

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22207

To cite this version:

Bosetti, Gabriela and Firmenich, Sergio and Fernandes, Alejandro
and Alba Winckler, Marco Antonio and Rossi, Gustavo From
Search Engines to Augmented Search Services: An End-User
Development Approach. (2017) In: 17th International Conference on
Web Engineering (ICWE 2017), 5 June 2017 - 8 June 2017 (Roma,
Italy).

Open Archive Toulouse Archive Ouverte

Official URL
https://doi.org/10.1007/978-3-319-60131-1_7

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22207
https://doi.org/10.1007/978-3-319-60131-1_7

From Search Engines to Augmented Search
Services: An End-User Development Approach

Gabriela Bosetti1(&) , Sergio Firmenich1,2 ,
Alejandro Fernandez1 , Marco Winckler3 ,

and Gustavo Rossi1,2

1 LIFIA, CIC, Facultad de Informática, Universidad Nacional de La Plata,
La Plata, Argentina

{gabriela.bosetti,sergio.firmenich,

alejandro.fernandez,gustavo}@lifia.info.unlp.edu.ar
2 CONICET, La Plata, Argentina

3 ICS-IRIT, Université Toulouse III, Toulouse, France
winckler@irit.fr

Abstract. The World Wide Web is a vast and continuously changing source of
information where searching is a frequent, and sometimes critical, user task.
Searching is not always the user’s primary goal but an ancillary task that is
performed to find complementary information allowing to complete another task.
In this paper, we explore primary and/or ancillary search tasks and propose an
approach for simplifying the user interaction during search tasks. Rather than
focusing on dedicated search engines, our approach allows the user to abstract
search engines already provided by Web applications into pervasive search
services that will be available for performing searches from any other Web site.
We also propose allowing users to manage the way in which the search results are
presented and some possible interactions. In order to illustrate the feasibility of
this approach, we have built a support tool based on a plug-in architecture that
allows users to integrate new search services (created by themselves by means of
visual tools) and execute them in the context of both kinds of searches. A case
study illustrates the use of such tool. We also present the results of two evalu-
ations that demonstrate the feasibility of the approach and the benefits in its use.

Keywords: Web search � Web augmentation � Client-side adaptation

1 Introduction

Searching is one of most frequent user task over the Web; popular rankings like
Alexa’s1 can be used for supporting this claim. We can observe that most popular Web
sites mainly support this task: Google, YouTube, Baidu, Yahoo, Wikipedia, Amazon
are part of the leading group at the top 10 of the ranking, dismissing Facebook and QQ,
and repetitions of Google under a different top-level domain.

1 http://www.alexa.com/topsites/global; 0 accessed on January 17, 2017.

 DOI: 10.1007/978-3-319-60131-1_7

http://orcid.org/0000-0002-3968-6738
http://orcid.org/0000-0001-9502-2189
http://orcid.org/0000-0002-7968-6871
http://orcid.org/0000-0002-0756-6934
http://orcid.org/0000-0002-3348-2144
http://www.alexa.com/topsites/global

From the perspective of standard information retrieval [3, 14] a search is often
treated as a task, driven by an information need that is formulated by a user as a query.
The query is processed by a dedicated system able to select the documents that (ac-
cording to certain rules) better match the user’s query; a refinement process might be
used to create new queries or to improve the obtained results. Nonetheless, users play a
major role in the search process, therefore the understanding of user activities is
essential to improve the tools supporting the search tasks [11, 14].

Web browsers and search engines are the primary tools people use to access the
vast quantity of information available online [16]. A careful analysis of user activity
over Web browsers shows that, quite often, users have to combine search engines of
Web sites and browsing activities to find information that fulfils their needs [3]. It is
also quite well known from empirical studies [1] that users maintain several tabs or
windows open in the browser to track the context of multiple searches for information
that interest them. It is interesting to notice that these activities might serve to
accomplish two types of user goals [10, 20]: to start an investigation about a particular
information (primary search task) and/or to find complementary information providing
details about the information currently displayed on a Web site (secondary or ancillary
search task). While opening new windows or tabs in the browser might help users to
run multiple primary searches in parallel, the same actions create an articulatory dis-
tance between the main user’s focus of interest [6], as illustrated in Fig. 1. The latter
shows a task model matching two primary searches for finding the Web site of
ICWE2016 and WWW2016, respectively, from the Google’s search engine. Figure 2,
in turn, shows the recursive pattern of the ancillary search tasks. There, a user visiting
the ICWE2016 Web site performs an ancillary search on DBLP for getting a list of
related articles for a concrete author, and navigates to Google to search for the online
file. Both sites offered complimentary information that allows him to understand better
the program of the ICWE2016 Web site and decide to attend or not.

Fig. 1. Primary search task model and two possible scenarios

Today, users can type their search queries directly on the browser’s interface
components, without having to visit the Web site of a search engine. Safari lets users
specify the search engine the user wants to use, like Google, Yahoo! or Bing. Mozilla
Firefox also allows users to choose a particular search provider when the browser
detects that the current Web page provides one. However, such feature works only for
well-known Web sites, as IMDB. In all the cases, search results started from the
browser’s UI are still displayed in a new tab or window.

