CI –0.48 to 3.92).

These results suggest that small improvements in strength with
repetitive practice translate into small improvements in activity of
the upper (SMD 0.15, 95% CI 0.02 to 0.29) and lower limb (SMD
0.25, 95% CI 0.12 to 0.38) after stroke. The results for activity need
to be interpreted with caution because the aim of this review was
not to determine the effect of repetitive practice on activity.
Instead, this was a secondary analysis used to determine whether
improvements in strength were accompanied by improvements in
activity. Therefore, it did not include studies that measured activity
unless they measured strength. Other reviews provide the best
evidence about the effects of repetitive practice on activity.12,14,15,77

However, a unique feature of our review is that it provides insights
into the possible mechanisms underlying the observed improve-
ment in activity with repetitive practice. The accompanying
improvement in activity with improvement in strength suggests
that the observed improvement in activity may, at least in part, be
due to improvement in strength.

Of course, not all of the observed improvements in activity can
be attributed solely to improvements in strength. Repetitive
practice typically involves practice of tasks, which demands the
integration of strength, coordination and sensory input. Thus,
improvements in strength with repetitive practice are more likely
to translate into improvements in activity than interventions that
involve isolated strength training of muscles (eg, progressive
resistance training).

Our results suggest smaller improvements in strength with
repetitive practice (SMD 0.25, 95% CI 0.16 to 0.34) than reviews of
progressive resistance training (SMD 0.98, 95% CI 0.67 to 1.29)10

and electrical stimulation (SMD 0.47, 95% CI 0.26 to 0.68).22

However, we cannot conclude that these other interventions
improve strength more than repetitive practice for two main
reasons. Firstly, to answer questions about relative effectiveness,
interventions need to be compared in a randomised controlled
trial. Secondly, studies of progressive resistance training may not
have included people who are very weak; therefore, the cohorts of
the studies included in the review of progressive resistance
training may be different to the cohorts of the studies in our
review.

Some clinicians may disagree with our definition of repetitive
practice. Repetitive practice was defined as voluntary contraction
of muscles of the affected upper or lower limb, and could have
included repetitive practice of a whole task or components of a
task. This definition was intentionally broad because people after
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Figure 7. The effect of repetitive practice versus no intervention or sham on lower
limb activity (n = 952).
Effects are expressed as SMD (95% CI).
A negative time score reflects improvement in walking speed on the 6-m and 10-m
walk tests.
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stroke may be too weak to practise a whole task (eg, reaching and
manipulation of objects). Therefore, repetitive practice of compo-
nents of a task (eg, elbow extension and finger flexion/extension)
are needed prior to, and in combination with, whole task practice.

There is some indication that an increased dosage of repetitive
practice improves strength after stroke. In studies where the total
dosage was � 24 hours, the SMD was 0.24 (95% CI 0.14 to 0.34) in
favour of repetitive practice. When the total dosage of repetitive
practice was > 24 hours, the SMD was slightly more, namely 0.31
(95% CI 0.10 to 0.53) in favour of repetitive practice. However,
dosage was difficult to quantify in this review because most studies
did not report actual duration of active practice, and only 16 studies
reported total repetitions of active practice or specified the total
amount of repetitions aimed for in each therapy session. For this
reason, we were forced to rely on data about scheduled therapy
time. Surprisingly, one study only provided 2.2 hours of active
practice over 4 weeks (equivalent to 0.5 hour per week). At the
other extreme, one study provided 60 hours of active practice over
2 weeks (equivalent to 30 hours per week). Clearly, the dose-
response relationship of repetitive practice is complex and
requires further investigation in large randomised controlled trials.

This review is unique because it included all randomised trials
that investigated the effects of repetitive practice on strength after
stroke. This review also provides individual estimates of improve-
ments in strength for 12 different types of interventions involving
repetitive practice. No other systematic review has investigated
these issues. This review provides meta-analyses of the effects of
repetitive practice in the upper limb both early and late after
stroke, and in the lower limb both early and late after stroke. These
analyses are useful because there may be differences in the way the
upper and lower limbs respond to repetitive practice at different
times after stroke.

The main limitation of this review was that a minimum
worthwhile treatment effect for strength was not defined a priori,
making it difficult to determine if a statistically significant result
was clinically worthwhile. However, data were converted to
relative improvements in strength to help clinicians interpret the
results (see Appendices 6 and 7 on the eAddenda). Another
limitation was that post-intervention data were used instead of
change data. Change data may have provided a more precise
estimate of effect of repetitive practice on strength. Post-
intervention data were used in preference to change data because
these were the most commonly provided data in studies.

The loss of strength is a common and important impairment
after stroke. In addition, repetitive practice is widely used and
recommended in rehabilitation after stroke to improve activity.
However, prior to this review it was not known whether
improvements in activity with repetitive practice are accompa-
nied by improvements in strength. This systematic review
provides evidence that interventions involving repetitive practice
do improve strength after stroke, and these improvements are
accompanied by improvements in activity. This suggests that
repetitive practice should be prioritised as an intervention that
can improve both strength and activity in people after stroke.

What was already known on this topic: Loss of strength
after stroke is common, and causes profound limitations in
activity and participation. Progressive resistance training can
be used to increase strength after stroke but it can be time-
consuming to set up and monitor.
What this study adds: Interventions involving repetitive
practice improve strength after stroke, and the improvement
in strength is accompanied by improvements in activity. Re-
petitive practice should be prioritised as an intervention that
can improve both strength and activity in people after stroke.

Footnote: a Review Manager Version 5.3, The Nordic Cochrane
Centre, Copenhagen.

eAddenda: Figures 4, 6, 8, 9 and 10, and Appendices 1, 2, 3, 4, 5,
6 and 7 can be found online at https://doi.org/10.1016/j.jphys.2018.
08.004
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A B S T R A C T

Question: Does 4 weeks of active functional electrical stimulation (FES) cycling in addition to usual care

improve mobility and strength more than usual care alone in people with a sub-acute acquired brain

injury caused by stroke or trauma? Design: Multi [21_TD$DIFF] centre, randomised, controlled trial. Participants:
Forty patients from three Sydney hospitals with recently acquired brain injury and a mean composite

strength score in the affected lower limb of 7 (SD 5) out of 20 points. Intervention: Participants in the

experimental group received an incremental, progressive, FES cycling program five times a week over a

4-week period. All participants received usual care. Outcome measures: Outcome measures were taken

at baseline and at 4 weeks. Primary outcomes were mobility and strength of the knee extensors of the

affected lower limb. Mobility was measured with three mobility items of the Functional Independence

Measure and strength was measured with a hand-held dynamometer. Secondary outcomes were

strength of the knee extensors of the unaffected lower limb, strength of key muscles of the affected lower

limb and spasticity of the affected plantar flexors. Results: All but one participant completed the study.

The mean between-group differences for mobility and strength of the knee extensors of the affected

lower limb were –0.3/21 points (95% CI –3.2 to 2.7) and 7.5 Nm (95% CI –5.1 to 20.2), where positive

values favoured the experimental group. The only secondary outcome that suggested a possible

treatment effect was strength of key muscles of the affected lower limb [1_TD$DIFF] with a mean between-group

difference of 3.0/20 points (95% CI 1.3 to 4.8). Conclusion: Functional electrical stimulation cycling does

not improve mobility in people with acquired brain injury and its effects on strength are unclear. Trial
registration: ACTRN12612001163897. [de Sousa DG, Harvey LA, Dorsch S, Leung J, Harris W (2016)
Functional electrical stimulation cycling does not improve mobility in people with acquired brain
injury and its effects on strength are unclear: a randomised [19_TD$DIFF] controlled trial. Journal of
Physiotherapy 62: 203–208]
� 2016 Australian Physiotherapy Association. Published by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Walking and moving around are some of the most important
goals for people with acquired brain injury caused by stroke or
trauma. Often, however, these goals are not achieved. For example,
one estimate indicates that 40% of stroke survivors who are unable
to walk on admission to rehabilitation are still unable to walk at
3 months.1 [20_TD$DIFF] To improve the ability to walk and move around, people
with acquired brain injury require intensive repetitive practice2,3

in combination with interventions that address impairments such
as weakness.4,5 However, many patients in rehabilitation spend
only 1 hour per day with a physiotherapist and are inactive for as
much as 70% of the day.6–8 One reason for this inactivity following
acquired brain injury is that those who are very immobile and
weak have few options for exercising independently; they often
require assistance from two or more physiotherapists, which is
costly and time consuming.
http://dx.doi.org/10.1016/j.jphys.2016.08.004

1836-9553/� 2016 Australian Physiotherapy Association. Published by Elsevier B

creativecommons.org/licenses/by-nc-nd/4.0/).
Functional electrical stimulation (FES) cycling may help
overcome this problem because patients can cycle without
physical assistance from physiotherapists. Functional electrical
stimulation cycling involves the application of a small electrical
current through the skin to stimulate muscle contractions in
synchrony with the pedalling motion of a lower limb ergometer. If
used in addition to routine face-to-face physiotherapy, FES cycling
may increase strength in the lower limbs, which may have
carryover effects on the patient’s ability to walk and move around.

There are two recent systematic reviews of electrical stimulation
(ES) and FES on the upper and lower limbs in people with stroke.9,10

[22_TD$DIFF]

Both indicated improvements in function, including mobility, and
one also showed increases in strength. However, neither of these
two reviews looked at the effect of FES cycling. There are four
studies that have specifically looked at FES cycling in sub-acute
hemi-paretic patients.11–14 Two of these studies did not measure
strength13,14 or mobility,13 and had small sample sizes (n� 20). The
.V. This is an open access article under the CC BY-NC-ND license (http://

http://dx.doi.org/10.1016/j.jphys.2016.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jphys.2016.08.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.elsevier.com/locate/jphys
http://dx.doi.org/10.1016/j.jphys.2016.08.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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other two studies are relevant to the question of whether FES
cycling has therapeutic effects. The first study suggested increases
in lower limb strength but not walking,11 and the second suggested
the opposite, namely: improvements in walking but not lower limb
strength.12 It is therefore unclear whether FES cycling is therapeu-
tic. Interestingly, in the study that showed a treatment effect on
strength, participants were instructed to remain passive and not
actively contribute to the cycling.11 Remaining passive while
cycling is not in keeping with current research on neural plasticity,
which suggests that purposeful active movement is essential.15,16 It
would seem more likely that FES cycling would need to be
combined with maximal voluntary effort from patients to see
carryover effects on mobility and strength. It is worth trying to
better understand whether FES cycling is potentially therapeutic
because it is a relatively inexpensive intervention that does not
require direct assistance from a physiotherapist.

Therefore, the research question for this multi centre,
randomised, controlled trial was:

Does 4 weeks of active FES cycling in addition to usual care
improve mobility and strength more than usual care alone in
people with a sub-acute acquired brain injury caused by stroke or
trauma?

