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Abstract—In this paper, we provide a general framework
for spatially-coupled concatenated systems. We explicit the
analogy with spatially-coupled protographs and provide an
adapted EXIT chart analysis. By proposing a continuous-
valued coupling matrix, we propose a code design proce-
dure for faster convergence. When considering general bit-
interleaved coded-modulation scheme, we also conjecture
that the spatially-coupled scheme of general detectors sat-
urates to a value very close (lower bound) to the threshold
given by the Area theorem.

Index Terms—Turbo codes, Spatially coupling, AWGN,
EXIT charts, Saturation, bit-interleaved coded-modulation,
Faster-than-Nyquist

I. INTRODUCTION

The convolutional counterparts of LDPC codes are
called LDPC convolutional (LDPC-C) codes [1]. They
are obtained by spatial coupling of LDPC codes and
can also be described by a sparse parity check matrix
and consequently being decoded with message passing
decoding algorithms. Because of the coupling, this family
of codes show very good thresholds thanks to the so-called
saturation phenomenon: it was proven for the Binary
Erasure Channel (BEC) that the threshold under belief
propagation decoding converges to the optimal Maximum
a posteriori (MAP) threshold [2]. Later on, an other
proof using the potential function extended these results
to other channels [3], [4]. Different methods can be used
to construct LDPC-C such as unwrapped LDPC codes [5]
or spatially-coupled protograph codes [6].

Recently, different papers extended the spatial coupling
to serial and parallel concatenated turbo-codes [7]–[10]
and derived the saturation proof for the BEC channel.
In [7], [8], authors proposed the spatial coupling of sys-
tematic parallel and serial turbo-codes and concluded that
for the BEC, coupled serially concatenated schemes have
better threshold than their parallel counterparts. In order to
terminate the spatially coupled ensemble, they proposed to
force the last information symbols to zeros. Finally, they
studied rate compatible ensembles using puncturing.

In [11], same authors studied the finite length perfor-
mance of braided convolutional codes (BCC) and showed
that the minimum distance of the coupled ensemble is
lower bounded by the the minimum distance of the uncou-
pled ensemble. In [9], the authors reviewed the literature
results on BCC and present an unified description on BCC
with respect to other turbo-like codes.

In this paper, we intend to generalize previous works to
the framework of the spatial coupling of general serially
concatenated systems. First, we will describe the proposed
coupling procedure, then we show that it is actually the

Fig. 1: The transmitter

spatial coupling of a generalized multi-edge type (MET)
or protograph LDPC code [12]. Secondly, inspired by
Protograph EXIT (P-EXIT) charts [13], we describe the
EXIT chart equations to study the asymptotic behaviour
of such systems. We also explain where the coupling gain
comes from and describe the termination and the tail-biting
procedures. Thirdly, thanks to the proposed framework,
we explore the effect of the syndrome former memory
and, by redefining the proposed coupling matrix into a
continuous-valued matrix, we introduce an optimization
procedure that optimizes the coupling in order to reduce
the number of iterations before convergence. Finally, we
discuss some results and we conjecture that the threshold
of spatially-coupled serially concatenated systems is lower
bounded by the threshold given by the area theorem [14].

II. SYSTEM DESCRIPTION

Without loss of generality, as an example of serially
concatenated system, we consider in this paper general
bit-interleaved coded-modulation (BICM) schemes where
the outer component is an error correcting code and the
inner component is a general modulation scheme (coded
modulation or modulation with memory as in the case of
faster-than-Nyquist scheme).

A. General spatially coupled Bit-interleaved coded mod-
ulation schemes

Let us consider the serially concatenated scheme com-
posed of an error correcting code and a modulator as
depicted in Fig. 1. For ease of exposition, we consider
the simple case of a convolutional code. First, a k-bits
information block s ∈ {0, 1}k is encoded with the outer
code, denoted O, into a n-bits coded block u ∈ {0, 1}n
(the code rate is R = k/n). Then, the sequence u is
interleaved by the an interleaver π to obtain v and mapped
into x = {xi}i with xi ∈ {0, . . . ,M − 1} where M is
the modulation order. Finally, the vector x is modulated
into the analog signal x(t) using a shaping filter. For ease
of notations, the mapping and the shaping are considered
jointly and constitute the modulator M.

