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ABSTRACT

What are the distinct ways in which a set of predictor variables can provide information about a target

variable? When does a variable provide unique information, when do variables share redundant

information, and when do variables combine synergistically to provide complementary information?

The redundancy lattice from the partial information decomposition of Williams and Beer provided a

promising glimpse at the answer to these questions. However, this structure was constructed using a

much-criticised measure of redundant information, and despite sustained research, no completely

satisfactory replacement measure has been proposed.

This thesis presents a new framework for information decomposition that is based upon the

decomposition of pointwise mutual information rather than mutual information. The framework

is derived in two separate ways. The first of these derivations is based upon a modified version of

the original axiomatic approach taken by Williams and Beer. However, to overcome the difficulty

associated with signed pointwise mutual information, the decomposition is applied separately to

the unsigned entropic components of pointwise mutual information which are referred to as the

specificity and ambiguity. This yields a separate redundancy lattice for each component. Based

upon an operational interpretation of redundancy, measures of redundant specificity and redundant

ambiguity are defined which enables one to evaluate the partial information atoms separately for

each lattice. These separate atoms can then be recombined to yield the sought-after multivariate

information decomposition. This framework is applied to canonical examples from the literature and

the results and various properties of the decomposition are discussed. In particular, the pointwise

decomposition using specificity and ambiguity is shown to satisfy a chain rule over target variables,

which provides new insights into the so-called two-bit-copy example.

The second approach begins by considering the distinct ways in which two marginal observers

can share their information with the non-observing individual third party. Several novel measures of

information content are introduced, namely the union, intersection and unique information contents.

Next, the algebraic structure of these new measures of shared marginal information is explored, and it

is shown that the structure of shared marginal information is that of a distributive lattice. Furthermore,

by using the fundamental theorem of distributive lattices, it is shown that these new measures are

isomorphic to a ring of sets. Finally, by combining this structure together with the semi-lattice of joint

information, the redundancy lattice form partial information decomposition is found to be embedded

within this larger algebraic structure. However, since this structure considers information contents, it

is actually equivalent to the specificity lattice from the first derivation of pointwise partial information

decomposition. The thesis then closes with a discussion about whether or not one should combine the

information contents from the specificity and ambiguity lattices.
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CHAPTER 1

INTRODUCTION

When studying real-world complex systems such as the financial markets or genotype-phenotype map-

pings, applied researchers frequently seek to determine the strength of the interactions between the various

components of the system. Since information-theoretic measures can quantify both linear and non-linear

interactions without assuming an underlying model, information theory is a natural choice for this task [1].

Nevertheless, it has recently become clear that the established multivariate information measures can

conflate different types of multi-component interdependence [2]. The aim of information decomposition is to

develop information-theoretic measures that can separately quantify these distinct modes of dependency.

1.1 Bivariate Information Decomposition

Consider a system of three random variables and suppose that we wish to determine how the target

variable T depends on the two source variables S1 and S2. As first discussed by Williams & Beer [2], there

are four distinct modes of dependence that we can consider: the target T could uniquely depend on S1,

but be independent of S2; or vice versa’ T could redundantly depend on S1 and S2 in the same way; or T
could be independent of S1 and S2 individually, but synergistically depend on S1 and S2 such that together.

Figure 1.1 provides three joint probability distributions that each exemplify a single type of dependency.

In general, all four modes of dependency may be present simultaneously, and so the aim is to

separately quantify each type of dependence. As such, we require a measure of the unique information

U(S1 \ S2; T) from one variable, the unique information U(S2 \ S1; T) from the other variable, the

redundant information R(S1, S2; T) from either variable, and the synergistic information C(S1, S2; T)
from both variables. However, Williams & Beer [2] pointed out that classical information theory

provides the following three measures: the mutual information I(S1; T), which captures both the

unique information from S1 and the redundant information between S1 and S2; the mutual information

I(S2; T), which captures both the unique information from S2 and the same redundant information

between S1 and S2; and the joint mutual information I(S1, S2; T) which captures all four types of

dependency. Hence, evaluating the decomposition for three variables is fundamentally an algebraic

problem whereby we need to solve the following set of equations,

I(S1; T) = U(S1 \ S2; T) + R(S1, S2; T), (1.1a)

I(S2; T) = U(S2 \ S1; T) + R(S1, S2; T), (1.1b)

I(S1, S2; T) = U(S1 \ S2; T) + U(S2 \ S1; T) + R(S1, S2; T) + C(S1, S2; T). (1.1c)
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Unique
P S1 S2 T
1/4 0 0 0
1/4 0 1 0
1/4 1 0 1
1/4 1 1 1

Redundant
P S1 S2 T
1/2 0 0 0
1/2 1 1 1

Synergistic
P S1 S2 T
1/4 0 0 0
1/4 0 1 1
1/4 1 0 1
1/4 1 1 0

S1

S2

T

S1

S2

T

S1

S2

T

RU1 U2

I(S2; T)I(S1; T)

C
I
(
S1, S2; T

)

Figure 1.1: The joint probability distributions given in the three tables here provide an example of the
unique information from S1 relative to S2, redundant information from either S1 or S2, and synergistic
information from both S1 and S2 together. The circuit diagrams show how one might generate these
distributions using binary input sources. For the unique example, the target is a copy of one source, but
is independent of the other. In the redundant example, the target is a copy of two correlated sources.
Finally, for the synergistic example, the target is given by combining two independent sources using an
XOR logic gate such that it is pairwise independent of either source, but is dependent on both sources
together. The Venn diagram represents the system of equations (1.1).

From this set of equations, Williams & Beer [2] showed that the multivariate mutual information

conflates redundant dependencies with synergistic dependencies,

I(S1; S2; T) = I(S1; T) + I(S2; T)− I(S1, S2; T)

= U(S1 \ S2; T) + R(S1, S2; T) + U(S2 \ S1; T) + R(S1, S2; T)

−
(
U(S1 \ S2; T) + U(S2 \ S1; T) + R(S1, S2; T) + C(S1, S2; T)

)

= R(S1, S2; T)− C(S1, S2; T). (1.2)

The multivariate mutual information was originally introduced to generalise the notion of mutual

information to three or more variables—that is, to quantify the mutual dependence between three or

more processes. Clearly, determining the strength of multivariate interactions is an important problem

in many areas of science, engineering and economics. However, the multivariate mutual information

has the “unfortunate” property that it can be negative [3, p.49]. Prior to the above result, it was not

clear what it meant for three or more variables to share negative information, and consequently the

multivariate mutual information was said to have “no intuitive meaning” [4].

As we now know thanks to Williams and Beer’s result (1.2), the multivariate mutual information

is negative when the synergistic information is greater than the redundant information. In order

to quantify multivariate dependency, we need to separately quantify each of the distinct kind of

dependency. Mathematically, this requires us to solve the set of equations (1.1). However, this set

of equations is under-determined and hence solving them requires one more linearly independent

equation. Thus, the problem of information decomposition for three variables—that is, quantifying the

multivariate dependence between three processes—ultimately comes to providing a suitable definition

of either the unique, redundant or synergistic information.
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1.2 Objectives

The aim of information decomposition is to decompose the information provided by a set of source

variables S1, S2, . . . , Sn about a target variable T. While it is relatively easy to consider the distinct

ways that the target variable can depend on a pair of source variables, it is not immediately obvious

how many ways there are for the target variables to depend on an arbitrarily large set of source

variables. As such, the goal of information decomposition is to provide the following:

– A framework that accounts for all of the distinct ways in which a target variable can depend on

a set of source variables. This framework could be a system of equations, or otherwise.

– A way to quantify each of the distinct modes of dependency.

The partial information decomposition from Williams & Beer [2] provides a promising candidate

for the first of these two requirements. Williams & Beer also proposed a candidate measure for the

second. However, as we will discuss in Section 2.4, this candidate measure was less well-received

than their framework.

In response to some of the criticism of the measure from Williams & Beer [2], Bertschinger et al.
[5] suggested that any measure of either unique, redundant or synergistic information should also

provide an operational interpretation of the measure. For instance, a principled measure of redundant

information should provide a definition of what it means for two or more pieces of information

to be considered the same information. Thus, the aim of this thesis is to develop an information

decomposition that provides meaningful and interpretable measures of information.

There are two further aims that distinguish this thesis from the existing approaches to information

decomposition. Firstly, we want to be able to decompose the information associated with individual

realisations. Thus far, our discussion has focused on decomposing the information provided by a set of

source variables S1, S2, . . . , Sn about a target variable T. However, one can also consider decomposing

the pointwise information provided by a set of particular source realisations s1, s2, . . . , sn about a

particular target realisation t. Such a pointwise information decomposition would be desirable as it

would enable us to localise the information measures so that they can be used to analyse the local

information dynamics of time series [6], which would provide far greater detail than merely looking

at the average information dynamics of a system.

Secondly, in addition to being able to evaluate the decomposition for any number of sources

variables S1, S2, . . . , Sn, we wanted the decomposition to produce consistent results for an entire set of

target variables T1, T2, . . . , Tk too. This requirement was first suggested by Bertschinger et al. [7] who

suggested that the decomposition might satisfy a target chain rule (or left chain rule). Our desire for this

property was based upon the importance of the chain rule as a defining characteristic of information.

1.3 Contributions of this Thesis

During my candidature, I have made fundamental contributions to the development of the area of

information decomposition. This thesis comprises of three papers which were completed during my

candidature. The first paper is provided in Chapter 3, and is entitled, “Probability Mass Exclusions

and the Directed Components of Mutual Information” [8]. This paper is based upon some of the
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often overlooked foundational literature on information theory [9–12]. To be specific, this literature

motivated the notion of information by discussing the exclusion of target possibilities induced by

individual source values. Intuitively, this idea is exemplified by guessing games such as Twenty Ques-

tions or Guess Who?—the more possibilities an inquiry excludes, the greater the amount information

you received from that query. This characterisation seemed relevant to the problem of information

decomposition, as if different sources exclude the same target possibilities, then these sources must

provide the same information. Despite appearing in the early literature, however, this characterisation

had never been formalised. This paper contributes a rigorous derivation of information in terms of

probability mass exclusions.

Chapter 4 presents the second paper in this thesis, namely the “Pointwise Partial Information

Decomposition Using the Specificity and Ambiguity Lattices” [13]. It builds upon the first paper by

using the probability mass exclusions to provide a principle way to distinguish between realisations

that provide the same information and realisations that merely provide the same amount of infor-

mation. To be specific, we adopt the following operational interpretation of redundant information:

since the pointwise information is ultimately derived from the probability mass exclusions, the same
information must induce the same exclusions. Crucially, we use this intuition to derive a pointwise

partial information decomposition with a unique set of features relative to other approaches:

– the decomposition can be computed for more than two sources;

– the resultant information measures satisfy a chain rule over targets, which is crucial for producing

consistent results regardless of how we choose to perform the analysis; and

– just like the foundational literature, the pointwise decomposition focuses on individual realisa-

tions, meaning it can quantify multivariate dependencies between individual realisations, in

addition to entire variables.

The final paper contributed during my candidature is provided in Chapter 5, and is entitled,

“Generalised Measures of Multivariate Information Content” [14]. This paper provides a bottom-up

derivation of what turns out to be an equivalent decomposition to that from the second paper. We

begin the paper by asking the following question: if two marginal observers, Alice and Bob, share

their information with a third non-observing party, Eve, such that she knows which joint realisation

has occurred, and she knows the marginal probability distributions, but she does not know the

joint distribution, then how much information does Eve have? We then go on to show that the

algebraic structure of shared marginal information is that of a distributive lattice—that is, each distinct

way in which a set of marginal observers can share their information with Eve corresponds to an

element in a free distributive lattice. We then combine this structure together with the semi-lattice

of joint information, and show that the redundancy lattice form partial information decomposition

is embedded within this larger algebraic structure. However, since we are considering marginal

information contents, this structure is actually equivalent to the specificity lattice from the previous

chapter. The paper then closes with a discussion about whether or not one should combine the

information contents from the specificity and ambiguity lattices.
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CHAPTER 2

BACKGROUND

Information theory is a branch of probability theory that provides methodologies for quantifying concepts

such as uncertainty, surprisal, dependency and information. Notwithstanding some early results from

Boltzmann and Gibbs, the roots of modern information theory began with Hartley’s derivation of his

notion of information [1]. Later, in his seminal “A Mathematical Theory of Communication”, Shannon

generalised Hartley’s definition of information and used this notion to analyse reliability and coding in

communication systems [2], which established information theory as a field of study in its own right.

Despite being frequently misunderstood and abused [3] in the decades since its introduction,

information theory has become a ubiquitous general tool for quantifying uncertainty and dependency

in the sciences. In particular, since information-theoretic measures can quantify both linear and non-

linear interactions without assuming an underlying model, it is particularly well-suited for the analysis

of complex systems [4–8]. Nevertheless, as discussed briefly in Chapter 1, it has recently become clear

that multivariate information measures can conflate distinct types of multivariate dependencies [9].

We will now introduce some of the fundamental information-theoretic measures and basic ideas from

lattice theory, and discuss the various multivariate extensions of information theory.

2.1 Information Theory

Let X be a random variable consisting of discrete outcomes X and consider a particular realisation x.

The most fundamental function in information theory is the information content of a realisation [10],

h(x) = log
1

p(x)
= − log p(x). (2.1)

(This function is referred to as the pointwise entropy in Chapter 4.) By replacing the probability p(x)
with the joint probability p(x, y) or conditional probability p(x|y), we can define the joint information

content h(x, y) and conditional information content h(x|y) respectively. Using the chain rule of

probability, it is easy to verify that

h(x, y) = h(x) + h(y|x). (2.2)

The information content h(x) satisfies several properties that supports its interpretation as being a

measure of information. Indeed, Ash [11] showed that these three characteristics uniquely determine

the functional form of the information content. The first property is that if we were already fully
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certain that x would occur, then discovering that x occurred provides us with no further information.

The function h matches this intuition since h(x) is equal to zero if and only if p(x) is equal to one.

The second property is that the more surprising the event x, the more information it should convey.

Again, clearly the function h satisfies this criteria since as p(x) decreases, the value of h(x) increases

monotonically. Finally, if the realisations x and y occur independently, then we would expect that the

information provided by knowing that the joint realisation (x, y) occurred is equal to the sum of the

information provided by each realisation. Indeed, the function h(x, y) is equal to h(x) + h(y) if and

only if p(x, y) is equal to p(x)p(y), i.e. the realisations x and y occur independently.

There is a certain duality between the concepts of information and surprise: if we do not yet know

which realisation has occurred, then h(x) quantifies how surprised we would be if the realisation

x occurs; on the other hand, if we do know which realisation has occurred, then h(x) quantifies

the information associated with this knowledge. In information theory, the notion of information is

synonymous with a reduction in surprise.

Perhaps the most well-known function in information theory is the entropy of a random variable,

and it is given by the expectation value of the information content h(x) taken over all realisations from

the random variable X,

H(X) = − ∑
x∈X

p(x) log p(x) = EX[h(x)]. (2.3)

Similar to the information content, we can define the joint entropy H(X, Y) and conditional entropy

H(X|Y). Likewise, these functions are also related to each other by the chain rule,

H(X, Y) = H(X) + H(Y|X). (2.4)

The duality between the concepts of information and surprise is inherited by the entropy. On one hand,

the entropy quantifies the expected surprise of realisations from X, or equivalently, our uncertainty

before we observe a particular outcome. On the other hand, the entropy quantifies the average amount

of information that we expect to get from observing an outcome of the random variable X. Again, in

information theory, the concept of information can be thought of as the resolution of uncertainty.

The mutual information content or pointwise mutual information is given by

i(x; y) = h(x) + h(y)− h(x, y) = log
p(x, y)

p(x) p(y)
. (2.5)

Similar to the information content, we can define the joint mutual information content i(x, y; z) and

conditional mutual information content i(x, y|z) by replacing the relevant probabilities with joint

or conditional probabilities. This function is perhaps best understood as a comparison between

information content h(x, y) associated with the joint realisation (x, y) and the information content

h(x) + h(y) associated with x and y occurring independently. However, it is important to note that

there is nothing to suggest h(x, y) should be less than h(x) + h(y), and hence the mutual information

content i(x; y) is not non-negative. If the joint event (x, y) is more surprising than both of the

marginal events x and y occurring independently, then the mutual information content is negative.

Conversely, if the joint event (x, y) is less surprising than both of the marginal events x and y occurring

independently, then the information content is positive.
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H(X|Y) H(Y|X)I(X; Y)

H(Y)H(X)

H(X, Y)

Figure 2.1: A Venn diagram can be used to accurately represent the relationship between the entropies
H(X) and H(Y), the joint entropy H(X, Y), the conditional entropies H(X|Y) and H(Y|X), and the
mutual information I(X; Y).

Similar to how the entropy is equal to the expected information content, the mutual information
between two variables is given by the expectation value of the mutual information content,

I(X; Y) = E(X,Y)[i(x; y)]

= E(X,Y)[h(x) + h(y)− h(x, y)]

= H(X) + H(Y)− H(X, Y). (2.6)

Similar to the other measures, we can also define the joint mutual information I(X, Y; Z) and conditional

mutual information I(X, Y|Z). Despite the fact that the mutual information content is not non-negative,

it can be shown that the mutual information is non-negative. Moreover, the mutual information is

zero if and only if X and Y are independent [10, 12]. Formally, this follows from the fact that the

mutual information can be written as a Kullback–Leibler divergence which is non-negative by Jensen’s

inequality [12]. Perhaps more intuitively, the information we expect to get from knowing both X and Y
simultaneously, i.e. the joint entropy H(X, Y) is upper bounded by the sum of the information we expect

to get from knowing X and Y independently. In this way, the mutual information can be interpreted

as a measure of dependency, or information that is common to both X and Y. Dually, it can also be

considered to represent the average reduction in the uncertainty of X that one gets from knowing Y, or

vice versa. Figure 2.1 shows how this relationship can be represented using a Venn diagram.

Perhaps surprisingly, the vast majority of work in information theory only considers the case

whereby a single variable provides information about another variable. Historically, communications

theory has been the domain that has driven the development of information theory. When communicat-

ing, we are inducing a pairwise relationship between sent messages and received signals, where ideally

there is a one-to-one correspondence between the two. With this context in mind, it is perhaps not so

surprising that the established measures can conflate the distinct types of multivariate dependency.

The multivariate mutual information content was explicitly defined by Fano [13] and for three

variables X, Y and Z is given by

i(x; y; z) = h(x) + h(y) + h(z)− h(x, y)− h(x, z)− h(y, z) + h(x, y, z)

= log
p(x, y) p(x, z) p(y, z)

p(x) p(y) p(z) p(x, y, z)
. (2.7)
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However, Fano’s definition of the multivariate mutual information content was pre-dated by McGill’s

definition of the multivariate mutual information [14] which is equal to the expectation value of the

multivariate mutual information,

I(X; Y; Z) = E(X,Y,Z)[i(x; y; z)]

= ∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(x, y) p(x, z) p(y, z)

p(x) p(y) p(z) p(x, y, z)

= H(X) + H(Y) + H(Z)− H(X, Y)− H(X, Z)− H(Y, Z) + H(X, Y, Z). (2.8)

The multivariate mutual information is also known as the interaction information (which is McGill’s

original name for the quantity), co-information [15], and synergy [16]. It is the natural generalisation of

the mutual information beyond two variables, and aims to capture the information that is common to a

set of variables using a form of the principle of inclusion-exclusion. More specifically, the multivariate

mutual information aims to capture the information that is common to a group of variables in the same

way that the principle of inclusion-exclusion can be used to determine the number of elements that

are commonly held by a group of sets [17]. Indeed, it is straightforward to see how this definition can

be extended to define the multivariate mutual information between an arbitrary number of variables.

However, it has long been known that the multivariate mutual information can be negative

[13]. This “odd” [15] property led Czisar and Korner to conclude that the multivariate mutual

information has “no intuitive meaning” [18]. Cover and Thomas agree with this sentiment stating that

“unfortunately [...] there isn’t really a notion of mutual information common to three random variables”.

Consequently, there is no generally accepted method for quantifying multivariate dependencies. It

turns out that, as we will see in Section 2.4, the multivariate mutual information can be negative

because it conflates two distinct types of multivariate dependencies.

2.2 Analogies Between Entropies and Sets

As we saw in Figure 2.1, the relationship between the entropy of a pair of variables can be understood

in terms of a Venn diagram. This interpretation is supported by the fact that for any pair of random

variables X and Y, the entropy H satisfies the following inequality,

H(X) + H(Y) ≥ H(X, Y) ≥ H(X), H(Y) ≥ 0. (2.9)

From this inequality, we get that the conditional entropies and mutual information are non-negative,

H(X|Y) = H(X, Y)− H(Y) ≥ 0, (2.10)

H(Y|X) = H(X, Y)− H(X) ≥ 0, (2.11)

I(X; Y) = H(X) + H(Y)− H(X, Y) ≥ 0. (2.12)

This is analogous to the following inequality that is satisfied by a measure µ on a pair of sets A and B,

µ(A) + µ(B) ≥ µ(A ∪ B) ≥ µ(A), µ(B) ≥ 0, (2.13)
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Similar to the conditional entropy and mutual information, we have that

µ(A \ B) = µ(A ∪ B)− µ(B) ≥ 0, (2.14)

µ(B \ A) = µ(A ∪ B)− µ(A) ≥ 0, (2.15)

µ(A ∩ B) = µ(A) + µ(B)− µ(A ∪ B) ≥ 0. (2.16)

This analogy between entropy and measure has been noted by several authors [18–23].

Nevertheless, MacKay [10] notes that this representation is misleading for at least two reasons.

Firstly, since the measure on the intersection µ(A∩ B) is a measure on a set, it gives the false impression

that the mutual information I(X; Y) is the entropy of some intersection between the random variables.

Secondly, it might lead one to believe that this analogy can be generalised beyond two variables.

However, as we just saw, the multivariate mutual information is not non-negative, and hence is not

analogous to measure. Consequently, it is somewhat dubious to use a Venn diagram to depict the

relationship between the entropies of three or more variables, as per Figure 2.2.

Despite the fact that the analogy between entropy and measure is not valid for three or more

variables, Yeung [23] showed that there is an analogy between entropy and signed measure that is

valid for an arbitrary number of random variables. To do this, Yeung defined a signed measure on

a suitably constructed sigma-field that is uniquely determined by the joint entropies of the random

variables involved. This correspondence enables one to establish information-theoretic identities from

measure-theoretic identities. Thus, Venn diagrams can be used to represent the entropy of three or

more variables provided one is aware that the certain overlapping areas may correspond to negative

quantities. Nevertheless, a significant issue remains—the multivariate mutual information has “no

intuitive meaning” [18, 23].

I(X; Y; Z)

H(X|Y, Z)

H(Y|X, Z) H(Z|X, Y)

I(X, Z|Y)I(X, Y|Z)

I(Y, Z|X)

H(Y) H(Z)

H(X)H(X, Y, Z)

Figure 2.2: Representing the relationship between three variables using a Venn diagram is potentially
misleading since it gives the false impression that the multivariate mutual information I(X; Y; Z) is
not non-negative, i.e. the hatch area represents a potentially negative quantity.
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2.3 Lattice Theory

Before introducing the partial information decomposition, we must first discuss some of the basic

ideas, definitions and theorems from lattice theory [24–26]. Lattices are themselves a concept from

the branch of mathematics known as order theory which describes the notion of order using binary

relations and provides a formal framework for describing intuitive statements such as “this object is

great than that object” or “this item succeeds this other item”. Thus, we will begin by first considering

some of the basic definitions from order theory.

Definition 1. A pair 〈X,≤〉 is a partially ordered set (or poset) if ≤ is a binary relation on a set X such

that, for all a, b, c ∈ X, we have

(i) a ≤ a,

(ii) a ≤ b and b ≤ a implies a = b,

(iii) a ≤ b and b ≤ c implies a ≤ c.

These conditions are referred to as reflexivity, anti-symmetry and transitivity, respectively.

Definition 2. A partially ordered set 〈X,≤〉 that satisfies the connex property, i.e. is comparable for all

a, b ∈ X such that either a ≤ b or b ≤ a, is called a chain (or a totally ordered set, fully ordered set or linearly
ordered set). An antichain is a partially ordered set 〈X,≤〉 in which there are no comparable elements.

Definition 3. Let 〈X,≤〉 be a partially ordered set, and let a, b ∈ X. We say that a is covered by b (or b
covers a) if a < b and a ≤ c < b implies c = a. That is, there is no element c from X which satisfies

a < c < b. The set of elements from X that are covered by b is be denoted b−.

Given any partially ordered set 〈X,≤〉, we can form a dual partially ordered set 〈X,≥〉 by defining

a ≥ b such that, for every a, b ∈ X, it holds in the latter if and only if b ≤ a holds in the former.

Crucially, for every statement about the partially ordered set 〈X,≤〉, there exists a corresponding dual

statement about 〈X,≥〉. In general, these dual statements can be found be directly substituting ≤
with ≥ in the original statement.

Definition 4. We say that a partially ordered set 〈X,≤〉 has a bottom element if there exists ⊥ ∈ X
with the property that ⊥ ≤ a for all a ∈ X. Dually, X has a top element if there exists > ∈ X such that

a ≤ ⊥ for all a ∈ X.

Definition 5. Let 〈X,≤〉 be a partially ordered set and let Y ⊆ X. Then a ∈ Y is a maximal element if

for all b ∈ Y, we have that a ≤ b implies that a = b. A minimal element is defined dually. We denote the

set of maximal and minimal elements of Y respectively by Y and Y.

Definition 6. Let 〈X,≤〉 be a partially ordered set and let x ∈ X. The down-set of x, denoted ↓ x,

consists of all elements y ∈ X such that y ≤ x. The strict down-set of x, denoted ↓̇x, consists of all

elements y ∈ X such that y < x. The up-set and strict up-set of x are defined dually, and are denoted

↑ x and ↑̇x, respectively.

Definition 7. Let 〈X,≤〉 be a partially ordered set and let Y ⊆ X. An element a ∈ X is an upper bound
for Y if for all b ∈ Y, we have that b ≤ a. A lower bound for Y is defined dually.
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Definition 8. Let 〈X,≤〉 be a partially ordered set. An element a ∈ X is the least upper bound or

supremum for Y, denoted sup Y, if a is an upper bound of Y and for all b ∈ Y and all c ∈ X, we have

that b ≤ c implies a ≤ c. The greatest lower bound or infimum for Y, denoted inf Y, is defined dually.

Having considered the basic definitions from order theory, we now wish to consider lattice theory.

To begin, a lattice is merely a particular kind of partially ordered set in which, for any pair elements,

we can find a unique supremum (called the join) and a unique infimum (called the meet).

Definition 9. A partially ordered set 〈X,≤〉 is a lattice if and only if both sup{a, b} and inf{a, b} exist

for all a, b ∈ X. We then refer to sup{a, b} and inf{a, b} as the join a∨ b and meet a∧ b, respectively. For

Y ⊆ X, we denote the meet and join of all elements of Y with
∨

Y and
∧

Y, respectively.

For example, the real numbers together form a lattice together with the maximum and minimum

operators respectively serving as the join and meet operators. Similarly, the family of all subsets of a

set X form a lattice together with the union and intersection operators serving as the respective join

and meet operators. As we will see later in this thesis, this latter example is of particular importance.

Although we have introduced lattices as a special kind of partially ordered sets, there is an

alternative viewpoint that provides much further insight into these mathematical objects. To be

specific, we can view a lattice as an algebraic structure 〈X,∨,∧〉 and then investigate properties of this

structure and its operators. In order to show that the order-theoretic definition of a lattice is equivalent

to the algebraic deviation, we will consider three theorems. The first is called the Connecting Lemma,

which establishes that the ∨ and meet ∧ operators are equivalent to the ordering relation ≤. The

second considers the algebraic properties of these operators. The third theorem proves that these

algebraic properties are sufficient for defining the ordering relation ≤.

Lemma 1 (The Connecting Lemma). Let 〈X,≤〉 be a lattice and let a, b ∈ X. Then the following are

statements are equivalent:

(i) a ≤ b,

(ii) a ∨ b = b,

(iii) a ∧ b = a.

Proof. See Davey & Priestley [24].

Theorem 1. Let 〈X,≤〉 be a lattice and let a, b, c ∈ X. Then ∨ and ∧ satisfy the following identities:

a ∨ a = a,
a ∧ a = a,

(idempotency)

a ∨ b = b ∨ a,
a ∧ b = b ∧ a,

(commutativity)

(a ∨ b) ∨ c = a ∨ (b ∨ c),
(a ∧ b) ∧ c = a ∧ (b ∧ c),

(associativity)

a ∨ (a ∧ b) = a,
a ∧ (a ∨ b) = a.

(absorption)

Proof. See Davey & Priestley [24].
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Definition 10. An algebra 〈X,∨,∧〉 is a called a lattice if, and only if, X is a non-empty set, and ∨ and ∧
are binary operations on X that satisfy the idempotent, commutative, associative and absorption identities.

Theorem 2. Let the algebra 〈X,∨,∧〉 be a lattice. Then, for all a, b ∈ X, we have the following:

(i) We have that a ∨ b = b if and only if a ∧ b = a.

(ii) We can define an order operator leq on X by a ≤ b if a ∨ b = b.

(iii) Using≤ from (ii), we have that 〈X,≤〉 is a lattice in which a∨ b = sup{a, b} and a∧ b = inf{a, b}.

Proof. See Davey & Priestley [24].

Thus, we can henceforth use either an order-theoretic definition of a lattice 〈X,≤〉 or an algebraic

based definition 〈X,∨,∧〉 and even use them interchangeably knowing that the two definitions are

equivalent. This is incredibly useful as the algebraic definition allows us to apply all of the concepts

and methods of universal algebra to lattices, which provides a more powerful set of techniques than

order theory alone. Let us now consider two further types of partially ordered sets that can also be

considered as algebras, namely the join- and meet-semilattices.

Definition 11. A join-semilattice is an algebraic structure 〈X,∨〉 consisting of a set X with a binary

operation called join ∨ that satisfies the idempotent, commutative and associative identities. A meet-
semilattice is an algebraic structure 〈X,∧〉 consisting of a set X with a binary operation called meet ∧
that satisfies the idempotent, commutative and associative identities.

Clearly, a lattice is simultaneously both a join- and meet-semilattice. Indeed, a lattice can be considered

to be a special case of either, or more specifically, a lattice is a both a a join-semilattice and meet-semilattice

that is connected via the absorption identity. It is this connection that distinguishes a lattice from a

semilattice. Next we will consider distributive lattices, which are of particular relevance to this thesis.

Definition 12. A lattice 〈X,∨,∧〉 is called a distributive lattice if it satisfies the following identities:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

(distributivity)

The two examples considered earlier in this section are both distributive lattices. That is, the real

numbers together with the maximum and minimum operators form a distributive lattice since the

maximum and minimum operators are idempotent, commutative, associative and distributive, and

are connected by absorption. Similarly, the family of all subsets of a set X together with the union and

intersection operations form a distributive lattice since the union and intersection operators are also

idempotent, commutative, associative and distributive, and are connected by absorption.

The latter of these two examples is actually highly significant. This is based upon the following

theorem, known as Birkoff’s Representation Theorem [24, 25, 27] or the Fundamental Theorem of

Finite Distributive Lattices [26], which shows us that we can represent every distributive lattice using

finite sets. This theorem will be crucial to one of the main results from Chapter 5 of this thesis.

Theorem 3 (Fundamental Theorem of Finite Distributive Lattices). A finite distributive lattice 〈X,∨,∧〉
is isomorphic to a ring of sets, whereby the lattice’s meet and join operations correspond to the

intersection and union operations.

Proof. See Davey & Priestley [24].
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2.4 Partial Information Decomposition

The partial information decomposition of Williams and Beer [9, 28] was introduced to address the

problem of multivariate information decomposition. The approach taken is appealing as rather than

speculating about the structure of multivariate information, Williams and Beer took a principled

axiomatic approach. Their aim is to decompose the information provided about a target variable T by

an arbitrarily large set of predictor variables S. They begin by considering potentially overlapping

subsets of the predictors S called sources. These sources A1, A2, . . . , Ak are elements of the set of all

non-empty subsets of S, i.e. elements of the set P1(S) = P(S) \∅ where P(S) denotes the power set

of S. Then they examine the various ways these sources might contain the same information. Formally,

they introduce three axioms which “any reasonable measure for redundant information [I∩] should

fulfil” [29]. These axioms are based upon the intuition that redundancy should be analogous to the

set-theoretic notion of intersection (which is commutative, monotonically decreasing and idempotent).

Axiom 1 (Commutativity). Redundant information is invariant under any permutation σ of sources,

I∩
(

A1, . . . , Ak; T
)
= I∩

(
σ(A1), . . . , σ(Ak); T

)
.

Axiom 2 (Monotonicity). Redundant information decreases monotonically as more sources are included,

I∩
(

A1, . . . , Ak−1; T
)
≥ I∩

(
A1, . . . , Ak; T

)

with equality if Ak ⊇ Ai for any Ai ∈ {A1, . . . , Ak−1}.

Axiom 3 (Self-redundancy). Redundant information for a single source Ai equals the mutual information,

I∩
(

Ai; T
)
= I
(

Ai ; T
)
.

Williams and Beer then consider all of the distinct ways in which the sources A = {A1, . . . , Ak}
could contribute redundant information. Before now, we have assumed that the redundancy measure

can be applied to any collection of sources, i.e. to elements from the set P1(A) where P1 denotes the

power set with the empty set removed. Since the sources are themselves given by the set P1(S), the

redundancy measure I∩ can be applied to any element from the set P1
(
P1(S)

)
. This is an enormous

set. Nevertheless, we can greatly reduce the number of elements by using Axiom 2. In particular,

Axiom 2 states that if Ai ⊆ Aj, then

I∩
(

Aj, Ai, . . . ; t
)
= I∩

(
Ai, . . . ; t

)
.

As such, one only needs to consider the collection of sources such that no source is a superset of any

other in order,

A(S) =
{

α ∈ P1
(
P1(S)

) ∣∣ ∀ Ai, Aj ∈ α, Ai 6⊂ Aj

}
. (2.17)

This collection captures all the distinct ways in which the sources could provide redundant information.

Williams and Beer then showed that this set of sources A(S) is naturally structured. Consider two

sets of sources α, β ∈ A(S). If for every source B ∈ β there exists a source A ∈ α such that A ⊆ B,
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{123}

{23}{13}{12}

{13}{23}{12}{23}{12}{13}

{12}{13}{23}{3}{2}{1}

{3}{12}{2}{13}{1}{23}

{2}{3}{1}{3}{1}{2}

{1}{2}{3}

{12}

{2}{1}

{1}{2}

Figure 2.3: The redundancy lattice induced by the partial order � from (2.18) over the set of sources
A(S) from (2.17). Each node corresponds to the self-redundancy (Axiom 3) of a source event,
e.g. {1} corresponds to the source event

{
{S1}

}
, while {12, 13} corresponds to the source event{

{S1, S2}, {S1, S3}
}

. Left: The redundancy lattice for two sources S = {S1, S2}. Right: The redundancy
lattice for three sources S = {S1, S2, S3}.

then all of the information shared by B ∈ β must include any redundant information shared by A ∈ α.

Hence, a partial order � can be defined over the elements of the domain A(S) such that any collection

of sources precedes another if and only if the latter provides any information that the former provides,

∀α, β ∈ A(S),
(
α � β ⇐⇒ ∀ B ∈ β, ∃ A ∈ α | A ⊆ B

)
. (2.18)

Applying this partial ordering � to the elements of the domain A(S) produces a redundancy lattice.
Figure 2.4 depicts this structure for the case of 2 and 3 predictor variables. Each element in this lattice

corresponds to a distinct way in which the set of predictors S can contribute information about the target T.

The redundancy measure I∩ can be thought of as a cumulative information function which in

effect integrates the contribution from each node as one moves up through the nodes of the lattice. To

evaluate the unique information contributed by each node in the lattice, we must evaluate the Möbius

inverse [17, 30] of the function I∩ over the lattice. That is, the partial information contributed by a

node α is given by

I∩(α) = ∑
β�α

I∂(β). (2.19)

By rearranging, it is clear that we can calculate the partial information I∂(α) recursively from the

bottom of the lattice,

I∂(α) = I∩(α)− ∑
β≺α

I∂(β). (2.20)
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This result generated a great deal of excitement. When it is applied to the redundancy lattice generated

by two source variables, it yields the intuitive decomposition (1.1) discussed in Chapter 1. However,

it can also be applied to the redundancy lattice for 3 or more sources, and so it provides a general

framework for multivariate information decomposition.

Nevertheless, just as we saw with (1.1), evaluating these partial information terms requires an

additional definition. But unlike with (1.1), this definition must be a measure of redundant information.

Moreover, this definition must satisfy Axioms 1–3. As such, to complete the framework, Williams

and Beer simultaneously introduced a measure of redundant information called Imin which quantifies

redundancy as the minimum information that any source provides about a target event t, averaged

over all possible events from T,

Imin(A1, . . . , Ak; T) = ∑
t

p(t)min
i

I(T = t; Ai). (2.21)

The information that any one source provides is given by the specific information, which quantifies

the information associated with a particular realisation t from T,

I(T = t; A) = ∑
a

p(a|t)
[

log
1

p(t)
− log

1
p(t|a)

]
. (2.22)

One the important features of the specific information is that it is non-negative. Indeed, this property

is crucially important for the definition (2.21) since the minimum operator would be less meaningful

for a potentially negative quantity. For example, if the mutual information content (2.5) were used

in-place of the specific information, we could have the situation whereby the mutual information

content is positive for one source, but is negative for another source. There is little justification for

using the minimum of these sources as a measure of redundancy.

Not long after its introduction, however, Imin was criticised for failing to distinguish between

“whether different random variables carry the same information or just the same amount of informa-

tion” [32, p. 269] (see also [31, 33]). This criticism primarily related to the so-called two-bit copy

problem given in Figure 2.4. Several authors argued that the information decomposition induced by

Two bit copy
P S1 S2 T Tcopy Talt

1/4 0 0 0 00 00
1/4 0 1 1 01 01
1/4 1 0 2 10 11
1/4 1 1 3 11 10

S1

S2

Tcopy

S1

S2

Talt

Figure 2.4: The decomposition provided by Imin suggests that the two-bit copy provides 1 bit of
redundant information and 1 bit synergistic information. Many authors contend that is unreasonable
since the distribution can be generated by concatenating two independent bits, as demonstrated by
Tcopy. They argue that since “the wires don’t even touch” [31, p.167], the answer should be 1 bit
of unique information from each source [31–33]. Nevertheless, using causal systems to provide
intuition and insights into information decomposition is dubious as many different causal systems
can produced the same probability distribution, as demonstrated by Talt. Since information theory
should be agnostic to the labels attached to any outcomes, these different causal systems must lead to
the same information decomposition. This final point will be discussed in detail in Chapter 4.
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Imin for two-bit copy, i.e. that there is 1 bit of redundant information and 1 bit of synergistic informa-

tion, was unreasonable as the probability distribution associated with this example could be generated

by concatenating two independent bits [31–33]. Since it could be generated by concatenated bits, they

argued that any reasonable information decomposition should yield 1 bit of unique information from

each source. Nevertheless, as is briefly discussed in Figure 2.4, this reasoning based upon underlying

causal dynamics is unreliable.

Although the two-bit copy problem attracted the most attention, there were also two further criticisms

of Imin that are particularly relevant to this thesis. The first of these critiques was from Lizier et al. [34],

who showed that Imin cannot be used to decompose the pointwise information that is provided by a joint

source realisation s1, s2, . . . , sn about a target realisation t. Although the lack of a pointwise information

decomposition is not widely cited as a major issue, it is nevertheless a fundamental problem since one

could just as rewrite Axioms 1–3 in terms of the pointwise mutual information.

The second relevant criticism comes from Bertschinger et al. [32], and relates to how the information

decomposition should behave when considering multiple or joint target variables T = (T1, T2).

Specifically, they suggested that measure of redundant information I∩ should satisfy a target chain

rule, or to use the terminology from Bertschinger et al. [32], a left chain rule,

I∩
(

A1, . . . , Ak; T
)
= I∩

(
A1, . . . , Ak; (T1, T2)

)

= I∩
(

A1, . . . , Ak; T1
)
+ I∩

(
A1, . . . , Ak; T2

∣∣T1
)
. (2.23)

This requirement is a natural generalisation of the chain rule of mutual information, which is one of

the defining characteristics of the notion of information in information theory [2, 13]. In effect, the

target chain rule mandates that the information decomposition should be consistent as one considers

more and more target variables.

2.5 Alternative Approaches to Information Decomposition

In response to the issues with Imin, several alternative measures of redundant information have been

proposed. The first of these was introduced by Harder et al. [33], who defined a measure of redundant

information Ired based upon the methods of information geometry. In the same paper, Harder et al.
introduced the so-called identity axiom. This axiom aims to directly address the two-bit copy problem by

directly mandating that each source provides 1 bit of unique information for the two-bit copy example.

Axiom 4 (Identity). The redundant information provided by two sources A1 and A2 about the joint

target variable T = (A1, A2) is equal to the mutual information between the two sources,

I∩
(

A1, A2; T) = I∩
(

A1, A2; (A1, A2)
)
= I(A1; A2).

An entirely separate approach—which also satisfies Axiom 4—was proposed by Bertschinger

et al. [35] who defined a measure of unique information ŨI based upon the notion that if one variable

contains unique information then there must be some way to exploit that information in a decision

problem. One of the key points in this paper is that their measure of unique information ŨI (or

equivalently, their measure of redundant information S̃I), only depends on the marginal distribu-
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tions P(A1, T) and P(A2, T). They argue that any sensible approach should satisfy this requirement

and mention that many other candidate measures such as Imin and Ired also satisfy this property.

In contrast to other approaches, however, Bertschinger et al. show that their measure of synergistic

information C̃I is not attainable with only the marginal distributions P(A1, T) and P(A2, T), but rather

requires knowledge of the full joint distribution P(A1, A2, T). Indeed, they showed that ŨI, S̃I and C̃I

are the unique functions that simultaneously satisfy both this property and the prior property. In this

sense, these two properties can be considered defining characteristics of these functions.