Method

Design

An assessor-blinded, randomised, controlled trial was under-
taken (Figure 1). Using computer software,a [21_TD$DIFF] a person not involved
in the trial created a blocked random allocation schedule for
40 participants. The blocking ensured equal numbers of partici-
pants in the two groups. Participants’ allocations were placed in
opaque, sequentially numbered and sealed envelopes that were
[(Figure_1)TD$FIG]

Assessed for elig

Ex

Measured: strength of the knee extensors of
walking and stairs items of the Functional Indep
the affected lower limb; strength of the knee ext

Randomise

(n = 20) 

Experimental Group 
FES cycling 
5 sessions per week
4 weeks 
usual care 

Week 0 

Measured: strength of the knee extensors of
walking and stairs items of the Functional Indep
the affected lower limb; strength of the knee ext

 (n = 19)  

Week 4 

Lost to follow-up (n = 1) 
death (n = 1) 

Figure 1. Flow
held [23_TD$DIFF]off-site by a person not otherwise involved in the trial. Once a
participant passed the screening process and completed the initial
assessment, trial staff contacted the independent person, who
opened the next envelope and revealed the group allocation. The
participant was considered to have entered the trial at this point.
[24_TD$DIFF]The trial was registered with the Australian New Zealand Clinical
Trials Registry (ANZCTR: 12612001163897)[25_TD$DIFF], however, one of the
secondary outcomes was erroneously omitted from the trial
registry, although it was included in the protocol and is reported
here. The authors certify that all applicable institutional and
governmental regulations concerning the ethical use of human
volunteers were followed.

Participants

All patients admitted to three sub-acute adult rehabilitation
units between 11[3_TD$DIFF] February 2013 and 21 [4_TD$DIFF] October 2015 were
screened for inclusion. The inclusion criteria were: first time stroke
or any other non-progressive acquired brain injury; hemiparesis
with composite strength in the affected lower limb< 19/20 points;
less than 6 months after acquired brain injury; [26_TD$DIFF]ability to sit
supported for 40 minutes; and sufficient communication skills to
indicate yes/no verbally or via gestures. Patients were excluded for
the following reasons: limited joint range of movement or a
musculoskeletal condition preventing use of the lower limb cycle;
cardiac pacemakers; [27_TD$DIFF]inability to tolerate the [28_TD$DIFF]ES; pregnancy;
[29_TD$DIFF]absence of notable contraction of lower limb muscles with [28_TD$DIFF]ES;
or [30_TD$DIFF]unstable [31_TD$DIFF]medical conditions.

Interventions

Participants allocated to the experimental group received an
incremental progressive, individualised FES cycling program,
Control Group 
usual care

ibility (n = 341)

cluded (n = 301) 
limited joint range of movement or a 
musculoskeletal condition preventing use of the 
lower limb cycle (n = 11) 
unable to tolerate electrical stimulation (n = 9) 
poor compliance with rehabilitation (n = 17) 
medically unwell (n = 2) 
unlikely to remain in hospital for 4 weeks (n = 91) 
previous acquired brain injury (n = 56) 
lower limb muscle strength 20/20 points bilaterally 
(n = 115) 

 the affected lower limb; bed-chair transfer, 
endence Measure; strength of key muscles of 
ensors of the unaffected lower limb; spasticity 

d (n = 40) 

(n = 20) 

 

 the affected lower limb; bed-chair transfer, 
endence Measure; strength of key muscles of 
ensors of the unaffected lower limb; spasticity 

(n = 20) 

Lost to follow-up (n = 0) 

diagram.
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which was[6_TD$DIFF] undertaken five times a week for 4 weeks. In the first
week, they cycled for 17 minutes per day on a FES cycle [32_TD$DIFF] lower limb
ergometer.b This was increased by at least 5 minutes per week, and
more if tolerated, up to a maximum of 32 minutes per day. The FES
was applied through pads placed on the skin and over four muscle
groups: knee extensors, knee flexors, ankle dorsiflexors and
plantar flexors [34_TD$DIFF]of the affected lower limb. Knee extensors and
ankle dorsiflexors were stimulated between 35 and 56%, and knee
flexors and ankle plantar flexors between 81 and 98% of one
complete revolution of the FES cycle pedal. Photographs and
instructions were given to the physiotherapists administering the
intervention to provide general guidance on electrode placement,
although physiotherapists had some freedom to slightly move the
electrodes to where they achieved a strong contraction. Cycle
cadence was set at 30 repetitions per minute for all participants.
Frequency and wavelength was set at 50 Hz and 450 l, respec-
tively. The participants were instructed to actively cycle as hard as
possible and in synchrony with the FES. The intensity of the FES
was adjusted progressively to provide strong muscle contractions
or the maximal tolerated stimulation. Resistance was increased to
ensure the participants worked as hard as they could tolerate. In
addition, the experimental group received usual care as provided
to the control group. All participants were supervised by a
physiotherapist.

The control group received usual care, which consisted of at
least 1 hour a day of one-to-one therapy with a physiotherapist.
This therapy involved strength, endurance, balance and coordina-
tion exercises, as well as task-specific practice of sitting, sitting-to-
standing, standing, and walking. In addition to this, participants
were able to join group exercise classes or receive another session
of one-to-one therapy, if available. All three rehabilitation units
were similar. Participants received multi[21_TD$DIFF] disciplinary care from
occupational therapists, speech pathologists and nurses.

Outcome measures

Blinded assessors assessed all participants before randomisa-
tion and at the end of the 4-week intervention period. Participants
were asked not to discuss their training or group allocation with
the assessors. The success of blinding was verified at the end of
each participant’s assessment by asking assessors to reveal
whether they had become un-blinded. All assessors received
training prior to assessment and were given assessment protocols
to improve inter-rater reliability. Where possible, the same
assessor was used to perform the initial and final assessments.
Additional demographic data to describe the sample were
collected prior to randomisation. These included Modified Rankin
Scores, age, gender, time since injury, type of acquired brain injury,
and affected side.

The primary outcomes were mobility and strength of the knee
extensors of the affected lower limb. The secondary outcomes were
strength of key muscles of the affected lower limb, strength of the
knee extensors of the unaffected lower limb, and spasticity of the
affected plantar flexors.

Mobility

Mobility was assessed using three items of the Functional
Independence Measure: bed-chair transfer, walking and stairs.
These three items were used to reflect participants’ ability to walk
and move around. Each item was rated on a 7-point scale based on
level of assistance required to complete the task, with a score of
1 denoting total assistance and a score of 7 denoting complete
independence[7_TD$DIFF]. Scores for the three items were tallied for a total
possible score of 21 points. Prior to the commencement of the
study a mean between-group difference of 3 points was deemed
clinically important for this outcome because an added benefit of
3 points could potentially alter the discharge destination for
patients who require full assistance for transfers and walking.
Strength of the knee extensors of the affected lower limb

Maximal force was measured in Nm with a hand-held
dynamometer. Each participant sat in his/her wheelchair or
standardised armchair with feet clear off the floor facing a wall.
A wooden wedge was placed under the thigh and the knee was
placed in 90 [35_TD$DIFF] deg flexion. The assessor identified the knee joint line
and marked it with a pen. A line was drawn from just above the
medial malleolus to just above the lateral malleolus on the affected
lower limb. The distance from the knee joint line to the middle of
the line around the ankle was measured. The pad of the
dynamometer was placed perpendicular to the limb directly on
top of the horizontal ankle line with the assessor’s elbow firmly
against the wall and wrist in a neutral position. The assessor did
not push, but acted as a ‘wall’ for the participant to push against.
Participants were given six maximal attempts with a 1-minute rest
between each attempt. Each maximal attempt lasted 3 to
4 seconds and began with the assessor saying ‘ready, steady,
push’. The assessor provided the participant with strong verbal
encouragement. The highest of the six maximal attempts was used
as the measurement of strength. Torque was then calculated by
multiplying force by the distance between the knee and point of
application of the dynamometer. This method of measuring
strength was tested prior to commencement of the study on
12 patients who were similar to those recruited to the study, and
showed good inter-rater reliability with an intra-class correlation
coefficient (3,1) of 0.91 (95% CI 0.62 to 0.98). Furthermore, hand-
held dynamometry has been shown to have very good inter-rater
reliability in rehabilitation patients,17

[33_TD$DIFF] as well as very good intra-
rater reliability for measurements of strength in patients with
neurological [36_TD$DIFF]conditions.18 Prior to the commencement of the
study, a mean between-group difference equivalent to 20% of mean
baseline strength was deemed clinically important for this
outcome.

Strength of key muscles of the affected lower limb

The strength of the knee flexors and extensors, ankle dorsi-
flexors and plantar flexors were assessed using manual muscle
testing.19 Scores for the four muscle groups were combined and
treated as a composite measure of lower limb strength, with
20 points representing the maximum score.

Strength of the knee extensors of the unaffected lower limb

The strength of the knee extensors of the unaffected lower limb
was measured in Nm with a hand-held dynamometer using the
same method as described for the affected lower limb.

Spasticity of the ankle plantar flexors of the affected lower limb

Spasticity of the ankle plantar flexors of the affected lower limb
was assessed using the quality of the muscle reaction item of the
Tardieu Scale where 0 indicates ‘no resistance’ and 4 indicates
‘unfatigable clonus’.20

Data analysis

The sample size was calculated a priori. It was based on an 80%
probability of detecting a mean between-group difference
equivalent to 20% of mean initial strength. For the purposes of
the power calculation, we needed to estimate the likely mean
initial strength in raw units but on the understanding that this
value would be adjusted post hoc. Mean initial strength was
estimated to be 50 Nm,21 with 20% equivalent to 10 Nm. The power
calculation assumed a dropout rate of 5%, power of 80%, a
significance level of 0.05, and a strong correlation (0.8) between
initial and final values. It was based on an estimated SD of 18 Nm.
The SD was derived from data collected prior to the study from
12 patients similar to those recruited to the study.

Data were analysed with a factorial analysis of covariance
(baseline data) using a linear regression approach. The purpose of
this analysis was to determine the effect of FES cycling versus no
FES cycling on outcomes. All data were analysed according to the



Table 1
Baseline characteristics of participants.

Characteristic Exp (n = 20) Con (n = 20)

Age (yr), mean (SD) 62 (15) 60 (16)

Gender, n male (%) 14 (70) 13 (65)

Time since ABI (d), median (IQR) 34 (22 to 49) 38 (24 to 72)

Type of ABI, n

haemorrhage 4 5

infarct 13 9

traumatic brain injury 2 5

arteriovenous malformation 1 0

tumour 0 0

cerebral abscess 0 1

Affected side, n right (%) 11 (55) 12 (60)

Modified Rankin Scale (points), mean (SD) 4.5 (0.6) 4.5 (0.5)

ABI = acquired brain injury, Con = control group, Exp = experimental group.
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principle of ‘intention to treat’. The results for the primary analyses
were interpreted with respect to the pre-defined minimum
clinically worthwhile treatment effects. Minimum clinically
worthwhile treatment effects were not set for the secondary
outcomes, so these results were only interpreted with respect to
statistical significance (p < 0.05).