There are generic search engines based on Web content scrapers, as Google, and
domain-specific ones, as IMDB. The first ones cover a broad scope and their goal is to
provide entries to data sources/Web sites containing the information that users are
looking for. In contrast, domain-specific search engines are focused in data with a
narrow scope but more accurate if users want specialized details about objects in a
concrete domain [15]. Indeed, most of ancillary search tasks are triggered because users
need complementary information that is frequently domain-specific. A taxonomy of
online page-views according to different categories is presented in [12]. The paper
reports that users navigate among different kind of pages and use to revisit pages of the
same kind and structure. This fact may also suggest that structured objects may take
advantage of the already existing content and behavior on the Web, since they share a
same domain, and that was the purpose of [8].

In this paper, we propose an innovative approach for dealing with ancillary search
tasks while navigating the Web by means of Web Augmentation [17]. The approach is
aimed at allowing users to: (i) create custom queries to generic and/or domain-specific
search engines; (ii) trigger queries as ancillary search tasks for Web sites they are
visiting; and (iii) display the results of the search in the context of the user task. For
that, custom user searches are deployed as search services that can be accessed from the
Web browser whenever the user is navigating the Web. An overview of this idea is
shown in Fig. 3. In this case, we show how our approach would better support the
scenario presented in Fig. 2. Instead of requiring the user to move from the current
Web page he is visiting, we propose to obtain search results transparently and show

Fig. 2. Ancillary search task model and scenario

them in the same context. This will make the user’s task easier and faster than repeating
the same search process with similar searches (e.g. other authors at IMDB) and enable
the possibility of comparing their results without moving among tabs or windows. The
Search Services are specified in terms of a model, and this specification can be shared
among users. A support tool, successfully used in a subset of popular Web sites,
demonstrates the feasibility of the approach.

The remaining of the paper is organized as follows. Related works are discussed in
Sect. 2, and our approach is presented in Sect. 3. The support tool is described through
a case study in Sect. 4, and the feasibility on the abstraction of Search Services is
demonstrated in Sect. 5 along with the results of a quantitative assessment. Finally,
Sect. 6 discusses and mentions some final remarks and the future work.

2 Related Works

Web search has been a target of research from the beginnings of the Web. Several
works have contributed in various aspects, as scraping, semantic search or collaborative
search. Although these research lines are very active, the design of user interfaces for
searching was also studied. For instance, concerning information presentation,
focus + context visualizations [4] proposed to maintain the object of primary interest
presented in detail, meanwhile, other contextual information may be available. This is
clearly related to the idea of ancillary searches; a deep analysis of this kind of search
was recently presented in [20]. An inside-in approach for complementary information
is presented in [18], conceiving its presentation in the light of the principle of
“Overview first, zoom and filter, then details-on-demand”. The paper also argues that
information may require being presented in different ways, through visualizations that
effectively cover different task-domain information actions. In the following sections,
we propose an approach in which end-users are the ones managing how resulting
information may be visualized. To achieve this, it is necessary to analyze search results.

Web search engines return a result page with a list of Web documents (URIs)
matching the search criteria. Results are usually presented as a list of page titles and one
or two sentences taken from the content. Recent advances in Web search interfaces
provide, for a predefined set of element types, such as movies, recipes or addresses,
rich snippets that help the user in recognizing relevant features of each result element
(e.g., movies playing soon or reviews for a given movie). In some cases, these rich
snippets include the data the user is looking for. It is possible because Web site creators
include structured data in Web pages that computers can recognize and interpret,

Fig. 3. A scenario for the search approach

and that can be used to create applications. Viewing the Web as a repository of
structured, interconnected data that can be queried is the ultimate goal of the Semantic
Web [2]. However, end users do not always have the means to exploit or add infor-
mation to the Semantic Web. The tools presented here let them extract and use
structured data from any Web site, with no need of training on Web development.

There are also models describing how people deal with information and their
informational needs [19] and, consequently, providing context to our approach. Eight
characteristics (features) adequately describe the information behavior in various dis-
ciplines [7]. Such characteristics are: starting (begin the information seeking), chaining
(following connections to related content), browsing (semi-structure browsing), dif-
ferentiating (to filter information), monitoring (keeping up-to-date), extracting (selec-
tively identifying relevant material in an information source), verifying (checking for
accuracy), and ending (final searches and tidying up). The definition of Search Services
allows the extraction of relevant features in Web content, putting the user in control of
what are the relevant properties of information objects, to use them later for differ-
entiation. Moreover, when users select which information repositories will be defined
as search services, they conduct an initial quality filter (verification by provenance).

Being able to mouse-select elements in the primary window to launch in-situ
searches is a means to support search start and information chaining activities. When
the results are displayed in overlay mode, these connections become explicit and
persistent, as pointed in [20]. It presents an approach for providing end users with the
possibility of executing ancillary searches. However, while in [20] developers need to
implement a broker at server-side, in charge of retrieving external and already existing
services, we provide EUD support at client-side, with no need for server-side com-
ponents nor textual programming skills for users. Additionally, we allow defining the
semantic and structure of the results to be retrieved, without restraints on what kind of
element to consider. This suggests a same structure of information for all end users
using our tool, which can be later used for querying the common repository or using
similar visualizations for the objects sharing a same class.

