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Abstract

The increasing penetration of distributed energy resources (DERs) in distribution systems
may result in a number of technical problems such as over-voltage, overloading, maloperation
of protection systems and power quality issues. One approach to address the above-mentioned
issues is upgrading the distribution network, which is quite costly. The second approach
is to limit the penetration of DERs to the hosting capacity (HC), which is defined as the
maximum DER capacity that can be installed in a system without violating the operational
constraints. Understanding this concept can assist utilities to ensure the reliable operation of
the system. There have been different studies to identify the HC in a system. Nevertheless,
the uncertainties associated with the DERs and loads have not been addressed properly in
such studies. Besides, it is very difficult to quantify the findings of those studies and make
general conclusions, as they were often based on specific networks, while their methods is
time consuming in a big distribution network. Furthermore, the impact of voltage control
schemes and emerging technologies, such as electric vehicles (EVs) and battery energy
storage systems (BESSs) on the HC have not been studied, adequately. Thus, in this thesis,
we propose a suitable HC assessment framework, as well as utilize some of the conventional
and emerging resources to increase the HC.
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Chapter 1

Introduction

1.1 Motivation

Due to environmental concerns, economic constraints of new transmission and distribu-
tion lines, fuel cost uncertainties and liberalization of electricity markets, deployment and
utilization of distributed energy resources (DERs) have been increasing in recent years.
The increasing penetration of DERs at distribution level does not come without technical
challenges. In fact, DER integration into distribution networks may cause a number of
technical issues such as over-voltage, overloading [2], maloperation of protection systems
and power quality issues [3, 4], among which the steady state over-voltage is considered as
the most important one [5]. There are two approaches to address the above-mentioned issues;
i) upgrading the distribution network to which DERs are connected [6],[7], which is quite
costly. Additionally, this creates another question that is who should pay for network aug-
mentation [8]. ii) the hosting capacity (HC) concept, which is defined as the maximum DER
capacity that can be connected to a system without any violation in operational constraints [9].
Understanding this concept can assist utilities to make decisions regarding interconnection
requests to ensure the reliable operation of the system.

Traditionally, distribution systems’ planners had to deal with fewer interconnection
requests and had the ability to analyze each one of them as they came in. However, the
increasing penetration of DERs can make the traditional method impractical due to the
limited personnel, extensive required input data and the fact that the small DERs have
a negligible effect on some systems (this may be the case for the first few small DER
applicants, but the cumulative capacity of them at some point affects the system). To address
this issue, conservative simplified methodologies and practical rules of thumbs are often used
to assess/control the interconnection of DERs to the main grid. Every power system has its
own configuration and standards. Currently, one of the most widely accepted criterion by
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distribution system operators (DSOs) in the US for assessing the HC of a feeder is taking
a percentage of the peak load of the feeder [10]. However, the Electric Power Research
Institute (EPRI) studies have shown that there is a very low correlation between the peak
load and the HC of a feeder [11]. EPRI studies revealed that the HC of a feeder varies
from less than 10 % of its peak load in some cases to more than 100 % in others [12]. In
Australia, the assessment process of photovolatic (PV) installation varies from one DSO
to another. Some DSOs allow PV integration only up to a certain limit [13], [14], while
others use the transformer capacity as the determining factor [15]. For example, Ausgrid, a
DSO in the state of New South Wales (NSW), which is experiencing a high PV penetration,
examines all PV installations to determine their contribution to voltage rise and check if the
network augmentation is required [16]. Ergon Energy, another DSO in Australia, undertakes
a complete assessment if the size of PV is greater than 3.5 kW [17, 14]. Setting a hard limit
on the total capacity that can be installed in the system or not assessing PV systems under
a certain size can either result in an underutilization of the HC or in over-voltage problem.
Therefore, industry needs a more accurate HC method that has the ability to distinguish
among the aspects of feeder characteristics, as well as technology, size and location of DERs.

Further, as it has been mentioned, over-voltage is considered as one of the main re-
striction for higher integration of DERs [18]. This implies that DSOs can increase HC by
addressing such an issue. Besides classical grid augmentation measures, DER-based local
control actions, smart control of on-load tap changer (OLTC), and exploiting the potentials
of battery energy storage systems (BESSs), which are also referred to as active distribution
network management (ANM) schemes, can be used to alleviate the over-voltage problem [7].
Although all these methods can be used for resolving the issue, their effectiveness in in-
creasing the HC should be assessed and quantified. Thus, the underlying question is how
distribution systems should accommodate more DERs without unacceptable adverse impacts
on prosumers and network performance, and without unacceptable increases in costs. The
need to answer this question is the second motive for the work described in this thesis.

In the following, we will review literature related to HC assessment of distribution
systems. Furthermore, we will review studies related to the existing methods for increasing
the HC using potentials of DERs and BESSs.

1.2 Literature Review

The bound on the DER penetration level is set by the technical issues incurred by DERs. In
order to identify the HC, we need to know those issues and properly model them in our HC
assessment.
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Fig. 1.1 HC criteria classification.

1.2.1 Technical Criteria That Could Limit HC

Figure 1.1 demonstrates a comprehensive list of the technical criteria, based on which, DSOs
have established evaluation methodologies for DERs integration. These technical criteria are
briefly described as follows [19]:

• Thermal rating criteria: every distribution infrastructure element such as lines,
cables and transformers is characterized by a current-carrying capacity, which is
referred to as thermal rating. If this limit is exceeded for a sufficient time, the element
physical and/or electrical characteristics may be permanently damaged. Connecting
DERs to a distribution network would change the current flows in the network. High
DER penetration, especially in case of maximum generation and minimum load, could
cause the current level to be higher than the thermal ratings in some parts of the system.
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In this case, the developer may opt to reinforce or upgrade some elements. However,
if the cost of this reinforcement is very high, an alternative connection arrangement,
possibly to a higher voltage level might be worth considering.

• Voltage criteria

– Over-voltage: this criterion is the primary concern of DSOs. Traditionally, radial
distribution systems have been operated based on this assumption that there is
a voltage drop across the distribution transformer and the feeder’s conductors.
However, DERs can counter this voltage drop and if the DER penetration is high,
under high generation and low demand conditions, customers may experience
voltages higher than normal service voltage.

– Voltage unbalance: this is due to unbalance consumption and generation in
distribution systems. In general, unbalance distribution of the single phase DERs
among the grids’ phases leads to an unbalance flow of power, hence unbalanced
voltage.

– Voltage deviation (rapid voltage change): this may happen due to the fast vari-
ation in generation output and tripping or switching of DERs. The output power
of PV systems usually varies more rapidly than the typical voltage regulation
controls utilized in the system. Hence, the voltage controllers are not able to
properly regulate the voltage of the system. Moreover, the rapid change of the
output of rooftop PV systems can increase the operation of equipment such as
tap changer and switching capacitors.

– Voltage regulations: distribution networks’ voltage regulation is usually achieved
by on-load tap changers controlled by automatic voltage control schemes. DERs
could interfere in voltage regulation process and causes technical problems as
follows [20]:

* Excessive operations: uncertainty in the output of renewable energy re-
sources (RESs) can disrupt the normal operation of voltage regulating de-
vices and contribute to excessive tap changes of on load tap changer or
switching of capacitors.

* Low voltage: voltage regulators are often equipped with line drop compen-
sation to control the voltage at a downstream point by raising the regulator
output voltage to compensate for line voltage drop between the regulator and
the load center. A DER may interfere with proper operation of regulator if
the DER is located immediately downstream of a voltage regulator and its
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generation is a significant fraction of the heavy load seen by the regulator. In
other words, the feeder’s voltage still drop from the DER to the load center,
but the regulator output voltage is not increased due to the low loading seen
by the regulator. Consequently, low voltage may occur at the load center.

• Protection criteria

– Fault level: fault level at a point in a distribution system is a measure of maximum
fault current expected at that point. Fault currents need to be quickly detected and
interrupted due to their extensive damage to cables, overhead lines, transformers
and other equipment. The circuit breakers’ rating limits the fault level in the
feeder. This limit is referred to as the design fault level [21]. Design fault levels
in distribution networks can sometimes be a limiting factor to the DERs. New
DER connection can increase the fault level. The DER fault level contribution
depends on several factors such as the DER type, the distance of the DER from
the fault location, the configuration of the network between the DER and the fault,
and method of coupling the DER to the network. It should be mentioned that
DER with directly connected electrical generators would contribute significantly
higher fault current than DER connected via power electronics interfaces such as
PVs. Therefore, fault level is much more important for directly connected DERs
in comparison to the DERs connected via power electronics interfaces.

– Islanding: this problem happens when some DERs continue to supply the load
in a part of the network that is disconnected from the upstream grid. Using safety
measures called anti-islanding such as IEEE 1547-2008 or making sure that the
DER does not exceed the local load are common ways to prevent this problem.

– Back-feed (reverse power flows): traditional distribution networks have been
designed based on this assumption that power flows from a higher voltage network
to a lower voltage network. However, increasing DER penetration can change
the power direction when the total generation of DERs exceeds the network
load. There are two main factors that limit the back-feed in a network. The
first one is the reverse power rating of some elements, such as transformers, and
the second one is the network’s automatic control systems’ ability to correctly
respond under reverse power flow condition. For instance, reverse power flow
in transformers can present a problem with the operation of the transformer’s
automatically controlled tap changer. Readjustment of control setting of control
systems such as voltage regulators and replacement of circuit breaker protection
relays can resolve the back-feed limit on the HC.
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– Breaker/fuse coordination: Fuses, re-closers and over-current relays are the
most common used protection devices in distribution systems. DER intercon-
nection can change the fault current that protection devices sense. Fuse mis-
coordination issues usually happen due to an increase in fuse fault current relative
to the breaker or recloser. In the cases that the fault current is the same for both
fuse and breaker/recloser, mis-coordination happens if the fault current is higher
than the maximum coordination current.

– Breaker reduction of reach: voltage support from DERs and their influence on
the system Thevenin equivalent leads to a decrease in the fault current at the start
of the feeder. The higher the distributed generation capacity is, the lower the
current would be at the start of the feeder. When the fault current passed though
the breaker installed at the start of the feeder drops below the over-current setting,
breaker may fail to operate.

– Sympathetic tripping: this can happen due to circulating the zero-sequence
current from DERs to a fault above the feeder circuit breaker. The increase in
this current can lead to the breaker trip when it exceeds the setting of the ground
current relay.

• Power quality criteria: a high DER penetration may raise power quality issues
such as voltage fluctuations and harmonics. In case of rooftop PV systems, power
quality issues could be caused by voltage and power fluctuations due to irradiance
uncertainty. The voltage fluctuation can cause excessive feeder’s voltage regulator
operation. Harmonic emissions may be another issue for the DERs connected via
power electronic converters to the grid. Although advanced pulse width modulation
techniques and harmonic filters are usually used in converters, voltage distortion limits
can be exceeded in high penetration levels. It should be mentioned that the evaluation
of harmonic problems is somewhat complicated and is not in the routine investigations
performed by the DSOs.

The importance and frequency of occurrence of the aforementioned issues are not the
same. Further, some of the reviewed issues are very specific and highly depends on the
network structure or DER technology. However, some technical issues such as over-voltage
and overloading are more general and their frequency of occurrence is higher than other
constraints. That is why most of HC studies have focused on over-voltage and overloading
constraints.

The value of the HC depends on the feeder physical characteristics, DERs’ size, location
and technology. Therefore, feeder’s HC determination is not a straightforward process and
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Fig. 1.2 Different regions of the HC in a system.

HC is not a single value for any given feeder. Generally, three regions as shown in Fig. 1.2,
can be defined for the HC of a feeder. Region (A) includes all the penetration levels that do
not cause any constraint violation, regardless of DERs’ location. Region (B) demonstrates the
penetration levels that are acceptable in specific sites along the feeder. Region (C) includes
all DER deployments that are not acceptable, regardless of DERs’ location [11]. The border
between (A) and (B) is defined as the minimum HC and the border between (B) and (C)
is defined as the maximum HC. Generally, all the existing HC estimation methods can be
divided int two categories; i) min-HC category including methods that estimate the minimum
HC ii) region-B category including the methods that converge to the maximum HC or a
value in region (B). DSOs are usually interested in the minimum HC as it is independent
of DERs’ location. However, estimation of minimum HC is often very difficult as all the
uncertainties associated with DERs and loads should be modelled. We will further discuss
this in Section 1.2.2.

1.2.2 Hosting Capacity Estimation Methods

In terms of HC assessment, studies in [22–26, 14, 27–36, 18, 37–40] can be categorized as
region-B approach. The HC in region-B methods is usually modelled as the objective of
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an optimization problem [25, 27, 28, 30–32, 35, 36, 18, 37–40]. However, there are some
other approaches such as analytical [14, 22, 24, 26, 29, 33], and Monte Carlo-based [23, 34]
methods that are belong to region-B category. In analytical methods, an equation is driven
based on technical constraints such as over-voltage [22, 29], overloading [24, 26] and
harmonic distortion [33] to estimate the maximum DER that could be connected to a certain
location of the system. However, the Monte Carlo-based methods in region-B category are
often based on traditional power flow calculation. In this approach, numerous power flow
calculation is performed to identify the HC of a certain location [23] or an area [34] of a
distribution network. Further, this approach could be revised to identify the minimum HC if
the number and location of DERs are considered as a variable in the Monte Carlo simulator.

Some of the factors that has to be considered for the HC assessment include network
characteristics, load variation and DER uncertainties. The region-B methods, however,
neglect at least one of the aforementioned factors. For instance, analytical methods such
as [14, 22, 24, 26, 29, 33], are deterministic methods. This indicates that the uncertainties
associated with the loads and DERs have been neglected in those methods. The study in [22]
presented a HC model based on over-voltage constraint. That study, nevertheless, represents
the network by its thevenin equivalent circuit. Besides, it can only estimate the HC for
a certain location in the system. In a similar approach, in [24], an analytical equation
is proposed based on thermal capacity constraint to estimate the HC. Similarly, thevenin
equivalent is used to model the network. Furthermore, all loads and DERs are aggregated
at one location. Although the approaches in [22] and [24] can provide an estimation of
lacational HC, the network model and considered assumptions are too simplistic. A real
distribution system can have a complex structure and some voltage regulating devices such as
OLTC. Therefore, the work in [29] derived an equation for the HC based on a linear model of
the network. Though that method used a more accurate model of network than [22] and [24],
it still aggregated all DERs at a location.

The optimization-based methods in region-B category such as [25, 27, 28, 30–32, 35, 36,
18, 37–40], are generally more accurate than analytical methods. If the location of DERs are
modelled as a variable in the optimization problem [31], the HC model would converge to
the maximum HC, which is not the interest of this thesis. Besides, modelling the location
of DERs in the optimization problem would make the model difficult to solve. Therefore,
most of the optimization-based methods in region-B category such as [25, 27, 28, 30, 32,
35, 36, 18, 37, 38], limit the number of potential locations for DERs. One of the advantages
of the optimization-based methods is that the network is modelled accurately. Though an
accurate network model improves the accuracy of the solution, it makes it difficult to model
the uncertainties associated with loads and output power of DERs in the HC problem. Hence,
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studies such as [25, 27, 28, 30, 32] assumed that there is no change in the loads and output
power of DERs. However, there are some studies such as [18, 37, 38], that used different
optimization techniques to model the uncertainties.

Although Monte Carlo approach [23, 34] can always be used to model the uncertainties,
it has not been a popular approach in the HC methods that belong to region-B category. Two
dominant approaches that have been used to model the uncertainties in region-B category
methods are (i) the robust optimization (RO) [18, 37] and (ii) the stochastic optimiza-
tion (SO) [38, 41, 40]. In RO approach, the probability distribution functions (PDFs) of
uncertainties are not required, and the only necessary data are the boundaries of the uncertain
variables. Furthermore, the decisions are made based on the worst-case scenarios in the pre-
defined uncertainty intervals, which result in a conservative solution. In SO-based approach,
the uncertainties are considered as random variables with given PDFs. Nevertheless, as
obtaining the exact PDFs of uncertain variables is impossible, the robustness of the obtained
solution cannot be guaranteed. Both RO and SO approaches are based on historical data.
In practice, historical data can present more information than the boundaries of uncertain
variables. Nevertheless, historical data can only be used to obtain an empirical PDF, not
the exact PDF for the uncertain variable. To cope with such cases, distributionally robust
optimization (DRO) has been recently developed. In DRO, it is assumed that the exact
PDFs of uncertain variables are not available. However, it is supposed that the PDFs of
uncertainties are in a confidence set. The confidence set can be constructed using the distri-
butional information of uncertain variables, which is derived from the historical data. For
instance, the confidence set can be consist of all the PDFs with common mean and covariance
matrix [42]. In recent years, DRO have been applied to some power system optimization
problems including unit commitment [43], and reserve scheduling [44]. However, those
studies often consider the first- and second-order moments of historical data to build the
confidence set. Further, all those studies neglected the empirical distribution of uncertainties.
Thus, to properly model the uncertainty associated with loads and output power of DERs, we
will propose a DRO-HC model in Chapter 4.

The aim in the second category of the HC methods, i.e. min-HC, is to estimate the
minimum HC. Studies in [7, 9, 45–49] belong to this category. These methods are generally
based on Monte Carlo simulation, where a high number of DER expansion scenarios is
generated. Then, traditional power flow calculation is performed for all generated scenarios
over the study period. Next, the minimum HC is defined based on the scenarios that
may cause a voltage or thermal capacity violation. Although, general idea of studies such
as [7, 9, 45–48] is the same, the implementation details of the Monte Carlo process including
generating scenarios, analyzing scenarios over the study period and defining the minimum
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HC are different. For example, studies [7, 9, 45] assumed that the size of DERs is a fix
number. Nevertheless, studies [46, 47] used different sizes for DERs. Similarly, the study
period and time series impact analysis, which addresses the uncertainties associated with
the loads and output power of DERs, could be different. For instance, in [7, 9, 45], it is
assumed that the study period could be limited to the worst condition, i.e. maximum DER
generation and minimum load consumption. Nevertheless, study [47] randomly allocated the
daily load and DER profiles and performed the power flow calculation. The advantage of
min-HC methods is that they could easily be improved to include all DER technical criteria.
However, this approach has some drawbacks. First of all, the computation burden in this
approach could be really high as it is based on running power flow for a high number of DER
expansion scenarios. Besides, this approach can only estimate the minimum HC and there
is no guarantee in the estimated value. Increasing the number of generated scenarios or the
iteration of Monte Carlo simulation can increase the accuracy of the estimated minimum
HC. However, this would entail a higher computation burden. A comprehensive HC method
could be a combination of optimization and Monte Carlo approaches. By doing so, we can
exploit the advantages of both approaches. such an approach will be presented in Chapter 3
in details.

Studies [22–26, 14, 27–36, 18, 37–40, 7, 9, 45, 46, 48, 49] presented different methods
to identify the HC. However, none of them have modelled emerging technologies such as
EVs and BESSs. Authors in [47] attempted to estimate the maximum allowable penetration
level of EVs. However, that study did not assess the impacts of EVs on the maximum
allowable penetration level of DERs, i.e. HC. These new technologies would affect the load
profiles of the customers. Though there is not a linear relationship between the HC and
loads, assessing the HC results in the aforementioned studies suggests that there is a positive
correlation between HC and loads. There are quite a few studies on the impacts of emerging
technologies on different aspects of distribution systems including load and voltage profiles,
but their impact on the minimum HC has not been quantified. We will further discuss the HC
assessment in presence of BESS in Section 1.2.4. Another part of the literature related to
the HC are the studies that are focused on increasing the HC. Though researchers proposed
quite a few methods to increase the HC of a system, the effectiveness of such methods has
not been quantified. We will further discuss this in Section 1.2.3.

1.2.3 Increasing the HC

Over-voltage is considered as one of the main restriction for higher integration of DERs [18].
This implies that DSOs can increase HC by addressing such an issue. Different approaches
including classical grid augmentation measures, DER-based control schemes, and control
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of OLTC can be used to resolve the over-voltage problem [7]. Therefore, it is important for
DSOs to understand and quantify the impact of these control schemes on HC.

Several methods for alleviating the voltage rise issue in presence of DERs have been
proposed. One simple method is decreasing the substation voltage using OLTC [45]. The
effectiveness of this method highly depends on the control strategy and the location of
the OLTC’s control bus. Controlling the reactive power [50, 51], or curtailing the active
power [5, 52] of DERs by using local control actions are also utilized to address over-voltage
issues. These methods can be used for alleviating the voltage rise in distribution systems, but
their effectiveness in increasing the HC should be assessed and quantified.

Reactive Power Control

In transmission systems in which the X/R ratio is relatively high, the voltage control is
mainly accomplished by reactive power control. Since this ratio is lower in distribution
networks, reactive power control is not as effective as in transmission grids. It, however, is
still an effective solution in certain grids. Reactive power management is designed to enable
DERs to absorb reactive power and ensure that DERs’ real power injection do not cause an
over-voltage problem. The reactive power control is usually applied to the inverter controllers
by controlling either the reactive power as a function of voltage at the DER connection point
(Q(V)) or the power factor (PF) as a function of injected active power (PF(P)) [45]. In the
Q(V) method, the DER inverter absorbs reactive power when the terminal voltage is higher
than a specific value [53, 54]. In the PF(P) method, the reactive power is a function of the
generated active power, so during low DER generation hours, no reactive power is absorbed
by DERs’ inverter [45]. There are quite a few studies that proposed absorbing reactive power
to alleviate the voltage rise problem. However, we will not review those studies as the focus
of this thesis is to study the impacts of the conventional reactive power schemes described in
IEEE 1547 standard [55]. It should be mentioned that the reactive power absorption by DERs
increases the power loss and congestion of distribution lines, which are the main drawbacks
of this approach. This solution may also reduce the power factor at the substation, depending
on the reactive power absorbed by DERs.

Active Power Control

This can be performed using three main approaches: active power curtailment (APC), demand
side management (DSM), and application of BESSs. In APC approach, the output power
of DER is curtailed to decrease the injected power to the system. Due to the high R/X ratio
in distribution networks, the APC is more effective in comparison with the reactive power
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control. However, the APC technique adversely affects the DER owner revenue and may lead
to the reduced use of the DER generation capacity [7]. DSM is another approach proposed
to increase the HC of low voltage distribution grids [56]. The voltage rise problem can
also be resolved by transferring some load from peak periods to the high DER generation
periods. As DSM depends to a great extent on customers’ behavior, it cannot be considered
as a reliable solution for increasing the HC. In recent years, BESS has been proposed as a
potential solution to mitigate the over-voltage problem [57, 6, 58, 56]. To this aim, the DER
output power is limited to a certain amount by storing the excess energy. The stored energy
can be used when load consumption or the electricity price is high. Although BESSs can
increase HC if they are controlled for such an objective, residential BESSs are controlled
for the sole benefit of owners. Hence, there is no guarantee that BESSs would charge when
DSOs need them the most. We will further discuss the APC schemes that are considered in
this thesis in Chapter 5. BESSs will also be discussed in more detail in Section 1.2.4.

Voltage Control Using OLTC

OLTC is one of the most practical tools for controlling the voltage along a feeder. When
the voltage in a feeder is low, OLTC can bring it up by increasing the substation voltage.
Similarly, if the voltage is high along the feeder, OLTC can bring it down by decreasing the
substation voltage. Studies in [59–62] aimed to increase HC by controlling OLTC. The study
in [60] presented a framework to assess the performance of different OLTC-based control
schemes based on BS EN501601 standard. That study proposed three control strategies for
OLTC and assessed their effectiveness in increasing the HC. Authors in [61] used a power
flow platform to compare the performance of three strategies including controlling OLTC,
reactive power control (RPC) and hybrid control (OLTC and RPC) in increasing the HC.
Their study demonstrated that OLTC could be a more robust option than RPC. Similarly,
authors in [62] tried to increase the HC by coordinating OLTC and RPC. That study showed
that coordinating RPC and OLTC can increase the HC while decreasing the number of OLTC
switching. Although different methods have been proposed to increase the HC by controlling
OLTC, their effectiveness under different distribution system characteristics is not clear.
Further, there is still a need for a HC estimation methodology, which can considers the
voltage control schemes. Such a methodology should be used to perform a comprehensive
study on quite a few number of distribution systems to quantify the impacts of voltage control
schemes on the minimum HC. This will be discussed further in Chapter 5.

1EUROPEAN STANDARD: Voltage characteristics of electricity supplied by public distribution systems
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1.2.4 Battery Energy Storage Systems

Normally, it is assumed that BESSs are charged from DERs’ surpluses. Thus, DERs’ feed-
in power could be significantly reduced. From DSOs’ perspective, this may alleviate the
technical impacts incurring from high DER penetration. Therefore, many studies have
attempted to mitigate the technical challenges using BESSs, hence increase the HC. BESSs
in distribution systems could be divided in residential and community categories. BESSs can
increase the HC if they are controlled for such an objective. Therefore, assuming that the
residential BESSs would increase the HC is not a valid assumption as they are controlled to
benefit their owners.

Residential BESSs

The application of residential BESS in supporting distribution networks has been an active
research subject in recent years. Researchers proposed different methods to coordinate the
residential BESSs with other available resources to increase the HC by resolving over-voltage
problem [56, 63–65]. In those studies, it is supposed that the capacity and the location of
the BESSs are known and the aim is to control the BESSs. In a different attempt in [66], a
scenario-based method was presented to identify the minimum BESSs required to increase
the HC. Nevertheless, the focus in the aforementioned studies have been maximizing DSOs’
benefit at the cost of prosumers. Therefore, those methods are not practical from prosumers’
point of view.

Uncertainty associated with the location of BESSs and their scheduling could consider-
ably affect the impact of residential BESSs on the HC. Several strategies have been proposed
to charge/discharge residential BESSs [67–72]. The aim in scheduling the residential BESSs
is most often minimizing the electricity cost [67, 71, 72]. However, self consumption maxi-
mization (SCM) is also a popular scheduling scheme [70]. In SCM approach, the battery is
charged when DER generation is higher than the load consumption and discharged when
the load is higher than DER output. According to [71], SCM is the default strategy uti-
lized by battery suppliers and retailers. Most of the studies that assessed the impacts of
charging/discharging strategies of BESSs carried out their assessment from an economical
perspective. However, there are some studies that focused on the technical impacts of resi-
dential BESSs [73–75]. Authors in [73] presented a techno-economical analysis of BESSs
assuming that consumers use their BESSs to maximize their self-consumption. Nonetheless,
that study overlooked the impact of BESSs on the voltage, as well as the uncertainty associ-
ated with the location of BESSs. Unlike [73], studies presented in [74, 75] proposed Monte
Carlo-based frameworks to assess the impact of residential BESS on HC. The assessment
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in study [74] showed that residential BESSs in some cases could even decrease the HC.
Similarly, the study in [75] concluded that, generally, residential BESSs increase the HC.
However, a very high penetration of BESSs, i.e. approximately 100%, could result in a
decrease in the HC. Unfortunately, the observed results in both [74, 75] are case specific
and cannot be generalized. Considering the uncertainties associated with residential BESSs
including their locations and charging/discharging schemes, it is still not clear to what extent
they can improve the HC. What is currently missing is a comprehensive approach to study
impacts of residential BESSs on the HC. Furthermore, such an approach should be applied to
distribution systems with different characteristics to better quantify the impacts of residential
BESSs on HC. This will be further discussed in Chapter 6.

Community BESSs

Studies that focused on the application of community BESSs in resolving the technical issues
associated with high penetration of DERs can be divided into two categories: i) those that
resolved the technical issues by controlling the BESSs [76, 77]; ii) and those that resolved
the technical issues by optimally allocating the BESSs [78–80, 38, 41]. In the first category,
the size and location of DERs and BESSs are provided, and the unknown variables are the
active and reactive power of the BESSs. For instance, study in [76] proposed a method to
identify the set points for managing BESSs using a voltage sensitivity analysis. In a different
approach, [77] developed a multi-timescale model predictive control strategy to optimally
dispatch a BESS in order to keep the voltage in operation range. Researchers in [81] proposed
a method to reshape the PVs injected power by controlling the BESSs to reduce the peak-
to-average ratio and curtailed energy. However, if BESSs are to be utilized for increasing
the HC of a system, their sizes and locations are unknown. Therefore, the approach of the
first category is not recommended for increasing the HC. Furthermore, the second category,
which is based on the optimal allocation of BESSs could have a better performance as the
optimal size, location and control action can all be identified, simultaneously.

Studies related to the allocation of BESSs have mainly focused on following aspects: in
[78], a methodology for allocating BESSs in a distribution network is developed to minimize
the wind energy curtailment as well as the annual supply cost of the electricity. Authors in
[82], defined a multi-objective optimization to allocate the BESS by identifying a trade-off
between the technical and economic goals by minimizing the voltage deviation, network
losses, feeder congestions and costs of supplying loads. In a similar attempt, [80] presented
a methodology to assess BESSs in congested distributed systems from both technical and
economical perspective. That study, however, did not address the uncertainty associated
with the location of BESSs. In [79], a method for optimal placement, sizing, and control
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of a community BESS to increase the HC of rooftop PVs in low voltage (LV) networks is
proposed. Authors in [38, 41], developed a new stochastic multi-stage model to maximize the
integration of DERs by determining the optimal size and location of BESSs, reactive power
sources and DERs. Likewise, authors in [83] developed a stochastic optimization-based
method for BESS allocation and operation to ensure a desired voltage stability margin in
wind-intensive distribution systems. In [84], a convex optimization approach has been used
for BESSs planning and operation in systems with high PV penetration level. In that study,
the minimum BESS required for mitigating the technical impacts of high uptake of PVs
has been estimated using OpenDSS simulation tool. Then, an optimization model has been
used to identify the location of BESSs. The study in [85] proposed a heuristic strategy
based on voltage sensitivity in combination with an optimal power flow (OPF) framework
to identify the optimal number, size, and location of BESSs that prevent over-voltage and
under-voltage in an LV distribution network. The advantage of the second category, i.e.
optimal allocation of BESSs, is that it can consider both technical and economical aspects of
the problem. Nevertheless, the problem with the methods that aimed to optimally allocate
BESSs is that they most often did not consider the uncertainty associated with the location
of DERs. This implies that those methods optimally allocated BESSs considering certain
location for DERs. To address this issue, researchers in [66] proposed a scenario-based
method to identify the minimum required BESSs that prevents over-voltage in distribution
system with high PV penetration level. That study, however, did not discuss the economic
feasibility of the required BESS. Therefore, there is still a need for a techno-economic model
to allocate community BESS in order to increase the HC. We will discuss this further in
Chapter 7.

1.3 Research Questions

Considering the uncertainties associated with the DERs and loads in HC assessment of
distribution systems is a challenging task. Although there are some HC studies addressing
uncertainties using iterative power flow, it is very difficult to quantify their findings and make
general conclusions, because most of them are based on specific networks and computation-
ally cumbersome. Furthermore, the impact of voltage control strategies, as well as emerging
technologies, such as EVs and BESSs on HC, have been overlooked. Considering these,
some of the fundamental issues that need to be addressed are as follows:

• HC depends on different constraints and uncertain factors. However, the HC model
should be simple and lead to an accurate estimation of the HC. How should the HC
problem be modelled?



16 Introduction

• There are different uncertainties associated with DERs and loads. Further, distribution
systems have different characteristics. How should these factors be modelled in the
HC problem. What effects do uncertainties and network characteristics have on HC?

• There are emerging technologies such as EVs and residential BESSs that are becoming
popular among customers. How should these technologies be modelled in the HC
problem. What effect do these emerging technologies have on the HC of a system?