In this paper, we assume that the complex signal x(t)
is sent over an additive white Gaussian noise (AWGN)
channel with a one-sided power spectral density N0.

At the receiver side, a classical iterative turbo receiver
is considered [15], [16]: the received signal y(t) is first



Fig. 2: The receiver

Fig. 3: The compact graph of the encoder (left) and the decoder (right)

processed by a soft-input soft-output (SISO) demodulator
M−1. The obtained extrinsic log-likelihood ratios (LLRs)
of the demodulated bits, Le(I), are deinterleaved and used
as an a priori LLRs, La(O), by the outer decoder O−1.
This latter runs a BCJR algorithm [17] and provides the
extrinsic LLRs corresponding to the coded bits, Le(O).
When interleaved, these latter constitute the a priori LLRs
of the demodulated bits, denoted La(I) of the SISOM−1.
After a fixed number of turbo iterations, the estimated
information bits are deduced from the sign of the a
posteriori LLRs of the decoded bits Lap(O). A sketch
of the turbo receiver architecture with the exchanged LLR
messages is depicted in Fig. 2.

Inspired by the representation of multi-edge type (MET)
LDPC codes and protograph codes [12], we propose the
vectorized view of Figs. 1 and 2 depicted in Fig. 3.
The information and the transmitted bits sequences s and
x are represented by circular nodes, the inner and the
outer components are represented by rectangles and the
interleavers are placed above the corresponding edges. By
a slight abuse of notation, the estimated information bits
are also denoted by s. A very similar representation was
proposed by [7], [9] and was referred to as the compact
graph representation. We will adopt the same terminology.

B. Spatially-Coupled BICM

In this section, we describe how one can spatially
couple the concatenated scheme in Fig. 3. Our proposed
framework is in spirit equivalent to [7]–[10], [18], how-
ever, its formalism provides better control on design tools
(component base matrix, coupling procedure, mapping op-
timisation, termination) and presents analogous properties
to those of spatially-coupled protograph codes [6] (rate
loss, component base matrix, two coupling ”waves”, tail-
biting . . . ).

Inspired from spatially-coupled protographs, spatially-
coupled turbo-codes (SC-TC) can be obtained by a variant
of the edge spreading rule (ESR) [6]: in the compact graph,
the encoded bits v are demultiplexed into ms+1 bundles,
and the obtained graph is replicated a certain number of
times, say L. Afterwards, the L graphs are interconnected
by interchanging the ends of the bundles of the same type.
In order to describe these interconnections, we introduce
the integer-valued coupling matrix B defined as:

B = [b0, b1, . . . bms ] ∈ {0, . . . n}ms+1

where bi represents the width (number of bits) of the
bundle connecting any copy t with its adjacent neighbour
(t+ i). B should verify

∑ms

i=0 bi = n.
Alike spatially-coupled LDPC codes, L is called the

coupling length and ms the syndrome former memory.
For code design and convergence analysis purposes, as we
are going to see later, it is more convenient to consider a
continuous-valued coupling matrix. To this end, we will
rather divide B by n: now, bi ∈ [0, 1] is interpreted as the
fraction of the bits u passed from the constituent code of
the stage t to the stage (t+ i). We then have:

ms∑
i=0

bi = 1 (1)

An example of this construction is illustrated in Fig. 4.

C. Tail-biting

In the coupled compact graph, one can notice that
we end up with some vacant bundles connections at the
beginning and some additional unconnected bundles at the
end. One way to solve this problem is by connecting these
latter all the way back with the former. This is called tail-
biting and one can easily show that the rate of the obtained
SC-TC is exactly equal to R. However, this scheme does
not show the desired coupling gain since, locally, each
stage behaves exactly as the underlying TC scheme in
Fig. 3.

D. Termination

A second solution is:
• adding ms modulators at the end in order to connect

the last remaining bundles
• adding known information bits at the ms first and the
ms last mappers in order to fill the vacant bundles
connections

A simple example is depicted in Fig. 5. The ms black
circles at the boundaries represent the added known bits.