Finally, research on information seeking behavior has focused mostly on how
individuals seek information. However, in many contexts, this process involves col-
laboration [9]. The Search Service definition tool we propose stores service definitions
in a local storage. Users can export and import definitions, thus supporting simple
sharing via e-mail and instant messaging. MacLean and colleagues found this simple
form of collaborative tailoring via customization files and email sharing an effective
mechanism to foster a culture of end-user tailoring [13].

3 End-User Driven Search Services

A vast number of searching scenarios may allow appreciating that the integration
support offered by Web applications and Web browsers, in combination, may jeop-
ardize the user experience, since the user may need to perform repeatedly extra
operations to obtain the desired information (such as open a new tab, enter the URL of
the target Web searcher, etc.). Furthermore, if the user is performing an ancillary
search, he might refine the query or go back to the original information context to do it.

This paper presents an approach based on a flexible architecture that allows end
users to customize the way they perform Web searches. It follows an inside-in
approach, which enables users to perform ancillary searches without leaving their
current context. While other searches are performed in relation to a specific goal in
mind, the ancillary search is nested among other tasks and is aimed at providing
complementary information to the user’s current context. The solution we propose
allows dealing with ancillary search tasks while navigating the Web by means of Web
Augmentation [17], reducing the user’s efforts and, therefore, the gulf of execution and
the evaluation gulf, as explained in [20].

The searching process we target entails the following steps: (1) define a query;
(2) select a search engine; (3) enter the query and trigger the search; and (4) inspect and
interact with the results. Our goal is to improve the user experience with search tasks,
particularly with the steps 2–4. For the first step, we comply with the query language
imposed by the underlying search engine. To better support the aforementioned steps,
our approach propose a tool allowing to:

– Trigger searches from the current Web page for reducing the interaction required to
perform a search in any foreign search engine.

– Transform search results (DOM elements) into domain objects with specific
semantic and structure.

– Integrate the resulting domain instances in the current Web site for further visual-
ization and interaction.

In order to achieve these objectives, we propose:

– Allowing users to encapsulate existing Web applications’ search engines into per-
vasive Search Services. Given that not all the Web applications supporting searches
provide an API, we propose to reproduce automatically the UI interaction required
to perform a search. It implies that users must select the UI search engine com-
ponents to create Search Services.

– Integrating the new Search Services with the Web browser search mechanism for
ancillary searches. Users should be able to use the created Search Services from any
other existing Web site.

– Displaying results in the context of the current Web site, to enable different ways of
visualizations supporting primary and ancillary searches. It is done by parsing the
DOM, extracting the search results from it, and creating domain object instances.

A simple scenario is presented in Fig. 3, where a user is navigating the accepted
articles on the ICWE2016’s Web site. At some point, he requires seeing other publi-
cations of a particular author. Certainly, this secondary information requirement would
be better satisfied by using domain specific Web applications (such as DBLP or Google
Scholar) instead of a generic searcher (such as Google or Bing). In this setting and
using our tool, the user would be able to trigger the search from the current Web site by
highlighting the author’s name and selecting the desired Search Service (e.g. DBLP).
At the right of the same figure, results are listed in an overlay popup whose content
follows a table structure. It is built automatically given the domain object specification
that was made when the user created the Search Service. There is also a toolbar where
options for filtering and ordering results are available (if these were defined for the

triggered Search Service). Furthermore, a third option allows the user to change the
visualization, in case that a table structure does not fit the user’s needs.

3.1 The Approach in a Nutshell

We have designed and developed an architecture for supporting the creation of Search
Services and the integration tool needed for letting end-users to use these new services
from any Web site they are visiting. The architecture has three layers: (i) end-user
support tool, (ii) current search results, (iii) model layer, as it shown in Fig. 5.

This diagram refines the relationships between layers’ components:

1. The Search Service Model. This layer supports the creation of Search Services,
which are based on the search engines that Web applications already provide. Note
that this is focused mainly on the creation of Search Services for those Web
applications that, despite providing a search engine, do not provide an API. In this
sense, our approach enables the creation of a service (API alike) based on how users
would use these search engines. A Web search engine’s interface is usually com-
posed of an input and submit button, filtering and ordering options, and some

Fig. 4. Example of use of a Search Service

Fig. 5. Search service architecture overview

mechanism for paginating the results. We propose to abstract all these UI com-
ponents (DOM elements), wrapping them with objects that conform a Search
Service. Then, these Search Services can emulate the user behavior and retrieve the
corresponding results given a particular query specification. To provide an
API-alike mechanism, results are not interpreted just as DOM elements but also as
abstractions of the underlying domain objects. E.g. if the search engine being
abstracted is DBLP, results may be wrapped by the Paper domain object, which
could be populated with domain properties such as title or authors. Even more, this
object may also have properties whose values are taken from another DOM (ob-
tained from another URL), such as a bibtext property; we explain this in Sect. 3.3.
All these concepts are materialized at the bottom of Fig. 6. As we will show later, it
is convenient to provide a semantic layer on the top of the search results because it
allows the creation of visualizers that go beyond presenting the raw results.