Results

Flow of participants through the study

A total of 341 patients with acquired brain injury were screened
over the trial period. Forty patients were randomised. The flow of
the participants through the study is illustrated in Figure 1. Table 1
outlines the participants’ demographics and baseline character-
istics. The experimental and control groups were similar at
baseline. On admission to the study most participants could not
walk or needed a high level of assistance to walk/transfer. Only two
participants were able to walk without assistance: they either had
a score of� 3 on the Modified Rankin Scale or� 5 on[38_TD$DIFF] the Functional
Independence Measure. These scores reflect the severity of
[39_TD$DIFF]participants’ disability. The mean composite score for the affected
lower limb strength was 7 (SD 5) out of 20 points, reflecting severe
weakness.

Adherence to the study protocol

Adherence to the intervention was good. Experimental
participants received a median of 486 minutes (IQR 462 to 526)
of FES cycling over a median of 20 sessions (IQR 19 to 20). This
equated to a median of 25 minutes per session (IQR 24 to 25). Three
Table 2
Mean (SD) of groups, mean (SD) difference within groups, and mean (95% CI) difference b

group for all outcomes except spasticity.

Outcome Groups

Week 0

Exp

(n = 20)

Con

(n = 20)

Exp

(n = 19)

Mobility (points/21) 5.5

(3.8)

6.2

(4.5)

10.4

(6.5)

Strength of the knee extensors of the

affected lower limb (Nm)

28.4

(27.0)

29.9

(26.2)

43.1

(29.2)

Strength of key muscles of the affected

lower limb (points/20)

6.5

(4.4)

7.6

(5.3)

10.5

(5.4)

Strength of the knee extensors of the

unaffected lower limb (Nm)

63.9

(27.6)

58.7

(28.8)

70.9

(30.4)

Spasticity of the ankle plantar flexors

of the affected lower limb (points/5) a

1.8

(1.4)

0.9

(1.1)

2.1

(1.4)

a A positive mean between-group difference favours the control group.

Con = [15_TD$DIFF]control group, [16_TD$DIFF]Exp = [17_TD$DIFF]experimental group, Nm = Newton[18_TD$DIFF] meters.

Small anomalies in subtraction are due to the effect of rounding.
participants deviated from the protocol. One participant in the
experimental group became temporarily unwell and was trans-
ferred to an acute ward for some time during the intervention
period. A second participant in the experimental group fell (not
during a physiotherapy session) and sustained a fractured neck of
femur, which required a total hip replacement; he was unable to
continue the FES cycling. Both of these participants participated in
the 4-week follow-up assessment. In addition, one participant in
the experimental group died after randomisation; data were not
imputed for this participant. Therefore 39/40 participants were
included in the final analysis. The assessors remained blinded for
all but one assessment.

Effect of FES cycling

The mean between-group difference for mobility was –0.3/21
points (95% CI –3.2 to 2.7). The upper bound of the 95% CI
associated with the mean between-group difference for this
outcome was less than the [40_TD$DIFF]minimum worthwhile treatment effect
of 3 points, indicating that the treatment was ineffective. The mean
between-group difference for strength of the knee extensors of the
affected lower limb was 7.5 Nm (95% CI –5.1 to 20.2). The 95% CI
associated with the mean between-group difference for this
outcome spanned the [40_TD$DIFF]minimum worthwhile treatment effect
(namely, 20% of mean initial strength, which was equivalent to
5.8 Nm), failing to [41_TD$DIFF]rule [42_TD$DIFF]in or [43_TD$DIFF]rule [44_TD$DIFF]out a clinically worthwhile
treatment effect. The results for the secondary outcomes are in
Table 2. Individual participant data are presented in Table 3 (see
eAddenda for Table 3). There were no statistically significant
between-group differences for spasticity of the plantar flexors of
the affected lower limb or strength of the knee extensors of the
unaffected lower limb. In contrast, there was a statistically
significant between-group difference for the strength of key
muscles of the affected lower limb, with a mean between-group
difference of 3.0/20 points (95% CI 1.3 to 4.8).

Discussion

The results of this study indicate that 4 weeks of FES cycling in
addition to usual care does not improve mobility in people with a
sub-acute acquired brain injury (Table 2). These results are
conclusive and cannot be explained by an insufficient sample size.
The effects of FES cycling on strength of the knee extensors of the
affected lower limb are unclear, with the results failing to
determine whether or not there is a clinically worthwhile
treatment effect. Unlike the results for mobility, these results
may reflect an insufficient sample size.
etween groups. A positive mean between-group difference favours the experimental

Difference within

groups

Difference between groups

Week 4 Week 4 minus Week 0 Week 4 minus Week 0

Con

(n = 20)

Exp

(n = 19)

Con

(n = 20)

Exp minus Con

11.4

(7.4)

4.8

(4.2)

5.2

(5.0)

–0.3

(–3.2 to 2.7)

36.8

(32.0)

14.6

(23.0)

6.9

(15.2)

7.5

(–5.1 to 20.2)

8.5

(5.0)

4.1

(3.3)

1.0

(2.0)

3.0

(1.3 to 4.8)

64.7

(23.7)

5.5

(20.4)

6.0

(11.8)

0.9

(–9.4 to 11.2)

1.3

(1.0)

0.2

(1.0)

0.4

(1.3)

0.3

(–0.5 to 1.0)
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Our failure to demonstrate a treatment effect on mobility
contrasts with the results of the most relevant trial on FES
cycling;12

[37_TD$DIFF] that trial demonstrated a treatment effect on walking.
This is surprising because our training was more intensive
(a median of 25 minutes five times a week for 4 weeks). It is
possible that the difference in results may be due to the way we
measured mobility. We did not solely focus on walking but instead
used a composite Functional Independence Measure score that
captured walking, transferring and negotiating stairs. Alternative-
ly, perhaps there was an important difference between our
participants and those of the previous trial. Many of our
participants were cognitively impaired; this may have limited
their ability to fully cooperate and to synchronise their lower limb
movements in time with the FES cycle. We did not exclude those
with poor cognition because we were interested in generalising
our results to the typical population seen in the clinical setting.
Perhaps future trials should consider using EMG-triggered FES
cycling to help ensure that participants maximally contract their
muscles in synchronisation with the cycle. However, the FES cycle
used in this study did not provide this option.

We failed to determine whether or not FES cycling [45_TD$DIFF]has
[46_TD$DIFF]clinically [47_TD$DIFF]important [48_TD$DIFF]effects on knee [49_TD$DIFF]extensor strength of the
affected lower limb [9_TD$DIFF] (a primary outcome). This is most likely due to
an insufficient sample size. Interestingly, we found a statistically
significant between-group difference on our secondary outcome
of strength of key muscles of the affected lower limb, with a mean
between-group difference of 3.0/20 points (95% CI 1.3 to 4.8).
Ambrosini et al also reported a statistically significant between-
group difference on strength of key muscles of the affected lower
limb in a study similar to ours, with a mean between-group
difference of 19 points (95% CI 8 to 30) on a 100-point scale.11 The
results of their study are comparable to ours. Both sets of results
are difficult to interpret without reference to a minimum clinically
worthwhile treatment effect. If clinicians consider an added
benefit of 1 point on a 20-point scale or 8 points on a 100-point
scale as clinically worthwhile, then both sets of results would
indicate that FES cycling has a clinically important effect on
overall strength in the affected lower limb. However, presumably
most clinicians and patients would want to see a larger added
benefit than just 1 point (on a 20-point scale) or 8 points (on a 100-
point scale) to justify the time, cost and effort of FES cycling. If this
is the case, then our results and those of Ambrosini et al do not give
a clear answer, despite the statistically significant between-group
differences. To clarify this issue, a much larger study is required.
However, any possible therapeutic effects of FES cycling on
strength are of limited value unless accompanied by improve-
ments in mobility.

Perhaps larger dosages of FES cycling are required to see
changes in strength and mobility. That is, perhaps 60 minutes of
FES cycling daily over 6 months with much higher (mA) intensities
or increased resistance are required. However, it would be difficult
to provide a higher dosage of FES cycling than provided in our
study, given the constraints on healthcare systems. For example,
few patients remain in hospital for 6 months following acquired
brain injury, so FES cycling would have to be provided on an
outpatient basis, which is logistically difficult. It is also unlikely
that patients would tolerate more than 30 minutes a day of FES or
FES administered at higher intensities or resistance.

A limitation of our study was that the initial strength of
participants was highly variable. For example, composite strength
in the affected lower limb ranged from 0/20 to 17/20 points. We
included all participants that could potentially benefit from FES
cycling in the clinical setting. In addition, participants who were
both very weak and very disabled were also included. For example,
the mean composite score for the affected lower limb strength was
just 7/20 points (SD 5) and only two participants were able to walk
without assistance. If those who are weaker and more disabled
benefit more than those who are stronger and less disabled, then
our inclusion of people with such a diverse range of strength and
disabilities may have diluted a possible treatment effect. It is also
possible that FES cycling has therapeutic effects on other variables
not captured in our study, such as cardiovascular fitness.

The results of our trial are difficult to reconcile with the results
of a recent systematic review on [28_TD$DIFF]ES administered in various ways
(excluding in conjunction with active cycling).9 [10_TD$DIFF] This review
showed a small-to-moderate immediate treatment effect on
strength (11 trials) and function (six trials) of [28_TD$DIFF]ES versus no
intervention. However, the results of this review need to be
interpreted with caution because the median PEDro score for the
trials included in the strength and functional analyses were 5 (IQR
4 to 6) and 6 (IQR 5 to 7) points with [50_TD$DIFF]six (of 11 trials) and [51_TD$DIFF]two (of six
trials) [52_TD$DIFF]failing to blind assessors, respectively. This indicates high
susceptibility to bias, which may have inflated treatment effects. In
contrast, we paid considerable attention to minimising all sources
of bias. Our results, in combination with the results of this recent
systematic review, make it difficult to recommend FES cycling to
clinicians.