Griffith & Koch [36] simultaneously and independently defined a measure of synergistic infor-

mation SVK based upon the idea that synergy should quantify how much greater the whole is than

the sum of the parts. In particular, they argue that one should first consider a measure of union

information which quantifies the information that is available from all of the individual sources,

and subtract this from the total information provided by these sources, i.e. the joint mutual informa-

tion I
(
(A1, A2); T

)
. Griffith & Koch argue that this union information can be found by destroying

the joint relationship between the sources and target, whilst maintaining the marginal relationships

between each individual source and the target. It turns out that the resultant measure of synergis-

tic information SVK is equivalent to C̃I from Bertschinger et al. [35]. Of course, with the benefit of

hindsight, this is not surprising since the process outlined by Griffith & Koch [36] is equivalent to the

defining characteristics of functions proposed by Bertschinger et al. [35]. Indeed, this independent

derivation and subsequent convergence contributed to the relative popularity of this approach to

information decomposition.

In addition to these proposed replacements for Imin, there is also a substantial body of literature

discussing either partial information decomposition, similar attempts to decompose multivariate

information, or the problem of information decomposition in general [29, 31–52]. For comprehensive

overview of these approaches, see the editorial that from the Entropy special issue on “Information

Decomposition of Target Effects from Multi-Source Interactions: Perspectives on Previous, Current

and Future Work” [53].

2.6 Summary of Proposed Axioms or Suggested Properties

Almost all of the proposed approaches to information decomposition utilise Axioms 1–3 as the basis

for their framework since, as shown by Williams & Beer [9], these axioms lead to the redundancy

lattice which provides a rich algebraic structure for interpreting multivariate dependence. To specific,

the information measure I∩ associated with each term in the lattice can then be partitioned via a

Möbius inversion into the partial information I∂ associated with each distinct type of multivariate

dependence. Any approach that uses these Axioms 1–3 can be referred to as a partial information

decomposition. One important property that Williams and Beer discuss is the non-negativity of their

partial information terms, a property that became known as local positivity [32].

Property 1 (Local Positivity). The partial information terms should be non-negative, i.e. I∂ ≥ 0.

Indeed, this property is typically regarded as an essential, since the excitement around information

decomposition stems mostly from its ability to provide an explanation as to why the multivariate mutual

information is not non-negative. Thus, almost all of the existing approaches to partial information decom-
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position have this property. To our knowledge, the only existing approach that does not satisfy Property 1

is due to Ince [47], who justifies this by observing that the negativity is interpretable within the framework

of pointwise information theory. It is also worth noting that some authors consider the following property

which, to our knowledge, is satisfied by all existing approaches to information decomposition.

Property 2 (Global Positivity). The redundant information should be non-negative, i.e. I∩ ≥ 0.

Thus far, we have discussed the most popular axioms or properties for information decomposition.

Nevertheless, there are a several more less commonly considered axioms or properties to be discussed.

Bertschinger et al. [32] suggested that the redundant information should not only be commutative

over the sources, but should be symmetric over all of its arguments.

Property 3 (Strong symmetry). The redundant information should be invariant for any permutation σ,

I∩
(

A1, . . . , Ak; T
)
= I∩

(
σ(A1), . . . , σ(Ak); σ(T)

)
= I∩

(
σ(A1), . . . , σ(Ak), σ(T)

)
.

For the two variable case where there is one source S and one target T, this property follows imme-

diately from Axiom 3 and the fact that the mutual information is symmetric. As such, Bertschinger

et al. [32] suggest that it would be natural to extend this property to cover an arbitrary number of

variables. It is worth noting that this property is a relatively strong requirement, as it immediately

constrains most of the nodes in the redundancy lattice [32]. To our knowledge, it is not satisfied by

any of the proposed measures of redundant information. In our opinion, it is likely that this is too

constraining for any information decomposition that can separately quantify unique, redundant, and

synergistic dependence.

In addition to strong symmetry, Bertschinger et al. [32] introduced two further weaker properties

which both relate to joint target variables. The first of these is based upon the idea that if a set of

sources share some redundant information about a target variable T1, then they must share at least as

much redundant information about a joint target T = (T1, T2).

Property 4 (Target monotonicity). The redundant information provided by a set of targets should

increase monotonically as more target variables are jointly considered,

I∩
(

A1, . . . , Ak; T1
)
≤ I∩

(
A1, . . . , Ak; (T1, T2)

)
.

Of course, this property follows immediately from Property 3 and Axiom 2. At this point, an astute

reader may notice that the intuition behind target monotonicity is similar to the target chain rule from

Section 2.4. Indeed, Bertschinger et al. [32] made this exact point when they introduced the target

chain rule as their second property regarding joint target variables.

Property 5 (Target chain rule). The redundant information should satisfy a chain rule for target variables,

I∩
(

A1, . . . , Ak; T
)
= I∩

(
A1, . . . , Ak; (T1, T2)

)

= I∩
(

A1, . . . , Ak; T1
)
+ I∩

(
A1, . . . , Ak; T2

∣∣T1
)

= I∩
(

A1, . . . , Ak; T2
)
+ I∩

(
A1, . . . , Ak; T1

∣∣T2
)
.
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As was mentioned in Section 2.4, this property is a natural generalisation of the chain rule of mutual

information, which is one of the defining characteristics of the notion of information in information

theory [2, 13]. One interesting observation made by Bertschinger et al. [32] is that Axiom 4 follows

immediately from Properties 1 and 5.

Before moving on, it is important to note that certain combinations of these axioms or properties

are not possible. Bertschinger et al. [32] proved that it is not possible to satisfy Axioms 2 and 3,

and Properties 1 and 3 simultaneously. Similarly, Rauh et al. [39] showed that no measure caon

simultaneously satisfy Axioms 1–4 and Property 1. This latter result is particularly important, as it

proves that ŨI, SVK and Ired cannot be generalised to deliver a non-negative information decomposition

for an arbitrary number of source variables.

2.7 The Current State of Information Decomposition

Information theory is frequently used to quantify the dependency between components in real-world

complex systems such as the financial markets or genotype-phenotype mappings. Nevertheless,

there are certain questions about these multivariate dependencies that are easy to phrase, but are not

quantifiable using classical information theory. For example, do two genes hold the same information

redundantly about eye-colour, is it synergistically determined by the pair, or is it perhaps uniquely

determined by just one of the pair? Information decomposition promises to provide a framework for

addressing such questions.

Unfortunately—in spite of a concerted effort by the information theory and complex systems

community—no one approach to information decomposition has been universally accepted. All of the

existing proposals have some kind of significant shortcomings. Either they do not work for more than

two input sources, or they fail to produce interpretable measures in some edge case. Some of these

approaches clash with each other and produced contradictory results for the same underlying system.

In short, information decomposition is still considered to be an open problem.

One of the most promising areas of application for information decomposition is in neuroscience.

Much of the interest stems from the potential for information decomposition to quantify synergistic

dependencies. A measure of synergistic interactions could provide a means to reveal the dynamics of

how multiple inputs of information are fused during cognitive tasks, and to improve our ability to

infer brain networks from neural imaging data. Indeed, several of the current proposals have been

applied to various problems in neuroscience [54–60].
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CHAPTER 3

PROBABILITY MASS EXCLUSIONS

In order to utilise the partial information decomposition framework, one must first provide a measure

of redundant information. When Williams and Beer [8] first presented Imin it quickly drew criticism

for failing to differentiate between variables that provided the same information or merely the same

amount of information. As such, providing a principled method for distinguishing between these two

possibilities is one of the key challenges in information decomposition.

With this issue in mind, we began searching some of the earliest literature in information theory

looking for inspiration. Our preference for the older literature was based upon the fact that pointwise

information measures had somewhat fallen out of use in much of the later literature. This search led us

eventually to work by Hartley [2], Fano [3] and Ash [4], who all motivated the notion of information

by first discussing the exclusions or restrictions induced by received signals. Intuitively, this idea is

exemplified by guessing games such as Twenty Questions or Guess Who?—the more possibilities an

inquiry excludes, the greater the amount information you received from that query. This description

seemed like it could be used to provide a principled method for determining when variables are

providing the same information—if different realisations exclude or restrict the same parts of the event

space, then these realisations must have been providing the same information.

Despite appearing in this early literature, however, nobody had provided a rigorous characteri-

sation of information in terms of these restrictions. The paper presented in this chapter provides a

rigorous derivation of information in terms of probability mass exclusions. The key result is that this

characterisation leads to a natural decomposition of the potentially negative mutual information

content into two non-negative components—the specificity and ambiguity. The specificity quantifies

the information that one could gain about the target from knowing a particular source realisation,

and is equal to the information content of that source realisation. The ambiguity, on the other hand,

quantifies how useful this source information was in hindsight with respect to the particular target

realisation that occurred, and is equal to the information content of that source realisation given the

target realisation. In contrast to the mutual information content, there is a one-to-one correspondence

between the size of the probability mass exclusions and the decomposed mutual information content.

This chapter closes by discussing how this isomorphism might be used to provide an information

decomposition that can distinguish between whether realisations and variables provide the same

information, rather than merely the same amount of information.
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Abstract: Information is often described as a reduction of uncertainty associated with a restriction
of possible choices. Despite appearing in Hartley’s foundational work on information theory, there
is a surprising lack of a formal treatment of this interpretation in terms of exclusions. This paper
addresses the gap by providing an explicit characterisation of information in terms of probability
mass exclusions. It then demonstrates that different exclusions can yield the same amount of
information and discusses the insight this provides about how information is shared amongst
random variables—lack of progress in this area is a key barrier preventing us from understanding
how information is distributed in complex systems. The paper closes by deriving a decomposition of
the mutual information which can distinguish between differing exclusions; this provides surprising
insight into the nature of directed information.

Keywords: entropy; mutual information; pointwise; directed; information decomposition

1. Introduction

In information theory, there is a duality between the concepts entropy and information: entropy
is a measure of uncertainty or freedom of choice, whereas information is a measure of reduction of
uncertainty (increase in certainty) or restriction of choice. Interestingly, this description of information
as a restriction of choice predates even Shannon [1], originating with Hartley [2]:

“By successive selections a sequence of symbols is brought to the listener’s attention. At each
selection there are eliminated all of the other symbols which might have been chosen. As the
selections proceed more and more possible symbol sequences are eliminated, and we say
that the information becomes more precise.”

Indeed, this interpretation led Hartley to derive the measure of information associated with a set
of equally likely choices, which Shannon later generalised to account for unequally likely choices.
Nevertheless, despite being used since the foundation of information theory, there is a surprising
lack of a formal characterisation of information in terms of the elimination of choice. Both Fano [3]
and Ash [4] motivate the notion of information in this way, but go on to derive the measure without
explicit reference to the restriction of choice. More specifically, their motivational examples consider
a set of possible choices X modelled by a random variable X. Then in alignment with Hartley’s
description, they consider information to be something which excludes possible choices x, with more
eliminations corresponding to greater information; however, this approach does not capture the
concept of information in its most general sense since it cannot account for information provided by
partial eliminations which merely reduces the likelihood of a choice x from occurring. (Of course,
despite motivating the notion of information in this way, both Fano and Ash provide Shannon’s
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generalised measure of information which can account for unequally likely choices.) Nonetheless,
Section 2 of this paper generalises Hartley’s interpretation of information by providing a formal
characterisation of information in terms of probability mass exclusions.

Our interest in providing a formal interpretation of information in terms of exclusions is driven
by a desire to understand how information is distributed in complex systems [5,6]. In particular, we
are interested in decomposing the total information provided by a set of source variables about one
or more target variables into the following atoms of information: the unique information provided by
each individual source variable, the shared information that could be provided by two or more source
variables, and the synergistic information which is only available through simultaneous knowledge of
two or more variables [7]. This idea was originally proposed by Williams and Beer who also introduced
an axiomatic framework for such a decomposition [8]. However, flaws have been identified with a
specific detail in their approach regarding “whether different random variables carry the same information
or just the same amount of information” [9] (see also [10,11]). With this problem in mind, Section 3 discusses
how probability mass exclusions may provide a principled method for determining if variables provide
the same information. Based upon this, Section 4 derives an information-theoretic expression which can
distinguish between different probability mass exclusions. Finally, Section 5 closes by discussing how
this expression could be used to identify when distinct events provide the same information.

2. Information and Eliminations

Consider two random variables X and Y with discrete sample spaces X and Y , and say that we
are trying to predict or infer the value of an event x from X using an event y from Y which has occurred
jointly. Ideally, there is a one-to-one correspondence between the occurrence of events from X and Y
such that an event x can be exactly predicted using an event y. However, in most complex systems,
the presence of noise or some other such ambiguity means that we typically do not have this ideal
correspondence. Nevertheless, when a particular event y is observed, knowledge of the distributions
P(Y) and P(X, Y) can be utilised to improve the prediction on average by using the posterior P(X|y)
in place of the prior P(X). Our goal now is to understand how Hartley’s description relates to the
notion of conditional probability.

When a particular event y is observed, we know that the complementary event ȳ = {Y \ y} did
not occur. Thus we can consider the joint distribution P(X, Y) and eliminate the probability mass
which is associated with this complementary event ȳ. In other words, we exclude the probability mass
P(X, ȳ) which leaves only the probability mass P(X, y) remaining. The surviving probability mass
can then be normalised by dividing by p(y), which, by definition, yields the conditional distribution
P(X|y). Hence, with this elimination process in mind, consider the following definition:

Definition 1 (Probability Mass Exclusion). A probability mass exclusion induced by the event y from the
random variable Y is the probability mass associated with the complementary event ȳ, i.e., p(ȳ).

Echoing Hartley’s description, it is perhaps tempting to think that the greater the probability
mass exclusion p(ȳ), the greater the information that y provides about x; however, this is not true
in general. To see this, consider the joint event x from the random variable X. Knowing the event x
occurred enables us to categorise the probability mass exclusions induced by y into two distinct types:
the first is the portion of the probability mass exclusion associated with the complementary event x̄,
i.e., p(x̄, ȳ); while the second is the portion of the exclusion associated with the event x, i.e., p(x, ȳ).
Before discussing these distinct types of exclusion, consider the conditional probability of x given y
written in terms of these two categories,

p(x|y) = p(x)− p(x, ȳ)
1 − p(x, ȳ)− p(x̄, ȳ)

. (1)

CHAPTER 3: PROBABILITY MASS EXCLUSIONS 26



Entropy 2018, 20, 826 3 of 14

To see why these two types of exclusions are distinct, consider two special cases: The first special
case is when the event y induces exclusions which are confined to the probability mass associated with
the complementary event x̄. This means that the portion of exclusion p(x̄, ȳ) is non-zero while the
portion p(x, ȳ) = 0. In this case the posterior p(x|y) is larger than the prior p(x) and is an increasing
function of the exclusion p(x̄, ȳ) for a fixed p(x). This can be seen visually in the probability mass
diagram at the top of Figure 1 or can be formally demonstrated by inserting p(x, ȳ) = 0 into (1). In this
case, the mutual information

i(x; y) = log
p(x|y)
p(x)

, (2)

is a strictly positive, increasing function of p(x̄, ȳ) for a fixed p(x). (Note that this is the mutual
information between events rather than the average mutual information between variables; depending
on the context, it is also referred to as the the information density, the pointwise mutual information,
or the local mutual information.) For this special case, it is indeed true that the greater the probability
mass exclusion p(ȳ), the greater the information y provides about x. Hence, we define this type of
exclusion as follows:

Definition 2 (Informative Probability Mass Exclusion). For the joint event xy from the random variables X
and Y, an informative probability mass exclusion induced by the event y is the portion of the probability mass
exclusion associated with the complementary event x̄, i.e., p(x̄, ȳ).

The second special case is when the event y induces exclusions which are confined to the
probability mass associated with the event x. This means that the portion of exclusion p(x̄, ȳ) = 0
while the potion p(x, ȳ) is non-zero. In this case, the posterior p(x|y) is smaller than the prior p(x)
and is a decreasing function of the exclusion p(x, ȳ) for a fixed p(x). This can be seen visually in the
probability mass diagram in the middle row of Figure 1 or can be formally demonstrated by inserting
p(x̄, ȳ) = 0 into (1). In this case, the mutual information (2) is a strictly negative, decreasing function
of p(x, ȳ) for fixed p(x). (Although the mutual information is non-negative when averaged across
events from both variables, it may be negative between pairs of events.) This second special case
demonstrates that it is not true that the greater the probability mass exclusion p(ȳ), the greater the
information y provides about x. Hence, we define this type of exclusion as follows:

Definition 3 (Misinformative Probability Mass Exclusion). For the joint event xy from the random variables
X and Y, a misinformative probability mass exclusion induced by the event y is the portion of the probability
mass exclusion associated with the event x, i.e., p(x, ȳ).

Now consider the general case where both informative and misinformative probability mass
exclusions are present simultaneously. It is not immediately clear whether the posterior p(x|y) is
larger or smaller than the prior p(x), as this depends on the relative size of the informative and
misinformative exclusions. Indeed, for a fixed prior p(x), we can vary the informative exclusion p(x̄, ȳ)
whilst still maintaining a fixed posterior p(x|y) by co-varying the misinformative exclusion p(x, ȳ)
appropriately; specifically by choosing

p(x, ȳ) =
p(x)− p(x|y)

(
1 − p(x̄, ȳ)

)

1 − p(x|y) . (3)

Although it is not immediately clear whether the posterior p(x|y) is larger or smaller than the
prior p(x), the general case maintains the same monotonic dependence as the two constituent special
cases. Specifically, if we fix p(x) and the misinformative exclusion p(x, ȳ), then the posterior p(x|y) is
an increasing function of the informative exclusion p(x̄, ȳ). On the other hand, if we fix p(x) and the
informative exclusion p(x̄, ȳ), then the posterior p(x|y) is a decreasing function of the misinformative
exclusion p(x, ȳ). This can been seen visually in the probability mass diagram at the bottom of Figure 1
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or can be formally demonstrated by fixing and varying the appropriate values for each case in (1).
Finally, the relationship between the mutual information and the exclusions in this general case can be
explored by inserting (1) into (2), which yields

i(x; y) = log
1 − p(x, ȳ)/p(x)

1 − p(x, ȳ)− p(x̄, ȳ)
. (4)

If p(x) and the misinformative exclusion p(x, ȳ) are fixed, then i(x; y) is an increasing function of
the informative exclusion p(x̄, ȳ). On the other hand, if p(x) and the informative exclusion p(x̄, ȳ) are
fixed, then i(x; y) is a decreasing function of the misinformative exclusion p(x, ȳ). Finally, if both the
informative exclusion p(x̄, ȳ) and misinformative exclusion p(x, ȳ) are fixed, the i(x; y) is an increasing
function of p(x).

Now that a formal relationship between eliminations and information has been established using
probability theory, we return to the motivational question—can this understanding of information in
terms of exclusions aid in our understanding of how random variables share information?
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ȳ

P(X, Y)

x

x̄

y

y

ȳ
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Figure 1. In probability mass diagrams, height represents the probability mass of each joint event
from X×Y which must sum to 1. The leftmost of the diagrams depicts the joint distribution P(X, Y),
while the central diagrams depict the joint distribution after the occurence of the event y ∈ Y leads
to exclusion of the probability mass associated with the complementary event ȳ. By convention,
vertical and diagonal hatching represent informative and misinformative exclusions, respectively.
The rightmost diagrams represent the conditional distribution after the remaining probability mass has
been normalised. Top row: A purely informative probability mass exclusion, p(x̄, ȳ) > 0 and p(x, ȳ) = 0,
leading to p(x|y) > p(x) and hence i(x; y) > 0. Middle row: A purely misinformative probability mass
exclusion, p(x̄, ȳ) = 0 and p(x, ȳ) > 0, leading to p(x|y) < p(x) and hence i(x; y) < 0. Bottom row:
The general case p(x̄, ȳ > 0) and p(x, ȳ) > 0. Whether p(x|y) turns out to be greater or less than p(x)
depends on the size of both the informative and misinformative exclusions.

CHAPTER 3: PROBABILITY MASS EXCLUSIONS 28



Entropy 2018, 20, 826 5 of 14

3. Information Decomposition and Probability Mass Exclusions

Consider the example in Figure 2 where the events y and z each induce different exclusions,
both in terms of size and type, and yet provide the same amount of information about the event x since

i(x; y) = i(x; z) = log 4/3 ≈ 0.415 bit. (5)

The events y and z reduce our uncertainty about x in distinct ways and yet, after making the
relevant exclusions, we have the same freedom of choice about x. It is our belief that the information
provided by y and z should only be deemed to be the same information if they both reduce our
uncertainty about x in the same way; we contend that for the events y and z to reduce our uncertainty
about x in the same way, they would have to identically restrict our choice, or make the same exclusions
with respect to x.
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Figure 2. Top: probability mass diagram for X ×Y. Bottom: probability mass diagram for X ×Z.
Note that the events y1 and z1 can induce different exclusions in P(X) and yet still yield the same
conditional distributions P(X|y1) = P(X|z1) and hence provide the same amount of information
i(x1; y1) = i(x1; z1) about the event x1.

What this example demonstrates is that the mutual information does not—and indeed
cannot—distinguish between how events provide information about other events. By definition, the
mutual information only depends on the prior p(x) and posterior p(x|y) probabilities. Although the
posterior p(x|y) depends on both the informative and misinformative exclusions, there is no one-to-one
correspondence between these exclusions and the resultant mutual information. Indeed, as we saw
in (3), there is a continuous range of informative and misinformative exclusions which could yield
any given value for the mutual information. As such, any information decomposition based upon
the mutual information alone could never distinguish between how events provide information in
terms of exclusions. Thus the question naturally arises—can we express the exclusions in terms of
information-theoretic measures such that there is a one-to-one correspondence between exclusions
and the measures? Such an expression could be utilised in an information decomposition which
can distinguish between whether events provide the same information or merely the same amount
of information.

4. The Directed Components of Mutual Information

The mutual information cannot distinguish between events which induce different exclusions because
any given value could arise from a whole continuum of possible informative and misinformative exclusions.
Hence, consider decomposing the mutual information into two separate information-theoretic
components. Motivated by the strictly positive mutual information observed in the purely informative
case and the strictly negative mutual information observed in the purely informative case, let us
demand that one of the components be positive while the other component is negative.
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Postulate 1 (Decomposition). The information provided by y about x can be decomposed into two non-negative
components, such that i(x; y) = i+(y→ x)− i−(y→ x).

Furthermore, let us demand that the two components preserve the functional dependencies
between the mutual information and the informative and misinformative exclusion observed in (4) for
the general case.

Postulate 2 (Monotonicity). The functions i+(y→ x) and i−(y→ x) should satisfy the following conditions:

1. For all fixed p(x, y) and p(x, ȳ), the function i+(y→ x) is a continuous, increasing function of p(x̄, ȳ).
2. For all fixed p(x̄, y) and p(x̄, ȳ), the function i−(y→ x) is a continuous, increasing function of p(x, ȳ).
3. For all fixed p(x, y) and p(x̄, y), the functions i+(y→ x) and i−(y→ x) are increasing and decreasing

functions of p(x̄, ȳ), respectively.

Before considering the functions which might satisfy Postulates 1 and 2, there are two further
observations to be made about probability mass exclusions. The first observation is that an event
x could never induce a misinformative exclusion about itself, since the misinformative exclusion
p(x, x̄) = 0. Indeed, inserting this result into the self-information in terms of (4) yields the Shannon
information content of the event x,

i(x; x) = log
1 − p(x, x̄)/p(x)

1 − p(x, x̄)− p(x̄, x̄)
= − log

(
1 − p(x̄, x̄)

)
= − log p(x) = h(x). (6)

Postulate 3 (Self-Information). An event cannot misinform about itself, hence i+(x→ x) = i(x; x) = h(x).

The second observation is that the informative and misinformative exclusions exclusions must
individually satisfy the chain rule of probability. As shown in Figure 3, there are three equivalent
ways to consider the exclusions induced in P(X) by the events y and z. Firstly, we could consider the
information provided by the joint event yz which excludes the probability mass in P(X) associated
with the joint events yz̄, ȳz and ȳz̄. Secondly, we could first consider the information provided by
y which excludes the probability mass in P(X) associated with the joint events ȳz and ȳz̄, and then
subsequently consider the information provided by z which excludes the probability mass in P(X|y)
associated with the joint event yz̄. Thirdly, we could first consider the information provided by z
which excludes the probability mass in P(X) associated with the joint events yz̄ and ȳz̄, and then
subsequently consider the information provided by y which excludes the probability mass in P(X|z)
associated with the joint event ȳz. Regardless of the chaining, we start with the same p(x) and finish
with the same p(x|yz).

Postulate 4 (Chain Rule). The functions i+(y→ x) and i−(y→ x) satisfy a chain rule; i.e.,

i+(yz→ x) = i+(y→ x) + i+(z→ x|y)
= i+(z→ x) + i+(y→ x|z),

i−(yz→ x) = i−(y→ x) + i−(z→ x|y)
= i−(z→ x) + i−(y→ x|z),

where the conditional notation denotes the same function only with conditional probability as an argument.

Theorem 1. The unique functions satisfying Postulates 1– 4 are

i+(y→ x) = h(y) = − log p(y), (7)

i−(y→ x) = h(y|x) = − log p(y|x). (8)
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By rewriting (7) and (8) in terms of probability mass exclusions, it is easy to verify that Theorem 1
satisfies Postulates 1– 4. Perhaps unsurprisingly, this yields a decomposed version of (4),

i+(y→ x) = − log
(
1 − p(x, ȳ)− p(x̄, ȳ)

)
, (9)

i−(y→ x) = − log
(

1 − p(x, ȳ)
p(x)

)
. (10)

Hence, in order to prove Theorem 1 we must demonstrate that (7) and (8) are the unique functions
which satisfy Postulates 1– 4. This proof is provided in full in Appendix A.
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ȳz̄

P(X, Y, z)

x

x̄

yz

ȳz
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Figure 3. Top: y and z both simultaneously induce probability mass exclusions in P(X) leading directly
to P(X|y, z). Middle: y could induce exclusions in P(X) yielding P(X|y), and then z could induce
exclusions in P(X|y) leading to P(X|y, z). Bottom: the same as the middle, only vice versa in y and z.
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5. Discussion

Theorem 1 answers the question posed at the end of Section 3—although there is no one-to-one
correspondence between these exclusions and the mutual information, there is a one-to-one
correspondence between exclusions and the decomposition

i(x; y) = i+(y→ x)− i−(y→ x)

= h(y)− h(y|x).
(11)

It is important to note the directed nature of this decomposition—this equation considers the
exclusions induced by y with respect to x. It is novel that this particular decomposition enables
us to uniquely determine the size of the exclusions induced by y with respect to x, rather than
i(x; y) = h(x)− h(x|y), which would not satisfy Postulate 4. Indeed, this latter decomposition is more
typically associated with the information provided by y about x since it reflects the change from the
prior p(x) to the posterior p(x|y). Of course, by Theorem 1 this latter decomposition would allow us
to uniquely determine the size exclusions induced by x with respect to y.

There is another important asymmetry which can be seen from (9) and (10). The negative
component i−(y→ x) depends on the size of only the misinformative exclusion while the positive
component i+(y→ x) depends on the size of both the informative and misinformative exclusions.
The positive component depends on the total size of the exclusions induced by y and hence has no
functional dependence on x. It quantifies the specificity of the event y: the less likely the outcome y
is to occur, the greater the total amount of probability mass excluded by y and therefore the greater
the potential for y to inform about x. On the other hand, the negative component quantifies the
ambiguity of y given x: the less likely the outcome y is to coincide with the outcome x, the greater the
misinformative probability mass exclusion and therefore the greater the potential for y to misinform
about x. This asymmetry between the components is apparent when considering the two special
cases. In the purely informative case where p(x, ȳ) = 0, only the positive informational component
is non-zero. On the other hand, in the purely misinformative case, both the positive and negative
informational components are non-zero, although it is clear that i+(y→ x) < i−(y→ x) and hence
i(x; y) < 0.

Let us now consider how this information-theoretic expression (which has a one-to-one
correspondence with exclusion) could be utilised to provide an information decomposition that
can distinguish between whether events provide the same information or merely the same amount of
information. Recall the example from Section 3 where y and z provide the same amount of information
about x, and consider this example in terms of the decomposition (11),

i+(y→ x) = log2
8/3 bit, i−(y→ x) = 1 bit,

i+(z→ x) = log2
4/3 bit, i−(z→ x) = 0 bit.

(12)

In contrast to the mutual information in (5), the decomposition reflects the different ways y and z
provide information through differing exclusions even if they provide the same amount of information.
As for how to decompose multivariate information using this decomposition? This is not the subject of
this paper—those who are interested in seen an operational definition of shared information based on
redundant exclusions should see [12].
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Appendix A

This section contains the proof of Theorem 1. Since it is trivial to verify that (7) and (8) satisfy
Postulates 1–4, the proof will focuses on establishing uniqueness. The proof is structured as follows:
Lemma A1 considers the functional form required when p(x̄) = 0 and is used in the proof of Lemma A3;
Lemmas A2 and A3 consider the purely informative and misinformative special cases respectively;
finally, the proof of Theorem 1 brings these two special cases together for the general case.

The proof of Theorem 1 may seem convoluted, however there are two points to be made about
this. Firstly, the proof of Lemma A1 is well-known in functional equation theory [13] and is only given
for the sake of completeness. (Accepting this substantially reduces the length of the proof.) Secondly,
when establishing uniqueness of the two components, we cannot assume that the components share a
common base for the logarithm. Specifically, when considering the purely informative case, Lemma A2
shows that the positive component i+(y→ x) is a logarithm with same base as the logarithm from
Postulate 3, denoted as b throughout. On the other hand, considering the purely misinformative case
in Lemma A3 demonstrates that the negative component i−(y→ x) is a logarithm with base k which is
greater than or equal to b. When combining these in the proof of Theorem 1, it is necessary to show
that k = b in order to prove that the components have a common base.

Lemma A1. In the special case where p(x̄) = 0, we have that i+(y→ x) = i−(y→ x) = − logk p(y) with
k ≥ b, where b is the base of the logarithm from Postulate 3.

Proof. That the logarithm is the unique function which satisfies Postulates 2–4 is well-known in
functional equation theory [13]; however, for the sake of completeness the proof is given here in
full. Since p(x̄) = 0, we have that i(x; y) = 0 and hence by Postulate 1, that i+(y→ x) = i−(y→ x).
Furthermore, we also have that p(y) = 1 − p(x, ȳ); thus, without loss of generality, we will consider
i−(y→ x) to be a function of p(y) rather than p(x, ȳ). As such, let f (m) be our candidate function for
i−(y→ x) where m = 1/p(y). First consider the case where p(x, ȳ) = 0, such that m = 1. Postulate 4
demands that f (1) = f (1 · 1) = f (1) + f (1) and hence f (1) = 0, i.e., if there is no misinformative
exclusion, then the negative informational component should be zero.

Now consider the case where p(x, ȳ) so that m is a positive integer greater than 1. If r is an
arbitrary positive integer, then 2r lies somewhere between two powers of m, i.e., there exists a positive
integer n such that

mn ≤ 2r < mn+1. (A1)

So long as the base k is greater than 1, the logarithm is a monotonically increasing function, thus

logk mn ≤ logk 2r < logk mn+1, (A2)

or equivalently,
n
r
≤ logk 2

logk m
<

n + 1
r

. (A3)

By Postulate 2, f (m) is a monotonically increasing function of m, hence applying it to (A1) yields

f (mn) ≤ f (2r) < f (mn+1). (A4)

Note that, by Postulate 4 and mathematical induction, it is trivial to verify that

f (mn) = n · f (m). (A5)
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Hence, by (A4) and (A5), we have that

n
r
≤ f (2)

f (m)
<

n + 1
r

. (A6)

Now, (A3) and (A6) have the same bounds, hence
∣∣∣∣

logk 2
logk m

− f (2)
f (m)

∣∣∣∣ ≤
1
r

. (A7)

Since m is fixed and r is arbitrary, let r→∞. Then, by the squeeze theorem, we get that

logk 2
logk m

=
f (2)
f (m)

, (A8)

and hence,

f (m) = logk m. (A9)

Now consider the case where p(x, ȳ) so that m is a rational number; in particular, let m = s/r

where s and r are positive integers. By Postulate 4,

f (s) = f (s/r · r) = f (s/r) + f (r) = f (m) + f (r). (A10)

Thus, combining (A9) and (A10), we get that

f (m)= f (s)− f (r) = logk(s)− logk(r) = logk m. (A11)

Now consider the case where p(x, ȳ) such that m is a real number. By Postulate 2, the function
(A11) is the unique solution, and hence, i+(y→ x) = i−(y→ x) = − logk p(y).

Finally, to show that k ≥ b, consider an event z = y. By Postulate 3, i+(y→ z) = − logb p(y).
Furthermore, since p(z̄, ȳ) ≥ p(x̄, ȳ) = 0, by Postulate 2, i+(y→ z) ≥ i+(y→ x). Thus, − logb p(y) ≥
− logk p(y), and hence k ≥ b.

x

x̄

yz

yz̄

ȳz

ȳz̄

P(X, y, z)

x

x̄

yz

yz̄

ȳz

ȳz̄

P(X, y, Z)

x

x̄

yz

yz̄

P(X, z|y)

≡ +

Figure A1. The probability mass diagram associated with (A12). Lemma A2 uses Postulates 3 and 4 to
provide a solution for the purely informative case.

Lemma A2. In the purely informative case where p(x, ȳ) = 0, we have that i+(y→ x) = − logb p(y) and
i−(y→ x) = 0, where b is the base of the logarithm from Postulate 3.

Proof. Consider an event z such that x = yz and x̄ = {yz̄, ȳz, ȳz̄}. By Postulate 4,

i+(yz→ x) = i+(y→ x) + i+(z→ x|y), (A12)
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as depicted in Figure A1. By Postulate 3, i+(yz→ x) = h(x) and i+(z→ x|y) = h(x|y), where the latter
equality follows from the equivalence of the events x and z given y. Furthermore, since p(x, ȳ) = 0,
we have that p(x, y) = p(x), and hence that p(y|x) = 1. Thus, from (A12), we have that

i+(y→ x) = h(x)− h(x|y)
= h(y)− h(y|x)
= h(y).

(A13)

Finally, by Postulate 1, i−(y→ x) = 0.

Lemma A3. In the purely misinformative case where p(x̄, ȳ) = 0, we have that i+(y→ x) = h(y)− h(y|x)−
logk p(y|x) and i−(y→ x) = − logk p(y|x) with k ≥ b, where b is the base of the logarithm from Postulate 3.

Proof. Consider an event z = x. By Postulate 4,

i+(yz→ x) = i+(y→ x) + i+(z→ x|y)
= i+(z→ x) + i+(y→ x|z),

(A14)

i−(yz→ x) = i−(y→ x) + i−(z→ x|y)
= i−(z→ x) + i−(y→ x|z),

(A15)

as depicted in Figure A2. Since z = x, by Postulate 3, i+(z→ x) = h(x), i−(z→ x) = 0,
i+(z→ x|y) = h(x|y) and i−(z→ x|y) = 0. Furthermore, since p(x̄|z) = 0, by Lemma A1,
i+(y→ x|z) = i−(y→ x|z) = − logk p(y|z) = − logk p(y|x), hence, from (A14) and (A15), we get that

i+(y→ x) = h(x)− h(x|y)− logk p(y|x)
= h(y)− h(y|x)− logk p(y|x),

(A16)

i−(y→ x) = − logk p(y|x), (A17)

as required.

x

x̄

yz

ȳz

yz̄

P(X, y, z)

x

x̄

yz

ȳz

yz̄

P(X, y, Z)

x

x̄

yz

yz̄

P(X, z|y)

x

x̄

yz

ȳz

yz̄

P(X, Y, z)

x

yz

ȳz

P(X, y|z)

≡ + ≡ +

Figure A2. The diagram corresponding to (A14) and (A15). Lemma A3 uses Postulate 4 and Lemma A1
to provide a solution for the purely misinformative case.

Proof of Theorem 1. In the general case, both p(x̄, ȳ) and p(x, ȳ) are non-zero. Consider two events,
u and v, such that y = uv, p(x, ū) = 0 and p(x̄, v̄) = 0. By Postulate 4,

i+(y→ x) = i+(uv→ x) = i+(u→ x) + i+(v→ x|u), (A18)

i−(y→ x) = i−(uv→ x) = i−(u→ x) + i−(v→ x|u), (A19)

as depicted in Figure A3. Since p(x, ū) = 0, by Lemma A2, i+(u→ x) = h(u) and i−(u→ x) = 0;
furthermore, we also have that p(x) = p(x, u), and hence p(v|xu) = p(uv|x). In addition, since
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p(x̄, v̄|u) = 0, by Lemma A3, we have that i+(v→ x|u) = h(v|u) + h(v|xu) − logk p(v|xu) and
i−(v→ x|u) = − logk p(v|xu) where k ≥ b. Therefore, by (A18) and (A19),

i+(y→ x) = h(u) + h(v|u)− h(v|xu)− logk p(v|xu)

= h(y)− h(y|x)− logk p(y|x),
(A20)

i−(y→ x) = − logk p(v|xu)

= − logk p(y|x).
(A21)

Finally, since Postulate 1 requires that i+(y→ x) ≥ 0, we have that h(y)− h(y|x)− logk p(y|x) ≥ 0,
or equivalently,

logb p(y) ≤
(

1 − 1
logb k

)
logb p(y|x). (A22)

This must hold for all p(y) and p(y|x), which is only true in general for b ≥ k. Hence, k = b
and therefore

i+(y→ x) = h(y)− h(y|x)− logb p(y|x)
= h(y),

(A23)

i−(y→ x) = − logb p(y|x)
= h(y|x).

(A24)

x

x̄

uv

uv̄

uv

ūv

P(X, u, v)

x

x̄

uv

uv̄

uv

ūv

P(X, u, V)

x

x̄

uv

uv̄

uv

P(X, v|u)

+≡

Figure A3. The probability mass diagram associated with (A18) and (A19). Theorem 1 uses Lemmas A2
and A3 to provide a solution to the general case.

Corollary A1. The conditional decomposition of the information provided by y about x given z is given by

i+(y→ x|z) = h(y|z) = − log p(y|z), (A25)

i−(y→ x|z) = h(y|xz) = − log p(y|xz). (A26)

Proof. Follows trivially using conditional distributions.

Corollary A2. The joint decomposition of the information provided by y and z about x is given by

i+(yz→ x) = h(yz) = − log p(yz), (A27)

i−(yz→ x) = h(yz|x) = − log p(yz|x). (A28)

The joint decomposition of the information provided by y about x and z is given by

i+(y→ xz) = h(y) = − log p(y), (A29)

i−(y→ xz) = h(y|xz) = − log p(y|xz). (A30)

Proof. Follows trivially using joint distributions.
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Corollary A3. We have the following three identities,

i+(y→ x) = i+(y→ z), (A31)

i+(y→ x|z) = i−(y→ z), (A32)

i−(y→ x|z) = i−(y→ xz). (A33)

Proof. The identity (A31) follows from (7), while (A32) follows from (8) and (A25); finally, (A33)
follows from (A26) and (A30).

Finally, it is not true that the components satisfy a target chain rule. That is, in general the following
relation i+(y→ xz) = i+(y→ x) + i+(y→ z|x) does not hold, nor does i−(y→ xz) = i−(y→ x) +
i−(y→ z|x). However, the mutual information must satisfy a chain rule over target events. Thus, it is
interesting to observe how the target chain rule for mutual information arises in terms of exclusions.
The key observation is that the positive informational component provided by y about z given x equals
the negative informational component provided by y about z, as per (A32).

Corollary A4. The information provided by y about x and z satisfies the following chain rule,

i(y→ xz) = i(y→ x) + i(y→ z|x). (A34)

Proof. Starting from the joint decomposition (A29) and (A30). By the identities (A31) and (A33),
we get that

i(y; xz) = i+(y→ xz)− i−(y→ xz),

= i+(y→ x)− i−(y→ z|x),
(A35)

Then, by identity (A32), and recomposition, we get that

i(y; xz) = i+(y→ x)− i−(y→ x)

+ i−(y→ x)− i−(y→ z|x),
= i+(y→ x)− i−(y→ x)

+ i+(y→ z|x)− i−(y→ z|x),
(A36)

= i(y; x) + i(y; z|x).
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CHAPTER 4

POINTWISE PARTIAL INFORMATION DECOMPOSITION

In Chapter 3, we showed how the probability mass exclusion can be described in terms of the

information-theoretic measures of specificity and ambiguity, i.e. the two distinct terms in the non-

negative decomposition of the pointwise mutual information. The paper presented in this chapter

builds upon this result by using the probability mass exclusions to provide a principled way to distin-

guish between realisations that provide the same information and realisations that merely provide

the same amount of information. To be specific, we adopt the following operational interpretation of

redundant information: since the pointwise information is ultimately derived from the probability

mass exclusions, the same information must induce the same exclusions.

Crucially, since the specificity and ambiguity are non-negative, we will be able to evaluate the

partial information decomposition separately on each component, which yields a separate redundancy

lattice for the specificity and the ambiguity. Moreover, since these components are defined for every

realisation, we will be able to determine these two decompositions for every joint realisation. Thus,

by recombining the specificities and ambiguities, we get a redundancy lattice of pointwise mutual

information for each realisation—i.e. a pointwise partial information decomposition. Next, we show

how the regular partial information decompostion of the mutual information can be found by taking

the expectation value of each partial information term in the pointwise lattice. We then show that this

decomposition can be evaluated for an arbitrary number of source variables and satisfies a target chain

rule, meaning that it can also be evaluated for an arbitrary number of target variables in a consistent

manner. To our knowledge, this is the only existing decomposition that satisfies this property [5].