2. End-User Tool Support. Search Services can be incrementally specified by using
our visual tool, selecting the key DOM elements related to a Web search engine.
The tool is part of the End-User Support Tool layer, where other two components
coexist. One is the SearchTool, which creates the corresponding menus for the
existing SearchService objects and allow users to perform searches from the current
Web site. The VisualizationTool takes the search results and allows users to interact
with them in different ways by selecting a particular Visualizer.

Fig. 6. End-User driven search service architecture

3. Current Search Context. The middle layer represents the current Query and its
results. When the user wants to perform a search task, a SearchQuery is created
(there are basically two strategies for doing that: text selection and text input).
When the search results are retrieved, these are materialized as instances of Sear-
chResult; the Visualizer presents them considering the corresponding SearchRe-
sultSpec; this specification describes results by means of properties whose values
are also obtained from the DOM where actually the results are, or from the DOM
obtained from the targetURL, which is basically the real domain object’s Web page.

3.2 Search Service Architecture: Flexibility, Compliance
and Extensibility

In this subsection, we explain two important aspects of the architecture. Flexibility and
compliance are related to how the Search Service may be mapped to different search
engines provided by Web applications. Extensibility is related to how the whole toolkit
may be extended with further components for searching and visualizing results.

Flexibility and Search Engine Coverage
There are some components presented in Fig. 6 that deserves a bit more explanation:

– Properties: these are defined for the SearchResultSpec. Consider a Search Service is
being defined in the e-commerce domain, and properties such as price and avail-
ability could be defined. However, although there is some information obtainable
from the DOM presenting the results, more information could be available in the
site; as the technical description or shipping costs. Both kind of properties are
extracted from different DOMs, and the behavior for retrieving both DOMs is
different. This is the reason why we separate two kind of properties. On the one
hand, InResultPageProperty allows users to define properties whose values will be
extracted from the search result’s page. In the other hand, InTargetPageProperty let
users to extract values for further properties. Our toolkit knows how to reach the
actual result’s Web page because the attribute targetURL is defined, mandatorily, in
SearchResultSpec. With this in mind, we can note that when using our approach for
an ancillary search, as in Fig. 4, the listed properties could be obtained from dif-
ferent Web pages, but this will be transparent from the users’ point of view.

– Ordering and Filtering: To better reproduce the power of original Web search
engines, we have contemplated ordering and filtering features. Some Web sites,
such as DBLP, let the users filter results according to some criteria, such as “Journal
only”, which is applied by clicking an anchor on the search page. Our model
contemplates this kind of filters through the ConditionManager and Condition
classes. Ordering and filtering functionality, with roots in the original Web appli-
cation, will be available in the menu displayed at the right of Fig. 4. Most of the
search engines we analyzed offer ordering by clicking anchors or buttons, and these
options are available from the same main menu in our Visualizers.

– Search Execution Strategies: Search engines spread on the Web have different
configurations concerning the involved UI components and the interaction design for

executing a search. Most of them have an input element to write the query but not all
of them have a trigger (e.g. anchor, button) and that makes it necessary to have
different strategies for carrying it out. We have implemented three alternatives, but
they can be extended and integrated in the tool. We covered sites requiring to write a
query into an input and handling the query execution by one of these alternatives:
(1) clicking on a trigger to load the page with the results; (2) clicking a DOM element
but loading the results through ajax-call; (3) listening to some input-related event
(e.g. keypress, blur, change) and loading the results by ajax-call. Subclasses
implementing this behavior are WriteAndClickToReload, WriteAndClickForA-
jaxCall and WriteForAjaxCall respectively. The strategy is automatically assigned
when the user creates a search service, and each strategy can know if it is applicable
based on the components the user has defined and the success on retrieving new
results, so this is not a concern for the end user.

Extensibility
As shown in Sect. 5, the Search Service Model is compliant with most of the Web
sites’ search engines that we analyzed. However, beyond this model and the Search
Service specification tool, our approach is extensible in two ways. On the one hand, the
model is extensible by means of the creation of services based on the existence of
application APIs. On the other hand, the end-user support tool is extensible by the
creation of new Visualizers. We next explain both APIBased and Visualizer extension
points.

– APIBased Search Services: Some Web applications offer APIs for retrieving
information from their databases (Twitter, Facebook, etc.). In these cases, it is very
common that APIs expressivity goes much further than what is possible to do with
our UI-based Search Service approach. With this extension point, developers could
create new Search Services (using application’s API) to be integrated later by
end-users.

– Visualizers: as shown in Fig. 4, search results become domain objects whose
properties are listed in the default Visualizer (TableOfProperties), which create a
table where columns represent each property and rows each object. However,
further visualizers could be developed and integrated into our toolkit. E.g., a new
Visualizer (GroupByPropertyValue) could allow users to select a property and
group the already obtained results according to the value of this property. Consider
the example of Fig. 4; it would be possible to group the author’s articles within
journal or conference boxes. Beyond this, other visualizers could be focused on
calculating information and visualizing more processed information. For instance,
the users could be interested in seeing quickly the evolution of the author pro-
duction in a chart showing the amount of articles per venue, instead of just dis-
playing each article.