• There are quite a few voltage control strategies based on controlling the active and/or
reactive power of DERs as well as tap of the transformer. However, there is no
comprehensive study regarding the effectiveness of those strategies in increasing the
HC. What voltage control strategy is the suitable option (economically and technically)
to increase the HC from DSOs’ point of view and how does it impact the prosumers?

• Community BESSs can be used to increase the HC of a system. How much community
BESS is required to increase the HC to a certain level. Is installing community BESS
an economically feasible option?

1.4 Research Contributions

The answers to the above questions lead us to the aims of this research thesis, as summarised
in the following.

In Chapter 2, we present HC as a deterministic optimization problem. We prove that
angular and conic relaxations of the HC model, that have been used to solve other power
system optimization problems is not exact, which means that non-convex HC model can not
be substituted with a convex conic program. As solving the original nonlinear HC model
especially in presence of uncertainties is difficult, we replace it with a linear HC model. Thus,
we identify the conditions under which the linearized HC model is valid. We demonstrate
that linearizing the HC model is valid if the linear approximation of the branch losses is
less than the actual quadratic term. Furthermore, we linearize the HC problem based on the
identified criteria.

In Chapter 3, we propose a probabilistic framework based on the linear HC model
presented in Chapter 2 to address the uncertainties associated with the type, size and location
of DERs. The developed framework has three modules. The first module of the framework
addresses the uncertainties associated with type, number, and location of DERs by using the
Monte Carlo simulation. A time series impact analysis is conducted in the second module to
consider the impacts of load variation and uncertainty in DERs output. Then, in the third
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module, a probabilistic estimation of the HC is defined based on the time series analysis. The
proposed methodology is also used to assess the effects of voltage deviation constraint, load
growth, network structure, and the DER type on the HC.

In Chapter 3, we use a time series impact analysis to model the uncertainties associated
with the loads and the output power of DERs. Thus, we have to solve the HC model numerous
times to estimate the HC of a network. However, in Chapter 4, we propose a distributionally
robust HC model to treat those uncertainties as optimization variables. Thus, we only need to
solve the proposed distributionally robust HC model once to estimate the HC of the network.
Then, the distributionally robust HC model is used to assess the impacts of EVs and their
charging stations of the HC.

In Chapter 5, we investigate the effects of autonomous voltage control strategies on
the photovoltaic HC (PVHC) in low voltage (LV) distribution feeders. The investigated
strategies are based on the active and reactive power control capabilities of photovoltaic (PV)
systems as well as the OLTC of transformers. We propose an optimization-based framework
to determine the PVHC considering the voltage control capabilities. To do so, we model
the voltage control strategies as equality and inequality constraints in the HC problem. The
efficacy of the proposed methodology is examined using 128 LV UK feeders as a test-bed.
The results show that active power curtailment based on local voltage measurement is still the
most effective control scheme to increase the PVHC. Further, our simulations demonstrate
that unlike the general believe, OLTC could decrease the PVHC.

In Chapter 6, we quantify the impacts of residential BESSs on the HC. To do so, we model
the scheduling of BESSs in an optimization-based HC framework. We consider a rule-based
as well as a mixed integer linear programming (MILP)-based home energy management
schemes to schedule the BESSs. To the best of author’s knowledge, all the studies focused
on the minimum HC including the Monte Carlo- and optimization-based methods could only
provide an estimation of the minimum HC. However, the proposed HC model in this chapter
would converge to the actual minimum HC. We show that the proposed method is more
accurate than all existing Monte Carlo-based HC methods. Further, our simulations show
that the effectiveness of residential BESSs in increasing the minimum PVHC (MPVHC)
depends on the penetration of BESSs in the system and the scheduling scheme of BESSs.
Further, we demonstrate that the cost minimization scheme is more effective than SCM in
increasing the MPVHC. In addition, we quantify the impacts of flat and Time-of-Use tariffs
on the MPHVC.

In Chapter 7, we propose a probabilistic method to determine the required community
BESS to increase the HC of a system to a certain level. The proposed method is based on
an optimization problem aiming to maximize the injected power while minimizing APC.
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The optimization model is used in a probabilistic framework to address the uncertainties
associated with the loads as well as the location and output power of DERs. Further, we also
carry out an economic analysis to assess the feasibility of the required community BESS.
We demonstrate that the BESS technology highly affects the economic feasibility of BESSs
for HC improvement. Further, our simulations show that none of the considered BESS
technologies is currently economically feasible for increasing the HC. However, with the
decreasing trend in the BESS price, using community storage to increase the HC becomes an
economically feasible solution.

Finally, Chapter 8 concludes this thesis and provides some directions for potential future
works.



Chapter 2

Distribution systems hosting capacity
assessment: relaxation and linearization

2.1 Introduction

As explained in Chapter 1, hosting capacity (HC) can be modelled as an optimization problem.
Different nonlinear and linear models have been used for identifying the HC [25, 27, 28, 30–
32, 35, 36, 18, 37–40]. However, the validity of those models have not mostly been assessed.
As using an improper model could yield in an inaccurate solution, it is of great importance to
develop an accurate, yet simple model for the HC assessment. Therefore, in this chapter, HC
is modelled as a nonlinear optimization problem. Generally, solving a convex optimization is
easier than non-convex problems. So, even if the model is not convex by itself, we would like
to make it convex by using some techniques such as relaxing some constraints and/or convex
approximation. We prove that the nonlinear HC model is not convex. Moreover, we show that
the conic relaxation of power flow, which has been extensively used in distribution systems’
optimization, is not exact for the HC problem. Therefore, we linearize the HC problem to
approximate it by a simple convex model. To do so, we identify the required condition under
which linear HC model is valid to approximate the original nonlinear HC problem. Finally,
we proposed a linear HC model based on the proven condition. The outcome of this chapter
is published as a book chapter1 and a conference paper2.

The remainder of this chapter is organized as follows: in Section 2.2, we develop the
mathematical model of the HC and assess its convexity. In Section 2.3, we identify the

1Smart Power Distribution Systems, Control, Communication, and Optimization. Academic Press, 2019, ch.
Distribution systems hosting capacity assessment: Relaxation and linearization [86].

2“A linear method for determining the hosting capacity of radial distribution systems,” in 2017 Australasian
Universities Power Engineering Conference (AUPEC), Nov 2017, pp. 1–6 [25].
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required condition to develop a valid linear HC model. Further, we propose a linear HC
model based on the proven condition. In Section 2.4, we examine the performance of our
proposed linear model in comparison to traditional HC linear models. Finally, Section 2.5
summarizes the chapter.

2.2 Hosting Capacity Mathematical Modeling

The aim of HC assessment is to find the maximum distributed energy resources (DERs)
capacity that can be installed in a system without violating the technical criteria. If one
can model the technical criteria mathematically, the HC assessment becomes a constraint
optimization. Power flow equations, thermal rating criteria and over-voltage constraint are
the technical criteria that can be considered within mathematical models. So, the HC could
be defined as the maximization of DERs capacity considering mathematical model of such
criteria as the constraints. In this section, the convexity of the HC will be assessed. To do so,
branch flow model, which was used for convexifying the optimal power flow (OPF) problem,
will be firstly discussed. The HC problem has the same constraints as OPF. In [87], it was
proven that conic relaxation of branch flow model is exact, which means that solving the
convex conic model gives the same solution as the original OPF problem. We prove here that
the conic relaxation of branch flow model is not exact for the HC problem. Therefore, the
only way to convexify the problem is a linear approximation, which is discussed in section
2.3.

2.2.1 Branch Flow Model

Branch flow model is first proposed by Baran and Wu in [88] and [89] for the optimal
allocation of capacitors in distribution systems. A distribution system is a graph of buses
and lines connecting these buses in a radial (tree) topology. Let N = {0, . . . ,n} denote
the set of buses and define N + := N \ {0}. Let B denote the set of all branches with
cardinality |B| := mbr and (i, j) or i −→ j a branch from bus (i) to bus ( j) in set B.
We use i ∼ j for a connection between (i) and ( j), i.e., either (i, j) ∈ B or ( j, i) ∈ B

(but not both). For every bus i ∈N , let Vi,t denote the complex voltage at time (t) and
define υi,t = |Vi,t |2. Let si,t = pi,t + iqi,t denote the net complex power injection on bus
(i), sg

i,t = pg
i,t + iqg

i,t the generation complex power on bus (i) and sd
i,t = pd

i,t + iqd
i,t the load

consumption on bus (i) at time (t). Let zi = ri + ixi denote the shunt impedance from bus (i)
to ground and yi := 1

zi
=: gi− ibi. For every branch (i, j) ∈B, let zi j = ri j + ixi j denote the

complex impedance of the line, and yi j := 1
zi j

=: gi j− ibi j the corresponding admittance. Let
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Fig. 2.1 Summary of the notations for branch flow model.

Si j,t = Pi j,t +Qi j,t denote the sending-end complex power from bus (i) to bus ( j), and Ii j,t

the complex current from bus (i) to bus ( j). It is also assumed that substation voltage V0,t

is given. Fig. 2.1 demonstrates a summary of the notations. Given (zi j,(i, j) ∈B), V0,t and
(si,t , i ∈N +), the following equation can be written based on the Ohm’s law [25]:

Vi,t−Vj,t = zi jIi j,t ∀(i, j) ∈B, (2.1)

Based on the complex power definition, the branch power flow is as follows:

Si j,t =Vi,tI∗i j,t ∀(i, j) ∈B, (2.2)

and power balance at each bus j ∈N is as follows:

s j,t = ∑
k: j−→k

S jk,t− ∑
i:i−→ j

(Si j,t− zi j|Ii j,t |2)+ y∗j |Vj,t |2 ∀ j ∈N , (2.3)

Equations (2.1) to (2.3) are referred as branch flow model. This model consists of 2mbr+n+1
nonlinear equations in 2mbr + n+ 1 complex variables {(Si j,t (i, j) ∈ B),(Ii j,t (i, j) ∈
B),(Vi i ∈N +),(s0,t)}.

2.2.2 Original Model of the Hosting Capacity

The mathematical structure of the constraints for the HC assessment is similar to the more
familiar OPF problem. The main difference lies in the objective, which is the total generation
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capacity in the network as follows:

maximize ∑
i∈N +

pg
i,t , (2.4)

Regarding constraints, in addition to branch flow equations, the voltage and thermal capacity
constraints should be considered. In other words, the voltage magnitude of buses must be
maintained in the operational range and the current of branches should be less than their
maximum currents. These constraints can be modelled as follows:

υ ≤ |Vi,t |2 ≤ υ ∀i ∈N , (2.5)

|Ii j,t | ≤ Īi j ∀(i, j) ∈B, (2.6)

therefore, the HC problem is given as:
HC:

maximize ∑
i∈N +

pg
i,t ,

subject to (1)− (3),(5),(6). (2.7)

The presented HC model in (2.7) is a nonlinear optimization, which implies that solving the
HC problem could be difficult. Considering that there is a convex formulation for branch
flow model, which is the source of non-convexity in constraints of the HC problem, the main
question is whether using this convex branch flow model in the HC problem makes the HC
convex or not. Based on the proposed method in [87], the main steps for convexification of
the branch flow model are two relaxations, which are explained in the next subsection.

2.2.3 Relaxed Branch Flow Model

In the first step of relaxation, the voltage and current angles will be eliminated from the
branch flow equations. To do so, equation (2.2) is substituted in (2.1), which results in (2.8):

Vj,t =Vi,t− zi j
S∗i j,t

V ∗i,t
, (2.8)

taking the magnitude squared from (2.8) results in:

υ j,t = υi,t + |zi j|2ℓi j,t− (zi jS∗i j,t + z∗i jSi j,t) ∀(i, j) ∈B, (2.9)
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where,

ℓi j,t =
P2

i j,t +Q2
i j,t

υi,t
∀(i, j) ∈B. (2.10)

writing (2.3) and (2.9) in terms of real variables leads to following equations:

p j,t = ∑
k: j−→k

Pjk,t− ∑
i:i−→ j

(Pi j,t− ri jℓi j,t)+g jυ j,t ∀ j ∈N , (2.11)

q j,t = ∑
k: j−→k

Q jk,t− ∑
i:i−→ j

(Qi j,t− xi jℓi j,t)+b jυ j,t ∀ j ∈N , (2.12)

υ j,t = υi,t−2(ri jPi j,t + xi jQi j,t)+(r2
i j + x2

i j)ℓi j,t ∀(i, j) ∈B. (2.13)

Authors in [87] referred to (2.10)-(2.13) as the relaxed branch flow equations. In contrast to
the original model, i.e. equations (2.1) - (2.3), the relaxed model (2.10)-(2.13) consists of
2(mbr+n+1) equations in 3mbr+n+2 real variables {(Pi j,t ,Qi j,t , ℓi j,t (i, j)∈B),(υi,t ∀i∈
N +), p0,t ,q0,t}. Structure of distribution systems are usually radial, which implies that
mbr = |B| = |N | − 1 = n. Hence, the relaxed branch flow model in radial distribution
systems consists of 4n+ 2 equations in 4n+ 2 real variables. Nevertheless, the relaxed
branch flow model is still non-convex due to the quadratic equality constraint in (2.10).
Moreover, the solution of (2.10)-(2.13) might be infeasible for the original branch flow
equations. To explain this in more detail, suppose that there is a point in the complex plane.
As it can be seen in Fig. 2.2, relaxing the angle of this point is similar to projecting this point
to a circle with a radius equal to the distance of the point from the origin. However, a point
on the circle may result in an angle different from the origin point.

To have a better understanding of the relation between relaxed branch flow equations
and the original model, suppose that s := (si,t ∀i ∈N +) is fixed. To simplify the notation,
let define s0 := s0,t , S := (Si j,t ∀(i, j) ∈B),P := (Pi j,t ∀(i, j) ∈B),Q := (Qi j,t ∀(i, j) ∈
B), I := (Ii j,t ∀(i, j)∈B) ℓ := (ℓi j,t ∀(i, j)∈B),V := (Vi,t ∀i∈N +) and υ := (υi,t ∀i∈
N +). For a given s, let X(s) denote the solution set of the original branch flow equations
given in (2.1)-(2.3) and Ŷ(s) the solution set of the relaxed model stated in (2.10)-(2.13). So,
X(s)⊆ C2mbr+n+1 and Ŷ(s)⊆ R3mbr+n+2 can be defined as follows:

X(s) := {x := (S, I,V,s0)|x solves (1)− (3)}, (2.14)

Ŷ(s) := {ŷ := (P,Q, ℓ,υ , p0,q0)|ŷ solves (10)− (13)}, (2.15)

Let ĥ define the mapping of (S, I,V,s0)∈C2mbr+n+1 to (P,Q, ℓ,υ , p0,q0)∈R3mbr+n+2 where:

Pi j,t = Re{Si j,t}, Qi j,t = Im{Si j,t}, ℓi j,t = |Ii j,t |2 ∀(i, j) ∈B, (2.16)
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Fig. 2.2 Angle relaxation of a complex point.

pi,t = Re{si,t}, qi,t = Im{si,t}, υi,t = |Vi,t |2 ∀i ∈N , (2.17)

Assume Y(s) denotes the set of all points whose projections are the solutions of the relaxed
branch flow equations. So, Y(s)⊆ C2mbr+n+1 can be represented as follows:

Y(s) := {ý := (S, I,V,s0)|ĥ(ý) solves (10)− (13)}, (2.18)

Based on what was shown in Fig. 2.2, one can say that X is a subset of Y and ĥ(X) is a subset
of Ŷ. This relation is illustrated in Fig. 2.3. It was proven in [87] that for radial networks,
ĥ(X) = Ŷ, which means angle relaxation is exact. In other words, there is always a unique
inverse projection that maps any relaxed solution ŷ to a solution of the original branch flow
model in X. Relaxing the voltage and current angles in the constraints of the HC problem
result in the relaxed problem as follows:

HC-ar

maximize ∑
i∈N +

pg
i,t ,

subject to (5),(6),(10)− (13). (2.19)
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Fig. 2.3 Relation of the projection of the branch flow and relaxed model solutions.

Since X⊆Y, the HC-ar provides a higher bound on the HC. The problem is that HC-ar is still
non-convex. The source of non-convexity is the quadratic equation (2.10). Equation (2.10)
can be rewritten as:

P2
i j,t +Q2

i j,t = υi,tℓi j,t ∀(i, j) ∈B, (2.20)

Equation (2.20) is similar to a rotating second order cone. Relaxing (2.20) to an inequality
leads to:

P2
i j,t +Q2

i j,t ≤ υi,tℓi j,t ∀(i, j) ∈B, (2.21)

since υi,t and ℓi j,t are non-negative, (2.21) is a rotating second order cone. Therefore, the
conic relaxation of HC can be given as follows:

HC-cr

maximize ∑
i∈N +

pg
i,t ,

subject to (5),(6),(11)− (13),(21). (2.22)

Let Ȳ denotes the solution set of equation (2.11)-(2.13) and (2.21). So, Ȳ(s) ⊆ R3mbr+n+2

can be represented as follows:

Ȳ(s) := {ŷ := (P,Q, ℓ,υ , p0,q0)|ŷ solves (11)− (13),(21)}, (2.23)
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Note that (2.10) is a specific case of (2.21), and Ŷ is a subset of Ȳ(Ŷ ⊆ Ȳ), which means
HC-cr provides an upper bound to HC-ar. Nonetheless, the more important point is whether
solving the HC-cr can lead to the exact solution of the original HC problem or not. In order to
assess this, the objective function of HC problem is reformulated as a minimization problem
as follows:

HC-cr

minimize ∑
i∈N +

−pg
i,t ,

subject to (5),(6),(11)− (13),(21). (2.24)

To evaluate the exactness of the HC-cr, it is needed to check if any optimal solution of (2.24)
attains equality in (2.21). Hence, assume that (ŷ∗,s∗) := (S∗, ℓ∗,υ∗,s∗g,s∗d,s∗g0 ,s∗d0 ) is the
optimal solution for HC-cr that attains equality in (2.21), i.e., P∗i j,t

2+Q∗i j,t
2 = υ∗i,tℓ

∗
i j,t ∀(i, j)∈

B and inequality in (2.6), i.e., ℓ∗i j,t < ℓ̄i j ∀(i, j) ∈B. For some ε > 0, consider another point
(ỹ, s̃) := (S̃, ℓ̃, υ̃ , s̃g, s̃d, s̃g

0, s̃
d
0) defined by:

υ̃ = υ
∗, s̃d = s∗d, (2.25a)

ℓ̃i j,t = ℓ∗i j,t + ε, ℓ̃−i j,t = ℓ∗−i j,t , (2.25b)

S̃i j,t = S∗i j,t + zi j
ε

2
, S̃−i j,t = S∗−i j,t , (2.25c)

s̃g
i,t = s∗gi,t + zi j

ε

2
, s̃g

j,t = s∗gj,t + zi j
ε

2
, (2.25d)

s̃g
−i,− j,t = s∗g,−i,− j,t (2.25e)

where, a negative index means excluding the indexed elements from a set. Thus, incremental
change in generation at buses (i) and ( j) are set to counter the variation in (ℓ∗i j,t) and (S∗i j,t).
As s̃g

i,t = s∗gi,t + zi j
ε

2 , s̃g
j,t = s∗gj,t + zi j

ε

2 , (ỹ, s̃) has a strictly smaller objective value than (ŷ∗,s∗).
If (ỹ, s̃) is feasible, then the optimal solution of conic relaxation is different from HC-
ar. To prove this, it suffices to demonstrate that there is an ε > 0 such that (ỹ, s̃) holds
for (2.5), (2.6), (2.11)-(2.13), and (2.21). Since (ŷ∗,s∗) is a feasible point, (2.5) holds
for (ỹ, s̃); and since (ŷ∗,s∗) attains inequality in (2.6), there is an ε > 0 that (2.6) holds
for (ỹ, s̃). Due to condition (2.25), (ỹ, s̃) satisfies (2.11)-(2.12) for all buses except (i) and ( j);
In a similar manner, (ỹ, s̃) satisfies (2.13) and (2.21) for all lines except (i−→ j). To prove
the feasibility of (ỹ, s̃), we only need to demonstrate that (ỹ, s̃) satisfies (2.11)-(2.12) at
buses (i), ( j), and (2.13) and (2.21) over line (i −→ j). To do so, we reformulated (2.11)-
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(2.12) at bus (i) as follows:

s̃i,t = s̃g
i,t− s̃d

i,t = s∗gi,t + zi j
ε

2
− s∗di,t = ∑

i−→ j́

S∗i j́,t− ∑
k−→i

(S∗ki,t− zkiℓ
∗
ki,t)+ y∗i υ

∗
i,t + zi j

ε

2

= ∑
i−→ j́,

j́ ̸= j

S̃i j́,t− ∑
k−→i

(S̃ki,t− zkiℓ̃ki,t)+ y∗i υ̃i,t +S∗i j,t + zi j
ε

2

= ∑
i−→ j́

S̃i,́t− ∑
k−→i

(S̃ki,t− zkiℓ̃ki,t)+ y∗i υ̃i,t . (2.26)

Similarly, reformulated (2.11)-(2.12) at bus ( j) can be given as:

s̃ j,t = s̃g
j,t− s̃d

j,t = s∗gj,t + zi j
ε

2
− s∗dj,t = ∑

j−→k
S∗jk,t− ∑

í−→ j

(S∗í j,t− zí jℓ
∗
í j,t)+ y∗jυ

∗
j,t + zi j

ε

2

= ∑
j−→k

S̃ jk,t− ∑
í−→ j,

í ̸=i

(S̃í j,t− zí jℓ̃í j,t)−S∗i j,t + zi jℓ
∗
i j,t + y∗j υ̃ j,t + zi j

ε

2

= ∑
j−→k

S̃ jk,t− ∑
í−→ j,

í ̸=i

(S̃í j,t− zí jℓ̃í j,t)− (S̃i j,t− zi j
ε

2
)+ zi j(ℓ̃i j,t− ε)+ y∗j υ̃ j,t + zi j

ε

2

= ∑
j−→k

S̃ jk,t− ∑
í−→ j

(S̃í j,t− zí jℓ̃í j,t)+ y∗j υ̃ j,t . (2.27)

This implies that (2.11) and (2.12) hold at buses (i) and ( j). To check if (2.13) holds over
line (i−→ j), we need to substitute (υ∗j,t ,υ

∗
i,t ,P

∗
i j,t ,Q

∗
i j,t , ℓ

∗
i j,t) in (2.13) with their equivalent

value from (2.25) as follows:

υ
∗
j,t = υ

∗
i,t−2(ri jP∗i j,t + xi jQ∗i j,t)+(r2

i j + x2
i j)ℓ
∗
i j,t ⇒

υ̃ j,t = υ̃i,t−2(ri j(P̃i j,t− ri j
ε

2
)+ xi j(Q̃i j,t− xi j

ε

2
))+(r2

i j + x2
i j)(ℓ̃i j,t− ε)

= υ̃i,t−2(ri jP̃i j,t + xi jQ̃i j,t)+(r2
i j + x2

i j)ℓ̃i j,t . (2.28)

Hence, (2.13) holds for line (i −→ j). Regarding (2.21) over line (i −→ j), we need to
substitute υ̃i,t , P̃i j,t , Q̃i j,t and ℓ̃i j,t in (2.21) by their equivalent from (2.25) as follows:

υ̃i,t ℓ̃i j,t− P̃2
i j,t− Q̃2

i j,t = υ
∗
i,t(ℓ

∗
i j,t + ε)− (P∗i j,t + ri j

ε

2
)2− (Q∗i j,t + xi j

ε

2
)2

= (υ∗i,tℓ
∗
i j,t−P∗i j,t

2−Q∗i j,t
2)+ ε(υ∗i,t− ri jP∗i j,t− xi jQ∗i j,t− ε(

r2
i j + x2

i j

4
))

= ε(υ∗i,t− ri jP∗i j,t− xi jQ∗i j,t− ε(
r2

i j + x2
i j

4
)) (2.29)
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If it is shown that under some conditions, equation (2.29) is always positive, then υ̃i,t ℓ̃i j,t >

P̃2
i j,t + Q̃2

i j,t . It is clear that with a negative P∗i j,t and Q∗i j,t , there would exist a ε that (2.29)
becomes positive. Even, if both P∗i j,t and Q∗i j,t are positive values, it is easy to show that
(2.29) is positive (Considering the phasor diagram of the voltage drop over line (i −→
j) as well as the low X/R ratio in distribution systems). Since there is an ε > 0 that

υ∗i,t − ri jP∗i j,t − xi jQ∗i j,t − ε(
r2

i j+x2
i j

4 ) > 0, hence υ̃i,t ℓ̃i j,t > P̃2
i j,t + Q̃2

i j,t . Thus, we proved that
there is a feasible solution for HC-cr with a lower objective value that attains inequality
in (2.21), i.e., υ̃i,t ℓ̃i j,t > P̃2

i j,t + Q̃2
i j,t . In other words, the solution of convex conic relaxed HC

model, i.e. HC-cr, is not the same as that of the original HC problem.

2.3 Linear Model of Hosting Capacity

In the previous section, it was proven that conic relaxation is not exact for the HC problem.
It means that linear approximation is the only way to convexify the HC problem which
will allow us to develop a simple HC model. The need for this simple model comes from
modelling the uncertainty that exists in the output power of renewable energy resources
(RESs). Generally, robust and stochastic optimization are two approaches to deal with
uncertain parameters in constraints. However, if the deterministic model is nonlinear and
non-convex, both approaches lead to computationally intractable counterparts. Further, robust
counterpart of linear programming (LP) is a second order cone program (SOCP), and robust
counterpart of a SOCP requires a semidefinite programming (SDP), and robust SDP becomes
NP-hard. Linear approximation of HC problem leads to a LP model, which means that
the robust counterpart is SOCP. Therefore, linear approximation reduces the complexity of
robust counterpart. In this section, a proper linear model of the HC is presented. To do so,
the equations with nonlinear terms are linearized as explained below in detail.

2.3.1 Linearizing the Relaxed Power Flow Model

Commonly, the linearization of the relaxed branch flow model is based on approximating the
quadratic term in (2.10), which is the main source of nonlinearity and non-convexity. A distri-
bution system is a graph in which lines have no orientation. So, the relaxed branch flow equa-
tions (2.11)-(2.13) holds for any graph orientation. Given an undirected graph GR(N ,B),
there are 2|B| orientations. In this section, we discuss two orientations: 1) every bus points
toward the substation (backward orientation); and 2) every bus points away the substation (for-
ward orientation). Fig. 2.4 shows some notations for these two orientations.
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Fig. 2.4 Notation summary of the forward (a) and backward (b) orientations.

Backward orientation

In this section, without loss of generality, it is supposed that yi = 0 ∀i ∈N . Considering this
assumption, the relaxed power flow model reduces to (2.30)-(2.33) in backward orientation.

ℓ̂ ji,t =
P̂2

ji,t + Q̂2
ji,t

υ̂ j,t
∀(i, j) ∈B, (2.30)

P̂ji,t = ∑
k:k−→ j

(P̂k j,t− rk jℓ̂k j,t)+ p j,t ∀ j ∈N , (2.31)

Q̂ ji,t = ∑
k:k−→ j

(Q̂k j,t− xk jℓ̂k j,t)+q j,t ∀ j ∈N , (2.32)

υ̂ j,t = υ̂i,t +2(r jiP̂ji,t + x jiQ̂ ji,t)− (r2
ji + x2

ji)ℓ̂ ji,t ∀(i, j) ∈B, (2.33)

if j = 0 then P̂ji,t := 0 and Q̂ ji,t := 0. In addition, if j is a node that is connected to just one
line, then all P̂k j,t := 0, Q̂k j,t := 0 and ℓ̂k j,t := 0. As it was mentioned above, the key solution
to convexify the problem lies in linearizing the relaxed model given in (2.30)-(2.33) via
approximating the quadratic equation ℓ̂ ji,t, in (2.30). There are different methods to linearly
approximate ℓ̂ ji,t . Let ℓ̂lin

ji,t denotes the linear approximation of ℓ̂ ji,t . Then, the general linear
model of backward orientation is as follows:

P̂lin
ji,t = ∑

k:k−→ j
(P̂lin

k j,t− rk jℓ̂
lin
k j,t)+ p j,t ∀ j ∈N , (2.34)

Q̂lin
ji,t = ∑

k:k−→ j
(Q̂lin

k j,t− xk jℓ̂
lin
k j,t)+q j,t ∀ j ∈N , (2.35)

υ̂
lin
j,t = υ̂

lin
i,t +2(r jiP̂lin

ji,t + x jiQ̂lin
ji,t)− (r2

ji + x2
ji)ℓ̂

lin
ji,t ∀(i, j) ∈B. (2.36)
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The important question is whether this approximation is valid for the HC problem. Linear
HC model is valid as long as the constraints of original problem would not be violated with
the solution of the linear model. Linearizing the relaxed model directly affect the voltages of
the system. If we make sure that the voltage of buses in linear model is higher than that of the
original relaxed model, we can guarantee that the solution of linear model would not cause
any voltage violation in the original model. To find the condition that υ̂ j,t ≤ υ̂ lin

j,t ∀ j ∈N ,
let T j denotes the subtree rooted at bus ( j) (including j). We use k ∈ T j to refer to bus (k) in
subtree T j and (k, l)∈T j to refer to line (k, l) in subtree T j. Let P j denotes the set of lines on
the path from substation to bus ( j). For a given υ0,t and si,t ∀i ∈N , let (P̂lin, Q̂lin, ℓ̂lin, υ̂ lin)

and (P̂, Q̂, ℓ̂, υ̂) be solutions of the linear model (2.34)-(2.36) and the backward relaxed
model (2.30)-(2.33) respectively. Then

P̂lin
ji,t = ∑

k∈T j

(pk,t)− ∑
(k,l)∈T j

(rkl ℓ̂
lin
kl,t) ∀(i, j) ∈B, (2.37)

Q̂lin
ji,t = ∑

k∈T j

(qk,t)− ∑
(k,l)∈T j

(xkl ℓ̂
lin
kl,t) ∀(i, j) ∈B, (2.38)

P̂ji,t = ∑
k∈T j

(pk,t)− ∑
(k,l)∈T j

(rkl ℓ̂kl,t) ∀(i, j) ∈B, (2.39)

Q̂ ji,t = ∑
k∈T j

(qk,t)− ∑
(k,l)∈T j

(xkl ℓ̂kl,t) ∀(i, j) ∈B. (2.40)

Considering the unique path from each bus to substation in radial distribution systems and
the equations (2.36) and (2.33), voltage of each bus can be calculated by:

υ̂
lin
j,t = υ0,t + ∑

(k,l)∈P j

2(rklP̂lin
kl,t + xklQ̂lin

kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t ∀ j ∈N , (2.41)

υ̂ j,t = υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂kl,t ∀ j ∈N . (2.42)

The linear approximation of ℓ̂kl,t is either larger or smaller than ℓ̂kl,t . If ℓ̂lin
kl,t ≤ ℓ̂kl,t , then

P̂lin
kl,t ≥ P̂kl,t , Q̂lin

kl,t ≥ Q̂kl,t ∀(i, j) ∈B, (2.43)

2(rklP̂lin
kl,t + xklQ̂lin

kl,t)≥ 2(rklP̂kl,t + xklQ̂kl,t) ∀(i, j) ∈B. (2.44)

It means that following equations holds:

υ0,t + ∑
(k,l)∈P j

2(rklP̂lin
kl,t + xklQ̂lin

kl,t)≥ υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t) ∀ j ∈N ,⇒ (2.45)
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υ0,t + ∑
(k,l)∈P j

2(rklP̂lin
kl,t + xklQ̂lin

kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t

≥ υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t ∀ j ∈N ,⇒ (2.46)

υ̂
lin
j,t ≥ υ0,t + ∑

(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t ∀ j ∈N , (2.47)

since we assumed that ℓ̂lin
kl,t ≤ ℓ̂kl,t

υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t

≥ [υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂kl,t ] = υ̂ j,t ∀ j ∈N , (2.48)

therefore,
υ̂

lin
j,t ≥ υ̂ j,t ∀ j ∈N . (2.49)

Following the same procedure, if ℓ̂lin
kl,t ≥ ℓ̂kl,t , then

P̂lin
kl,t ≤ P̂kl,t , Q̂lin

kl,t ≤ Q̂kl,t ∀(i, j) ∈B, (2.50)

2(rklP̂lin
kl,t + xklQ̂lin

kl,t)≤ 2(rklP̂kl,t + xklQ̂kl,t) ∀(i, j) ∈B. (2.51)

It means that following equations holds:

υ0,t + ∑
(k,l)∈P j

2(rklP̂lin
kl,t + xklQ̂lin

kl,t)≤ υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t) ∀ j ∈N ,⇒ (2.52)

υ0,t + ∑
(k,l)∈P j

2(rklP̂lin
kl,t + xklQ̂lin

kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t

≤ υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t ∀ j ∈N ,⇒ (2.53)

υ̂
lin
j,t ≤ υ0,t + ∑

(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t ∀ j ∈N , (2.54)

since we assumed that ℓ̂lin
kl,t ≥ ℓ̂kl,t

υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂
lin
kl,t
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≤ [υ0,t + ∑
(k,l)∈P j

2(rklP̂kl,t + xklQ̂kl,t)− ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ̂kl,t ] = υ̂ j,t ∀ j ∈N , (2.55)

therefore,
υ̂

lin
j,t ≤ υ̂ j,t ∀ j ∈N . (2.56)

In the linear model, the over-voltage constraint would limit the voltage magnitude. Thus,
if the original voltage is always below the linear voltage, the estimated HC by using the linear
model would not cause an over-voltage in the original model. Thus, linearization is valid
as long as the linear approximation of the quadratic term (2.10), is smaller than the original
quadratic term.