This ability to evaluate a pointwise information decompostion is almost unique amongst the other

proposed information decompositions. The only other approach that provides a pointwise information

decomposition is due to Ince [18], who uses a set-theoretic interpretation of pointwise information to

define a measure of redundant information Iccs. As was discussed in Chapter 2, this interpretation is

problematic since the pointwise mutual information is signed. To circumvent this issue, Ince only uses

this interpretation to define a measure of redundant information when the relevant signs match and

otherwise defines it to be zero. In contrast, the approach presented in this chapter does not dispose of

the set-theoretic intuition in these difficult to interpret situations.
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Abstract: What are the distinct ways in which a set of predictor variables can provide information
about a target variable? When does a variable provide unique information, when do variables share
redundant information, and when do variables combine synergistically to provide complementary
information? The redundancy lattice from the partial information decomposition of Williams and
Beer provided a promising glimpse at the answer to these questions. However, this structure was
constructed using a much criticised measure of redundant information, and despite sustained research,
no completely satisfactory replacement measure has been proposed. In this paper, we take a different
approach, applying the axiomatic derivation of the redundancy lattice to a single realisation from a set
of discrete variables. To overcome the difficulty associated with signed pointwise mutual information,
we apply this decomposition separately to the unsigned entropic components of pointwise mutual
information which we refer to as the specificity and ambiguity. This yields a separate redundancy lattice
for each component. Then based upon an operational interpretation of redundancy, we define measures
of redundant specificity and ambiguity enabling us to evaluate the partial information atoms in each
lattice. These atoms can be recombined to yield the sought-after multivariate information decomposition.
We apply this framework to canonical examples from the literature and discuss the results and the
various properties of the decomposition. In particular, the pointwise decomposition using specificity
and ambiguity satisfies a chain rule over target variables, which provides new insights into the so-called
two-bit-copy example.

Keywords: mutual information; pointwise information; information decomposition; unique information;
redundant information; complementary information; redundancy; synergy

PACS: 89.70.Cf; 89.75.Fb; 05.65.+b; 87.19.lo

1. Introduction

The aim of information decomposition is to divide the total amount of information provided
by a set of predictor variables, about a target variable, into atoms of partial information contributed
either individually or jointly by the various subsets of the predictors. Suppose that we are trying to
predict a target variable T, with discrete state space T , from a pair of predictor variables S1 and S2,
with discrete state spaces S1 and S2. The mutual information I(S1; T) quantifies the information S1

individually provides about T. Similarly, the mutual information I(S2; T) quantifies the information
S2 individually provides about T. Now consider the joint variable S1,2 with the state space S1×S2.
The (joint) mutual information I(S1,2; T) quantifies the total information S1 and S2 together provide
about T. Although Shannon’s information theory provides the prior three measures of information,
there are four possible ways S1 and S2 could contribute information about T: the predictor S1 could
uniquely provide information about T; or the predictor S2 could uniquely provide information about T;
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both S1 and S2 could both individually, yet redundantly, provide the same information about T; or the
predictors S1 and S2 could synergistically provide information about T which is not available in either
predictor individually. Thus we have the following underdetermined set of equations,

I(S1,2; T)= R(S1, S2→T) + U(S1\S2→T) + U(S2\S1→T) + C(S1, S2→T),

I(S1; T)= R(S1, S2→T) + U(S1\S2→T), (1)

I(S2; T)= R(S1, S2→T) + U(S2\S1→T),

where U(S1\S2→T) and U(S2\S1→T) are the unique information provided by S1 and S2 respectively,
R(S1, S2→T) is the redundant information, and C(S1, S2→T) is the synergistic or complementary
information. (The directed notation is utilise here to emphasis the privileged role of the variable T.)
Together, the equations in (1) form the bivariate information decomposition. The problem is to define
one of the unique, redundant or complementary information—something not provided by Shannon’s
information theory—in order to uniquely evaluate the decomposition.

Now suppose that we are trying to predict a target variable T from a set of n finite state predictor
variables S = {S1, . . . , Sn}. In this general case, the aim of information decomposition is to divide
the total amount of information I(S1, . . . , Sn; T) into atoms of partial information contributed either
individually or jointly by the various subsets of S. But what are the distinct ways in which these subsets
of predictors might contribute information about the target? Multivariate information decomposition
is more involved than the bivariate information decomposition because it is not immediately obvious
how many atoms of information one needs to consider, nor is it clear how these atoms should relate to
each other. Thus the general problem of information decomposition is to provide both a structure for
multivariate information which is consistent with the bivariate decomposition, and a way to uniquely
evaluate the atoms in this general structure.

In the remainder of Section 1, we will introduce an intriguing framework called partial information
decomposition (PID), which aims to address the general problem of information decomposition,
and highlight some of the criticisms and weaknesses of this framework. In Section 2, we will consider the
underappreciated pointwise nature of information and discuss the relevance of this to the problem of
information decomposition. We will then propose a modified pointwise partial information decomposition
(PPID), but then quickly repudiate this approach due to complications associated with decomposing the
signed pointwise mutual information. In Section 3, we will discuss circumventing this issue by examining
information on a more fundamental level, in terms of the unsigned entropic components of pointwise
mutual information which we refer to as the specificity and the ambiguity. Then in Section 4—the main
section of this paper—we will introduce the PPID using the specificity and ambiguity lattices and the
measures of redundancy in Definitions 1 and 2. In Section 5, we will apply this framework to a number
of canonical examples from the PID literature, discuss some of the key properties of the decomposition,
and compare these to existing approaches to information decomposition. Section 6 will conclude the main
body of the paper. Appendix A contains discussions regarding the so-called two-bit-copy problem in
terms of Kelly gambling, Appendix B contains many of the technical details and proofs, while Appendix B
contains some more examples.

1.1. Notation

The following notational conventions are observed throughout this article:

T, T , t, tc denote the target variable, event space, event and complementary event respectively;
S, S , s, sc denote the predictor variable, event space, event and complementary event respectively;

S, s represent the set of n predictor variables {S1, . . . , Sn} and events {s1, . . . , sn} respectively;
T t, S s denote the two-event partition of the event space, i.e., T t = {t, tc} and S s = {s, sc};

H(T), I(S; T) uppercase function names be used for average information-theoretic measures;
h(t), i(s, t) lowercase function names be used for pointwise information-theoretic measures.
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When required, the following index conventions are observed:

s1, s2, t1, t2 superscripts distinguish between different different events in a variable;
S1, S2, T1, T2 subscripts distinguish between different variables;

S1,2, s1,2 multiple superscripts represent joint variables and joint events.

Finally, to be discussed in more detail when appropriate, consider the following:

A1, . . . , Ak sources are sets of predictor variables, i.e., Ai ∈P1(S) where P1 is the power set without ∅;
a1, . . . , ak source events are sets of predictor events, i.e., ai ∈ P1(s).

1.2. Partial Information Decomposition

The partial information decomposition (PID) of Williams and Beer [1,2] was introduced to address the
problem of multivariate information decomposition. The approach taken is appealing as rather than
speculating about the structure of multivariate information, Williams and Beer took a more principled,
axiomatic approach. They start by considering potentially overlapping subsets of S called sources,
denoted A1, . . . , Ak. To examine the various ways these sources might contain the same information,
they introduce three axioms which “any reasonable measure for redundant information [I∩] should
fulfil” ([3], p. 3502). Note that the axioms appear explicitly in [2] but are discussed in [1] as mere
properties; a published version of the axioms can be found in [4].

W&B Axiom 1 (Commutativity). Redundant information is invariant under any permutation σ of sources,

I∩
(

A1, . . . , Ak →T
)
= I∩

(
σ(A1), . . . , σ(Ak)→T

)
.

W&B Axiom 2 (Monotonicity). Redundant information decreases monotonically as more sources are included,

I∩
(

A1, . . . , Ak−1→T
)
≤ I∩

(
A1, . . . , Ak →T

)

with equality if Ak ⊇ Ai for any Ai ∈ {A1, . . . , Ak−1}.

W&B Axiom 3 (Self-redundancy). Redundant information for a single source Ai equals the mutual information,

I∩
(

Ai →T
)
= I

(
Ai ; T

)
.

These axioms are based upon the intuition that redundancy should be analogous to the set-
theoretic notion of intersection (which is commutative, monotonically decreasing and idempotent).
Crucially, Axiom 3 ties this notion of redundancy to Shannon’s information theory. In addition to
these three axioms, there is an (implicit) axiom assumed here known as local positivity [5], which
is the requirement that all atoms be non-negative. Williams and Beer [1,2] then show how these
axioms reduce the number of sources to the collection of sources such that no source is a superset
of any other. These remaining sources are called partial information atoms (PI atoms). Each PI atom
corresponds to a distinct way the set of predictors S can contribute information about the target
T. Furthermore, Williams and Beer show that these PI atoms are partially ordered and hence form
a lattice which they call the redundancy lattice. For the bivariate case, the redundancy lattice recovers the
decomposition (1), while in the multivariate case it provides a meaningful structure for decomposition
of the total information provided by an arbitrary number of predictor variables.

While the redundancy lattice of PID provides a structure for multivariate information decomposition,
it does not uniquely determine the value of the PI atoms in the lattice. To do so requires a definition
of a measure of redundant information which satisfies the above axioms. Hence, in order to complete
the PID framework, Williams and Beer simultaneously introduced a measure of redundant information
called Imin which quantifies redundancy as the minimum information that any source provides about
a target event t, averaged over all possible events from T. However, not long after its introduction Imin

was heavily criticised. Firstly, Imin does not distinguish between “whether different random variables
carry the same information or just the same amount of information” ([5], p. 269; see also [6,7]). Secondly,
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Imin does not possess the target chain rule introduced by Bertschinger et al. [5] (under the name left chain
rule). This latter point is problematic as the target chain rule is a natural generalisation of the chain rule of
mutual information—i.e., one of the fundamental, and indeed characterising, properties of information in
Shannon’s theory [8,9].

These issues with Imin prompted much research attempting to find a suitable replacement measure
compatible with the PID framework. Using the methods of information geometry, Harder et al. [6]
focused on a definition of redundant information called Ired (see also [10]). Bertschinger et al. [11]
defined a measure of unique information ŨI based upon the notion that if one variable contains
unique information then there must be some way to exploit that information in a decision problem.
Griffith and Koch [12] used an entirely different motivation to define a measure of synergistic information
SVK whose decomposition transpired to be equivalent to that of ŨI [11]. Despite this effort, none
of these proposed measures are entirely satisfactory. Firstly, just as for Imin, none of these proposed
measures possess the target chain rule. Secondly, these measures are not compatible with the PID
framework in general, but rather are only compatible with PID for the special case of bivariate predictors,
i.e., the decomposition (1). This is because they all simultaneously satisfy the Williams and Beers axioms,
local positivity, and the identity property introduced by Harder et al. [6]. In particular, Rauh et al. [13]
proved that no measure satisfying the identity property and the Williams and Beer Axioms 1–3 can
yield a non-negative information decomposition beyond the bivariate case of two predictor variables. In
addition to these proposed replacements for Imin, there is also a substantial body of literature discussing
either PID, similar attempts to decompose multivariate information, or the problem of information
decomposition in general [3–5,7,10,13–28]. Furthermore, the current proposals have been applied to
various problems in neuroscience [29–34]. Nevertheless (to date), there is no generally accepted measure
of redundant information that is entirely compatible with PID framework, nor has any other well-accepted
multivariate information decomposition emerged.

To summarise the problem, we are seeking a meaningful decomposition of the information provided
an arbitrarily large set of predictor variables about a target variable, into atoms of partial information
contributed either individually or jointly by the various subsets of the predictors. Crucially, the redundant
information must capture when two predictor variables are carrying the same information about the target,
not merely the same amount of information. Finally, any proposed measure of redundant information
should satisfy the target chain rule so that net redundant information can be consistently computed for
consistently for multiple target events.

2. Pointwise Information Theory

Both the entropy and mutual information can be derived from first principles as fundamentally
pointwise quantities which measure the information content of individual events rather than entire
variables. The pointwise entropy h(t) = − log p(t) quantifies the information content of a single event
t, while the pointwise mutual information

i(s; t) = log
p(t|s)
p(t)

= log
p(s, t)

p(s)p(t)
= log

p(s|t)
p(s)

, (2)

quantifies the information provided by s about t, or vice versa. To our knowledge, these quantities
were first considered by Woodward and Davies [35,36] who noted that the average form of
Shannon’s entropy “tempts one to enquire into other simpler methods of derivation [of the per state
entropy]” ([35], p. 51). Indeed, they went on to show that the pointwise entropy and pointwise mutual
information can be derived from two axioms concerning the addition of the information provided
by the occurrence of individual events [36]. Fano [9] further formalised this pointwise approach
by deriving both quantites from four postulates which “should be satisfied by a useful measure of
information” ([9], p. 31). Taking the expectation of these pointwise quantities over all events recovers
the average entropy H(T) =

〈
h(t)

〉
and average mutual information I(S; T) =

〈
i(s; t)

〉
first derived

by Shannon [8]. Although both approaches arrive at the same average quantities, Shannon’s treatment
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obfuscates the pointwise nature of the fundamental quantities. In contrast, the approach of Woodward,
Davis and Fano makes this pointwise nature manifestly obvious.

It is important to note that, in contrast to the average mutual information, the pointwise mutual
information is not non-negative. Positive pointwise information corresponds to the predictor event s
raising the probability p(t|s) relative to the prior probability p(t). Hence when the event t occurs it can
be said that the event s was informative about the event t. Conversely, negative pointwise information
corresponds to the event s lowering the posterior probability p(t|s) relative to the prior probability p(t).
Hence when the event t occurs we can say that the event s was misinformative about the event t. (Not to
be confused with disinformation, i.e., intentionally misleading information.) Although a source event
s may be misinformative about a particular target event t, a source event s is never misinformative
about the target variable T since the pointwise mutual information averaged over all target realisations
is non-negative [9]. The information provided by s is helpful for predicting T on average; however, in
certain instances this (typically helpful) information is misleading in that it lowers p(t|s) relative to
p(t)—typically helpful information which subsequently turns out to be misleading is misinformation.

Finally, before continuing, there are two points to be made about the terminology used to describe
pointwise information. Firstly, in certain literature (typically in the context of time-series analysis),
the word local is used instead of pointwise, e.g., [4,18]. Secondly, in contemporary information theory,
the word average is generally omitted while the pointwise quantities are explicitly prefixed; however,
this was not always the accepted convention. Woodward [35] and Fano [9] both referred to pointwise
mutual information as the mutual information and then explicitly prefixed the average mutual information.
To avoid confusion, we will always prefix both pointwise and average quantities.

2.1. Pointwise Information Decomposition

Now that we are familiar with pointwise nature of information, suppose that we have a discrete
realisation from the joint event space T ×S1×S2 consisting of the target event t and predictor events
s1 and s2. The pointwise mutual information i(s1; t) quantifies the information provided individually
by s1 about t, while the pointwise mutual information i(s2; t) quantifies the information provided
individually by s2 about t. The pointwise joint mutual information i(s1,2; t) quantifies the total
information provided jointly by s1 and s2 about t. In correspondence with the (average) bivariate
decomposition (1), consider the pointwise bivariate decomposition, first suggested by Lizier et al. [4],

i(s1,2; t)= r(s1, s2→ t) + u(s1\s2→ t) + u(s2\s1→ t) + c(s1, s2→ t),

i(s1; t)= r(s1, s2→ t) + u(s1\s2→ t), (3)

i(s2; t)= r(s1, s2→ t) + u(s2\s1→ t).

Note that the lower case quantities denote the pointwise equivalent of the corresponding upper
case quantities in (1). This decomposition could be considered for every discrete realisation on the
support of the joint distribution P(S1, S2, T). Hence, consider taking the expectation of these pointwise
atoms over all discrete realisations,

U(S1\S2→T) =
〈
u(s1\s2→ t)

〉
, R(S1, S2→T) =

〈
r(s1, s2→ t)

〉
,

U(S2\S1→T) =
〈
u(s2\s1→ t)

〉
, C(S1, S2→T) =

〈
c(s1, s2→ t)

〉
.

(4)

Since the expectation is a linear operation, this will recover the (average) bivariate decomposition (1).
Equation (3) for every discrete realisation, together with (1) and (4) form the bivariate pointwise
information decomposition. Just as in (1), these equations are underdetermined requiring a separate
definition of either the pointwise unique, redundant or complementary information for uniqueness.
(Defining an average atom is sufficient for a unique bivariate decomposition (1), but still leaves the
pointwise decomposition (3) within each realisation underdetermined).
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2.2. Pointwise Unique

Now consider applying this pointwise information decomposition to the probability distribution
Pointwise Unique (PWUNQ) in Table 1. In PWUNQ, observing 0 in either of S1 or S2 provides zero
information about the target T, while complete information about the outcome of T is obtained by
observing 1 or a 2 in either predictor. The probability distribution is structured such that in each of
the four realisations, one predictor provides complete information while the other predictor provides
zero information—the two predictors never provide the same information about the target which is
justified by noting that one of the two predictors always provides zero pointwise information.

Given that redundancy is supposed to capture the same information, it seems reasonable to
assume there must be zero pointwise redundant information for each realisation. This assumption is
made without any measure of pointwise redundant information; however, no other possibility seems
justifiable. This assertion is used to determine the pointwise redundant information terms in Table 1.
Then using the pointwise information decomposition (3), we can then evaluate the other pointwise
atoms of information in Table 1. Finally using (4), we get that there is zero (average) redundant
information, and 1/2 bit of (average) unique information from each predictor. From the pointwise
perspective, the only reasonable conclusion seems to be that the predictors in PWUNQ must contain
only unique information about the target.

Table 1. Example PWUNQ. For each realisation, the pointwise mutual information provided by each
individual and joint predictor events, about the target event has been evaluated. Note that one predictor
event always provides full information about the target while the other provides zero information.
Based on the this, it is assumed that there must be zero redundant information. The pointwise partial
information (PPI) atoms are then calculated via (3).

p s1 s2 t i(s1; t) i(s2; t) i(s1,2; t) u(s1\s2 → t) u(s2\s1 → t) r(s1, s2 → t) c(s1, s2 → t)

1/4 0 1 1 0 1 1 0 1 0 0
1/4 1 0 1 1 0 1 1 0 0 0
1/4 0 2 2 0 1 1 0 1 0 0
1/4 2 0 2 1 0 1 1 0 0 0

Expected values 1/2 1/2 1 1/2 1/2 0 0

However, in contrast to the above, Imin, Ired, ŨI, and SVK all say that the predictors in PWUNQ

contain no unique information, rather only 1/2 bit of redundant information plus 1/2 bit of complementary
information. This problem, which will be referred to as the pointwise unique problem, is a consequence of the
fact that these measures all satisfy Assumption (∗) of Bertschinger et al. [11], which (in effect) states that
the unique and redundant information should only depend on the marginal distributions P(S1, T) and
P(S2, T). In particular, any measure which satisfies Assumption (∗) will yield zero unique information
when P(S1, T) is isomorphic to P(S2, T), as is the case for PWUNQ. (Here, isomorphic should be taken
to mean isomorphic probability spaces, e.g., [37], p. 27 or [38], p. 4.) It arises because Assumption (∗)
(and indeed the operational interpretation the led to its introduction) does not respect the pointwise
nature of information. This operational view does not take into account the fact that individual events s1

and s2 may provide different information about the event t, even if the probability distributions P(S1, T)
and P(S2, T) are the same. Hence, we contend that for any measure to capture the same information
(not merely the same amount), it must respect the pointwise nature of information.

2.3. Pointwise Partial Information Decomposition

With the pointwise unique problem in mind, consider constructing an information decomposition
with the pointwise nature of information as an inherent property. Let a1, . . . , ak be potentially
intersecting subsets of the predictor events s = {s1, . . . , sn}, called source events. Now consider
rewriting the Williams and Beer axioms in terms of a measure of pointwise redundant information i∩
where the aim is to deriving a pointwise partial information decomposition (PPID).
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PPID Axiom 1 (Symmetry). Pointwise redundant information is invariant under any permutation σ of
source events,

i∩
(
a1, . . . , ak → t

)
= i∩

(
σ(a1), . . . , σ(ak)→T

)
.

PPID Axiom 2 (Monotonicity). Pointwise redundant information decreases monotonically as more source
events are included,

i∩
(
a1, . . . , ak−1→ t

)
≤ i∩

(
a1, . . . , ak → t

)

with equality if ak ⊇ ai for any ai ∈ {a1, . . . , ak−1}.

PPID Axiom 3 (Self-redundancy). Pointwise redundant information for a single source event ai equals the
pointwise mutual information,

i∩
(
ai → t

)
= i

(
ai ; t

)
.

It seems that the next step should be to define some measure of pointwise redundant
information which is compatible with these PPID axioms; however, there is a problem—the pointwise
mutual information is not non-negative. While this would not be an issue for the examples like
PWUNQ, where none of the source events provide negative pointwise information, it is an issue in
general (e.g., see RDNERR in Section 5.4). The problem is that set-theoretic intuition behind Axiom 2
(monotonicity) makes little sense when considering signed measures like the pointwise mutual
information.

Given the desire to address the pointwise unique problem, there is a need to overcome this
issue. Ince [18] suggested that the set-theoretic intuition is only valid when all source events provide
either positive or negative pointwise information. Ince contends that information and misinformation
are “fundamentally different” ([18], p. 11) and that the set-theoretic intuition should be admitted
in the difficult to interpret situations where both are present. We however, will take a different
approach—one which aims to deal with these difficult to interpret situations whilst preserving the
set-theoretic intuition that redundancy corresponds to overlapping information.

By way of a preview, we first consider precisely how an event s1 provides information
about an event t by the means of two distinct types of probability mass exclusion. We show
how considering the process in this way naturally splits the pointwise mutual information into
particular entropic components, and how one can consider redundancy on each of these components
separately. Splitting the signed pointwise mutual information into these unsigned entropic components
circumvents the above issue with Axiom 2 (monotonicity). Crucially, however, by deriving these
entropic components from the probability mass exclusions, we retain the set-theoretic intuition of
redundancy—redundant information will correspond to overlapping probability mass exclusions in
the two-event partition T t = {t, tc}.

3. Probability Mass Exclusions and the Directed Components of Pointwise Mutual Information

By definition, the pointwise information provided by s about t is associated with a change from the
prior p(t) to the posterior p(t|s). As we explored from first principles in Finn and Lizier [39], this change is
a consequence of the exclusion of probability mass in the target distribution P(T) induced by the occurrence
of the event s and inferred via the joint distribution P(S, T). To be specific, when the event s occurs,
one knows that the complementary event sc = {S\s} did not occur. Hence one can exclude the probability
mass in the joint distribution P(S, T) associated with the complementary event, i.e., exclude P(sc, T),
leaving just the probability mass P(s, T) remaining. The new target distribution P(T|s) is evaluated by
normalising this remaining probability mass. In [39] we introduced probability mass diagrams in order to
visually explore the exclusion process. Figure 1 provides an example of such a diagram. Clearly, this process
is merely a description of the definition of conditional probability. Nevertheless, we content that by viewing
the change from the prior to the posterior in this way—by focusing explicitly on the exclusions rather than
the resultant conditional probability—the vague intuition that redundancy corresponds to overlapping
information becomes more apparent. This point will elaborated upon in Section 3.3. However, in order
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to do so, we need to first discuss the two distinct types of probability mass exclusion (which we do in
Section 3.1) and then relate these to information-theoretic quantities (which we do in Section 3.2).

t1

t2

s1

s2

s1

s3

P(S, T)
1/8

3/8

1/4

1/4

t1

t1c

s1

s1c

s1

s1c

P(s1, T)
1/8

1/4

t1

t1c

s1

s1

P(T|s1)

1/3

2/3

Figure 1. Sample probability mass diagrams, which use length to represent the probability mass
of each joint event from T ×S . (Left) the joint distribution P(S, T); (Middle) The occurrence of the
event s1 leads to exclusions of the complementary event s1c which consists of two elementary event,
i.e., s1c = {s2, s3}. This leaves the probability mass P(s1, T) remaining. The exclusion of the probability
mass p(s1c, t1) was misinformative since the event t1 did occur. By convention, misinformative
exclusions will be indicated with diagonal hatching. On the other hand, the exclusion of the probability
mass p(t1c, s1c) was informative since the complementary event t1c did not occur. By convention,
informative exclusions will be indicated with horizontal or vertical hatching; (Right) this remaining
probability mass can be normalised yielding the conditional distribution P(T|s1).

3.1. Two Distinct Types of Probability Mass Exclusions

In [39] we examined the two distinct types of probability mass exclusions. The difference between
the two depends on where the exclusion occurs in the target distribution P(T) and the particular target
event t which occurred. Informative exclusions are those which are confined to the probability mass
associated with the set of elementary events in the target distribution which did not occur, i.e., exclusions
confined to the probability mass of the complementary event p(tc). They are called such because
the pointwise mutual information i(s; t) is a monotonically increasing function of the total size of
these exclusions p(tc). By convention, informative exclusions are represented on the probability mass
diagrams by horizontal or vertical lines. On the other hand, the misinformative exclusion is confined to
the probability mass associated with the elementary event in the target distribution which did occur,
i.e., an exclusion confined to p(t). It is referred to as such because the pointwise mutual information
i(s; t) is a monotonically decreasing function of the size of this type of exclusion p(t). By convention,
misinformative exclusions are represented on the probability mass diagrams by diagonal lines.

Although an event s may exclusively induce either type of exclusion, in general both types of
exclusion are present simultaneously. The distinction between the two types of exclusions leads
naturally to the following question—can one decompose the pointwise mutual information i(s; t)
into a positive informational component associated with the informative exclusions, and a negative
informational component associated with the misinformative exclusions? This question is considered
in detail in Section 3.2. However, before moving on, there is a crucial observation to be made about the
pointwise mutual information which will have important implications for the measure of redundant
information to be introduced later.

Remark 1. The pointwise mutual information i(s; t) depends only on the size of informative and misinformative
exclusions. In particular, it does not depend on the apportionment of the informative exclusions across the set of
elementary events contained in the complementary event tc.

In other words, whether the event s turns out to be net informative or misinformative about the
event t—whether i(s; t) is positive or negative—depends on the size of the two types of exclusions;
but, to be explicit, does not depend on the distribution of the informative exclusion across the set of
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target events which did not occur. This remark will be crucially important when it comes to providing
the operational interpretation of redundant information in Section 3.3. (It is also further discussed in
terms of Kelly gambling [40] in Appendix A).

3.2. The Directed Components of Pointwise Information: Specificity and Ambiguity

We return now to the idea that one might be able to decompose the pointwise mutual information
into a positive and negative component associated with the informative amd misinformative exclusions
respectively. In [39] we proposed four postulates for such a decomposition. Before stating the postulates,
it is important to note that although there is a “surprising symmetry” ([41], p. 23) between the information
provided by s about t and the information provided by t about s, there is nothing to suggest that the
components of the decomposition should be symmetric—indeed the intuition behind the decomposition
only makes sense when considering the information is considered in a directed sense. As such, directed
notation will be used to explicitly denote the information provided by s about t.

Postulate 1 (Decomposition). The pointwise information provided by s about t can be decomposed into two
non-negative components, such that i(s; t) = i+(s→ t)− i−(s→ t).

Postulate 2 (Monotonicity). For all fixed p(s, t) and p(sc, t), the function i+(s → t) is a monotonically
increasing, continuous function of p(tc, sc). For all fixed p(tc, s) and p(tc, sc), the function i−(s → t) is
a monotonically increasing continuous function of p(sc, t). For all fixed p(s, t) and p(tc, s), the functions
i+(s→ t) and i−(s→ t) are monotonically increasing and decreasing functions of p(tc, sc), respectively.

Postulate 3 (Self-Information). An event cannot misinform about itself, i+(s→ s) = i(s; s) = − log p(s).

Postulate 4 (Chain Rule). The functions i+(s1,2→ t) and i−(s1,2→ t) satisfy a chain rule, i.e.,

i+(s1,2→ t) = i+(s1→ t) + i+(s2→ t|s1)

= i+(s2→ t) + i+(s1→ t|s2),

i−(s1,2→ t) = i−(s1→ t) + i−(s2→ t|s1)

= i−(s2→ t) + i−(s1→ t|s2)

In Finn and Lizier [39], we proved that these postulates lead to the following forms which are
unique up to the choice of the base of the logarithm in the mutual information in Postulates 1 and 3,

i+(s1→ t) = h(s1) = − log p(s1), (5)

i+(s1→ t|s2) = h(s1|s2) = − log p(s1|s2), (6)

i+(s1,2→ t) = h(s1,2) = − log p(s1,2), (7)

i−(s1→ t) = h(s1|t) = − log p(s1|t), (8)

i−(s1→ t|s2) = h(s1|t, s2) = − log p(s1|t, s2), (9)

i−(s1,2→ t) = h(s1,2|t) = − log p(s1,2|t). (10)

That is, the Postulates 1–4 uniquely decompose the pointwise information provided by s about t
into the following entropic components,

i(s; t) = i+(s→ t)− i−(s→ t)
= h(s)− h(s|t). (11)

Although the decomposition of mutual information into entropic components is well-known,
it is non-trivial that Postulates 1 and 3, based on the size of the two distinct types of probability mass
exclusions, lead to this particular form, but not i(s; t) = h(t)− h(t|s) or i(s; t) = h(s) + h(t)− h(s, t).
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It is important to note that although the original motivation was to decompose the pointwise
mutual information into separate components associated with informative and misinformative
exclusion, the decomposition (11) does not quite possess this direct correspondence:

• The positive informational component i+(s→ t) does not depend on t but rather only on s. This can
be interpreted as follows: the less likely s is to occur, the more specific it is when it does occur,
the greater the total amount of probability mass excluded p(sc), and the greater the potential for s
to inform about t (or indeed any other target realisation).

• The negative informational component i−(s→ t) depends on both s and t, and can be interpreted
as follows: the less likely s is to coincide with the event t, the more uncertainty in s given t,
the greater size of the misinformative probability mass exclusion p(sc, t), and therefore the greater
the potential for s to misinform about t.

In other words, although the negative informational component i−(s→ t) does correspond directly
to the size of the misinformative exclusion p(sc, t), the positive informational component i+(s→ t)
does not correspond directly to the size of the informative exclusion p(tc, sc). Rather, the positive
informational component i+(s→ t) corresponds to the total size of the probability mass exclusions
p(sc), which is the sum of the sum of the informative and misinformative exclusions. For the sake of
brevity, the positive informational component i+(s→ t) will be referred to as the specificity, while the
negative informational component i−(s→ t) will be referred to as the ambiguity. The term ambiguity is
due to Shannon: “[equivocation] measures the average ambiguity of the received signal” ([42], p. 67).
Specificity is an antonym of ambiguity and the usage here is inline with the definition since the
more specific an event s, the more information it could provide about t after the ambiguity is taken
into account.

3.3. Operational Interpretation of Redundant Information

Arguing about whether one piece of information differs from another piece of information
is nonsensical without some kind of unambiguous definition of what it means for two pieces of
information to be the same. As such, Bertschinger et al. [11] advocate the need to provide an operational
interpretation of what it means for information to be unique or redundant. This section provides
our operational definition of what it means for information to be the same. This definition provides
a concrete interpretation of what it means for information to be redundant in terms of overlapping
probability mass exclusions.

The operational interpretation of redundancy adopted here is based upon the following idea:
since the pointwise information is ultimately derived from probability mass exclusions, the same
information must induce the same exclusions. More formally, the information provided by a set of
predictor events s1, . . . , sk about a target event t must be the same information if each source event
induces the same exclusions with respect to the two-event partition T t = {t, tc}. While this statement
makes the motivational intuition clear, it is not yet sufficient to serve as an operational interpretation of
redundancy: there is no reference to the two distinct types of probability mass exclusions, the specific
reference to the pointwise event space T t has not been explained, and there is no reference to the fact
the exclusions from each source may differ in size.

Informative exclusions are fundamentally different from misinformative exclusions and hence
each type of exclusion should be compared separately: informative exclusions can overlap with
informative exclusions, and misinformative exclusions can overlap with misinformative exclusions.
In information-theoretic terms, this means comparing the specificity and the ambiguity of the sources
separately—i.e., considering a measure of redundant specificity and a separate measure of redundant
ambiguity. Crucially, these quantities (being pointwise entropies) are unsigned meaning that the
difficulties associated with Axiom 2 (Monotonicity) and signed pointwise mutual information in
Section 2.3 will not be an issue here.

The specific reference to the two-event partition T t in the above statement is based upon Remark 1
and is crucially important. The pointwise mutual information does not depend on the apportionment of
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the informative exclusions across the set of events which did not occur, hence the pointwise redundant
information should not depend on this apportionment either. In other words, it is immaterial if
two predictor events s1 and s2 exclude different elementary events within the target complementary
event tc (assuming the probability mass excluded is equal) since with respect to the realised target
event t the difference between the exclusions is only semantic. This has important implications for
the comparison of exclusions from different predictor events. As the pointwise mutual information
depends on, and only depends on, the size of the exclusions, then the only sensible comparison is
a comparison of size. Hence, the common or overlapping exclusion must be the smallest exclusion.
Thus, consider the following operational interpretation of redundancy:

Operational Interpretation (Redundant Specificity). The redundant specificity between a set of predictor
events s1, . . . , sn is the specificity associated with the source event which induces the smallest total exclusions.

Operational Interpretation (Redundant Ambiguity). The redundant ambiguity between a set of predictor
events s1, . . . , sn is the ambiguity associated with the source event which induces the smallest misinformative exclusion.

3.4. Motivational Example

To motivate the above operational interpretation, and in particular the need to treat the specificity
separately to the ambiguity, consider Figure 2. In this pointwise example, two different predictor
events provide the same amount of pointwise information since P(T|s1

1) = P(T|s1
2), and yet the

information provided by each event is in some way different since each excludes different sections
of the target distribution P(T). In particular, s1

1 and s1
2 both preclude the target event t2, while s1

2
additionally excludes probability mass associated with target events t1 and t3. From the perspective of
the pointwise mutual information the events s1

1 and s1
2 seem to be providing the same information as

i(s1
1→ t1) = i(s1

2→ t1) = log 4/3 bit. (12)

However, from the perspective of the specificity and the ambiguity it can be seen that information
is being provided in different ways since

i+(s1
1→ t1) = log 4/3 bit, i−(s1

1→ t1) = 0 bit,
i+(s1

2→ t1) = log 8/3 bit, i−(s1
2→ t1) = 1 bit.

(13)

Now consider the problem of decomposing information into its unique, redundant and
complementary components. Figure 2 shows where exclusions induced by s1

1 and s1
2 overlap where

they both exclude the target event t2 which is an informative exclusion. This is the only exclusion
induced by s1

1 and hence all of the information associated with this exclusion must be redundantly
provided by the event s1

2. Without any formal framework, consider taking the redundant specificity
and redundant ambiguity,

r+(s1
1, s1

2→ t1) = i+(s1
1→ t1) = log 4/3 bit, (14)

r−(s1
1, s1

2→ t1) = i−(s1
1→ t1) = 0 bit. (15)

This would mean that the event s1
2 provides the following unique specificity and unique ambiguity,

u+(s1
1\s1

2→ t1) = i+(s1
1→ t1)− r+(s1

1, s1
2→ t1) = 1 bit, (16)

u−(s1
1\s1

2→ t1) = i−(s1
1→ t1)− r−(s1

1, s1
2→ t1) = 1 bit. (17)

The redundant specificity log 4/3 bit accounts for the overlapping informative exclusion of the
event t2. The unique specificity and unique ambiguity from s1

2 are associated with its non-overlapping
informative and misinformative exclusions; however, both of these 1 bit and hence, on net, s1

2 is no
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more informative than s1
1. Although obtained without a formal framework, this example highlights

a need to consider the specificity and ambiguity rather than merely the pointwise mutual information.

t1
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1
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1
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1

P(S1, T)

1/4

1/4

1/2
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s1
1

s1
1
c

s1
1

P(s1
1, T)

t1

t2

t3

s1
2

s2
2

s1
2

P(S2, T)
1/8
1/8

1/4

1/4

1/4

t1

t1c

s1
2

s1
2
c

s1
2

P(s1
2, T)

t1

t1
c

s2
1

s2
1

P(T|s1
1)=P(T|s2

1)

1/3

2/3

t1

t2

t3

P(T)

Figure 2. Sample probability mass diagrams for two predictors S1 and S2 to a given target T. Here
events in the two different predictor spaces provide the same amount of pointwise information about
the target event, log2 4/3 bits, since P(T|s1

1) = P(T|s1
2), although each excludes different sections of the

target distribution P(T). Since they both provide the same amount of information, is there a way to
characterise what information the additional unique exclusions from the event s1

2 are providing?

4. Pointwise Partial Information Decomposition Using Specificity and Ambiguity

Based upon the argumentation of Section 3, consider the following axioms:

Axiom 1 (Symmetry). Pointwise redundant specificity i+∩ and pointwise redundant ambiguity i−∩ are invariant
under any permutation σ of source events,

i+∩
(
a1, . . . , ak → t

)
= i+∩

(
σ(a1), . . . , σ(ak)→ t

)
,

i−∩
(
a1, . . . , ak → t

)
= i−∩

(
σ(a1), . . . , σ(ak)→ t

)
.

Axiom 2 (Monotonicity). Pointwise redundant specificity i+∩ and pointwise redundant ambiguity i−∩ decreases
monotonically as more source events are included,

i+∩
(
a1, . . . , ak−1, ak → t

)
≤ i+∩

(
a1, . . . , ak−1→ t

)
,

i−∩
(
a1, . . . , ak−1, ak → t

)
≤ i−∩

(
a1, . . . , ak−1→ t

)
.

with equality if ak ⊇ ai for any ai ∈ {a1, . . . , ak−1}.

Axiom 3 (Self-redundancy). Pointwise redundant specificity i+∩ and pointwise redundant ambiguity i−∩ for a
single source event ai equals the specificity and ambiguity respectively,

i+∩ (ai → t) = i+(ai → t) = h(ai),

i−∩ (ai → t) = i−(ai → t) = h(ai|t).

As shown in Appendix B.1, Axioms 1–3 induce two lattices—namely the specificity lattice and
ambiguity lattice—which are depicted in Figure 3. Furthermore, each lattice is defined for every discrete
realisation from P(S1, . . . , Sn, T). The redundancy measures i+∩ or i−∩ can be thought of as a cumulative
information functions which integrate the specificity or ambiguity uniquely contributed by each node
as one moves up each lattice. Finally, just as in PID, performing a Möbius inversion over each lattice
yielding the unique contributions of specificity and ambiguity from each sources event.

Similarly to PID, the specificity and ambiguity lattices provide a structure for information
decomposition, but unique evaluation requires a separate definition of redundancy. However, unlike
PID (or even PPID), this evaluation requires both a definition of pointwise redundant specificity and
pointwise redundant ambiguity. Before providing these definitions, it is helpful to first see how the
specificity and ambiguity lattices can be used to decompose multivariate information in the now
familiar bivariate case.
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{123}

{23}{13}{12}

{13}{23}{12}{23}{12}{13}

{12}{13}{23}{3}{2}{1}

{3}{12}{2}{13}{1}{23}

{2}{3}{1}{3}{1}{2}

{1}{2}{3}

{12}

{2}{1}

{1}{2}

Figure 3. The lattice induced by the partial order � (A15) over the sources A (s) (A14). (Left) the lattice
for s = {s1, s2}; (Right) the lattice for s = {s1, s2, s3}. See Appendix B for further details. Each node
corresponds to the self-redundancy (Axiom 3) of a source event, e.g., {1} corresponds to the source
event

{
{s1}

}
, while {12, 13} corresponds to the source event

{
{s1,2}, {s1,3}

}
. Note that the specificity

and ambiguity lattices share the same structure as the redundancy lattice of partial information
decomposition (PID) (cf. Figure 2 in [1]).

4.1. Bivariate PPID Using the Specificity and Ambiguity

Consider again the bivariate case where the aim is to decompose the information provided by s1

and s2 about t. The specificity lattice can be used to decompose the pointwise specificity,

i+(s1,2→ t) = r+(s1, s2→ t) + u+(s1\s2→ t) + u+(s2\s1→ t) + c+(s1, s2→ t),

i+(s1→ t) = r+(s1, s2→ t) + u+(s1\s2→ t), (18)

i+(s2→ t) = r+(s1, s2→ t) + u+(s2\s1→ t);

while the ambiguity lattice can be used to decompose the pointwise ambiguity,

i−(s1,2→ t) = r−(s1, s2→ t) + u−(s1\s2→ t) + u−(s2\s1→ t) + c−(s1, s2→ t),

i−(s1→ t) = r−(s1, s2→ t) + u−(s1\s2→ t), (19)

i−(s2→ t) = r−(s1, s2→ t) + u−(s2\s1→ t).

These equations share the same structural form as (3) only now decompose the specificity
and the ambiguity rather than the pointwise mutual information, e.g., r+(s1, s2→ t) denotes the
redundant specificity while u−(s1\s2→ t) denoted the unique ambiguity from s1. Just as in for (3),
this decomposition could be considered for every discrete realisation on the support of the joint
distribution P(S1, S2, T).
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There are two ways one can be combine these values. Firstly, in a similar manner to (4), one could
take the expectation of the atoms of specificity, or the atoms of ambiguity, over all discrete realisations
yielding the average PI atoms of specificity and ambiguity,

U+(S1\S2→T) =
〈
u+(s1\s2→ t)

〉
, U−(S1\S2→T) =

〈
u−(s1\s2→ t)

〉
,

U+(S2\S1→T) =
〈
u+(s2\s1→ t)

〉
, U−(S2\S1→T) =

〈
u−(s2\s1→ t)

〉
,

R+(S1, S2→T) =
〈
r+(s1, s2→ t)

〉
, R−(S1, S2→T) =

〈
r−(s1, s2→ t)

〉
,

C+(S1, S2→T) =
〈
c+(s1, s2→ t)

〉
. C−(S1, S2→T) =

〈
c−(s1, s2→ t)

〉
.

(20)

Alternatively, one could subtract the pointwise unique, redundant and complementary ambiguity
from the pointwise unique, redundant and complementary specificity yielding the pointwise unique,
pointwise redundant and pointwise complementary information, i.e., recover the atoms from PPID,

r(s1, s2→ t) = r+(s1, s2→ t)− r−(s1, s2→ t),

u(s1\s2→ t) = u+(s1\s2→ t)− u−(s1\s2→ t),

u(s2\s1→ t) = u+(s2\s1→ t)− u−(s2\s1→ t),

c(s1, s2→ t) = c+(s1, s2→ t)− c−(s1, s2→ t).