We can show that, in this case, the final code rate of the
coupled ensemble, when puncturing is not used, is equal
to:

RL =
L

L+ms
R = R− ms

L+ms
R (2)

which is analogous to the design rate of spatially-coupled
protographs. Observe that the termination (finite value of
L) results in a rate loss equal to ms

L+ms
R. This penalty

vanishes to 0 as L→ +∞.
The difference of Eq. (2) with the rate expression

computed in [8] comes from the following reasons:
• Their rate loss is induced by last imposed ′0′s in-

formation bits used to terminate the encoder to the



Fig. 4: SC TC transmitter. The coupling is done according to B = [0.5, 0.5].

Fig. 5: Terminated spatially-coupled turbo-codes

zero state1. In our case, the rate loss is caused by the
additional ending mappers and by the inserted known
bits at the boundaries (to keep a constant number of
output bits x at all stages).

• Eq. (2) stands for both systematic and non systematic
codes

As it is going to be showed later, the less connected
mappers2 (alike the less connected check nodes at the
boundaries of spatially-coupled protographs) induce a
wave effect phenomenon: the known bits at the boundaries
will help generating more reliable LLRs, which, through
iterations, will progressively propagate towards the center.
The intermediate stages will behave the same way as the
uncoupled system, as far as the coupling gain did not affect
them yet.

III. ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we perform the asymptotic conver-
gence analysis of the SC-TC. Density evolution (DE) was
considered in [18] to analyze the performance over the
binary erasure channel (BEC). In the case of AWGN and

1The ”zero state” refers to the overall SC scheme (i.e. last transmitted
symbol are 0’s) and not the internal state of each constituent code

2less connected because they have lesser real information bits at their
inputs in comparison to their counterparts

with general inner and outer components, evaluating the
threshold by tracking the evolution of the density of the
messages become a prohibitive task. Alternatively, EXIT
charts [19] are usually considered.

A. Exit Chart of the uncoupled system
For a fixed channel parameter, here the symbol (or bit)

energy to noise ratio Es/N0 (resp. Eb/N0), the EXIT
charts track the evolution of the mutual information (MI)
between the current extrinsic LLRs and the corresponding
bits through iterations. To this end, it uses the input-output
transfer function of the different SISO blocks (here the
SISO of the inner and the SISO of the outer components).
As depicted in Fig. 3, the demodulator transfer function
TM(.)3 computes the extrinsic MI Ie(I) (between the
LLRs Le(I) and the corresponding bits) based on the
channel observations and the a priori MI Ia(I) (between
La(I) and the corresponding bits). Similarly, the outer de-
coder transfer function TO(.) computes both the extrinsic
MI Ie(O) (between Le(O) and the corresponding bits) and
the a posteriori MI Iap(O)(between the LLRs Lap(O) of
the corresponding bits) based on the a priori MI Ia(O)
(of La(O) and the corresponding bits).

We perform the demodulator and the outer decoder
updates until the maximum number of iterations is reached
(no convergence) or Iap(O) = 1,∀i (convergence). The
analytic expressions of TO(.) and TM(.) are not available
in the general case, consequently, we estimated them by
Monte Carlo simulations. An example of EXIT charts and
corresponding recursions steps are depicted in [14, Fig.
6].

B. Spatially-coupled EXIT (SC-EXIT) chart
For our analysis, we consider the ith stage of the

spatially-coupled compact graph depicted in Fig. 6. The
following notations are used:
• The subscript i differentiate between variables rela-

tive to each stage;
• Ike (i

+) (resp. Ika (i
+)) is the extrinsic (resp. a priori)

MI between the LLRs transmitted from M−1i (resp.
from O−1i+k) to O−1i+k (resp. to M−1i );

3TM(.) depends implicitly on Eb/N0



Fig. 6: Compact graph of the terminated SC TC receiver

• We have the same definitions for Ike (i
−) and Ika (i

−)
with respect to the O−1i and M−1i−k.