Forward orientation

In this orientation, the relaxed power flow model reduces to (2.57)-(2.60).

ℓ́i j,t =
Ṕ2

i j,t + Q́2
i j,t

ύi,t
∀(i, j) ∈B, (2.57)

Ṕi j,t− ri jℓ́i j,t = ∑
k: j−→k

(Ṕjk,t)− p j,t ∀ j ∈N , (2.58)

Q́i j,t− x jkℓ́ jk,t = ∑
k: j−→k

(Q́ jk,t)−q j,t ∀ j ∈N , (2.59)

ύ j,t = ύi,t−2(ri jṔi j,t + xi jQ́i j,t)+(r2
i j + x2

i j)ℓ́i j,t ∀(i, j) ∈B. (2.60)

One should notice that if j = 0 then Ṕi j,t := 0, Q́i j,t := 0 and ℓ́i j,t := 0. In addition, if j is a
node that is connected to just one line, then all Ṕjk,t := 0 and Q́ jk,t := 0. Let ℓ́lin

i j,t denotes the
linear approximation of ℓ́i j,t . Then, the linear approximation of the forward orientation is as
follows:

Ṕlin
i j,t− ri jℓ́

lin
i j,t = ∑

k: j−→k
(Ṕlin

jk,t)− p j,t ∀ j ∈N , (2.61)

Q́lin
i j,t− x jkℓ́

lin
jk,t = ∑

k: j−→k
(Q́lin

jk,t)−q j,t ∀ j ∈N , (2.62)

ύ
lin
j,t = ύ

lin
i,t −2(ri jṔlin

i j,t + xi jQ́lin
i j,t)+(r2

i j + x2
i j)ℓ́

lin
i j,t ∀(i, j) ∈B. (2.63)

For a given υ0,t and si,t ∀i ∈N , let (Ṕlin, Q́lin, ℓ́lin, ύ lin) and (Ṕ, Q́, ℓ́, ύ) be solutions of the
linear model represented in (2.61)-(2.63) and the forward relaxed model given in (2.57)-
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(2.60), respectively. Then

Ṕlin
i j,t =− ∑

k∈T j

(pk,t)+ ri jℓ́
lin
i j,t + ∑

(k,l)∈T j

(rkl ℓ́
lin
kl,t) ∀(i, j) ∈B, (2.64)

Q́lin
i j,t =− ∑

k∈T j

(qk,t)+ xi jℓ́
lin
i j,t + ∑

(k,l)∈T j

(xkl ℓ́
lin
kl,t) ∀(i, j) ∈B, (2.65)

Ṕi j,t =− ∑
k∈T j

(pk,t)+ ri jℓ́i j,t + ∑
(k,l)∈T j

(rkl ℓ́kl,t) ∀(i, j) ∈B, (2.66)

Q́i j,t =− ∑
k∈T j

(qk,t)+ xi jℓ́i j,t + ∑
(k,l)∈T j

(xkl ℓ́kl,t) ∀(i, j) ∈B. (2.67)

Considering the unique path from substation to each bus in radial systems and the equa-
tions (2.63) and (2.60), the voltage of each bus can be calculated by:

ύ
lin
j,t = υ0,t− ∑

(k,l)∈P j

2(rklṔlin
kl,t + xklQ́lin

kl,t)+ ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ́
lin
kl,t ∀ j ∈N , (2.68)

ύ j,t = υ0,t− ∑
(k,l)∈P j

2(rklṔkl,t + xklQ́kl,t)+ ∑
(k,l)∈P j

(r2
kl + x2

kl)ℓ́kl,t ∀ j ∈N . (2.69)

Similar to backward orientation, by substituting (2.64)-(2.67) in (2.68) and (2.69) it can be
proved for the forward orientation that linear approximation is valid if ℓ́lin

kl,t ≤ ℓ́kl,t . One of
the most used linearization method is setting ℓ́lin

kl,t = 0 (ℓ̂lin
kl,t = 0 for backward orientation).

Based on what we proved in this section, if the linear approximation is always smaller than
the original quadratic term, the voltage obtained by linear model is always higher than the
voltage obtained by the original relaxed model.

In the following, we discuss how to define a linear model by approximating the original
quadratic equation in the original HC problem. Let consider a continuous function f (tt) of the
variable tt ∈ [a,b] aiming to approximate it with the piecewise linear function f̂ (tt). First, the
interval [a,b] is divided into smaller intervals via the points a = tt0 < tt1 < tt2 < · · ·< ttk = b
as shown in Fig. 2.5. Let λ ∈ [0,1] to define tt ∈ [ttv, ttv+1] as a convex combination of ttv
and ttv+1 as follows:

tt = λ ttv +(1−λ )ttv+1, (2.70)

Then, function f (tt) can be linearly approximated in interval tt ∈ [ttv, ttv+1] as follows:

f̂ (tt)− f̂ (ttv) =
f̂ (ttv+1)− f̂ (ttv)

ttv+1− ttv
(tt− ttv), (2.71)
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Fig. 2.5 Piecewise linear approximation of a function.

Substituting (2.70) in (2.71) results in:

f̂ (tt) = λ f̂ (ttv)+(1−λ ) f̂ (ttv+1). (2.72)

More generally, function f (tt) can be approximated over interval [a,b] by f̂ (tt) via points
a = tt0 < tt1 < tt2 < ... < ttk = b as follows [90]:

tt =
k

∑
v=0

λvttv,
k

∑
v=0

λv = 1, λv ≥ 0 ∀v ∈ {0,1,2, . . . ,k}, (2.73)

f̂ (tt) =
k

∑
v=0

λv(ttv). (2.74)

where, λv are special order set of type 2 (SOS2) variables, which means only two of them
are non-zero, and they must be adjacent. It is worth mentioning that increasing the number
of points increases the approximation accuracy. The above piecewise linear approximation
is valid for single variable functions. In the HC problem, the nonlinear equation (2.10)
is a function of (P,Q,υ), which means that we still cannot use the suggested piecewise
approximation. If it is supposed that the υ is fixed, then (2.10) becomes separable. Generally,
a function f (Var1,Var2, ...,VarNv) is said to be separable if it can be expressed as the sum
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of Nv single variable functions f1(Var1), f2(Var2), ..., fNv(VarNv). Therefore, each single
variable function in (2.10) can be replaced by a piecewise linear approximation. For the
sake of generality, let suppose that both objective and constraints are separable functions as
follows:

SP : minimize
Nv

∑
j=1

f j(Var j),

sub ject to (2.75)
Nv

∑
j=1

g′′i, j(Var j)≤ULi ∀i ∈ {0,1,2, . . . ,NoC}.

Let define set L as follows:

L = { j : f j &&g′′i, j are linear ∀i ∈ {1,2, . . . ,NoC}}. (2.76)

Considering the interval [a j,b j] for each j /∈L , the grid points of jth variable, Var j, are
defined as follows:

a j =Var0, j <Var1, j <Var2, j < · · ·<Vark j, j = b j, (2.77)

thus, the (SP) can be approximated as follows:

LASP : minimize ∑
j∈L

f j(Var j)+ ∑
j/∈L

f̂ j(Var j),

sub ject to (2.78)

∑
j∈L

g′′i, j(Var j)+ ∑
j/∈L

ĝ′′i, j(Var j)≤ULi ∀i ∈ {0,1,2, . . . ,NoC},

where

f̂ j(Var j) =
k j

∑
v=0

λv, j f̂ j(Varv, j) ∀ j /∈L , (2.79a)

ĝ′′i, j(Var j) =
k j

∑
v=0

λv, jĝ′′i, j(Varv, j), ∀i ∈ {1,2, . . . ,NoC}, ∀ j /∈L , (2.79b)

k j

∑
v=0

λv, j = 1, λv, j ≥ 0 ∀ j /∈L , (2.79c)
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Var j =
k j

∑
v=0

λv, jVarv, j ∀ j /∈L , (2.79d)

and two adjacent λv, j are non-zero for j /∈ L , due to which, the LASP is not a linear
program anymore. This restriction can be removed by using binary variables. In other words,
considering this restriction result in a mixed integer program as follows:

LASP : minimize ∑
j∈L

f j(Var j)+ ∑
j/∈L

k j

∑
v=0

λv, j f̂ j(Varv, j), (2.80a)

sub ject to

∑
j∈L

g′′i, j(Var j)+ ∑
j/∈L

k j

∑
v=0

λv, jĝ′′i, j(Varv, j)≤ULi ∀i ∈ {0,1,2, . . . ,NoC}, (2.80b)

0≤ λ0, j ≤ w0, j j /∈L , (2.80c)

0≤ λv, j ≤ wv−1, j +wv, j, ∀v ∈ {1,2, . . . ,k j−1}; ∀ j /∈L , (2.80d)

0≤ λk j, j ≤ wk j−1, j ∀ j /∈L , (2.80e)
k j−1

∑
v=0

wv, j = 1 ∀ j /∈L , (2.80f)

k j

∑
v=0

λv, j = 1 ∀ j /∈L , (2.80g)

Var j =
k j

∑
v=0

λv, jVarv, j ∀ j /∈L , (2.80h)

wv, j = 0 or 1, ∀v ∈ {0,1,2, . . . ,k j−1}; ∀ j /∈L . (2.80i)

It is worth mentioning that increasing the number of break points to improve the accuracy of
the approximation, increases the number of constraints and integer variables significantly.
So, there is a compromise between the accuracy of the approximation and the number
of break points. The minimum number of points that are needed for approximating a
nonlinear function is equal to two. It means that the approximation function is a linear
function passing from those two points. In such situation, the approximation results in
a LP. Fig. 2.6 demonstrates two linear approximations (by using two points) that can be
used in linearizing (2.10). Since in both approximations ℓ̂lin

kl,t ≤ ℓ̂kl,t (ℓ́lin
kl,t ≤ ℓ́kl,t in forward

orientation), the linear models are valid.
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Fig. 2.6 Two linear approximation of the loss quadratic function (by using two points).

2.3.2 Linearizing the Thermal Capacity Constraint

It is important to consider the thermal capacity as one of the constraints in the HC problem.
Equation (2.6) represents this constraint in the original HC problem. Multiplying (2.6) with
nominal voltage leads to:

|Si j,t | ≤ S̄i j ∀(i, j) ∈B, (2.81)√
P2

i j,t +Q2
i j,t ≤ S̄i j ∀(i, j) ∈B. (2.82)

Equation (2.82) is a circle in (P,Q) coordination. In order to linearize this circle, we use a
rotating line. The following line is tangent to the circle (2.82).

Qi j,t +Pi j,t ≤
√

2S̄i j ∀(i, j) ∈B, (2.83)

in two dimensions, we can rotate the point (Pi j,t ,Qi j,t) by using the counterclockwise rotation
matrix as follow: [

P′′i j,t

Q′′i j,t

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
×

[
Pi j,t

Qi j,t

]
, (2.84)

Rotating the line (2.83) using the rotation matrix (2.84) leads to:

(cos(θ)+ sin(θ))Q′′i j,t +(cos(θ)− sin(θ))P′′i j,t ≤
√

2S̄i j ∀(i, j) ∈B. (2.85)

This equation implies that for each θ , there is a line. So, a set of lines can replace the circle.
The smaller the step in θ is, the higher the number of the lines and the higher the accuracy of
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Fig. 2.7 Circular thermal capacity constraint linearization method for step sizes (B) θ = 45◦

and (C) θ = 10◦.

the linearization would be. Fig. 2.7 Shows the linear approximation of the thermal constraint
with the proposed rotating line for step sizes θ = 45◦ and θ = 10◦.

After linearizing the thermal capacity constraint, the HC problem can be formulated by a
LP, which is proper to be used as the base model in stochastic or robust optimization. In the
next section, results of different linear models are compared.

2.4 Simulations

In this section, the performance of different linear methods is compared. The test network is
the IEEE 33 buses distribution system. This network is a radial system as shown in Fig. 2.8,
with a total load of 3.715 MW and 2.300 MVAr [91]. It is supposed that rating current of all
lines in the test system is 500 A. The HC nonlinear and linear models are implemented in
AMPL [92] environment, and solved by KNITRO and CPLEX solvers, respectively.

First the performance of the proposed piecewise linear model is assessed. Fig. 2.9 shows
the voltage profile of the test grid for different number of points in (2.73) when the maximum
DER capacity is installed at bus (6). As it can be seen, increasing the number of break
points improves the accuracy of the proposed method. Moreover, as it was proven in section
2.3.1, the voltage profile obtained by the proposed method is always higher than that of the
original model. Additionally, neglecting the loss quadratic term, which is a specific case of
the proposed method, results in a higher voltage bound to the proposed model, so neglecting
the loss term and the original model are two boundaries of the proposed method.

It appeared to us that neglecting the loss term (zero approximation) could have enough ac-
curacy to approximate the voltage profile. So, what is the advantage of the proposed method?
Fig. 2.10 demonstrates the advantage of our model compared to the zero approximation. As
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it can be seen, both the proposed method and the neglection of loss term result in the lower
bounds to the locational HC. Nonetheless, the lower bound obtained by the proposed method
is more accurate than the obtained bound by the zero approximation of the loss term. This is
because the sensitivity of the HC is very high to the voltage and a small change in the voltage
could result in a tangible change in the objective function, which is HC.

HC of a system depends on quite a few technical constraints. As it was mentioned in
section 1.2, three range for HC can be defined based on each technical issue. The first range
determines the capacities that would not cause any violation, regardless of the location of
DERs. The second range determines the capacities that are acceptable if DERs are installed at
specific locations, and third range determines the capacities that would result in the violation,
regardless of the location of DER. Note that these three ranges for HC of a feeder can be
found by considering the technical constraints altogether or by combining the stacked bar
charts of all constraints. Fig. 2.11 shows the barchart diagram of the HC of the test grid for
over-voltage and thermal capacity constraints. As it can be seen in this figure, the proposed
linear models for branch flow equations and thermal capacity constraints approximates the
HC bar charts with high accuracy. Moreover, the combination of stacked bar charts of over-
voltage and thermal capacity constraints give the same result as applying both of them at the
same time. This means that it is not necessary to build a complicated HC model considering
all the technical constraints. Sometimes, it is easier to identify the HC based on different
technical constraint, separately. Then, the HC considering all the technical constraints can be
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Fig. 2.11 HC bar charts obtained by the original nonlinear model and the proposed linear
method.

estimated by combining the results for every constraint. This idea could be really effective to
include any technical constraint in HC assessment.

Another important point that should be discussed is the importance of the constraints
in the HC assessment. Fig. 2.12 demonstrates the HC obtained by the proposed method
based on three constraints, namely, over-voltage, thermal, and back-feed constraints. As it
can be seen, back-feed put a lower limit on the HC in comparison to the over-voltage and
thermal constraints. Another observation is that the thermal constraint is more important
than over-voltage constraint at the beginning of the feeder. Performing this analysis can
help DSOs to understand the available options to increase the HC effectively. For instance,
Fig. 2.13 demonstrates the HC stacked bar charts with relaxation of the back-feed constraint.
As it can be seen, this relaxation increases the second range of the HC. Therefore, one
available option to effectively increase the HC could be modifying the network to allow
bidirectional power flow. In this regard, DSOs may need to readjust the control setting of the
voltage regulators or replace the protection relay of circuit breaker.

In the second part of the simulation results, we compare the performance of different
linearization methods. The linear methods to be compared are as follows:

A : Linearizing the relaxed power flow with ℓ́lin
i j,t = 0 ∀(i, j) ∈B [93, 37].
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B : Linear relaxed power flow proposed in [94]: in this model, the ℓ́i j,t ≈ ℓ́lin
i j,t :=

1
υ0,t

(2P0
i j,tPi j,t +2Q0

i j,tQi j,t−P0
i j,t

2−Q0
i j,t

2
), in which, P0

i j,t and Q0
i j,t are the line (i−→ j)

initial active and reactive power flows.

C : Linearizing the relaxed power flow with ℓ́i j,t ≈ ℓ́lin
i j,t := 1

υ0
j,t
(2P0

i j,tPi j,t +2Q0
i j,tQi j,t−

P0
i j,t

2−Q0
i j,t

2
), in which, P0

i j,t and Q0
i j,t are the line (i−→ j) initial active and reactive

power flows and υ0
j,t is the square of the initial voltage magnitude at bus ( j).

D Neglecting the ℓ́i j,t in (2.11)-(2.12), and using the linear approximation ℓ́i j,t ≈ ℓ́lin
i j,t :=

1
υ0,t

(2P0
i j,tPi j,t +2Q0

i j,tQi j,t−P0
i j,t

2−Q0
i j,t

2
) in (2.13).

E : Linearizing the relaxed power flow with ℓ́i j,t ≈ ℓ́lin
i j,t := 1

υ0,t
(P0

i j,tPi j,t +Q0
i j,tQi j,t), in

which, P0
i j,t and Q0

i j,t are the initial distribution line power flows.

F : The traditional linear power flow model: in this model, ∆Vi j,t ≃
ri jPr

i j,t+xi jQr
i j,t

|V0,t | , in
which ∆Vi j,t represents the voltage change from bus (i) to bus ( j). Further, Sr

i j,t :=
Si j,t− zi j|Ii j,t |2 denotes the receiving complex power at bus ( j) from bus (i).

G : The traditional linear model proposed in [25]: in this model, ∆Vi j,t ≃
ri jPr

i j,t+xi jQr
i j,t

|V 0
j,t |

, in

which |V 0
j,t | is the initial voltage magnitude of bus ( j).

H : The proposed piecewise linear function with four points.

In the following, the performance of these methods in approximating the voltage of the
system is assessed. Fig. 2.14 demonstrates the voltage profile of the test grid by using the
above mentioned linear power flow approximations. As it can be seen, the voltage profile
obtained by the proposed piecewise linear method (H) and linear approximation (A) is
always higher than the original profile. Additionally, it can be observed that all these linear
methods have good performance in approximating the voltage. So, we need another index to
compare the performance of these methods.

Fig. 2.15 shows the HC of the test grid obtained by different linear power flow model.
As it can be seen, these linearization methods result in a lower approximation of the HC
and the proposed piecewise linear method is more accurate than other models. It is also
observed that the performance of other linear models (A, B, C, D, E, F, G) depends on the
characteristics of the system and each of them could have the highest performance at some
locations. Further, Fig. 2.16 shows the box plot of error in estimating the HC for different
linear methods. On each box, the red and purple central marks are the mean and median, the
horizontal edges are the 25th and 75th percentiles, the whiskers extend to the most extreme
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Fig. 2.14 Voltage profile of the test grid obtained by different linear models (A, B, C, D, E, F,
G, H).

values not considered outliers, and outliers, i.e. yellow dots, are plotted individually. As
it can be seen, the proposed method has the lowest error with an average error of 0.378%.
Moreover, after the proposed methods, linear models D and A with an average error of 4.38%
and 4.86% have the highest performance.Furthermore, models B and C with an average
error of 6.56% and 6.74% have the worst performance in estimating the HC of the test
system. This implies that a linearization method might have an acceptable performance in
approximating the voltage in absence of DERs. However, it might have a poor performance
in modeling the HC.

2.5 Summary

In this chapter, the HC modeling of radial distribution systems is presented. First, it is proved
that conic relaxation for the HC problem is not exact. In other words, one cannot solve a
convex conic program instead of the original non-convex model. Then, the conditions under
which the linearization of the relaxed branch flow model is valid for the HC problem, is
identified. It is demonstrated that linearization of the relaxed power flow model is valid if
the linear approximation of the branch losses is less than the actual quadratic term. Further,
a linear model for the thermal capacity constraint is proposed. Finally, different linear HC
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model were examined on the IEEE 33-bus system to compare the effectiveness and suitability
of each one of them. Based on the simulation results, the following conclusions can be made
in order:

• It was observed that if the conductor type is the same for all branches, the thermal
capacity constraint is the main limiting factor of the HC for the location which are
closer to the substation. However, for the locations that are far from the substation, the
main limiting factor is voltage constraint. In other words, increasing the distance from
substation decreases the importance of the thermal capacity constraint and increases
the importance of the voltage constraint.

• The investigated linear models in section (1.4) results in lower bounds to the HC of the
feeder, which is close to actual HC. Moreover, proposed piecewise linear method and
the proposed method (D) have the highest performance in the HC calculation.



Chapter 3

Probabilistic Assessment of Hosting
Capacity in Radial Distribution Systems

3.1 Introduction

As mentioned in Chapter 1, uncertainties associated with the loads and distributed energy
resources (DERs) are important factors that could affect the hosting capacity (HC) of a
distribution system. Generally, there are two approaches to consider the uncertainties. The
first approach is based on Monte Carlo simulation, in which a high number of scenarios are
generated. Then, power flow calculation is performed for all the scenarios. The drawback of
this approach is its computational burden. The second approach is based on optimization. In
this approach, stochastic and robust techniques have been used to address the uncertainties
associated with the loads and output power of DERs. However, modelling the uncertainty
associated with the location and size of DERs is challenging in this approach. Our aim in
this chapter is exploiting the advantages of both approaches by combining them.

In Chapter 2, we assessed the performance of HC deterministic model. In this chapter, we
propose a probabilistic framework that considers the uncertainties of loads and DERs in the
HC estimation of radial distribution systems. The framework includes formulation of the HC,
which is represented by an optimization problem considering the over-voltage and voltage
deviation constraints. Note that for considering the voltage deviation constraint at a location,
we need to compare the voltage of that location with and without a DER. Therefore, consid-
ering the voltage deviation constraint in the HC model results in an unsolvable optimization
problem. In order to solve the formulated HC problem, a two-step algorithm is proposed to
linearize the HC model and to derive a solvable and accurate equivalent model. The modified
HC optimization problem is integrated in our framework and validated using a balanced
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system (i.e., an agricultural distribution network in Australia) and an unbalanced system (i.e.,
the IEEE 123-bus network). The outcome of this chapter is published as a conference1 and a
journal paper2.

The remainder of this chapter is organized as follows: Section 3.2 formulates the problem.
Section 3.3 presents the proposed methodology. First, a two-step linearization method is
described to linearize the HC model. Then, a probabilistic framework is developed to assess
DER uncertainties and load variation. Section 3.4 presents the test feeder, numerical results
and discussion. Finally, the major conclusions are summarized in Section 3.5.

3.2 Problem Formulation

We already defined most of the variables for modelling distribution systems. However, in
order to make the thesis easy to follow, we reintroduce them here. Consider the radial
network. Let N = {0, . . . ,n} denotes the set of buses, and DG = {Bdg

1 , . . . ,Bdg
n } represents

the set of buses that have a DER (DG ⊂N ). Let B denotes the set of all branches, and
(i, j) or i−→ j represents a branch from bus (i) to bus ( j) in set B. Let H denote the set of
all time steps. For every bus i ∈N and for every t ∈H , let Vi,t denote the complex voltage,
and define υi,t = |Vi,t |2; Let Sd

i,t = pd
i,t + iqd

i,t represents the load at bus (i). For every line
(i, j) ∈B and for every t ∈H , let zi j = ri j + ixi j denote the impedance, Si j,t = Pi j,t + iQi j,t

the sending-end complex power from bus (i) to bus ( j), and Ii j,t the sending-end complex
current from bus (i) to bus ( j) . For every bus i∈DG and for every t ∈H , let sg

i,t = pg
i,t + iqg

i,t

denote the generation complex power. Let T j denote the subtree rooted at bus ( j) (including
(j)). We use k ∈ T j to refer to bus (k) in subtree T j and (k, l) ∈ T j to refer to line (k, l) in
subtree T j. Let P j denote the set of lines on the path from substation to bus (j). As shown in
Chapter 2, the following equation can be written based on the Ohm’s law:

υ j,t = υi,t−2(ri jPi j,t + xi jQi j,t)+ |zi j|2
P2

i j,t +Q2
i j,t

υi,t
,∀(i, j) ∈B, (3.1)

and according to the nodal power balance equations, we have:

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t− pg

j,t + ri j
P2

i j,t +Q2
i j,t

υi,t
, ∀ j ∈DG , (3.2)

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t + ri j

P2
i j,t +Q2

i j,t

υi,t
, ∀ j ∈ {N \DG }, (3.3)

1“Sensitivity of hosting capacity to data resolution and uncertainty modeling,” in 2018 Australasian Univer-
sities Power Engineering Conference (AUPEC), Nov 2018, pp. 1–6 [95].

2“Probabilistic assessment of hosting capacity in radial distribution systems,” IEEE Transactions on Sustain-
able Energy, 2018 [96].
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Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t−qg

j,t + xi j
P2

i j,t +Q2
i j,t

υi,t
, ∀ j ∈DG , (3.4)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t + xi j

P2
i j,t +Q2

i j,t

υi,t
, ∀ j ∈ {N \DG }. (3.5)

considering the unique path from the substation to each bus, the voltage at bus (j) can be
calculated as follows:

υ j,t = υ0,t− ∑
(l,k)∈P j

2(ri jPi j,t + xi jQi j,t)+ ∑
(l,k)∈P j

|zi j|2
P2

i j,t +Q2
i j,t

υi,t
, ∀(i, j) ∈B. (3.6)

The focus of this chapter is to identify the HC of a distribution system based on the voltage
quality impacts of DERs, so in addition to the power flow equations, the over-voltage and
voltage deviation constraints must be satisfied, as follows:

υ ≤ υi,t ≤ υ , ∀i ∈N , (3.7)

|Vi,t |− |V NDG
i,t | ≤ ∆V , ∀i ∈DG , (3.8)

where, υ , υ , ∆V and |V NDG
i |, are the square of minimum acceptable voltage, the square of

maximum acceptable voltage, the maximum voltage deviation, and the voltage of bus (i)
when the DER at bus (i) is disconnected, respectively. The voltage deviation is defined as
the difference between the bus voltage with and without a DER. Thus, the deterministic HC
problem is formulated as follows:

maximize
pg

i,t
∑

i∈DG

pg
i,t ,

s.t. (2)− (8). (3.9)

This is a deterministic model of the HC, i.e., the location of DERs and other uncertain param-
eters must be given. The solution of this optimization problem is the HC of the system for
the given condition. However, in practice, it is difficult to quantify the number, location, and
the output of DERs. Further, all studies that model the HC as an optimization problem used
a set of predefined locations for DERs. Additionally, they usually used robust optimization
techniques to model uncertainties of load and DERs’ output power, which can result in a
conservative approximation of the HC of a system. Thus, the proposed methodology should
be able to deal with uncertain number and location of DERs. Additionally, the proposed
method should not result in a conservative HC.
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3.3 Methodology

A probabilistic framework is proposed in this section to deal with the uncertainty in load,
the set DG (i.e., the number and location of DERs), and the output power of DERs. This
framework is based on the linearized HC model (3.9) and is presented in section 3.3.2. The
HC formulation (3.9) is a nonlinear optimization problem, hence solving it for big distribution
systems is difficult if possible (due to constraint (3.8)). To deal with this issue, we propose a
two-step method in section 3.3.1 to derive a solvable equivalent model for (3.9).

3.3.1 Linearization of the Original Model

The source of nonlinearity in equations (3.2)-(3.6) is the following term:

fi j(Pi j,t ,Qi j,t ,υi,t) =
P2

i j,t +Q2
i j,t

υi,t
, ∀(i, j) ∈B. (3.10)

Therefore, any linearizion method has to deal with this term in (3.2)-(3.6). Given an operating
point (P0

i j,t ,Q
0
i j,t ,υ

0
i,t), the first order Taylor approximation of fi j for all (i, j)∈B is as follows:

fi j(Pi j,t ,Qi j,t ,υi,t)≈
1

υ0
i,t
(2P0

i j,tPi j,t +2Q0
i j,tQi j,t)

− 1
υ0

i,t
((P0

i j,t)
2 +(Q0

i j,t)
2)−

(P0
i j,t)

2 +(Q0
i j,t)

2

(υ0
i,t)

2
(υi,t−υ

0
i,t), (3.11)

the third right hand side term in (3.11) is smaller than other terms because of having (υ0
i,t)

2

in the denominator, so we can neglect it and approximate (3.11) as follows:

fi j(Pi j,t ,Qi j,t ,υi,t)≈ Li j(Pi j,t ,Qi j,t) =
1

υ0
i,t
(2P0

i j,tPi j,t +2Q0
i j,tQi j,t)

− 1
υ0

i,t
((P0

i j,t)
2 +(Q0

i j,t)
2), ∀(i, j) ∈B, (3.12)

where, Li j is the linear approximation of nonlinear term fi j. Next issue is related to con-
straint (3.8), which compares the voltage of a node with and without a DER. However, we
either have a DER at a node or we do not. To deal with this situation, we focus on this
constraint from the power injection point of view. The whole point of this constraint is
limiting the maximum DER capacity that can be installed at a location. Therefore, the
constraint (3.8) can be replaced by the following equation:

pg
i,t ≤ pg

i,t , ∀i ∈DG , (3.13)
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where, pg
i,t is the maximum acceptable DER at bus (i) based on the voltage deviation

constraint. The higher the ∆V , the higher the pg
i,t . To find pg

i,t , we use (3.12) to linearize
constraints (3.2)-(3.6). Using this set of linear equations, the voltage of all buses before DER
installation is obtained. Then, the maximum voltage at each bus is obtained as follows:

Vi,t = |V NDG
i,t |+∆V , ∀i ∈DG , (3.14)

where, Vi,t is the maximum voltage at bus (i) considering the voltage deviation constraint.
For every bus i ∈DG , pg

i,t is obtained by solving the following model:

maximize
pg

i,t

pg
i,t ,

s.t.