(21)

Both (20) and (21) are linear operations, hence one could perform both of these operations (in either
order) to obtain the average unique, average redundant and average complementary information,
i.e., recover the atoms from PID,

R(S1, S2→T) = R+(S1, S2→T)− R−(S1, S2→T),

U(S1\S2→T) = U+(S1\S2→T)− U−(S1\S2→T),

U(S2\S1→T) = U+(S2\S1→T)− U−(S2\S1→T),

C(S1, S2→T) = C+(S1, S2→T)− C−(S1, S2→T).

(22)

4.2. Redundancy Measures on the Specificity and Ambiguity Lattices

Now that we have a structure for our information decomposition, there is a need to provide
a definition of the pointwise redundant specificity and pointwise redundant ambiguity. However,
before attempting to provide such a definition, there is a need to consider Remark 1 and the operational
interpretation of in Section 3.3. In particular, the pointwise redundant specificity i+∩ and pointwise
redundant ambiguity i−∩ should only depend on the size of informative and misinformative exclusions.
They should not depend on the apportionment of the informative exclusions across the set of
elementary events contained in the complementary event tc. Formally, this requirement will be
enshrined via the following axiom.

Axiom 4 (Two-event Partition). The pointwise redundant specificity i+∩ and pointwise redundant ambiguity
i−∩ are functions of the probability measures on the two-event partitions Aa1

1 ×T t, . . . ,Aak
k ×T t.

Since the pointwise redundant specificity i+∩ is specificity associated with the source event
which induces the smallest total exclusions, and pointwise redundant ambiguity i−∩ is the ambiguity
associated with the source event which induces the smallest misinformative exclusion, consider the
following definitions.
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Definition 1. The pointwise redundant specificity is given by

r+min
(
a1, . . . , ak → t

)
= min

ai
i+(ai → t) = min

ai
h(ai). (23)

Definition 2. The pointwise redundant ambiguity is given by

r−min
(
a1, . . . , ak → t

)
= min

ai
i−(ai → t) = min

aj
h(aj|t). (24)

Theorem 1. The definitions of r+min and r−min satisfy Axioms 1–4.

Theorem 2. The redundancy measures r+min and r−min increase monotonically on the
〈
A (s),�

〉
.

Theorem 3. The atoms of partial specificity π+ and partial ambiguity π− evaluated using the measures r+min
and r−min on the specificity and ambiguity lattices (respectively), are non-negative.

Appendix B.2 contains the proof of Theorems 1–3 and further relevant consideration of
Defintions 1 and 2. As in (20), one can take the expectation of the either the pointwise redundant
specificity r+min or the pointwise redundant ambiguity r−min to get the average redundant specificity
R+

min or the average redundant ambiguity R−
min. Alternatively, just as in (21), one can recombine the

pointwise redundant specificity r+min and the pointwise redundant ambiguity r−min to get the pointwise
redundant information rmin. Finally, as per (22), one could perform both of these (linear) operations
in either order to obtain the average redundant information Rmin. Note that while Theorem 3 proves
that the atoms of partial specificity π+ and partial ambiguity π− are non-negative, it is trivial to see
that rmin could be negative since when source events can redundantly provide misinformation about
a target event. As shown in the following theorem, Rmin can also be negative.

Theorem 4. The atoms of partial average information Π evaluated by recombining and averaging π± are
not non-negative.

This means that the measure Rmin does not satisfy local positivity. Nonetheless the negativity of
Rmin is readily explainable in terms of the operational interpretation of Section 3.3, as will be discussed
further in Section 5.4. However, failing to satisfy local positivity does mean that rmin and Rmin do not
satisfy the target monotonicity property first discussed in Bertschinger et al. [5]. Despite this, as the
following theorem shows, the measures do satisfy the target chain rule.

Theorem 5 (Pointwise Target Chain Rule). Given the joint target realisation t1,2, the pointwise redundant
information rmin satisfies the following chain rule,

rmin
(
a1, . . . , ak → t1,2

)
= rmin

(
a1, . . . , ak → t1

)
+ rmin

(
a1, . . . , ak → t2|t1

)
,

= rmin
(
a1, . . . , ak → t2

)
+ rmin

(
a1, . . . , ak → t1|t2

)
.

(25)

The proof of the last theorem is deferred to Appendix B.3. Note that since the expectation is
a linear operation, Theorem 5 also holds for the average redundant information Rmin. Furthermore,
as these results apply to any of the source events, the target chain rule will hold for any of the PPI
atoms, e.g., (21), and any of the PI atoms, e.g., (22). However, no such rule holds for the pointwise
redundant specificity or ambiguity. The specificity depends only on the predictor event, i.e., does not
depend on the target events. As such, when an increasing number of target events are considered,
the specificity remains unchanged. Hence, a target chain rule cannot hold for the specificity, or the
ambiguity alone.
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5. Discussion

PPID using the specificity and ambiguity takes the ideas underpinning PID and applies them on
a pointwise scale while circumventing the monotonicity issue associated with the signed pointwise
mutual information. This section will explore the various properties of the decomposition in
an example driven manner and compare the results to the most widely-used measures from the
existing PID literature. (Further examples can be found in Appendix C.) The following shorthand
notation will be utilised in the figures throughout this section:

i+1 = i+(s1→ t), i+2 = i+(s2→ t), i+1,2 = i+(s1,2→ t),

i−1 = i−(s1→ t), i−2 = i−(s2→ t), i−1,2 = i−(s1,2→ t),

u+
1 = u+(s1\s2→ t), u+

2 = u+(s2\s1→ t), r+ = r+(s1, s2→ t), c+ = c+(s1, s2→ t),

u−
1 = u−(s1\s2→ t), u−

2 = u−(s2\s1→ t), r− = r−(s1, s2→ t), c− = c−(s1, s2→ t).

5.1. Comparison to Existing Measures

A similar approach to the decomposition presented in this paper is due to Ince [18], who also sought
to define a pointwise information decomposition. Despite the similarity in this regard, the redundancy
measure ICCS presented in [18] approaches the pointwise monotonicity problem of Section 2.3 in a different
way to the decomposition presented in this paper. Specifically, ICCS aims to utilise the pointwise
co-information as a measure of pointwise redundant information since it “quantifies the set-theoretic
overlap of the two univariate [pointwise] information values” ([18], p. 14). There are, however, difficulties
with this approach. Firstly (unlike the average mutual information and the Shannon inequalities), there are
no inequalities which support this interpretation of pointwise co-information as the set-theoretic overlap
of the univariate pointwise information terms—indeed, both the univariate pointwise information and
the pointwise co-information are signed measures. Secondly, the pointwise co-information conflates
the pointwise redundant information with the pointwise complementary information, since by (3) we
have that

co-i(s1; s2; t) := i(s1; t) + i(s2; t)− i(s1,2, t) = r(s1, s2→ t)− c(s1, s2→ t). (26)

Aware of these difficulties, Ince defines ICCS such that it only interprets the pointwise
co-information as a measure of set-theoretic overlap in the case where all three pointwise information
terms have the same sign, arguing that these are the only situations which admit a clear interpretation
in terms of a common change in surprisal. In the other difficult to interpret situations, ICCS defines the
pointwise redundant information to be zero. This approach effectively assumes that c(s1, s2→ t) = 0
in (26) when i(s1; t), i(s2; t) and co-i(s1; s2; t) all have the same sign.

In a subsequent paper, Ince [19] also presented a partial entropy decomposition which aims to
decompose multivariate entropy rather than multivariate information. As such, this decomposition
is more similar to PPID using specificity and ambiguity than Ince’s aforementioned decomposition.
Although similar in this regard, the measure of pointwise redundant entropy Hcs presented in [19]
takes a different approach to the one presented in this paper. Specifically, Hcs also uses the pointwise
co-information as a measure of set-theoretic overlap and hence as a measure of pointwise redundant
entropy. As the pointwise entropy is unsigned, the difficulties are reduced but remain present due to the
signed pointwise co-information. In a manner similar to ICCS, Ince defines Hcs such that it only interprets
the pointwise co-information as a measure of set-theoretic overlap when it is positive. As per ICCS,
this effectively assumes that c(s1, s2→ t) = 0 in (26) when all information terms have the same sign. When
the pointwise co-information is negative, Hcs simply ignores the co-information by defining the pointwise
redundant information to be zero. In contrast to both of Ince’s approaches, PPID using specificity and
ambiguity does not dispose of the set-theoretic intuition in these difficult to interpret situations. Rather,
our approach considers the notion of redundancy in terms of overlapping exclusions—i.e., in terms of the
underlying, unsigned measures which are amenable to a set-theoretic interpretation.
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The measures of pointwise redundant specificity r+min and pointwise redundant ambiguity r−min,
from Definitions 1 and 2 are also similar to both the minimum mutual information IMMI [17] and the
original PID redundancy measure Imin [1]. Specifically, all three of these approaches consider the
redundant information to be the minimum information provided about a target event t. The difference
is that Imin applies this idea to the sources A1, . . . , Ak, i.e., to collections of entire predictor variables
from S, while r±min apply this notion to the source events a1, . . . , ak, i.e., to collections of predictor
events from s. In other words, while the measure Imin can be regarded as being semi-pointwise (since
it considers the information provided by the variables S1, . . . , Sn about an event t), the measures r±min
are fully pointwise (since they consider the information provided by the events s1, . . . , sn about an
event t). This difference in approach is most apparent in the probability distribution PWUNQ—unlike
PID, PPID using the specificity and ambiguity respects the pointwise nature of information, as we will
see in Section 5.3.

PPID using specificity and ambiguity also share certain similarities with the bivariate PID induced
by the measure ŨI of Bertschinger et al. [11]. Firstly, Axiom 4 can be considered to be a pointwise
adaptation of their Assumption (∗), i.e., the measures r±min depend only on the marginal distributions
P(S1, T) and P(S2, T) with respect to the two-event partitions S s1

1 ×T t and S s2
2 ×T t. Secondly,

in PPID using specificity and ambiguity, the only way one can only decide if there is complementary
information c(s1, s2→ t) is by knowing the joint distribution P(S1, S2, T) with respect to the joint
two-event partitions S s1

1 ×S s2
2 ×T t. This is (in effect) a pointwise form of their Assumption (∗∗).

Thirdly, by definition r±min are given by the minimum value that any one source event provides. This is
the largest possible value that one could take for these quantities whilst still requiring that the unique
specificity and ambiguity be non-negative. Hence, within each discrete realisation, r±min minimise the
unique specificity and ambiguity whilst maximising the redundant specificity and ambiguity. This is
similar to ŨI which minimises the (average) unique information while still satisfying Assumption (∗).
Finally, note that since the measure SVK produces a bivariate decomposition which is equivalent to
that of ŨI [11], the same similarities apply between PPID using specificity and ambiguity and the
decomposition induced by SVK from Griffith and Koch [12].

5.2. Probability Distribution XOR

Figure 4 shows the canonical example of synergy, exclusive-or (XOR) which considers two
independently distributed binary predictor variables S1 and S2 and a target variable T = S1 XOR S2.
There are several important points to note about the decomposition of XOR. Firstly, despite
providing zero pointwise information, an individual predictor event does indeed induce exclusions.
However, the informative and misinformative exclusions are perfectly balanced such that the posterior
(conditional) distribution is equal to the prior distribution, e.g., see the red coloured exclusions induced
by S1 = 0 in Figure 4. In information-theoretic terms, for each realisation, the pointwise specificity
equals 1 bit since half of the total probability mass remains while the pointwise ambiguity also equals
1 bit since half of the probability mass associated with the event which subsequently occurs (i.e., T = 0),
remains. These are perfectly balanced such that when recombined, as per (11), the pointwise mutual
information is equal to 0 bit, as one would expect.

Secondly, S1 = 0 and S2 = 0 both induce the same exclusions with respect to the target pointwise
event space T T=0. Hence, as per the operational interpretation of redundancy adopted in Section 3.3,
there is 1 bit of pointwise redundant specificity and 1 bit of pointwise redundant ambiguity in each
realisation. The presence of (a form of) redundancy in XOR is novel amongst the existing measures
in the PID literature. (Ince [19] also identifies a form of redundancy in XOR.) Thirdly, despite the
presence of this redundancy, recombining the atoms of pointwise specificity and ambiguity for each
realisation, as per (21), leaves only one non-zero PPI atom: namely the pointwise complementary
information c(s1, s2→ t) = 1 bit. Furthermore, this is true for every pointwise realisation and hence,
by (22), the only non-zero PI atom is the average complementary information C(S1, S2→T) = 1 bit.
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p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+
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1 u−

2 c−

1/4 0 0 0 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 0 1 1 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 1 0 1 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 1 1 0 1 1 1 1 2 1 1 0 0 1 1 0 0 0

Expected values 1 1 1 1 2 1 1 0 0 1 1 0 0 0

R(S1, S2 →T) = 0 bit U(S1\S2 →T) = 0 bit U(S2\S1 →T) = 0 bit C(S1, S2 →T) = 1 bit

Figure 4. Example XOR. (Top) probability mass diagrams for the realisation (S1 = 0, S2 = 0, T = 0);
(Middle) For each realisation, the pointwise specificity and pointwise ambiguity has been evaluated
using (5) and (8) respectively. The pointwise redundant specificity and pointwise redundant ambiguity
are then determined using (23) and (24). The decomposition is calculated using (18) and (19).
The expected specificity and ambiguity are calculated with (20); (Bottom) The average information is
given by (22). As expected, XOR yields 1 bit of complementary information.

5.3. Probability Distribution PWUNQ

Figure 5 shows the probability distribution PWUNQ introduced in Section 2.2. Recombining the
decomposition via (21) yields the pointwise information decomposition proposed in Table 1—unsurprisingly,
the explicitly pointwise approach results in a decomposition which does not suffer from the pointwise
unique problem of Section 2.2.
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R(S1, S2 →T) = 0 bit U(S1\S2 →T) = 1/2 bit U(S2\S1 →T) = 1/2 bit C(S1, S2 →T) = 0 bit

Figure 5. Example PWUNQ. (Top) probability mass diagrams for the realisation (S1 =0, S2 =1, T=1);
(Middle) For each realisation, the pointwise partial information decomposition (PPID) using specificity
and ambiguity is evaluated (see Figure 4 for details). Upon recombination as per (21), the PPI
decomposition from Table 1 is attained; (Bottom) as does the average information—the decomposition
does not have the pointwise unique problem.
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In each realisation, observing a 0 in either source provides the same balanced informative and
misinformative exclusions as in XOR. Observing either a 1 or 2 provides the same misinformative
exclusion as observing the 0, but provides a larger informative exclusion than 0. This leaves only
the probability mass associated with the event which subsequently occurs remaining (hence why
observing a 1 and 2 is fully informative about the target). Information theoretically, in each realisation
the predictor events provide 1 bit of redundant pointwise specificity and 1 bit of redundant pointwise
ambiguity while the fully informative event additionally provides 1 bit of unique specificity.

5.4. Probability Distribution RDNERR

Figure 6 shows the probability distribution redundant-error (RDNERR) which considers two predictors
which are nominally redundant and fully informative about the target, but where one predictor
occasionally makes an erroneous prediction. Specifically, Figure 6 shows the decomposition of RDNERR

where S2 makes an error with a probability ε = 1/4. The important feature to note about this probability
distribution is that upon recombining the specificity and ambiguity and taking the expectation over
every realisation, the resultant average unique information from S2 is U(S2\S1→T) = −0.811 bit.

On first inspection, the result that the average unique information can be negative may seem
problematic; however, it is readily explainable in terms of the operational interpretation of Section 3.3.
In RDNERR, a source event always excludes exactly 1/2 of the total probability mass, thus every
realisation contains 1 bit of redundant pointwise specificity. The events of the error-free S1 induce
only informative exclusions and as such provide 0 bit of pointwise ambiguity in each realisation.
In contrast, the events in the error-prone S2 always induce a misinformative exclusion, meaning that S2

provides unique pointwise ambiguity in every realisation. Since S2 never provides unique specificity,
the average unique information is negative on average.

Despite the negativity of the average unique information, in is important to observe that S2 provides
0.189 bit of information since S2 also provides 1 bit of average redundant information. It is not that S2

provides negative information on average (as this is not possible); rather it is that not all of the information
provided by S2 (i.e., the specificity) is “useful” ([42], p. 21). This is in contrast to S1 which only provides
useful specificity. To summarise, it is the unique ambiguity which distinguishes the information provided
by variable S2 from S1, and hence why S2 is deemed to provide negative average unique information.
This form of uniqueness can only be distinguished by allowing the average unique information to be
negative. This of course, requires abandoning the local positivity as a required property, as per Theorem 4.
Few of the existing measures in the PID literature consider dropping this requirement as negative
information quantities are typically regarded as being “unfortunate” ([43], p. 49). However, in the context
of the pointwise mutual information, negative information values are readily interpretable as being
misinformative values. Despite this, the average information from each predictor must be non-negative;
however, it may be that what distinguishes one predictor from another are precisely the misinformative
predictor events, meaning that the unique information is in actual fact, unique misinformation. Forgoing
local positivity makes the PPID using specificity and ambiguity novel (the other exception in this regard
is Ince [18] who was first to consider allowing negative average unique information.)
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R(S1, S2 →T) = 1 bit U(S1\S2 →T) = 0 bit U(S2\S1 →T) = −0.811 bit C(S1, S2 →T) = 0.811 bit

Figure 6. Example RDNERR. (Top) probability mass diagrams for the realisations (S1 =0, S2 =0, T=0)
and (S1 =0, S2 =1, T=0); (Middle) for each realisation, the PPID using specificity and ambiguity
is evaluated (see Figure 4 for details); (Bottom) the average PI atoms may be negative as the
decomposition does not satisfy local positivity.

5.5. Probability Distribution TBC

Figure 7 shows the probability distribution two-bit-copy (TBC) which considers two independently
distributed binary predictor variables S1 and S2, and a target variable T consisting of a separate elementary
event for each joint event S1,2. There are several important points to note about the decomposition of
TBC. Firstly, due to the symmetry in the probability distribution, each realisation will have the same
pointwise decomposition. Secondly, due to the construction of the target, there is an isomorphism (Again,
isomorphism should be taken to mean isomorphic probability spaces, e.g., [37], p. 27 or [38], p. 4) between
P(T) and P(S1, S2), and hence the pointwise ambiguity provided by any (individual or joint) predictor
event is 0 bit (since given t, one knows s1 and s2). Thirdly, the individual predictor events s1 and s2 each
exclude 1/2 of the total probability mass in P(T) and so each provide 1 bit of pointwise specificity; thus,
by (23), there is 1 bit of redundant pointwise specificity in each realisation. Fourthly, the joint predictor
event s1,2 excludes 3/4 of the total probability mass, providing 2 bit of pointwise specificity; hence, by (18),
each joint realisation provides 1 bit of pointwise complementary specificity in addition to the 1 bit of
redundant pointwise specificity. Finally, putting this together via (22), TBC consists of 1 bit of average
redundant information and 1 bit of average complementary information.

Although “surprising” ([5], p. 268), according to the operational interpretation adopted in Section 3.3,
two independently distributed predictor variables can share redundant information. That is, since the
exclusions induced by s1 and s2 are the same with respect to the two-event partition T t, the information
associated with these exclusions is regarded as being the same. Indeed, this probability distribution
highlights the significance of specific reference to the two-event partition in Section 3.3 and Axiom 4.
(This can be seen in the probability mass diagram in Figure 7, where the events S1 = 0 and S2 = 0 exclude
different elementary target events within the complementary event 0c and yet are considered to be the
same exclusion with respect to the two-event partition T 0.) That these exclusions should be regarded as
being the same is discussed further in Appendix A. Now however, there is a need to discuss TBC in terms
of Theorem 5 (Target Chain Rule).

CHAPTER 4: POINTWISE PARTIAL INFORMATION DECOMPOSITION 59



Entropy 2018, 20, 297 21 of 36

0

1

2

3

00

01

10

11

P(S1,2, T)

1/4

1/4

1/4

1/4

0

1

2

3

0

0

1

1

S1 = 0

0

0c

0

0c

S1 = 0

0

1

2

3

0

1

0

1

S2 = 0

0

0c

0

0c

S2 = 0

0

1

2

3

00

01

10

11

S1,2 = 00

p s1 s2 t t1,2 t1,3 t2,3 i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 0 0 00 00 00 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 0 1 1 01 01 11 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 1 0 2 10 11 01 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 1 1 3 11 10 10 1 0 1 0 2 0 1 0 0 1 0 0 0 0

Expected values 1 0 1 0 2 0 1 0 0 1 0 0 0 0
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Figure 7. Example TBC. (Top) the probability mass diagrams for the realisation (S1 =0, S2 =0, T=00);
(Middle) for each realisation, the PPID using specificity and ambiguity is evaluated (see Figure 4);
(Bottom) the decomposition of XOR yields the same result as Imin.

TBC was first considered as a “mechanism” ([6], p. 3) where “the wires don’t even touch” ([12], p. 167),
which merely copies or concatenates S1 and S2 into a composite target variable T1,2 = (T1, T2) where
T1 = S1 and T2 = S2. However, using causal mechanisms as a guiding intuition is dubious since different
mechanisms can yield isomorphic probability distributions ([44], and references therein). In particular,
consider two mechanisms which generate the composite target variables T1,3 = (T1, T3) and T2,3 = (T2, T3)

where T3 = S1 XOR S2. As can be seen in Figure 7, both of these mechanisms generate the same
(isomorphic) probability distribution P(S1, S2, T) as the mechanism generating T1,2. If an information
decomposition is to depend only on the probability distribution P(S1, S2, T), and no other semantic details
such as labelling, then all three mechanisms must yield the same information decomposition—this is not
clear from the mechanistic intuition.

Although the decomposition of the various composite target variables must be the same, there is no
requirement that the three systems must yield the same decomposition when analysed in terms of the
individual components of the composite target variables. Nonetheless, there ought to be a consistency
between the decomposition of the composite target variables and the decomposition of the component
target variables—i.e., there should be a target chain rule. As shown in Theorem 5, the measures rmin

and Rmin satisfy the target chain rule, whereas Imin, ŨI, Ired and SVK do not [5,7]. Failing to satisfy the
target chain rule can lead to inconsistencies between the composite and component decompositions,
depending on the order in which one considers decomposing the information (this is discussed further
in Appendix A.3). In particular, Table 2 shows how ŨI, Ired and SVK all provide the same inconsistent
decomposition for TBC when considered in terms of the composite target variable T1,3. In contrast, Rmin

produces a consistent decomposition of T1,3. Finally, based on the above isomorphism, consider the
following (the proof is deferred to Appendix B.3).

Theorem 6. The target chain rule, identity property and local positivity, cannot be simultaneously satisfied.
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Table 2. Shows the decomposition of the quantities in the first row induced by the measures in the
first column. For consistency, the decomposition of I(S1,2; T1,3) should equal both the sum of the
decomposition of I(S1,2; T1) and I(S1,2; T3|T1), and the sum of the decomposition of I(S1,2; T3) and
I(S1,2; T1|3). Note that the decomposition induced by ŨI, Ired and SVK are not consistent. In contrast,
Rmin is consistent due to Theorem 5.

I(S1,2; T1,3) I(S1,2; T1) I(S1,2; T3|T1) I(S1,2; T3) I(S1,2; T1|T3)

ŨI, Ired,
SVK

U(S1\S2 →T1,3)=1

U(S2\S1 →T1,3)=1
U(S1\S2 →T1)=1 U(S2\S1 →T3|T1)=1 C(S1, S2 →T3)=1 R(S1, S2 →T1|T3)=1

Rmin
R(S1, S2 →T1,3) = 1

C(S1, S2 →T1,3) = 1

U(S2\S1 →T1)=−1

R(S1, S2 →T1)=1

C(S1, S2 →T1)=1
U(S2\S1 →T3|T1)=1 C(S1, S2 →T3)=1 R(S1, S2 →T1|T3)=1

5.6. Summary of Key Properties

The following are the key properties of the PPID using the specificity and ambiguity. Property 1
follows directly from the Definitions 1 and 2. Property 2 follows from Theorems 3 and 4. Property 3
follows from the probability distribution TBC in Section 5.5. Property 4 was discussed in Section 4.2.
Property 5 is proved in Theorem 5.

Property 1. When considering the redundancy between the source events a1, . . . , ak, at least one source event
ai will provide zero unique specificity, and at least one source event aj will provide zero unique ambiguity.
The events ai and aj are not necessarily the same source event.

Property 2. The atoms of partial specificity and partial ambiguity satisfy local positivity, π± ≥ 0. However,
upon recombination and averaging, the atoms of partial information do not satisfy local positivity, Π ≥ 0.

Property 3. The decomposition does not satisfy the identity property.

Property 4. The decomposition does not satisfy the target monotonicity property.

Property 5. The decomposition satisfies the target chain rule.

6. Conclusions

The partial information decomposition of Williams and Beer [12] provided an intriguing
framework for the decomposition of multivariate information. However, it was not long before
“serious flaws” ([11], p. 2163) were identified. Firstly, the measure of redundant information Imin failed
to distinguish between whether predictor variables provide the same information or merely the same
amount of information. Secondly, Imin fails to satisfy the target chain rule, despite this addativity
being one of the defining characteristics of information. Notwithstanding the problems, the axiomatic
derivation of the redundancy lattice was too elegant to be abandoned and hence several alternate
measures were proposed, i.e., Ired, ŨI and SVK [6,11,12]. Nevertheless, as these measures all satisfy
the identity property, they cannot produce a non-negative decomposition for an arbitrary number of
variables [13]. Furthermore, none of these measures satisfy the target chain rule meaning they produce
inconsistent decompositions for multiple target variables. Finally, in spite of satisfying the identity
property (which many consider to be desirable), these measures still fail to identify when variables
provide the same information, as exemplified by the pointwise unique problem presented in Section 2.

This paper took the axiomatic derivation of the redundancy lattice from PID and applied it to
the unsigned entropic components of the pointwise mutual information. This yielded two separate
redundancy lattices—the specificity and the ambiguity lattices. Then based upon an operational
interpretation of redundancy, measures of pointwise redundant specificity r+min and pointwise redundant
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ambiguity r−min were defined. Together with specificity and ambiguity lattices, these measures were used to
decompose multivariate information for an arbitrary number of variables. Crucially, upon recombination,
the measure rmin satisfies the target chain rule. Furthermore, when applied to PWUNQ, these measures do
not result in the pointwise unique problem. In our opinion, this demonstrates that the decomposition is
indeed correctly identifying redundant information. However, others will likely disagree with this point
given that the measure of redundancy does not satisfy the identity property. According to the identity
property, independent variables can never provide the same information. In contrast, according to the
operational interpretation adopted in this paper, independent variables can provide the same information
if they happen to provide the same exclusions with respect to the two-event target distribution. In any
case, the proof of Theorem 6 and the subsequent discussion in Appendix B.3, highlights the difficulties
that the identity property introduces when considering the information provided about events in separate
target variables. (See further discussion in Appendix A.3).

Our future work with this decomposition will be both theoretical and empirical. Regarding future
theoretical work, given that the aim of information decomposition is to derive measures pertaining
to sets of random variables, it would be worthwhile to derive the information decomposition from
first principles in terms of measure theory. Indeed, such an approach would surely eliminate the
semantic arguments (about what it means for information to unique, redundant or complementary),
which currently plague the problem domain. Furthermore, this would certainly be a worthwhile
exercise before attempting to generalise the information decomposition to continuous random variables.
Regarding future empirical work, there are many rich data sets which could be decomposed using this
decomposition including financial time-series and neural recordings, e.g., [28,33,34].
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Appendix A. Kelly Gambling, Axiom 4, and TBC

In Section 3.3, it was argued that the information provided by a set of predictor events s1, . . . , sk about
a target event t is the same information if each source event induces the same exclusions with respect
to the two-event partition T t = {t, tc}. This was based on the fact that pointwise mutual information
does not depend on the apportionment of the exclusions across the set of events which did not occur
tc. It was argued that since the pointwise mutual information is independent of these differences,
the redundant mutual information should also be independent of these differences. This requirement
was then integrated into the operational interpretation of Section 3.3 and was later enshrined in the form
of Axiom 4. This appendix aims to justify this operational interpretation and argue why redundant
information in TBC is not “unreasonably large” ([5], p. 269).

Appendix A.1. Pointwise Side Information and the Kelly Criterion

Consider a set of horses T running in a race which can be considered a random variable T with
distribution P(T). Say that for each t ∈ T a bookmaker offers odds of o(t)-for-1, i.e., the bookmaker
will pay out o(t) dollars on a $1 bet if the horse t wins. Furthermore, say that there is no track take as
∑t∈T 1/o(t) = 1, and these odds are fair, i.e., o(t) = 1/p(t) for all t ∈ T [40]. Let b(T) be the fraction of
a gambler’s capital bet on each horse t ∈ T and assume that the gambler stakes all of their capital on
the race, i.e., ∑t∈T b(t) = 1.
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Now consider an i.i.d. series of these races T1, T2, . . . such that P(Tk) = P(T) for all k ∈ N and let
tk ∈ T represent the winner of the k-th race. Say that the bookmaker offers the same odds on each
race and the gambler bets their entire capital on each race. The gambler’s capital after m races Dm is
a random variable which depends on two factors per race: the amount the gambler staked on each
race winner tk, and the odds offered on each winner tk. That is,

Dm =
m

∏
k=1

b(tk) o(tk), (A1)

where monetary units $ have been chosen such that D0 = $1. The gambler’s wealth grows (or shrinks)
exponentially, i.e.,

Dm = 2m W(b,T) (A2)

where

W(b, T) =
1
m

log Dm =
1
m

m

∑
k=1

log b(tk) o(tk) = E
[

log b(tk) o(tk)
]

(A3)

is the doubling rate of the gambler’s wealth using a betting strategy b(T). Here, the last equality is by
the weak law of large numbers for large m.

Any reasonable gambler would aim to use an optimal strategy b∗(T) which maximises the
doubling rate W(b, T). Kelly [40,43] proved that the optimal doubling rate is given by

W∗(T) = max
b

W(b, T) = E
[

log b∗(tk) o(tk)
]

(A4)

and is achieved by using the proportional gambling scheme b∗(T) = P(T). When the race Tk occurs
and the horse tk wins, the gambler will receive a payout of b∗(tk) o(tk) = $1, i.e., the gambler receives
their stake back regardless of the outcome. In the face of fair odds, the proportional Kelly betting
scheme is the optimal strategy—non-terminating repeated betting with any other strategy will result
in losses.

Now consider a gambler with access to a private wire S which provides (potentially useful) side
information about the upcoming race. Say that these messages are selected from the set S , and that the
gambler receives the message sk before the race Tk. Kelly [40,43] showed that the optimal doubling
rate in the presence of this side information is given by

W∗(T|S) = max
b

W(b, T|S) = E
[

log b∗(tk|sk) o(tk)
]
, (A5)

and is achieved by using the conditional proportional gambling scheme b∗(T|sk) = P(T|sk). Both the
proportional gambling scheme b∗(T) and the conditional proportional gambling scheme b∗(T|S)
are based upon the Kelly criterion whereby bets are apportioned according to the best estimation of
the outcome available. The financial value of the private wire to a gambler can be ascertained by
comparing their doubling rate of the gambler with access to the side wire to that of a gambler with no
side information, i.e.,

∆W = W∗(T|S)− W∗(T) = E
[

log b∗(tk|sk) o(tk)
]
− E

[
log b∗(tk) o(tk)

]

= E
[
i(sk; tk)

]
= I(S; T).

(A6)

This important result due to Kelly [40] equates the increase in the doubling rate ∆W due to
the presence of side information, with the mutual information between the private wire S and the
horse race T. If on average, the gambler receives 1 bit of information from their private wire, then on
average the gambler can expect to double their money per race. Furthermore, as one would expect,
independent side information does not increase the doubling rate.
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With no side information, the Kelly gambler always received their original stake back from the
bookmaker. However, this is not true for the Kelly gambler with side information. Although their
doubling rate is greater than or equal to that of the gambler with no side information, this is only true
on average. Before the race Tk, the gambler receives the private wire message sk and then, the horse tk
wins the race. From (A6), one can see that the return ∆wk for the k-th race is given by the pointwise
mutual information,

∆w = i(sk; tk). (A7)

Hence, just like the pointwise mutual information, the per race return can be positive or negative:
if it is positive, the gambler will make a profit; if it is negative, the gambler will sustain a loss.
Despite the potential for pointwise loses, the average return (i.e., the doubling rate) is, just like the
average mutual information, non-negative—and indeed, is optimal. Furthermore, while a Kelly
gambler with side information can lose money on any single race, they can never actually go bust.
The Kelly gambler with side information s still hedges their risk by placing bets on all horses with
a non-zero probability of winning according to their side information, i.e., according to P(T|sk).
The only reason they would fail to place a bet on a horse is if their side information completely
precludes any possibility of that horse winning. That is, a Kelly gambler with side information will
never fall foul of gambler’s ruin.

Appendix A.2. Justification of Axiom 4 and Redundant Information in TBC

Consider TBC semantically described in terms of a horse race. That is, consider a four horse race
T where each horse has an equiprobable chance of winning, and consider the binary variables T1, T2,
and T3 which represent the following, respectively: the colour of the horse, black 0 or white 1; the sex
of the jockey, female 0 or male 1; and the colour of the jockey’s jersey, red 0 or green 1. Say that the
four horses have the following attributes:

Horse 0 is a black horse T1 =0, ridden by a female jockey T2 =0, who is wearing a red jersey T3 =0.
Horse 1 is a black horse T1=0, ridden by a male jockey T2=1, who is wearing a green jersey T3=1.
Horse 2 is a white horse T1=1, ridden by a female jockey T2=0, who is wearing a green jersey T3=1.
Horse 3 is a white horse T1 = 1, ridden by a male jockey T2 = 1, who is wearing a red jersey T3 = 0.

There are two important points to note. Firstly, the horses in the race T could also be uniquely
described in terms of the composite binary variables T1,2, T1,3 or T2,3. Secondly, if one knows T1 and T2

then one knows T3 (which can be represented by the relationship T3 = T1 XOR T2). Finally, consider
private wires S1 and S2 which independently provide the colour of the horse and the colour of the
jockey’s jersey (respectively) before the upcoming race, i.e., S1 = T1 and S2 = T2.

Now say a bookmaker offers fair odds of 4-for-1 on each horse in the race T. Consider two
gamblers who each have access to one of S1 and S2. Before each race, the two gamblers receive their
respective private wire messages and place their bets according to the Kelly strategy. This means that
each gambler lays half of their, say $1, stake on each of their two respective non-excluded horses:
unknowingly, both of the gamblers have placed a bet on the soon-to-be race winner, and each gambler
has placed a distinct bet on one of the two soon-to-be losers. The only horse neither has bet upon is
also a soon-to-be loser. (See [5] for a related description of TBC in term of the game-theoretic notions of
shared and common knowledge). After the race, the bookmaker pays out $2 dollars to each gambler:
both have doubled their money. This happens because both of the gamblers had one bit of 1 bit of
information about the race, i.e., pointwise mutual information. In particular, both gamblers improved
their probability of predicting the eventual race winner. It did not matter, in any way, that the gamblers
had each laid distinct bets on one of the three eventual race losers. The fact that they laid different
bets on the horses which did not win, made no difference to their winnings. The apportionment of the
exclusions across the set of events which did not occur, makes no difference to the pointwise mutual
information. With respect to what occurred (i.e., with respect to which horse won), the fact the that
they excluded different losers is only semantic. When it came to predicting the would-be-winner,
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both gamblers had the same predictive power; they both had the same freedom of choice with regards
to selecting what would turn out to be the eventual race winner—they had the same information.
It is for this reason that this information should be regarded as redundant information, regardless
of the independence of the information sources. Hence, the introduction of both the operational
interpretation of redundancy in Section 3.3 and Axiom 4 in Section 4.2.

Now consider a third gambler who has access to both private wires S1 and S2, i.e., S1,2. Before the
race, this gambler receives both private wire messages which, in total, precludes three of the horses from
winning. This gambler then places the entirety of their $1 stake on the remaining horse which is sure to
win. After the race, the bookmaker pays out $4: this gambler has quadrupled their money as they had
2 bit of pointwise mutual information about the race. Having both private wire messages simultaneously
gave this gambler a 1 bit informational edge over the two gamblers with access to a single side wire.
While each of the singleton gamblers had 1 bit of independent information, the only way one could profit
from the independence of this information is by having both pieces of information simultaneously—this
makes this 1 bit of information complementary. Although this may seem “palpably strange” ([12], p. 167),
it is not so strange when from the following perspective: the only way to exploit two pieces of independent
information is by having both pieces together simultaneously.

Appendix A.3. Accumulator Betting and the Target Chain Rule

Say that in addition to the 4-for-1 odds offered on the race T, the bookmaker also offers fair odds of
2-for-1 on each of the binary variables T1, T2 and T3. Now, in addition to being able to directly gamble on
the race T, one could indirectly gamble on T by placing a so-called accumulator bet on any pair of T1, T2 and
T3. An accumulator is a series of chained bets whereby any return from one bet is automatically staked on
the next bet; if any bet in the chain is lost then the entire chain is lost. For example, a gambler could place
4-for-1 bet on horse 0 by placing the following accumulator bet: a 2-for1 bet on a black horse winning
that chains into a 2-for-1 bet on the winning jockey being female (or equivalently, vice versa). In effect,
these accumulators enable a gambler to bet on T by instead placing a chained bet on the independent
component variables within the (equivalent) joint variables T1,2, T1,3 and T2,3. Now consider again the
three gamblers from the prior section, i.e., the two gamblers who each have a private wire S1 and S2,
and the third gamble who has access to S1,2. Say that they must each place a, say $1, accumulator bet on
T1,3—what should each gambler do according to the Kelly criterion?

For the sake of clarity, consider only the realisation where the horse T = 0 subsequently wins (due
to the symmetry, the analysis is equivalent for all realisations). First consider the accumulator whereby
the gamblers first bet on the colour of the winning horse T1, which chains into a bet on the colour
of the winning jockey’s jersey T3. Suppose that the private wire S1 communicates that the winning
horse will be black, while the private wire S2 communicates that the winning horse will be ridden by
a female jockey, i.e., S1 = 0 and S2 = 0. Following to the Kelly strategy, the gambler with access to
S1 = 0 takes out two $0.5 accumulator bets. Both of these accumulators feature the same initial bet on
the winning horse being black since T1 = S1 = 0. Hence both bets return $1 each which become the
stake on the next bet in each accumulator. This gambler knows nothing about the colour of the jockey’s
jersey T3. As such, one accumulator chains into a bet on the winning jersey being red T3 = 0, while the
other chains into a bet on it being green T3 = 1. When the horse T = 0 wins, the stake bet on the green
jersey is lost while bet on red jersey pays out $2. This gambler had 1 bit of side information and so
doubled their money. Now consider the gambler with private wire S2, who knows nothing about T1

or T3 individually. Nonetheless, this gambler knows that the winner must be a female jockey T2 = 0.
As such, this gambler knows that if a black horse T1 = 0 wins then its jockey must be wearing a red
jersey T3 = 0, or if a white horse T1 = 0 wins then its jockey must be wearing a green jersey T3 = 1
(since T3 = T1 XOR T2). Thus this gambler can also utilise the Kelly strategy to place the following
two $0.5 accumulator bets: the first accumulator bets on the winning horse being black T1 = 0 and
then chains into a bet on the winner’s jersey being red T3 = 0, while the second accumulator bets on
the winning horse being white T1 = 1 and then chains into a bet on the winner’s jersey being green
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T3 = 1. When the horse T = 0 wins, the first accumulator pays out $2, while the second accumulator is
be lost. Hence, this gambler also doubles their money and so also had 1 bit of side information. Finally,
consider the gambler with access to both private wires S1,3, who can place an accumulator on the black
horse T1 = 0 winning chaining into a bet on the winning jockey wearing red T3 = 0. This gambler can
quadruple their stake, and so must possess 2 bit of side information.

Each of the three gamblers have the same final return regardless of whether the gamblers are betting
on the variable T, or placing accumulator bets on the variables T1,2, T1,3 or T2,3. However, the paths to
the final result differs between the gamblers, reflecting the difference between the information the each
gambler had about the sub-variables T1, T2 or T3. Given the result of Kelly [40], the proposed information
decomposition should reflect these differences, but yet still arrive at the same result—in other words,
the information decomposition should satisfy a target chain rule. This is clear if the Kelly interpretation of
information is to remain as a “duality” ([43], p. 159) in information theory.

Appendix B. Supporting Proofs and Further Details

This appendix contains many of the important theorems and proofs relating to PPID using
specificity and ambiguity.

Appendix B.1. Deriving the Specificity and Ambiguity Lattices from Axioms 1–4

The following section is based directly on the original work of Williams and Beer [1,2]. The difference
is that we now consider sources events ai rather than sources Ai.

Proposition A1. Both i+∩ and i−∩ are non-negative.

Proof. Since ∅ ⊆ ai for any ai, Axioms 2 and 3 imply

i+∩
(
a1, . . . , ak → t

)
≥ i+∩

(
a1, . . . , ak, ∅→ t

)
= i+∩

(
∅→ t

)
= h(∅) = 0, (A8)

i−∩
(
a1, . . . , ak → t

)
≥ i−∩

(
a1, . . . , ak, ∅→ t

)
= i−∩

(
∅→ t

)
= h(∅|t) = 0. (A9)

Hence, both i+∩
(
a1, . . . , ak → t

)
and i−∩

(
a1, . . . , ak → t

)
are non-negative.

Proposition A2. Both i+∩ and i−∩ are bounded from above by the specificity and the ambiguity from any single
source event, respectively.

Proof. For any single source ai, Axioms 2 and 3 yield

h(ai)= i+∩
(
ai → t

)
= i+∩

(
ai, ai → t

)
≥ i+∩

(
ai, . . .→ t

)
, (A10)

h(ai|t)= i−∩
(
ai → t

)
= i−∩

(
ai, ai → t

)
≥ i+∩

(
ai, . . .→ t

)
, (A11)

as required.

In keeping with Williams and Beer’s approach [1,2], consider all of the distinct ways in which
a collection of source events a = {a1, . . . , ak} could contribute redundant information. Thus far we have
assumed that the redundancy measure can be applied to any collection of source events, i.e., P1(a) where
P1 denotes the power set with the empty set removed. Recall that the sources events are themselves
collections of predictor events, i.e., P1(s). That is, we can apply both i+∩ and i−∩ to elements of P1

(
P1(s)

)
.