For the SC-TC, we perform all demappers updates and
all outer decoders updates of each iteration in parallel
as for the flooding scheduling used in standard belief
propagation algorithm [12]. Using the fact that bk repre-
sent proportions according to Eq. (1), the differences here
with the uncoupled TC are the mixtures and the boundary
conditions as follows:
• Ike (i

+) = Ie(Ii).bk and Ia(Ii) =
∑
Ika (i

+).bk
• Ike (i

−) = Ie(Oi).bk and Ia(Oi) =
∑
Ika (i

−).bk
• The a priori MIs coming from the added boundary

nodes are equal to 1.
The threshold of the SC-TC is then defined as the lowest

Eb/N0 such as Iap(Oi)→ 1,∀i.
Note that the obtained SC-EXIT chart can no more be

interpreted graphically as in [14, Fig. 6], but are rather
thought as a kind of Protograph EXIT (P-EXIT) chart [13],
where the variable and check nodes are generalized and
where the (ms+1) incident edges are weighted by {bk}k.

C. Minimizing the number of iterations

The SC-EXIT chart analysis provides the asymptotic
performance of an iterative scheme given a large number
of iterations and a large codeword length. We can then
apply classical non linear optimization methods to design
coupling matrices such as [20]. When performing this
optimization, we have observed that there exit several cou-
pling matrices enabling to operate to the best achievable
threshold (up to a given numerical precision). Among
them, we have also observed that the convergence rate
to this threshold was very different from one matrix to
another. Therefore, an interesting additional criterion to
consider when designing real systems is the convergence
rate. In this section, we provide a framework that allows
improving the convergence rate of SC-TC without altering
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Fig. 7: Convergence of SC FTN at Es/N0 = 5dB.

the threshold or increasing the syndrome former memory
ms. To this aim, we consider the following procedure:

1) Pick an adequate initial coupling matrix B0;
2) Evaluate the threshold of the corresponding SC-TC;
3) Find the optimal coupling Bopt such as:

• The SC-TC converges at same threshold.
• The number of iterations before convergence is

minimal
Several trials showed that coupling with the uniform

matrix B0 (ie. all uniformly distributed non null entries bk)
is a good representative of the SC-TC ensemble defined by
a fixed ms, a fixed L and all possible Bs. Concerning the
computation of the threshold in step 2, it can be estimated
using the interval halving method. However, for step 3,
two strategies can be adopted:

1) Search over a set of the form (with N ∈ N):{
{bk}k|

∑
bk = 1 and bk ∈ { a

N |a ∈ J0, NK}
}

.
2) Since B belongs to a continuous space, we can

perform the differential evolution algorithm [20].
The feasible set can be extremely reduced. Actually,

due to the symmetry of the graph Fig. 5, both coupling
matrices B1 = {bk}k and B1 = {bms−k}k lead to
the same performance. Furthermore, the dimension of
the problem can be reduced by replacing the equality
constraint in Eq. (1) by the polytope:

ms−1∑
i=0

bi ≤ 1 (3)

and deduce, at the end, bms
= 1−

∑ms−1
i=0 bi.

NB: If B were an integer-valued vector, only the first
strategy is possible and the optimization becomes infeasi-
ble especially for targeted values of n (asymptotic length)
and ms. This is the rational behind the choice of Eq. (1).

IV. APPLICATIONS

A. Faster-Than-Nyquist based BICM

As a first application, we propose to illustrate an ad-
vanced BICM scheme based using a Faster-Than-Nyquist
(FTN) waveform as a modulation device. This leads to a
kind of bit interleaved coded modulation with memory
that is efficiently decoded using iterative decoding. In
this paper, we consider the circular FTN waveform as
presented in [21]. Considering a root raised cosine (RRC)
shaping filter with roll-off β and symbol period T . The
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FTN symbol period is Ts = τT where τ ∈ ]0, 1] leads to
an overall spectral efficiency of

η =
RL log2(M)

τ(1 + β)
(bits/s/Hz).

Each coded and interleaved block v is modulated into P =⌈
n

log2(M)

⌉
symbols from the M -ary alphabetM. Let a =

[x0, x1, . . . xP−1], the circular FTN waveform is obtained
by circularly filtering these P symbols as follows:

x(t) =

P−1∑
p=0

xphT (t− pTs)wT (t) (4)

where hT (t) =
∑∞

l=−∞ h(t− lT ) is the circular shaping
filter and wT (t) is a window of length T = PTs. At the
receiver, a low complexity SISO equalizer for mitigating
the Inter-Symbol Interference (ISI) introduced by FTN
is considered as given in [21]. This is mainly based on
a frequency domain fractionally spaced Linear Minimum
Mean Square Error (L-MMSE) soft interference canceler
(see [21] for more details).