It is important to note that these two extension points require advance JavaScript
programming skills to be developed, but once created, they can be installed and used
by end-users, who can configure the parameters of such new visualizers according to
specific properties defined for the SearchResultSpec of a given SearchService.

4 Tool Support and Case Studies

In order to support our approach, we implemented our tool as a Firefox extension. It
allows both the specification and execution of Search Services. The use of this tool for
the first purpose is illustrated in Figs. 6 and 7, and for the second one in Fig. 8.

End users can define UI-based Search Services through our tool. A Search Service
of such nature should be capable of automatically emulating a search that otherwise the
user has to do manually (e.g. opening a new tab, navigating to the search engine of a
Web site, typing a text, triggering a button, etc.). Once such Search Service is defined,
the user can use it for performing ancillary searches by highlighting a text in any Web
page he is navigating and choosing a service from which he wants to retrieve results. In
this sense, the selected UI-based Search Service must know: in which input control the
text should be entered, which button to trigger to perform the search, how to obtain
more results, and how to interpret them. Filters and sorting mechanisms can also be
defined, but they are not mandatory.

Consider Amaru, she is always surfing the Web and she uses to look for related
books when she finds something (a topic, an author, etc.) of her interest. She is an
active user of GoodReads and every time she finds some term of her interest, she copies
it, opens a new tab in her browser, accesses GoodReads and performs a search with the
copied text as keywords. In this setting, it would be very convenient for her to be able
to carry out such searches from the same context in which she is reading the comments.

Figure 7 shows how Amaru is starting to create a UI-based Search Service by
selecting DOM elements from the Web site of GoodReads, concretely from its search
engine2. To do so, she navigates to the Web page where the search engine is and
enables the «Search Service definition mode» by clicking the highlighted button in step
1. In this concrete case, she should select, at least, the input (step 2) and trigger (step 4)

Fig. 7. Defining the input, trigger and pagination elements for a Search Service

2 https://www.goodreads.com/search?q=Borges.

https://www.goodreads.com/search?q=Borges

controls, and also the one retrieving more results (step 5). The DOM elements defined
as the UI-Search-Service controls are selected by right-clicking them.

As it is the first time she defines a Search Service and she has no other Services
available in her personal account, the tool asks her to give it a name through a form
opened in the sidebar (step 3). Otherwise, the tool should ask the user to select an
existing UI-based Search Services for which it is starting to define the controls.

Then, she specifies the kind of results the Search Service will retrieve, as shown in
Fig. 8. First, she selects an element in the DOM which represents the main container of
the element he is expecting to have as a result. Such element is the highlighted one in
step 6. When she chooses to define it as a “result” through the context menu options, a
form is loaded in the sidebar (step 7), where she must complete some required data. In
this case, she names this kind of results as Book rating and selects one of the available
selectors generated in relation to the available XPaths for the selected DOM element.
This will allow her to choose more than one instance of Book rating in the same context
(as shown in steps 6 and 8, there are other instances in the background). In a similar
way, she should define the properties of the results that are of her interest, so these will
be displayed when an ancillary search is performed. For instance, in steps 8 and 9,
Amaru is defining the Title property for a Book rating result of the GoodReads Search
Service. She repeats the last two steps for defining also a Rating property.

After the mandatory elements of a UI-based Search Service have been defined
(input, more-results trigger and the expected structure of the results), the Search Ser-
vices becomes available in the browser’s context menu whether the user has high-
lighted any text in any Web page. In step 1 of Fig. 9, Amaru has highlighted some text
of a Wikipedia article and she is performing an ancillary search using it as keywords.
At such point, she can also use other previously defined services, for instance, Amazon
or Google Books. When she clicks one of the menu items, let us say Amazon, a
draggable panel appears in the middle of the screen, presenting the results of the search
for the highlighted keywords. Now, as shown in step 2, she can access related books to
Julio Cortázar and see their Title and Authors. However, she can also access the

Fig. 8. Defining the expected results for a UI-based Search Service

remaining properties (in this case, the Thumbnail) by clicking the «+» button at the left
of each row, which will display a section with the data hidden due to the lack of space.
There are three fixed buttons at the right of the panel that allow her to: (1) change the
kind of visualization – she is using the default one –; (2) to configure some parameters
of the selected visualization, as the order or the priority of the columns in the
responsive layout; and (3) to apply filters if any was defined. At the bottom of the
visualization, as shown in step 4, there are navigation buttons so she can get more
results.

Note that the use of the Search Service is not exclusive for the Wikipedia Web site;
it is always available in the context-menu of the browser, no matter the Web site the
user is navigating. Multiple ancillary searches with the same or diverse Search Services
can be performed in the same context, using different keywords, as shown in steps 5
and 6 of Fig. 10. This way, Amaru can search for a second time, by selecting Rayuela,
one of the books of Julio Cortázar listed in the first ancillary search’ results
popup. This time she is using the Search Service she defined for GoodReads, and she is
accessing information that was not present in the results of the Amazon Search API.