In summary, we found that 4 weeks of FES cycling in addition to
usual care does not improve mobility in people with a sub-acute
acquired brain injury. Future studies could clarify the effects of FES
cycling on strength, although the clinical significance may be
limited without accompanying effects on mobility.
What is already known on this topic: People with difficulty
walking [53_TD$DIFF]or [54_TD$DIFF]moving [55_TD$DIFF]around [56_TD$DIFF]after [57_TD$DIFF]acquired brain injury improve
with intensive repetitive practice. Functional electrical stimu-
lation cycling may assist further by stimulating muscle con-
tractions in synchrony with the pedalling motion of a lower
limb ergometer.
What this study adds: Functional electrical stimulation cy-
cling does not improve mobility in people with [58_TD$DIFF]acquired brain
injury. The [59_TD$DIFF]effects of functional electrical stimulation cycling on
strength are unclear[12_TD$DIFF].
Footnotes: aMicrosoft Excel, Microsoft, Redmond, USA; bRT300
cycle, Restorative Therapies, Baltimore, USA.

eAddenda: Table 3 can be found online at doi:10.1016/j.jphys.
2016.08.004.
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A B S T R A C T

Question: Does intensive sit-to-stand training in addition to usual care improve sit-to-stand ability in people
who are unable to stand up independently after stroke? Design: A multi-centre randomised controlled trial
with concealed allocation, assessor blinding and intention-to-treat analysis. Participants: Thirty patients
from two Sydney hospitals, , 3 months after stroke, with a mean Modified Rankin Scale score of 4 points
(SD 0.5). Intervention: All participants received usual care. Participants in the experimental group attended
two additional sessions of physiotherapy per day for 2 weeks. These sessions were individualised
to the needs of each participant in order to increase the amount and intensity of sit-to-stand training.
Outcome measures: Outcome measures were taken at baseline and at 2 weeks. The primary outcome was
clinicians’ impressions of sit-to-stand change, measured using videos and a 15-point Global Impressions of
Change Scale. Secondary outcomes were sit-to-stand ability, composite strength of key muscles of the
affected lower limb, gross lower limb extension strength, the Goal Attainment Scale, and ranking of change in
ability to move from sitting to standing. Results: All participants completed the trial. The mean
between-group difference for clinicians’ impressions of sit-to-stand change was 1.57/15 points (95% CI 0.02 to
3.11). The secondary outcomes that indicated a treatment effect were gross lower limb extension strength
and ranking of change in ability to move from sitting to standing, with mean between-group differences of
6.2 deg (95% CI 0.5 to 11.8) and 27 (95% CI 21 to 213), respectively. Conclusion: Two weeks of intensive
sit-to-stand training in addition to usual care improves sit-to-stand ability in people who are unable to stand
up independently after stroke. Trial registration: ANZCTR 12616001288415. [de Sousa DG, Harvey LA,
Dorsch S, Varettas B, Jamieson S, Murphy A, Giaccari S (2019) Two weeks of intensive sit-to-stand
training in addition to usual care improves sit-to-stand ability in people who are unable to stand up
independently after stroke: a randomised trial. Journal of Physiotherapy 65:152–158]
Crown Copyright © 2019 Published by Elsevier B.V. on behalf of Australian Physiotherapy Association. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

After stroke, many people have difficulty standing up and walking
independently, due to motor impairments such as weakness and poor
co-ordination. Loss of the ability to stand up can result in profound
disability1 and increased burden of care.2 There is strong evidence
that repetitive training of sitting,3 standing up,4 standing,5 and
walking5 after stroke improves these functional tasks. There is also
evidence that large amounts (more than triple the usual amount) of
additional training improves functional outcomes after stroke.6

However, it cannot be assumed that the effects of additional
training are the same for all tasks because individual tasks may
require different amounts of training. For example, tasks involving
the upper limb appear to require more training than tasks involving
the lower limb.7
ier B.V. on behalf of Australian Phy
Since standing up independently is essential for reducing
disability and burden of care, it is important to understand if
additional repetitive sit-to-stand training improves the ability to
stand up independently after stroke. Five clinical trials have
investigated the effects of additional repetitive sit-to-stand training
after stroke.8–12 Three of the five trials are not relevant for people
who are very disabled and unable to stand up independently because
these trials only recruited people who could stand up without
assistance.9,10,12 Another trial recruited a mix of people who could
and could not stand up independently, and only provided a very
imprecise estimate of the treatment effect.11 The only remaining
relevant trial, which specifically recruited people who could not stand
up independently, had methodological issues affecting the validity of
the results and did not provide intensive sit-to-stand training to
participants.8 Overall, these five trials do not provide clear evidence
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Assessed for eligibility (n = 478)

Excluded (n = 448) 
unlikely to stay for 2 weeks (n = 195)

•
•

previous acquired brain injury (n = 103)
• no difficulty standing up (n = 57)
• poor compliance with rehabilitation (n = 45)
• medically unwell (n = 18)
• unable to follow instructions (n = 17)
• limited joint range of movement or a

musculoskeletal condition preventing
participation (n = 8)

• declined participation (n = 5)

Video recording of participants standing up from sitting. Measured sit-to-stand item of the 
Mobility Scale for Acute Stroke Patients, composite strength of key muscles of the affected  

lower limb, gross lower limb extension strength, and the Goal Attainment Scale.

Randomised (n = 30) 

(n = 15) (n = 15) 

Week 0

Experimental group 
• intensive sit-to-stand

training
• usual care
• 2 weeks

Week 2 

Video recording of participants standing up from sitting. Measured clinicians’ impressions of 
sit-to-stand change, sit-to-stand item of the Mobility Scale for Acute Stroke Patients,

composite strength of key muscles of the affected lower limb, gross lower limb extension 
strength, the Goal Attainment Scale, and ranking of change in ability to move from 

sitting to standing.     
(n = 15) (n = 15) 

Control group
• usual care
• 2 weeks

Figure 1. Design and flow of participants through the trial.
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of the effectiveness of additional repetitive sit-to-stand training in
people who are unable to stand up independently after stroke.

The primary aim of this trial was to determine if intensive sit-to-
stand training in addition to usual care improves sit-to-stand ability
in people who are unable to stand up independently after stroke.

Therefore, the research question for this multi-centre randomised
controlled trial was:

Does intensive sit-to-stand training in addition to usual care
improve sit-to-stand ability in people who are unable to stand up
independently after stroke?
Methods

Design

An assessor-blinded randomised controlled trial was undertaken
(Figure 1). A person not involved in the trial created a blocked
random allocation schedule for 30 participants using Microsoft Excel.
The blocking ensured equal numbers of participants in the
experimental and control groups. Participants’ allocations were
placed in opaque, sequentially numbered and sealed envelopes that
were held offsite by a person not involved in the trial. Once
participants passed the screening process and completed the initial
assessment, trial staff contacted the independent person who opened
an envelope and revealed the group allocation. Participants were
considered to have entered the trial at this point. Participants were
re-assessed at the end of the 2-week intervention period. All
applicable institutional and governmental regulations concerning the
ethical use of human volunteers were followed.
Participants

All patients admitted to two hospitals between 21 June 2016 and
16 October 2018 were screened for inclusion. The inclusion criteria
were as follows: first-time stroke or any other non-progressive
acquired brain injury; , 6 months after stroke or brain injury;
difficulty standing up due to the effects of stroke or brain injury; and
sufficient communication skills to indicate yes/no verbally or via
gestures. Patients were excluded for any of the following reasons:
limited passive joint range of movement or musculoskeletal
conditions that would prevent participation; inability to participate in
exercise (ie, medically unwell or unable to tolerate usual
physiotherapy); and expected length of stay , 2 weeks.
Experimental group

Participants allocated to the experimental group participated in
two additional sessions of physiotherapy per day for 2 weeks in
addition to usual care. Each additional sessionwas at least 30 minutes
during the week (hence, an additional 1 hour per day) and 1 hour on
the weekend (2 hours per day). However, the sessions were
sometimes longer than this if tolerated by the participants. The
sessions were individualised to the needs of each participant in
order to increase the amount and intensity of sit-to-stand training
(see Box 1). All sit-to-stand training was based on the principles of
task-specific motor training, with an emphasis on repetition, and the
use of visual targets to provide an external focus to the movement.
Training also incorporated verbal feedback. Intensity of training was
increased by increasing the number of repetitions performed in a
specified time. Training was also steadily progressed by lowering the



Box 1. Protocol and progression of sit-to-stand training.

Participants who could perform the whole sit-to-stand task from raised treatment beds with supervision were set up with a wall on their
unaffected side and chairs or tables around them so they could practise moving from sitting to standing repetitively and safely.

If participants were unable to perform the whole sit-to-stand task, they performed part-practice of components of the sit-to-stand task until
they were able to move from sitting to standing with assistance. For example, if participants could not move from sitting to standing due to
weakness and poor co-ordination of their affected lower limb extensors, they performed many repetitions of squats on a sliding tilt-table.

If participants could not move from sitting to standing due to weakness and poor co-ordination of their affected lower limb hip flexors and
extensors, they performed many repetitions of reaching beyond their arms’ length for targets whilst loading their affected lower limb.

Participants were encouraged to achieve a daily target of sit-to-stand repetitions. If they could not reach this target, they were encouraged to
perform as many repetitions of the sit-to-stand task per day as they could tolerate.

Participants were provided with visual targets (ie, tape on a wall to provide a visual target for shoulder alignment, or tape on a chair
corresponding with tape on the knee of their affected lower limb to provide a target for knee alignment prior to moving from sitting to
standing).

Verbal feedback about the quality of participants’ movements were also provided.

Intensity of training was increased by increasing the amount of repetitions performed in a specified time.

Progression of sit-to-stand training followed these general principles:
Training was made progressively more difficult to continue to challenge each participant’s motor ability.

If participants could achieve more than 50 repetitions in , 15 minutes, the exercise was made more difficult.

If participants were unable to achieve 25 repetitions within 15 minutes, the exercise was made easier.

The new version of the exercise was adopted until more than 100 repetitions were achieved following the method above.

If participants could not perform a previously tolerated exercise on a specific day for any reason (ie, they were medically unwell) but were
stable enough to participate in therapy, the task was made easier so that the day’s repetition target could be achieved.

Training was also steadily progressed by lowering the height of treatment beds, altering foot position to increase weight-bearing through the
affected lower limb, and standing upwith a foam mat under the feet. All these strategies were used to ensure that each participant trained at
his/her maximal capacity.
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height of treatment beds, altering foot position to increase
weight-bearing through the affected lower limb, and standing up
with a foam mat under the feet. All these strategies were used to
ensure that each participant trained at his/her maximal capacity.
Additional strategies were used to facilitate extra sit-to-stand training
during therapy hours and after hours (Table 1). Both the experimental
and control groups received usual care, namely two 1-hour sessions
of physiotherapy each weekday.

One therapist with over 10 years of experience in neurological
physiotherapy was responsible for treating all experimental
participants and did not treat any of the control participants.
Attempts were made to keep the therapists responsible for treating
the control participants naïve to the purpose of the trial. That is:
they were not told the purpose of the trial or the details of the
intervention. Similarly, all participants were kept naïve to the
purpose of the trial. For example, the participant information sheets
and consent forms did not disclose the specific experimental
intervention, and experimental participants were not told that they
were specifically focusing on sit-to-stand.
Control group

Participants allocated to the control group received usual care
only. A detailed description of usual care is presented in the next
section.
Table 1
Strategies individualised to the needs of each participant to increase the amount of
sit-to-stand training.