(7) and the linearized (2)− (6) using (12), (3.15)

υi,t ≤Vi,t
2
.

Thus, for a given operating point, the HC model is as follows:

maximize
pg

i,t
∑

i∈DG

pg
i,t , (3.16a)

s.t.

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t− pg

j,t + ri jLi j(Pi j,t ,Qi j,t), ∀ j ∈DG , (3.16b)

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t + ri jLi j(Pi j,t ,Qi j,t), ∀ j ∈ {N \DG }, (3.16c)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t−qg

j,t + xi jLi j(Pi j,t ,Qi j,t), ∀ j ∈DG , (3.16d)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t + xi jLi j(Pi j,t ,Qi j,t), ∀ j ∈ {N \DG }, (3.16e)

υ j,t = υ0,t− ∑
(l,k)∈P j,t

2(ri jPi j,t + xi jQi j,t)

+ ∑
(l,k)∈P j

|zi j|2Li j(Pi j,t ,Qi j,t), ∀(i, j) ∈B, (3.16f)

υi,t ≤ υ , ∀i ∈N , (3.16g)

pg
i,t ≤ pg

i,t , ∀i ∈DG . (3.16h)

Occasionally, the base capacity of DERs are given and the aim of HC problem is to determine
the number of DERs at each bus. To address this situation, we need to replace the model of
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DERs in (3.16) as follows:

pg
i,t =Capg

i,tN
g
i,tη

g
i,t , ∀i ∈DG , (3.17)

where, Capg
i,t and Ng

i,t are the base capacity and number of units at bus (i), respectively. This
new model is an integer linear program (ILP) and the results of solving this model is the
number of units that can be installed at each location. To assure that there is at least one DER
unit at each location, we consider the following constraint.

Ng
i,t ≥ 1, ∀i ∈DG . (3.18)

The prerequisite of using the HC linear model (3.16) is knowing the operating point. Note
that the accuracy of the operating point approximation directly affects the results of (3.16).
The difficulty in finding the operating point is that it is the final solution of the model (3.9),
which is the main reason of the linearization. Approximation of the operating point starts
with simplification of the HC model (3.16). Since the nonlinear terms in (3.2)-(3.6) are
much smaller than the other terms, they can be neglected for such studies [97] without
compromising the results. We will come to this point when discussing the results in sec-
tion 3.4.2. Considering this, the HC model (3.16) can be simplified into the following linear
optimization problem, which is independent of the operating point.

maximize
pg

i,t
∑

i∈DG

pg
i,t , (3.19a)

s.t.

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t− pg

j,t , ∀ j ∈DG , (3.19b)

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t , ∀ j ∈ {N \DG }, (3.19c)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t−qg

j,t , ∀ j ∈DG , (3.19d)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t , ∀ j ∈ {N \DG }, (3.19e)

υ j,t = υ0,t− ∑
(l,k)∈P j

2(ri jPi j,t + xi jQi j,t), ∀(i, j) ∈B, (3.19f)

υi,t ≤ υ , ∀i ∈N , (3.19g)

pg
i,t ≤ pg

i,t , ∀i ∈DG , (3.19h)
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Step 1: Solving the 

linear model (19).

Step 2: Solving the 

linear model (16).

Qij 
0

Pij 
0

υij 
0

Fig. 3.1 The flowchart of two-step optimization algorithm.

the linear power flow equation (3.19b)-(3.19f) are called linear DistFlow equations. The
solution of the linear model (3.19) is an approximation of the operating point. In summary,
we solve the HC model (3.9) by using a two-step method explained above, as shown in
Fig. 3.1. It is worth mentioning that the proposed two-step method is applicable for both
balanced and unbalanced systems. However, equations (3.2)-(3.6) present the branch model
of power flow in balance systems. The extension of equations (3.2)-(3.6) for unbalanced
systems could be find in [94].

3.3.2 Stochastic Analysis Framework

In order to consider the impacts of load variability and DERs uncertainties, we develop a
probabilistic framework to estimate the HC. The developed framework has three modules, as
shown in Fig. 3.2. The first module of the framework addresses the uncertainties associated
with type, number, and location of DERs by simulating potential DER expansion scenarios,
which are characterized by using the Monte Carlo simulation. Next, a time series impact
analysis is conducted in Module 2 to consider the impacts of load variation and uncertainty
in DERs generation. Finally, in Module 3, based on the time series analysis, the over-voltage
and HC probability functions are obtained. In the following, the modules of the proposed
framework are explained in detail.

1) DER Expansion Scenarios (Module 1): In this module, multiple DER expansion
scenarios are generated. The number of locations in which DERs could be installed, the
type of DERs, and the location of DERs are three uncertain variables that are needed for
generating the expansion scenarios. The steps for generating scenarios are as follows:
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Module 1: DG Expansion Scenarios

 Step A:  Construct location penetration levels by increasing the 

penetration with a constant step (e.g. 5%).

 Step B: Run Monte Carlo simulation and construct  NTech       

technology combination for each location penetration level.

 Step C: Run Monte Carlo simulation and construct  Nscn  DG 

location combination for each technology combination.

 Step D: Sample from the probability curve of DG size for all DG 

expansion scenarios generated in Step C.

Module 2:Time Series Impact Analysis

Determine normalized DG 

generation for the selected hour

Save the objective function 

value and update vector Ө  

Update the load at each hour
Solve the ILP model using the 

proposed two step method

Build the ILP model (16-18)
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Fig. 3.2 The proposed HC analysis framework.
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• Step A: This step addresses the uncertainty associated with the number of locations in
which DERs could be installed. The minimum number of potential locations for DER
installation is zero and the maximum number is equal to the total number of buses (i.e.,
customers in low voltage (LV) feeders). The ratio of the number of potential DER
location to the number of all potential location is called the location penetration level.
In order to cover a variety of cases, the location penetration is increased by a fixed step
from 0% to 100%. Let Loci%

pen denote the location penetration of i%.

• Step B: The uncertainty associated with the type of DERs is addressed in this step.
To do so, a Monte Carlo approach is used for each location penetration to determine
the share of each technology. As an example, suppose that the location penetration
is 40% and technologies that we want to consider are photovoltaic (PV) and wind.
Our objective in this step is to determine the share of PV and wind technologies. For
instance, it could be [30% PV, 10% wind], [20% PV, 20% wind], or any combination
with the summation of 40%. Since assessing all combinations is not possible, a Monte
Carlo approach is used to generate NTech combinations.

• Step C: This step deals with uncertainty associated with the location of DERs. For
doing so, a Monte Carlo approach is used to simulate Nscn combinations of locations
for each one of NTech technology combinations generated in Step B. Each combination
of locations is selected randomly using a uniform distribution from the pool of potential
DER locations.

• Step D: In this step, a base DER capacity is determined for each combination of DER
locations generated in Step C. The DER base size for each location is determined
based on the load type (commercial or residential) and the corresponding distribution
for the DER size [46].

The location penetration level is increased and the Monte Carlo process is repeated until it
reaches 100% (Loc100%

pen ).
2) Time Series Impact Analysis (Module 2): This module assesses DER impacts in an

hourly interval to include the impacts of DER output uncertainty and load variation. To do so,
the optimization model presented in (3.16)-(3.18) is solved for each DER expansion scenario
generated in Module 1. By solving the proposed ILP model for all h ∈H , a vector Π of
length |H | is obtained for each expansion scenario. The elements of this vector include two
values as follows:

• 1: for indicating that the ILP model does not have a solution, which means that the
scenario at that hour leads to the over-voltage problem.
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• 0: for indicating that the ILP model has a feasible solution.

Vector Π is used to determine the scenarios with over-voltage problem. A scenario causes
over-voltage problem if the vector Π has at least one none-zero element. Vector Θ i% is
defined as follow to show if a scenario would cause over-voltage.

Θ
i%( j) =

{
1 ∑

|H |
i=1 Π(i)≥ 1

0 Otherwise
j ∈ {1...Ni%}, (3.20)

where, Ni% = NTech×Nscn.
3) Drawing Probability Curves (Module 3): We can illustrate the over-voltage and HC

probability curves based on the time series impact analysis. The probability of over-voltage
at each location penetration level is required to draw the over-voltage probability curve.
Therefore, the statistical data (3.21) is obtained, representing in what percentage of the
scenarios of each location penetration level, the voltage constraint is violated.

PrNi% =
∑

Ni%

j=1Θ i%( j)

Ni% ×100%, (3.21)

where, PrNi% is the non-compliance probability of each location penetration level i%. In-
creasing Ni% (i.e., the number of expansion scenarios for each location penetration level i%)
leads to a more accurate probability. If this procedure is conducted for different location
penetration levels, a curve that provides the probability density of over-voltage with respect
to the location penetration level can be obtained.

The HC probability function for each location penetration level at each hour can be drawn
by using time series impact analysis. The higher the Ni%, the more accurate the probability
function. In this chapter, two curves for the HC are drawn.

• Probability density curve: Solving the ILP model for all location penetration levels
results into at most NTotal = 100×Ni% total DER capacity at each hour (it is supposed that
the resolution of the location penetration level is 1%, hence 100 step). The probability density
function can be obtained by using the total DER capacity ranges as the horizontal axes and
the number of cases that have a total DER capacity in a specific range as the vertical axes.

• Cumulative density curve: This curve is based on the probability density curve. It
has a descending trend and shows the probability of having a HC higher than an specific
value.

The proposed method can be used for both LV and medium voltage (MV) feeders. The
only difference is that instead of location penetration level, customer penetration is defined.
customer penetration is the percentage of customers with a DER.
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3.4 Numerical Results

In this section, simulations are carried out to assess the performance of the proposed method-
ology. Initially, the effectiveness of the proposed two-step method for solving the HC
optimization model is demonstrated. Then, the efficacy of the proposed framework in evalua-
tion of both balanced and unbalanced test networks is shown. Finally, the effect of different
technologies on the HC of distribution system is assessed using the proposed framework.

3.4.1 Test Systems

The performance of the proposed methodology is evaluated on a balanced and an unbalanced
distribution networks. The balanced system is a 33 kV feeder in Australia, as shown in
Fig. 3.3. This feeder is the representative of agricultural feeders in Australia, which supplies
agricultural loads such as irrigation pumps or dairies [98]. The unbalanced network is the
IEEE 123-bus test system, as shown in Fig. 3.4. This feeder operates at a nominal voltage
of 4.16kV with a maximum load of 3.378MW [99]. The Australian demand profile is used
to model the load variation in both systems. The load profile is derived from the data made
available by the Australian Energy Market Operator (AEMO) [100]. Normalized PV and
wind generation profiles are derived from [101] and [102], respectively. The distribution for
PV size is shown in Fig. 3.5 [1] and the distribution of small and medium wind generation is
presented in Table 3.1 [103].

Table 3.1 Probability distribution of small and medium size wind turbines

Capacity 0-1.5kW 1.5-15kW 15-100kW 100-500kW

Probability 0.723 0.223 0.041 0.013

3.4.2 The Two-step Algorithm Validation

The performance of the proposed two-step algorithm to solve the optimization model of
the HC is examined on the test system presented in Fig. 3.3. Tables 3.2 and 3.3 present the
maximum DER capacity obtained by two-step algorithm for one and two DER, respectively.
As shown, the obtained HCs by the first step of the proposed algorithm have some differences
with results of the original nonlinear model. This is due to linearizing the nonlinear terms in
equations (3.2)-(3.6). Moreover, using the results of the first step as the operating points for
linearizing the nonlinear terms in the second step (Fig. 3.1) leads to the convergence to the
results of the original model.
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Table 3.2 Locational HC calculated the proposed method at different buses in the agricultural
feeder.

Bus
Substation

voltage (pu)
Original
(MW)

Step 1
(MW)

Step 2
(MW)

82
1.03 35.86 32.77 35.80
1.04 21.33 20.08 21.33
1.05 7.75 7.01 7.75

96
1.03 20.05 18.12 20.03
1.04 13.32 12.38 13.32
1.05 7.04 6.59 7.04

101
1.03 17.83 16.06 17.81
1.04 12.13 11.25 12.13
1.05 6.83 6.39 6.83

110
1.03 9.02 8.62 9.02
1.04 6.69 6.42 6.69
1.05 4.40 4.19 4.40

114
1.03 8.89 8.48 8.89
1.04 6.63 6.36 6.63
1.05 4.41 4.19 4.40

123
1.03 8.51 8.11 8.51
1.04 6.41 6.13 6.41
1.05 4.34 4.14 4.34

127
1.03 6.74 6.47 6.74
1.04 5.22 5.02 5.22
1.05 3.72 3.56 3.72

135
1.03 4.78 4.61 4.78
1.04 3.85 3.71 3.85
1.05 2.92 2.81 2.92

158
1.03 2.41 2.33 2.41
1.04 2.07 2.01 2.07
1.05 1.73 1.68 1.73
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Fig. 3.6 Error of Step 1 and Step 2 in finding the locational HC in the agricultural feeder.

Table 3.3 Maximum DER capacity at buses 114 and 133 of the agricultural feeder.

Substation

voltage (pu)

Original

(MW)

Step 1

(MW)

error

(%)

Step 2

(MW)

error

(%)

1.03

pg
114 8.887 8.48 4.57 8.888 0.013

pg
133 0 0 0 0 0

total 8.887 8.48 4.57 8.888 0.013

1.04

pg
114 6.63 6.35 4.20 6.634 0.04

pg
133 0 0 0 0 0

total 6.63 6.35 4.2 6.634 0.04

1.05

pg
114 4.41 4.19 4.99 4.4 0.25

pg
133 0 0 0 0 0

total 4.41 4.19 4.99 4.4 0.25
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Fig. 3.6 demonstrates the error of the obtained locational HC by the proposed algorithm.
Observe that the error of the first step is highly dependent on the location of DER and it
could be as high as 10 %. Besides, the accuracy of the HC model in the first step increases
by moving away from the substation, i.e., the first step model is more accurate at locations
that are electrically far from the substation. Moreover, it can be seen that the error of
the first step is usually less than 5%, which means that it has enough accuracy unless the
resistances of the lines is low. Note that the error of the second step of the proposed method
is negligible and it is independent from the location of DER. Thus, using the proposed two
steps algorithm significantly improves the accuracy of the model compared to the situation
where the nonlinear terms in (3.2)-(3.6) are ignored.

We also address the sensitivity of the HC models (Step 1 and Step 2) to their parameters.
One of the most important parameters in the HC assessment is the voltage of substation. As
can be seen in Tables 3.2 and 3.3, decreasing the substation voltage can effectively increase
the HC considering the over-voltage issue. Thus, operation strategies such as conservation
voltage reduction (CVR) can have a positive effect on the HC. It is worth mentioning that
substation voltage reduction strategies such as CVR leads to an increase in the HC, where
voltage rise is the limiting factor for HC. However, this strategy is not effective when the
limiting factors are other technical constraints (e.g. power quality and protection issues).

Finally, in this subsection, we assess the effect of network structure and the number of
DERs on the results of HC model. Observe in Table 3.3, that if the goal is to maximize the
DER penetration, it is better to install all the capacity at the closest potential location (electri-
cally) to the substation. To a large extent, this is because the impedance between substation
and this location (i.e., bus 114 in Table 3.3) is smaller than the impedances between substa-
tion and other potential locations of DERs, which means that it can tolerate more reverse
power flow compared to other potential locations before reaching to the maximum voltage
boundary. However, this is not a general rule for all the situations. Also, it can be observed
that the locational HC at Bus 114 is equal to the total allowable DER capacity of buses
114 and 133 (Table 3.3). Generally, in normal distribution feeders, the total penetration of
multiple DER units is almost equal to the maximum penetration level of the nearest location
to the substation. In other words, in a feeder where the main limiting constraint of HC is
over-voltage, increasing the number of DER units does not increase the maximum penetration
level. This is because if the total capacity of DERs in the feeder is greater than the maximum
penetration level of the nearest DER location to the substation, that bus certainly experiences
over-voltage.
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3.4.3 Probabilistic HC Assessment of PVs in the Balanced Test System

The performance of the proposed framework is examined on the Australian feeder shown in
Fig. 3.3. We limit the DER technology to PV in this subsection and we assume that DERs
are operated with unity power factor. Multiple PV expansion scenarios are generated using
the first module of the proposed framework. To do so, the location penetration level is varied
from 1% to 100% with 1% increment step. For each location penetration, 100 PV expansion
scenarios are generated. The PV base size for each one of 100 scenarios is determined using
the distribution curve shown in Fig. 3.5. The generated expansion scenarios are given to
the second module as the input. For each scenario expansion, the HC optimization model is
solved using the proposed two-step algorithm for a year. The required data is provided in
Subsection 3.4.1. In order to verify the importance of the second module (times series impact
analysis) for the HC assessment, this module is performed at two other specific conditions.
Thus, three cases as follows are assessed:

A: Time series assessment of all scenarios for a year: it means that the proposed framework
is performed thoroughly.

B: Assessing all scenarios at maximum generation and minimum load (traditional conser-
vative planning): in this case, all DER expansion scenarios are assessed only at one
point, which is the minimum load and maximum generation. This case is a condition
that distribution system operators (DSOs) consider at the planning stage when a DER
aims to be connected to the distribution system [104]. we called this as the traditional
conservative planning.

C: Assessing all scenarios at maximum generation and minimum load scenario at each
hour: in this case, all DER expansion scenarios are assessed at the minimum load and
maximum PV generation of each hour (from 6 am to 6 pm). In other words, all DER
expansion scenarios are examined at 13 point.

Fig. 3.7 shows the over-voltage probability curve for cases A, B and C obtained by using the
developed framework and the comprehensive power flow (CPF) method. CPF is a Monte
Carlo based method for assessing the integration of DERs in distribution systems. The basic
idea of CPF is generating quite a few DER expansion scenarios and running the power
flow calculation to check if the operation limits of the system are violated. Based on the
results of the power flow for all scenarios, the violation probability curve is obtained. As
shown in Fig. 3.7, the proposed method leads to a similar over-voltage probability curve
as the CPF method. If a DSO does not want to accept any potential problem, the HC
will be considered as the location penetration level that over-voltage probability becomes
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Fig. 3.7 Over-voltage probability curve for cases A, B and C by using the developed and CPF
methods in the agricultural feeder.

higher than zero. In contrast, if the DSO is able to accept some level of potential issues, the
over-voltage probability threshold can be set to a higher value. If DSO does not accept any
risk, the maximum location penetration level for cases A, B and C are 29%, 25% and 24%,
respectively. However, accepting 5% risk increases the maximum location penetration level
for cases A, B and C to 39%, 35% and 35%, respectively. Observe that using cases B and C
for the HC assessment results in underestimating the maximum location penetration level.
Moreover, cases B and C result in a similar probability curve, which indicates that case C is
not a good replacement for case B ( traditional conservative planning).

The advantage of the proposed method over CPF is that it can calculate the HC for each
expansion scenario and at each hour. Given a large number of possible DER expansion
scenarios corresponding to the Monte Carlo simulation of different penetration level, different
HC is likely to be observed. The HC calculated based on the proposed framework resulted in
at most NTotal values. The HC distribution is shown in Fig. 3.8. This curve can be approxi-
mated by using the Gaussian-shape distribution as (3.22) with α = 0.56, µ = 19.97MW and
σ = 6.42MW. It is worth mentioning that the HC of the test system is 3.198MW with 100%
certainty, which is 71.39% of the maximum total load (4.48MW). Fig. 3.8 also presented the
HC in terms of the percentage of load demand provided by the PVs. As it can be seen, up to
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Fig. 3.8 Probability curves of the HC for the agricultural feeder obtained using the developed
framework.

32.47% of the required energy can be provided by PVs with 100% certainty.

HC ∼ α×N(µ,σ2) =
α√

2πσ2
e−

(x−µ)2

2σ2 . (3.22)

Fig. 3.9 demonstrates the effect of voltage deviation constraint on the probability density
function (PDF) of the HC. As shown, the PDF of HC with and without the voltage deviation
constraint is almost the same. Notice that this similarity does not imply that the voltage
deviation constraint is ineffective on the HC. It rather reflects the fact that distributing the
DERs over the system decreases the importance of the voltage deviation constraint.

Finally, it is worth to mention that there is no relationship between the network character-
istics such as minimum and maximum total load and the required parameters for determining
the HC Gaussian distribution. However, as mentioned, the higher the load, the greater the HC.
This means that annual load growth of 2% should cause an increase in the HC of the system.
Fig. 3.10 demonstrates the Gaussian-shape curve of the HC after 3 and 5 years. Observe
how the load growth shifts the HC curve toward right. This implies that if the main limiting
constraint of the HC is over-voltage, the obtained HC becomes more conservative over time.
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Fig. 3.11 Over-voltage probability curve for cases A, B and C using the developed method in
the IEEE 123-bus test system.

3.4.4 Probabilistic HC Assessment of PVs in the Unbalanced Test Sys-
tem

The proposed framework is also examined on the IEEE 123-bus test system. Fig. 3.11
shows the over-voltage probability curve. Similar to the balanced system, the cases B and
C yielded conservative results. As it can be seen, in case A, the voltage problem started
from the location penetration of 15%, which is lower than that of the balanced system. In
other words, the voltage-rise issue in the unbalanced system occurs earlier than that of the
balanced system. Another important output of the framework is the HC distribution, which is
shown in Fig. 3.12. Similar to the balanced system, we can approximate this curve using a
Gaussian-shape distribution given in (3.22) with α = 0.22, µ = 6.71MW (i.e., 1.99 times of
the peak load) and σ = 1.11MW (i.e., 0.33 times of the peak load). Fig. 3.12 also presented
the energy HC of the system. As shown, 17.75% of the required energy can be provided by
PVs with 100% certainty, which is 14.72% less than the balanced system.

Another important index that assessed in the IEEE 123-bus is voltage unbalanced fac-
tor (VUF), which is defined as the ratio of the negative sequence voltage to the positive
sequence voltage. According to the ANSI C84.1 standard, VUF should be less than 3% [105].
Fig. 3.13 shows the box plot of VUF for different location penetration. On each box, the red
central mark is the median, the horizontal edges are the 25th and 75th percentiles, the whiskers
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Fig. 3.12 Probability curves of the HC for the IEEE 123-bus obtained by the developed
framework for PV technology.

extend to the most extreme VUF not considered outliers, and outliers are plotted individually.
As shown in Fig. 3.13, VUF often is in the standard range. In other words, although a high
DER penetration can increase the VUF of the test system, the VUF is not a limiting constraint
for the HC. It can also be seen that unlike the over-voltage issue, increasing the location
penetration decreases the VUF range.

3.4.5 Effect of DER Technology

In order to examine the effect of DER technology on the HC and to show the generality
of the proposed method, we evaluated the HC of the IEEE 123-bus test system for PV and
wind technologies. For doing so, the location penetration is increased from 5% to 100%
with 5% increment step. For each location penetration, 20 PV and wind combination are
generated (e.g., 30% PV and 70% wind). For each technology combination, 100 expansion
scenarios are generated. The PV and wind base sizes for each one of 100 scenarios are
determined using the distribution curve shown in Fig. 3.5 and Table 3.1. Fig. 3.14 shows
the HC probability curve for PV and wind technologies. Observe that the HC curve can be
approximated using a Gaussian-shape distribution as (3.22) with α = 0.31, µ = 9.65MW (i.e.,
2.86 times of the peak load) and σ = 2.88MW (i.e., 0.85 times of the peak load). As shown,
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Fig. 3.13 VUF in the IEEE 123-bus at different location penetration.

if both technologies are considered, the HC of the test system with 100 certainty is 1.33MW,
which is 39.37% of the peak load. Note that if the prospective technology is only PV, the
HC of the system with 100 certainty is 39.02% of the peak load. So, if both wind and PV
are the prospective technologies, the minimum HC of the test system is almost equal to
that of the case in which only PV is the prospective technology. Finally, Fig. 3.15 shows
the HC probability curve of the test system for wind technology. As before, the HC curve
can be approximated using a Gaussian-shape distribution given in (3.22) with α = 0.018,
µ = 12.07MW (i.e., 3.57 times of the peak load) and σ = 0.077MW (i.e., 0.021 times of the
peak load). It is also shown in Fig. 3.15 that 15.37% of required energy can be provided by
wind generation with 100% certainty. It is interesting to observe that changing technology
from PV to wind can decrease the allowable energy penetration from 17.75% to 15.37%.
Thus, the HC that is calculated for an specific type of DER can not be used to show the
HC for other technologies. Fig. 3.16 demonstrates the HC curves of different combinations
of PV and wind technologies. Observe that the HC curve obtained for both PV and wind
technologies is between the HC curve of wind technology and the HC curve of PV technology.
Further, note that how increasing the penetration of wind in the test system shifts the HC
curve toward right.
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Fig. 3.14 Probability curves of for the IEEE 123-bus obtained by the developed framework
for PV and wind technologies together.
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Fig. 3.16 HC probability curves of the IEEE 123-bus for different combination of PV and
wind technologies.

3.5 Summary

Due to uncertainties of loads, output power and locations of DERs, the HC of a system
cannot be considered as a fix value as it varies over time and location of DERs, i.e., even if
we fix the location of DERs, the HC of the system changes over time due to the variations
in loads and output of DERs. Thus, designing a framework to throughly assess the HC
of a system is inevitable. This chapter presented a probabilistic framework based on an
accurate HC model considering the over-voltage and voltage deviation constraints. As for
the HC model, it was shown that using linear DistFlow equations to solve the HC problem
can cause up to 10% error in the results. So, we proposed a two-step algorithm to linearize
the HC model. The derived model has near to zero error, which implies that it converges
to almost the same solution as the nonlinear model. The efficacy of our framework is
demonstrated using an agricultural feeder in Australia and the IEEE 123-bus test system.
The results obtained by the proposed framework are compared with those of the CPF and
traditional conservative methods. It was also shown that the HC can be approximated by a
Gaussian-shape distribution.

The proposed method is also used to assess the effects of voltage deviation constraint,
load growth, network structure, and the DER type on the HC. Following are the conclusions
derived from the simulation results:
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• Although linear DistFlow equations do not have the accuracy of our proposed linear
model, they still can provide a lower bound for the HC. Depending on the characteristics of
the network, the provided lower bound could be close to the actual value of the HC.
• Voltage deviation constraint does not affect the HC probability curve significantly,

which implies that distributing DERs over the system decreases the importance of the
voltage deviation constraint. In other words, the voltage deviation constraint often limits the
locational HC but not the HC.
• The annual load growth of 2% shifts the HC probability curve toward right. So, the

HC calculated now might be a conservative approximation of the HC in the future.
• The minimum energy HC for PVs in the balanced test system is 32.47%, which is

14.72% higher than that of the unbalanced system. It is also observed that VUF, which is an
important index for unbalanced systems does not constrain the HC of the test system.
•DER type has a great effect on the probability curve of the HC. Changing the technology

from PV to wind shifted the mean of the HC probability curve from 1.99 times of the peak
load to 3.57 times of the peak load. Note that although the HC probability curve for wind
technology is higher than that of PV, the minimum energy HC of PV is 2.48% higher than
that of wind technology. This is probably because the PV capacity factor is higher than wind
capacity factor in the test system.



Chapter 4

Distributionally Robust Hosting
Capacity Assessment in Distribution
Systems

4.1 Introduction

In Chapter 3, we presented a modular probabilistic framework to assess the hosting capac-
ity (HC). In the proposed framework, we used a time series analysis, i.e. the second module,
to address the uncertainty associated with the loads and output power of distributed energy
resources (DERs). However, to properly model the uncertainties using the time series analy-
sis, we need to perform it over a long study period, which could be a time consuming process.
In this chapter, we propose a more efficient model to address the uncertainties associated
with loads and output power of DERs. This new model can replace the time series impact
analysis, i.e. the second module, of the HC framework presented in Chapter 3. Further, the
proposed model considers the uncertainties as variables in the optimization problem.

As mentioned in Chapter 1, considering the available historical data, the right approach
to address the uncertainties is a combination of robust and stochastic optimization, i.e.
distributionally robust optimization (DRO). In DRO, we assume that the exact PDFs of
uncertain variables are not available. However, we assume that the PDFs of uncertainties are
in a confidence set. The confidence set can be derived from the historical data. For instance,
the confidence set can be a set of PDFs with common mean and covariance matrix [42]. In
this chapter, we propose a DRO-based method to model the uncertainties associated with
loads and output power of DERs in the HC problem. Further, the DRO HC model is used to
assess whether electric vehicles (EVs) and their charging stations increase the HC. To do so,
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the proposed DRO model is applied to a modified IEEE 33-bus system and the sensitivity
of the HC to the DER technology, the EVs aggregate load, the load of EVs charging station
and historical data has been assessed. The outcome of this chapter is published as a journal
paper1.

The remainder of this chapter is organized as follows: Section 4.2 formulates the problem.
Section 4.3 presents the uncertainty modelling. In Section 4.4, the solution methodology is
described. First, the DRO model is transformed into a joint chance constraint (JCC) problem.
Then, a solution for the corresponding JCC is introduced. Section 4.5 presents the numerical
results and discussion. Finally, the major conclusions are summarized in Section 4.6.

4.2 Mathematical Modelling

The HC is defined as the maximum DER capacity that can be installed in a system without
violating its technical constraints irrespective of DERs’ locations. This implies that DERs’
locations should not be defined as independent variables in the optimization model. This,
however, raises a question on how to address the uncertainty associated with DERs’ locations
in the HC problem. This can be tackled using the HC calculation framework shown in Fig. 4.1.
As it can be seen, it is required to generate a large number of location combinations for DERs.
Then, the maximum DER capacity for different location scenarios can be identified using the
mathematical model. Finally, the minimum of the identified DER capacities for all location
scenarios is defined as the actual HC. The chapter develops a mathematical model to identify
the maximum DER capacity for any sets of DER locations considering EVs. The objective
function of this model is presented as follows:

minimize
Capg

j
∑

j∈DG

−Capg
j , (4.1)

where, DG is the set of buses that have DERs, and Capg
j denotes the installed DER capacity

at bus ( j). The system operation constraints are presented in Sections 4.2.1 and 4.2.2.

1“Distributionally Robust Distributed Generation Hosting Capacity Assessment in Distribution Systems,”
Energies, 2018 [106].
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Fig. 4.1 The HC calculation framework.

4.2.1 Distribution System Model

We already defined most of the variables for modeling distribution systems. However, in
order to make the thesis easy to follow, we reintroduce them here. Consider a radial network,
where N = {0, . . . ,n} denotes the set of buses and DG represents the set of buses that
have a DER (DG ⊂N ). Let B represents the set of all branches and (i, j) or i−→ j as a
branch from bus (i) to bus ( j) in the set B. Let H denotes the set of time periods. For every
bus i ∈N and for all t ∈H , let Vi,t denotes the complex voltage, where υi,t = |Vi,t |2. Let
sd

i,t = pd
i,t + iqd

i,t represents the load at bus (i) at time (t). For every line (i, j) ∈B and for
all t ∈H , zi j = ri j + ixi j denotes the complex impedance, Si j,t = Pi j,t + iQi j,t denotes the
sending-end complex power from bus (i) to bus ( j), and Ii j,t defines the sending-end complex
current from bus (i) to bus ( j). Let sg

i,t = pg
i,t + iqg

i,t denotes the generation complex power at
bus (i) at time (t), and sEV

i,t = pEV
i,t + iqEV

i,t represents the EV aggregated complex demand at
bus (i) at time (t). For every bus i ∈DG , η

g
i,t represents the capacity factor at time period (t).