Fig. 9. Visualizing the results of ancillary searches

Fig. 10. Performing an ancillary search over the results of a previous one

5 Evaluation

In this section, we present two evaluations of our approach. Section 5.1 proposes a
validation by software construction, whose main objectives are to stress our Search
Service model to know how it covers the existing search functionality provided by Web
applications and to measure the time consumed in real uses of these services. Sec-
tion 5.2 presents a quantitative assessment to provide some understanding about how
our approach influences the user interaction.

5.1 Validation by Construction

The instantiation of Search Services brought different challenges, especially consid-
ering that they are built by different UI components and consequently require a dif-
ferent kind of interactions for executing their associated behaviors. For instance,
consider the 20 first sites in the top 500 by Alexa3 meeting the following conditions:
(1) the interface is not Chinese or Russian by default; (2) sites of with the same domain
but different top-level domain are considered just once (e.g. Google.com and Google.
co.in); (3) only consider one instance using the same search engine (e.g. Msn redirects
to Bing); (4) do not consider the one with no search engine (t.co). The 20 sites are
Google, Youtube, Facebook, Yahoo, Wikipedia, Amazon, Live, Vk, Twitter, Insta-
gram, Reddit, Linkedin, Ebay, Bing, Tumblr, Netflix, Wordpress, Microsoft, Aliex-
press and Blogspot. In this list, all sites have a search engine but they are executable by
different means.

By analyzing the 20 sites, we can see that the involved UI controls differ in kind
and quantity. There is no variation on the kind of DOM element used for entering the
search’s keywords, it is an input field, but it is different for the remaining controls
involved in the search process. Moreover, there is a site hiding the input until the user
clicks on a concrete element of the DOM (Live.com), and the search execution
strategies (see Sect. 3.3.1) are not always the same: 11 sites use the WriteAnd-
ClickToReload; 5 the WriteAndClickForAjaxCall; 2 the WriteForAjaxCall. We suc-
cessfully defined the service for those 18 of the list of 20 sites with such strategies; but
the remaining 2 (Instagram and Live) required different ones that we are currently
working on.

Back to the UI components, 17 of the full list of sites have a trigger element, but they
differ in kind of control: they were 10 buttons, 6 inputs and 1 anchor. Concerning
pagination, 14 sites have a control for retrieving the following elements, but just 12 of
them have a control for the previous ones. This is due to the way they handle results in
the presentation layer; Instagram and Wordpress have a single DOM element that
attaches more results in the results area, expanding its height. Facebook, Live, Vk,
Twitter and Tumblr automatically retrieve more results when the user scrolls down to
the bottom of the page. The remaining site, Microsoft, have a DOM element with this
purpose but clicking on it redirects to a specialized form for searching a concrete kind of

3 http://www.alexa.com/topsites/global; 1.

http://Google.com
http://Google.co.in
http://Google.co.in
http://Live.com
http://www.alexa.com/topsites/global

results, where the results of the first page were included. However, this specialized
searcher does not allow changing the search keywords; if you do that, you are redirected
to the first results’ page. Of the 14 sites with clickable paging elements, 8 of them cause
the page to be reloaded while another 6 apply the changes via ajax-call. In this matter,
sorting elements are present in 8 sites; 5 of them reload the document and 3 of them use
ajax. Filter elements are defined for 16 sites, of which 11 reload and 5 use ajax.

The domain-specific abstraction of search results is another issue to face. Most sites
in the list can retrieve more than one kind of result: news, images, videos, channels,
playlists, people, pages, places, groups, applications, events, emails, etc. This is not just
a problem for naming the kind of results a Search Service retrieves, but for choosing a
selector (an XPath) to retrieve a concrete DOM element with a specific structure in the
DOM (or all of them) whenever possible, since search engines often present different
kinds of results with a different structure/style.

Regarding search performance, we logged the times for the 18 search engines in a
15-inch notebook, with a resolution of 1366 � 768 pixels. We cannot say the results
are the same for other resolutions, since their UI elements may vary. The purpose of
this analysis was to demonstrate that our tool allows the instantiation of the Search
Services. We successfully defined a Search Service for each of the search engines of
the aforementioned 20 sites, and we report below the times it took for executing an
ancillary search. For each of them, we performed a search: (1) from exactly the same
Web context4, (2) searching for the same keywords (Borges) and (3) expecting to have
results with just two textual properties: name and description. There were only two
cases in which Borges did not produce any results, so the word was replaced by one of
the same length: Ubuntu. For each test, we cleared the cached and offline Web content,
the offline content and user data. We also reloaded the target Web page to augment, for
making it sure that no class was already instantiated and giving the entire Search
Services the same conditions before executing the search. The full search process took
7 s with a standard deviation of 5 s. The differences depended on the strategy and the
response time of the search engines. E.g., there were 3 cases in which it took between
14 and 18 s, while in other 3 sites it took between 1 and 2 s. For a full list of logged
times and a video, please visit the project’s Web site5.