Strategies Exp Con

Physiotherapy gym � 3 hours/weekday Provided Not provided
Semi-supervised practice Provided Ad hoc
Therapy on weekend days Provided Not provided
Exercise diary Provided Not provided
Structured training for carers/family Provided Ad hoc and unstructured
Individualised after-hours exercise program Provided Ad hoc

Con = control group, Exp = experimental group.
Usual care

Usual care consisted of two 1-hour sessions of physiotherapy each
weekday. This therapy involved strength, endurance, balance and
co-ordination exercises as well as task-specific training of sitting,
sit-to-stand, standing, and walking. Exercise repetitions for both
groups were counted using a hand-held counter. The time that
participants participated in therapy was recorded. The two hospitals
were similar and participants received multi-disciplinary care from
occupational therapists, speech pathologists and nurses.

Outcome measures

All participants were assessed by a blinded assessor before
randomisation and at the end of the 2-week intervention period.
Participants were asked not to discuss their training or group
allocation with the assessors. The success of blinding was verified at
the end of each participant’s assessment by asking assessors to reveal
whether they had become un-blinded. All assessors received training
prior to commencement of the trial and were given assessment
protocols to improve inter-rater reliability. Where possible, the same
assessor was used to perform the initial and final assessments.
Additional demographic data to describe the sample were collected
prior to randomisation. This included Modified Rankin Scale scores,
age, gender, time since injury, type of acquired brain injury, and
affected side.

The primary outcome was clinicians’ impressions of sit-to-stand
change. The secondary outcomes were sit-to-stand ability using the
sit-to-stand item of the Mobility Scale for Acute Stroke Patients,
composite strength of key muscles of the affected lower limb, gross
lower limb extension strength, the Goal Attainment Scale, and
ranking of change in ability to move from sitting to standing.

Clinicians’ impressions of sit-to-stand change
Change in sit-to-stand ability was assessed using a 15-point Global

Impressions of Change Scale.13 This involved taking short video
recordings of participants attempting or performing an independent
sit-to-stand at baseline and again at 2 weeks. Each video was



Table 2
Baseline characteristics of participants.

Characteristic Exp (n = 15) Con (n = 15)

Age (yr), mean (SD) 62 (17) 69 (16)
Gender, n male (%) 9 (60) 8 (53)
Time since ABI (d), median (IQR) 16 (13 to 57) 18 (10 to 34)
Type of ABI, n

haemorrhage 5 1
infarct 10 14

Affected side, n right (%) 5 (33) 6 (40)
Modified Rankin Scale (points/7), mean (SD) 4.2 (0.4) 4.1 (0.6)

ABI = acquired brain injury, Con = control group, Exp = experimental group.
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between 2 and 5 minutes in duration and the angle of the camera and
distance between the camera and participant were standardised.
Participants were permitted to wear shoes but lower limb aids and
orthoses were removed and standardised for both assessments.
Participants were positioned in the middle of a treatment bed set at a
height of 60 cm, with their ankles in dorsiflexion and their heels on
the ground. Participants were asked to stand up with their arms
crossed over their chests. If participants could not stand up
independently, they were permitted to place their arm/s on their
thigh/s to assist. If participants still could not stand up independently,
they were permitted to push through their hands on the bed to assist
with standing up. If participants still could not stand up
independently, assistance was provided by a physiotherapist not
involved in the trial and blinded to group allocation. If necessary, a
second person provided assistance for participants to stand up. If
participants could stand up independently from 60 cm, the bed
height was incrementally lowered by 5 cm, and then a further 5 cm
after every successful attempt at standing up. The assessment ceased
when participants could no longer stand up independently, or could
not stand up safely with maximal assistance of two people. If
participants were initially unable to stand up with assistance of two
people from a height of 60 cm, they were challenged to reach beyond
their arms’ length to the limits of their abilities whilst seated.

All videos were collated into pairs corresponding with the initial
and final assessment of each participant. Thirty pairs of videos were
generated (60 videos in total) and viewed on two separate adjoining
screens. The video taken at the time of a participant’s initial
assessment always appeared on the left screen and the final
assessment on the right. Two blinded assessors (one with . 20 years
and one with 4 years neurological physiotherapy experience) were
asked to separately view the pairs of videos and rate the change in the
ability of participants to move from sitting to standing independently,
using a Global Impressions of Change Scale. Assessors were asked to
take into consideration the severity of participants’ disabilities and
the amount of change expected over a 2-week period. The Global
Impressions of Change Scale is a 15-point scale with 27 representing
‘very much worse’, 0 representing ‘no difference’, and 17
representing ‘very much better’. A mean between-group difference of
2/15 points was considered clinically important for this outcome
prior to the commencement of the trial.

Sit-to-stand ability
Sit-to-stand ability was also assessed using the sit-to-stand item

of the Mobility Scale for Acute Stroke Patients.14 This item is rated on
a 6-point scale based on level of assistance required to move from
sitting to standing. A score of 1 denotes inability to move from sitting
to standing and a score of 6 denotes the ability to move from sitting to
standing unassisted, safely, and with no verbal input.

Composite strength of key muscles of the affected lower limb
The strength of the hip extensors, knee extensors, and plantar

flexors of the affected lower limb were assessed using the Manual
Muscle Test, consisting of 6 grades (ie, 0 = no muscle contraction to
5 = moves joint through full available range and holds against
maximal resistance).15 Scores for the three muscle groups were
combined and treated as a composite measure of lower limb extensor
strength, with 15 points representing the maximum score.

Gross lower limb extension strength
Gross lower limb extension strength of the affected lower limb

was assessed using an inclinometer on a sliding tilt table. Each
participant was transferred to a sliding tilt table. The participant was
positioned with the affected lower limb on the foot plate and the
knee in 70 deg of flexion. The unaffected lower limb was not
weight-bearing. The tilt table was raised and the participant was
instructed to extend the affected lower limb. The highest degree of
incline against which the participant could extend the affected lower
limb was recorded, where zero degrees indicated that the tilt table
was horizontal and 90 degrees indicated that the tilt table was
vertical.
The Goal Attainment Scale
The original intention was to ask participants to identify one

personal goal related to their sit-to-stand ability. However,
preliminary testing of this scale indicated that patients with cognitive
or verbal impairments had great difficulty setting specific goals.
Therefore, the Goal Attainment Scale was modified prior to beginning
the trial.16 Prior to randomisation, a blinded assessor set one goal
related to sit-to-stand ability, which was based on their predictions of
expected gains in participants’ ability to move from sitting to
standing over the 2-week intervention period. The assessor who set
the initial goal considered the severity of the participant’s disabilities
and the expected ability of the participant to tolerate therapy. The
goal was set according to the SMART principle, that is: the goal was
specific, measurable, attainable, realistic and timely. A blinded
assessor rated attainment of the goal at the 2-week assessment. The
goal was rated on a 5-point scale, where ‘0’ denoted the expected
level of achievement; ‘11’ and ‘12’ were respectively ‘a little’ and ‘a
lot’ better than expected, whilst ‘21’ and ‘22’ were correspondingly
‘a little’ and ‘a lot’ less than expected. A higher score reflected better
achievement of goals than a lower score.

Ranking of change in ability to move from sitting to standing
Two blinded assessors separately ranked the change in the

participants’ abilities to move from sitting to standing in order from
most improved to least improved. The assessors used the videos
collected as part of the primary outcome to determine each
participant’s ranking. Scores were combined and averaged to
minimise the impact of extreme scores.

Data analysis

The sample size was calculated a priori. It was based on an 80%
probability of detecting a mean between-group difference of 2/15 on
the primary outcome: clinicians’ impressions of sit-to-stand change.
The power calculation assumed a drop-out rate of 15%, a power of
80%, an alpha of 0.05, and a strong correlation (0.8) between initial
and final values. It was based on an estimated SD of 1.5 derived from a
previous study.17

Each outcome was analysed using a linear regression approach
with baseline data as a covariate. The purpose of these analyses was
to determine the effect of the intensive sit-to-stand training versus
usual care on all outcomes. All data were analysed according to the
principle of ‘intention to treat’. The result for the primary analysis was
analysed with respect to the pre-defined minimum worthwhile
treatment effects. Minimum worthwhile treatment effects were not
set for the secondary outcomes.

Results

Flow of participants through the trial

A total of 478 patients with acquired brain injury were screened
from the two hospitals over the trial period. Thirty patients were
randomised. The flow of the participants through the trial is
illustrated in Figure 1. Table 2 summarises the demographic
and clinical characteristics of the participants at baseline. The



Table 3
Mean (SD) of groups, mean (SD) difference within groups, and mean (95% CI) difference between groups.

Outcome Groups Difference within
groups

Difference between groups

Week 0 Week 2 Week 2 minus
Week 0

Week 2 minus Week 0

Exp
(n = 15)

Con
(n = 15)

Exp
(n = 15)

Con
(n = 15)

Exp Con Exp minus Con

Clinicians’ impressions of sit-to-stand change (points/15) 4.9
(1.6)

3.3
(2.5)

1.57
(0.02 to 3.11)

Sit-to-stand ability (points/6) 2.2
(1.1)

3.2
(1.5)

3.9
(1.7)

4.3
(1.9)

1.7
(1.3)

1.1
(0.7)

0.6
(20.2 to 1.5)

Composite strength of key muscles of the affected lower limb (points/15) 6.9
(3.5)

7.1
(3.0)

8.0
(4.2)

8.1
(3.2)

1.1
(2.2)

1.1
(1.6)

0.1
(21.4 to 1.5)

Gross lower limb extension strength (deg) 21.3
(14.9)

21.7
(10.6)

30.5
(15.3)

24.7
(12.8)

9.2
(7.5)

3.0
(7.5)

6.2
(0.5 to 11.8)

Goal Attainment Scale (points/5) 0.7
(1.4)

20.1
(1.1)

0.7
(20.2 to 1.7)

Ranking of change in ability to move from sitting to standinga 12
(8)

19
(8)

27
(21 to 213)

Shaded row = primary outcome. Small anomalies in subtraction are due to the effects of rounding. A positive between-group difference favours the experimental group, except
where indicated.
Con = control group, Exp = experimental group.

a A negative between-group difference favours the experimental group.
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experimental and control groups were similar at baseline. Most
participants could not walk or needed a high level of assistance to
transfer or walk on admission to the trial.

Adherence to the trial protocol

Adherence to the intervention was good. Experimental
participants participated in a median (IQR) of 1920 minutes (1690 to
2273) of physiotherapy over the 2-week intervention period. This
equated to a median (IQR) of 137 minutes (121 to 162) per day.
Control participants participated in a median (IQR) of 970 minutes
(948 to 1088) of physiotherapy over the 2-week intervention period.
This equated to a median (IQR) of 97 minutes (95 to 109) per day.

Experimental participants completed a median (IQR) 1252
sit-to-stand repetitions (763 to 1773) over the 2-week intervention
period. This equated to a median (IQR) 89 sit-to-stand repetitions
(55 to 127) per day. Control participants completed a median (IQR)
365 sit-to-stand repetitions (164 to 514) over the 2-week intervention
period. This equated to a median (IQR) 37 sit-to-stand repetitions
(16 to 51) per day. The assessors remained blinded for all
assessments. There were no adverse events.