1) Coupling gain: Figure 7 depicts the evolution of the
a posteriori MI through iterations of the spatially-coupled
serially concatenated scheme CC+FTN at Es/N0 = 5dB.
The threshold of the uncoupled system is Es/N0 =
5.32dB. As expected, the known bits at the boundaries
help propagate a coupling gain (also referred in the liter-
ature as the wave effect). Therefore, even if the Es/N0

is bellow the threshold of the uncoupled system, all
stages converge after 47 iterations. In the meanwhile, the
intermediate VNs behave as in the uncoupled system.

2) Threshold: In Fig. 8, we plot the threshold vs the
rate4 of the SC-TC FTN. For comparison, we included the
uncoupled TC FTN and the threshold bound A∗ given by
the Area theorem [14]. As depicted, the coupling gain is of
1dB in comparison to the uncoupled system and is at just
0.45dB from A∗. As L increases (here up to 145), we see
that the spatially-coupled system saturates to a value very
close to A∗. This gap can be made smaller by considering
larger L and a very big number of iterations.

3) Coupling optimization: With different syndrome for-
mer memories ms and the best coupling matrices B, we

4In order to obtain the spectral efficiency in (bits/s/Hz) in Fig. 8,
multiply R by log2(M)/η where η is the occupied bandwidth.
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Fig. 9: Threshold of coupled and uncoupled proposed 16-QAM scheme.
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observed that thresholds remain almost the same. Conse-
quently and in order to simplify our analysis, we focus
here only on the number of iterations before convergence.
After running our optimization procedure, we observe that
for our SC-CC FTN scheme, a coupling matrix of the
form:

Bopt = [
1

2
, (ms − 1)“0”s,

1

2
] (5)

is the optimal form that minimizes the number of iterations
without degrading the threshold. Figure 10 depicts the
number of iterations for the uniform and the optimized
Bopt coupling matrices. By changing the coupling matrix,
we are able to converge 1.7, 2.13, 2.1, 2.6 and 3 times
faster when ms equals 2, 3, 4, 5 and 6 respectively
at L = 145. For space issues, we choose to plot the
results only for ms equals 2, 3 and 6. On the other hand,
observe that, with larger ms, the convergence rate is faster.
However, this comes at the expense of higher rate loss
because a larger amount of known bits (black nodes) are
introduced.

B. Linear modulation

Let us consider now the same systematic [5, 7] outer
code concatenated with a rate-1 accumulator of transfer
function 1/(1+D). We choose 16-QAM modulations. In
order to avoid a doubly-iterative system, we consider Gray
mapping since its Exit chart is quasi flat. The obtained
results are plotted in Figs. 9 and 11. One can see that the
spatial coupling allows to gain 1dB in comparison to the
uncoupled family and that we are at only 0.29dB from the
threshold given by the area theorem.

When we optimize the coupling, the coupling matrix
has no more the form in Eq. (5). The obtained coupling
matrices are given in Fig. 11. Thanks to the coupling op-
timization, we are able to reduce the number of iterations
by 1%, 22.3% and 20.8% when ms equals 1, 2 and 3
respectively. On the other hand, when ms = 2, observe
that the convergence needs more iterations in comparison
to ms = 1: This is due to the fact that, by optimizing the
coupling matrix, we are slightly improving the threshold
in this case, but at the expense of more iterations.

V. CONCLUSION

In this paper, we presented a general framework of
serially concatenated SC-TC. We showed the analogy with
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Fig. 10: Iterations before convergence of different syndrome former memories at the threshold given in Fig. 8
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Fig. 11: Iterations before convergence of different syndrome former memories at the threshold given in Fig. 9

spatially-coupled protographs and described the SC-EXIT
chart analysis. We optimized the coupling matrix and
designed couplings with faster convergence rates. From the
obtained results, we conjectured that the SC TC scheme
saturates to a value very close (lower bounded) by the
Area theorem. Future work will investigate other channels
and study the performance of window decoding.
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