This evaluation demonstrated that our approach is feasible, covering 18 of 20
analyzed sites by using our support tool and the 3 implemented strategies to date. The
sites for the test were not conveniently chosen, but from a public Web traffic report.
Other search engines using the same interaction strategies can be visually specified as
Search Service by end users, and such strategies can be also extended by developers to
cover more search engines. We also reported the average time in order to compare it
against the estimation of times in the following subsection, regarding the time it takes a
task to be performed manually or with the support of our tool.

4 https://en.wikipedia.org/wiki/Argentine_literature.
5 https://sites.google.com/site/webancillarysearches/testing-in-top-sites.

https://en.wikipedia.org/wiki/Argentine_literature
https://sites.google.com/site/webancillarysearches/testing-in-top-sites

5.2 Quantitative Assessment Based on GOMS-KLM

We present in this section a quantitative assessment of search tasks based on the
GOMS-Keystroke (KLM) model [5]. This formal model is used to evaluate the effi-
ciency of interaction with a given software for a specific, very detailed, scenario. The
resulting time is calculated by the summation of each user action, whose time are
already known in this model. For example, the average time to perform the action
reach with the mouse is 0.40 s or click on a button is 0.20 s. Thus, by providing a
detailed scenario of user actions with the Web browser and Web applications, it is
possible to use GOMS-KLM to predict performance.

We focus this quantitative assessment for the case of ancillary searches. By using
GOMS-KLM, we have specified the traditional scenario for performing ancillary
searches, shown in Fig. 2, in order to compare it against our approach, introduced in
Fig. 3. We have split the whole scenario into six tasks: (i) Visit ICWE2016’s Web site,
(ii) select an author, (iii) search for that author in DBLP, (iv) select a resulting paper, (v)
search for that paper in Google Scholar, (vi) point the mouse over the article’s title. The
results are shown in Table 1. Note that tasks i, ii, iv and vi are equivalents in both
scenarios. However, the time required for tasks iii and v, the ones actually requiring to
use the search engine provided by other Web sites, are quite faster using our approach.
The whole scenario (involving two ancillary searches) takes 46.6 s without our
approach. In contrast, by using Search Services, it takes just 18 s. It is interesting to
note that performing a search using our approach and visualizing the results from any
Web site would take only 1.5 s (this time would be always the same, regardless both
the current Web site and the target Search Service).

However, for using the Search Services of DBLP and Google Scholar, it is required
that the user has previously defined them. With this in mind, we have defined also the
GOMS-KLM scenarios related to the creation of both DBLP and Google Scholar Search
Services. They were defined considering: (i) input search form, (ii) trigger search UI
component, (iii) abstract the search result into the concept “Paper” with the property
title, (iv) give a name to the Search Service and save it. All the tasks take 19.6 s.

Table 1. GOMS-KLM results for both scenarios

Task Time (without using SS) Time (using SS)

1. Go to the ICWE web site 8.7 s 8.7 s
2. Select the target author 2.6 s 2.6 s
3. Perform the first ancillary Search (DBLP) 15.9 s 1.5 s
4. Select an article 2.6 s 2.6 s
5. Perform a second ancillary Search (Google
Scholar)

15.7 s 1.5 s

6. Point the title of a target paper (Google
Scholar)

1.1 s 1.1 s

Total 46.6 s 18 s
Define both Search Services - 39.2 s

The specification is the simpler, without filtering nor ordering options, since such fea-
tures were not required for the contemplated scenarios. This means that the first time the
user experiences the scenario in Fig. 3, he needs an extra time of almost 40 s. However,
the definition is required just once and it can be avoided by installing an existing Search
Service specification.

As a final comment, it is interesting to note that in the context of ancillary searches,
the user would go back to the primary context, in this case, the ICWE’s Web site. With
our approach, it would not require further interaction because the user already is in
ICWE’s Web site; meanwhile in a traditional scenario it will require further interaction.

6 Conclusions and Future Works

In this paper, we presented an end-user driven approach for the customization of Web
search tasks. The main objective is to get better support for ancillary searches, although
the approach also reaches primary searches. Several contributions are made in this
context. First, we propose an end-user support tool for the creation of Search Services
based on the automatic execution of UI interaction required to perform searches in
existing and third-party search engines. Second, we propose to transform search results
into domain objects and take advantage of the semantic information as in [8]. Both
together achieve a third contribution, which is the creation of new ways of interaction
and visualization of results in-situ.

We fully supported our approach with already working tools, used in 18 existing
Web applications as a way of validating our aims by software construction. Besides, we
have shown that our approach is very convenient in terms of performance when users
require complementary information for accomplishing their tasks.

Our approach still lacks a full end-user evaluation to measure the potential of
adoption and the usefulness of in-situ visualizations of results. Another evaluation with
end-users is necessary to demonstrate that the specification of Search Service is clearly
doable without programming skills. However, beyond some usability issues, the
abstraction of Search Engine components may not be a limitation because of the
seamless observed in existing search engines and their common use nowadays.