Effect of sit-to-stand training

Primary outcome
The mean between-group difference for clinicians’ impressions of

sit-to-stand change was 1.57/15 points (95% CI 0.02 to 3.11) (Table 3).
The upper end of the 95% CI associated with the mean between-group
difference for this outcome exceeded the minimum worthwhile
treatment effect of 2 points, indicating uncertainty as to whether the
treatment effect was clinically worthwhile. Individual participant
data for this and the secondary outcomes are presented in Table 4 on
the eAddenda.

Secondary outcomes
The results for the secondary outcomes are presented in Table 3.

The mean between-group difference for sit-to-stand ability was 0.6/6
points (95% CI 20.2 to 1.5). The mean between-group difference for
composite strength of the key muscles of the affected lower limb was
0.1/15 points (95% CI 21.4 to 1.5). The mean between-group
difference for gross lower limb extension strength was 6.2 deg (95%
CI 0.5 to 11.8). The mean between-group difference for the Goal
Attainment Scale was 0.7/5 points (95% CI 20.2 to 1.7). The mean
between-group difference (95% CI) for ranking of change in ability to
move from sitting to standing was 27 (95% CI 21 to 213) in favour of
the experimental group, supporting the results of the primary
outcome.
Discussion

The results of this trial indicate that intensive sit-to-stand training
in addition to usual care improves sit-to-stand ability in people who
are unable to stand up independently after stroke (Table 3). This trial
provides the first evidence that as little as 2 weeks of additional
repetitive sit-to-stand training in the early stages of stroke recovery
may be worthwhile.

There have been trials investigating the effects of additional
repetitive sit-to-stand training; however, some of these trials only
recruited people who could stand up without assistance.9,10,12 Barreca
et al specifically recruited people who could not stand up
independently after stroke; however, this trial had methodological
issues affecting the validity of the results.8 Interestingly, Barreca et al
demonstrated a treatment effect with a small difference in daily
sit-to-stand repetitions between their experimental and control
groups: median 15 repetitions (IQR 12 to 20) versus 11 repetitions
(IQR 8 to 17), respectively. This improvement with such a small
difference in daily sit-to-stand repetitions between groups conflicts
with recent evidence6 indicating that large amounts (more than triple
the usual amount) of additional training are required to improve
functional outcomes after stroke. In comparison, participants in the
experimental and control groups in our trial performed a median of
89 (IQR 55 to 127) versus 37 (IQR 16 to 51) daily sit-to-stand
repetitions, respectively. Overall, participants in our experimental
group performed over three times more sit-to-stand repetitions than
participants in our control group; median (IQR) 1252 repetitions
(763 to 1773) versus 365 repetitions (164 to 514), respectively. It is
unclear how Barreca et al demonstrated a treatment effect with such
a small difference in sit-to-stand repetitions between their
experimental and control groups. However, there are two possible
explanations: they may have under-reported the total amount of
sit-to-stand repetitions in their experimental group or it may be that
less additional training is needed to improve sit-to-stand than other
tasks (such as reaching and manipulation) in people after stroke. We
developed our protocol on the hypothesis that large amounts of
sit-to-stand repetitions are needed to improve sit-to-stand ability;
however, we may have provided more training than is required. A
further trial comparing different amounts of sit-to-stand repetitions
is needed to further explore this issue.

While our trial demonstrated a treatment effect of additional
sit-to-stand training, there is uncertainty as to whether the size of
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this effect is clinically worthwhile. This is due to the imprecision of
the estimate associated with the between-group difference. The
upper end of the 95% CI exceeded the pre-determined clinically
worthwhile treatment effect of 2/15 points. A larger sample size
would have provided more precision and possibly more clarity
around whether the treatment was worthwhile.

It is possible that a larger treatment effect would have been found
if there had been better control of contamination between groups.
Physiotherapists may have unintentionally incorporated some of the
experimental strategies to improve sit-to-stand ability with
participants in the control group. This potential contamination may
have increased the amount of training provided to control
participants, thereby decreasing the difference between the two
groups. Prior to the start of the trial, we considered treating
experimental participants in a separate area to avoid contamination.
However, this was not feasible. To minimise contamination, the same
physiotherapist provided all the interventions to participants in the
experimental group and great care was taken to keep experimental
participants naïve to the purpose of the trial. Whilst experimental
participants were clearly participating in the additional training, they
were unaware that the content was different to usual care. Similarly,
attempts were made to keep the therapists responsible for treating
the control participants naïve to the purpose of the trial. Despite the
potential contamination, a treatment effect was still demonstrated.

We administered intensive sit-to-stand training over 2 weeks. We
chose 2 weeks because people often only remain in rehabilitation for
this period and we were interested to know whether it is worth
administering intensive sit-to-stand training if it can only be provided
for such a short length of time. The results indicate that this
intervention is effective for people who only receive 2 weeks of
rehabilitation after stroke. It may be that larger amounts of sit-to-
stand training over a longer period would have produced even
greater results. The other reason we administered the treatment for 2
weeks was that we were concerned that participants would not
tolerate such an intensive intervention each day for more than 2
weeks, particularly in the early stages of stroke recovery. However,
we found that the experimental participants were able to tolerate
large amounts of sit-to-stand repetitions, suggesting that our
concerns were unfounded.

One of the challenges prior to the start of this trial was finding an
outcomemeasure that would be appropriate for people with all levels
of disability and particularly those who were very disabled. Most
outcome measures of sit-to-stand ability are susceptible to floor
effects in people who are too disabled to stand up. To overcome this
problem, we used a novel method to assess sit-to-stand ability:
clinicians’ impressions of change of participants’ ability to move from
sitting to standing from videos. Two blinded assessors were asked to
score the change in ability of participants to perform an independent
sit-to-stand movement, taking into consideration the initial disability
of the participant and the amount of change expected over a 2-week
period assuming the participant received usual care. This way, small
functional changes that are often missed by other outcome measures
could be detected. A limitation of this outcome measure is that it is
somewhat subjective and relies on the clinicians’ understanding of
likely change in ability to move from sitting to standing over a 2-week
period after taking into account the severity of participants’
disabilities. We used two assessors and averaged their scores to
minimise the impact of extreme scores. Interestingly, the results of
one of the secondary outcomes, which also relied on the scores from
videos, gave similar results. Taken together, the results of these two
outcomes add weight to the potential value of relying on clinicians’
impressions of change of participants’ ability to move from sitting to
standing from videos.

This trial provides insights into the possible mechanisms
underlying the observed improvements in sit-to-stand ability. That is:
repetitive practice of sitting to standing improves lower limb
strength, which in turn improves sit-to-stand ability. Interestingly,
there was no suggestion of a between-group difference for composite
strength of key muscles of the affected lower limb. In contrast, the
between-group difference for gross lower limb extension strength of
the affected lower limb suggested a treatment effect (6.2 deg, 95% CI
0.5 to 11.8). These conflicting results of voluntary muscle strength
may highlight the lack of sensitivity in the manual muscle test scale
used to assess composite strength of key muscles of the affected
lower limb. The improvements in gross lower limb extension strength
of the affected lower limb suggest that the observed improvement in
sit-to-stand ability may, in part, be explained by an improvement in
lower limb extensor strength. This finding aligns with other studies of
repetitive practice after stroke.18

We planned to use the Goal Attainment Scale to assess if
participants could achieve personal goals related to sit-to-stand ability.
However, preliminary testing of this scale indicated that patients with
cognitive or verbal impairments had great difficulty setting specific
goals. Therefore, we modified the goal-setting procedure for the Goal
Attainment Scale prior to beginning the trial. Prior to randomisation, a
blinded assessor set one goal related to sit-to-stand ability, which was
based onhis/her predictions of expected gains inparticipants’ ability to
move from sitting to standing over the 2-week intervention period.
Similar to the primary outcome measure, the assessor who set the
initial goal took intoaccount the severityof theparticipants’disabilities
and expected ability of participants to tolerate therapy. The results for
the Goal Attainment Scale did not suggest a treatment effect; however,
these findings may point to problems with the way the Goal
Attainment Scale was used in this trial.

Some clinicians may view the inclusion of participants with varying
levels of cognition, aphasia, and lower limb strength as a limitation. If
those who are weaker and more disabled benefit more than those who
are stronger and less disabled, then the inclusion of people who were
less disabled may have reduced the treatment effect. However, we see
this as a strength and not a limitation in our trial. Participation was
not limited to a more disabled group of people because we were
interested in generalising the results to typical patients admitted for
rehabilitation after stroke. However, only participants who were
unable to stand up independently were included in the trial.

The results of this trial are important because up until now there
has been uncertainty regarding the effectiveness of additional
repetitive sit-to-stand training in people who are unable to stand up
independently after stroke. Since standing up independently is
essential for reducing disability and burden of care, attaining
independence in sit-to-stand ability is a high priority. However, there
can be many tasks to train after stroke, and it can be difficult for
clinicians to prioritise which tasks to train first. One possible
implication of our results is that 2 weeks of intensive repetitive sit-to-
stand training could be initially prioritised for people with difficulty
standing up, allowing more time after this period to focus on other
tasks requiring independent sit-to-stand ability, such as walking.

In summary, this trial provides evidence that as little as 2 weeks of
intensive sit-to-stand training in addition to usual care improves
sit-to-stand ability in people who are unable to stand up
independently after stroke. This trial also demonstrates that large
amounts of sit-to-stand training is well tolerated in the early stages of
stroke recovery. Future larger trials should clarify the effects of longer
training periods or different amounts of sit-to-stand repetitions, and
determine if the observed effects are clinically worthwhile.
What was already known on this topic: After stroke, many
people have difficulty standing up independently. Repetitive
training improves functional tasks, but existing trials of repetitive
sit-to-stand training have important limitations.
What this study adds: Two weeks of intensive sit-to-stand
training in addition to usual care improves sit-to-stand ability in
people who are unable to stand up independently after stroke.
However, it is not clear whether the size of the treatment effect
is clinically worthwhile. Large amounts of sit-to-stand training are
well tolerated in the early stages of stroke recovery.

eAddenda: Table 4 can be found online at: https://doi.org/10.1016/
j.jphys.2019.05.007.
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Chapter 6 Discussion 

This chapter is divided into the following sections:  

• The primary objectives and key findings of this research program.  

• An overview of each study conducted in this research program including results, 

strengths, limitations and implications for future research.   

This chapter will not include a detailed discussion of the results of this research program. Each 

publication contained in chapters 3 to 5 of this thesis contains separate discussion sections 

where study results are discussed in detail and compared to other research.   

Primary objectives of the research program 

The primary objectives of the research program were:  

1. To determine if interventions involving repetitive practice improve strength after stroke, 

and if any improvements in strength are accompanied by improvements in activity.  