Let P j defines the set of lines on the path from substation to bus (j). The linear power flow
equation for branch (i, j) is formulated as follows [42, 86]:

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t− pg

j,t + pEV
j,t , ∀ j ∈N , ∀t ∈H , (4.2)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t−qg

j,t +qEV
j,t , ∀ j ∈N , ∀t ∈H , (4.3)

υ j,t = υ0,t− ∑
(l,k)∈P j

2(rlkPlk,t + xlkQlk,t), ∀ j ∈N , ∀t ∈H , (4.4)

pg
i,t = η

g
i,tCapg

i ,

qg
i,t = tan(φi,t)pg

i,t ,
∀i ∈DG , ∀t ∈H , (4.5)
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where, φi,t is the power factor angle at bus (i) at time period (t).

4.2.2 Technical Constraints

The following technical constraints are considered for determining the HC:

1- Steady State Voltage Constraint

υ ≤ υi,t ≤ υ , ∀i ∈N , ∀t ∈H , (4.6)

where, υ and υ are the square of minimum and maximum voltage limits, respectively.

2- Thermal Capacity Constraints

The apparent power flow of lines and substation transformer is limited by a higher bound as
follows:

P2
i j,t +Q2

i j,t ≤ Si j
2
, ∀(i, j) ∈B, ∀t ∈H , (4.7)

where, Si j is the maximum apparent power of line (i, j). As it has been proposed in Sec-
tion 2.3.2, the nonlinear constraint (4.7) can be substituted by a set of linear constraints as
follows:

[cos(θ)+ sin(θ)]Pi j,t +[cos(θ)− sin(θ)]Qi j,t ≤
√

2 Si j, ∀(i, j) ∈B, ∀t ∈H , (4.8)

where, θ is the rotation angle in the rotation matrix.

3- Short Circuit Level (SCL) Constraint

One of the important characteristics of distribution systems is SCL, which is defined as the
maximum acceptable fault level. A basic requirement for connecting DERs to the networks
is that the SCL in presence of DERs should remain below the designed SCL [107]. It is
shown in [108] that the SCL can be modelled as follows:

∑
j∈DG

asclCapg
j +SCLsub ≤ SCLRated, (4.9)

where, ascl is the dependency of SCL to the capacity of the DER at bus ( j), SCLsub is the
SCL at substation without DERs, and SCLRated is the rated SCL at substation. It is worth
mentioning that ascl depends on the structure of the system and the DER type; e.g., ascl is
very small for photovoltaic systems (PVs) [109].
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4.2.3 Deterministic Problem Formulation Summary

The deterministic HC problem is formulated as follows:

minimize
Capg

j
∑

j∈DG

−Capg
j ,

s.t. (4.2)− (4.6),(4.8),(4.9) (4.10)

In practice, the output power of DERs and the loads are uncertain variables and modelling
them as deterministic variables is not realistic. Therefore, the HC optimization model should
include such uncertainties, as explained in the next subsection.

4.2.4 Distributionally Robust Optimization (DRO) HC Model

The uncertainties of the DER output (pg
i,t), load (pd

i,t), and EVs aggregated demand (pEV
i,t ) at

bus (i) are modelled as follows: 
η

g
i,t = η̂

g
i,t +ξ

g
i,t

pd
i,t = p̂d

i,t +ξ d
i,t

pEV
i,t = p̂EV

i,t +ξ EV
i,t

, (4.11)

where, ξ
g
i,t , ξ d

i,t , and ξ EV
i,t model the prediction error of the DER output, load and aggregated

demand of EVs, respectively; η̂
g
i,t , p̂d

i,t and p̂EV
i,t are the predicted values of η

g
i,t , pd

i,t and
pEV

i,t , respectively. Considering the definition of subtree T j, substituting (4.11) in (4.2)–(4.5),
and denoting ξ = {ξ g

i,t ,ξ
d
i,t ,ξ

EV
i,t } to the vector of uncertain variables, the power flow state

variables (Pi j,t ,Qi j,t ,υ j,t) can be written as functions of Capg and ξ . Thus, all constraints
can be expressed as follows:

Geq
k (Capg,ξ ) = 0, ∀k ∈ C eq, (4.12)

Gk (Capg,ξ )≤ 0, ∀k ∈ C , (4.13)

where, C eq and C are the sets of equality and inequality constraints for the HC problem;
Capg ∈ Rn is the vector of DER capacities in distribution system. Hence, the uncertain HC
model is presented as follows:

minimize
Capg

j
∑

j∈DG

−Capg
j ,

s.t. (4.14)
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Geq
k (Capg,ξ ) = 0, ∀k ∈ C eq,

Gk (Capg,ξ )≤ 0, ∀k ∈ C .

To immunize the HC model (4.14) against the uncertainty vector, ξ , we adapt a distribution-
ally robust approach. In this approach, a risk level is defined to adjust the conservatism of the
solution. From a modelling prospective, the distributionally robust HC problem is defined as
follows:

minimize
Capg

j
∑

j∈DG

−Capg
j ,

s.t. (4.15)

inf
fdf∈Dφ

{
Pr

ξ∼ fdf
[T (Capg,ξ )]

}
≥ 1− τ,

where, T (Capg,ξ ) =

Geq
k (Capg,ξ ) = 0 ∀k ∈ C eq

Gk (Capg,ξ )≤ 0 ∀k ∈ C
, τ is the risk level, and Dφ is the

confidence set; Pr [.] represents the probability distribution induced by ξ . The next step is
modelling the uncertainty vector, ξ , and the confidence set, Dφ , which is detailed in the next
section.

4.3 Uncertainty Modelling

In this section, the uncertainties associated with the outputs of DERs, loads and aggregated
demands of EVs as well as the confidence set are modelled based on the historical data.
Herein, the generation technologies are PV, wind, and biomass.

Uncertainty Modelling of PV Generation

The stochastic variations of PVs from their predicted output values follow a Beta distribu-
tion [110]. This distribution, defined by two shape parameters, αb and βb, enables us to
represent the prediction error of a predicted output power, p̂g

i,t , with the normalized predicted
output power and a standard deviation, which varies with η̂

g
i,t . The Beta function for mod-

elling the occurrence of an output power, x, if a prediction value, p̂g
i,t , has been forecast, is as

follows:
f
η̂

g
i,t
(x) = xαb−1(1− x)βb−1. (4.16)
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The shape parameters αb and βb are related to the normalized predicted output power and
variance as follows:

η̂
g
i,t =

p̂g
i,t

Capg
i
=

αb

αb +βb
, (4.17)

σ
2
b =

αb.βb

(αb +βb)2.(αb +βb +1)
. (4.18)

The historical data can provide η̂
g
i,t and σ2

b . Thus, αb and βb can be calculated by using (4.17)
and (4.18).

Uncertainty Modelling of Wind Generation

A Beta function is justified to model the prediction error of the wind power [111]. The
relation between the parameters of Beta distribution (i.e., αb and βb) and the normalized
predicted output power and variance are presented in (4.17) and (4.18).

Uncertainty Modelling of Biomass Generation

The biomass DERs are considered as firm generation. Thus, the output powers of such DERs
are considered constant at their rated capacities [112].

Uncertainty Modelling of Load

Load uncertainty is usually modelled by a normal distribution, in which, the mean value is
the forecast load and the standard deviation is set to be 2% of the mean value [113].

Uncertainty Modelling of EV Demand

The demand of EVs depends on the number of EVs, their state of charge (SoC), charging
start time and its duration. These variables are uncertain, so the overall charging demand of
EVs is uncertain as well. Considering the charging behavior of EVs, the overall demand can
be categorized as follows:

–Overall Charging Demand of EVs in a Local Residential Community

It was shown in [114, 115] that the aggregated demand of EVs in a residential community
follows a normal distribution at each hour, and the average and standard deviation of the
distribution depend on the number of EVs and the transportation data of the area.
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–Overall Charging Demand of an EV Charging Station

The demand of a charging station depends on the number of EVs that arrive in different time
intervals, the duration of a charging process and the charging power profile [114, 116]. It
was shown in [114] that the demand uncertainty of a charging station can be modelled by
using a Weibull distribution.

4.3.1 Modelling the Confidence Set

A challenging difficulty of handling the uncertainties in HC optimization is the accessibility
to the exact PDFs. Since the historical data is limited or there might be not much trust in it,
assuming the perfect knowledge about the PDFs of uncertainties is unrealistic. To address
this, an ambiguity set of distributions can be used. A common method to create an ambiguity
set exploiting the empirical distributions is φ−divergence, which is defined as follows:

Dφ ( fdf∥ fdf,0) =
∫

Ω

φ

(
fdf(ξ )

fdf,0(ξ )

)
fdf,0(ξ )dξ , (4.19)

where, fdf and fdf,0 are the actual and empirical density functions, respectively; ξ ∈ RK

represents a K-dimensional random vector defined on a probability space, Ω, and φ : R−→R
is a convex function on R+. We refer the readers to [117] for more details on characteristics
of φ−divergences. One of the most common used members of the φ−divergence families is
Variation Distance, which is defined as:

φVD(x) = |x−1| f or x≥ 0, (4.20)

Based on the φ−divergences, a confidence set can be built as follows:

Dφ =
{
CD ∈M+ : Dφ ( fdf∥ fdf,0)≤ ψ, fdf = dCD/dξ

}
, (4.21)

where, M+ represents the set of all cumulative density functions (CDFs), and ψ denotes the
risk-aversion level. The higher the risk-aversion level (ψ) is, the bigger the ambiguity set and
the more conservative the result of the optimization model would be. However, as compared
to uncertainty sets in the RO or the moment-based ambiguity sets, the confidence set, Dφ ,
can more accurately depict the profile of PDFs, and so provides a less conservative result.
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4.4 Solution Methodology

To solve the HC problem (4.15), we convert it to an equivalent JCC optimization by employ-
ing a theory presented in [117]. Then, the sample average approximation is used to solve
the equivalent JCC [118, 119]. Before presenting the equivalent JCC problem, we need to
review the definition of conjugate duality. For a given function g :R−→ R, the conjugate
g∗:R−→ R∪{+∞} is defined as follows:

g∗(t) = sup
x∈R
{tx−g(x)} , (4.22)

Based on the properties of the conjugate of φ−divergence functions, we can have the
following definition [117]:
Definition 1: For a convex function φ : R −→ R that φ(1) = 0 and φ(x) = +∞ ∀x < 0,
define:

1 : m(φ∗) := sup{m ∈ R : φ∗is a finite constant on (−∞,m]}

2 : m(φ∗) := inf{m ∈ R : φ∗(m) = +∞}

4.4.1 Equivalent JCC

Let PR0 (T (Capg,ξ )) be the probability distribution defined by empirical PDF fdf,0. Then,

the distributionally robust chance constraint, inf
f∈Dφ

{
Pr

ξ∼ f
[T (Capg,ξ )]

}
≥ 1− τ , can be

reformulated equivalently as a JCC [117] given in (4.23):

PR0 (T (Capg,ξ ))≥ 1− τ
′
+, (4.23)

where,

τ
′
= 1− inf

zz > 0, π× zz≤ ℓφ

m(φ∗)≤ zz0 + zz≤ m(φ∗)

{
φ∗(zz0 + zz)− zz0− τ× zz+ψ

φ∗(zz0 + zz)−φ∗(zz0)

}
,
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Table 4.1 Value of ℓφ , m (φ∗) and m (φ∗) for variation distance φ -divergence.

Divergences ℓφ m(φ∗) m(φ∗)

Variation distance 1 -1 1

where, zz0 ∈ R, τ
′
+ = max

{
τ
′
,0
}

for τ
′ ∈ R, ℓφ = lim

x−→+∞

(
φ(x)

x

)
, and

π =


−∞ Leb{[ fdf,0 = 0]}= 0,

0
Leb{[ fdf,0 = 0]}> 0 and

Leb
{
[ fdf,0 = 0]\T (Capg,ξ )

}
= 0,

1 o.w,

where, Leb{·} is the Lebesgue measure on Rk and [ fdf,0 = 0] := {ξ ∈ Ω : fdf,0(ξ ) = 0};
Lebesgue measure is an extension of the classical notions of length, area and volume to sets
of k-dimensional Euclidean space. For the reformulated distributionally robust HC presented
in (4.23), the value of ℓφ , m(φ∗), and m(φ∗) for variation distance φ−divergence is presented
in Table 4.1.

Therefore, if we have a function τ(τ
′
+,φ ,ψ) that maps the τ

′
+ to the original risk level, τ ,

for the given tolerance, ψ , and φ−divergence, it can be stated that if (4.23) is satisfied by

some Capg, then inf
f∈Dφ

{
Pr

ξ∼ f
[T (Capg,ξ )]

}
≥ 1−τ(τ

′
+,φ ,ψ) is held for φ and ψ . However,

we still need to know how to obtain the τ
′
+ and the mapping function. It was shown that the

worst-case probability bound of inf
f∈Dφ

{
Pr

ξ∼ f
[T (Capg,ξ )]

}
is equal to the optimal value of

the following optimization problem:

minimize
r,s,tt>0

ϖ × r+PR0× s,

s.t.

ϒ× ℓφ × r+PR0×φ(s)+(1−PR0)×φ(tt)≤ ψ, (4.24)

ϒ× r+PR0× s+(1−PR0)× tt = 1,
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where, we let PR0 = PR0 (T (Capg,ξ )) for notation brevity, and

(ϖ ,ϒ) =



(0,0) Leb{[ fdf,0 = 0]}= 0 or ℓφ =+∞,

(1,1)
ℓφ ≤+∞, Leb{[ fdf,0 = 0]}> 0 and

Leb
{
[ fdf,0 = 0]\T (Capg,ξ )

}
= 0,

(0,1)
ℓφ ≤+∞, and

Leb
{
[ fdf,0 = 0]\T (Capg,ξ )

}
> 0,

this follows that the mapping function τ(τ
′
+,φ ,ψ) can be defined as the optimal objective

value of (4.24) with setting PR0 to be 1−τ
′
+. As we already know the upper and lower limits

of the new risk level, τ
′
+, it can be evaluated using a bisection line search algorithm, as given

in Algorithm 1.

Algorithm 1: Bisection line search algorithm for τ
′
+

Input: ε ,τ
Output: τ

′
+

1 Step1: Set L←− 1− τ , U ←− 1, and ε ←− 10−6 ;
2 Step2: if U−L≥ ε then
3 go to step3;
4 else
5 τ

′
+←− 1−U ;

6 stop;

7 Step3: (I) solve (4.24) with PR0←− (U +L)/2
(II) record the optimal solution (r̂, ŝ);

8 Step4: if ϖ r̂+(U +L) ŝ/2≥ 1− τ then
9 update U ←− (U +L)/2;

10 else
11 update L←− (U +L)/2;
12 go to Step2;

In this section, we converted the distributionally robust HC model into a JCC optimization,
which is much simpler than the original HC problem. However, we still need to solve the
equivalent JCC problem presented in (4.23). In the next section, we exploit sample average
approximation (SAA) technique to solve the JCC problem.
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4.4.2 Sample Average Approximation

Due to the intractability of JCC programs, we use the sample approximation in which the
distribution of the random vector ξ is replaced with the empirical distribution obtained
from the historical data. In the SAA method, an approximation problem, which is based
on an independent Monte Carlo samples of the uncertainty vector, is solved. To simplify
the presentation, we replace the constraints set T (Capg,ξ ) with a real-valued function G as
follows:

G(Capg,ξ ) := max {T (Capg,ξ )} . (4.25)

Thus, the JCC HC problem can be represented as:(
P

τ
′
+

)
z∗

τ
′
+
= min

{
Ob j (Capg) : Capg ∈ X

τ
′
+

}
, (4.26)

where,
X

τ
′
+
=
{

Capg ∈ XX : Pr{G(Capg,ξ )≤ 0} ≥ 1− τ
′
+

}
, (4.27)

where, XX ⊂ Rn represents a deterministic feasible region. Let ξ 1,ξ 2, · · · ,ξ N be N inde-
pendent Monte Carlo samples of the uncertainty vector ξ . Then, for γ ∈ [0,1), the sample
approximation problem is defined as follows:(

PN
γ

)
ẑN

γ = min
{

Ob j (Capg) : Capg ∈ XN
γ

}
, (4.28)

where,

XN
γ =

{
Capg ∈ XX :

1
N

N

∑
i=1

I(G(Capg,ξ )≤ 0)≥ 1− γ

}
, (4.29)

where, I(·) is the indicator function, which takes value one when the argument is true and
zero otherwise;

(
P

τ
′
+

)
, and

(
PN

γ

)
are referred as the true and SAA problems, respectively. It

can be proved that if
(

P
τ
′
+

)
has an optimal solution, then:

Pr
{

ẑN
γ ≤ z∗

τ
′
+

}
≥ ρ

(
γ,τ

′
+,N

)
, (4.30)

where,

ρ

(
γ,τ

′
+,N

)
=
⌊γN⌋

∑
i=0

(
N
i

)(
τ
′
+

)i(
1− τ

′
+

)N−i
, (4.31)

If γ > τ
′
+, then:

Pr
{

ẑN
γ ≤ z∗

τ
′
+

}
≥ 1− exp

{
−2N

(
γ− τ

′
+

)2
}
. (4.32)
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This means that if γ > τ
′
+, the solution of SAA problem, i.e.

(
PN

γ

)
, is a lower bound to the

solution of the actual JCC problem, i.e.
(

P
τ
′
+

)
. However, the required sample size, i.e. N,

could be really high. A good approach to avoid a very high sample size is using M sets of N
independent samples. Using M set of N independent samples of ξ , the lower bound that is
valid with confidence 1−χ can be obtained using Theorem 1.
Theorem 1: If χ ∈ (0,1), γ ∈ [0,1), N, H, and M be positive integer variables such that
H ≤M and,

H−1

∑
i=0

(
M
i

)(
ρ

(
γ,τ

′
+,N

))i(
1−ρ

(
γ,τ

′
+,N

))N−i
≤ χ, (4.33)

then,
Pr
{

ẑN
γ,[H] ≤ z∗

τ
′
+

}
≥ 1−χ, (4.34)

where, ẑN
γ,[H] is the optimal value of the set H such that ẑN

γ,[1] ≤ ·· · ≤ ẑN
γ,[H] ≤ ·· · ≤ ẑN

γ,[M] [118].

Other than identify a lower bound, SAA problem, i.e.
(

PN
γ

)
, could also converge to the

optimal solution of the actual JCC problem, i.e.
(

P
τ
′
+

)
. It is proven that if γ < τ

′
+, the feasible

region of the
(

PN
γ

)
will be a subset of the feasible region of the

(
P

τ
′
+

)
. It is also proven that

if 1) γ = τ
′
+, 2) the set XX is compact, 3) the function f (Capg) is continuous, 4) G(Capg,ξ )

is a Caratheodory function, and 5) there is an optimal solution Capg of the true problem such
that for all ε > 0 there is Capg ∈ XX in ∥Capg−Capg∥ ≤ ε and Pr{G(Capg,ξ )≤ 0} ≥
1− τ

′
+, then, ẑN

γ −→ z∗
τ
′
+

[119]. Thus, under aforementioned condition, the solution of

SAA problem would converge to the solution of the actual JCC problem. The sample
approximation problem (4.28) is reformulated as a mix-integer problem as follows:

minimize
Capg

j
∑

j∈DG

−Capg
j ,

s.t.

G
(

Capg,ξ j
)
≤M jB

spl
j ∀ j ∈ {1,2, · · · ,N} ,

N

∑
j=1

Bspl
j ≤ γN, (4.35)

Bspl
j ∈ {0,1}∀ j ∈ {1,2, · · · ,N} ,

where, Bspl
j is a binary variable and M j is a large positive number.
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4.5 Numerical Results

In this section, simulations are carried out to assess the performance of the proposed method-
ology. Firstly, the modified IEEE 33-bus network is presented in Subsection 4.5.1. Then, the
efficacy of the proposed method is evaluated in Subsection 4.5.2.

4.5.1 Test System

The performance of the proposed method is evaluated on the modified IEEE 33-bus system,
shown in Fig. 4.2. The bus 1 is connected to the 33kV grid using a Dy transformer with
8.5% reactance. The SCL and the rated SCL at the 33kV side are 200MVA and 250MVA,
respectively. The system nominal voltage is 12.66kV.

1 2

19

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3332313029282726252423

20 2221

3

:Residential Loads :Commercial Loads:Industrial Loads

Fig. 4.2 The modified IEEE 33-bus distribution system.
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Fig. 4.3 The daily PV, wind, aggregated EVs, charging stations and load normalized profiles.

There are four candidate sites for DERs, i.e., DG = {15,22,25,32}. There are two
charging stations at buses 26 and 30. Additionally, the charging demand of EVs in the
residential area is aggregated at buses 6 and 13. The detail description of the test system is
presented in [91]. To have a real situation, three load models (i.e., industrial, commercial,
and residential) are considered, as shown in Fig. 4.2. The PV and wind generation profiles,
the aggregated EVs charging demand in residential area, the EV charging station demand
curve and the load profiles are provided in Fig. 4.3. The PV output profile and the residential,
commercial, and industrial load profiles are general profiles that are derived from [18]. The
aggregated EVs demand profile is derived from [120, 121], which are based on the National
Household Travel Survey (NHTS). As for the demand of charging stations, the obtained
profile using the NHTS data provided in [116] is used. Since the NHTS data presents the
driving behavior of American public, the wind generation profile is derived from the data
provided for the continental United States in [122]. The presented curves in Fig. 4.3 are
normalized multipliers. Please note that basic values of DERs and loads are the capacity of
DERs and the nominal loads, respectively. The basic value for charging stations’ demand is
224kW and for aggregated demand of residential EV is 285kW.

4.5.2 Simulation Results and Discussions

The proposed DRO-based method is examined on the IEEE 33-bus system for the four cases
as follows:

• PV-HC: All DERs are PV systems.
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• Wind-HC: All DERs are wind generators.

• Biomass-HC: All DERs are biomass generators.

• Combined-HC: The DERs at buses 15 and 32 are PV units, and the DERs at buses 22
and 25 are wind and biomass generators, respectively.

Fig. 4.4 shows the estimated HC of different generation technologies for different risk levels.
Observe that the HC grows by increasing the risk level, which indicates that looser security
requirement leads to a higher HC. Furthermore, as can be seen in Fig. 4.4, the HC curve
slope depends on the DER technology. For instance, accepting 20% security risk, increases
the HC by 2.48%, 20.3% and 1.17% for PV, wind, and biomass technologies, respectively.
This implies that accepting a higher risk to increase the HC of the system is not a good idea
if the DERs technologies are PV and biomass.
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Fig. 4.4 The HC obtained via the proposed DRO-HC method with different risk levels for
different technologies including: (a) PV; (b) wind; (c) biomass; and (d) combination of PV,
wind and biomass.

An important factor that affects the estimated HC of the system is the existence of the
historical data. Intuitively, as the sample size of historical data increases, the empirical
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distribution becomes closer to the actual distribution. Thus, the conservativeness of the HC
estimation decreases. In DRO-based method, ψ is the parameter to present the value of data.
The higher the number of samples, the more accurate the empirical distribution, the smaller
the risk-aversion level, ψ , and the smaller the confidence set, Dφ . Fig. 4.5 demonstrates
the effect of risk-aversion level (hence historical data) on the HC for different technologies.
As it can be seen in Fig. 4.5, the shortage of historical data increases the conservativeness
of the HC estimation. For instance, the shortage of data decreases the estimated HC for
PV, wind, and biomass technologies by 3.09%, 14.52% and 2.06%, respectively. Observe
that the value of data in the test system for wind technology is much higher than that of
PV or biomass technologies. Furthermore, as the slope of HC curves for small values of
risk-aversion level (i.e., ψ ∈ [0%,5%]) is small, increasing the size of historical data to get
a more accurate empirical distribution does not have a tangible effect on the estimated HC.
As shown in Fig. 4.5, 5% error in empirical distributions only decreases the HC by 0.21%,
1.41%, and 0.11% for PV, wind, and biomass technologies, respectively.
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Fig. 4.5 The value of data for the HC obtained via the proposed DRO-HC method with τ =
10% for different technologies including: (a) PV; (b) wind; (c) biomass; and (d) combination
of PV, wind and biomass.
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A prospective technology that may affect the HC of a system is EVs. Fig. 4.6 indicates
the effect of EVs’ aggregated demand on the HC. Observe that increasing the peak value
of EVs’ aggregated demand to 640kW can only increase the HC of the system by 0.29%,
0.25%, and 0.13% for PV, wind and biomass technologies, respectively. Thus, the aggregated
impact of EV loads on the HC of the system is not tangible. This is because the HC reaches
its maximum value during time period t = 11 for PV, t = 5 for wind, t = 5 for biomass and
t = 9 for combined generation. We will call these periods as the critical time periods. During
critical time periods, the normalized aggregated demand of residential EVs is below 10%,
which means that increasing the EVs cannot effectively increase the load. To demonstrate
that the concluded result does not depend on the aggregation points of EVs, the sensitivity
of the HC to the location of aggregated EVs demand is also presented using error bars in
Fig. 4.6.
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Fig. 4.6 The effect of aggregate demand of residential EVs on the HC obtained via the
proposed DRO-HC method with τ = 1% for different technologies including: (a) PV; (b)
wind; (c) biomass; and (d) combination of PV, wind and biomass.

Observe that changing the location of aggregated demand of residential EVs deviates
the obtained HC by 0.068%, 0.072%, and 0.032% for PV, wind, and biomass technologies,
respectively. In other words, irrespective of locations that demands of residential EVs are
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aggregated, increasing the peak value of aggregated EVs demand does not increase the HC,
effectively.

Finally, the effect of charging stations’ demands on the HC is assessed. To do so, the
peak value of charging stations’ demands is varied from 0kW to 480kW, as shown in Fig. 4.7.
Observe that increasing the demand of charging stations can linearly increase the HC of
the system. However, the rate of increase in the HC depends on the generation technology.
Increasing the peak value of charging stations’ demands from 0 to 480kW grows the HC
by 1.81%, 0.15%, and 0.1% for PV, wind, and biomass technologies, respectively. This is
because the critical time period depends on the DERs technologies. The charging station
demand profile at critical time period for PV, wind, biomass, and combined generations are
58.26%, 1.83%, 1.83%, and 27.06%, respectively. Since the demand profile of charging
stations during the critical time period of PV generation is higher than that of other technolo-
gies, the charging stations’ demands have a higher effect on the HC of the system for PV
generation.
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Fig. 4.7 The effect of charging stations’ demands on the HC obtained via the proposed
DRO-HC method with τ = 1% for different technologies including: (a) PV; (b) wind; (c)
biomass; and (d) combination of PV, wind and biomass.
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4.6 Summary

In this chapter, a DRO-based method is proposed to assess the HC of distribution networks.
In the proposed method, the empirical distributions of uncertain variables are used to define
a confidence set. The more accurate the empirical distribution is, the smaller the confidence
set and the less conservative the obtained result would be. The effectiveness of the proposed
method was examined on the modified IEEE 33-bus system and the effects of risk level
and size of historical data on the HC of the system were assessed. It was demonstrated
that the proposed method yields in a less conservative solution by increasing the risk level.
However, the increase in the HC by accepting a higher risk level depends on the DER type.
For instance, accepting 20% risk level can increase the HC of the system by 2.48%, 20.3%
and 1.17% for PV, wind and biomass technologies, respectively. Thus, accepting a higher risk
level to increase the HC of the test system may not be a good idea if the DERs technologies
are PV and biomass. As for the historical data, it was observed that shortage of data can
exponentially increase the conservativeness of the estimated HC. For instance, the shortage
of historical data decreased the estimated HC for wind technology up to 14.52%.

The proposed method is also used to assess the effects of the aggregated residential EVs
and charging stations’ demand on the HC for different DER technologies. Following are the
conclusions derived from the simulation results:
• Although aggregated demand of residential EVs increases the peak load of the distri-

bution system, it does not affect the HC significantly. This is because the HC of the system
reaches its maximum value during the time periods that the aggregated demand of EVs is
below 10% of its peak value. This may vary depending on EVs behavior in the future.
• The effect of charging stations’ demand on the HC depends on the DER technology. If

DERs are PV units, increasing the charging stations’ demand to its maximum increases the
HC up to 1.81%. Nevertheless, it cannot effectively increase the HC of the system if DERs
are wind and biomass based.



Chapter 5

Photovoltaic Hosting Capacity
Sensitivity to Active Distribution
Network Management

5.1 Introduction

As discussed in Chapter 1, one approach to improve the hosting capacity (HC) in distribution
systems is controlling the active and reactive power of distributed energy resources (DERs).
Different local control strategies have been proposed to alleviate the over-voltage issue by
curtailing the output power of DERs and/or absorbing reactive power [45, 50, 51, 5, 52].
However, a considerable part of the existing literature has focused on identifying the HC
without considering the impacts of control schemes. Further, most of the studies that focused
on increasing the HC using control schemes are hard to generalize as their finding are specific
to the case studies, albeit having real results. There are a few studies that attempted to
assess the effectiveness of the control schemes in increasing the HC in multiple distribution
systems [7, 9]. However, they either modelled distribution systems as balanced systems or
focused on medium voltage (MV) distribution systems. Besides, the number of test systems
assessed in those studies is limited, which implies there is a need for more comprehensive
studies.

Voltage control schemes in general and in particular local Volt-Var control schemes, are
accompanied with several challenges including voltage oscillations [123, 124]. Therefore,
integrating local Volt-Var controllers in power flow equations might result in an oscillatory
behavior in the system. Convergence to the equilibrium point would be time-consuming as it
requires running many power flow iterations. For instance, Fig. 5.1 shows a simple radial
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Fig. 5.1 Test system to illustrate the oscillation of local Volt-Var controllers.

Fig. 5.2 The convergence of reactive power with Volt-Var controllers.

distribution system, where phtovoltaic (PV) systems utilize the conventional Volt-Var droop
control recommended by the IEEE 1547 standard [55]. As shown in Fig. 5.2, the reactive
power of PV systems (QPV) oscillates and reaches an equilibrium point after 30 power flow
iterations. To the best of the authors’ knowledge, all existing studies that assessed the impacts
of control schemes on the HC of a set of distribution systems integrated control schemes
in power flow equations. Therefore, they would require numerous power flow iteration to
identify the HC. Hence, they are computationally cumbersome. Thus, there is a need to
develop a methodology to assess the effectiveness of control schemes in increasing the HC of
distribution systems. Further, to address the diversity of the characteristics of LV networks, a
high number of LV systems should be assessed.
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In Chapters 2, 3 and 4, the HC has been assessed without considering active network
management (ANM) schemes. In this chapter, we develop an optimization-based framework
to assess the impact of ANM schemes on increasing the photovoltaic HC (PVHC). To do
so, the ANM schemes are modelled as linear equality and inequality constraints in the
optimization model. Further, unlike most studies, the network is modelled as an unbalanced
system in the optimization problem. Moreover, a mathematical definition of minimum PVHC
is laid out based on the solution of the developed optimization model. The main advantage of
this method over the existing power flow method is that it converges to the solution without
requiring more than one iteration. To cover the diversity in the characteristics of distribution
systems, the proposed method is used to examine the effects of ANM schemes on increasing
the PVHC on 128 LV UK feeders. Further, the total annual energy losses is defined as an
index to assess the PV-based ANM schemes from an economic perspective. Finally, the
sensitivity of the results to the R/X ratio of the feeders is assessed. The outcome of this
chapter is presented as a journal paper, which is currently under reviewed1.