Beyond further evaluations and the improvement of our tools (e.g. to support more
strategies to cover more search engines), some other works are planned. First, although
we foresee the usefulness of defining metadata for Search Services, we have not
exploited it yet. For instance, this kind of information could be used for automatically
perform searches in parallel given a particular context of information. Collaboration is
another aspect to be addressed. So far, we allow users to share service specifications by
sending their corresponding files, but we want to analyze how to reach this goal
through collaborative techniques better. Finally, domain-specific visualizers could
improve how end-users interact with the information obtained by our search services.

References

1. Aula, A., Jhaveri, N., Käki, M.: Information search and re-access strategies of experienced
web users. In: WWW 2005 Proceedings of the 14th International Conference on World Wide
Web, pp. 583–592 (2005)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284, 34–43 (2001).
doi:10.1038/scientificamerican0501-34

3. Broder, A.: A taxonomy of web search. SIGIR Forum 36, 3–10 (2002). doi:10.1145/792550.
792552

4. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Focus + context. In: Readings in Information
Visualization, pp. 306–309 (1999)

5. Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction.
L. Erlbaum Associates, Hillsdale (1983)

6. Cava, R., Freitas, C.M.D.S., Barboni, E., Palanque, P., Winckler, M.: Inside-in search: an
alternative for performing ancillary search tasks on the web. In: 2014 9th Latin America Web
Congress IEEE, pp. 91–99 (2014)

7. Ellis, D., Haugan, M.: Modelling the information seeking patterns of engineers and research
scientists in an industrial environment. J. Doc. 53, 384–403 (1997). doi:10.1108/
EUM0000000007204

8. Firmenich, S., Bosetti, G., Rossi, G., Winckler, M., Barbieri, T.: Abstracting and structuring
web contents for supporting personal web experiences. In: Bozzon, A., Cudre-Maroux, P.,
Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 77–95. Springer, Cham (2016).
doi:10.1007/978-3-319-38791-8_5

9. Golovchinsky, G., Qvarfordt, P., Pickens, J.: Collaborative information seeking. Computer
(Long Beach Calif.) 42, 47–51 (2009). doi:10.1109/MC.2009.73

10. Hearst, M.A.: User interfaces for search. In: Modern Information Retrieval the Concepts and
Technology Behind Search Engines, pp. 21–56 (2010)

11. Hearst, M.A.: “Natural” search user interfaces. Commun. ACM 54, 60–67 (2011). doi:10.
1145/2018396.2018414

12. Kumar, R., Tomkins, A.: A characterization of online search behavior. IEEE Data Eng. Bull.
32, 1–9 (2009). doi:10.1145/1772690.1772748

13. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: pressing the
issues with buttons. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems Empower people - CHI 1990, pp. 175–182 (1990). doi:10.1145/97243.
97271

14. Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49, 41
(2006). doi:10.1145/1121949.1121979

15. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: A machine learning approach to
building domain-specific search engines. In: Proceedings of the Sixth International Joint
Conference on Artificial Intelligence, IJCAI 1999, pp. 662–667 (1999)

16. Morris, D., Morris, M.R., Venolia, G.: SearchBar: a search-centric web history for task
resumption and information re-finding. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems – CHI 2008, pp. 1207–1216 (2008)

17. Obal, C., Diaz, O.: The augmented web: rationales, opportunities and challenges on
browser-side transcoding. ACM Trans. Web 9, 1–30 (2015). doi:10.1145/2735633

18. Shneiderman, B.: The Eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of 1996 IEEE Symposium on Visual Language, pp. 336–343
(1996)

http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1145/792550.792552
http://dx.doi.org/10.1145/792550.792552
http://dx.doi.org/10.1108/EUM0000000007204
http://dx.doi.org/10.1108/EUM0000000007204
http://dx.doi.org/10.1007/978-3-319-38791-8_5
http://dx.doi.org/10.1109/MC.2009.73
http://dx.doi.org/10.1145/2018396.2018414
http://dx.doi.org/10.1145/2018396.2018414
http://dx.doi.org/10.1145/1772690.1772748
http://dx.doi.org/10.1145/97243.97271
http://dx.doi.org/10.1145/97243.97271
http://dx.doi.org/10.1145/1121949.1121979
http://dx.doi.org/10.1145/2735633

19. Wilson, T.D.: Models in information behaviour research. J. Doc. 55, 249–270 (1999).
doi:10.1108/EUM0000000007145

20. Winckler, M., Cava, R., Barboni, E., Palanque, P., Freitas, C.: Usability aspects of the
inside-in approach for ancillary search tasks on the web. In: Abascal, J., Barbosa, S., Fetter,
M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9297,
pp. 211–230. Springer, Cham (2015). doi:10.1007/978-3-319-22668-2_18

http://dx.doi.org/10.1108/EUM0000000007145
http://dx.doi.org/10.1007/978-3-319-22668-2_18

	From Search Engines to Augmented Search Services: An End-User Development Approach
	Abstract
	1 Introduction
	2 Related Works
	3 End-User Driven Search Services
	3.1 The Approach in a Nutshell
	3.2 Search Service Architecture: Flexibility, Compliance and Extensibility

	4 Tool Support and Case Studies
	5 Evaluation
	5.1 Validation by Construction
	5.2 Quantitative Assessment Based on GOMS-KLM

	6 Conclusions and Future Works
	References