2. To determine if four weeks of FES cycling in addition to usual care improves mobility and 

strength in people with a sub-acute acquired brain injury caused by stroke or trauma. 

3. To determine if intensive sit-to-stand training in addition to usual care improves sit-to-stand 

ability and gross lower limb extension strength in people who are very weak and immobile 

after stroke.  

Key findings of the research program 

There were three key findings of the research program: 

1. Interventions involving repetitive practice improve strength after stroke, and these 

improvements are accompanied by improvements in activity. 
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2. Functional electrical stimulation cycling does not improve mobility in people with 

acquired brain injury and its effects on strength are unclear.  

3. Two weeks of intensive sit-to-stand training in addition to usual care improves sit-to-

stand in people who are unable to stand up independently after stroke. 
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Overview of the research program 

Study one: a systematic review 

The aim of this systematic review was to determine if interventions involving repetitive practice 

improve strength after stroke, and if any improvements in strength are accompanied by 

improvements in activity. 

Study one results 

The results of the primary analysis on strength and the secondary analyses on upper and lower 

limb activity are presented below: 

• Forty-six studies with a total of 1928 participants investigated the effects of repetitive

practice on strength after stroke. The overall SMD of repetitive practice on strength

when the upper and lower limb studies were combined was 0.25 SD (95% CI 0.16 to

0.34, I2 = 44%) in favour of repetitive practice (see Figure 3 in the publication for the

detailed forest plot).

• Twenty-four studies with a total of 912 participants investigated the effects of repetitive

practice on upper limb activity after stroke. The SMD was 0.15 SD (95% CI 0.02 to

0.29, I2 = 50%) in favour of repetitive practice on upper limb activity (see Figure 4 in

the publication for the detailed forest plot).

• Twenty studies with a total of 952 participants investigated the effects of repetitive

practice on lower limb activity after stroke. The SMD was 0.25 SD (95% CI 0.12 to

0.38, I2 = 36%) in favour of repetitive practice on lower limb activity (see Figure 5 in

the publication for the detailed forest plot).

Strengths of study one 

The following are strengths of study one: 



Page 86 of 118 
 
 

• Study one was a large systematic review of 52 studies with meta-analysis. Systematic 

reviews are considered the highest level of research evidence.  

• We followed the Cochrane methodology for conducting systematic reviews. Special 

attention was given to assessing the risk of bias in the included studies.  

• The systematic review protocol was prospectively registered with PROSPERO. 

• A thorough search strategy was developed and several databases were searched. 

• The manuscript was peer-reviewed and published in the highest-ranked physiotherapy 

journal.  

• SMD were back-converted to provide results in clinically relevant measures, such as 

Newton metres or percentage of improvement from baseline strength. 

• This systematic review is the only review to specifically investigate the effect of 

repetitive practice on strength after stroke. All other reviews combined studies that 

investigated other forms of strengthening interventions with studies investigating the 

effects of repetitive practice.  

• This systematic review is the only review to provide individual estimates of 

improvements in strength for 12 different types of interventions involving repetitive 

practice. 

Limitations of study one  

The following are limitations of study one: 

• A minimal worthwhile treatment effect was not defined a priori making it difficult to 

determine if a statistically significant result was clinically worthwhile. 

• A SMD was used instead of MD making it difficult for clinicians to interpret the results. 

• Post data were used instead of change data (since post data were most commonly 

reported in studies). Change data may have improved precision around the point 
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estimate allowing for better conclusions to be made regarding the effectiveness of 

repetitive practice to improve strength. 

• There were insufficient data from the included studies to perform subgroup analyses on 

dosage (repetitions of active practice) and initial strength	(weak i.e. £ 3/5 MRC versus 

strong i.e. ³ 4/5 MRC). Therefore, an arbitrary amount of time was used for the dosage 

comparison (£ 24 hours versus > 24 hours of repetitive practice) and scheduled therapy 

time was primarily used over actual therapy time, since these data were reported more 

often. The subgroup analysis on initial strength could not be performed.  

Implications for future research 

This systematic review highlighted significant gaps and limitations in the research evidence for 

interventions involving repetitive practice. The following points highlight the implications for 

future research: 

• Clinical trialists should make every effort to minimise bias in randomised controlled 

trials and should prospectively register trials on a clinical trial registry. 

• Many of the included studies in the systematic review had ‘unclear’ methods of 

minimising bias due to poor reporting. Randomised controlled trials need to be reported 

according to the CONSORT guidelines.  

• All outcome data (i.e. post, change, and participant-level data) should be reported in 

clinical trials to facilitate more precise analyses and thus better conclusions on clinical 

effectiveness. 

• Future clinical trials of repetitive practice should report dosage as repetitions of active 

practice rather than scheduled time or actual time in therapy. Data on repetitions of 

active practice are more accurate for understanding the effects of individual 

interventions on strength and activity after stroke. 
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• Further large clinical trials are needed to understand the impact of initial strength or 

severity of stroke on outcomes. These data will inform clinical practice and may change 

approaches to prescription of repetitive practice, and even rehabilitation programs.   

Study two: a randomised controlled trial 

The aim of this randomised controlled trial was to determine if four weeks of active FES cycling 

in addition to usual care improves mobility and strength more than usual care alone in people 

with a sub-acute acquired brain injury caused by stroke or trauma. 

Study two results 

The results of the primary outcomes for mobility and strength of the knee extensors of the 

paretic lower limb, and secondary outcome for strength of key muscles of the paretic lower 

limb are presented below: 

• The mean between-group differences (95% CI) for mobility and strength of the knee 

extensors of the paretic lower limb were -0.3/21 points (-3.2 to 2.7) and 7.5Nm (-5.1 to 

20.2), respectively, where positive values favour the experimental group. 

• The only secondary outcome that suggested a possible treatment effect was strength of 

key muscles of the paretic lower limb with a mean between-group difference (95% CI) 

of 3.0/20 points (1.3 to 4.8). 

Strengths of study two 

The following are strengths of study two: 

• Study two was a high quality randomised controlled trial with careful attention given to 

minimising bias (8/10 points on the PEDro scale). 

• The randomised controlled trial protocol was prospectively registered on Australian 

New Zealand Clinical Trials Registry. 
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• The manuscript was peer-reviewed and published in the highest-ranked physiotherapy 

journal.  

• There was good adherence to the study protocol and participants received a median 

(IQR) of 25 minutes (24 to 25) of FES cycling per session. 

• The study had broad inclusion criteria. Thus, the results can be generalised to typical 

patients admitted to sub-acute rehabilitation with acquired brain injury. 

• The results clearly demonstrated that FES cycling does not improve mobility in people 

with acquired brain injury. These results are conclusive and cannot be explained by an 

insufficient sample size. That is, the upper bound of the 95% CI associated with the 

mean between-group difference failed to cross the minimally worthwhile treatment 

effect of 3 points. 

Limitations of study two  

The following are limitations of study two: 

• The sample size may have been insufficient to determine the effects of FES cycling on 

strength of the knee extensors of the paretic lower limb. This was due to the wide 95% 

CI associated with the mean between-group difference spanning the minimally 

worthwhile treatment effect for this outcome.  

• Participants in the study had a wide range of impairments (i.e. aphasia, poor cognition, 

varied levels of strength) which may have prevented them from fully cooperating with 

the intervention. Functional Electrical Stimulation is typically used on muscles that 

cannot generate sufficient force to move limbs against gravity. There may be 

differences in the way people with very weak muscles respond to FES cycling versus 

people with stronger muscles.  
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Implications for future research 

This randomised controlled trial highlighted gaps and limitations in the research evidence for 

FES cycling in people with acquired brain injury. The following points highlight the 

implications for future research: 

• Future larger clinical trials could clarify the effects of FES cycling on strength, although 

the clinical significance may be limited without accompanying effects on mobility.  

• Future clinical trials could limit recruitment to participants who are very weak (i.e. £ 

2/5 MRC) to clarify the effects of FES cycling on people who cannot easily participate 

in interventions that require higher levels of strength (i.e. whole task practice of 

standing up), however there is a large body of evidence indicating that motor training 

needs to be specific to the task being trained. Therefore, again, any improvements in 

strength may have limited carry-over to activities other than cycling. Still, there are too 

few studies of FES cycling in people who are very weak to conclusively rule out a 

treatment effect in this subgroup of people after acquired brain injury. 

Study three: a randomised controlled trial 

The aim of this randomised controlled trial was to determine if intensive sit-to-stand training 

in addition to usual care improves sit-to-stand in people who are unable to stand up 

independently after stroke.  

Study three results 

The results of the primary outcome for clinicians’ impression of sit-to-stand change and 

secondary outcomes for sit-to-stand ability, composite strength of the key muscles of the paretic 

lower limb, sit-to-stand ability, composite strength of the key muscles of the paretic lower limb, 
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gross lower limb extension strength, the Goal Attainment Scale and ranking of change in ability 

to move from sitting to standing are presented below: 

• The mean between-group difference (95% CI) for clinicians’ impression of sit-to-stand 

change over two weeks was 1.6/15 points (0.0 to 3.1). The upper end of the 95% CI 

associated with the mean between-group difference for this outcome exceeded the 

minimally worthwhile treatment effect of 2 points, indicating that the treatment was 

inconclusive.  

• There were no statistically significant between-group differences for sit-to-stand ability, 

composite strength of the key muscles of the paretic lower limb, or the Goal Attainment 

Scale. In contrast, there was a statistically significant between-group difference for 

gross lower limb extension strength of the paretic lower limb (mean between-group 

difference (95% CI), 6.2 degrees, 0.5 to 11.9). There was also a statistically significant 

between-group difference for ranking of change in ability to move from sitting to 

standing (p = value 0.023), supporting the result of the primary outcome measure. 

Strengths of study three 

The following are strengths of study three: 

• Study three was a high quality randomised controlled trial with careful attention given 

to minimising bias (8/10 points on the PEDro scale). 

• The randomised controlled trial protocol was prospectively registered on Australian 

New Zealand Clinical Trials Registry. 

• The manuscript was peer-reviewed and published in the highest-ranked physiotherapy 

journal.  

• There was good adherence to the study protocol and participants in our experimental 

group performed over three times more sit-to-stand repetitions than participants in our 
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control group with a median (IQR) of 1252 repetitions (763 to 1773) versus 365 

repetitions (164 to 514), respectively. 

• The study had broad inclusion criteria. Thus, the results can be generalised to typical 

patients admitted to sub-acute rehabilitation units after stroke. 

• The results clearly demonstrated that an intensive package of sit-to-stand training 

improves sit-to-stand more than usual care in people who are unable to stand up 

independently after stroke.  

• Our results provide the first evidence from a trial with minimal bias that repetitive sit-

to-stand training after stroke maybe worthwhile. Previous trials investigating the effects 

of repetitive sit-to-stand training have included participants who could already stand up 

independently or had methodological issues that affected the validity of the results. 