The remainder of this chapter is organized as follows: Section 5.2 describes the optimization-
based framework to determine the PVHC. The problem formulation is presented in Sec-
tion 5.3. Section 5.4 presents characteristics of the test feeders, as well as the numerical
results and discussion. Finally, Section 5.5 summarizes the chapter.

5.2 Probabilistic Framework

In practice, quantifying the number, location, and capacity of PV systems is difficult. To
properly model these uncertain variables, a stochastic framework as shown in Fig. 5.3
is developed. The framework includes three modules. The first module addresses the
uncertainties associated with the number and location of PV systems by defining expansion
scenarios. The second module addresses the uncertainties associated with the loads and
output power of PV systems by solving the developed optimization model (5.48) in a time
series simulation. Then, the minimum PV hosting capacity (MPVHC) is identified based on
the objective function values and active power curtailments (APCs) calculated in the second
module. In the following, these three modules are explained in details.

Module 1) PV Expansion Scenarios: The number, location and size of PVs are three
uncertain variables that depend on the costumers’ decision. If these variables are considered
as the decision variables, the PVHC optimization model converges to a set of decision
variables that would result in the maximum PVHC. However, based on the definition,

1“Photovoltaic Hosting Capacity Sensitivity to Active Distribution Network Management,” IEEE Transac-
tions on Power Systems, 2019 [125].
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Fig. 5.3 The proposed PVHC analysis framework.

identifying the MPVHC in a distribution system is more desirable. Thus, an acceptable
method to deal with this situation is assessing the PVHC by generating a high number of
scenarios. The steps for generating the scenarios are as follows:

• Step A: This step addresses the uncertainty associated with the number of PV systems
that could be installed. The minimum number of PV installation is zero and the
maximum number is equal to the total number of customers. To cover a wide range of
scenarios, the location penetration level (LPL), i.e. the ratio of the number of potential
PV location to the total number of customers, is increased by a fixed step from 1% to
100%.

• Step B: To address the uncertainty associated with the location of PV systems, a Monte
Carlo approach is used to generate Nscn combinations of locations for each one of
LPLs defined in Step A. Each combination is generated by random selection from the
pool of all customers.

• Step C: The base capacity of each of the combinations defined in Step B can be
determined by using the distribution function for the size of PV systems [96].

• Step D: Considering the base capacity determined in Step C, the total installed capac-
ity (TIC) for each scenario is calculated.

Module 2) Time Series Impact Analysis: This module addresses the uncertainties associated
with the loads and output power of PV systems. The module is designed to assess whether
the generated scenarios in Module 1 violates the operational constraints of the system over
the study period or not. The core of this module is an optimization model, in which the
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operation criteria are modelled as equality and inequality constraints. Thus, the solution of
this optimization model is used to identify the scenarios that violate the system constraints.
The details of the optimization model are provided in Section 5.3. The model is developed
in a way that it converges in any condition. The total amount of APC is the indicator to
detect the violation of the constraints over the study period. If the total amount of the APC is
higher than the APC indicator (APCI), it implies that the scenario violates the operational
constraints. The APCI for different control strategies is as follows:

APCIl pl
i (t) =



0 No Control,

0 OLTC,

0 CPFM,

∑ j∈N |
(

η
g
j,t−ρapc

)
⊙Capg

j |1 LAPFM,

0 VVOM,

∑ j∈N |η
g
j,t⊙Capg

j |1 VWOM,

∑ j∈N |η
g
j,t⊙Capg

j |1 VVWOM,

(5.1)

where, ⊙ denotes the element-wise multiplication; APCIl pl
i (t) is the APC indicator for

the (ith) scenario of the LPL (l pl) at time (t); OLTC, CPFM, LAPFM, VVOM, VWOM
and VVWOM are different voltage control schemes that will be discussed in Section 5.3;
Capg

j = [Capg,a
j ,Capg,b

j ,Capg,c
j ]T represents the vector of DERs installed capacity; η

g
j,t =

[ηa
j,t ,η

b
j,t ,η

c
j,t ]

T denotes the vector of capacity factors at bus ( j) and at time (t); and ρapc is
the maximum limitation on the feed-in active power. By solving the developed optimization
model (5.48) for the study period, i.e. all t ∈H , a vector Λ of length |H | is obtained for
each expansion scenario. This vector contains the total APC for all t ∈H . A scenario
violates the operational constraints if there is a time step in which the APC is higher than
APCI. To mathematically represent this condition, for all l pl ∈ L P , the vector Γl pl is
defined as follow:

Γ
l pl( j) =

{
1
(

∑
|H |
t=1 Φ

l pl
j (t)

)
≥ 1

0 Otherwise
j ∈ {1...Nscn}, (5.2)

where, L P is the set of all LPL and

Φ
l pl
j (t) =

{
1 Λ(t)l pl

j > APCIl pl
j (t)

0 Otherwise
t ∈H . (5.3)
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Module 3) MPVHC Identification: Th MPVHC is defined as the lowest total PV capacity
that yields a violation in the distribution system operational constraints. Based on this
definition, the MPVHC can be mathematically formulated as follows:

MPV HC = min
l pl∈L P 1≤i≤Nscn

{
T ICl pl

i |Γ
l pl(i) = 1

}
, (5.4)

where, T ICl pl
i represents the TIC for the (ith) scenario of the LPL (l pl).

5.3 Problem Formulation

The PVHC is the minimum PV capacity that results in a violation of technical constraints
in the system. The PVHC problem for a set of locations at time (t) can be formulated as an
optimization problem as follows:

minimize ∑
i∈PV

∑
k∈Φ

−pg,k
i,t +APCk

i,t , (5.5)

where, PV is the set of buses that have PVs; Φ denotes the set of phases; pg,k
i,t denotes the

active power that can be injected at bus (i), phase (k) and time (t); and APCk
i,t represents

the curtailed active power at bus (i), phase (k) and time (t). The operation constraints are
presented in Subsections 5.3.1 and 5.3.2.

5.3.1 Distribution System Model

In Chapters 2 and 3, the formulation was presented for a balanced system. In this chapter,
we present the formulation for an unbalanced network. Consider a radial distribution
network. Let N = {o, . . . ,n} represents the set of all buses. Let B denotes the set of
all branches, and (i, j) or i→ j represents a branch between bus (i) and ( j) in set B. For
every bus i ∈N , let Vi,t = [V a

i,t ,V
b
i,t ,V

c
i,t ]

T denotes the complex vector of three phase voltage
at time (t), and sd

i,t = pd
i,t + iqd

i,t represents the complex vector of three phase load at time

(t), where, pd
i,t =

[
pd,a

i,t , pd,b
i,t , pd,c

i,t

]T
and qd

i,t =
[
qd,a

i,t ,q
d,b
i,t ,q

d,c
i,t

]T
. For every line (i, j) ∈B,

Zij ∈ C3×3 denotes the impedance complex matrix, and Sij,t = Pij,t + iQij,t represents the
three phase complex power from bus (i) to bus ( j) at time (t). For every bus i ∈ N ,
APCi,t = [APCa

i,t ,APCb
i,t ,APCc

i,t ]
T represents the vector of active power curtailment at time

(t), and sg
i,t = pg

i,t + iqg
i,t denotes the complex vector of three phase generated power at time

(t), where, pg
i,t =

[
pg,a

i,t , pg,b
i,t , pg,c

i,t

]T
and qg

i,t =
[
qg,a

i,t ,q
g,b
i,t ,q

g,c
i,t

]T
. Thus, the branch flow model
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can be summarized as follow:

v2
j,t = v2

i,t−2
(
r̃ijPij,t + x̃ijQij,t

)
+Wv

i j
(
Pij,t,Qij,t

)
, (5.6)

where, vi,t = |Vi,t|=
[
|V a

i,t |, |V b
i,t |, |V c

i,t |
]T

and v2
i,t =

[
|V a

i,t |2, |V b
i,t |2, |V c

i,t |2
]T

.

r̃ij = Re
{

aiaH
i
}
⊙Re

{
Zij
}
+ Im

{
aiaH

i
}
⊙ Im

{
Zij
}
, (5.7)

x̃ij = Re
{

aiaH
i
}
⊙ Im

{
Zij
}
− Im

{
aiaH

i
}
⊙Re

{
Zij
}
, (5.8)

ai =
[
1 e− j2π/3 e j2π/3

]T
, (5.9)

Wv
i j
(
Pij,Qij

)
=
[
Zij
(
Sij ⊖Vi

)∗]⊙ [Zij
∗ (Sij ⊖Vi

)]
. (5.10)

where, ⊙ and ⊖ denote the element-wise multiplication and division, respectively. For every
branch (i, j) ∈B, power balance equations are as follows:

Pij,t = ∑
k: j−→k

Pjk,t +pd
j,t−pg

j,t +APCj,t +Wp
i j
(
Pij,t,Qij,t

)
, (5.11)

Qij,t = ∑
k: j−→k

Qjk,t +qd
j,t−qg

j,t +Wq
i j
(
Pij,t,Qij,t

)
, (5.12)

pg
j,t ≤ η

g
j,t⊙Capg

j , (5.13)

where, η
g
j,t represents the vector of capacity factors at time (t) and

Wp
i j
(
Pij,t,Qij,t

)
= Pij,t⊙

[
r̃ijPij,t + x̃ijQij,t

]
+Qij,t⊙

[
r̃ijQij,t− x̃ijPij,t

]
, (5.14)

Wq
i j
(
Pij,t,Qij,t

)
= Pij,t⊙

[
x̃ijPij,t− r̃ijQij,t

]
+Qij,t⊙

[
r̃ijPij,t + x̃ijQij,t

]
. (5.15)

The terms Wv
i j
(
Pij,t,Qij,t

)
, Wp

i j
(
Pij,t,Qij,t

)
and Wq

i j
(
Pij,t,Qij,t

)
make equations (5.6),

(5.11) and (5.12) nonlinear. To simplify the model, authors in [96] presented a method to
linearize Wv

i j
(
Pij,t,Qij,t

)
, Wp

i j
(
Pij,t,Qij,t

)
, and Wq

i j
(
Pij,t,Qij,t

)
. We refer the readers to [96]

and [94] for more details. Further, under normal operation of distribution networks, the
following approximation is valid:

v2
i,t−v2

j,t ≈ 2
(
vi,t−vj,t

)
⊙vnom, (5.16)

where, vnom is the nominal voltage in the system. This approximation causes at most 0.25 %
- 1 % error when there is 5 % - 10 % deviation in voltage magnitudes [126]. Thus, the
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linearized distribution system model can be established as follows:

vj,t = vi,t−
(
r̃ijPij,t + x̃ijQij,t

)
⊖vnom +Wlinv

i j
(
Pij,t,Qij,t

)
⊖ (2vnom) , (5.17)

Pij,t = ∑
k: j−→k

Pjk,t +pd
j,t−pg

j,t +APCj,t +Wlinp
i j
(
Pij,t,Qij,t

)
, (5.18)

Qij,t = ∑
k: j−→k

Qjk,t +qd
j,t−qg

j,t +Wlinq
i j
(
Pij,t,Qij,t

)
, (5.19)

where, Wlinv
i j
(
Pij,t,Qij,t

)
, Wlinp

i j
(
Pij,t,Qij,t

)
, and Wlinq

i j
(
Pij,t,Qij,t

)
are the linear approxi-

mation of Wv
i j
(
Pij,t,Qij,t

)
, Wp

i j
(
Pij,t,Qij,t

)
, and Wq

i j
(
Pij,t,Qij,t

)
, respectively.

5.3.2 Modelling Active Distribution Network Management Schemes

There are different ANM schemes that can affect the PVHC of distribution systems, e.g.,
voltage control using OLTC, reactive power control and active power curtailment. Hence, it
is important to model them in the PVHC problem formulation. In the following, we presented
the OLTC-based and PV-based ANM schemes as new constraints for the PVHC problem.

OLTC Modelling

Fig. 5.4 shows the model of a transformer that is installed between bus (i) and ( j). As it
can be seen, the transformer is divided into two branches; branch (i,m), which models the
impedance of the transformer; and branch (m, j), representing the tap-changer. The power
equations for the transformer are as follows:

Pij,t = ∑
k: j−→k

Pjk,t +pd
j,t−pg

j,t +APCj,t +Wlinp
i j
(
Pij,t,Qij,t

)
. (5.20)

Qij,t = ∑
k: j−→k

Qjk,t +qd
j,t−qg

j,t +Wlinq
i j
(
Pij,t,Qij,t

)
. (5.21)

vm,t = vi,t−
(
r̃ijPij,t + x̃ijQij,t

)
+Wlinv

i j
(
Pij,t,Qij,t

)
. (5.22)

vm,t = Tapi jvj,t, (5.23)

where, Tapi j denotes the transformer tap, and

Tapi j = Tapmin
i j +Ti j∆Tapi j, 0≤ Ti j ≤ Ki j, (5.24)

∆Tapi j =
(

Tapmax
i j −Tapmin

i j

)
/Ki j, (5.25)
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Rij jXij Rjk jXjk

tij:1 kjmi Pjk, QjkPij, Qij

(pj – APCj), qj
g g

pj, qj
d d

Fig. 5.4 The model of a transformer with on-load tap-changer (OLTC).

where, Tapmin
i j , Tapmax

i j and Ki j represent the minimum turn ratio, the maximum turn ratio
and the total taps of the tap-changer, respectively; ∆Tapi j denotes the turn ratio change per
tap. Equation (5.23) has a nonlinear term. In order to represent it by linear equations, Tapi j

can be expressed by the binary expansion technique as follows [127]:

Tapi j = Tapmin
i j +∆Tapi j

Ni j

∑
κ=0

2κ
λ

bin
i j,κ , (5.26)

Ni j

∑
κ=0

2κ
λ

bin
i j,κ ≤ Ki j, (5.27)

where, λ bin
i j,κ is a binary variable; and Ni j is the length of binary representation of the total

taps, i.e. Ki j. Multiplying both sides of equation (5.26) by vj,t yields to:

vm,t = Tapmin
i j vj,t +∆Tapi j

Ni j

∑
κ=0

2κ
ωij,κ , (5.28)

where, the variable ωij,κ = λ bin
i j,κvj,t can be replaced by the following equations:

0≤ vj,t−ωij,κ ≤
(

1−λ
bin
i j,κ

)
M, (5.29)

0≤ ωij,κ ≤ λ
bin
i j,κM, (5.30)

where, M is a vector of positive large numbers. Thus, instead of OLTC constraints (5.23)-
(5.25), the mixed integer linear constraints (5.27)-(5.30) can be used. Finally, it should be
noted that the OLTC can be controlled based on different schemes. The control schemes
considered in this study are as follows:
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• OLTC-1: OLTC controls the voltage of the secondary side of the transformer. This
control schemes can be modelled as follows:

vref−
vband

2
≤ vj,t ≤ vref +

vband
2

, (5.31)

where, vref is the voltage reference for the OLTC controller; and vband is the acceptable
error from the voltage reference.

• OLTC-2: OLTC controls the voltage of the farthest location from the transformer.
This control schemes can be modelled as follows:

vref−
vband

2
≤ vfar,t ≤ vref +

vband
2

, (5.32)

where, vfar,t is the voltage of the farthest location from the transformer at time step (t).

• OLTC-3: OLTC attempts to keep the voltage of all buses in operation range. To
implement this scheme, the following constraint should be added to the model.

v≤ vi,t ≤ v, i ∈N , (5.33)

where, v and v are the vector of lower and upper voltage limits, respectively.

Inverter Modelling with Different Operation Mode

An important factor that can affect the PVHC of a system is the control strategy that is used
in PV systems. Equation (5.34) represents the area that the active and reactive power of PV
systems on bus (i) could vary. (

pnet
i,t

)2
+
(

qg
i,t

)2
≤
(
Capg

i
)2
, (5.34)

where,
(

qg
i,t

)2
=

[(
qg,a

i,t

)2
,
(

qg,b
i,t

)2
,
(

qg,c
i,t

)2
]T

denotes the element-wise square of the vector

of generation reactive power at the bus (i),
(
Capg

i
)2

=

[(
Capg,a

i
)2
,
(

Capg,b
i

)2
,
(
Capg,c

i
)2
]T

denotes the element-wise square of the vector of inverter capacity at the bus (i),
(

pnet
i,t

)2
=
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[(
pnet,a

i,t

)2
,
(

pnet,b
i,t

)2
,
(

pnet,c
i,t

)2
]T

and

pnet
i,t = pg

i,t−APCi,t. (5.35)

Equation (5.34) is a quadratic constraint. To linearize it, we rotate the tangent (5.36) around
the original circular constraint (5.34) using the counter clockwise rotation matrix (5.37).

pnet
i,t +qg

i,t ≤
√

2 Capg
i , (5.36)

A =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (5.37)

where, θ is the rotation angle. Applying (5.37) to (5.36) results in:

[cos(θ)+ sin(θ)]pnet
i,t +[cos(θ)− sin(θ)]qg

i,t ≤
√

2 Capg
i . (5.38)

The circular area presented by equation (5.34) constrains the active and reactive powers of a
PV system based on the inverter capacity. Note that grid codes for PV systems usually add
some other constraints, followings are some examples:

1. Constant Power Factor Mode (CPFM): In this mode, the reactive power consump-
tion of a PV system is proportional to its active power as follows:

qg
i,t = tan(acos(PFi))pnet

i,t , (5.39)

where, PFi is the vector of power factors at bus (i).

2. Limitation of Active Power Feed-in Mode (LAPFM): Sometimes, a fixed limit on
the feed-in active power of PV systems is mandatory. For instance, in Germany, the
feed-in active power of PV systems that have a capacity of less than 30 kW and does
not have the capability of being controlled remotely should always be below 70 % of
their installed capacity [45]. This constraint can be modelled as follows:

pnet
i,t ≤ ρapc⊙Capg

i , (5.40)

where, ρapc is the maximum limitation on the feed-in active power.
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Fig. 5.5 The VWOM and VVOM local control schemes.

3. Volt-Var Operation Mode (VVOM): This mode is designed to actively limit the
voltage rise at the PV connection point by controlling its reactive power based on
the local voltage measurement. As it can be seen in Fig. 5.5, exceeding a certain
voltage threshold activates the consumption of reactive power. Further, when the
voltage is higher than the maximum acceptable voltage, the PV system absorbs the
maximum reactive power that it can. The reactive power consumption is presented
using a piecewise linear function as follows:

qg
i,t = f

(
vi,t
)
=


0 vq

0 ≤ vi,t ≤ vq
1,

αi,t⊙
[(

vi,t−vq
1
)
⊖vnom

]
⊙qmax

i,t vq
1 ≤ vi,t ≤ vq

2,

−qmax
i,t vq

2 ≤ vi,t ≤ vq
3,

(5.41)

where, qmax
i,t is the maximum available reactive power capacity at time (t); and

αi,t = vnom ⊖
(
vq

1−vq
2
)
. (5.42)

Note that the above piecewise linear functions are nonlinear over the defined range,
as shown in Fig. 5.5. It is possible to represent qg

i,t as a set of linear constraints by
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defining a set of new variables as follows:

qg
i,t =

NBC

∑
l=0

λi,t,l⊙ f
(
vq

l

)
, (5.43a)

0≤ λi,t,0 ≤ wi,t,0, (5.43b)

0≤ λi,t,l ≤ wi,t,l−1 +wi,t,l, l = 1, · · · ,NBC−1, (5.43c)

0≤ λi,t,NBC ≤ wi,t,NBC−1, (5.43d)
NBC−1

∑
l=0

wi,t,l = 1, (5.43e)

NBC

∑
l=0

λi,t,l = 1, (5.43f)

vi,t =
NBC

∑
l=0

λi,t,l⊙vq
l , (5.43g)

λi,t,l ≥ 0, l = 1, · · · ,NBC, (5.43h)

wi,t,l ∈ {0,1} , l = 0, · · · ,NBC−1, (5.43i)

where, NBC is the number of pieces in the piecewise linear function; wi,t,l and λi,t,l are
the vector of binary and continuous variables, respectively. Thus, linear constraints
(5.43a)-(5.43i) can replace nonlinear constraint (5.41).

4. Volt-Watt Operation Mode (VWOM): This mode is designed to actively limit the
voltage rise at the PV connection point by curtailing the PV active power based on
the local voltage measurement. As shown in Fig. 5.5, exceeding a certain voltage
threshold activate the active power curtailment. Further, when the voltage is higher
than the maximum acceptable voltage, the active power of PV system becomes zero.
Similar to the VVOM, active power curtailment can be modelled as follows:

APCi,t =


0 vp

0 ≤ vi,t ≤ vp
1,

βi,t⊙
[(

vi,t−vp
1
)
⊖vnom

]
⊙pmax

i,t vp
1 ≤ vi,t ≤ vp

2,

pmax
i,t vp

2 ≤ vi,t ≤ vp
3,

(5.44)

APCi,t ≤ pg
i,t, (5.45)
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where, pmax
i,t is the maximum active power that can be curtailed at time (t) and

βi,t = vnom ⊖
(
vp

2−vp
1
)
. (5.46)

Further, the linearization technique for (5.41) can be used to linearize the piecewise
constraint (5.44) as well.

5. Volt-Var-Watt Operation Mode (VVWOM): This mode is the combination of VVOM
and VWOM, as shown in Fig. 5.5.

5.3.3 Other Technical Constraints

Over-voltage is the most important technical constraint, which is presented as follows:

vi,t ≤ v. (5.47)

Altogether, considering the ANM schemes, the PVHC at time (t) can be modelled as a Mixed
Integer Linear Program (MILP) as follows:

minimize ∑
i∈PV

∑
k∈Φ

−pg,k
i,t +APCk

i,t ,

s.t.

(17)− (19),(47),OLTC constraints, (5.48)

Inverter constraints.

The CPLEX solver has been used to solve the optimization model.

5.4 Evaluation and Assessment

In this section, simulations are carried out to assess the performance of the proposed method-
ology. Initially, the performance of the developed method is examined on IEEE 123-bus
system. Then, the efficacy of the proposed framework in evaluation of 128 LV UK feeders is
shown. Finally, the sensitivity of the results to the PV size is assessed using the proposed
framework.
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5.4.1 Test Systems

The developed method is applied to IEEE 123-bus system [99] as well as 128 LV UK
feeders [47]. Some important characteristics of UK feeders are presented in Fig. 5.7. The
topology of 7 UK feeders is presented in Fig. 5.8. The rated power of the service transformers
in UK feeders is 800 kVA, and the voltages in primary and secondary circuits are 11 kV and
0.415 kV, respectively. The load profiles are created using the tool presented in [128]. The
normalized PV profiles are derived from the tool presented in [101]. As for the size of PV
systems, a base capacity of 100 kW is considered for PV systems in IEEE 123-bus system.
Further, 37 % of the installed PV systems in the UK is 4 kW, which is the most common
PV size in the UK [47]. Thus, a base capacity of 4 kW is considered for PV systems in UK
feeders. The maximum acceptable voltage is 1.05p.u.

5.4.2 Performance Assessment in IEEE 123-Bus System

The performance of the proposed method is examined using IEEE 123-bus system. The
results of the proposed method is compared with those of power flow-based Monte Carlo
approach presented in [70]. The main idea of the approach presented in [70] is increasing
the penetration level of PV systems and performing the power flow calculation in MAT-
POWER [129]. Further, a worst-case assumption is made, which is simulating the low
load with high generation condition. In order to increase the accuracy of the presented
approach in [70], the procedure is repeated 200 times. Fig. 5.6 demonstrates the MPVHC in
IEEE 123-bus system for the proposed and Monte Carlo approaches. As can be seen, both
methods show a similar trend in effectiveness of PV-based control strategies. For instance,
both methods showed that VVOM is more effective than LAPFM and CPFM in increasing
MPVHC. However, there is some differences in performance of the proposed method and
the Monte Carlo approach. Observe that the estimated MPVHC for the test network without
any PV-based control strategy by the proposed method is 13.187%, which is 3.297% higher
than that of the Monte Carlo approach. Further, the estimated MPVHC by the proposed
method for VVOM is 10.989% higher than that of the Monte Carlo approach. This is mainly
because of the worst-case assumption that has been made in the considered Monte Carlo
approach. Thus, the worst-case assumption can cause underestimation of control strategies’
effectiveness in increasing the MPVHC. Further, as it was shown, the proposed method
provides a more accurate result than the Monte Carlo approach.
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Fig. 5.6 MPVHC in IEEE 123-bus system using the proposed and Monte Carlo methods for
different PV-based control schemes.

5.4.3 Performance Assessment in 128 UK Feeders

To clarify the sensitivity of the MPVHC, it is necessary to identify the MPVHC of the
systems without exploiting the ANM schemes. The simulation results showed that 72 feeders
do not have PVHC issue, i.e., if every customer in these feeders installs a 4 kW PV system,
there will be no voltage violation in the system. However, 56 feeders are limited by voltage
constraint and have a PVHC of less than 55 %. Thus, 43.75 % of all the studied feeders have
an average MPVHC of 20.88 %. This indicates that almost half of the studied feeders will
experience voltage violation issues with a high penetration of PV systems.

Fig. 5.9 shows the box plot of the MPVHC for different PV-based ANM schemes. On
each box, the red and purple central marks are the mean and median, the horizontal edges are
the 25th and 75th percentiles, the whiskers extend to the most extreme values not considered
outliers, and outliers, i.e. yellow dots, are plotted individually. Observe that operation of
the PV systems at a constant power factor of 0.95 lag only increased the MPVHC with an
average of 3.96 %. Further, limiting the output power of the PV systems to 70 % of their
installed capacity increased the MPVHC on average by 5.013 %. Whereas, VVOM increased
the MPVHC on average by 18.74 %, which is much higher than the MPVHC change due
to operation of PVs in CPFM and LAPFM operation modes. It can also be seen in Fig. 5.9
that the most effective PV-based operation mode is VWOM. Observe that using VWOM
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Fig. 5.7 Some of the key characteristics of 128 LV UK feeders including: (a) the distribution
of total length of the feeders; (b) the distribution of farthest node from the service transformer;
(c) the distribution of number of customers; (d) the distribution of average R to X ratio.
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Fig. 5.8 Topology of 7 LV UK feeders.
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increased the MPVHC to 100 % in all the studied feeders. VWOM, however, is not an
interesting operation strategy from the customers’ point of view. If DSOs do not pay the
price of the curtailed energy, it is the customers who have to cover the costs of increasing the
MPVHC. Thus, if the customers have to be involved in improving the network, VVOM could
be a more attractive option from the customers’ standpoint. VVOM, however, can increase
the costs of DSOs by increasing the power losses in the system.

Fig. 5.10 depicts the average increase in the total annual energy losses including the PV
systems’ curtailed energy and the feeders’ energy loss due to 1 % increase in the MPVHC
using PV-based ANM schemes. Observe that CPFM and VVOM, which are reactive power-
based ANM schemes, increased the total annual energy losses on average by 2.73 % and
5.05 % per 1 % increase in the MPVHC, respectively. The average change in total annual
energy losses per 1 % increase in the MPVHC for these two control strategies is higher than
that of other schemes. Hence, although reactive power-based control schemes seem more
attractive, they cost more than other schemes to increase the MPVHC. Further, LAPFM
caused an average increase of 0.75 %, which is the lowest among all the control strategies.
VWOM with an average increase of 1.86 % is the second lowest among all the control
schemes. Considering that the LAPFM scheme has much less capability than VWOM to
increase the MPVHC, it can be concluded that VWOM is a better scheme for increasing the
MPVHC.

Another set of ANM schemes are based on OLTC. Generally, it is believed that OLTC
can increase the MPVHC of a system. However, it is the control strategy that determines
the effectiveness of OLTC. Fig. 5.11 depicts the box plot of MPVHC for OLTC-1, OLTC-2
and OLTC-3 with reference to CPFM with unity power factor. It can be seen that when the
OLTC controlled the voltage of transformer secondary winding (OLTC-1), it only increased
the MPVHC on average by 0.49 %. However, when the OLTC controller operated based on
the feedback from all buses of the system (OLTC-3), it increased the MPVHC on average
by 51.08 %. Although OLTC-3 would increase MPVHC effectively, it requires an extensive
communications infrastructure. Interestingly, when the OLTC controlled the voltage of the
farthest bus from the transformer (OLTC-2), it decreased the MPVHC on average by 7.30 %.

An important parameter that can impact the effectiveness of voltage control schemes is
R/X ratio. In this study, the R/X ratio of a feeder is defined as the weighted arithmetic mean
of R/X ratio of its lines. As it can be seen in Fig. 5.7 (d), the R/X ratio of the investigated
systems has a Gaussian distribution with an average of 10.34 and standard deviation of 2.02.
To be able to generalize the results to the systems with a R/X ratio out of the considered range,
a sensitivity analysis is done to evaluate the impact of this factor on the effectiveness of the
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Fig. 5.9 The effect of PV-based ANM including CPFM, LAPFM, VVOM and VWOM on the
MPVHC of studied feeders. The red and purple lines are the mean and median, respectively.
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Fig. 5.10 The averaged increase in the total annual energy losses including the PV systems’
curtailed energy and the feeders’ energy loss due to 1 % increase in the MPVHC using
PV-based ANM schemes. The red and purple lines are the mean and median, respectively.
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Fig. 5.11 The effect of OLTC-based ANM on the MPVHC of studied feeders. The red and
purple lines are the mean and median, respectively.
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Fig. 5.12 The impact of R/X ratio on the effectiveness of autonomous voltage control
strategies in increasing the MPVHC.
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autonomous voltage control strategies in increasing the MPVHC. To do so, the R/X ratio of
all the investigated systems are changed to half and a quarter of the original values and the
PHVC framework is run again. Fig. 5.12 shows the impact of R/X ratio on the effectiveness
of voltage control strategies. As it can be seen, the effectiveness of Volt-Var operation
mode in increasing the MPVHC increases by decreasing the R/X ratio, which implies that
in systems with low R/X ratio, the reactive power-based schemes are really effective for
increasing the MPVHC. Nevertheless, as it was shown in Fig. 5.10, these schemes are more
costly than others. Further, it was observed that increasing X/R ratio did not have a tangible
effect on the performance of OLTC- and APC-based schemes. The simulation results are
consistent with the general believe that reactive power control strategies are more effective
when R/X ratio is low. Moreover, it is generally believed that APC can be more effective than
reactive power control in the networks with a high R/X ratio. However, this does not mean
that any APC-based scheme could be more effective than reactive power-based schemes. As
shown in Fig. 5.12, VVOM, which is based on exchanging reactive power is more effective
than LAPFM, which is based on APC. Therefore, R/X ratio can not be the only index to
judge the effectiveness of different control schemes.

In this chapter, the effectiveness of a range of voltage control schemes in increasing
MPVHC has been discussed. However, it is also important to discuss the findings of this
study from a practical perspective. As it was shown in Fig. 5.11, OLTC could effectively
increase MPVHC. Nevertheless, OLTC is usually used in MV systems. Although utilizing
OLTCs for voltage management in LV systems has been recently studied, they have not been
used very often is real LV systems. Thus, considering the additional cost for installing a
transformer with OLTC in LV systems, it is necessary to perform a cost-benefit assessment.
Moreover, the costs of network reinforcement measures such as changing transformer and
installing additional cables would make the PV-based control schemes a more attractive
option to increase MPVHC. It should also be mentioned that the findings of this chapter is
generally applicable to feeders with a similar characteristics to the UK feeders. Therefore,
if the characteristics of a feeder is totally different from those of UK feeders, the proposed
method should be used to estimate the MPVHC.