However, this can be greatly reduced using Axiom 2 which states that if ai ⊆ aj, then

i+∩
(
aj, ai, . . .→ t

)
= i+∩

(
ai, . . .→ t

)
, (A12)

i−∩
(
aj, ai, . . .→ t

)
= i−∩

(
ai, . . .→ t

)
. (A13)
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Hence, one need only consider the collection of source events such that no source event is
a superset of any other in order,

A (s) =
{

α ∈ P1
(
P1(s)

) ∣∣ ∀ ai, aj ∈ α, ai 6⊂ aj

}
. (A14)

This collection A (s) captures all the distinct ways in the source events could provide
redundant information.

As per Williams and Beer’s PID, this set of source events A (s) is structured. Consider two sets
of source events α, β ∈ A (s). If for every source event b ∈ β there exists a source event a ∈ α such
that a ⊆ b, then all of the redundant specificity and ambiguity shared by b ∈ β must include any
redundant specificity and ambiguity shared by a ∈ α. Hence, a partial order � can be defined over the
elements of the domain A (s) such that any collection of predictors event coalitions precedes another
if and only if the latter provides any information the former provides,

∀α, β ∈ A (s),
(
α � β ⇐⇒ ∀ b ∈ β, ∃ a ∈ α | a ⊆ b

)
. (A15)

Applying this partial ordering to the elements of the domain A (s) produces a lattice which has
the same structure as the redundancy lattice from PID, i.e., the structure of the sources events here is
the same as the structure of the sources in PID. (Figure 3 depicts this structure for the case of 2 and 3
predictor variables.) Applying i+∩ to these sources events yields a specificity lattice while applying i−∩ yields
an ambiguity lattice.

Similar to I∩ in PID, the redundancy measures i+∩ or i−∩ can be thought of as a cumulative
information functions which integrate the specificity or ambiguity uniquely contributed by each node
as one moves up each lattice. In order in evaluate the unique contribution of specificity and ambiguity
from each node in the lattice, consider the Möbius inverse [45,46] of i+∩ and i−∩ . That is, the specificity
and ambiguity of a node α is given by

i±∩ (α→ t) = ∑
β�α

i±∩ (β→ t) ∀ α, β ∈ A (s). (A16)

Thus the unique contributions of partial specificity i+∂ and partial ambiguity i−∂ from each node can
be calculated recursively from the bottom-up, i.e.,

i±∂ (α→ t) = i±∩ (α→ t)− ∑
β≺α

i±∂ (β→ t). (A17)

Theorem A1. Based on the principle of inclusion-exclusion, we have the following closed-from expression for
the partial specificity and partial ambiguity,

i±∂ (α→ t) = i±∩ (α→ t) − ∑
∅ 6=γ⊆α−

(−1)|γ|−1 i±∩ (
∧

γ→ t) (A18)

Proof. For B ⊆ A (s), define the sub-addative function f±(B) = ∑β∈B = i±(β → t). From (A16),
we get that i±∩ (α→ t) = f±(↓ α) and

i±∂ (α→ t) = f±(↓ α)− f±(
.
↓ α) = f±(↓ α)− f±(

⋃

β∈α−
↓ β). (A19)

By the principle of inclusion-exclusion (e.g., see [46], p. 195) we get that

i±∂ (α→ t) = f±(↓ α) − ∑
∅ 6=γ⊆α−

(−1)|γ|−1 f±(
⋂

β∈γ

β) (A20)

CHAPTER 4: POINTWISE PARTIAL INFORMATION DECOMPOSITION 67



Entropy 2018, 20, 297 29 of 36

For any lattice L and A ⊆ L, we have that ∩a∈A ↓ a = ↓ (∧ A) (see [47], p. 57) thus

i±∂ (α→ t) = f±(↓ α) − ∑
∅ 6=γ⊆α−

(−1)|γ|−1 f±(
∧

γ)

= f±(↓ α)− ∑
∅ 6=γ⊆α−

(−1)|γ|−1 i±(
∧

γ→ t) (A21)

as required.

Similarly to PID, the specificity and ambiguity lattices provide a structure for information
decomposition—unique evaluation requires a separate definition of redundancy. However, unlike PID (or
even PPID), this evaluation requires both a definition of pointwise redundant specificity and pointwise
redundant ambiguity.

Appendix B.2. Redundancy Measures on the Lattices

In Section 4.2, Definitions 1 and 2 provided the require measures. This section will prove some
of the key properties of these measures when they are applies to the lattices derived in the previous
section. The correspondence with the approach taken by Williams and Beer [1,2] continues in this
section. However, sources events ai are used in place of sources Ai and the measures r±min are used in
place of Imin. Note that the basic concepts from lattice theory and the notion used here are the same as
found in ([1], Appendix B).

Theorem 1. The definitions of r+min and r−min satisfy Axioms 1–4.

Proof. Axioms 1, 3 and 4 follow trivially from the basic properties of the minimum. The main
statement of Axiom 2 also immediately follows from the properties of the minimum; however, there is
a need to verify the equality condition. As such, consider ak such that ak ⊇ ai for some ai ∈
{a1, . . . , ak−1}. From Postulate 4, we have that h(ak) ≥ h(ai) and hence that minaj∈{a1,...,ak} h(aj) =

minaj∈{a1,...,ak−1} h(aj), as required for r+min. Mutatis mutandis, similar follows for r−min.

Theorem 2. The redundancy measures r+min and r−min increase monotonically on the
〈
A (s),�

〉
.

The proof of this theorem will require the following lemma.

Lemma A1. The specificity and ambiguity i±(a→ t) are increasing functions on the lattice
〈
P1(s),⊆

〉

Proof. Follows trivially from Postulate 4.

Proof of Theorem 2. Assume there exists α, β ∈ A (s) such that α ≺ β and r±min(β→ t) < r±min(α→ t).
By definition, i.e., (23) and (24), there exists b ∈ β such that i±(b→ t) < i±(a→ t) for all a ∈ α. Hence,
by Lemma A1, there does not exist a ∈ α such that a ⊆ b. However, by assumption α ≺ β and hence
there exists a ∈ α such that a ⊆ b, which is a contradiction.

Theorem A2. When using r±min in place of the general redundancy measures i±∩ , we have the following
closed-from expression for the partial specificity π+ and partial ambiguity π−,

π±(α→ t) = r±min(α→ t)− max
β∈α−

min
b∈β

i±(b→ t). (A22)

Proof. Let i+∩ = r+min and i−∩ = r−min in the general closed form expression for i±∂ in Theorem A1,

π±(α→ t) = r±min(α→ t) − ∑
∅ 6=γ⊆α−

(−1)|γ|−1 min
b∈∧

γ
i±(b→ t). (A23)
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Since α ∧ β = α ∪ β (see [1], Equation (23)), and by Postulate 4, we have that

π±(α→ t) = r±min(α→ t) − ∑
∅ 6=γ⊆α−

(−1)|γ|−1 min
β∈γ

min
b∈β

i±(b→ t). (A24)

By the maximum-minimums identity (see [48]), we have that, max α− = ∑∅ 6=γ⊆α−(−1)|γ|−1 min γ,
and hence

π±(α→ t) = r±min(α→ t)− max
β∈α−

min
b∈β

i±(α→ t). (A25)

as required.

Theorem 3. The atoms of partial specificity π+ and partial ambiguity π− evaluated using the measures r+min
and r−min on the specificity and ambiguity lattices (respectively), are non-negative.

Proof. It α =⊥, the π±(α→ t) = r±min ≥ 0 by the non-negativity of entropy. If α 6=⊥, assume there
exists α ∈ A (s)\{⊥} such that π±(α→ t) < 0. By Theorem A2,

π±(α→ t) = min
a∈α

i±(a→ t)− max
β∈α−

min
b∈β

i±(b→ t). (A26)

From this it can be seen that there must exist β ∈ α− such that for all b ∈ β, we have that
i±(a → t) < i±(b → t) for some a ∈ α. By Postulate 4 there does not exist b ∈ β such that b ⊂ a.
However, since by definition, β ≺ α there exists b ∈ β such that b ⊂ a, which is a contradiction.

Theorem 4. The atoms of partial average information Π evaluated by recombining and averaging π± are
not non-negative.

Proof. The proof is by the counter-example using RDNERR.

Appendix B.3. Target Chain Rule

By using the appropriate conditional probabilities in Definitions 1 and 2, one can easily obtain the
conditional pointwise redundant specificity,

r+min
(
a1, . . . , ak → t1|t2

)
= min

ai
h(ai|t2), (A27)

or the conditional pointwise redundant ambiguity,

r−min
(
a1, . . . , ak → t1|t2

)
= min

aj
h(aj|t1,2). (A28)

As per (21) these could be recombined, e.g., via (21), to obtain the conditional redundant information,

rmin
(
a1, . . . , ak → t1|t2

)
= r+min

(
a1, . . . , ak → t1|t2

)
− r−min

(
a1, . . . , ak → t1|t2

)
. (A29)

The relationship between the regular forms and the conditional forms of the redundant specificity
and redundant ambiguity has some important consequences.

Proposition A3. The conditional pointwise redundant specificity provided by a1, . . . , ak about t1 given t2 is
equal to pointwise redundant ambiguity provided by a1, . . . , ak about t2 with the conditioned variable,

r+min
(
a1, . . . , ak → t1|t2

)
= r−min

(
a1, . . . , ak → t2

)
. (A30)

Proof. By (24) and (A27).
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Proposition A4. The pointwise redundant specificity provided by a1, . . . , ak is independent of the target event
and even the target variable itself,

r+min
(
a1, . . . , ak → t1

)
= r+min

(
a1, . . . , ak → t2

)
∀ t1, t2, T1, T2. (A31)

Proof. By inspection of (23).

Proposition A5. The conditional pointwise redundant ambiguity provided by a1, . . . , ak about t1 given t2 is
equal to the pointwise redundant ambiguity provided by a1, . . . , ak about t1,2,

r−min
(
a1, . . . , ak → t1|t2

)
= r−min

(
a1, . . . , ak → t1,2

)
. (A32)

Proof. By (24) and (A28).

Note that specificity itself is not a function of the target event or variable. Hence, all of the target
dependency is bound up in the ambiguity. Now consider the following.

Theorem 5 (Pointwise Target Chain Rule). Given the joint target realisation t1,2, the pointwise redundant
information rmin satisfies the following chain rule,

rmin
(
a1, . . . , ak → t1,2

)
= rmin

(
a1, . . . , ak → t1

)
+ rmin

(
a1, . . . , ak → t2|t1

)
,

= rmin
(
a1, . . . , ak → t2

)
+ rmin

(
a1, . . . , ak → t1|t2

)
.

(25)

Proof. Starting from rmin, by Corollary A4 and Corollary A5 we get that

rmin
(
a1, . . . , ak → t1,2

)
= r+min

(
a1, . . . , ak → t1,2

)
− r−min

(
a1, . . . , ak → t1,2

)
,

= r+min
(
a1, . . . , ak → t1

)
− r−min

(
a1, . . . , ak → t2|t1

)
,

(A33)

Then, by Corollary A3 we get that

rmin
(
a1, . . . , ak → t1,2

)
= r+min

(
a1, . . . , ak → t1

)
− r−min

(
a1, . . . , ak → t1

)

+ r−min
(
a1, . . . , ak → t1

)
− r−min

(
a1, . . . , ak → t2|t1

)
,

= r+min
(
a1, . . . , ak → t1

)
− r−min

(
a1, . . . , ak → t1

)

+ r+min
(
a1, . . . , ak → t2|t1

)
− r−min

(
a1, . . . , ak → t2|t1

)
,

= rmin
(
a1, . . . , ak → t1

)
+ rmin

(
a1, . . . , ak → t2|t1

)
, (A34)

as required for the first equality in (25). Mutatis mutandis, we obtain the second equality in (25).

Theorem 6. The target chain rule, identity property and local positivity, cannot be simultaneously satisfied.

Proof. Consider the probability distribution TBC, and in particular, the isomorphic probability
distributions P(T1,2) and P(T1,3). By the identity property,

U(S1\S2→T1,2) = 1 bit, U(S2\S1→T1,2) = 1 bit, (A35)

and hence, R(S1, S2→T1,2) = 0 bit. On the other hand, by local positivity,

C(S1, S2→T3) = 1 bit, R(S1, S2→T1|T3) = 1 bit (A36)

Then by the target chain rule,

C(S1, S2→T1,3) = 1 bit R(S1, S2→T1,3) = 1 bit, (A37)
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Finally, since P(T1,2) is isomorphic to P(T1,3) we have that, R(S1, S2 → T1,3) = R(S1, S2 → T1,2),
which is a contradiction.

Theorem 6 can be informally generalised as follows: it is not possible to simultaneously satisfy the
target chain rule, the identity property, and have only C(S1, S2→T) = 1 bit in the probability distribution
XOR without having negative (average) PI atoms in probability distributions where there is no ambiguity
from any source. To see this, again consider decomposing the isomorphic probability distributions P(T1,2)

and P(T1,3). In line with (A35), decomposing T1,2 via the identity property yields C(S1, S2→T1,2) = 0 bit.
On the other hand, decomposing T1,3 yields C(S1, S2→T3) = 1 bit. Since P(T1,2) is isomorphic to P(T1,3),
the target chain rule requires that,

C(S1, S2→T1|T3) = −1 bit, U(S1\S2→T1|T3) = 1 bit, U(S2\S1→T1|T3) = 1 bit. (A38)

That is, one would have to accept the negative (average) PI atom C(S1, S2 → T1|T3) = −1 bit
despite the fact that there are no non-zero pointwise ambiguity terms upon splitting any of i(s1; t1|t3),
i(s2; t1|t3) and i(s1,2; t1|t3) into specificity and ambiguity. Although this does not constitute a formal
proof that the identity property is incompatible with the target chain rule, one would have to accept and
find a way to justify C(S1, S2→T1|T3) = −1 bit. Since there is no ambiguity in i(s1; t1|t3), i(s2; t1|t3)

and i(s1,2; t1|t3), this result is not reconcilable within the framework of specificity and ambiguity.

Appendix C. Additional Example Probability Distributions

Appendix C.1. Probability Distribution TBEP

Figure A1 shows the probability distribution three bit–even parity (TBEP) which considers binary
predictors variables S1, S2 and S3 which are constrained such that together their parity is even. The target
variable T is simply a copy of the predictors, i.e., T = T1,2,3 = (T1, T2, T3) where T1 = S1, T2 = S2 and
T3 = S3. (Equivalently, the target can be represented by any four state variable T.) It was introduced
by Bertschinger et al. [5] and revisited by Rauh et al. [13] who (as mentioned in Section 5.5) used it to
prove the following by counter-example: there is no measure of redundant average information for more
than two predictor variables which simultaneously satisfies the Williams and Beer Axioms, the identity
property, and local positivity. The measures Ired, ŨI and SVK these properties. Hence, this probability
distribution which has been used to demonstrate that these measures are not consistent with the PID
framework in the general case of an arbitrary number of predictor variables.

This example is similar to TBC in the several ways. Firstly, due to the symmetry in the probability
distribution, each realisation will have the same pointwise decomposition. Secondly, there is an
isomorphism between the probability distributions P(T) and P(S1, S2, S3), and hence the pointwise
ambiguity provided by any (individual or joint) predictor event is 0 bit (since given t, one knows s1, s2

and s3). Thirdly, the individual predictor events s1, s2 and s3 each exclude 1/2 of the total probability mass
in P(T) and so each provide 1 bit of pointwise specificity. Thus, there is 1 bit of three-way redundant,
pointwise specificity in each realisation. Fourthly, the joint predictor event s1,2,3 excludes 3/4 of the total
probability mass, providing 2 bit of pointwise specificity (which is similar to TBC). However, unlike TBC,
one could consider the three joint predictor events s1,2, s1,3 and s2,3. These joint pairs also exclude 3/4

of the total probability mass each, and hence also each provide 2 bit of pointwise specificity. As such,
there is 1 bit of pointwise, three-way redundant, pairwise complementary specificity between these three
joint pairs of source events, in addition to the 1 bit of three-way redundant, pointwise specificity. Finally,
putting this together and averaging over all realisations, TBEP consists of 1 bit of three-way redundant
information and 1 bit of three-way redundant, pairwise complementary information. The resultant
average decomposition is the same as the decomposition induced by Imin [5].
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Figure A1. Example TBEP. (Top) probability mass diagram for realisation (S1=0, S2=0, S3=0, T=000);
(Bottom left) With three predictors, it is convenient to represent to decomposition diagrammatically.
This is especially true TBEP as one only needs to consider the specificity lattice for one realisation; (Bottom
right) The specificity lattice for the realisation (S1=0, S2=0, S3=0, T=000). For each source event the
left value corresponds to the value of i+∩ , evaluated using r+min, while the right value (surrounded by
parenthesis) corresponds to the partial information π+.

Appendix C.2. Probability Distribution UNQ

Figure A2 shows the decomposition of the probability distribution unique (UNQ). Note that this
probability distribution corresponds to RDNERR where the error probability ε = 1/2, and hence the
similarity in the resultant distributions. The results may initially seem unusual, that the predictor S1 is
not uniquely informative since U(S1\S2→T) = 0 bit as one might intuitively expect. Rather it is deemed
to be redundantly informative RI = 1 bit with the predictor S2 which is also uniquely misinformative
U(S2\S1→T) = −1 bit. This is because both S1 and S2 provide I+(S1→T) = I+(S2→T) = 1 bit of
specificity; however the information provided by S2 is unique in that the 1 bit provided is not “useful” ([42],
p. 21) and hence I(S2→T) = 1 bit while I(S2→T) = 1 bit. Finally, the complementary information
C(S1, S2→T) = 1 bit is required by the decomposition in order to balance this 1 bit of unique ambiguity.
The results in this example partly explain our preference for term complementary information as opposed to
synergistic information—while C(S1, S2→T) = 1 bit is readily explainable, it would be dubious to refer to
this as synergy given that S1 enables perfect predictions of T without any knowledge of S2.
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p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 0 0 1 0 1 1 2 1 1 0 0 1 0 0 1 0
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Figure A2. Example UNQ. (Top) the probability mass diagrams for every single possible realisation;
(Middle) for each realisation, the PPID using specificity and ambiguity is evaluated (see Figure 4);
(Bottom) the atoms of (average) partial infromation obtained through recombination of the averages.

Appendix C.3. Probability Distribution AND

Figure A3 shows the decomposition of the probability distribution and (AND). Note that the
probability distribution or (OR) has the same decomposition as the target distributions are isomorphic.
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Figure A3. Example AND. (Top) the probability mass diagrams for every single possible realisation;
(Middle) for each realisation, the PPID using specificity and ambiguity is evaluated (see Figure 4);
(Bottom) the atoms of (average) partial infromation obtained through recombination of the averages.
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Erratum

1. The inequality in W&B Axiom 2 on page 3 of the published work is the wrong way around.

2. The inequality in PPID Axiom 2 on page 7 of the published work is the wrong way around.

3. The partial specificity and partial ambiguity are respectively denoted π+ and π− in some places,

and ı+∂ and i−∂ in others. This issue affects Theorems 3, 4 and A2 and their respective proofs,

Equations (A16-A26), and Figure A1.

4. The Equation (A16) should read

i±∩ (α→ t) = ∑
α�β

i±∂ (α→ t). (E1)
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CHAPTER 5

A NEW FRAMEWORK FOR INFORMATION DECOMPOSITION

The paper from Chapter 4 constructs its decomposition from the top-down—that is to say, the a set of

axioms is specified, a function satisfying these axioms is given, and its various properties are derived.

On the other hand, the paper we present in this chapter provides a bottom-up derivation of what

turns out to be an equivalent decomposition. We begin by considering the following idea: suppose

that two individuals, Alice and Bob, each respectively observe the marginal realisations x and y, and

say that they then share their information content with a third non-observing party. This observer,

Eve, knows which joint realisation has occurred and she knows the marginal probability distributions,

but she does not know the joint distribution. We then ask how much information does Eve have?

It turns out that Eve’s information must be given by the maximum of the Alice’s and Bob’s

information. However, this is deceptively simple. Specifically, as we consider including more marginal

observers (i.e. Alice- and Bob-like observers), who are each sharing their information with non-

observers (i.e. Eve-like individuals), we find an entire family of new measures of shared marginal

information that possess a non-trivial algebraic structure. This structure is a distributive lattice that,

as was discussed in Chapter 2, possess both an intersection- and union-like operators which are

idempotent, commutative, associative, and distributive, and are connected by absorption. Each

distinct way that a set of Alice- and Bob-like marginal observers can share their information with an

Eve-like individual corresponds to a new measure of shared marginal information content, which in

turn corresponds to an element in a distributive lattice. Moreover, as a consequence of the fundamental

theorem of distributive lattices, this lattice of shared marginal information content is isomorphic to

the set union and intersections. This is the key result from this chapter, as it means that these new

measures of information content can be represented precisely with Venn diagrams. As discussed in

Chapter 2, this was a significant issue for the mutual and multivariate mutual information content, as

they cannot be accurately depicted for more than two variables.

Building upon this result, we then combine the structure of joint information content together with

the newly-introduced distributive lattice of shared marginal information content to form one overall

algebraic structure. This structure is highly non-trivial, and is not explored in detail. However, we

do show that the redundancy lattice fro m partial information decomposition is embedded within

this larger algebraic structure. To be specific, since we are considering marginal information contents,

this structure is actually equivalent to the specificity lattice from Chapter 4. The chapter closes by

discussing whether or not one should combine the information contents from the specificity and

ambiguity lattices.
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Abstract: The entropy of a pair of random variables is commonly depicted using a Venn diagram.
This representation is potentially misleading, however, since the multivariate mutual information
can be negative. This paper presents new measures of multivariate information content that can
be accurately depicted using Venn diagrams for any number of random variables. These measures
complement the existing measures of multivariate mutual information and are constructed by
considering the algebraic structure of information sharing. It is shown that the distinct ways in
which a set of marginal observers can share their information with a non-observing third party
corresponds to the elements of a free distributive lattice. The redundancy lattice from partial
information decomposition is then subsequently and independently derived by combining the
algebraic structures of joint and shared information content.
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1. Introduction

For any pair of random variables X and Y, the entropy H satisfies the inequality

H(X) + H(Y) ≥ H(X, Y) ≥ H(X), H(Y) ≥ 0. (1)

From this inequality, it is easy to see that the conditional entropies and mutual information are non-negative,

H(X|Y) = H(X, Y)− H(Y) ≥ 0, (2)

H(Y|X) = H(X, Y)− H(X) ≥ 0, (3)

I(X; Y) = H(X) + H(Y)− H(X, Y) ≥ 0. (4)

For any pair of sets A and B, a measure µ satisfies the inequality

µ(A) + µ(B) ≥ µ(A ∪ B) ≥ µ(A), µ(B) ≥ 0, (5)

which follows from the non-negativity of measure on the relative complements and the intersection,

µ(A \ B) = µ(A ∪ B)− µ(B) ≥ 0 (6)

µ(B \ A) = µ(A ∪ B)− µ(A) ≥ 0 (7)

µ(A ∩ B) = µ(A) + µ(B)− µ(A ∪ B) ≥ 0. (8)
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Although the entropy is not itself a measure, several authors have noted the entropy is analogous
to measure in this regard [1–7]. Indeed, it is this analogy which provides the justification for the
typical depiction of a pair of entropies using Venn diagrams, i.e., Figure 1. Nevertheless, MacKay [8]
noted that this representation is misleading for at least two reasons: Firstly, since the measure on the
intersection µ(A ∩ B) is a measure on a set, it gives the false impression that the mutual information
I(X; Y) is the entropy of some intersection between the random variables. Secondly, it might lead
one to believe that this analogy can be generalised beyond two variables. However, the analogy does
not generalise beyond two variables since the multivariate mutual information [9] between three
random variables (which is also known as the interaction information [10], amount of information [2]
or co-information [11]),

I(X; Y; Z) = H(X) + H(Y) + H(Z)− H(X, Y)− H(X, Z)− H(Y, Z) + H(Z, Y, Z), (9)

is not non-negative [3,9,12], and hence is not analogous to measure on the triple intersection µ(A ∩
B ∩ C) [3]. Indeed, this “unfortunate” property led Cover and Thomas to conclude that “there isn’t
really a notion of mutual information common to three random variables” (p. 49 [13]). Consequently,
MacKay [8] recommended against depicting the entropy of three or more variables using a Venn
diagram, i.e., Figure 1, unless one is aware of these issues with this representation.

µ(A \B) µ(B \A)µ(A∩B)

µ(B)

H(Y)

µ(A)

H(X)

µ(A ∪ B)

H(X|Y) H(Y|X)I(X; Y)

H(Y)H(X)

H(X, Y)

I(X; Y; Z)

H(X|Y, Z)

H(Y|X, Z) H(Z|X, Y)

I(X, Z|Y)I(X, Y|Z)

I(Y, Z|X)

H(Y) H(Z)

H(X)H(X, Y, Z)

Figure 1. (Top left) When depicting a measure on the union of two sets µ(A ∪ B), the area of each
section can be used to represent the inequality (5) and hence the values µ(A \ B), µ(B \ A) and µ(A∩ B)
correspond to the area of each section. This correspondence can be generalised to consider an arbitrary
number of sets. (Bottom left) When depicting the joint entropy H(X, Y), the area of each section
can also be used to represent the inequality (1) and hence the values H(X|Y), H(Y|X) and I(X; Y)
correspond to the area of each section. However, this correspondence does not generalise beyond
two variables. (Right) For example, when considering the entropy of three variables, the multivariate
mutual information I(X; Y; Z) cannot be accurately represented using an area since, as represented by
the hatching, it is not non-negative.

However, Yeung [6,7] showed that there is an analogy between entropy and signed measure that
is valid for an arbitrary number of random variables. To do this, Yeung defined a signed measure
on a suitably constructed σ-algebra that is uniquely determined by the joint entropies of the random
variables involved. This correspondence enables one to establish information-theoretic identities from
measure-theoretic identities and hence Venn diagrams can be used to represent the entropy of three or
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more variables provided one is aware that the certain overlapping areas may correspond to negative
quantities. Moreover, the multivariate mutual information is useful both as summary quantity and
for manipulating information-theoretic identities provided one is mindful it may have “no intuitive
meaning” [5,6].

In this paper, we introduce new measures of multivariate information that are analogous to
measures upon sets and maintain their operational meaning when considering an arbitrary number of
variables. These new measures complement the existing measures of multivariate mutual information,
and will be constructed by considering the distinct ways in which a set of marginal observers might
share their information with a non-observing third party. In Section 2, we discuss the existing measures
of information content in terms of a set of individuals who each have different knowledge about a
joint realisation from a pair of random variables. Then, in Section 3, we discuss how these individuals
can share their information with a non-observing third party, and derive the functional form of this
individual’s information. In Section 4, we relate this new measure of information content back to
the mutual information. Sections 5–7 then generalise the arguments of Sections 3 and 4 to consider
an arbitrary number of observers. Finally, in Section 8, we discuss how these new measures can be
combined to define new measures of mutual information.

2. Mutual Information Content

Suppose that Alice and Bob are separately observing some process and let the discrete random
variables X and Y represent their respective observations. Say that Johnny is a third individual who
can simultaneously make the same observations as Alice and Bob such that his observations are
given by the joint variable (X, Y). When a realisation (x, y) occurs, Alice’s information is given by the
information content [8],

h(x) = − log pX(x) ≥ 0, (10)

where pX(x) is the probability mass of the realisation x of variable X computed from the probability
distribution pX . Likewise, Bob’s information is given by the information content h(y), while Johnny’s
information is by the joint information content h(x, y) = − log pXY(x, y). The information that Alice
can expect to gain from an observation is given by the entropy,

H(X) = EX
[
h(x)

]
≥ 0, (11)

where EX represents an expectation value over realisations of the variable X. Similarly, Bob’s expected
information gain is given by the entropy H(X) and Johnny’s expected information is given by the joint
entropy H(X, Y) = EXY[h(x, y)]. Clearly, for any realisation, Johnny has at least as much information
as either Alice or Bob,

h(x, y) ≥ h(x), h(y) ≥ 0. (12)

The conditional information content can be used to quantify how much more information Johnny has
relative to either Alice or Bob, respectively,

h(x|y) = h(x, y)− h(y) ≥ 0, (13)

h(y|x) = h(x, y)− h(x) ≥ 0. (14)

Similarly, we can quantify how much more information Johnny expects to get compared to either Alice
or Bob via the conditional entropies,

H(X|Y) = EXY
[
h(x|y)

]
≥ 0, (15)

H(Y|X) = EXY
[
h(y|x)

]
≥ 0. (16)

Now, consider a fourth individual who does not directly observe the process, but with whom
Alice and Bob share their knowledge. To be explicit, we are considering the situation whereby this
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individual knows that the joint realisation (x, y) has occurred and knows the marginal distributions
pX and pY, but does not know the joint distribution pXY. How much information does this individual
obtain from the shared marginal knowledge provided by Alice and Bob? The answer to this question
is provided in Section 3, but for now let us consider a simplified version of this problem. Suppose
that such an individual, whom we call Indiana (or Indy for short), assumes that Alice’s observations
are independent of Bob’s observations. In terms of the probabilities, this means that Indy believes
that the joint probability pXY(x, y) is equal to the product probability pX×Y(x, y) = pX(x) pY(y),
while, in terms of information, this assumption leads Indiana to believe that her information is given
by the independent information content h(x) + h(y). Moreover, the information that Indiana expects
to gain from any one realisation is given by H(X) + H(Y).

Let us now compare how much information Indiana believes that she has compared to our other
observers. For every realisation, Indiana believes that she has at least as much information as either
Alice or Bob,

h(x) + h(y) ≥ h(x), h(y) ≥ 0. (17)

Since Indy knows what both Alice and Bob know individually, it is hardly surprising that she always
has at least as much information as either Alice or Bob. The comparison between Indiana and Johnny,
however, is not so straightforward—there is no inequality that requires the information content of the
joint realisation to be less than the information content of the independent realisations, or vice versa.
Consequently, the difference between the information that Indiana thinks she has and Johnny’s
information, i.e., the mutual information content between a pair of realisations,

i(x; y) = h(x) + h(y)− h(x, y) = log
pXY(x, y)

pX(x) pY(y)
, (18)

is not non-negative [14]. (This function goes by several different names including the pointwise mutual
information, the information density [15] or simply the mutual information [9].) Thus, similar to how
it is potentially misleading to depict the entropy of three of more variables using a Venn diagram,
representing the information content of two variables using a Venn diagram is somewhat dubious
(see Figure 2).

h(y)h(x)

h(x) + h(y)

h(y)h(x)

h(x, y)

h(x|y) h(y|x)i(x; y)

h(y)h(x)

h(x, y)

Figure 2. (Left) Indiana assumes that Alice’s information h(x) is independent of Bob’s information
h(y) such that her information is given by h(x) + h(y). (Middle) Johnny knows the joint distribution
pXY , and hence his information is given by the joint information content h(x, y). (Right) There is no
inequality that requires Johnny’s information to be no greater than Indiana’s assumed information,
or vice versa. On the one hand, Johnny can have more information than Indiana since a joint realisation
can be more surprising than both of the individual marginal realisations. On the other hand, Indiana
can have more information than Johnny since a joint realisation can be less surprising than both of
the individual marginal realisations occurring independently. Thus, as represented by the hatching,
the mutual information content i(x; y) is not non-negative.

Since Johnny knows the joint distribution pXY, while Indiana only knows the marginal distributions
pX(x) and pY(y), we might expect that Indiana should never have more information than Johnny.
However, Indiana’s assumed information is based upon the belief that Alice’s observations X are
independent of Bob’s observations Y, which leads Indiana to overestimate her information on average.
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Indeed, Indiana is so optimistic that the information she expects to get upper bounds the information
that Johnny can expect to get,

H(X) + H(Y) ≥ H(X, Y) ≥ 0. (19)

Thus, despite the fact that Indiana can have less information than Johnny for certain realisations—i.e.,
despite the fact that the mutual information content is not non-negative—the mutual information in
expectation is non-negative,

I(X; Y) = H(X) + H(Y)− H(X, Y) = EXY
[
i(x; y)

]
≥ 0. (20)

Crucially, and in contrast to the information content (10) and entropy (11), the non-negativity of
the mutual information does not follow directly from the non-negativity of the mutual information
content (18), but rather must be proved separately. (Typically, this is done by showing that the
mutual information can be written as a Kullback–Leibler divergence which is non-negative by Jensen’s
inequality, e.g., see Cover and Thomas [13].) Thus, not only does Indiana potentially have more
information than Johnny for certain realisations, but on average we expect Indiana to have more
information than Johnny. Of course, by assuming Alice’s observations are independent of Bob’s
observations, Indiana is overestimating her information. Thus, in the next section, we consider the
situation whereby one does not make this assumption.

3. Marginal Information Sharing

Suppose that Eve is another individual who, similar to Indiana, does not make any direct
observations, but with whom both Alice and Bob share their knowledge; i.e., Eve knows the joint
realisation (x, y) has occurred and knows the marginal distributions pX and pY, but does not know the
joint distribution pXY. Furthermore, suppose that Eve is more conservative than Indiana and does not
assume that Alice’s observations are independent of Bob’s observations—how much information does
Eve have for any one realisation?

It seems clear that Eve’s information should always satisfy the following two requirements.
Firstly, since Alice and Bob both share their knowledge with Eve, she should have at least as much
information as either of them have individually. Secondly, since Eve has less knowledge than Johnny,
she should have no more information than Johnny; i.e., in contrast to Indy, Eve should never have
more information than Johnny. As the following theorem shows, these two requirements uniquely
determine the functional form of Eve’s information:

Theorem 1. The unique function h(x ⊔ y) of pX(x) and pY(y) that satisfies h(x, y) ≥ h(x ⊔ y) ≥
h(x), h(y) ≥ 0 for all pXY(x, y) is

h(x ⊔ y) = max
(
h(x), h(y)

)
≥ 0. (21)

Proof. Clearly, the function is lower bounded by max
(
h(x), h(y)

)
. The upper bound is given by the

minimum possible h(x, y), which corresponds to the maximum allowed pXY(x, y). For any pX(x)
and pY(y), the maximum allowed pXY(x, y) is min

(
pX(x), pY(y)

)
, which corresponds to h(x, y) =

max
(
h(x), h(y)

)
.

Eve’s information is given by the maximum of Alice’s and Bob’s information, or the information
content of the most surprising marginal realisation. Although we have defined Eve’s information
by requiring it to be no greater than Johnny’s information, it is also clear that Eve also has no more
information than Indiana. As such, Eve’s information satisfies the inequality

h(x) + h(y) ≥ h(x ⊔ y) ≥ h(x), h(y) ≥ 0, (22)
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which is analogous to the inequality (5) satisfied by measure. Hence, as pre-empted by the notation
(and as further justified in Section 6), Eve’s information is referred to as the union information content.
The union information content is the maximum possible information that Eve can get from knowing
what Alice and Bob know—it quantifies the information provided by a joint event (x, y) when one
knows the marginal distributions pX and pY, but does not know nor make any assumptions about the
joint distribution pXY.

Similar to how the conditional information contents (15) and (16) enable us to quantify how much
more information Johnny has relative to either Alice or Bob, the inequality (22) enables us to quantify
how much information Eve gets from Alice relative to Bob and vice versa, respectively,

h(x r y) = h(x ⊔ y)− h(y) = max
(
h(x)− h(y), 0

)
≥ 0, (23)

h(y r x) = h(x ⊔ y)− h(x) = max
(
0, h(y)− h(x)

)
≥ 0. (24)

These non-negative functions are analogous to measure on the relative complements of a pair of sets
and are called the unique information content from x relative to y, and vice versa, respectively. It is easy to
see that, since Eve’s information is either equal to Alice’s or Bob’s information (or both), at least one of
these two functions must be equal to zero.

The inequality (22) also enables us to quantify how much more information Indiana has relative
to Eve. Since Indiana’s assumed information is given by the sum of Alice’s and Bob’s information
while Eve’s information is given by the maximum of Alice’s and Bob’s information, the difference
between the two is given by the minimum of Alice’s and Bob’s information,

h(x ⊓ y) = h(x) + h(y)− h(x ⊔ y) = h(x) + h(y)− max
(
h(x), h(y)

)
= min

(
h(x), h(y)

)
≥ 0. (25)

In contrast to the comparison between Indiana and Johnny, i.e., the mutual information content (18),
the comparison between Indiana and Eve is non-negative. As such, this function is analogous to
measure on the intersection of two sets and hence will be referred to as the intersection information
content. The intersection information content is the minimum possible information that Eve could have
gotten from knowing either what Alice or Bob know, and is given by the information content of the
least surprising marginal realisation.

Finally, from (21) and (23)–(25), it is not difficult to see that Eve’s information can be decomposed
into the information that could have been obtained from either Alice or Bob, the unique information
from Alice relative to Bob and the unique information from Bob relative to Alice,

h(x ⊔ y) = h(x ⊓ y) + h(x r y) + h(y r x). (26)

Of course, as already discussed, at least one of these unique information contents must be zero. Figure 3
depicts this decomposition for some realisation whereby Alice’s information h(x) is greater than Bob’s
information h(y).

To summarise thus far, both Alice and Bob share their information with Indiana and Eve, who then
each interpret this information in a different way. By comparing Figures 2 and 3, we can easily contrast
their distinct perspectives. Eve is more conservative than Indiana and assumes that she has gotten
as little information as she could possibly have gotten from knowing what Alice and Bob know;
this is given by the maximum from Alice’s and Bob’s information, or is the information content
associated with the most surprising marginal realisation observed by Alice and Bob. In effect, Eve’s
conservative approach means that she pessimistically assumes that the information provided by
the least surprising marginal realisation was already provided by the most surprising marginal
realisation. In contrast, Indiana optimistically assumes that the information provided by the least
surprising marginal realisation is independent of the information provided by the most surprising
marginal realisation.
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h(y) = h(x ⊓ y)

h(x) = h(x ⊔ y)

h(x r y)
H(X \ Y) H(Y \ X)H(X ⊓Y)

H(Y)H(X)

H(X ⊔ Y)

Figure 3. (Left) If Alice’s information h(x) is greater than Bob’s information h(y), then Eve’s
information h(x ⊔ y) is equal to Alice’s information h(x). In effect, Eve is pessimistically assuming
that information provided by the least surprising marginal realisation h(x ⊓ y) is already provided
by the most surprising marginal realisation h(x ⊔ y), i.e., Bob’s information h(y) is a subset of Alice’s
information h(x). From this perspective, Eve gets unique information from Alice relative to Bob
h(x r y), but does not get any unique information from Bob relative to Alice h(y r x) = 0. (Right)
Although for each realisation Eve can only get unique information from either Alice or Bob, it is
possible that Eve can expect to get unique information from both Alice and Bob on average. (Do not
confuse this representation of the union entropy with the diagram that represents the joint entropy
in Figure 1).

Let us now consider the information that Eve expects to get from a single realisation,

H(X ⊔ Y) = EXY
[
h(x ⊔ y)

]
≥ 0. (27)

This function is called the union entropy, and quantifies the expected surprise of the most surprising
realisation from either X or Y. Similar to how the non-negativity of the entropy (11) follows from the
non-negativity of the information content (10), the non-negativity of the union entropy (27) follows
directly from the non-negativity of the union information content (21)—i.e., we do not need to invoke
Jensen’s inequality. Indeed, the union entropy cannot be written as a Kullback–Leibler divergence.

Since the expectation value is monotonic, and since the union information content satisfies the
inequality (22), we get that the union entropy satisfies

H(X) + H(Y) ≥ H(X ⊔ Y) ≥ H(X), H(Y) ≥ 0, (28)

and hence is also analogous to measure on the union of two sets. Using this inequality, we can quantify
how much more information Eve expects to get from Alice relative to Bob, or vice versa, respectively,

H(X \ Y) = H(X ⊔ Y)− H(Y) = EXY
[
h(x r y)] ≥ 0, (29)

H(Y \ X) = H(X ⊔ Y)− H(X) = EXY
[
h(y r x)] ≥ 0, (30)

These functions are also analogous to measure on the relative complements of a pair of sets and hence
will be called the unique entropy from X relative to Y, and vice versa, respectively. Crucially, and in
contrast to (23) and (24), both of these quantities can be simultaneously non-zero; although Alice might
observe the most surprising event in one joint realisation, Bob might observe the most surprising event
in another and hence both functions can be simultaneously non-zero.

Now, consider how much more information Indiana expects to get relative to Eve,

H(X ⊓ Y) = H(X) + H(Y)− H(X ⊔ Y) = EXY
[
h(x ⊓ y)

]
≥ 0. (31)

This function is also analogous to measure on the intersection of two sets function will be called the
intersection entropy. In contrast to the mutual information (20), since the intersection information
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content (25) is non-negative, we do not require an additional proof to show that the intersection entropy
is non-negative. Moreover, the intersection entropy cannot be written as a Kullback–Leibler divergence.

Finally, similar to (26), we can decompose Eve’s expected information into the following components,

H(X ⊔ Y) = H(X ⊓ Y) + H(X \ Y) + H(Y \ X). (32)

It is important to reiterate that, in contrast to (26), there is nothing which requires either of the two
unique entropies to be zero. Thus, as shown in Figure 3, the Venn diagram which represents the union
and intersection entropy differs from that which represents the union information content.