Limitations of study three  

The following are limitations of study three: 

• While we demonstrated that the treatment was statistically significant, the point 

estimate was imprecise with the upper end of the 95% CI associated with the mean 

between-group difference exceeding the minimally worthwhile treatment effect of 2 

points, suggesting some uncertainty as to whether the treatment effect was clinically 

worthwhile. A larger sample size would have provided more precision and possibly 

more clarity around whether the treatment was worthwhile. 

• Participants in the study had a wide range of impairments (i.e. aphasia, poor cognition, 

varied levels of strength) which may have influenced participation with the intervention.  

• There was possible contamination between study groups. Physiotherapists may have 

unintentionally incorporated some of the experimental strategies to improve sit-to-stand 

into the treatment of control participants. This potential contamination may have 
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increased the amount of training provided to control participants; thereby decreasing 

the difference between the two groups.  

Implications for future research 

This randomised controlled trial highlighted gaps and limitations in the research evidence for 

intensive sit-to-stand training for people after stroke. The following points highlight the 

implications for future research: 

• Larger clinical trials would provide more precision and possibly more clarity around

whether intensive sit-to-stand training is clinically worthwhile.

• There is still uncertainty as to the minimum amount of repetitions of sit-to-stand training

required to improve sit-to-stand in people who cannot stand up independently after

stroke. Further clinical trials are needed to clarify the effects of different amounts of sit-

to-stand training on people’s ability to stand up.

• Future clinical trials should limit their recruitment to people who have difficulties

standing up independently, thus providing specific data on this subgroup of people after

stroke.
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Chapter 7 Conclusion  

Stroke is one of the leading causes of death and disability. Muscle weakness after stroke can 

lead to activity limitations and participation restrictions. This thesis contains a discussion of the 

causes of muscle weakness after stroke, highlighting implications on activity and participation 

for people who experience weakness. This thesis also contains a literature review of some 

common interventions used in stroke rehabilitation to improve strength and activity, 

highlighting the strengths and limitations of current evidence. The studies contained in this 

research program have answered some important questions. Namely: 

1. Do interventions involving repetitive practice improve strength after stroke, and are any 

improvements in strength accompanied by improvements in activity?  

2. Does four weeks of FES cycling in addition to usual care improve mobility and strength in 

people with a sub-acute acquired brain injury caused by stroke or trauma?  

3. Does intensive sit-to-stand training in addition to usual care improve sit-to-stand ability and 

gross lower limb extension strength in people who are unable to stand up independently 

after stroke?  

These research questions are important to people who experience weakness after stroke because 

these people often spend weeks, months and years relearning basic tasks such as standing up 

and walking. Similarly, these research questions are important to therapists and healthcare 

providers who invest time, effort and resources into stroke rehabilitation programs. These 

healthcare providers need to know which interventions are the most effective to improve 

strength and activity after stroke, thus enabling more effective and efficient use of resources to 

assist people in rehabilitation programs. 

The clinical implications of study one are that evidence is now available to therapists and 

healthcare providers that interventions involving repetitive practice improve strength after 
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stroke, and that these improvements in strength are accompanied by improvements in activity. 

Study one also provided estimates for improvement in strength for 12 commonly used 

interventions after stroke. These estimates inform therapists and healthcare providers which 

interventions are more likely to improve strength and suggest that repetitive practice should be 

prioritised as an intervention that can improve both strength and activity in people after stroke.  

The clinical implications of study two are that FES cycling in addition to usual care may 

provide more opportunities to improve lower limb strength for people who are very weak and 

immobile after acquired brain injury caused by stroke or trauma, but there are no accompanied 

improvements in mobility. Therefore, FES cycling should not be prioritised in stroke 

rehabilitation programs as an intervention to improve mobility. 

The clinical implications of study three are that for people with difficulty standing up after 

stroke, two weeks of intensive repetitive sit-to-stand training in addition to usual care could be 

initially prioritised, allowing more time after this period to focus on other tasks requiring 

independent sit-to-stand ability, such as walking.  

Implications for future research 

The main implications for future research from this thesis are:  

• Further randomised controlled trials with minimal bias are needed. For example, 

clinical trials need to be prospectively registered on a clinical trial registry and reported 

according to the CONSORT guidelines. 

• All outcome data (i.e. post, change, and participant-level data) should be reported in 

clinical trials to facilitate more precise analyses and thus better conclusions on clinical 

effectiveness. 

• Future clinical trials of repetitive practice should report dosage as repetitions of active 

practice rather than scheduled time or time spent in therapy.  
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• Further clinical trials are needed to clarify the effects of different amounts of repetitive 

practice on activity limitations and participation restrictions. 

• Further large clinical trials are needed to provide more precision around the estimates 

of treatment effect, thus providing more clarity around whether various strengthening 

interventions are clinically worthwhile. 

• Future clinical trials could limit recruitment to different subgroups of people after stroke 

(i.e. weak versus very weak). This will clarify the effects of various strengthening 

interventions on people who cannot easily participate in interventions that require 

higher levels of strength or activity. 

• Further clinical trials are needed to clarify the long-term effects of various strengthening 

interventions. 
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Appendix A  Search strategy for study one  

 

Medline 
repetitive practice stroke strength.med.v12  
medline_24.01.2017_15:20  
1. exp Physical Therapy Modalities/ or Occupational Therapy/ or exp Rehabilitation/ or Motor 
Activity/ or exp Movement/ or exp Psychomotor Performance/ or "Recovery of Function"/ or 
"Activities of Daily Living"/ 
2. ((repetiti* or repeat*) adj5 (practi?e or skill or motor or movement or task or performance or 
train* or retrain* or learn* or relearn*)).tw. 
3. (movement* adj4 joint*).tw. 
4. (functional adj5 (task* or movement*)).tw. 
5. (task* adj3 performance).tw. 
6. ((repetiti* or repeat*) adj5 (schedule* or intervention or therap* or program* or regim* or 
protocol*)).tw. 
7. (acquisition adj4 skill*).tw. 
8. (muscle* adj5 re-educat*).tw. 
9. (exercis* or physiotherapy or physical therapy or occupational therapy or rehabilitation or 
kinesiotherapy or kinesiology or hydrotherapy or physical performance or locomotion or 
walking or voluntary movement or psychomotor activity or motor activity or motor 
performance or (activities adj3 daily living)).tw. 
10. (circuit class* or movement technique*).tw. 
11. ((function* or motor) adj3 (retraining or re-training or training or relearning or re-learning 
or learning or recovery)).tw. 
12. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 
13. exp stroke/ or brain infarction/ or brain stem infarctions/ or lateral medullary syndrome/ or 
cerebral infarction/ or infarction, anterior cerebral artery/ or infarction, middle cerebral artery/ 
or infarction, posterior cerebral artery/ or stroke, lacunar/ 
14. exp cerebrovascular accident/ or exp cerebrovascular disease/ or exp cerebrovascular 
disorders/ or basal ganglia cerebrovascular disease/ or basal ganglia hemorrhage/ or brain 
ischemia/ or brain infarction/ or brain stem infarctions/ or lateral medullary syndrome/ or 
cerebral infarction/ or infarction, anterior cerebral artery/ or infarction, middle cerebral artery/ 
or infarction, posterior cerebral artery/ or hypoxia-ischemia, brain/ or carotid artery diseases/ 
or carotid artery thrombosis/ or arteriovenous malformations/ or intracranial arteriovenous 
malformations/ or basal ganglia cerebrovascular disease/ or basal ganglia hemorrhage/ or 
putaminal hemorrhage/ 
15. (disease* adj5 carotid arter*).tw. 
16. (stroke* or poststroke or post-stroke or apoplex* or cerebral vasc* or cerebralvasc* or cva 
or SAH).tw. 
17. ((brain* or cerebr* or cerebell* or vertebrobasilar artery or intracerebral or intracran* or 
intra-cranial or basal gangli* or hemisphere* or subarachnoid or arteriovenous or arterio-
venous) adj5 (h?emorrhag* or h?ematoma* or bleed* or isch?emi* or infarct* or thrombo* or 
embol* or occlus* or hypoxi* or lesion* or aneurysm* or insufficiency or malformation* or 
accident* or arterial disease* or disorder* or disease*)).tw. 
18. Hemiplegia/ 
19. Paresis/ 
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20. (hemiplegia* or hemi-paresis or hemiparesis).tw. 
21. acquired brain injur*.tw. 
22. 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 
23. muscle strength/ or hand strength/ or pinch strength/ 
24. (motor control or strength* or motricity index or dynamom* or manual muscle test*).tw. 
25. ((muscle* adj4 (contraction* or voluntary activation or force* or power)) or maximal 
voluntary contraction*).tw. 
26. muscle contraction/ or isometric contraction/ or isotonic contraction/ 
27. 23 or 24 or 25 or 26 
28. 12 and 22 and 27 
29. Randomized Controlled Trials as Topic/ 
30. randomized controlled trial/ 
31. Random Allocation/ 
32. Double Blind Method/ 
33. Single Blind Method/ 
34. clinical trial/ 
35. clinical trial, phase i.pt. 
36. clinical trial, phase ii.pt. 
37. clinical trial, phase iii.pt. 
38. clinical trial, phase iv.pt. 
39. controlled clinical trial.pt. 
40. randomized controlled trial.pt. 
41. multicenter study.pt. 
42. clinical trial.pt. 
43. exp Clinical Trials as topic/ 
44. or/29-43 
45. (clinical adj trial$).tw. 
46. ((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw. 
47. PLACEBOS/ 
48. placebo$.tw. 
49. randomly allocated.tw. 
50. (allocated adj2 random$).tw. 
51. or/45-50 
52. 44 or 51 
53. case report.tw. 
54. letter/ 
55. historical article/ 
56. 53 or 54 or 55 
57. 52 not 56 
58. 28 and 57 
 
The Medline search was adapted for searches of all other databases. 
 
 
PEDro 
Search strategy: Advanced 
Abstract and Title: 1st search: “stroke” AND “therapy”; 2nd search: “stroke” AND “physi” 
Method: Clinical trial   
 



Page 108 of 118 
 
 

Appendix B  Details of interventions of the included studies for study one 
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Appendix C  Activity measures of the upper and lower limb for study one 
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Appendix D Relative change from baseline strength for the upper and lower limb, early and late after stroke 

for study one 
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Appendix E Sensitivity analyses exploring the effects of various methodological aspects of the included studies 

in the primary meta-analysis for strength for study one 
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Appendix F  Relative change from baseline strength for the upper limb interventions for study one  

 

 

 



Page 114 of 118 
 
 

Appendix G Relative change from baseline strength for the lower limb interventions for study one 
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Appendix H The effect of repetitive practice versus no intervention or 

sham on upper limb strength for study one 
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Appendix I  The effect of repetitive practice versus no intervention or   

sham on lower limb strength for study one 
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Appendix J  Individual participant data for study two 
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Appendix K Individual participant data for study three  
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