5.4.4 Sensitivity to the PV Size

In Section 5.4.3, it is assumed that the base capacity of PV systems is 4 kW. However, in this
section, it is assumed that the size of PV systems follows an empirical distribution. According
to the historical statistics of UK, the probability of installing a PV system with a size of 1,
1.5, 2, 2.5, 3, 3.5, and 4 kW is 1%, 8%, 13%, 14%, 14%, 12% and 37%, respectively [47].
The proposed method is applied to 128 LV UK feeders. Fig. 5.13 demonstrates the MPVHC
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Fig. 5.13 The impact of size of PV systems on the effectiveness of different control schemes.
The red and purple lines are the mean and median, respectively.

for different PV-based ANM schemes. It can be observed that the MPVHC is higher when
the size of PV systems is selected based on the empirical distribution in comparison to when
the base PV size is set at 4 kW. However, in terms of the effectiveness of control schemes
to increase the MPVHC, the trend is the same as when the PV size is set at 4 kW. Observe
that when the size of PV systems is selected based on the empirical distribution, controlling
the PV systems at a constant power factor of 0.95 lag only increased the MPVHC with an
average of 5.85%. Further, limiting the output power of the PV systems to 70% of their
installed capacity increased the MPVHC on average by 7.19%. Moreover, VVOM increased
the MPVHC on average by 20.94%, which is much higher than the MPVHC change due to
operation of PVs in CPFM and LAPFM operation modes. Note that sampling from empirical
distribution of PV systems mainly increased the MPVHC. However, it would not majorly
impact the effectiveness of control schemes in increasing the MPVHC.

5.5 Summary

In this chapter, the impact of different autonomous voltage control strategies for increasing
the PVHC in radial distribution systems were studied. The investigated schemes included
PV-based local control actions, as well as controlling the OLTC of the transformer. In order
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to integrate these voltage control schemes into the PVHC studies, a modular optimization-
based framework was proposed. The proposed method is examined on 128 LV UK feeders.
Following are the conclusions derived from the simulation results:
• Active power curtailment mode, i.e. VWOM, is the most effective control scheme

to increase MPHVC. This control scheme increases MPVHC to 100 % in any distribution
feeder. Further, simulation result showed that Volt-Var operation mode of PV systems, i.e.
VVOM, is the second most effective PV-based control scheme with an average increase
of 18.74 % in MPVHC.
• Active power based control strategies, i.e. LAPFM and VWOM, resulted in the lowest

total energy losses per 1 % increase in MPVHC among all PV-based control schemes. This
means that in the feeders with R/X ratio higher than 5, the active power based control schemes
are more cost effective than reactive power based control schemes to increase MPVHC.
• The impact of OLTC on MPVHC highly depends on its control strategy. It was shown

that if the aim of OLTC controller is controlling the voltage at the end of a feeder, it decreases
the MPVHC. Nevertheless, if the aim is to maintain the voltage of all the locations in the
feeder within permissible bounds, it can increase the MPVHC on average by 51.08 %.





Chapter 6

Probabilistic Impact Assessment of
Residential BESSs on the HC of LV
Distribution Systems

6.1 Introduction

As mentioned in Chapter 1, the penetration level of residential battery energy storage systems
(BESSs) has been increasing in distribution systems. Although different methods for estimat-
ing the hosting capacity (HC) have been proposed [47, 96, 48, 9, 130, 39, 37, 46, 18, 42], none
of them have considered BESS in photovoltaic hosting capacity (PVHC) assessment. BESSs
have different characteristics and provides more operational flexibility compared to photo-
voltaic (PV) systems alone. Hence, the findings of [47, 96, 48, 9, 130, 39, 37, 46, 18, 42],
will be invalidated by the increased up take of BESSs. Therefore, it is necessary to develop a
method to integrate BESSs in HC identification.

In Chapter 5, we assessed the impact of controlling the output power of PVs on the
PVHC. In this chapter, we take further steps to identify the PVHC considering residential
BESSs, which affect the exchange energy between prosumers and the network. To do so, we
develop a mathematical formulation, based on the linear HC model presented in Chapter 2, to
integrate residential BESSs in PVHC problem. To the best of our knowledge, all the existing
mathematical formulations would converge to a value in region (B) of PVHC. However,
DSOs are interested in the minimum PVHC (MPVHC) as it is independent of PVs location.
The importance of the proposed method in this chapter is that it converges to the MPVHC.
Moreover, most of the studies related to the impacts of PV-BESSs on low voltage (LV)
distribution systems have only analyzed a few test systems. This means that those studies did
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not capture the effects of diversity of LV distribution feeders. In this chapter, we applied the
proposed method to 25 real LV networks in the UK including 128 LV feeders. The outcome
of this chapter is presented as a journal paper, which is currently under reviewed1.

The remainder of this chapter is organized as follows: Section 6.2 represents an overview
of the developed method. Section 6.3 describes how to prepare the input data. Scheduling
models of BESSs are presented in Section 6.4. Section 6.5 describes the proposed model for
identifying the MPVHC. Section 6.6 presents the numerical results and discussion. Finally,
the major conclusions are presented in Section 6.7.

6.2 Probabilistic Framework Overview

To understand the impacts of BESSs on the MPVHC of LV distribution networks considering
the locational and behavioral uncertainties associated with BESSs, PVs and loads, a proba-
bilistic framework is developed, as shown in Fig. 6.1. This framework includes three steps.
In the first step, the loads and PVs profiles as well as the input parameters including network
tariff; BESS penetration level; and PVs and BESSs sizes, are defined (Section 6.3). Then, the
scheduling of BESSs are identified by using a ruled-based scheme or a mixed integer linear
program (MILP) optimization model (Section 6.4). Finally, the mathematical HC model is
developed to identify the MPVHC based on the BESSs’ scheduling, PVs and load profiles
(Section 6.5).

6.3 Input Data Preparation

This module is designed to address the uncertainties and to initialize parameters. To model
the load and PV uncertainties, the adoption of time-series profiles is required. Residential
loads are assumed to have an inductive power factor of 0.98. Further, all PVs are assumed to
operate at unity power factor.

Residential Load Profiles

The tool presented in [128] is used to create individual residential loads. To mimic the
stochasticity of the load consumption per customer, summer pool with 2000 daily load
profiles is created. Different combination of these load profiles can be allocated to the loads
in a system. However, running the simulation for a high number of load combinations would

1“Probabilistic Impact Assessment of Residential BESSs on the HC of LV Distribution Systems,” IEEE
Transactions on Smart Grid, 2019 [131].
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Input Data Preparation

Energy Management System

Hosting Capacity Model

Fig. 6.1 Flowchart of the proposed framework for PVHC estimation in presence of BESSs.

be time consuming. Thus, in order to carry out the simulation in a shorter time, the number
of load profile allocated to the loads should be bounded. To do so, the focus should be on the
time period that a system might experience over voltage. It is clear that PV systems usually
have their maximum generation between hours 11:00 and 13:00. The lower the load during
this period, the higher the chance of over voltage problem. Therefore, a high number of
different load allocation scenarios should be generated. Then, the total load profile of each
scenario needs to be calculated. The scenario that has the minimum total load value at hour
11:00 is the first load combination that will be used in the simulation. The same process is
performed for hours 12:00 and 13:00. Thus, simulations will be carried out for 3 days.

PV Profiles

The tool presented in [128] is used to create daily PV profiles. To mimic the stochasticity of
PVs’ outputs, summer pool with 2000 PV profiles is created. Different combination of these
PV profiles can be allocated to the PVs in a system. However, running the simulation for a
high number of PV profile combinations would be time consuming. Thus, in order to carry
out the simulation in a shorter time, the number of PV profile allocated to the PV systems
should be bounded. Since the load profiles are limited to three days, three PV profiles should
be selected from the pool. Similar to load profile allocation, maximum PV generation for
hours 11:00 -13:00 are selected for simulations.
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Size of PV Systems

One of the uncertainties that should be addressed in any HC assessment is the size of PV
systems. Historical data of the installed PVs can describe the PV distribution. However, as
the focus of this chapter is not assessing the impact of PV size on the MPVHC, the average
size of the historical data would be chosen as the size of PV systems. Nevertheless, the
proposed framework is general and there is no difficulty to apply the research results to any
other size of PV systems.

6.4 Scheduling the BESS

The benefits of BESSs highly depend on the energy management strategy that is used to
charge/discharge them. Several strategies have been proposed to find the charging/discharging
patterns of BESSs. Generally, energy management strategies can be divided to rule-based
heuristic and optimization-based approaches. Although optimization-based methods have
attracted attentions, most batteries are operated using heuristic strategies in practice. In this
work, a rule-based heuristic strategy and an optimization-based approach are considered as
follow:

• Rule-based approach

– Self consumption maximization (SCM) [70].

• Optimization-base approach

– Mixed integer linear programming (MILP) [132].

6.4.1 Self Consumption Maximization

Fig. 6.2 represents how this rule-based strategy works. As it can be seen, the battery is
charged when the PV generation is higher than the load consumption and discharged when
the load is higher than the PV output. This energy management strategy is the default strategy
utilized by battery suppliers and retailers [71].

6.4.2 Mixed Integer Linear Programming

This approach employs a MILP optimization to find the charging/discharging patterns of the
battery by minimizing electricity costs. This approach requires the load and PV forecasts
over a decision horizon, the feed-in-tariff (FIT) and the network tariff. The electrical energy
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Fig. 6.2 Charging/discharging patterns for SCM mode.

flows in a smart home is shown in Fig .6.3 .The full MILP optimization problem for this
energy management strategy is as follows:

minimize
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Fig. 6.3 Illustration of electrical energy flows in a smart home.
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where, H are the set of time steps; T grid
t and T FIT are the network tariff and FIT, respectively;

pn+/− represents the power flows from/to network; pbat+/− is the charge/discharge power of
battery; SoCbat

t represents the state of charge of the battery; ηi and ηbat+/− are the inverter and
charging/discharging efficiencies, respectively; SoCbat, SoCbat and pbat+/− are the minimum
state of charge (SoC), the maximum SoC and the maximum charging/discharging rate of
battery; ∆t is the hourly time step; pd and pg are the customer total load and output power of
DER, respectively; sbat is the operation status of battery; and pn is the maximum power that
can be exchanged with network. The battery power at time step (t) is as follows:

PESS
t = pbat+

t − pbat−
t . (6.2)
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6.5 MPVHC Identification

The MPVHC is modelled as a MILP optimization problem. To do so, the focus is the
definition of MPVHC. Considering the definition of MPVHC, it is possible to interpret the
MPVHC as the minimum PV penetration below which any penetration level would not cause
a constraint violation in the system.

Objective Function

Consider a distribution system in which every customer has a PV system. If the MPVHC of
the system is below 100%, installing a PV system by all customers would yield in a technical
problem. In such a system, it is possible to remove some of the PVs in a way that remaining
PVs would still yield in a constraint violation. If one continues to remove PV systems, there
would be a point that removing any one of the remaining PV system would resolve the
technical issues. The total capacity of the remained PV systems is the margin of MPVHC.
Any PV penetration below MPVHC margin would not cause a constraint violation. However,
any PV penetration above MPVHC can cause a technical problem. Therefore, the objective
of the developed model is maximizing the total capacity of PVs that can be removed from
the system while making sure that the maximum voltage in the system is higher than the
maximum acceptable voltage. The solution of the optimization model is a set of PVs that
would cause a voltage higher than the maximum acceptable voltage. If the optimization
problem does not converge to a solution, it means that installing a PV at every bus of the
system would not cause an over-voltage problem. The objective function can be represented
as follows:

maximize
Bg

i,k,B
ESS
i,k

(
∑

i∈N
∑

k∈Φ

(1−Bg
i,k)Capg,k

i

)
, (6.3)

where, Bg and BESS are the status of DER and BESS systems (1: active, 0: inactive); N and
Φ are the set of all buses and phases, respectively.

Distribution System Model

In a radial distribution system with n+1 buses, the linear power flow equation for branch
(i, j) is formulated as follows:

vj,t = vi,t−
(
r̃ijPij,t + x̃ijQij,t

)
⊖vnom +Wlinv

i j
(
Pij,t,Qij,t

)
⊖ (2vnom) , (6.4)
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where, vi,t = |Vi,t|=
[
|V a

i,t |, |V b
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; vnom is the vector of nominal voltage in the system;
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ai =
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1 e− j2π/3 e j2π/3
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(6.7)

where,⊙ and ⊖ denote the element-wise multiplication and division, respectively; Zij ∈C3×3

is the impedance complex matrix and Vi,t = [V a
i,t ,V

b
i,t ,V

c
i,t ]

T represents the vector of phase
voltages at time (t); Sij,t = Pij,t + iQij,t denotes the vector of complex power from bus (i)
to bus ( j) at time (t). For every branch (i, j) ∈B, the active and reactive power balance
equations are formulated as follows:
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and BESS
j = [BESS

j,a ,BESS
j,b ,BESS

j,c ]T are the status vector for DERs and BESSs; and pESS
j,t is the

vector of the charging/discharging rate of BESSs at bus ( j) and time (t) obtained from energy
management systems.
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Technical Constraints

The constraint for making sure that the maximum voltage in the system is higher than the
maximum acceptable voltage is as follows:

max
i∈N ,
t∈H

{
vi,t
}
≥ v, (6.14)

This constraint can be linearized as follows:

LLi ≤ vi,t ≤ ULi, ∀i ∈N ,∀t ∈H , (6.15)

vmax ≥ vi,t, ∀i ∈N ,∀t ∈H , (6.16)
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Altogether, the hosting capacity model is formulated as follows:
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(4)− (12),(14)− (20).
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Table 6.1 Key parameters of the 128 LV UK feeders.

Parameter Mean Standard Deviation 90% range

Total

length (km)
1.6717 1.4223 0.204 - 4.359

Distance from transformer to

the farthest circuit node (km)
0.3466 0.1693 0.0684 - 0.642

Number

of customers
59 51 7 - 170

Average R/X

ratio
10.2144 2.6613 5.386 - 14.339

6.6 Evaluation and Assessment

In this section, simulations are carried out to examine the performance of the proposed
framework. Initially, the effectiveness of the proposed HC model to identifying the PVHC is
demonstrated in subsection 6.6.2. Then, the impact of control scheme of BESSs, minimum
SoC of BESSs, penetration level of BESSs and network tariffs on the MPVHC is discussed
in subsection 6.6.3.

6.6.1 Test Systems

The test systems are 128 LV UK feeders [47]. Table 6.1 presents the main characteristics of
these feeders. All service transformers in the feeders are 800 kVA, with the primary and the
secondary voltages of 11 kV and 0.415 kV, respectively. The maximum acceptable voltage
is 1.05 p.u. Regarding the size of PVs, the average size of small-scale PVs based on the
historical data is 3.08 kW in the UK [133]. Therefore, the base PV capacity for a household
is assumed to be 3 kW. As for the size of BESSs, it is supposed that the base battery size,
initial SoC, maximum charging/discharging rate and charging/discharging efficiency are
3 kWh, 50 %, 0.43 kW and 95 %, respectively. The network tariffs are presented in Table 6.2
[134]. The FIT in the UK for PV systems smaller than 10 kW is 3.79 pence per kWh in
2018/19 [135].
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Table 6.2 Network tariff Data.

Tariff

type

fixed charge

p/day

Single rate

p/kWh

Day

p/kWh

Night (22-8)

p/kWh

Flat 31.740 16.700 16.700 16.700

Time-of-Use (ToU) 33.450 - 18.810 7.790

6.6.2 Performance Assessment of the Proposed Framework

The performance of the proposed method is examined using two LV UK feeder. The important
features of the networks are presented in Table 6.3. We assume that the power factor of the
PV systems is unity. The results of the proposed method is compared with those of the Monte
Carlo approach presented in [46]. The main aim of the Monte Carlo approach is to identify
a PV expansion scenario with the lowest penetration level that would cause a violation in
the technical constraints. To increase the accuracy, the Monte Carlo simulation is run for
multiple times. As it was shown in [46], the HC results for multiple Monte Carlo simulations
follows a Gaussian distribution. The Monte Carlo method is implemented for the two LV
UK feeders. The number of generated scenarios for each penetration level is 100 and the
number of repetition of Monte Carlo simulations is 200. The power flow calculation is run
in OpenDSS. Fig. 6.4 shows the PVHC distribution of the two test systems obtained from
the Monte Carlo approach. As can be seen, the MPVHC estimated using the Monte Carlo
approach for the test systems is 20.51 % and 22.43 %, respectively. However, there is no
guarantee that these values are the actual MPVHC of the test system. In fact, to be able to
guarantee the solution of the Monte Carlo method, 2NC different PV expansion scenarios
should be assessed, where NC is the total number of householders in a feeder. Assessing such
a number of PV expansions is computationally cumbersome.

The MPVHC of the test systems calculated using the proposed method is 16.67 % and
18.69 %, respectively. As the proposed method is based on a mathematical model of the HC,
it would directly converge to the PV expansion scenario with the lowest penetration level
that would cause a constraint violation in the system. Therefore, the proposed method does
not need to assess a high number of scenarios to identify the MPVHC. Fig. 6.5 presents
the MPVHC for both test systems for different BESS penetration level using the proposed
and Monte Carlo-based methods. The self consumption maximization (SCM) method is
implemented to charge/discharge BESSs. As can be seen, the results of the proposed method
are always lower than those of the Monte Carlo approach. The lowest difference between the
result of the two methods is 1.86 %. Note that a zero difference means that the Monte Carlo
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Fig. 6.4 PVHC distribution obtained from the Monte Carlo approach.
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Fig. 6.5 MPVHC in the two test feeders using the proposed and Monte Carlo methods for
different BESS penetration level.

approach accurately estimated the MPVHC. The highest differences between the results is
6.41 %, which indicates that the MPVHC estimated using the Monte Carlo approach has
6.41 % error from the actual MPVHC of the test systems.

6.6.3 Technical Assessment

The proposed method is used to assess the impacts of the residential BESS on the MPVHC.
The simulation results showed that 72 feeders had the MPVHC of 100 % before considering
any residential BESS. Therefore, the remaining 56 feeders was used as the test systems
to perform the BESS impact assessment study. Fig. 6.6 represents the MPVHC of the
56 LV UK feeders for different penetration levels of BESS. As can be seen, increasing
the BESS penetration level could increase the MPVHC on average by 8.67 % when the
BESSs are controlled to minimize the costs. However, if the BESSs are controlled based on
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Table 6.3 Important features of the two example UK feeders.

Feeder
Total Length

(km)

Number of

Households

Transformer to

The Farthest

Point (km)

Distribution of Loads (%)

Phase

A

Phase

B

Phase

C

1 1.838 78 0.601 33.33 38.46 28.21

2 2.867 107 0.352 41.12 28.97 29.91

SCM strategy, increasing the BESS penetration to 100 % only can increase the MPVHC, on
average by 3.2 %. The reason that optimization-based control strategy would cause a higher
MPVHC can be explained by focusing on the charging/discharging pattern of the considered
strategies. Fig. 6.7 demonstrates the load, PV and BESS profiles of a random customer. The
PV has its maximum output between hours 12:00 and 13:00. As most of the householder in
a feeder would receive almost the same level of irradiance, it could be concluded that all the
customers would have the maximum PV output during this time period. Thus, the MPVHC
would happen in this time period. As can be seen in Fig. 6.7, the BESS is charging with its
maximum rate from hour 12:00 to 13:00 when the control strategy is minimizing the costs.
However, the charging rate of the BESS is 0.2 p.u at hour 13:00 when the control strategy is
SCM. Therefore, the injected power to the network at hour 13:00 for the SCM strategy is
higher than that of MILP method. The main reason that BESS charging rate at hour 13:00 is
0.2 p.u is the limitation of the BESS capacity. Observe that the SoC of the battery reaches
the maximum limit at hour 13:00 for the SCM strategy. Although this behavior has been
observed in most of the test feeders, it is not proper to draw a general conclusion regarding
the impact of BESS control schemes on increasing the MPVHC. In fact, to draw a more
general conclusion, the impact of the size and initial SoC of BESS on the results should be
assessed.

Fig. 6.8 illustrates the impact of the size of BESS on the MPVHC. As can be seen,
increasing the size from 3 kWh to 4 kWh would change the impact of BESS penetration
on the MPVHC. In fact, 100 % penetration of BESS with the capacity of 3 kWh and cost
minimization objective would increase the MPVHC, on average, by 8.67 %. However, the
increase in the MPVHC due to 100 % penetration of BESS with the capacity of 4 kWh was,
on average, 3.78 % less than that of BESS with the capacity of 3 kWh. This is because
changing the BESS size changes the BESS charging/discharging profile. Fig. 6.9 represents
the BESS power and SoC of a random customer for two different sizes of BESS. As can be
seen, the general trend of both sizes are almost the same. However, when the BESS capacity
is 4 kWh, the BESS charging rate at hour 12:00 is zero. The time period from hour 12:00 to
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Fig. 6.6 MPVHC for different BESS penetration levels using MILP and SCM charg-
ing/discharging approaches for BESSs. The red and purple lines are the mean and median,
respectively.
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Fig. 6.7 Load, PV, BESS’s power and SoC profiles for a random customer using MILP and
SCM charging/discharging approaches.
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13:00 is a critical period for the MPVHC. As the BESS power at hour 12:00 is zero, it has
no impact on the PV injected power to the system. Thus, such a BESS could not increase
the MPVHC. Further, as shown in Fig. 6.8 (a), the impact of BESS size on the BESS profile
could be more tangible when the control scheme is SCM. Note that a BESS with a higher
size has a higher capacity to store the excess PV energy. Therefore, the BESS can stay in
charging mode during the time period from hour 12:00 to 13:00. Thus, generally, it can be
concluded that when the control scheme is SCM, increasing the size of BESS has a positive
impact on the MPVHC. However, increasing the capacity of the BESSs would not improve
the MPVHC if the BESSs are charging with the rating power between hours 12:00 and 13:00.
In such a condition, increasing the rating power of BESSs could improve the MPVHC.

Another factor that affects the BESS impact on the MPVHC is the initial SoC. Fig. 6.10
shows the MPVHC for different BESS penetration level and initial SoC. As can be seen
in Fig. 6.10 (b), increasing the initial SoC from 20 % to 50 % for the BESS penetration
level of 100 % and for the control scheme of cost minimization, increases the MPVHC, on
average, by 6.9 %. Further, it is observed that increasing the initial SoC of the BESS from
20 % to 50 % when the control scheme is SCM, has insignificant impact on the MPVHC.
This is because lower initial SoC means that there is higher storage capacity to be used to
store the excess PV generation. Therefore, increasing the initial SoC decreases the available
BESS capacity to store the excess energy from hour 12:00 to 13:00. Thus, as can be seen in
Fig. 6.10 (a), a higher initial SoC for the SCM scheme could have a negative impact on the
MPVHC.

Last, but not the least factor that should be discussed is the network tariff. Since SCM
scheme is only based on the difference between load and PV generation, the network tariff
has insignificant impact on the MPVHC when BESS follows SCM scheme. Fig. 6.11 shows
the impact of network tariff on the MPVHC for two BESS penetration level. As can be seen,
both ToU and flat tariffs yield in the same MPVHC for different BESS penetration level.
This is because the BESSs are in the charging mode from hour 12:00 to 13:00 for both SCM
and MILP schemes.

6.7 Summary

In this chapter, an optimization-based framework was developed to assess the impact of
BESSs and network tariffs on the MPVHC of LV distribution systems. The framework was
based on a new mathematical model for the HC. Unlike the existing Monte Carlo-based HC
methods, which exploited a scenario generator to address the uncertainty associated with
the location of PVs and to estimate the MPVHC, the proposed HC model considered the
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Fig. 6.8 Impact of BESS capacity on MPVHC for different BESS penetration levels using
SCM and MILP charging/discharging approaches for BESSs. The red and purple lines are
the mean and median, respectively.
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Fig. 6.9 Impact of BESS capacity on the BESS’s power and SoC profiles of a random
customer using MILP charging/discharging approach.
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location of PVs as a binary variable in the optimization problem. Therefore, unlike the Monte
Carlo-based methods, which could only estimate an upper bound for MPVHC, the proposed
model converged to the MPVHC. Then, proposed methodology was applied to 128 real LV
feeders in the U.K. Followings are the conclusion driven from the simulation results:
• The effectiveness of BESSs in increasing the MPVHC depends on the size, initial SoC

and the scheduling scheme of BESSs.
• BESSs with both SCM and MILP control schemes improves the MPVHC as long as

the BESSs stay in the charging mode during the critical period, i.e. between hours 12:00 and
13:00. For instance, in the test feeders, 100 % BESS penetration with MILP control scheme
would increase the MPVHC, on average, by 8.67 %. However, 100 % BESS penetration with
SCM control scheme increased the MPVHC, on average, by 3.2 %.
• If the control scheme of BESSs is SCM, increasing the size of BESSs has a positive

impact on the MPVHC. However, increasing the capacity of the BESSs would not improve
the MPVHC if the BESSs are charging with the maximum rate between hours 12:00 and
13:00.
• The BESS impact on the MPVHC is not dependent on the network tariff. This is

because BESSs are charging during the critical period irrespective of the network tariff.





Chapter 7

A Scenario-based Approach for storage
capacity determination to improve the
hosting capacity of distribution systems

7.1 Introduction

As explained in Chapter 1, distribution system operators (DSOs) could count on different
options including distributed energy resources’ (DERs’) control schemes and residential and
community battery energy storage systems (BESSs) to increase the hosting capacity (HC) in
their systems. In Chapters 5 and 6, we assessed the effectiveness of DERs’ control schemes
and residential BESSs on increasing PVHC. In this chapter, a comprehensive method has
been proposed to identify the minimum required BESSs for increasing the HC of a system
considering the uncertainties associated with the DERs and loads. Then, an economic model
has been developed to assess the minimum required BESS from an economic perspective.
Finally, the performance of the developed method is assessed on an agricultural feeder in
Australia. The outcome of this chapter is published as a conference paper1 and a book
chapter2.

The remainder of this chapter is organized as follows: the storage sizing framework is
presented in Section 7.2. Section 7.3 represents the economic assessment of community
BESSs. Numerical results and discussions are presented in Section 7.4. Finally, Section 7.5
summarizes the chapter.

1“Impacts of community and distributed energy storage systems on unbalanced low voltage networks,” in
2017 Australasian Universities Power Engineering Conference (AUPEC), Nov 2017, pp. 1–6 [93].

2Hosting Capacity for Modern Power Grids. Springer, 2019, ch. A Scenario-based approach for storage
capacity determination to improve the hosting capacity of distribution systems [136].
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Fig. 7.1 Possible regions as well as the distribution curve of HC.

7.2 Storage Sizing Framework

As shown in Fig. 7.1, the HC of a distribution system could be divided into three regions.
Region (A) shows the DER penetration levels that do not cause any violation in technical
constraints, regardless of DER locations. Region (B) represents the DER penetration levels
that do not cause any technical violation when DERs are located at certain locations. It
was demonstrated in [96] that the probability distribution curve of the HC in the region (B)
could be approximated by a Gaussian-shape distribution. The start point of the probability
distribution curve is the border between regions (A) and (B). This start point is defined as the
minimum HC of the system. Region (C) represents all DER penetration levels that would
cause a violation of the technical constraints, regardless of the location of DERs. The border
between regions (B) and (C) is defined as the maximum HC. Any HC in the region (B)
would cause a technical constraint violation for some DER location scenarios. However, it is
possible to resolve the constraint violations by curtailing DERs. The optimization model for
calculating the minimum active power curtailment required to avoid technical constraints
violation is as follows:

maximize
APCi,t

∑
i∈DG

pg
i,t−APCi,t , (7.1)
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Subjected to
Pi j,t = ∑

k: j−→k
Pjk,t + pd

j,t− pg
j,t +APC j,t ∀ j ∈DG , (7.2)

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t ∀ j ∈ {N \DG }, (7.3)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t−qg

j,t ∀ j ∈DG , (7.4)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t ∀ j ∈ {N \DG }, (7.5)

υ j,t = υi,t−2(ri jPi j,t + xi jQi j,t) ∀(i, j) ∈B, (7.6)

υi,t ≤ ῡ ∀i ∈N , (7.7)

APC j,t ≤ pg
j,t ∀ j ∈DG , (7.8)

pg
j,t = η

g
j,t×Capg

j ∀ j ∈DG , (7.9)

qg
j,t = (pg

j,t−APC j,t)× tan(φ j,t) ∀ j ∈DG , (7.10)

Solving the optimization model (7.1)-(7.10), results in the active power curtailment required
at each time step. To identify the minimum required BESS for a scenario, the model (7.1)-
(7.10) should be solved over the studied period. The maximum curtailed power during an
hour over the studied period is the minimum rating power required for the BESS for that
scenario. Similarly, the maximum curtailed energy during a day over the studied period is the
minimum energy rating of the required BESS. As the size and location of DERs are uncertain
variables, identifying the minimum required BESS for one scenario could not guarantee the
normal operation of the system for other DER expansion scenarios. Therefore, the rating
power and energy capacity of the required BESS should be identified for different scenarios
that would result in the same HC. However, assessing all possible DER expansion scenarios
is not a feasible option from a computation point of view. Therefore, we need to make a
compromise between the computation burden and accuracy of the solution. Fig. 7.2 represents
the framework for identifying the minimum BESS required to increase the minimum HC
to a certain level (HCref) in the region (B). The main idea of the framework is generating
expansion scenarios that would result in the total DER capacity of HCref. Then, the required
rating power and energy capacity of BESS should be identified. Finally, the required BESS
is estimated based on the designed BESS for the generated scenarios. In the following, the
steps of the framework are explained in detail.

• Step I: The focus of this step is addressing the uncertainty associated with the size
of DERs. Depend on the DER technology, there is a distribution curve for the size
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 Step I:  Generate a scenario by sampling from the distribution curve of DERs. The 

sum of the samples should be equal to the minimum HC level (HCref).

 Step II: The location of generated DER samples in Step I is selected randomly 

using a uniform distribution from the pool of potential locations.

 Step III: Solve the optimization model (1-10) to identify the required active power 

curtailment over the study period for the defined scenario in steps I and II. 

 Step IV: Repeat steps I, II and III until repetition condition is not violated.

Fig. 7.2 The proposed framework for minimum BESS estimation.

of the units based on the historical statistics. For instance, Fig. 7.3 represents the
distribution curve of PV systems in California. Generate a scenario by sampling from
the distribution curve of DERs. The sum of the samples should be equal to the target
minimum HC level (HCref).

• Step II: This step is designed to address the uncertainty associated with the location of
DERs. To do so, the location of generated DER samples in Step I is selected randomly,
using a uniform distribution from the pool of potential locations.

• Step III: After carrying out the Steps I and II, the optimization model (7.1)-(7.10)
should be used to identify the required active power curtailment over the study period.
Then, based on the obtained curtailed power, determine the required BESS for the
scenario. If the curtailed power over the studied period is zero, the scenario is not a
valid scenario as it does not cause any technical constraint violation over the study
period. Thus, the following indicator for scenario ( j) is defined to identify the validity
of each scenario.