4. Synergistic Information Content

As discussed at the beginning of the previous section, and as required in Theorem 1, one of the
defining features of Eve’s information is that it is never greater than Johnny’s information,

h(x, y) ≥ h(x ⊔ y). (33)

Thus, we can compare how much more information Johnny has relative to Eve,

h(x ⊕ y) = h(x, y)− h(x ⊔ y) = h(x, y)− max
(
h(x), h(y)

)
= min

(
h(y|x), h(x|y)

)
≥ 0. (34)

This non-negative function is called the synergistic information content, and it quantifies how much
more information one gets from knowing the joint probability pXY(x, y) relative to merely knowing
the marginal probabilities pX(x) and pY(y). Figure 4 shows how this relationship can represented
using a Venn diagram. Of course, by this definition, Johnny’s information is equal to the union
information content plus the synergistic information content, and hence, by using (26), we can
decompose Johnny’s information into the intersection information content, the unique information
contents and the synergistic information contents,

h(x, y) = h(x ⊔ y) + h(x ⊕ y) = h(x ⊓ y) + h(x r y) + h(y r x) + h(x ⊕ y). (35)

h(y) = h(x ⊓ y)h(x ⊕ y)

h(x, y)

h(x) = h(x ⊔ y)

h(x r y) i(x; y)h(x ⊕ y)

h(x, y)

h(y) = h(x ⊓ y)

h(x) = h(x ⊔ y)

Figure 4. (Left) This Venn diagram shows how the synergistic information h(x ⊕ y) can be defined by
comparing the joint information content h(x, y) from Figure 2 to the union information content h(x ⊔ y)
from Figure 3. Note that, for this particular realisation, we are assuming that h(x) > h(y). It also
provides a visual representation of the decomposition (40) of the joint information content h(x, y).
(Right) By rearranging the marginal entropies such that they match Figure 2 (albeit with different
sizes here), it is easy to see why the mutual information content i(x; y) is equal to the intersection
information content h(x ⊓ y) minus the synergistic information content h(x ⊕ y), c.f. (38).

This decomposition can be seen in Figure 4, although it is important to recall that at least one of
h(x r y) and h(y r x) must be equal to zero. In a similar manner, the extra information that Johnny
has relative to Bob (13) can be decomposed into the unique information content from Alice and the
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synergistic information content, and vice versa for the extra information that Johnny has relative to
Alice (14),

h(x|y) = h(x r y) + h(x ⊕ y), (36)

h(y|x) = h(y r x) + h(x ⊕ y). (37)

Now, recall that the mutual information content (18) is given by Indiana’s information minus
Johnny’s information. By replacing Johnny’s information with the union information content plus the
synergistic information content via (34) and rearranging using (25), we get that the mutual information
content is equal to the intersection information content minus the synergistic information content,

i(x; y) = h(x) + h(y)− h(x, y) = h(x) + h(y)− h(x ⊔ y)− h(x ⊕ y) = h(x ⊓ y)− h(x ⊕ y). (38)

Indeed, this relationship can be identified in Figure 4. Clearly, the mutual information content is
negative whenever the synergistic information content is greater than the intersection information
content. From this perspective, the mutual information content can be negative because there is
nothing to suggest that the synergistic information content should be no greater than the intersection
information content. In other words, the additional surprise associated with knowing pXY(x, y) relative
to merely knowing pX(x) and pY(y) can exceed the surprise of the least surprising marginal realisation.

Let us now quantify how much more information Johnny expects to get relative to Eve,

H(X ⊕ Y) = EXY
[
h(x ⊕ y)

]
= H(X, Y)− H(X ⊔ Y) ≥ 0, (39)

which we call the synergistic entropy. Crucially, although the synergistic information content is given
by the minimum of the two conditional information contents, the synergistic entropy does not in
general equal one of the two the conditional entropies. This is because, although Alice might observe
the most surprising event in one joint realisation such that the synergistic information content is equal
to Bob’s information given Alice’s information, Bob might observe the most surprising event in another
realisation such that the synergistic information content is equal to Alice’s information given Bob’s
information for that particular realisation. Thus, the synergistic entropy does not equal the conditional
entropy for the same reason that unique entropies (29) and (30) can be simultaneously non-zero.

With the definition of synergistic entropy, it is not difficult to show that, similar to (35), the joint
entropy can be decomposed into the following components,

H(X, Y) = H(X ⊔ Y) + H(X ⊕ Y) = H(X ⊓ Y) + H(X \ Y) + H(Y \ X) + H(X ⊕ Y). (40)

Figure 5 depicts this decomposition using a Venn diagram, and shows how the union entropy from
Figure 3 is related to the joint entropy H(X, Y). Likewise, similar to (36) and (37), it is easy to see that
conditional entropies can be decomposed as follows,

H(X|Y) = H(X \ Y) + H(X ⊕ Y), (41)

H(Y|X) = H(Y \ X) + H(X ⊕ Y) (42)

Finally, as with (38), we can also show that the mutual information is equal to the intersection
entropy minus the synergistic entropy,

I(X; Y) = H(X ⊓ Y)− H(X ⊕ Y) ≥ 0. (43)

Although there is nothing to suggest that the synergistic information content must be no greater than
the intersection information content, we know that the synergistic entropy must be no greater than the
intersection entropy because I(X; Y) ≥ 0. In other words, the expected difference between the surprise
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of the joint realisation and the most surprising marginal realisation cannot exceed the expected surprise
of the least surprising realisation.

H(X \ Y) H(Y \ X)H(X ⊓Y)

H(X ⊕ Y) H(Y)H(X)

H(X ⊔ Y)H(X, Y)

Figure 5. This Venn diagram shows how the synergistic entropy H(X ⊕Y) can be defined by comparing
the joint entropy H(X, Y) from Figure 1 to the union entropy H(X ⊔ Y) from Figure 3. It also provides
a visual representation of the decomposition (40) of the joint entropy H(X, Y).

5. Properties of the Union and Intersection Information Content

Theorem 1 determined the function form of Eve’s information when Alice and Bob share their
knowledge with her. We now wish to generalise this result to consider the situation whereby an
arbitrary number of marginal observers share their information with Eve. Rather than try to directly
determine the functional form, however, we proceed by considering the algebraic structure of shared
marginal information.

If Alice and Bob observe the same realisation x such that they have the same information h(x),
then upon sharing we would intuitively expect Eve to have the same information h(x). Similarly,
the minimum information that Eve could have received from either Alice or Bob should be the
same information h(x). Since the maximum and minimum operators are idempotent, the union and
intersection information content both align with this intuition.

Property 1 (Idempotence). The union and intersection information content are idempotent,

h(x ⊔ x) = h(x), (44)

h(x ⊓ x) = h(x). (45)

It also seems reasonable to expect that Eve’s information should not depend on the order in which
Alice and Bob share their information, nor should the minimum information that Eve could have
received from either individual. Again, since the maximum and minimum operators are commutative,
the union and intersection information content both align with our intuition.

Property 2 (Commutativity). The union and intersection information content are commutative,

h(x ⊔ y) = h(y ⊔ x), (46)

h(x ⊓ y) = h(y ⊓ x). (47)

Now, suppose that Charlie is another individual who, similar to Alice and Bob, is separately
observing some process, and let the random variable Z represent her observations. Say that Dan
is yet another individual with whom, similar to Eve, our observers can share their information.
Intuitively, it should not matter whether Alice, Bob and Charlie share their information directly
with Eve, or whether they share their information through Dan. To be specific, Alice and Bob could
share their information with Dan such that his information is given by h(x ⊔ y), and then Charlie
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and Dan could subsequently share their information with Eve such that her information is given
by h

(
(x ⊔ y) ⊔ z

)
. Similarly, Bob and Charlie could share their information with Dan such that his

information is given by h(y ⊔ z), and then Alice and Dan could subsequently share their information
with Eve such that her information is given by h

(
x ⊔ (y ⊔ z)

)
. Alternatively, Alice, Bob and Charlie

could entirely bypass Dan and share their information directly with Eve such that her information is
given by h(x ⊔ y ⊔ z). Since the maximum operator is associative, the union information content is the
same in all three cases and hence aligns with our intuition. A similar argument can be made to show
that the intersection information content is also associative.

Property 3 (Associative). The union and intersection information content are associative,

h(x ⊔ y ⊔ z)= h
(
(x ⊔ y) ⊔ z

)
= h

(
x ⊔ (y ⊔ z)

)
, (48)

h(x ⊓ y ⊓ z)= h
(
(x ⊓ y) ⊓ z

)
= h

(
x ⊓ (y ⊓ z)

)
, (49)

Suppose now that Alice and Bob share their information with Dan such the information that he
could have gotten from either Alice or Bob is given by h(x ⊓ y). If Alice and Dan both share their
information with Eve, then Eve’s information is given by

h
(
x ⊔ (x ⊓ y)

)
= max

(
h(x), min

(
h(x), h(y)

))
= h(x), (50)

and hence Bob’s information has been absorbed by Alice’s information. Now, suppose that Alice and
Bob share their information with Dan such his information is given by h(x ⊔ y). If Alice and Dan both
share their information with Eve, then the information that Eve could have gotten from either Alice or
Dan is given by

h
(
x ⊓ (x ⊔ y)

)
= min

(
h(x), max

(
h(x), h(y)

))
= h(x). (51)

Again, Bob’s information has been absorbed by Alice’s information. Both of these results are a consequence
of the fact that the maximum and minimum operators are connected to each other by the absorption identity.

Property 4 (Absorption). The union and intersection information content are connected by absorption,

h
(
x ⊔ (x ⊓ y)

)
= h(x), (52)

h
(
x ⊓ (x ⊔ y)

)
= h(x). (53)

Now, say that Daniella is, similar to Eve or Dan, an individual with whom our observers can share
their information. Consider the following two cases: Firstly, suppose that Bob and Charlie share their
information with Dan such that the information that Dan could have gotten from either Bob or Charlie
is given by h(y ⊓ z). If both Alice and Dan share their information with Eve, then her information is
given by h

(
x ⊔ (y ⊓ z)

)
. In the second case, suppose that Alice and Bob share their information with

Dan such that his information is given by h(x ⊔ y), while Alice and Charlie simultaneously share their
information with Daniella such that her information is given by h(x ⊔ z). If Dan and Daniella both
share their information with Eve, then the information that she could have gotten from either Dan or
Daniella is then given by h

(
(x ⊔ y) ⊓ (x ⊔ z)

)
. In both cases, Eve has the same information since the

maximum operator is distributive,

h
(
x ⊔ (y ⊓ z)

)
= max

(
h(x), min

(
h(y), h(z)

))

= min
(

max
(
h(x), h(y)

)
, max

(
h(x), h(z)

))
= h

(
(x ⊔ y) ⊓ (x ⊔ z)

)
. (54)

Since the maximum and minimum operators are distributive over each other, regardless of whether
Eve gets Alice’s information and Bob’s or Charlie’s information, or if Eve gets Alice’s and Bob’s
information or Alice’s and Charlie’s information, Eve has the same information. The same reasoning
can be applied to show that, regardless of whether Eve gets Alice’s information or Bob’s and Charlie’s
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information, or if Eve gets Alice’s or Bob’s information and Alice’s or Charlie’s information, Eve has
the same information.

Property 5 (Distributivity). The union and intersection information content are distribute over each other,

h
(

x ⊔ (y ⊓ z)
)
= h

(
(x ⊔ y) ⊓ (x ⊔ z)

)
, (55)

h
(

x ⊓ (y ⊔ z)
)
= h

(
(x ⊓ y) ⊔ (x ⊓ z)

)
. (56)

Now, consider a set of n individuals and let X = {X1, X2, . . . , Xn} be the joint random variable
that represents their observations. Suppose that these individuals together observe the joint realisation
x = {x1, x2, . . . , xn} from X. By Property 3 and the general associativity theorem, it is clear that Eve’s
information is given by

h(x1 ⊔ x2 ⊔ . . . ⊔ xn) = max
(
h(x1), h(x2), . . . , h(xn)

)
≥ 0, (57)

while the minimum information that Eve could have gotten from any individual observer is given by

h(x1 ⊓ x2 ⊓ . . . ⊓ xn) = min
(
h(x1), h(x2), . . . , h(xn)

)
≥ 0. (58)

This accounts for the situation whereby n marginal observers directly share their information with Eve,
and could clearly be considered for any subset S of the observers X. We now wish to consider all of
the distinct ways that these marginal observers can share their information indirectly with Eve. As the
following theorem shows, Properties 1–5 completely characterise the unique methods of marginal
information sharing.

Theorem 2. The marginal information contents form a join semi-lattices 〈x, h(⊔ )〉 under the max operator.
Separately, the marginal information contents form a meet semi-lattice 〈x, h(⊓ )〉 under the min operator.

Proof. Properties 1–3 completely characterise semi-lattices [16,17].

Theorem 3. The marginal information contents form a distributive lattice 〈x, h(⊔ ), h(⊓ )〉 under the max
and min operators.

Proof. From Property 4, we have that the semi-lattices 〈x, h(⊔ )〉 and 〈x, h(⊓ )〉 are connected by
absorption and hence form a lattice 〈x, h(⊔ ), h(⊓ )〉. By Property 5, this is a distributive lattice [16,17].

Each way that a set of n observers can share their information with Eve such that she has distinct
information corresponds to an element in partially ordered set, or more specifically the free distributive
lattice on n generators [16]. Figure 6 shows the free distributive lattices generated by n = 2 and n = 3
observers. The number of elements in this lattice is given by the (n)th Dedekind number (p. 273 [18])
(see also [19]). By the fundamental theorem of distributive lattices (or Birkhoff’s representation
theory), there is isomorphism between the union information content and set union, and between the
intersection information content and set intersection [16,17,20,21]. It is this one-to-one correspondence
that justifies our use of the terms union and intersection information content for n variables in general.
Every identity that holds in a lattice of sets will have a corresponding identity in this distributive lattice
of information contents. Figure 6 also depicts the sets which correspond to each term in the lattice
of information contents. Just as the cardinality of sets is non-decreasing as we consider moving up
through the various terms in a lattice of sets, Eve’s information is non-decreasing as we moving up
through the various terms in the corresponding lattice of information contents. In particular, we can
quantify the unique information content that Eve gets from one method of information sharing relative
to any other method that is lower in the lattice.
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Every property of the union and intersection information content that we have considered thus
far has been directly inherited by the union and intersection entropy. However, there is one final
property is not inherited by the entropies. If Alice and Bob share their information with Eve, then Eve’s
information is given by either Alice’s or Bob’s information, and similar for the information that Eve
could have gotten from either Alice or Bob. As the subsequent theorem shows, this property enables
us to greatly reduce the number of distinct terms in the distributive lattice for information content
since any partially ordered set with a connex relation forms a total order.

h(x⊔y⊔z)

h(y⊔z)h(x⊔z)h(x⊔y)

h
(
z⊔(x⊓y)

)
=

h
(
(x⊔z)⊓(y⊔z)

)b
h
(
x⊔(y⊓z)

)
=

h
(
(x⊔y)⊓(x⊔z)

)

a h(z)h(y)h(x)

h
(
z⊓(x⊔y)

)
=

h
(
(x⊓z)⊔(y⊓z)

)c
h
(
x⊓(y⊔z)

)
=

h
(
(x⊓y)⊔(x⊓z)

)

h(y⊓z)h(x⊓z)h(x⊓y)

h(x⊓y⊓z)

a = h
(
(x ⊔ y) ⊓ (x ⊔ z) ⊓ (y ⊔ z)

)

= h
((

x ⊔ (y ⊓ z)
)
⊓
(
y ⊔ (x ⊓ z)

))

= h
((

x ⊔ (y ⊓ z)
)
⊓
(
z ⊔ (x ⊓ y)

))

= h
((

y ⊔ (x ⊓ z)
)
⊓
(
z ⊔ (x ⊓ y)

))

= h
((

y ⊓ (x ⊔ z)
)
⊔
(
z ⊓ (x ⊔ y)

))

= h
((

x ⊓ (y ⊔ z)
)
⊔
(
z ⊓ (x ⊔ y)

))

= h
((

x ⊓ (y ⊔ z)
)
⊔
(
y ⊓ (x ⊔ z)

))

= h
((

x ⊓ y) ⊔ (x ⊓ z) ⊔ (y ⊓ z)
)

b = h
(
y ⊔ (x ⊓ z)

)
= h

(
(x ⊔ y) ⊓ (y ⊔ z)

)

c = h
(
y ⊓ (x ⊔ z)

)
= h

(
(x ⊓ y) ⊔ (y ⊓ z)

)

h(x ⊔ y)

h(y)h(x)

h(x ⊓ y)

Figure 6. (Bottom right) The distributive lattices 〈x, h(⊔ ), h(⊓ )〉 of information contents for two and
three and three observers. It is also important to note that, by replacing h, x, y and z with H, X, Y
and Z, respectively, we can obtain the distributive lattices for entropy. In fact, this is crucial since
Property 6 enables us to reduce the distributive lattice of information contents to a mere total order;
however, this property does not apply to the entropies, and hence we cannot further simplify the lattice
of entropies. (Top left) By the fundamental theorem of distributive lattices, the distributive lattices of
marginal information contents has a one-to-one correspondence with the lattice of sets. Notice that the
lattice for two sets corresponds to the Venn diagram for entropies in Figure 3.
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Property 6 (Connexity). The union and intersection information content are given by at least one of

h(x ⊔ y) = h(x) and h(x ⊓ y) = h(y), or h(x ⊔ y) = h(y) and h(x ⊓ y) = h(x) (59)

6. Generalised Marginal Information Sharing

We now use Properties 1–6 to generalise the results of Theorem 1 and Section 3.

Theorem 4. The marginal information contents are a totally ordered set under the max and min operators.

Proof. A totally ordered set is a partially ordered set with the connex property (p. 2 [16]).

Figure 7 shows the totally ordered sets generated by n = 2 and n = 3 observers, and also depicts
the corresponding sets. Although the number of distinct terms has been reduced, Eve’s information
is still non-decreasing as we move up through terms of the totally ordered set. If we now compare
how much unique information Eve gets from a given method of information sharing relative to any
other method of information sharing which is equal or lower in the totally ordered set, then we obtain
a result which generalises (23) and (24) to consider more than two observers. Similarly, this total
order enables us to generalise (25) using the maximum–minimum identity [22], which is a form of the
principle of inclusion–exclusion [21] for a totally ordered set,

h(x1 ⊓ x2 ⊓ . . . ⊓ xn) = min
(
h(x1), h(x2), . . . , h(xn)

)

=
n

∑
k=1

(−1)k−1 ∑
S⊆X
|S|=k

max
(
h(s1), h(s2), . . . , h(sk)

)

=
n

∑
k=1

(−1)k−1 ∑
S⊆X
|S|=k

h(s1 ⊔ s2 ⊔ . . . ⊔ sk), (60)

or, conversely,

h(x1 ⊔ x2 ⊔ . . . ⊔ xn) =
n

∑
k=1

(−1)k−1 ∑
S⊆X
|S|=k

h(s1 ⊓ s2 ⊓ . . . ⊓ sk). (61)

h(x ⊔ y ⊔ z) = h(x) =
h(x ⊔ y) = h(x ⊔ z)

h(x ⊓ y) =
h(y ⊔ z) = h(y)

h(x ⊓ y ⊓z) = h(z) =
h(x ⊓ z) = h(y ⊓ z)

h(x ⊔ y) = h(x)

h(x ⊓ y) = h(y)

Figure 7. (Left) The total order of marginal information contents for two and three observers, whereby
we have assumed that Alice’s information h(x) is greater than Bob’s information h(y), which is greater
than Charlie’s information h(z). It is important to note that taking the expectation value over these
information contents for each realisation, which may each have a different total orders, yields entropies
which are merely partially ordered. It is for this reason that Property 6 does not apply to entropies.
(Right) The Venn diagrams corresponding to the total order for for two and three observers and their
corresponding information contents. Notice that the total order for two sets corresponds to the Venn
diagram for information contents in Figure 3.
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Now that we have generalised the union and intersection information content, similar to Section 3,
let us now consider taking the expectation value for each term in the distributive lattice. For every
joint realisation x from X, there is a corresponding distributive lattice of information contents. Hence,
similar to (27) and (29)–(31), we can consider taking the expectation value of each term in the lattice
over all realisations. Since the expectation is a linear operator, this yields a set of entropies that are
also idempotent, commutative, associative, absorptive and distributive, only now over the random
variables from X. Thus, the information that Eve expects to gain from a single realisation for a
particular method of information sharing also corresponds to a term in a free distributive lattice
generated by n. This distributive lattice for entropies can be seen in Figure 6 by replacing x, y, z and h
with X, Y, Z and H, respectively.

Crucially, however, Property 6 does not hold for the entropies—it is not true that Eve’s expected
information H(X ⊔ Y) is given by either Alice’s expected information H(X) or Bob’s expected
information H(Y). Thus, despite the fact that the distributive lattice of information content can
be reduced to a total order, the distributive lattice of entropies remains partially ordered. Although the
information contents are totally ordered for every realisation, this order is not in general the same for
every realisation. Consequently, when taking the expectation value across many realisations to yield
the corresponding entropies, the total order is not maintained, and hence we are left with a partially
ordered set of entropies. Indeed, we already saw the consequences of this result in Figure 3 whereby
Alice’s and Bob’s information content was totally ordered for any one realisation, but their expected
information was partially ordered.

7. Multivariate Information Decomposition

In Section 4, we use the shared marginal information from Section 3 to decompose the joint
information content into four distinct components. Our aim now is to use the generalised notion of
shared information from the previous section to produce a generalised decomposition of the joint
information content. To begin, suppose that Johnny observes the joint realisation (x, y, z) while Alice,
Bob and Charlie observe the marginal realisations x, y and z, respectively, and say that Alice, Bob and
Charlie share their information with Eve such that her information is given by h(x ⊔ y ⊔ z). Clearly,
Johnny has at least as much information as Eve,

h(x, y, z) ≥ h(x ⊔ y ⊔ z). (62)

Thus, we can compare how much more information Johnny has relative to Eve,

h(x ⊕ y ⊕ z) = h(x, y, z)− h(x ⊔ y ⊔ z) = min
(
h(y, z|x), h(x, z|y), h(x, y|z)

)
≥ 0. (63)

This non-negative function generalises the earlier definition of the synergistic information content (34)
such that it now quantifies how much information one gets from knowing the joint probability
pXYZ(x, y, z) relative to merely knowing the three marginal probabilities pX(x), pY(y) and pZ(z).
Figure 8 shows how this relationship can be represented using a Venn diagram.

Now, consider three more observers, Joan, Jonas, and Joanna, who observe the joint marginal
realisations (x, y), (x, z) and (y, z), respectively. Clearly, these additional observers greatly increase the
number of distinct ways in which marginal information might be shared with Eve. For example, if Alice
and Joanna share their information, then Eve’s information is given by h

(
x ⊔ (y, z)

)
. Alternatively,

if Joan and Jonas share their information, then Eve’s information is given by h
(
(x, y) ⊔ (x, z)

)
. Perhaps

most interestingly, if Joan, Jonas and Joanna share their information, then Eve’s information is given
by h

(
(x, y) ⊔ (x, z) ⊔ (y, z)

)
. Moreover, we know that Johnny has at least as much information as Eve

has in this situation,
h(x, y, z) ≥ h

(
(x, y) ⊔ (x, z) ⊔ (y, z)

)
. (64)
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Thus, by comparing how much more information Johnny has relative to Eve in this situation, we can
define a new type of synergistic information content that quantifies how much information one gets
from knowing the full joint realisation to merely knowing all of the pairwise marginal realisations,

h
(
(x, y)⊕ (x, z)⊕ (y, z)

)
= h

(
x, y, z

)
− h

(
(x, y) ⊔ (x, z) ⊔ (y, z)

)
= min

(
h(z|x, y), h(y|x, z), h(x|y, z)

)
. (65)

h(y r z) =
h
(
y r (y ⊓ z)

) h(x r y) =
h
(
x r (y ⊔ z)

)

h(z)=h(x ⊓ y ⊓ z)=
h(x ⊓ z) = h(y ⊓ z)

h(y) = h(y ⊔ z)
= h(x ⊓ y)

h(x)=h(x ⊔ y ⊔ z)=
h(x ⊔ y) = h(x ⊔ z) h(x ⊔ y ⊔ z)

h(x, y, z)

h(x ⊕ y ⊕ z)

Figure 8. Similar to Figure 4, this Venn diagram shows how the synergistic information h(x ⊕ y ⊕ z)
can be defined by comparing the joint information content h(x, y, z) to the union information content
h(x ⊔ y ⊔ z). Note that, for this particular realisation, we are assuming that h(x) > h(y) > h(z).

Of course, these new ways to share joint information are not just restricted to the union information.
If Alice and Joanna share their information, then the information that Eve could have gotten from either
is given by h

(
x ⊓ (y, z)

)
. It is also worthwhile noting that this quantity is not less than the information

that Eve could have gotten from either Alice’s information or Bob’s and Charlie’s information,

h
(
x ⊓ (y, z)

)
≥ h

(
x ⊓ (y ⊔ z)

)
. (66)

Thus, we can also consider defining new types of synergistic information content associated with these
this mixed type comparisons,

h
(

x ⊓ (y ⊕ z)
)
= h

(
x ⊓ (y, z)

)
− h

(
x ⊓ (y ⊔ z)

)
. (67)

However, it is important to note that this quantity does not equal min
(
h(x), min(h(z|y), h(y|z))

)
.

With all of these new ways to share joint marginal information, it is not immediately clear how
we should decompose Johnny’s information. Nevertheless, let us begin by considering the algebraic
structure of joint information content. From the inequality (12), we know that any pair of marginal
information contents h(x) and h(y) are upper-bounded by the joint information content h(x, y). It is
also easy to see that the joint information content is idempotent, commutative and associative. Together,
these properties are sufficient for establishing that the algebraic structure of joint information content is
that of a join semi-lattice [16] which we denote by 〈x; h( , )〉. Figure 9 shows the semi-lattices generated
by n = 2 and n = 3 observers.

We now wish to establish the relationship between this semi-lattice of joint information content
〈x; h( , )〉 and the distributive lattice of shared marginal information 〈x; h(⊔ ), h(⊓ )〉. In particular,
since our aim is to decompose Johnny’s information, consider the relationship between the join
semi-lattice 〈x; h( , )〉 and the meet semi-lattice 〈x; h(⊓ )〉, which is also depicted in Figure 9. In contrast
to the semi-lattice of union information content 〈x; h(⊔ )〉, the semi-lattice 〈x; h( , )〉 is not connected to
the semi-lattice 〈x; h(⊓ )〉. Although the intersection information content absorbs the joint information
content, since

h
(
x ⊓ (x, y)

)
= h(x) (68)
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for all h(x) and h(y), the joint information content does not absorb the intersection information content
since h

(
x, (x ⊓ y)

)
is equal to h(x, y) for h(x) ≥ h(y), i.e., is not equal to h(x) as required for absorption.

Since the the join semi-lattice 〈x; h( , )〉 is not connected to the meet semi-lattice 〈x; h(⊓ )〉 by absorption,
their combined algebraic structure is not a lattice.

h(z)h(y)h(x)

h(y ⊓ z)h(x ⊓ z)h(x⊓ y)

h(x ⊓ y ⊓ z)

h(x, y, z)

h(y, z)h(x, z)h(x, y)

h(z)h(y)h(x)

h(x, y)

h(y)h(x)

h(y)h(x)

h(x⊓ y)

Figure 9. (Top-middle and left) The join semi-lattice
〈

h ; ( , )
〉

for n = 2 and n = 3 marginal observers.
Johnny’s information is always given by the joint information content at the top of the semi-lattice, while
the information content of individuals such as Alice, Bob and Charlie who observe single realisations
are found at the bottom of the semi-lattice. The information content of joint marginal observers such as
Joanna, Jonas and Joan are found in between these two extremities. (Bottom-middle and right) The
meet semi-lattice

〈
h ;⊓

〉
for n = 2 and n = 3 marginal observers. Since these two semi-lattices are not

connect by absorption, their combined structure is not a lattice.

Despite the fact that the overall algebraic structure is not a lattice, there is a lattice sub-structure
〈A(x),�〉 within the general structure. This substructure is isomorphic to the redundancy lattice
from the partial information decomposition [23] (see also [24]), and its existence is a consequence
of the fact that the intersection information content absorbs the joint information content in (68).
To identify this lattice, we must first determine the reduced set of elements A(x) upon which it is
defined. We begin by considering the set of all possible joint realisations which is given by P1(x) where
P1(x) = P(x) \ ∅. Elements of this set P1(x) correspond to the elements from the join semi-lattice
〈x; h( , )〉, e.g., the elements {x} and {x, y} correspond to h(x) and h(x, y), respectively. In alignment
with Williams and Beer [23], we call the elements of P1(x) sources and denote them by A1, A2, . . . , Ak.
Next, we consider set of all possible collections of sources which are given by the set P1(P1(x)). Each
collection of sources corresponds to an element of the meet semi-lattice 〈P1(x); h(⊓ )〉, or a particular
way in which we can evaluate the intersection information content of a group of joint information
contents. For example, the collections of sources {{x}, {y}} and {{x}, {y, z}} correspond to the
h(x ⊓ y) and h

(
x ⊓ (y, z)

)
), respectively. Not all of these collections of sources are distinct, however.

Since the intersection information content absorbs the joint information content, we can remove
the element {{x}, {x, y}} corresponding to h

(
x ⊓ (x, y)

)
as this information is already captured by

the element {{x}} corresponding to h(x). In general, we can remove any collection of sources that
corresponds to the intersection information content between a source Ai and any source Aj that is in
the down-set ↓Ai with respect to the join semi-lattice

〈
x; h( , )

〉
. (A definition of the down-set can be

found in [17]. Informally, the down-set ↓A is the set of all elements that precede A.) By removing all
such collections of sources, we get the following reduced set of collections of sources,

A(x) = {α ∈ P1(P1(x)) : ∀ Ai, Aj ∈ α, Ai 6⊂ Aj}. (69)

Formally, this set corresponds to the set of antichains on the lattice 〈P1(x),⊆〉, excluding the empty
set [23].

Now that we have determined the elements upon which the lattice sub-structure is defined,
we must show that they indeed form a lattice. Recall that when constructing the set A(x), we first
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considered the ordered elements of the semi-lattice
〈

x; h( , )
〉

and then subsequently consider the
ordered elements of the semi-lattice

〈
P1(x); h(⊓ )

〉
. Thus, we need to show that these two orders can

be combined together into one new ordering relation over the set A(x). This can be done by extending
the approach underlying the construction of the set A(x) to consider any pair of collections of sets α

and β from A(x). In particular, the collection of sets β precedes the collection of sets α if and only if for
every source B from β, there exists a source A from α such that A is in the down-set ↓B with respect to
the join-semi-lattice

〈
x; h( , )

〉
, or formally,

∀ α, β ∈ A(x), (α � β ⇐⇒ ∀ B ∈ β, ∃ A ∈ α, A ⊆ B). (70)

The fact that 〈A(x),�〉 forms a lattice was proved by Crampton and Loizou [25,26] where the
corresponding lattice is denoted 〈A(X),�′〉 in their notation. Furthermore, they showed that this
lattice is isomorphic to the distributive lattices, and hence the number of elements in the set A(x) for n
marginal observers is also given by the (n)th Dedekind number (p. 273 [18]) (see also [19]). Crampton
and Loizou [26] also provided the meet ∧ and join ∨ operations for this lattice, which are given by

α ∧ β = α ⊔ β, (71)

α ∨ β = ↑α∩ ↑β, (72)

where α denotes the set of minimal elements of α with respect to the semi-lattice
〈

x; h( , )
〉
. (A definition

of the set of minimal elements can be found in [17]. Informally, α is the set of sources of α that are not
preceded by any other sources from α with respect to the semi-lattice

〈
x; h( , )

〉
.) This lattice 〈A(x),�〉 is

the aforementioned sub-structure that is isomorphic to the redundancy lattice from Williams and Beer [23].
However, as it is a lattice over information contents, it is actually equivalent to the specificity lattice
from [27]. Figure 10 depicts the redundancy lattice of information contents for n = 2 and n = 3
marginal observers.

Similar to how Eve’s information is non-decreasing as we move up through the terms of the
distributive lattice of shared information, the redundancy lattice of information contents enables to see
that, for example, the information that Eve could have gotten from either Alice or Joanna h

(
x ⊓ (y, z)

)

is no less than the information that Eve could have gotten from Alice or Bob h(x ⊓ y). Thus, by taking
the information h(α) associated with the collection of sources α from A(x) and subtracting from it the
information h(αi) associated with any collection of sources αi from the down-set ↓α, we can evaluate the
unique information h(αr αi) provided by α relative to αi. Moreover, as per Williams and Beer [23], we can
derive a function that quantifies the partial information content h∂(α) associated with the collection of
sources α that is not available in any of the collections of sources that are covered by α. (The set of
collections of sources that are covered by α is denoted α−. A definition of the covering relation is
provided in [17]. Informally, α− is the set collections of sources that immediately precede α.) Formally,
this function corresponds to the Möbius inverse of h on the redundancy lattice 〈A(x),�〉, and can be
defined implicitly by

h(α) = ∑
β�α

h∂(β). (73)

By subtracting away the partial information terms that strictly precede α from both sides, it is easy
to see that the partial information content h∂(α) can be calculated recursively from the bottom of the
redundancy lattice of information contents,

h∂(α) = h(α)− ∑
β≺α

h∂(β), (74)
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h
(
(x, y) ⊕

(x, z) ⊕ (y, z)
)

h
(
(y ⊕ z) r

(x, y) ⊔ (x, z)
)d′

h
(
(x ⊕ y) r

(x, z) ⊔ (y, z)
)

h
(
(x⊕ z)⊓ (y⊕ z)r (x, y)

)
b′h

(
(x ⊕ y) ⊓ (x ⊕ z)r (y, z)

)

a′ h(z r (x, y))h(yr (x, z))h(x r (y, z))

h
(
z ⊓ (x ⊕ y)

)
c′h

(
x ⊓ (y ⊕ z)

)

h((y⊓ z)r x)e′h((x⊓ y)r z)

h(x ⊓ y ⊓ z)

a′ = h
(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)

b′ = h
(
(x ⊕ y) ⊓ (y ⊕ z)r (x, z)

)

c′ = h
(
y ⊓ (x ⊕ z)

)

d′ = h
(
(x ⊕ z)r (x, y) ⊔ (y, z)

)

e′ = h(y r (x, z))

h(x, y, z)

h(y, z)h(x, z)h(x, y)

h
(
(x, z) ⊓ (y, z)

)
bh

(
(x, y) ⊓ (x, z)

)

a h(z)h(y)h(x)

h
(
z ⊓ (x, y)

)
ch

(
x ⊓ (y, z)

)

h(y ⊓ z)h(x ⊓ z)h(x ⊓ y)

h(x ⊓ y ⊓ z)

a = h
(
(x, y) ⊓ (x, z) ⊓ (y, z)

)

b = h
(
(x, y) ⊓ (y, z)

)

c = h
(
y ⊓ (x, z)

)

h(x, y)

h(y)h(x)

h(x ⊓ y)

h(x ⊕ y)

h(yr x)h(x r y)

h(x⊓ y)

Figure 10. (Top left) The redundancy lattices 〈A(x),�〉 of information contents for two and three
and three observers. Each note in the lattice corresponds to an element in A(x) from (69), while the
ordering between elements is given by � from (70). (Bottom right) The partial information contents
h∂(α) corresponding to the redundancy lattices of information contents for two and three observers.

As the following theorem shows, the partial information content h∂(α) can be written in closed-form.

Theorem 5. The partial information content h∂(α) is given by

h∂(α) = h(α)− h(α−1 ⊔ α−2 ⊔ . . . ⊔ α−|α− |)

= h(α)− max
(
h(α−1 ), h(α−2 ), . . . , h(α−|α− |)

)
≥ 0, (75)
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where each α−i is a collection of sets from α−.

Proof. For S ⊆ A(x), define the set-additive function

f (S) = ∑
β∈S

h∂(β). (76)

From (73), we have that h(α) = f (↓α). The partial information can then by subtracting the set additive
on the down-set ↓α from the set additive function on the strict down-set ↓̇α,

h∂(α) = f (↓α)− f (↓̇ α) = f (↓α)− f
( ⋃

β∈α−
↓β

)
, (77)

By applying the principle of inclusion-exclusion [21], we get that

h∂(α) = f (↓α)−
|α− |
∑
k=1

(−1)k−1 ∑
S⊆α−
|S|=k

f
( ⋂

σ∈S
↓σ

)
. (78)

For any lattice L and A ⊆ L, we have that
⋂

a∈A ↓ a is equal to ↓ (∧ A) (p. 57 [17]), and since the meet
operation is given by the intersection information content, we have that

h∂(α) = f (↓α)−
|α− |
∑
k=1

(−1)k−1 ∑
S⊆α−
|S|=k

h(s1 ⊓ s2 ⊓ . . . ⊓ sk)

= h(α)− h(α1 ⊔ α2 ⊔ . . . ⊔ α|α− |), (79)

where the final step has been made using (61) and (76).

The closed-form solution (75) from Theorem 5 is the same as the closed-form solution presented
in Theorem A2 from Finn and Lizier [27]. This, together with the aforementioned fact that the lattice
〈A(x),�〉 is equivalent to the specificity lattice, means that each partial information content h∂(α)

is equal to the partial specificity i+∂ (α → t) from (A22) of [27]. As such, the partial information
decomposition present in this paper is equivalent to the pointwise partial information decomposition
presented in [27].

Let us now use the closed-form solution (75) from Theorem 5 to evaluate the partial information
contents for the n = 2 redundancy lattice of information contents. Starting from the bottom, we get the
intersection information content,

h∂(x ⊓ y) = h(x ⊓ y), (80)

followed by the unique information contents,

h∂(x) = h(x)− h(x ⊓ y) = h(x r y), (81)

h∂(y) = h(y) − h(x ⊓ y) = h(y r x), (82)

and, finally, the synergistic information content,

h∂(x, y) = h(x, y)− h(x ⊔ y) = h(x ⊕ y). (83)

CHAPTER 5: A NEW FRAMEWORK FOR INFORMATION DECOMPOSITION 97



Entropy 2020, 22, 216 21 of 34

It is clear that these partial information contents recover the intersection, unique and synergistic
information contents from Sections 3 and 4. Moreover, by inserting these partial terms back into (73)
for α = {{x, y}}, we recover the earlier decomposition (35) of Johnny’s information,

h(x, y) = h∂(x ⊓ y) + h∂(x) + h∂(y) + h∂(x, y) = h(x ⊓ y) + h(x r y) + h(y r x) + h(x ⊕ y). (84)

Of course, our aim is to generalise this result such that we can decompose the joint information
content for an arbitrary number of marginal realisations. This can be done by first evaluating the
partial information contents over the redundancy lattice corresponding to n marginal realisations,
and then subsequently inserting the results back into (73) for α = {{x1, x2, . . . , xn}}. For example, we
can invert the n = 3 redundancy lattice of information contents which yields the partial information
contents shown in Figure 10. (The inversion is evaluated in the Appendix A.) When inserted back
into (73), we get the following decomposition for Johnny’s information,

h(x, y, z) = h(x ⊓ y ⊓ z)

+ h
(
(x ⊓ y)r z

)
+ h

(
(x ⊓ z)r y

)
+ h

(
(y ⊓ z)r x

)

+ h
(

x ⊓ (y ⊕ z)
)
+ h

(
y ⊓ (x ⊕ z)

)
+ h

(
z ⊓ (x ⊕ y)

)

+ h
(

x r (y, z)
)
+ h

(
y r (x, z)

)
+ h

(
z r (x, y)

)
+ h

(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)
(85)

+ h
(
(x ⊕ y) ⊓ (x ⊕ z)r (y, z)

)
+ h

(
(x ⊕ y) ⊓ (y ⊕ z)r (x, z)

)
+ h

(
(x ⊕ z) ⊓ (y ⊕ z)r (x, y)

)

+ h
(
(x ⊕ y)r ((x, z) ⊔ (y, z))

)
+ h

(
(x ⊕ z)r ((x, y) ⊔ (y, z))

)
+ h

(
(y ⊕ z)r ((x, y) ⊔ (x, z))

)

+ h
(
(x, y)⊕ (x, z)⊕ (y, z)

)
.

Finally, we can also consider taking the expectation value of each term in the redundancy lattice
of information contents. Since the expectation is a linear and monotonic operator, the resulting
expectation values will inherit the structure of the redundancy lattice of information contents and so
form a redundancy lattice of entropies, i.e., Figure 10 with x, y, z and h replaced by X, Y, Z and H,
respectively. By inverting the n = 2 redundancy lattice of entropies, we can recover the decomposition
(40) from Figure 5. Furthermore, inverting the n = 3 lattice generalises this result and is depicted
in Figure 11.
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H
(
(X, Y)⊕ (X, Z)⊕ (Y, Z)

)

f

ge

d c

b

a

H (
Z \

(X.Y) )
H
( Y

\ (
X, Z

)
)

H
(
X \ (Y, Z)

)

H (
Z ⊓

(X⊕
Y) )

H
( Y

⊓ (
X
⊕ Z)
)

H
(
X ⊓ (Y ⊕ Z)

)

H
(
(Y ⊓ Z) \ X

)

H
(
(X ⊓ Z) \ Y

)
H
(
(X ⊓ Y) \ Z

)

H(X ⊓ Y ⊓ Z)

H(X)

H(Y)H(Z)

H(X, Y)H(X, Z)

H(Y, Z)

H(X, Y, Z)

b = H
(
(X ⊕ Y) ⊓ (X ⊕ Z) \ (Y, Z)

)

c = H
(
(X ⊕ Y) ⊓ (Y ⊕ Z) \ (X, Z)

)

d = H
(
(X ⊕ Z) ⊓ (Y ⊕ Z) \ (X, Y)

)

e = H
(
(X ⊕ Y) \ (X, Z) ⊔ (Y, Z)

)

f = H
(
(X ⊕ Z) \ (X, Y) ⊔ (Y, Z)

)

g = H
(
(Y ⊕ Z) \ (X, Y) ⊔ (X, Z)

)

Figure 11. This Venn provides a visual representation of the decomposition of the joint entropy H(X, Y, Z).
This decomposition is given by replacing x, y, z and h with X, Y, Z and H in (85), respectively.