ΘBESS( j) =

{
1 Total APC > 0
0 Otherwise

(7.11)

• Step IV: Repeat Steps I, II and III until repetition condition is not violated. As it
was mentioned, the HC in the region (B) has a distribution function. Therefore, it
is possible to calculate the probability of constraint violations for the new minimum
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Fig. 7.3 The distribution curve of PV systems based on California solar statistics [1].

HC (HCref) as follows:

ProbCV =
∫ HCref

0
fHC, (7.12)

where fHC is the probability distribution function of the HC. It was also mentioned that
the active power curtailment over the study period is zero for some of the generated
scenarios in Steps I and II. The probability of valid generated scenarios is as follows:

PrAPC =
∑

NBESS
j=1 ΘBESS( j)

NBESS
, (7.13)

where, NBESS is the total generated scenarios. Repeat Steps I, II and III while the
following condition is held:

NBESS ≥ 100 &&, (7.14)

0 < PrAPC ≤ ProbCV, (7.15)

7.3 Economic Assessment

This section explains the proposed method for performing the economic assessment of the
designed BESSs. It should be mentioned that the economic assessment in this section is
based on the annual costs and benefits of the BESSs.
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Fig. 7.4 The structure of a BESS.

7.3.1 The Annual Costs of the Estimated BESSs

The annual cost of BESS comprises of three main terms as follows:

• Total annual capital cost: the total capital cost of an energy storage system includes
the capital costs required for different parts of a BESS. Fig. 7.4 shows the structure of
a BESS. Three terms should be considered as the capital costs of the BESS: 1) energy
cost for BESS, which is the cost of the devices that store the energy; 2) cost of power,
which is the cost of power electronic devices (inverter) in the BESS; and 3) the total
cost for the balance of plant, which is defined as the cost of all the auxiliary systems
of a BESS including the transformer and supporting structures that are required to
exchange the energy.

• Operation and maintenance cost: this term is defined to identify the annual cost of
maintenance and operation of the BESSs.

• Replacement cost: this term is designed to cover the cost of battery replacement at
the end of the life cycle of the battery. If the planning horizon is longer than the life
cycle of batteries, then this term should be considered.

The calculation of the total annual capital cost is as follows [137]:

BEC =UCSC×
ECES

Total
ηCES , (7.16)

where, BEC and UCSC represent the total cost ($) and the unit cost ($/kWh) of storage
device, respectively; ECES

Total is the designed energy capacity of the storage device (kWh); and
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ηCES represents the community BESS efficiency.

PEC =UCPE×SCES
Total, (7.17)

where, PEC and UCPE represent the total cost ($) and the unit cost ($/kW) of power
electronic device, respectively; and SCES

Total is the rated power of the BESS (kW).

BOP =UBOP×
ECES

Total
ηCES , (7.18)

where, BOP and UBOP represent the total cost ($) and the unit cost ($/kWh) of the balance
of plant, respectively. Thus, the total capital cost can be calculated as follows:

TCC = BEC+PEC+BOP, (7.19)

where TCC denotes the total capital cost. Then, the total annual capital cost is as follows:

ACC = TCC×CAF, (7.20)

where,

CAF =
IR(1+ IR)hzn

(1+ IR)hzn−1
, (7.21)

where IR is the annual interest rate, and hzn is the planning horizon. Further, the operation
and maintenance cost can be calculated as follows:

AOMC = FOM×SCES
Total, (7.22)

where, AOMC and FOM denote the total annual cost ($/year) and the fixed unit cost
($/(kW.year)) of the maintenance and operation of BESS, respectively. Finally, the re-
placement cost can be calculated as follows:

ARC = AFactor×
ECES

Total
ηCES , (7.23)

where,
AFactor = FFactor× [(1+ IR)−r +(1+ IR)−2r + . . . ]×CAF, (7.24)

r =
CycleTotal

CycleDay×Nyear
, (7.25)
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where, FFactor represents the future value of the battery replacement cost ($/kWh); CycleTotal

and CycleDay denote the number of charge/discharge cycles of the storage during its life
cycle and during a day, respectively; and Nyear is the number of operating days in a year for
the storage system. Therefore, the total annual cost (TAC) can be calculated as follows:

TAC = ACC+AOMC+ARC. (7.26)

7.3.2 The Annual Costs of Active Power Curtailment

Compensation of the curtailed energy highly depends on the contract between the off-taker
and the generator owner. Usually, the compensation of active power curtailment of renewable
generators is based on the type of curtailment, the technology of renewable generation, and
the amount of curtailed energy. Most commonly, generators are compensated based on the
market value for the curtailed energy. However, usually, this compensation does not include
revenue lost from support mechanisms such as green energy credits. Some countries such as
Ireland and Romania have such a compensation policy. In some countries, the curtailment
compensation only covers a fraction of the curtailed energy. This fraction could vary from
15% to 50% or more. For instance, Greece only compensates 30% of the curtailed energy of
the wind facilities. However, there is no curtailment compensation for other technologies in
Greece. Moreover, the classification and reason behind the curtailment are important in the
compensation policies. For example, the congestion curtailments are usually compensated
while the curtailments related to the security of the system are not. This policy has been used
in Belgium and Germany. Other countries might use a different dichotomy. For instance,
real-time curtailments are compensated while the scheduled ones are not [138]. If it is
supposed that there is no compensation for the curtailed energy, then the curtailed energy is
an opportunity cost for the DER owner. In such a case, the annual cost of the active power
curtailment for all DER owners can be calculated as follows:

CostAPC = ∑
i∈DG

8760

∑
t=1

T grid
t ×APCi,t , (7.27)

where, T grid
t is the network electricity price at time (t).

7.3.3 The Annual Benefit of BESSs for the Utility

The focus of this section is identifying the benefits of the integration of BESSs in the system
for the utility. Two obvious options could benefit the utility, which are the reduction in the
network losses as well as the energy arbitrage between peak and off-peak periods. Both of
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these objectives can be achieved by minimizing the costs of supplying energy from a utility
perspective. Therefore, the objective function can be defined as follows:

minimize costs = ∑
(i, j)∈B

8760

∑
t=1

T grid
t × ri j× ℓi j,t−∑

i

8760

∑
t=1

pCES
i,t ×T grid

t . (7.28)

The decision variables are the optimal size and location of BESSs. The constraints of the
optimization problem include the BESSs installation and operation constraints, network
constraints and DERs constraints, which are given as follows:

BESSs Installation Constraints:

∑
i

BCES
i ≤ BCES

Total, (7.29)

BCES
i ×SCES,min

i ≤ SCES
i ≤ BCES

i ×SCES,max
i , (7.30)

BCES
i ×ECES,min

i ≤ ECES
i ≤ BCES

i ×ECES,max
i , (7.31)

∑
i

SCES
i ≤ SCES

Total, (7.32)

∑
i

ECES
i ≤ ECES

Total, (7.33)

BCES
i ∈ {0,1}, (7.34)

where, BCES
Total is the total number of locations in which BESSs could be installed; BCES

i

represents the binary variable to allocate BESS at bus (i); SCES
i and ECES

i denote the power
rating and energy capacity of a given BESS at bus (i), respectively; SCES,max

i and ECES,max
i

represent the maximum power rating and energy capacity of a given BESS at bus (i); and
SCES,min

i and ECES,min
i denote the minimum power rating and energy capacity of a given BESS

at bus (i). Constraints (7.32) and (7.33) limit the total power rating and energy capacity of
the BESS to the minimum required BESS, which was identified in section 7.2.

BESSs Operation Constraints [82]:
t

∑
t́=0

(pCES
i,t́ ×∆t +LossCES

i,t́ )≤ ECES
i,t́=0 ∀t ∈H , (7.35)

t

∑
t́=0

(−pCES
i,t́ ×∆t−LossCES

i,t́ )≤ ECES
i −ECES

i,t́=0 ∀t ∈H , (7.36)

ECES
i,t = ECES

i,t−1− pCES
i,t ×∆t−LossCES

i,t ×∆t, ∀t ∈H , (7.37)
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−SCES
i ≤ pCES

i,t ≤ SCES
i ∀t ∈H , (7.38)

ε
min
i ×ECES

i ≤ ECES
i,t ≤ ε

max
i ×ECES

i ∀t ∈H , (7.39)

LossCES
i,t = (1−η

CES
i )×|pCES

i,t | ∀t ∈H , (7.40)

pCES
i,t ≤ pCES

i,t−1 + pRURD
i ∀t ∈H , (7.41)

pCES
i,t ≥ pCES

i,t−1− pRURD
i ∀t ∈H , (7.42)

where, H and ∆t are the set of time steps and the length of each time step, respectively;
ECES

i,t́=0 represents the initial stored energy in BESS at bus (i); εmin
i , εmax

i and ηCES
i denote the

minimum and maximum allowable stored energy level as well as the efficiency of the BESS
at bus (i), respectively; pRURD

i is the charging/discharging rate of BESS at bus (i). Constraint
(7.35) is defined to make sure that the sum of all stored and taken energy over all the steps of
the study period is less than the initial stored energy. Similarly, constraint (7.36) is defined
to keep the sum of all stored and taken energy over all the steps of the study period below
the initial available capacity of BESS. Constraint (7.37) models the relationship between the
state of charge and the output power of BESS at bus (i) and time (t). Constraint (7.38) keeps
BESSs power below their rating power; constraint (7.39) is defined to set the minimum and
maximum state of charge of BESS at bus (i); constraint (7.40) is defined to model the energy
losses in each BESS at each time step; constraints (7.41) and (7.42) define the maximum
charging and discharging rate of BESSs. Finally, constraint (7.40) can be written in a linear
form by defining new variables as follows:

pCES
i,t = XXi,t−YYi,t , (7.43)

0≤ XXi,t ≤ SCES,max
i , (7.44)

0≤ YYi,t ≤ SCES,max
i , (7.45)

0≤ LossCES
i,t − (1−η

CES
i )(XXi,t−YYi,t)≤ 2×SCES,max

i ×DD2,i,t , (7.46)

0≤ LossCES
i,t − (1−η

CES
i )(YYi,t−XXi,t)≤ 2×SCES,max

i ×DD1,i,t , (7.47)

DD1,i,t +DD2,i,t = 1, (7.48)

DD1,i,t ,DD2,i,t ∈ {0,1}, (7.49)

where, DD1,i,t and DD2,i,t are binary variables that identify the charging/discharging status
of the BESS. DD1,i,t = 1 when the BESS is discharging and DD2,i,t = 1 when the BESS is
charging.
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Network Constraints:

These constraints include the power flow as well as over-voltage constraints. Any other
technical constraints such as thermal capacity could be also defined as a network constraint.
The network constraints considered in this study are modelled as follows:

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t− pg

j,t− pCES
j,t + ri jℓi j,t ∀ j ∈DG , (7.50)

Pi j,t = ∑
k: j−→k

Pjk,t + pd
j,t− pCES

j,t + ri jℓi j,t ∀ j ∈ {N \DG }, (7.51)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t−qg

j,t + xi jℓi j,t ∀ j ∈DG , (7.52)

Qi j,t = ∑
k: j−→k

Q jk,t +qd
j,t + xi jℓi j,t ∀ j ∈ {N \DG }, (7.53)

υ j,t = υi,t−2(ri jPi j,t + xi jQi j,t)+(r2
i j + x2

i j)ℓi j,t ∀(i, j) ∈B, (7.54)

ℓi j,t =
P2

i j,t +Q2
i j,t

υi,t
∀(i, j) ∈B, (7.55)

υ ≤ υi,t ≤ υ ∀i ∈N , (7.56)

Considering the objective function and the constraints, the defined optimization is an optimal
power flow (OPF) problem. The relaxed OPF problem, which is formed by eliminating
voltage and current angles from power flow equations, is still non-convex due to the quadratic
constraint (7.55). This quadratic term can be approximated using a piecewise linear function.
Generally, a nonlinear function f (t) can be approximated over an interval [a,b] by a piecewise
linear function f̂ (t) by using the break points a = t0 < t1 < t2 < · · ·< tk = b as follows:

t =
k

∑
v=0

λvtv,
k

∑
v=0

λv = 1, λv ≥ 0 ∀v ∈ {0,1,2, . . . ,k}, (7.57)

f̂ (t) =
k

∑
v=0

λv f̂ (tv), (7.58)

where t0 < t1 < t2 < · · · < tk represent the ending points of the pieces. Further, only two
adjacent λv are non-zero. This restriction can be removed by using binary variables as
follows:

0≤ λ0 ≤ w0, (7.59)

0≤ λv ≤ wv−1 +wv, ∀v ∈ {1,2, . . . ,k−1}, (7.60)
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0≤ λk ≤ wk−1, (7.61)

k−1

∑
v=0

wv = 1, (7.62)

wv ∈ {0,1}. (7.63)

Please refer to Chapter 2 for more information regarding approximating the nonlinear term
(7.55) with a piecewise linear function.

DERs Constraints:

pg
i,t = η

g
i,t×Capg

i ∀i ∈DG , (7.64)

qg
i,t = pg

i,t× tan(φi,t) ∀i ∈DG , (7.65)

where, η
g
i,t is the capacity factor of the DER at bus (i) and time (t); Capg

i and φi,t are the
capacity and power factor angle of DER at bus (i). Thus, the BESS allocation problem is
modelled as a mixed-integer linear programming (MILP).

7.3.4 Cost/Benefit Assessment

The total benefits for DER owner as well as the utility are compared to the annual cost of
installing the required BESS. If the annual benefit is higher than the annual costs, using BESSs
to improve the HC is justifiable. It should also be mentioned that there are different electrical
energy storage, including Lead-acid (LA), sodium sulfur (NaS), vanadium redox (VRB) and
zinc/bromine (ZnBr). Further, there is a considerable difference between the capital cost of
these BESSs technologies, which can affect the feasibility of the required BESS capacity
from an economic perspective. Therefore, the economic feasibility assessment should be
performed for a variety of BESS technology. Moreover, economic feasibility could change
over the course of time. For instance, it is expected to have up to 66% decrease in capital
costs by 2030. Similarly, it is expected to experience an increase in the efficiency of battery
storage [139]. This means that although a BESS technology might not be economically
feasible now, it may become feasible in the future.

7.4 Numerical Results

In this section, simulations are carried out to assess the performance of the proposed method-
ology. Initially, the effectiveness of the proposed method for identifying the minimum BESS
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Table 7.1 Parameters for BESS economical assessment.

Parameter LA VRLA NaS ZnBr VRB
Efficiency 0.75 0.75 0.77 0.7 0.7
Unit cost for
power electronic
inverter (US $/kW)

175 175 1000 175
included in
the unit cost
for battery storage

Unit cost for battery
storage (US $/kWh) 305 360 500 225 740

Unit cost for balance
of plant (US $/kWh) 50 50 0 0 30

Fixed operation and
maintenance cost (US $/kW) 15 5 20 20 20

Future replacement
cost (US $/kWh) 305 360 500 225 222

Number of charge/discharge
life cycle 3200 1000 2500 10000 10000

Table 7.2 Electricity price data.

Electricity
price scheme

Anytime Energy
(c/kWh)

Off-peak Energy
(c/kWh)

Shoulder Energy
(c/kWh)

Peak Energy
(c/kWh)

Flat 29.8 – – –
Time of Use (ToU) – 19.6 36.8 45

capacity is evaluated. Then, the economic feasibility of the minimum required BESS for
different technologies is discussed.

7.4.1 Input Data

The proposed methodology is examined on a balanced distribution system. The system is
a 33kV feeder in Australia, as shown in Fig. 3.3. The detail of this network is presented
in 3.4.1. The load profile is derived from the data made available by the Australian Energy
Market Operator (AEMO) [140]. The normalized PV and wind profiles are derived from
[101] and [102], respectively. The distribution of PV and wind sizes are derived from [96].
Table 7.1 represents all the parameters required for calculating the annual installation cost
of BESS for different technologies [137]. Table 7.2 shows the electricity price rate for two
different schemes from Origin Energy [141]. Peak period mentioned in Table 7.2 is from
1pm to 8pm; shoulder period is from 7am to 1pm and from 8pm to 10pm; and off-peak
period is from 10pm to 7am.
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Fig. 7.5 PVHC probability curve for the agricultural feeder.

7.4.2 Hosting Capacity Discussion

PV and wind HC of the test system are estimated based on the HC calculation method
presented in Chapter 3. Fig. 7.5 presents PVHC curve for the test system, which can be
approximated using the Gaussian-shape distribution as (7.66) with α = 0.56, µ = 19.97MW
and σ = 6.42MW. The minimum PVHC for the test system is 3.198MW.

HC ∼ α×N(µ,σ2) =
α√

2πσ2
e−

(x−µ)2

2σ2 (7.66)

Fig. 7.6 presents the wind HC curve for the test system, which can be approximated
using the Gaussian-shape distribution as (7.66) with α = 0.956, µ = 37.21MW and σ =

0.7092MW. The minimum wind HC for the test system is 2.92MW. As it can be seen, the
HC distribution for wind is significantly different from PVHC. This is mainly due to the
difference between the wind and PV generation profiles as well as the distribution of wind
and PV sizes.
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Fig. 7.6 Wind HC probability curve for the agricultural feeder.

Minimum Required BESS

Table 7.3 presents the estimated required BESS to increase the minimum HC to 4MW. To
assess the robustness of the identified solution, we generated 100 expansion scenarios with a
total DER capacity of 4MW. The curtailed energy for generated scenarios were calculated
over the study period. We observed that the identified BESS by the proposed method could
store the daily curtailed energy over the study period for both PV and wind technology. This
does not guarantee that the estimated BESS by the proposed method would be enough to store
the required active power curtailment. However, it supports that the estimated BESS by the
proposed method could store the curtailed energy with a probability of 1−ProbCV +PrAPC.
Another observation from Table 7.3 is that the minimum required BESS energy capacity for
increasing the wind HC to 4MW is 87.28% higher than that of PVHC. Further, the minimum
power rating of the required BESS for wind technology is 22.17% lower than of that for
PV technology. This shows that the minimum required BESS capacity in a system highly
depends on the type of distributed energy resources that would be accommodated in that
system.
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Table 7.3 Minimum required BESS to increase the HC to 4MW for PV and wind technologies
using the proposed method.

DER Technology Energy capacity (MWh) Rating power (MW)
PV 5.275 0.6697
Wind 9.879 0.5212

Table 7.4 Total annual costs of the required BESS for different technologies in US $ (2014).

DER
Technology

BESS Technology
LA VRLA NaS ZnBr VRB

PV 902323 2124994 1696292 370760 1056548
Wind 1656803 3953947 3036043 657629 1964038

7.4.3 Economic Feasibility Assessment of the Required BESS

This section discusses the economic feasibility of the estimated BESS that is required for
different technologies. To do so, the total annual cost of the required BESS for different
technologies are compared with the annual benefits of the corresponding BESS. Table 7.4
shows the total annual cost for the required BESS estimated using the proposed method for
PV and wind technologies, respectively. As can be seen, using ZnBr battery would result in
the lowest total annual costs for both PV and wind technologies, while VRLA battery has the
highest total annual costs.

Table 7.5 presents the optimal allocation of the required BESS in the system for both PV
and wind technologies under flat and ToU network tariffs. As can be seen, the required BESS
capacity is not distributed equally. Further, the optimal BESS location for PV technology is
different from that of wind technology. Another important factor that has a considerable
impact on the allocation of the required BESS for both PV and wind technologies is the
electricity price. Considering Table 7.5, it can be noted that the optimal location of BESSs
for both flat and ToU electricity prices are the same. However, the energy capacity as well as
the rating power of the optimal BESSs are different.

Fig. 7.7 demonstrates the annual benefit that utility would gain from installing the BESSs
for both PV and wind technologies. As can be seen, the annual profit of the utility with ToU
tariff is higher than that of the flat tariff. Further, the BESS benefit for PV generation is much
higher than that of wind generation in the test system. Moreover, the total annual profit of
the utility is below the total annual costs of the minimum required BESS for different storage
technologies, which might convey that BESS is not an economically feasible solution for
increasing the HC. Nevertheless, the utility benefit is only a part of the BESS benefit. DERs
owners also gain some benefit from avoiding active power curtailment. Fig. 7.8 shows the
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Table 7.5 Optimal allocation of the required BESS in the test system for PV and wind
generation under flat and ToU network tariffs.

BESS1 BESS2

PV

Flat

Location 149 159

Energy Capacity (MWh) 3.6 1.675

Rating Power (MW) 0.3 0.3697

ToU

Location 149 159

Energy Capacity (MWh) 1.675 3.6

Rating Power (MW) 0.297 0.3727

Wind

Flat

Location 151 162

Energy Capacity (MWh) 5.4 4.479

Rating Power (MW) 0.2643 0.2569

ToU

Location 151 162

Energy Capacity (MWh) 5.4 4.479

Rating Power (MW) 0.2468 0.2749

total annual profit of both utility and DERs owners compared with the total annual costs of
different BESS technologies. As it can be seen, the total annual profit of the BESS with
both flat and ToU electricity price rates is still lower than the total annual costs of all BESS
technologies, which means that although BESSs can increase the HC of the system, they are
not a feasible option from an economic perspective. However, it is also noted that the total
annual profit of BESS for PV technology, when the electricity price followed ToU rate, is
325353$, which is considerably close to the total annual cost of ZnBr battery technology, i.e.
370760$. This means that although community BESS is not an economically feasible option,
it can become a feasible option with a small change in one of the considered parameters such
as network tariff and efficiency and price of BESSs. Another considerable point in Fig. 7.8 is
that the total annual profit of BESS for wind generation is considerably lower than the total
annual cost of all BESS technologies. This implies that there are a few days that the spilled
wind energy is very high, but the spilled wind energy for the rest of the days is at a low level.

Finally, it should be mentioned that although some of BESS technologies are economi-
cally infeasible now, it does not mean that they will continue to be infeasible in the future.
As it was mentioned in section 7.3.4, it is predicted that the price of BESSs would decrease
and their efficiency would increase. Fig. 7.9 presents the total annual profit of both utility
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Fig. 7.7 Utility annual profit from installing the required BESS for PV and wind generation
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Fig. 7.9 Expected total annual profit in 2030 compared with the total annual cost for different
BESS technologies.

and DERs owners compared with the expected annual costs of different BESS technologies
in 2030. As can be seen, ZnBr battery technology is expected to be economically feasible
in 2030 with both flat and ToU electricity rates for PV technology. However, even the
future decrease in the price of energy storages would not make BESSs a feasible option for
increasing the HC for wind technology.

7.5 Summary

Technical issues such as over-voltage and overloading of lines and transformers limits DERs
capacity in distribution systems. Therefore, it is of great importance to know how distribution
systems can accommodate a higher level of DERs. This chapter proposed a method to identify
the minimum required battery energy storage to increase the HC of a system to a certain
level. The method aims to maximize the injected power in the system while minimizing
the curtailed energy. The outcomes of this methodology are the minimum required power
and energy capacity rating of BESSs to increase the HC of the system. The second step
of the methodology is the economic assessment of the determined BESSs capacity. The
performance of the developed method is examined on an agricultural distribution system
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in Australia. Then, the cost/benefit analysis is carried out to assess the feasibility of the
obtained BESSs. It was shown that the BESS technology highly affects the feasibility of
BESSs for HC improvement. Further, it was demonstrated that none of the considered BESS
technologies is economically feasible for increasing the HC of the test system. Next, the
impact of DER technology (i.e. PV and wind) on the size as well as the economic feasibility
of the required BESS was assessed in the test system. It was shown that the required BESSs
for increasing the HC of the test system for PV technology is 46.6% less than what is required
for wind technology. Moreover, it was demonstrated that the use of BESS for increasing
the HC of the system for PV technology would be economically feasible in 2030. However,
the use of BESSs for increasing the HC would not be a feasible option for wind technology
in the test system in 2030. Another factor that has been assessed in the test system was the
effect of electricity price on the allocation of the required BESS. It was shown that the ToU
electricity price rate would yield in a higher profit level for the utility than the flat electricity
price rate, i.e. 12.78% for PV and 126.8% for wind technology.



Chapter 8

Conclusion and Future Work

As discussed in Chapter 1, the capacity of distribution systems to host distributed energy
resources (DERs) is bounded. With the increasing penetration of DERs in distribution
systems and new technologies such as electric vehicles (EVs) and battery energy storage
systems (BESSs), it is of great importance for distribution system operators (DSOs) to
identify the hosting capacity (HC) of their systems. Thus, in this thesis, we proposed a
comprehensive framework to estimate the HC of any radial distribution system. In addition,
we proposed proper HC models to assess and quantify the impacts of new technologies
such as EVs on the HC. Furthermore, we quantified the contribution of different voltage
control schemes and residential BESSs on the HC. Then, to increase the HC in a system, we
optimally allocated and controlled comunity BESSs. The steps we took to address different
aspects of HC problem as well as the finding of this thesis are summarized as follows:

First, in Chapter 2, we developed a deterministic HC model for radial distribution systems.
We proved that the conic relaxation of the HC model is not exact, which means that we
cannot solve a convex conic program instead of the original non-convex HC model. Then,
we identified the conditions under which the linearized HC model is valid. We demonstrated
that linearizing the HC model is valid if the linear approximation of the branch losses is less
than the actual quadratic term. Furthermore, we linearized the HC problem based on the
identified criteria.

Second, in Chapter 3, we proposed a probabilistic framework based on an accurate
HC model considering the over-voltage and voltage deviation constraints, to deal with the
uncertainties associated with loads and DERs. We developed a two-step technique to linearize
the HC model. Further, the impacts of voltage deviation constraint, load growth, network
structure, and the DER type on HC have been assessed using the proposed methodology.
Following are the conclusions derived from the simulation results:
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• Voltage deviation constraint does not have a tangible effect on the HC probability
curve. Further, the voltage deviation constraint often limits the locational HC and
distributing DERs in the network would reduce the importance of this constraint.

• The annual load growth would increase the HC. So, the HC estimated now would be
an underestimation of the HC in the future.

• The HC probability curve highly depends on DER technology.

Third, in Chapter 4, we took a further step and studied the impact of EVs and their
charging station on the HC. To do so, we proposed a distributionally robust optimization
(DRO) to model the HC. The DRO HC model is proposed to replace the time series impact
analysis module of the framework presented in Chapter 3. In the proposed method, the
uncertain variables are modelled as stochastic variables following ambiguous distributions
defined based on the historical data. The DRO model guarantees that the probability of the
constraint violation does not exceed a given risk level, which can control the robustness of the
solution. To solve the DRO model of the HC, we reformulated it as a joint chance constrained
(JCC) problem, which was solved using the sample average approximation (SAA) technique.
The simulation result demonstrated that shortage of historical data can exponentially increase
the conservativeness of the estimated HC. Further, our assessment showed that although
aggregated demand of residential EVs increases the peak load in the system, it does not
improve the HC significantly. This is because the system reaches its maximum HC value
during the time periods that the aggregated demand of EVs is very low. We also observed
that the impact of charging stations’ demand on the HC depends on the DER technology.

Forth, in Chapter 5, we focused on increasing the HC by exploiting different control
schemes. The investigated operation strategies are based on the active and reactive power
control capabilities of photovoltaic (PV) systems as well as the on-load tap changer (OLTC)
of transformers. We proposed an optimization-based framework to determine the photovoltaic
HC (PVHC) considering the voltage control capabilities. We did this by utilizing the linear
mathematical model of the PVHC, in which the voltage control strategies were modelled as
equality and inequality constraints. The proposed methodology was examined on 128 LV
UK feeders. We showed besides the active power curtailment mode, i.e. VWOM, Volt-Var
operation mode of PV systems, i.e. VVOM, is more effective than other considered operation
modes of PV systems. Further, we showed that the control strategy of OLTC significantly
impacts the minimum PVHC (MPVHC). We demonstrated that if the aim of OLTC controller
is controlling the voltage of the farthest location from the substation transformer, it would
decrease the MPVHC. Nevertheless, if the aim is to keep the voltage in the feeder within
permissible range, it can increase the MPVHC on average by 51.08 %.
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Then, as it is a general assumption that residential BESSs would increase the HC, we
performed a comprehensive study to assess their impacts in a systematic way. To do so,
we presented an optimization-based framework in Chapter 6. The framework is based on
a new mathematical model for the HC. Unlike the Monte Carlo-based HC methods, which
can only provide an estimation of MPVHC, the proposed model can converge to the actual
MPVHC. We demonstrated the advantage of the proposed method over the Monte Carlo
approach. Then, the proposed methodology is examined on 128 real LV feeders in the
U.K. The simulation results showed the effectiveness of residential BESSs in increasing the
MPVHC depends on the penetration of BESSs in the system and the scheduling scheme of
BESSs. Further, we demonstrated that the MPVHC increases more in the cost minimization
scheme compared to the self-consumption minimization. In addition, we showed that both
flat and Time-of-Use tariffs have similar effect on the MPHVC.

Finally, in Chapter 7, we proposed a method for determining the minimum required
community BESS to increase the HC of a system to a certain level. The proposed method is
based on an optimization problem aiming to maximize the injected power in the system while
minimizing the active power curtailment (APC). The optimization model is the core part of a
probabilistic framework, which is designed to address the uncertainties associated with the
loads as well as the location and output power of DERs. Then, we carried out an economic
analysis to assess the feasibility of the required community BESS. We showed that the BESS
technology highly affects the economic feasibility of BESSs for HC improvement. Further,
we demonstrated that none of the considered BESS technologies is currently economically
feasible for increasing the HC of the test system. However, with the decreasing trend in the
BESS price, using community storage to increase the HC becomes an economically feasible
solution.

The aim of this thesis is to assess and enhance the HC of distribution systems. To do this
in a systematic way, we modelled the HC as an optimization problem. Then, we proposed
a framework based on the HC optimization model to identify the HC, probabilistically.
Furthermore, we assessed the impacts of new technologies such as EVs, residential BESSs
on the HC. In addition, we identified the effectiveness of different options such as ANM
schemes as well as installing community BESS in increasing the HC. Considering these, the
work of thesis can be extended into the following directions:

• DSOs require a simple but accurate methodology to estimate the HC of their networks.
Considering this, we developed a probabilistic optimization-based method based on the
most important HC technical constraints, which is a pragmatic approach to estimate the
HC. However, this approach is computationally expensive. An idea to avoid extensive
computation of the HC estimation is using some machine learning techniques. Thus,
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we can define some representative feeders. Then, we can identify the HC of the
representative feeders. Finally, the estimated HC and other characteristics of the
representative feeders is used in a machine learning process, which could be used to
predict the HC of a new feeder based on its characteristics.

• Wind and solar farms may be connected to the medium voltage (MV) distribution
systems. As it has been discussed in the AEMO report [142, 143], these renewable
generations decrease the system strength. System strength is usually measured by
available fault level (AFL) or short circuit ratio (SCR). Low system strength can lead
to an increased voltage volatility during system normal and disturbance conditions.
Further, it can also compromise the correct operation of protection systems, and result
in converter connected generations disconnecting during disturbances. In this thesis,
we considered the short circuit level (SCL) as a constraint in the HC optimization
model. However, AFL is generally less than SCL in the systems with considerable
penetration of converter connected generations. Increasing the penetration of converter
connected generations would decrease AFL, hence decrease system strength. Therefore,
to guarantee a minimum system strength, the system strength can be added as another
constraint in the HC optimization model.

• In this thesis, we assessed the impacts of APC and reactive power control (RPC) based
on local controllers. However, the progress in the smart grid technologies is paving
the way for implementation of distributed control of DERs in distribution systems.
In distributed control approach, DERs can communicate with each other. Therefore,
unlike the local control approach, a group of DERs would work together to resolve
the technical issue. Thus, the next question is how effective are the distributed control
strategies in increasing the HC.
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