8. Union and Intersection Mutual Information

Suppose that Alice, Bob and Johnny are now additionally and commonly observing the variable
Z. When a realisation (x, y, z) occurs, Alice’s information for z is given by the conditional information
content h(x|z), while Bob’s conditional information is given by h(y|z) and Johnny’s conditional
information is given by h(x, y|z). By using the same argument as in Section 3, it is easy to see that
Eve’s conditional information given z is given by the conditional union information content,

h(x ⊔ y|z) = max
(
h(x|z), h(y|z)

)
. (86)

Likewise, we can define the conditional unique information contents and conditional intersection
information content, respectively,

h(x r y|z) = h(x ⊔ y|z)− h(y|z) = max
(
h(x|z)− h(y|z), 0

)
, (87)

h(y r x|z) = h(x ⊔ y|z)− h(x|z) = max
(
0, h(y|z)− h(x|z)

)
, (88)

h(x ⊓ y|z) = h(x|z) + h(y|z)− h(x ⊔ y|z) = min
(
h(x|z), h(y|z)

)
. (89)

Furthermore, since Johnny’s conditional information h(x, y|z) is no less than Eve’s conditional information
content h(x ⊔ y|z), we can also define the conditional synergistic information content,

h(x ⊕ y|z) = h(x, y|z)− h(x ⊔ y|z) = min
(
h(y|x, z), h(x|y, z)

)
. (90)
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Similar to (35), we can decompose Johnny’s conditional information h(x, y|z) into the following components,

h(x, y|z) = h(x ⊔ y|z) + h(x ⊕ y|z) = h(x ⊓ y|z) + h(x r y|z) + h(y r x|z) + h(x ⊕ y|z). (91)

Moreover, similar to (38), the conditional mutual information content is equal to the difference between
the conditional intersection information content and the conditional synergistic information content,

i(x; y|z) = h(x|z) + h(y|z)− h(x, y|z) = h(x ⊓ y|z)− h(x ⊕ y|z). (92)

Notice that all of the above definitions directly correspond to the definitions of the unconditioned
quantities, with all probability distributions conditioned on z here.

Let us now consider how much information each of our observers have about the commonly
observed realisation z. The information that Alice has about z from observing x is given by the mutual
information content,

i(x; z) = h(x)− h(x|z). (93)

Similarly, Bob’s information about z is given by i(y; z), while Johnny’s information is given by the joint
mutual information content i(x, y; z). Thus, the question naturally arises—are we able to quantify how
much information Eve has about the realisation z from knowing Alice’s and Bob’s shared information?

Clearly, we could consider defining the union mutual information content,

i(x ⊔ y; z) = h(x ⊔ y)− h(x ⊔ y|z). (94)

It is important to note that, while the mutual information can be defined in three different ways
i(x, z) = h(x)− h(x|z) = h(x) + h(z)− h(x, z) = h(z)− h(z|x), there is only one way in which one can
define this function. (Indeed, this point aligns well with our argument based on exclusions presented
in [28].) Similar to (94), we could consider respectively defining the unique mutual information
contents, the intersection mutual information content and synergistic mutual information content,

i(x r y; z) = h(x r y)− h(x r y|z), (95)

i(y r x; z) = h(y r x)− h(y r x|z), (96)

i(x ⊓ y; z) = h(x ⊓ y)− h(x ⊓ y|z), (97)

i(x ⊕ y; z) = h(x ⊕ y)− h(x ⊕ y|z). (98)

As with the mutual information content (18), there is nothing to suggest that these quantities are
non-negative. Of course, the mutual information or expected mutual information content (20) is
non-negative. Thus, with this in mind, consider defining the union mutual information

I(X ⊔ Y; Z) = EXYZ
[
i(x ⊔ y; z)

]
. (99)

However, there is nothing to suggest that this function is non-negative. Consequently, it is dubious to
claim that this function represents Eve’s expected information about Z, and is similarly fallacious to say
that Eve’s information about z is given by the union mutual information content (94). Indeed, by inserting
the definitions (21) and (86) into (94), it is easy to see why it is difficult to interpret these functions,

i(x ⊔ y; z) = max
(
h(x), h(y)

)
− max

(
h(x|z), h(y|z)

)

= max
(

min
(
i(x; z), h(x)− h(y|z)

)
, min

(
h(y)− h(x|z), i(y; z)

))
. (100)

That is, the union mutual information content can mix the information content provided by one
realisation with the conditional information content provided by another. Thus, there is no guarantee
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that this function’s expected value will be non-negative. It is perhaps best to interpret this function
as being a difference between two surprisals, rather than a function which represent information.
Of course, similar to the multivariate mutual information (9), the union mutual information can be
used a summary quantity provided one is careful not to misinterpret its meaning. The same is true for
the unique mutual informations, intersection mutual information and synergistic mutual information,
which we can similarly define,

I(X \ Y; Z) = EXYZ
[
i(x r y; z)

]
, (101)

I(Y \ X; Z) = EXYZ
[
i(y r x; z)

]
, (102)

I(X ⊓ Y; Z) = EXYZ
[
i(x ⊓ y; z)

]
, (103)

I(X ⊕ Y; Z) = EXYZ
[
i(x ⊕ y; z)

]
. (104)

Despite lacking the clear interpretation that we had for the information contents, these functions
share a similar algebraic structure. For example, by using (35) and (91), we can decompose the mutual
information content into the following components,

i(x, y; z) = i(x ⊓ y; z) + i(x r y; z) + i(y r x; z) + i(x ⊕ y; z), (105)

which is similar to the earlier decomposition of the joint entropy (35). Moreover, similar to (38), by using
(38) and (92), we get that the multivariate mutual information content is given by the difference between
the intersection mutual information content and the synergistic mutual information content,

i(x; y; z) = i(x; y)− i(x; y|z) = h(x ⊓ y)− h(x ⊕ y)− h(x ⊓ y) + h(x ⊕ y|z)
= i(x ⊓ y; z)− i(x ⊕ y; z). (106)

Of course, since the expectation value is a linear operator, both of these results can be carried over to
the joint mutual information. Hence, the mutual information can be decomposed into the following
components,

I(X, Y; Z) = I(X ⊓ Y; Z) + I(X \ Y; Z) + I(Y \ X; Z) + I(X ⊕ Y; Z). (107)

while the the multivariate mutual information is equal to the intersection mutual information minus
the synergistic mutual information,

I(X; Y; Z) = I(X; Y)− I(X; Y|Z) = H(X ⊓ Y)− H(X ⊕ Y)− H(X ⊓ Y) + H(X ⊕ Y|Z)
= I(X ⊓ Y; Z)− I(X ⊕ Y; Z). (108)

This latter result aligns with Williams and Beer’s prior result that the multivariate mutual information
conflates redundant and synergistic information (Equation (14) [23]).

9. Conclusions

The main aim of this paper has been to understand and quantify the distinct ways that
a set of marginal observers can share their information with some non-observing third party.
To accomplish this objective, we examined the distinct ways in which two marginal observers,
Alice and Bob, can share their information with the non-observing individual, Eve, and introduced
several novel information-theoretic quantities: the union information content, which quantifies
how much information Eve gets from the Alice and Bob; the intersection information content,
which quantifies how much information Eve could have gotten from either Alice or Bob; and the unique
information content, which quantifies how much information Eve gets from Alice relative to Bob,
and vice versa. We then investigated the algebraic structure of these new measures of shared marginal
information and showed that the structure of shared marginal information is that of a distributive
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lattice. Next, by using the fundamental theorem of distributive lattices, we showed that these new
measures are isomorphic to the various unions and intersections of sets. This isomorphism is similar to
Yeung’s correspondence between multivariate mutual information and signed measure [6,7]. However,
in contrast to Yeung’s correspondence, the measures of information content presented in this paper are
non-negative and maintain a clear operational meaning regardless of the number of realisations or variables
involved. (This is, of course, excepting the mutual information contents presented in Section 8, which are
not non-negative.)

The appearance of a lattice structure within the context of information theory is by no means
novel. Han [12] developed a lattice-theoretic description of the entropy over a Boolean lattice generated
by a set of random variables. This lattice encapsulates all linear sums and differences of the basic
information-theoretic quantities, i.e., entropy, conditional entropy, mutual information and conditional
mutual information. Moreover, this lattice structure captures several of the existing multivariate
generalisations of mutual information [29], including the aforementioned multivariate mutual
information (9) (which is also known as the interaction information [10], amount of information [2] or
co-information [11]), the total correlation [30] (which is also known as the multivariate constraint [31],
multi-information [32] or integration [33]), the dual total correlation [12] (which is also known as
binding information [34]) and the novel measure of multivariate mutual information defined by
Chan et al. [29] (see Han [12] and Chan et al. [29] for further details). Similar to the lattice of shared
marginal information content, Han’s lattice is distributive—indeed, on a fundamental level, it is
this algebraic structure that enables Yeung [6,7] to establish a correspondence with signed measure.
Nevertheless, there two important differences to note between Han’s information lattice and the lattice
of shared marginal information content: Firstly, Han’s lattice is based upon the entropies of random
variables rather than the information content of realisations. In principle, there is no reason why
one could not consider the information content of a Boolean lattice generated by a set of realisations
(although the mutual information content would not be non-negative). Secondly, the Möbius inverse
on Han’s information lattice yields the multivariate mutual information (9), which is not non-negative.
In contrast, the partial information contents (75) that result from the Möbius inversion of the lattice of
shared marginal information content are non-negative. Thus, in contrast to the multivariate mutual
information, the new measures of multivariate information presented in this paper maintain their
operational meaning for any number of random variables.

Similar to Han, Shannon [35] introduced his own information lattice, although it is based upon
the notion of common information. In comparison to Shannon’s other work, this paper is not well
recognised. Indeed, this common information was later independently proposed and studied by Gács
and Körner [36]. Shannon’s original paper is relatively brief; however, Li and Chong [37] expanded
upon Shannon’s discussion by formalising his argument in terms of σ-algebras and sample space
partitions (see also [38]). To be specific, they described a random variable X as “being-richer-than”
another random variable Y if the former’s sample space partition is finer than the latter’s sample
space partition. Moreover, if their σ-algebras coincide, then two random variables are said to be
informationally equivalent. This relation naturally forms a partial order over a set of random variables.
For all X and Y, the joint variable (X, Y) is the poorest amongst all of the variables that are richer
than both X and Y. Conversely, one can define a random variable Z that is the richest amongst all of
the variables that are poorer than both X and Y. The entropy of this common variable Z defines the
aforementioned common information. In contrast to the joint variable (X, Y), it is relatively difficult to
characterise the common variable Z [36,37,39]. Nevertheless, its existence is sufficient for the definition
of Shannon’s information lattice [35,37]. There are several features that distinguish this lattice from the
lattice of shared marginal information. Firstly, similar to Han’s information lattice, the joint entropy
and common information are defined in terms of entire random variables, rather than the information
content of realisations. Secondly, even if we were to restrict ourselves to the comparing Shannon’s
information lattice to the lattice of shared marginal entropy, the meet and join operations for these
lattices are fundamentally different. We have already discussed the between their respective join
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operations, i.e., the joint entropy and union entropy, in Sections 3 and 4. If we consider their respective
meet operations, we get the common information is relatively restrictive compared to the intersection
entropy, due to the fact that the common information requires one to identify the common random
variable Z. This follows from the fact that the intersection information is greater than or equal the
mutual information (43), which is in turn greater than or equal to the common information [36]. Finally,
in general, Shannon’s information lattice is not distributive, nor is it even modular [35,37]. Thus,
unlike the lattice of share marginal information or Han’s information lattice, the fundamental theorem
of distributive lattice is not applicable, and hence Shannon’s information lattice does inherit any
set-like identities.

The secondary objective of this paper has been to understand and demonstrate how we can use
the measures of shared information content to decompose multivariate information. We began by
comparing the union information content to the joint information content and used this comparison
to define a measure of synergistic information content that captures how much more information
a full joint observer, Johnny, has relative to an individual, Eve, who knows which joint realisation
has occurred, but only knows the marginal distributions. We showed how one can use this measure,
together with the measures of shared information content, to decompose the joint information content.
We then compared the algebraic structure of joint information to the lattice structure of shared
information, and showed how one can find the redundancy lattice from the partial information
decomposition [23] embedded within this larger algebraic structure. More specifically, since this paper
considers information contents, this redundancy lattice is actually same as the specificity lattice from
pointwise partial information decomposition [27,28]. This observation connects the work presented in
this paper to the existing body of theoretical literature on information decomposition [23,40–62], and its
applications [63–86]. (For a brief summary of this literature, see [24].) Nevertheless, in contrast to the
pointwise partial information decomposition [27,28], most of these approaches aim to decompose the
average mutual information rather than the information content. The ability to decompose information
content, and pointwise mutual information, provides a unique perspective on multivariate dependency.

To our knowledge, the only other approach that attempts to provide this pointwise perspective is
due to Ince [87]. Ince’s approach proposes a method of information decomposition based upon the
entropy, but can be applied to the information content (or in Ince’s terminology, the local entropy).
Of particular relevance to this paper, Ince obtains a result that is equivalent to (38) whereby the
mutual information content is equal to the redundant information content minus the synergistic
information content (Equation (5) [87]). However, Ince’s definition of redundant information content
differs from that of the intersection information content in (38). To be specific, it is based upon
the sign of the multivariate mutual information content (or pointwise co-information), which is
interpreted as a measure of “the set-theoretic overlap” of multiple information contents (or local
entropies) (p. 7 [87]). However, as discussed in Section 1, this set-theoretic interpretation of the
multivariate mutual information (co-information) is problematic. To account for these difficulties, Ince
disregards the negative values, defining the redundant information content to equal to the multivariate
mutual information when it is positive, and to be zero otherwise.

There are several avenues of inquiry for which this research will yield new insights, particularly
in complex systems, neuroscience and communications theory. For instance, these measures might be
used to better understand and quantify distributed intrinsic computation [66,79]. It is well known
that that dynamics of individual regions in the brain depend synergistically on multiple other regions;
synergistic information content might provide a means to quantify such dependencies in neural
data [69,77,88–90]. Furthermore, these measures might be helpful for quantifying the synergistic
encodings used in network coding [7]. Finally, it is well-known that many biological traits are
not dependent on any one gene, but rather are synergistically dependent on two or more genes,
and the decomposed information provides a means to quantify the unique, redundant and synergistic
dependencies between a trait and a set of genes [91–94].
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Appendix A

We can use the closed-form (75) to evaluate the partial information contents for the n = 3 redundancy
lattice of information contents. Starting from the bottom and working up through the redundancy
lattice, we have the following partial information contents:

h∂(x ⊓ y ⊓ z) = h(x ⊓ y ⊓ z); (A1)

h∂(x ⊓ y) = h(x ⊓ y)− h(x ⊓ y ⊓ z)

= h
(
(x ⊓ y)r z

)
; (A2)

h∂

(
x ⊓ (y, z)

)
= h

(
x ⊓ (y, z)

)
− h

(
(x ⊓ y) ⊔ (x ⊓ z)

)

= h
(

x ⊓ (y, z)
)
− h

(
x ⊓ (y ⊔ z)

)

= h
(

x ⊓ (y ⊕ z)
)
; (A3)

h∂(x) = h(x)− h
(

x ⊓ (y, z)
)

= h
(
x r (y, z)

)
; (A4)

h∂

(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
− h

(
(x ⊓ (y, z)) ⊔ (y ⊓ (x, z)) ⊔ (z ⊓ (x, y))

)

= h
(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
− h

(
x ⊓ (y ⊕ z)

)
− h

(
y ⊓ (x ⊕ z)

)
− h

(
z ⊓ (x ⊕ y)

)

− h
(
(x ⊓ y)r z

)
− h

(
(x ⊓ z)r y

)
− h

(
(y ⊓ z)r x

)
− h(x ⊓ y ⊓ z)

= h
(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
− h

(
x ⊓ (y, z)

)
− h

(
y ⊓ (x ⊕ z)

)
− h

(
z ⊓ (x ⊕ y)

)

− h
(
(y ⊓ z)r x

)
(By Lemma A9.)

= h
(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)
; (A5)

h∂

(
(x, y) ⊓ (x, z)

)
= h

(
(x, y) ⊓ (x, z)

)
− h(x ⊔ ((x, y) ⊓ (x, z) ⊓ (y, z))

)

= h
(
(x, y) ⊓ (x, z)

)
− h(x)− h((x, y) ⊓ (x, z) ⊓ (y, z)

)

+ h(x ⊓ ((x, y) ⊓ (x, z) ⊓ (y, z))
)

= h
(
((x, y) ⊓ (x, z))r (y, z)

)
− h

(
x r (y, z)

)
(By Lemma A1.)

= h
(
((x, y)r (y, z)) ⊓ ((x, z)r (y, z))

)
− h

(
x r (y, z)

)
(By Lemma A2.)

= h
(
(x ⊕ y) ⊓ (x ⊕ z)r (y, z)

)
; (A6)

h∂(x, y) = h(x, y)− h
(
((x, y) ⊓ (x, z)) ⊔ ((x, y) ⊓ (y, z))

)

= h(x, y)− h
(
(x, y) ⊓ ((x, z) ⊔ (y, z))

)

= h
(
(x, y)r ((x, z) ⊔ (y, z))

)
(By Lemma A3.)

= h
(
(x ⊕ y)r ((x, z) ⊔ (y, z))

)
; (A7)
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h∂(x, y, z) = h(x, y, z)− h
(
(x, y) ⊔ (x, z) ⊔ (y, z)

)

= h
(
(x, y)⊕ (x, z)⊕ (y, z)

)
. (A8)

Lemma A1. We have the following identity,

h
(
(x ⊓ y)r z

)
= h

(
(x r z) ⊓ (y r z)

)
. (A9)

Proof. From (23) and (25), we have that

h
(
(x ⊓ y)r z

)
= max

(
min(h(x), h(y))− h(z), 0

)
= max

(
min(h(x)− h(z), h(y)− h(z)), 0

)

= min
(

max(h(x)− h(z), 0), max(h(y)− h(z), 0)
)
= h

(
(x r z) ⊓ (y r z)

)
, (A10)

where we have used the fact that max(a, min(b, c)) is equal to min(max(a, b), max(a, c)).

Lemma A2. We have the following identity,

h
(
((x, y)r (y, z)) ⊓ ((x, z)r (y, z))

)
= h

(
x r (y, z)

)
+ h

(
(x ⊕ y) ⊓ (x ⊕ z)r (y, z)

)
. (A11)

Proof. From (35), we have that

h
(
(x, y)r (y, z)

)
= h

(
(x ⊓ y)r (y, z)

)
+ h

(
(x r y)r (y, z)

)
+ h

(
(y r x)r (y, z)

)
+ h

(
(x ⊕ y)r (y, z)

)

= h
(

x r (y, z)
)
+ h

(
(y r x)r (y, z)

)
+ h

(
(x ⊕ y)r (y, z)

)
, (A12)

and since
h
(
(y r x)r (y, z)

)
= max

(
h(y r x)− h(y, z), 0

)
= 0, (A13)

we get that
h
(
(x, y)r (y, z)

)
= h

(
x r (y, z)

)
+ h

(
(x ⊕ y)r (y, z)

)
. (A14)

Finally, by inserting this result into (25), we get that

h
(
((x, y)r (y, z)) ⊓ ((x, z)r (y, z))

= min
(
h
(

x r (y, z)
)
+ h

(
(x ⊕ y)r (y, z)

)
, h

(
x r (y, z)

)
+ h

(
(x ⊕ z)r (y, z)

))

= h
(
x r (y, z)

)
+ h

(
((x ⊕ y)r (y, z)) ⊓ ((x ⊕ z)r (y, z))

)
.

Lemma A3. We have the following identity,

h
(
((x, y)r ((x, z) ⊔ (y, z))

)
= h

(
((x ⊕ y)r ((x, z) ⊔ (y, z))

)
. (A15)

Proof. By (35), we have that

h
(
(x, y)r ((x.z) ⊔ (y, z))

)
= h

(
(x ⊓ y)r ((x, z) ⊔ (y, z))

)
+ h

(
(x r y)r ((x, z) ⊔ (y, z))

)

+ h
(
(y r x)r ((x, z) ⊔ (y, z))

)
+ h

(
(x ⊕ y)r ((x, z) ⊔ (y, z))

)
. (A16)

Since h(x ⊓ y), h(xr y) and h(yr x) are less than h
(
((x, z)⊔ (y, z)

)
, from (23) we have that h

(
(x ⊓ y)r

((x, z) ⊔ (y, z))
)
, h

(
(x r y)r ((x, z) ⊔ (y, z))

)
and h

(
(y r x)r ((x, z) ⊔ (y, z))

)
are all equal to 0.

Lemma A4. We have the following identity,

h
(

x ⊓ (y r x)
)
= 0. (A17)
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Proof. We have that

h
(
x ⊓ (y r x)

)
= h

(
x ⊓ (x, y)

)
− h

(
x ⊓ x

)
= h(x ⊓ x)− h(x) = 0, (A18)

where we have used (45) and (68).

Lemma A5. We have the following identity,

h
(
(y r x) ⊓ (y, z)

)
= h

(
y r x

)
. (A19)

Proof. We have that

h
(
(y r x) ⊓ (y, z)

)
= h

(
(y r x) ⊓ (y r x, y ⊓ x, z)

)
. (A20)

Using (68), this then reduces to

h
(
(y r x) ⊓ (y, z)

)
= h

(
y r x

)
. (A21)

Lemma A6. We have the following identity,

h
(
x ⊓ (x ⊕ z)

)
= 0. (A22)

Proof. We have

h
(
x ⊓ (x ⊕ z)

)
= h

(
x ⊓ (x, z)

)
− h

(
x ⊓ x

)
+ h

(
x ⊓ (z r x)

)
,

which then reduces via (68), (45) and Lemma A4 to:

h
(
x ⊓ (x ⊕ z)

)
= h

(
x
)
− h

(
x
)
+ h

(
x ⊓ (z r x)

)
+ 0 (A23)

= 0.

Lemma A7. We have the following identity,

h
(
(y r x) ⊓ (x ⊕ z)

)
= h

(
y ⊓ (x ⊕ z)

)
. (A24)

Proof. We have that

h
(
y ⊓ (x ⊕ z)

)
= h

(
(y r x) ⊓ (x ⊕ z)

)
+ h

(
(y ⊓ x) ⊓ (x ⊕ z)

)
.

However, since h
(
x ⊓ (x ⊕ z)

)
= 0 via Lemma A6 and therefore h

(
(y ⊓ x) ⊓ (x ⊕ z)

)
= 0, we have

h
(
y ⊓ (x ⊕ z)

)
= h

(
(y r x) ⊓ (x ⊕ z)

)

as required.

Lemma A8. We have the following identity,

h
(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
z ⊓ (x ⊕ y)

)
+ h

(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)
. (A25)

Proof. We have that

h
(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
(x ⊕ y) ⊓ x ⊓ (y, z)

)
+ h

(
(x ⊕ y) ⊓ (z r x) ⊓ (y, z)

)

+ h
(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y, z)

)
. (A26)
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Then, by using Lemma A6, we get that

h
(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
(x ⊕ y) ⊓ (z r x) ⊓ (y, z)

)
+ h

(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y, z)

)

= h
(
(x ⊕ y) ⊓ (z r x) ⊓ y

)
+ h

(
(x ⊕ y) ⊓ (z r x) ⊓ (z r y)

)

+ h
(
(x ⊕ y) ⊓ (z r x) ⊓ (y ⊕ z)

)
+ h

(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ y

)
(A27)

+ h
(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (z r y)

)
+ h

(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)

= h
(
(x ⊕ y) ⊓ (z r x) ⊓ (z r y) + h

(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)
,

where we have used Lemma A6 four more times. Finally, using Lemma A7, we get that

h
(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
(x ⊕ y) ⊓ z

)
+ h

(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)
, (A28)

as required.

Lemma A9. We have the following identity,

h
(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
x ⊓ (y, z)

)
+ h

(
y ⊓ (x ⊕ z)

)
+ h

(
z ⊓ (x ⊕ y)

)
+ h

(
(y ⊓ z)r x

)

+ h
(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)
. (A29)

Proof. We have that

h
(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
x ⊓ (x, z) ⊓ (y, z)

)
+ h

(
(y r x) ⊓ (x, z) ⊓ (y, z)

)
+ h

(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)

= h
(

x ⊓ (y, z)
)
+ h

(
(y r x) ⊓ (x, z)

)
+ h

(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)
, (A30)

where we have used (68) and Lemma A5. Next, we have that

h
(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
x ⊓ (y, z)

)
+ h

(
(y r x) ⊓ x

)
+ h

(
(y r x) ⊓ (z r x)

)
+ h

(
(y r x) ⊓ (x ⊕ z)

)

+ h
(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)

= h
(
x ⊓ (y, z)

)
+ 0 + h

(
(y ⊓ z)r x

)
+ h

(
y ⊓ (x ⊕ z)

)

+ h
(
(x ⊕ y) ⊓ (x, z) ⊓ (y, z)

)
(A31)

where we have used Lemma A1, Lemma A4 and Lemma A7. Finally, we have that

h
(
(x, y) ⊓ (x, z) ⊓ (y, z)

)
= h

(
x ⊓ (y, z)

)
+ h

(
(y ⊓ z)r x

)
+ h

(
y ⊓ (x ⊕ z)

)
+ h

(
z ⊓ (x ⊕ y)

)

+ h
(
(x ⊕ y) ⊓ (x ⊕ z) ⊓ (y ⊕ z)

)
, (A32)

where we have used via Lemma A8.

References

1. Reza, F. An Introduction to Information Theory, International student edition; McGraw-Hill: New York, NY,
USA, 1961.

2. Kuo Ting, H. On the Amount of Information. Theory Probab. Appl. 1962, 7, 439–447. doi:10.1137/1107041.
(Originally in Russian; English translation by D. Lieberman) [CrossRef]

3. Abramson, N. Information Theory and Coding; McGraw-Hill: New York, NY, USA, 1963.
4. Campbell, L. Entropy as a measure. IEEE Trans. Inf. Theory 1965, 11, 112–114. doi:10.1109/TIT.1965.1053712.

[CrossRef]
5. Csiszar, I.; Körner, J. Information Theory: Coding Theorems for Discrete Memoryless Systems; Academic Press,

Inc.: Cambridge, MA, USA, 1981.

CHAPTER 5: A NEW FRAMEWORK FOR INFORMATION DECOMPOSITION 107



Entropy 2020, 22, 216 31 of 34

6. Yeung, R.W. A new outlook on Shannon’s information measures. IEEE Trans. Inf. Theory 1991, 37, 466–474.
doi:10.1109/18.79902. [CrossRef]

7. Yeung, R.W. Information Theory and Network Coding; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2008.

8. MacKay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge,
UK, 2003.

9. Fano, R.M. Transmission of Information: A Statistical Theory of Communication; M.I.T. Press: Cambridge, MA,
USA, 1961.

10. McGill, W. Multivariate information transmission. Trans. IRE Prof. Group Inf. Theory 1954, 4, 93–111.
[CrossRef]

11. Bell, A.J. The co-information lattice. In Proceedings of the Fifth International Workshop on Independent
Component Analysis and Blind Signal Separation: ICA, Granada, Spain, 22–24 September 2004; Volume 2003.

12. Han, T.S. Linear dependence structure of the entropy space. Inf. Control 1975, 29, 337–368. [CrossRef]
13. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
14. Fano, R.M. The statistical theory of information. Il Nuovo Cimento 1959, 13, 353–372. doi:10.1007/BF02724671.

[CrossRef]
15. Pinsker, M.S. Information and Information Stability of Random Variables and Processes; Holden-Day: San Francisco,

CA, USA, 1964.
16. Grätzer, G. General Lattice Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002.
17. Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002.
18. Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2012.
19. Inc., O.F. The On-Line Encyclopedia of Integer Sequences. 2019. Available online: https://oeis.org/A000372

(accessed on 14 February 2020).
20. Birkhoff, G. Lattice Theory; American Mathematical Soc.: Providence, RI, USA, 1940; Volume 25.
21. Stanley, R.P. Enumerative Combinatorics; Cambridge University Press: Cambridge, UK, 1997; Volume 1,
22. Sheldon, R. A first Course in Probability; Pearson Education India: Delhi, India, 2002.
23. Williams, P.L.; Beer, R.D. Nonnegative decomposition of multivariate information. arXiv 2010, arXiv:1004.2515.
24. Lizier, J.T.; Bertschinger, N.; Jost, J.; Wibral, M. Information Decomposition of Target Effects from

Multi-Source Interactions: Perspectives on Previous, Current and Future Work. Entropy 2018, 20, 307.
[CrossRef]

25. Crampton, J.; Loizou, G. The completion of a poset in a lattice of antichains. Int. Math. J. 2001, 1, 223–238.
26. Crampton, J.; Loizou, G. Two Partial Orders on the Set of Antichains. 2000. Available online: http:

//learninglink.ac.uk/oldsite/research/techreps/2000/bbkcs-00-09.pdf (accessed on 14 February 2020).
27. Finn, C.; Lizier, J.T. Pointwise partial information decomposition using the specificity and ambiguity lattices.

Entropy 2018, 20, 297. [CrossRef]
28. Finn, C.; Lizier, J.T. Probability Mass Exclusions and the Directed Components of Mutual Information.

Entropy 2018, 20, 826. [CrossRef]
29. Chan, C.; Al-Bashabsheh, A.; Ebrahimi, J.B.; Kaced, T.; Liu, T. Multivariate mutual information inspired by

secret-key agreement. Proc. IEEE 2015, 103, 1883–1913. [CrossRef]
30. Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960, 4, 66–82.

[CrossRef]
31. Garner, W.R. Uncertainty and structure as psychological concepts. Science 1963, 140, 799.
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Erratum

1. On page 3 of the published paper between (10) and (11), Bob’s expected information should be

given by H(Y), not H(X) as is stated.

2. The sentence following (20) on page 5 of the published paper is unclear, as it could be interpreted

as though it is saying that the mutual information content is non-negative. What is meant here is

that the non-negativity of the mutual information does not follow trivially from the properties of

the mutual information content, but rather must be proved separately.

3. The caption does not entirely describe the contents of Figure 8. Specifically, the dotted outline

corresponding to h(x, y, x) contains unexplained lobes. The top left lobe corresponds to the

additional information associated with knowing h(x, y) relative to h(x), while the bottom left

lobe corresponds to knowing h(x, y, z) relative to h(x, y). This idea is more clearly depicted for

two realisations in Figure 4, which Figure 8 is supposed to generalise.
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CHAPTER 6

CONCLUSION

This thesis presents a new framework for decomposing multivariate information and was indepen-

dently derived in two distinct ways. The first approach was a top-down method of defining axioms

for a measure of redundant information and was presented in Chapter 4. One of the key features

of this approach was the operational interpretation provided by probability mass exclusions from

Chapter 3. The second approach was a bottom-up derivation based upon the algebraic structure of

shared information and was presented in Chapter 5. One of the main results was that the redundancy

lattice from partial information decomposition can be derived by combining the algebraic structures

of joint and shared information content.

6.1 Summary of the Main Results

The partial information decomposition of Williams and Beer provided an intriguing framework for

the decomposition of multivariate information [1] . However, it was not long before “serious flaws” [2,

p. 2163] were identified. Despite the issues, the axiomatic derivation of the redundancy lattice seemed

too elegant to be abandoned. This thesis represents a new framework for multivariate information

decomposition, which was derived in two separate ways.

The first derivation was based upon William and Beer’s original approach. It begins in Chapter 3,

by considered the relationship between information and exclusions. Despite appearing in some of the

earliest works in information theory, this description had never been formalised. The key result from

this chapter is that this characterisation leads to a natural decomposition of the potentially negative

pointwise mutual information content into two non-negative components—the specificity and the

ambiguity. Crucially, unlike the pointwise mutual information, there is a one-to-one correspondence

between the probability mass exclusions and the specificity and the ambiguity. Since both the speci-

ficity and the ambiguity are non-negative, we could then evaluate a partial information decomposition

separately for each component. This yielded two separate redundancy lattices—the specificity and the

ambiguity lattices. These lattices were the key result in Chapter 4.

Then based upon an operational interpretation of redundancy developed in Chapter 3, measures

of pointwise redundant specificity and pointwise redundant ambiguity were defined. Together with

specificity and ambiguity lattices, these measures were used to decompose multivariate information

for an arbitrary number of variables. This is a key result, as many of the proposed approaches to

information decomposition do not work for more than two variables. Finally, upon recombination,

the resultant measure of pointwise redundant information satisfies the target chain rule. Again, this is
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a key result as it means that we will get consistent results when applying this decomposition to an

arbitrary number of target variables.

The second derivation is entirely independent of the first, and begins by asking the following

question: if two marginal observers, Alice and Bob, share their information with a third non-observing

party, Eve, such that she knows which joint realisation has occurred, and she knows the marginal

probability distributions, but she does not know the joint distribution, then how much information

does Eve have? We then go on to show that the algebraic structure of shared marginal information is

that of a distributive lattice—that is, each distinct way in which a set of marginal observers can share

their information with Eve corresponds to an element in a free distributive lattice.

By then using the fundamental theorem of distributive lattices, we showed that these new mea-

sures are isomorphic to the set union and intersections. This isomorphism is similar to Yeung’s

correspondence between multivariate mutual information and signed measure [3, 4]. However, in

contrast to Yeung’s correspondence, the measures of information content presented in this paper

are non-negative. Moreover, these measures maintain a clear operational meaning regardless of the

number of realisations or variables involved.

We then combine the lattice of shared marginal information content together with the semi-lattice

of joint information, and show that the redundancy lattice from partial information decomposition

is embedded within this larger algebraic structure. However, since we are considering marginal

information contents, this structure is actually equivalent to the specificity lattice from pointwise

partial information decomposition which completes the second independent derivation.

6.2 Further Theoretical Research

There is a need to bridge the divide between the theoretical and applied communities who utilise

information theory to quantify multivariate interdependence. There is a particular need for enabling

tools that would allow applied researchers to benefit from the recent theoretical advancements in

information theory, such that these improvements can be applied to real-world problems. In order to

achieve this, we will need to work from both the theoretical and applied sides of a particular problem

such that there is an appreciation of the kinds of questions and problems that practitioners seek to

answer, and an understanding of the theoretical limitations that arise when applying the framework.

There are several theoretical issues which need to be addressed before information decomposition

will garner widespread use.

Firstly, Williams & Beer [1] showed that a target component can depend on two source components

in four distinct ways: for three source components there are 18 distinct ways; for four components there

are 166 ways; for five there are 7,579 ways; for six there are 7,828,352 ways; for nine components the

number of distinct ways is so large that, even with modern supercomputers, it is not yet computable.

This scaling presents difficulties for even relatively small systems. Realistically, for most pertinent

research questions, practitioners only need to quantify the most significant or important interactions.

Thus, the question naturally arises: how can we quickly identify the most important interactions,

and how can we represent or summarise these dependencies in an efficient and meaningful manner?

Addressing this problem would enable researchers to readily quantify multivariate dependencies in

non-trivial systems, and perhaps even enable the analysis of the interdependencies in complex systems.
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Secondly, many real-world systems, such as bond yields or gene expression levels, are best

described using continuous values. Notwithstanding this, almost all of the existing theoretical work

on information decomposition considers only discrete probability. The existing theory can only be

used to analyse these systems if one bins the continuous data; nevertheless, binning continuous data

introduces additional parameters, undesirable artefacts, and a loss of accuracy [5]. The only existing

theoretical work on the information decomposition of continuous data is limited to Gaussian systems,

and so is narrow in scope [6]. Thus, there is a need to extend this framework such that it can be applied

to continuous data, and hence enable a greater number of researchers to apply the tools of information

decomposition to their research problems.

Thirdly, evaluating the established information-theoretic measures from continuous data will

require a numerical estimator, e.g. Gaussian, box-kernel or Kraskov–Stögbauer–Grassberger [7]. These

estimators each use a different algorithm which each make a distinct assumption about the underlying

data. It is unclear if these numerical estimators will be suitable for the evaluation of the measures from

the information decomposition. Furthermore, it is not yet clear what effect the curse of dimensionality

will have upon this estimation of these measures. Addressing this issue is a necessary step for enabling

practitioners to numerically quantify multivariate interdependence in continuous systems.

Finally, there is a need to provide open-source software which evaluates the decomposition in a user

friendly manner. The two existing software packages for decomposing multivariate information are

too limited in scope. Firstly, the Discrete Information Theory (DIT) package [8] focuses on providing

theoreticians with a means for comparing their methods on hypothetical data. Secondly, while the

Information Dynamics Toolkit XL (IDTxl) [9] does focus on providing methods for analysing empirical

data, the technique it uses for evaluating the information decomposition is currently based upon

the measure ŨI from Bertschinger et al. [10], which is only capable of decomposing the information

provided by two source variables. Providing an implementation of the framework presented in this

thesis would enable researchers to decompose multivariate information from an arbitrarily large

number of source variables.

6.3 Potential Applications

There are certain areas of application which would be amenable to providing a proof of concept study

for the use of information decomposition. For example, in the financial markets, one could consider

how various factors, such as changing monetary policy or inflationary expectations, drive changes

in the yields of a set of similar bonds over a range of maturities. These changes are typically highly

correlated, although certain factors may lead to relative changes in the yields. In many situations,

it is interesting to ask which bonds are driving these changes—information decomposition has the

potential to provide quantitative answers to this question.

It is well-known that the brain uses distributed multivariate patterns to encode information

about its embodied environment, and that the dynamics of individual regions in the brain depend

synergistically on multiple other regions [11–13]. Information decomposition offers a means to

quantify these synergistic dependencies in neural data [14], to provide a more detailed understanding

of neural encoding, to improve our ability to infer brain networks, and to reveal the dynamics of how

information is fused during cognitive tasks.
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The vast majority of the existing analysis of phenotypic traits are based upon the pairwise rela-

tionship between the genes and a particular trait. Nevertheless, it is well-known that many traits are

not dependent on any one gene, but rather are synergistically dependent on two or more genes [15,

16]; e.g. human eye colour is dependent on up to 16 different genes [17]. Information decomposition

provides a means to quantify the unique, redundant and synergistic dependence between a trait and a

set of genes, which promises to help us understand how phenotypes emerge from genes and hence

genetic disorders.
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APPENDIX A

QUANTIFYING INFORMATION MODIFICATION

The conference paper here was presented at the Conference on Artificial Life 2018, in Tokyo. It contains

preliminary results that demonstrate how one might use the measures of synergistic information

from the framework presented in this thesis to quantify information modification in the information

dynamics framework. Crucially, this new framework is uniquely suited to this application as it is the

only approach which works for more than two variables and can be applied at a pointwise scale, both

of which are necessary for this application.
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Abstract

Pointwise partial information decomposition provides a means
to quantify information modification in discrete systems ex-
hibiting intrinsic distributed computation. In his seminal “Com-
putation at the Edge of Chaos”, Chris Langton investigated how
intrinsic computation emerges in cellular automata which sup-
port the three primitive functions of computation—information
storage, transfer, and modification. Despite the appealing de-
scription, Langton gave no precise information-theoretic def-
inition of the three primitive functions. In the decades since,
information storage and transfer have been defined; however, a
satisfactory definition of information modification has proven
to be more elusive. This paper uses the recently introduced
pointwise partial information decomposition to provide a quan-
titative measure of information modification. Moreover, this
approach provides a hierarchy of different types of modifica-
tions, which each combine or synthesis different combinations
of stored or transferred information. This ability to identify
different types of information modification events in both space
and time is exemplified with an application to cellular automata.

Background
Understanding how distributed systems perform intrinsic
computation is a central interest in the fields of artificial life,
complex systems, and neuroscience. This information pro-
cessing is often parsed into three fundamental components:
information storage, transfer, and modification. Cellular au-
tomata, simple discrete dynamical systems from which coher-
ent structures known as particles emerge, have long been the
choice model for exhibiting distributed computation. The typ-
ical conjecture is that stationary particles store information,
moving particles transfer information, and colliding particles
modify information (Langton, 1990). Recently, there has
been an effort to formally quantify the three component op-
erations using information-theoretic definitions. In previous
work on information dynamics, Lizier et al. (2008, 2012)
demonstrated how information storage and transfer can be de-
fined in terms of pointwise information measures. Crucially,
this pointwise perspective enables these measures to pinpoint
where and when information is being stored and transferred
within the distributed system. However, this perspective has
not yet delivered a satisfactory measure of information modi-
fication (Lizier et al., 2013). Here we show how pointwise

partial information decomposition (Finn and Lizier, 2018)
can be used to provide a quantification of information modi-
fication which is compatible with information dynamics. We
demonstrate this with an application to cellular automata.

Overview
Information modification is interpreted to mean interactions
between stored and transferred information which results in
a change in this information. Using this interpretation, Lizier
et al. (2013) proposed how to use the partial information de-
composition (Williams and Beer, 2010) to quantify information
modification. Based upon three axioms, the partial informa-
tion decomposition divides the information provided a set of
sources about a target into the following atoms of partial infor-
mation: the information provided uniquely by each source, the
information provided redundantly by two or more sources, the
information provided synergistically by two or more sources,
and various combinations of these three types. Lizier et al.
(2013) suggested that the non-modified information in the tar-
get is any information that is identifiable in any of the sources
individually; in terms of the partial information decomposition,
this corresponds to the partial information atoms associated
with individual sources. Conversely, the modified information
is any information which is not identifiable in any of the sources
individually, but is identifiable in the sources jointly; in terms
of the partial information decomposition, this corresponds to
all partial information atoms not accounted for previously.

Nevertheless, Lizier et al. (2013) noted two issues with
their proposal. Firstly, in order to actually evaluate the par-
tial information atoms one must define a measure of redun-
dant information which satisfies the aforementioned axioms.
There is, however, an ongoing debate as to the properties this
measure of redundancy should fulfil. Many of the proposed
measures can only provide a decomposition in the case of two
sources. This is not sufficient for a measure of information
modification since more than two information sources may be
utilised in intrinsic computation. Secondly, the partial infor-
mation decomposition does not provide pointwise measures
of unique, redundant, and synergistic information making it
incompatible with the information dynamics approach.
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Results
Recently, we took the axiomatic approach of Williams and
Beer (2010) and applied it on a pointwise scale to provide
measures of pointwise unique, redundant, and synergistic
information (Finn and Lizier, 2018). Crucially, this point-
wise partial information decomposition works for an arbitrary
number of source variables and hence overcomes both of the
aforementioned issues. We demonstrate how the pointwise
measures of synergistic information can be used to pinpoint
where and when information modification is occurring a dis-
tributed system. Moreover, since the decomposition works
for an arbitrary number of information sources, it can identify
a hierarchy of different orders of information modification—
the higher the order, the more information sources involved
in the processing. When applied to elementary cellular au-
tomata, we get the following results: the non-modified, order
one information, which is simply translated from the past or
a neighbouring cell, dominates in the background domains;
the modified, order two information, which involves a non-
trivial synthesis of information from two sources, dominates
where gliders interact with domains; finally, the modified,
order three information, which combines information from
all three sources, is particularly prevalent in glider collisions.
We observe that Class I and II cellular automata tend to be
devoid of information modification events, while Class III
cellular automata are dominated by information modification
events. As exemplified in Fig. 1, Class IV cellular automata
feature a balance of modified and non-modified information,
enabling the system to store, transfer, and modify information
at different locations in space and time.
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Figure 1: Class IV cellular automata feature a balance modi-
fied and non-modified information, enabling information stor-
age, transfer, and modification to coexist at different locations
in distributed computation. Top: elementary cellular automa-
ton rule 54 initiated with random initial conditions. Middle
top: the non-modified, order one information dominates in
the background domains. Middle bottom: the modified, or-
der two information is predominant where gliders interact
with domains. Bottom: the modified, order three information
modification is especially relevant in glider collisions.
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APPENDIX B

IMPLEMENTING THE BROJA-MEASURE IN IDTXL

Towards the beginning of my candidature, together with the co-authors of this paper, we designed

and implemented a numerical algorithm for evaluating the unique information using the BROJA-

measure ŨI. The algorithm forms the partial information decomposition calculator in the IDTxl

toolbox.
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Summary

We present IDTxl (the Information Dynamics Toolkit xl), a new open source Python
toolbox for effective network inference from multivariate time series using information
theory, available from GitHub (https://github.com/pwollstadt/IDTxl).

Information theory (Cover & Thomas, 2006; MacKay, 2003; Shannon, 1948) is the math-
ematical theory of information and its transmission over communication channels. In-
formation theory provides quantitative measures of the information content of a single
random variable (entropy) and of the information shared between two variables (mutual
information). The defined measures build on probability theory and solely depend on
the probability distributions of the variables involved. As a consequence, the dependence
between two variables can be quantified as the information shared between them, without
the need to explicitly model a specific type of dependence. Hence, mutual information is
a model-free measure of dependence, which makes it a popular choice for the analysis of
systems other than communication channels.

Transfer entropy (TE) (Schreiber, 2000) is an extension of mutual information that mea-
sures the directed information transfer between time series of a source and a target vari-
able. TE has become popular in many scientific disciplines to infer dependencies and
whole networks from data. Notable application domains include neuroscience (Wibral, Vi-
cente, & Lindner, 2014) and dynamical systems analysis (Lizier, Prokopenko, & Zomaya,
2014) (see Bossomaier, Barnett, Harré, & Lizier (2016) for an introduction to TE and a
comprehensive discussion of its application). In the majority of the applications, TE is
used in a bivariate fashion, where information transfer is quantified between all source-
target pairs. In a multivariate setting, however, such a bivariate analysis may infer
spurious or redundant interactions, where multiple sources provide the same information
about the target. Conversely, bivariate analysis may also miss synergistic interactions
between multiple relevant sources and the target, where these multiple sources jointly
transfer more information into the target than what could be detected from examining

Wollstadt et al., (2019). IDTxl: The Information Dynamics Toolkit xl: a Python package for the efficient analysis of multivariate information
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source contributions individually. Hence, tools for multivariate TE estimation, account-
ing for all relevant sources of a target, are required. An exhaustive multivariate approach
is computationally intractable, even for a small number of potential sources in the data.
Thus, a suitable approximate approach is needed. Although such approaches have been
proposed (e.g., Lizier & Rubinov (2012) and Faes, Nollo, & Porta (2011)) and first soft-
ware implementations exist (Montalto, Faes, & Marinazzo, 2014), there is no current
implementation that deals with the practical problems that arise in multivariate TE es-
timation. These problems include the control of statistical errors that arise from testing
multiple potential sources in a data set, and the optimization of parameters necessary for
the estimation of multivariate TE.

IDTxl provides such an implementation, controlling for false positives during the selec-
tion of relevant sources and providing methods for automatic parameter selection. To
estimate multivariate TE, IDTxl utilises a greedy or iterative approach that builds sets
of parent sources for each target node in the network through maximisation of a con-
ditional mutual information criterion (Faes et al., 2011; Lizier & Rubinov, 2012). This
iterative conditioning is designed to both removes redundancies and capture synergistic
interactions in building each parent set. The conditioning thus automatically constructs
a non-uniform, multivariate embedding of potential sources (Faes et al., 2011) and op-
timizes source-target delays (Wibral et al., 2013). Rigorous statistical controls (based
on comparison to null distributions from time-series surrogates) are used to gate parent
selection and to provide automatic stopping conditions for the inference, requiring only a
minimum of user-specified settings.

Following this greedy approach, IDTxl implements further algorithms for network infer-
ence (multivariate mutual information, bivariate mutual information, and bivariate trans-
fer entropy), and provides measures to study the dynamics of various information flows on
the inferred networks. These measures include active information storage (AIS) (Lizier,
Prokopenko, & Zomaya, 2012) for the analysis of information storage within network
nodes, and partial information decomposition (PID) (Bertschinger, Rauh, Olbrich, Jost,
& Ay, 2014; Makkeh, Theis, & Vicente, 2018; Williams & Beer, 2010) for the analysis of
synergistic, redundant, and unique information two source nodes have about one target
node. Where applicable, IDTxl provides the option to return local variants of estimated
measures (Lizier, 2014a). Also, tools are included for group-level analysis of the inferred
networks, e.g. comparing between subjects or conditions in neural recordings.

The toolkit is highly flexible, providing various information-theoretic estimators for the
user to select from; these handle both discrete and continuous time-series data, and allow
choices, e.g. using linear Gaussian estimators (i.e. Granger causality, Granger (1969)) for
speed versus nonlinear estimators (e.g. Kraskov, Stögbauer, & Grassberger (2004)) for
accuracy (see the IDTxl homepage for details). Further, estimator implementations for
both CPU and GPU compute platforms are provided, which offer parallel computing en-
gines for efficiency. IDTxl provides these low-level estimator choices for network analysis
algorithms but also allows direct access to estimators for linear and nonlinear estima-
tion of (conditional) mutual information, TE, and AIS for both discrete and continuous
data. Furthermore low-level estimators for the estimation of PID from discrete data are
provided.

The toolkit is a next-generation combination of the existing TRENTOOL (Lindner, Vi-
cente, Priesemann, & Wibral, 2011) and JIDT (Lizier, 2014b) toolkits, extending TREN-
TOOL’s pairwise transfer entropy analysis to a multivariate one, and adding a wider
variety of estimator types. Further, IDTxl is Python3 based and requires no proprietary
libraries. The primary application area for IDTxl lies in analysing brain imaging data
(import tools for common neuroscience formats, e.g. FieldTrip, are included). However,
the toolkit is generic for analysing multivariate time-series data from any discipline. This
is realised by providing a generic data format and the possibility to easily extend the
toolkit by adding import or export routines, by adding new core estimators, or by adding

Wollstadt et al., (2019). IDTxl: The Information Dynamics Toolkit xl: a Python package for the efficient analysis of multivariate information
dynamics in networks. Journal of Open Source Software, 4(34), 1081. https://doi.org/10.21105/joss.01081

2

APPENDIX B: IMPLEMENTING THE BROJA-MEASURE IN IDTXL 123



new algorithms based on existing estimators.
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Abstract: Information processing performed by any system can be conceptually decomposed into
the transfer, storage and modification of information—an idea dating all the way back to the work
of Alan Turing. However, formal information theoretic definitions until very recently were only
available for information transfer and storage, not for modification. This has changed with the
extension of Shannon information theory via the decomposition of the mutual information between
inputs to and the output of a process into unique, shared and synergistic contributions from the inputs,
called a partial information decomposition (PID). The synergistic contribution in particular has been
identified as the basis for a definition of information modification. We here review the requirements
for a functional definition of information modification in neuroscience, and apply a recently proposed
measure of information modification to investigate the developmental trajectory of information
modification in a culture of neurons vitro, using partial information decomposition. We found that
modification rose with maturation, but ultimately collapsed when redundant information among
neurons took over. This indicates that this particular developing neural system initially developed
intricate processing capabilities, but ultimately displayed information processing that was highly
similar across neurons, possibly due to a lack of external inputs. We close by pointing out the
enormous promise PID and the analysis of information modification hold for the understanding of
neural systems.

Keywords: information theory; partial information decomposition; neural computation; neural
development; self-organisation

1. Introduction

Shannon’s quantitative description of information and its transmission through a communication
channel via the entropy and the channel capacity, respectively, has drawn considerable interest from
the field of neuroscience from the very beginning. This is because information processing in neural
systems is typically performed in a highly distributed way by many communicating processing
elements, the neurons.

However, in contrast to a channel in Shannon’s sense, the purpose of dendritic connections
in a neural system is not to simply relay information for the sake of reliable communication.
Instead, communication between neurons serves the purpose of collecting multiple streams of
information at a neural processing element that modifies this information, i.e., that synthesizes the
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incoming streams into output information that is not available from any of these streams in isolation.
This becomes immediately clear when looking at the meshed structure of nervous systems, where
multiple communication streams converge on single neurons, and where neural output signals are
sent in a divergent manner to many different receiving neurons. This structure differs dramatically
from a structure solely focused on the reliable transmission of information where many parallel,
but non-interacting streams would suffice. Thus, the meshed architecture seems to have evolved to
“fuse” information from different input sources (including a neuron’s recent spiking history and its
current state) in a nontrivial way, e.g., other than simply multiplexing it in the output. In other words,
the distributed computation in neural systems may heavily rely on information modification [1].

Attempts at formally defining information modification have presented a considerable challenge,
however, in contrast to the well established measures of information transfer [2–6] and active
information storage [7–9]. This is because identifying the “modified” information in the output of
a processing element amounts to distinguishing it from the information from any input that survives
the passage through the processor in unmodified form. These unmodified parts, in turn, may either come
uniquely from one of the inputs, uniquely from another input (unique mutual information between an
input and the output), or may be provided by multiple inputs simultaneously (shared mutual information
between several inputs and the output). A decomposition of the mutual information between the inputs
and the output of this kind is called a partial information decomposition (PID) [10] (Some authors
prefer the simpler term “information decomposition”, also in this special issue.).

In a PID, the problem of identifying modified information is equivalent to identifying the part of
the (joint) mutual information that is not unique mutual information from one or another input, and
that is also not shared mutual information from multiple inputs. This remaining part has been termed
synergistic mutual information in the work of Williams and Beer [10], and has been identified with
information modification in [11] for the reasons given above.

The recent pioneering work by Williams and Beer [10] revealed that the standard axioms of
information theory do not uniquely define the unique, shared and synergistic contributions to
the mutual information, and that additional axioms must be chosen for its meaningful decomposition.
Among several possible choices of additional axioms or assumptions available at the time of this study
(see Section 4.1) we here adhere to the definition given independently by Bertschinger, Rauh, Olbrich,
Jost, and Ay (“BROJA-measure”, [12]) and Griffith and Koch [13]. Our decision is based on two
properties of the BROJA measure that seem necessary for an application to the problem of information
modification as described above: first, in their definition, the presence of non-zero synergistic mutual
information for the case of two inputs and one output cannot be deduced from the (two) marginal
distributions of one input and one output variable. This property distinguishes the BROJA measure
from the others available at the time; Bertschinger et al. [12] referred to it as Assumption (∗∗),
and showed that the BROJA measure is the only measure that satisfies both Assumption (∗) and
(∗∗), where Assumption (∗) indicates that the existence of unique information only depends on the
pairwise marginal distributions between the individual inputs and the output. The measures from
Williams and Beer [10] and Harder et al. [14] only satisfy Assumption (∗), but not (∗∗)—see [12] for
details. Second, the BROJA measure is placed on a rigorous mathematical footing, being derived
directly from the aforementioned Assumption (∗) rather than postulated ad hoc; furthermore, it has an
operational interpretation in terms of expected utilities from the output based on knowledge of only
each input, and many mathematical properties proven.

In our proof-of-principle study, we apply the BROJA decomposition of mutual information to
the analysis of the emergent information processing in self-organizing neural cultures, and show
that these novel information theoretic concepts indeed provide a meaningful contribution to our
understanding of neural computation in this system.
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2. Methods

In the following, we consider the neural data produced by two neurons as coming from two
stationary random processes X1, X2, composed of random variables X1(i) and X2(i), i = 1 . . . n,
with realizations x1(i), x2(i). The corresponding embedding or state space vectors are given in bold
font, e.g., xl(i) = {x(i), x(i− 1) . . . , x(i− l + 1)}. The state space vector xl(i) is constructed such that it
renders the variable x(i + 1) conditionally independent of all random variables x(j) with j < i− l + 1,
i.e., p(x(i + 1)|xl(i), x(j)) = p(x(i + 1)|xl(i)).

2.1. Definition and Estimation of Unique, Shared and Synergistic Mutual Information

For two input random variables X1, X2 and an output random variable Y (Figure 1),
Bertschinger et al. [12] defined the four unique, shared and synergistic contributions to the joint mutual
information I(Y : X1, X2) as:

Ĩunq(Y : X1 \ X2) := min
Q∈∆P

IQ(Y : X1|X2) (1)

Ĩunq(Y : X2 \ X1) := min
Q∈∆P

IQ(Y : X2|X1) (2)

Ĩshd(Y : X1; X2) := max
Q∈∆P

(I(Y : X1)− I(Y : X1|X2)) (3)

Ĩsyn(Y : X1; X2) := I(Y : (X1, X2))

− min
Q∈∆P

IQ(Y : (X1, X2)) , (4)

where I is the standard mutual or conditional mutual information [15,16], Ĩunq is the unique, Ĩshd
the shared, and Ĩsyn the synergistic mutual information. In our notation, the comma separates variables
within a set that are considered jointly, the colon separates the (sets of) random variables between
which the mutual information is computed, while the semicolon or backslash separates sets of random
variables that we are decomposing such mutual information across. For the latter, the semicolon is
used for measures where the sets of random variables are considered symmetrically (i.e., shared and
synergistic information), while the backslash is used for asymmetric cases (i.e., unique information
in one but not the other). ∆Q in the above definitions is the space of probability distributions Q that
have the same pairwise marginal distributions between each input and the output as the original joint
distribution P of X1, X2, Y, i.e.:

∆P = {Q ∈ ∆ : Q(X1 = x1, Y = y) = P(X1 = x1, Y = y)

and Q(X2 = x2, Y = y) = P(X2 = x2, Y = y)} .
(5)
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Figure 1. Decomposition of the joint mutual information between two input variables X1, X2 and
the output variable Y. Modified from [17], CC-BY license.
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2.2. Mapping of Neural Recordings to Input and Output Variables for PID, and Definition of Information Modification

In our application to developing neural cultures, we always consider two spike trains (A,B) at
a time: the past state of the spike train A, X−A , is one of the input variables and the past state of a spike
train B, X−B , is considered as the other input variable. Empirically, these states are usually constructed
using the aforementioned embedding or state space vectors xl(i) of length l. The output variable X+

A
is simply spike train A’s current spiking behavior (spiking or not).

This output variable is computed from external inputs (X−B ) as well as the output variable’s own
history X−A . When analyzing this computation, one wishes to focus on the operations of information
storage, transfer and modification, in alignment with established views of distributed information
processing in complex systems [18,19]. In this study, specifically, we will focus on information
modification, yet we first need to decompose the output variable in terms of information storage
and information transfer, where the latter will also contain the information modification (see [11]
and Figure 2):

I(X+
A : X−A , X−B ) = I(X+

A : X−A) + I(X+
A : X−B |X−A). (6)

Here, I(X+
A : X−A) is the active information storage [7], the predictive information from the past

state of the variable to its next value. Then, I(X+
A : X−B |X−A) is the transfer entropy [2], the predictive

information from the past of the other source B to the next value of A, in the context of the past of A.
In order to identify information modification, we need to take this decomposition further to reveal

two sub-components of each of these information storage and transfer terms. These sub-components
result from a partial information decomposition of I(X+

A : X−A , X−B ) into four parts (see Figure 2):

1. The unique mutual information of the output spike train’s own past Ĩunq(X+
A : X−A \X−B )—this can

be considered as information uniquely stored in the past output of the spike train that reappears
at the present sample.

2. The unique information from the other spike train Ĩunq(X+
A : X−B \ X−A)—this is the information

that is transferred unmodified from the input to the output of the receiving spike train (also known
as the state independent transfer entropy [20]).

3. The shared mutual information about the output of spike train A that can be obtained both from
the past states of spike train A and of spike train B, Ĩshd(X+

A : X−B ; X−A)—this is information that is
redundantly stored in the past of both spike trains and that reappears at the present sample.

4. The synergistic mutual information Ĩsyn(X+
A : X−B ; X−A), i.e., the information in the output of spike

train A, X+
A , that can only be obtained when having knowledge about both the past state of

the external input, X−B , and the past state of the receiving spike train, X−A . (This is also known as
the state dependent transfer entropy [20]).

B

storage

transfer entropy

A

1             3             2

4

Figure 2. Mapping between the decomposition into storage and transfer (A) and individual or joint
mutual information terms, and PID components (B). Numbers in (B) refer to the enumeration of
components given in Section 2.2. Number “4” is the modified information.
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We see that Components 1 and 3 above form the active information storage in Equation (6),
while Components 2 and 4 form the transfer entropy term. Component 4, as the synergistic mutual
information contributed by the storage and the transfer source, is what we consider to be the modified
information (following [11]). The same underlying definition of information modification from [11]
was used by Timme et al. [21] in an earlier study of dynamics of spiking activity of neural cultures,
yet with another PID measure and considering multiple external inputs to a neuron (see discussion for
further details).

2.3. PID Estimation

PID terms were estimated by minimizing the conditional mutual information as indicated in
the first equation of the system 1. To perform the minimization, we used a stochastic approach
where alternative trial distributions in ∆P are created by swapping probability mass δp between the
symbols of the current distribution such that the constraints defining ∆P are satisfied. If this swap
of probability mass leads to a reduction in the conditional mutual information, the trial distribution
is made the current distribution, and a new trial distribution is created. If the trial distribution
fails to reduce the conditional mutual information, then a new trial distribution is created from
the current distribution. This latter process is repeated for a maximum of n unsuccessful swaps in
a row (here n = 20,000), with a reset of the counter in case of a successful swap. If after these trials
no reduction is reached, then we assume that we have found the optimum possible with the current
increment in probability mass δp and that a finer resolution is needed. Hence, the increment is halved:
δp ← δp/2. This process starts with an initial δp equal to the largest probability mass assigned to
any symbol in the distribution P, and is repeated until the numerical precision of the machine or
programming language is exhausted (here, we performed 63 divisions of the original δp by a factor of 2,
using Numpy 1.11.2 under Python 3.4.3 and 128-bit floating point numbers). The algorithm is available
in the open source toolbox IDTxl [22]. We note that better solutions based on convex optimization exist
(see Makkeh et al. [23] in this special issue) and that these are implemented in newer versions of IDTxl ;
at the time of performing this study, however, these implementations were not available to us yet.

2.4. Statistical Testing

Results obtained for the joint mutual information, and for the four PID measures normalized by
the joint mutual information, were subjected to pairwise statistical tests for differences in the median
between recordings days (see Section 2.5) by means of permutation tests. An uncorrected p-value of
p < 5× 10−4, corresponding to p-value of p < 0.05 with Bonferroni correction for multiple comparisons
across five measures, and 20 pairs of recording days, was considered significant.

We normalized the PID values to remove influences from changes in the overall activity of
the culture (that change the entropy of the inputs) and to abstract from changes in the overall joint
mutual information. Note that we did not test these normalized PID values for significance against
surrogate data, as the focus here was on changes with development of the culture. Moreover, the four
normalized PID terms analyzed here are not independent from each other, but instead sum up to a
value of 1, making the construction of a meaningful statistical test difficult.

2.5. Electrophysiological Data—Acquisition and Preprocessing

The spike recordings were obtained by Wagenaar et al. [24] from a single in vitro culture of
M ≈ 50,000 cortical neurons. The data are available online at [25]; of the data provided in this
repository, we used culture/experiment “2-1”, days 7, 14, 21, 28, and 34. Details on the preparation,
maintenance and recording setting can be found in the original publication. In brief, cultures were
prepared from embryonic E18 rat cortical tissue. Recordings lasted more than 30 min. The recording
system comprised an 8× 8 array of 59 titanium nitride electrodes with 30 µm diameter and 200 µm
inter-electrode spacing, manufactured by Multichannel Systems (Reutlingen, Germany). As described
in the original publication, spikes were detected online using a threshold based detector as upward
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or downward excursions beyond 4.5 times the estimated root mean squared (RMS) noise [26]. Spike
waveforms were stored, and used to remove duplicate detections of multiphasic spikes. Spike sorting
was not employed, and thus spike data represent multi-unit activity. To obtain a tractable amount of
data, we randomly picked spike time series from the dataset, and of these only selected those that
developed at least a moderate level of activity with maturation of the culture (channels 01, 02, 03, 04,
05, 07, 11, 13, 14, 16, 19, 50, 53, 57, 58, 60), to guarantee a certain level of (Shannon) information to be
present. In total, our analyses comprise 16 spike time series, i.e., 240 pairs of spike time series.

From these spike time series, the realizations x+A(i) of the random variable X+
A (i) were constructed

by applying bins of 8 ms length; empty bins were denoted by zeros, whereas bins that contained at
least one spike were denoted with ones. The corresponding approximate past state vectors x− l

A/B(i)
were constructed with finite past length l = 3, and to balance the need for low dimensionality for
an unbiased estimate and a coverage of as much past history as possible, three past bins of size 8 ms,
32 ms and 32 ms were defined, where the shortest bin was the bin closest to i, and where both the 8 ms
and the two 32 ms bins were set to one or zero depending on whether or not a spike occurred anywhere
within these bins. This approach to cover a longer history at a low dimensionality amounts to a
compressing of the information in the history of the process, aiming to retain what we perceive to be
the most relevant information. This approach is similar to the one used by Timme et al. [27], except for
the use of nonuniform binwidths in our case. Alternative approaches to large bin widths exist that are
either based (i) on nonuniform embedding, picking the most informative past samples (or bins with
a small width on the order of the inverse sampling rate) from a collection of candidates (e.g., [28–30]),
and the IDTxl toolbox [22]; or (ii) on varying the lag between an a vector of evenly spaced past bins
and the current sample [4,31,32], but both of these approaches might be less suitable for relatively
sparse binary data, such as spike trains.

3. Results

3.1. PID of Information Processing in Neural Cultures

From the original report by Wagenaar et al. [26], the following aspects of the development of
the “dense” culture analyzed here can be observed: (i) by preparation, neurons were unconnected
and mostly silent at first; then (ii) show spontaneous activity and begin to be connected (compare the
increase of mutual information between inputs and outputs in Figure 3); later, they (iii) become densely
connected and thereby strongly responsive to each other’s spiking activity (Quote from [26]: “We . . .
found that functional projections grew rapidly during the first week in vitro in dense cultures, reaching across
the entire array within 15 days (Figure 9)”); while, in a last stage, (iv) connectivity often leads to activity
pattern where all neurons become simultaneously active in large, culture spanning bursts of activity.
This can, for example, be seen for data used here in the development of large, system spanning neural
avalanches with maturation of the culture (see Figure 4 in [33] and Figure 13 in the corresponding
preprint [34]; for the definition of neural avalanches as used here, see [35]). The number of such system
spanning avalanches was [0, 0, 7, 50, 73] for the five recording weeks. At the same time, the mean
avalanche sizes (defined in [35]) also increased as (1.05, 1.31, 1.81, 4.39, 3.42)—note the jump from
week 2 to 3 in both measures, and compare to the normalized shared information in Figure 4.

From the viewpoint of partial information decomposition, we hypothesized that stages (i) and (ii)
should be characterized by a high fraction of unique information from a neuron’s own history because
neurons that do not yet receive sufficient input to trigger their firing can only have unique mutual
information with their own history.

Unique information from other neuron’s inputs, and also synergy between both neurons’ past
states should be visible in stage (iii) because we assume that neurons, even in vitro are wired to fuse
information from multiple sources with their the information of their own state. Thus, we expected
non-trivial computation in the form of synergy to be visible as long as the input distributions are
sufficiently different from a neuron’s own history.
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Figure 3. Left: development of the joint mutual information with network maturation. Grey symbols and
lines—joint mutual information (MI) from individual pairs of spike time series, red symbols—median
over all pairs. Horizontal black lines connect significantly different pairs of median values (p < 0.05,
permutation test, Bonferroni corrected for multiple comparisons); Right: magnification of the joint
mutual information estimates in the first two recording weeks. Note that the three large outliers from
week 2 have been omitted from the plot. These tiny, but non-zero, values form the basis for the normalized
non-zero PID terms presented in Figure 4—also leading to considerable variance there.
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Figure 4. Development of normalized PID contributions (i.e., PID terms normalized by the joint mutual
information) with network maturation. Grey symbols and lines—PID values from individual pairs
of spike time series, red symbols—median over all pairs. Horizontal black lines connect significantly
different pairs of median values (p < 0.05, permutation test, Bonferroni corrected for multiple
comparisons). On the lower right, note the sudden increase in normalized shared mutual information
from week 2 to 3 that coincides with the onset of system spanning neural avalanches (see text).

In the last stage (iv), partial information decomposition should then be dominated by shared
mutual information because when all input distributions are more or less identical and highly
correlated, then there can only be shared information (at least when using the BROJA measure).

From preliminary investigations [36], we also expected the joint mutual information between
both inputs and the output to rise. Given the caveat that we analyzed multi-unit activity here,
instead of single units (i.e., single neurons) obtained by spike sorting, our results comply with these
hypotheses: the initial two recording weeks were dominated by unique information from a spike time
series’ own history, while, in intermediate recording weeks, synergistic and shared information were
dominant, and shared information finally prevailed in the last two recordings (Figure 3 shows the joint
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mutual information, with the normalized PID contributions to this shown in Figure 4 and raw PID
contributions in Figure 5).
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Figure 5. Development of raw PID contributions with network maturation. Grey symbols and
lines—PID values from individual pairs of spike time series, blue symbols—median over all pairs.
Note that we do not provide statistical tests here as the visible differences are heavily influenced by
the corresponding differences in the joint mutual information (see Figure 3).

4. Discussion

We here applied PID to neural spike recordings with the objective to compute a measure of
information modification, and, for the first time, to assess its face validity given what is already known
about information processing in developing neural cultures. Our analyses of the synergistic part of the
mutual information between information storage and transfer sources, which we see as a promising
candidate measure of information modification, complied with our intuition on how information
modification should rise with development as neurons get connected and their synaptic weights adapt
to the environment of the culture (i.e., with a lack of external input to the culture). The end of this rise
in (relative) information modification and a final drop caused by a jump in the (relative) shared part
in the mutual information was also expected given that a computation must always be understood
as the composition of a mechanism and an input distribution. This input distribution is well known
to get more and more similar over neurons as the culture approaches the typical bursting behavior
that synchronizes all activity. With all input distributions being similar in this way, there is reduced
scope for modifying information—hence the observed drop in the last recording week. In summary,
the partial information decomposition used here and the results for its synergistic part capture well
our intuition of what should happen in this simple neural system. This increases confidence in the
usefulness and interpretability of PID measures in the analysis of neural data from more complex
neural systems.

Two additional aspects seem important here: first, our analyses underline one of the key
theoretical advances of PID, that all four PID terms, and especially shared and synergistic ones,
can coexist simultaneously—a fact overlooked in early attempts to define shared (or ‘redundant’) and
synergistic contributions to the mutual information (see references in [10]); second, no knowledge on
the typical development of neural cultures was necessary to arrive at our PID results; in other words,
the development of computation in the culture could have been derived from our PID analysis alone.
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This makes PID of neural activity a useful first step when investigating the computational architecture
of a neural system.

In the sections below, we discuss some caveats to consider with this relatively young analysis
technique, where several competing definitions of a PID coexist, not all of them equally suitable for
computing information modification [11]. We also expand on the aforementioned relation between
measures of information transfer and modification. Moreover, we would like to highlight and expand
on the fact that a computation is a composition of an input distribution and a mechanism working on
these inputs. Neglecting the importance of the input distribution and understanding a PID as directly
describing a computational mechanism is a frequent misunderstanding that we would like to clarify
here. We close by highlighting potential uses of PID in neuroscience.

4.1. Which Definition of Synergistic Mutual Information to Use?

In contrast to earlier studies of synergy or information modification in neural data [21,37],
we here used the definition of unique, shared and synergistic mutual information as given by
Bertschinger et al. [12] and by Griffith and Koch [13] (BROJA-decomposition). As initially outlined,
in our view, this definition was the only published one at the time of experiment that had
the properties necessary for a mapping between information modification and the synergistic part
of the mutual information, and is sufficiently easy to compute because of the convexity of the
underlying optimization.

However, the BROJA definition has also been criticized because a decomposition is only possible
for the case of two inputs (although these inputs themselves can be arbitrarily large groups of variables).
We consider this an acceptable restriction for some purposes in neuroscience as it seems to map well to
the properties of cortical neurons; for example, the pyramidal neurons of the neocortex keep exactly
two classes of inputs separate via their apical and basal dendrites (see [17,38,39] and references therein).
In addition, as long as one is only interested in the computations performed by a neuron based on its
own history and all its inputs considered together as one (vector-valued) input variable, this framework
is sufficient (see, for example, the treatment of this case in the theoretical study presented in [17]).

In contrast to the BROJA-decomposition, Williams and Beer suggested in their original work [10]
an alternative definition that allowed the decomposition of the mutual information between multiple
inputs (considered separately, not as a group) and an output into a partial order (a mathematical
“lattice”) of shared information terms. While this decomposition into a lattice of terms clearly is
desirable, the measure of shared information given by Williams and Beer [10] (known as Imin) also has
several properties that have been questioned. First, it does not respect the locality of information, i.e.,
point-wise interpretations of this shared information are not continuous with respect to the underlying
probability distribution functions [11]. Second, it suggests the presence of shared information in
situations where in each realization only a single source ever holds non-zero information about a
target [40]. We note that the latter is an issue for the BROJA-decomposition as well.

Third, several authors have questioned the presence of non-zero shared mutual information under
Imin when there is no pairwise mutual information between the inputs themselves while the output
is a simple collection of these inputs (known as “two bit copy”). A desire for zero shared mutual
information in this case was formalized in a so-called identity axiom by Harder et al. [14]. This axiom
suggests that if two inputs X1, X2 with no mutual information between them (I(X1 : X2) = 0) are
combined into an output that is simply their collection, i.e., Y = {X1, X2} then the shared part of
the joint mutual information I(Y : X1, X2) must be zero. However there are significant arguments against
the inclusion of such an axiom, and in support of the presence of shared information in the two bit copy
problem; see, e.g., Bertschinger et al. [41], and, in this issue, by Ince [42] and Finn et al. [40]. For example,
there can be no measure of redundant information that simultaneously satisfies the original three PID
axioms, has non-negative PI atoms, and possesses the identity property [43].

APPENDIX C: AN APPLICATION IN NEUROSCIENCE 135



Entropy 2017, 19, 494 10 of 16

Debates continue on this aspect, and, in the future, it will be interesting to check the consistency
of results reported here with respect to alternative decompositions, such as those presented
by Finn et al. [40] or Ince [42] in this issue.

In summary, the BROJA measure used in this study has several appealing properties, yet it lacks
the ability to decompose the information of more than two input variables into a lattice. Several
contributions to this special issue present progress on lattice-compatible distributions [40,42] and also
investigate the consequences of the symmetrical, or asymmetrical treatment of information sources
and targets [44] (also see the work of Olbrich et al. [45] on this topic).

4.2. Previous Studies of Information Modification in Neural Data

Timme et al. [21] studied information modification in the dynamics of spiking activity of neural
cultures with a focus on the relation between information modification at a neuron and its position
in the underling (effective) network structure. They report, for example, that neurons which modify
“large amounts of information tended to receive connections from high out-degree neurons”. Both
their study and ours have in common the same underlying definition of information modification [11].
Their study differs slightly from ours in examining synergy between two external inputs to a neuron,
conditional on that neuron’s past, whereas we examine synergy between one external input and
the receiving neuron’s past. A more important difference between their study and ours, however,
is the choice of PID measure (see above). Specifically, they used the Williams and Beer [10] Imin
measure, in contrast to the BROJA measure used here—see Section 4.1 for details on the consequences
of these choices.

Another important difference is the use of multi unit activity in our study, while Timme et al. [21]
used spike sorted data that represents the activity of single neurons. However, for the data-set we
used, spike extraction was relatively conservative, using a high threshold and removing events with
spurious waveforms [26]. This resulted in a relatively low average multi-unit activity of less than
3.5 Hz. This is comparable to the mean rate of 2.1 Hz reported by Timme et al. [21]. From this, we
estimate that only one or two close by neurons typically contribute to the recorded multi-unit activity.
Thus, this difference may be relatively minor in practice. Conceptually, however, the information
contained in single and multi-unit activity clearly differs in interpretation—see the next section for the
more details.

We also note that there are earlier applications of the concept of synergy (meant as synergistic
mutual information) to neural data (e.g., [46–49]) that relied on the computation of interaction
information. However, when interpreting these studies, it should be kept in mind that these
report the difference between shared information and synergistic information—as detailed by
Williams and Beer [10]. If both are present in the data (a possibility that may simply have been
overlooked by most researchers before Williams and Beer [10]), then this view of a ‘net-synergy’ only
gives a partial view of the coding principles involved.

4.3. Information Represented by Multi and Single Unit Data

As detailed in the methods section, we performed our analyses on multi unit activity, i.e.,
we considered all spiking activity picked up by a recording electrode—potentially coming from
multiple neurons. Thus, the information processing analyzed here is that of a cluster of neurons
close to the recording electrodes, but not that of individual neurons, limiting the direct interpretation
of our results. This problem can be alleviated by using spike sorting algorithms, e.g., based on the
individual waveforms to assign each spike to an individual neuron, and then analyzing only the spikes
of individual neurons. This has indeed been done in the study by Timme et al. [21] and improves
the interpretation of the results in terms of neural coding. Ideally, it should be included in follow-up
studies on information modification via PID as well. However, as the multi-unit activity reported here
most likely contained only one or two single units (see previous section), we expect very similar results
for an analysis of single units.
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4.4. Measured Information Modification versus the Capacity of a Mechanism for Modifying Information

To appreciate the findings of the current study, it is important to realize that any computation
is a composition of (i) a mechanism and (ii) an input distribution. As an extreme example, take an
“exclusive or” (XOR)-gate, which has only one bit of synergy when fed by two uniformly distributed
random bit inputs. However, when we clamp one of these inputs, for example X1, to producing just ’0s,
then all the information (still one bit of joint mutual information) is unique information from the other
input X2. This result must hold for all PID measures by virtue of the equations linking classic mutual
information terms and PID terms (Equations (1)–(3) in [12], also consult Figure 1), and due to the fact
that the mutual information of the clamped input and the output must be equal to or smaller than
the entropy of that input, which is zero. Feeding the XOR gate with an alternative input distribution
pa(x1, x2) of the form pa(0, 1) = 3/8, pa(1, 1) = 3/8, pa(0, 0) = pa(1, 0) = 1/8 yields 0.811 bits of
synergy and 0.188 of unique information from x1, using the BROJA PID.

Another simple example would be a logical conjunction (AND)–gate fed by two different input
distributions: when fed by two independent streams of input bits with uniform probabilities of
zeros and ones, the BROJA PID results in 0.5 bit of synergy and 0.311 bit of shared information [12].
Feeding the same mechanism with an alternative input distribution pb(x1, x2) of the following form:
pb(0, 0) = 3/8, pb(1, 1) = 3/8, pb(0, 1) = pb(1, 0) = 1/8 results in approximately 0.406 bit of synergy
and 0.549 bit of shared information as measured by the BROJA PID.

This dependence of the PID on the input distribution means that describing a computation
in terms of information modification via the synergistic information describes the joint operation
of input distribution and mechanism (with the consequences related to bursting activity in neural
cultures that were noted above). Indeed, this is the correct information theoretic description of how
the system modified information in the specific computation reflected in the data. This description
does not, however, inform us about how much information modification the mechanism performing
the computation is capable of in principle. This is analogous to the situation of a communication
channel in Shannon’s theory where the mutual information IPX (X : Y) between the input X and
the output Y of a channel informs us about how much information is actually communicated across
the channel when it is fed by the input distribution PX . However, IPX (X : Y) will not inform us about
how much information we could in principle communicate across the channel, i.e., the capacity of
the channel defined by:

C = argmax
PX

IPX (X : Y). (7)

Thus, for describing the potential of a mechanism to modify information, we must define
an information modification capacity in analogy to the definition of an information transmission capacity
(Equation (7)) by maximizing the synergistic mutual information over all input distributions as:

Cmod = argmax
PY− ,X−

Ĩsyn(Y+ : Y−; X−), (8)

= argmax
PY− ,X−

[
I(Y+ : (Y−, X−))− min

Q∈∆PY+ ,Y− ,X−
IQ(Y+ : (Y−, X−))

]
. (9)

How tractable the double optimization process implied in Equation (9) is in practice and whether
analytical simplifications can be derived remains the topic of future work. However, other measures of
PID that do not rely on an optimization over the space of probability distributions (such as the one
by Finn et al. [40] in this special issue) may allow for the computation of a capacity for information
modification—given the mechanism is known.

We would like to emphasize that maximizing synergy, or any other PID term, over possible input
distributions is different from maximizing the same PID term via changes to the mechanism that yields
the output, while keeping the input distributions fixed. This latter approach is considered in detail by
the contribution of Rauh et al. [50] in this special issue.
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4.5. On the Distinction between Information Modification and Noise

We emphasize that the definition of information modification used here (and first put forward
in [11]) will not count information that is created de novo in an information processing element and
then appears in its output. This is because modified information in the output has to be explained
ultimately by the input to a processing element and the state (or history) of that element, taken together.
This clearly does not hold for information just created independently of the processor’s history. In other
words, the information created de novo is counted as output noise instead of as modified information
by our definition of information modification—a property that we consider desirable for any measure
of information modification.

4.6. On the Relation between Transfer Entropy and Information Modification

As introduced in Section 2.2, the transfer entropy between two processesX , Y , where the variables
Yt, Xt carry the current values of the processes and the variables X−, Y− carry the past state information
is defined as [2]:

TE(X → Y) = I(Yt : X−|Y−) . (10)

As first noted by Williams and Beer [20], the (conditional) mutual information on the right-hand
side can be decomposed using a PID as well. As shown in Section 2.2, this conditional mutual
information is composed of both a unique contribution from the source, and a synergistic contribution
where the current value yt is determined jointly—and not explainable in any simpler way—by the
combination of past states x− and y−, i.e., the input from X to Y and Y ’s own history. (Of course,
either component could be zero for a given distribution). Williams and Beer [10] suggested to call
this synergistic part of the transfer entropy the (receiver) state dependent transfer entropy (SDTE) to
highlight the interplay between sender and receiver in modifying the information. Obviously, such
a subdivision of transfer is highly useful where computable. Naturally, the overlaps between the
concepts of information modification and (multivariate) transfer entropy become more involved if Y
receives more than one external input. What we label as information modification in this case would
comprise the SDTE above, but perhaps not all of it, and also have additional contributions (see below
and Figure 6).

This is a special case of the general effect that the synergistic components of a PID may change if
additional inputs are considered, e.g., when the additional input on its own brings in information that
is itself redundant with the information seen as synergistic between the other inputs. See, for example,
the component labeled with {X2}{MX1} in Figure 6, which is synergistic when not considering X2,
but redundantly also provided by X2 alone. In more detail, a PID may decompose the information
provided by a larger set of sources into many different shared (redundant), unique and synergistic
components between subsets of these inputs. These components are placed onto a lattice (a partial
order) by some variants of PID measures (see Section 4.1).

APPENDIX C: AN APPLICATION IN NEUROSCIENCE 138



Entropy 2017, 19, 494 13 of 16
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{MX1}{MX2}{X1X2}

{M}
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I(Y;M)

I(Y;X1)I(Y;X2)

Figure 6. PID diagram for three input variables—two of them external inputs (X1, X2), and one
representing the past state of the receiving system (M = Y−). The parts of the diagram highlighted
in green would be considered information modification. These parts represent the information in the
receiver that can only be explained by two or more input variables considered jointly.

4.7. New Research Perspectives in Neuroscience Based on PID and Information Modification

In closing, we would like to highlight the vast potential that PID and the analysis of information
modification have both in understanding biological neural systems, and in designing artificial ones.

As detailed in [1], the comparison of shared vs. synergistic mutual information in the output of
a neuron or neural network allows us to address directly issues of robust coding vs. maximizing coding
capacity, and thereby helps us to understand fundamental design principles of biological networks.

Conversely, PID can also be used to define information theoretic goal functions and to derive local
learning rules for neurons in artificial neural networks with unprecedented detail and precision as
explicated in [17], extending popular information theoretic goal functions like infomax [51], or coherent
infomax (see [52] and references therein). In particular, the formulation of novel PID estimators that no
longer rely on an optimization step (see the work of Finn et al. [40] in this special issue) has seemingly
removed remaining difficulties with an analytical treatment of this approach.

Moreover, the PID formalism lends itself easily to the analysis of both neural and behavioral
data, enabling a direct comparison of the two. This will take our understanding of the relationship
between neural activity and behavior beyond the level of an analysis of mere representations, i.e.,
beyond decoding representations of objects and intentions, to finding the loci of particular aspects
of neural computation. For example, in a human performing a task requiring an XOR computation,
one may look for hot-spots of synergistic mutual information in the system.

Ultimately, the ability to obtain a complete fingerprint of a neural computation in terms of active
information storage, information transfer and, now, information modification makes it possible to
identify algorithms implemented by a neural system—or at least strongly confines the search space.
This finally allows to fully address the algorithmic level of understanding neural systems as formulated
more than 30 years ago by David Marr ([53], also see [1]).

5. Conclusions

We used a recent extension of information theory here to measure where and when in a neural
network information is not simply communicated through a channel but modified. The definition of
information modification here builds on the concept of synergistic mutual information as introduced
by Williams and Beer [10], and the measure defined by Bertschinger et al. [12]. We show that,
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in the developing neural culture analyzed here, the contribution of synergistic mutual information
rose as the network became more connected with development but ultimately dropped again as
the activity became largely synchronized in bursts across the whole neural culture such that most
mutual information was shared mutual information.
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