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Summary: 
 

Plasmacytoid dendritic cells (pDCs) are an immune subset specialized in the production 

of Type I Interferons (IFNs). Conventional dendritic cells (cDCs) originate mostly from a 

common dendritic cell progenitor (CDP), whereas pDCs have been shown to develop from 

both CDPs as well as common lymphoid progenitors (CLPs). In contrast to the current 

literature, we here show that pDCs mostly differentiate from an IL-7R expressing lymphoid 

progenitor. IL-7R+ progenitors can be subdivided into three distinct subsets based on the 

expression of SiglecH and Ly6D: double negative (DN), Ly6D+ single positive (SP) and double 

positive (DP) progenitors. Each of these subsets identifies a specific developmental stage along 

the pDC lineage, where commitment by IL-7R+ progenitors is achieved upon expression of 

Ly6D and SiglecH (DP pre-pDCs). Further, RNA sequencing analysis of IL-7R+ lymphoid 

progenitor subsets revealed the transcriptional landscape of pDC development along the 

lymphoid branch, where high expression of the transcription factor IRF8 marks pDC 

commitment and anticipates the increase of TCF4 levels. The transcriptional signature of DP 

pre-pDCs correlates with the lineage potential assessed in vitro, in which DP pre-pDCs are 

fully committed to the pDC lineage. Moreover, single cell RNA sequencing on bone marrow 

and splenic pDCs revealed pDC heterogeneity in both tissues and further supported the dual 

origin of pDC from myeloid and lymphoid precursors. While all pDCs have the potential to 

secrete Type I IFNs and have high expression levels of pDC-specific transcript, only myeloid-

derived pDCs share with cDCs the capacity to process and present antigen, suggesting that 

functional specification is directly linked to developmental origin. 
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Introduction: 
 

pDCs are an immune subset specialized in the production of Type I IFNs. They have 

been long considered as part of the dendritic cell (DC) subset, even though their morphological 

appearance, migratory behavior, transcriptional signature and activation pattern seem to be 

distinct from those of conventional DCs (cDCs). The identification of a myeloid progenitor 

capable of generating all subtypes of DCs, including pDCs, led to the idea that the majority of 

pDCs are generated by a myeloid precursor rather than by any other lineage. However, 

conflicting evidence was present in the literature supporting a lymphoid origin of pDCs, which 

prompted us to dissect more in detail the developmental pathway of pDCs. The following 

chapter gives a short summary on the history of pDCs and recapitulates our current knowledge 

and understanding on pDC hematopoiesis as well as its role in the immune system. 

 

pDCs: an historical perspective 
 

The first description of pDCs dates back to 1958, where clusters of lymphoid cells were 

identified in human lymph nodes1. Those cell clusters were morphologically characterized by 

electron microscopy studies and revealed a well-structured rough endoplasmatic reticulum, 

thus being interpreted as a special type of plasma cell lacking the expression of lineage markers 

and the potential to produce immunoglobulins 2, 3. Their close localization within T cell regions, 

their presence within thymic lobes and their expression of some T cell-associated antigens such 

as CD4, led in 1983 to the designation of “plasmacytoid T-cells” 4. Facchetti et al performed 

in 1988 a more detailed immunophenotypical characterization. The absence of B, T and 

granulocyte-associated antigens and the presence of myelomonocytic markers such as CD36, 

HLA and the invariant chain CD74 challenged the idea of the lymphoid origin of plasmacytoid 

T-cells, suggesting a myeloid developmental pathway. This hypothesis led to a new definition 

of the subset: “plasmacytoid monocytes” 5. Around the same year, several independent studies 

identified a small subset of leukocytes in human peripheral blood, which similarly as 

plasmacytoid monocytes, lacked the expression of lineage markers and produced high levels 

of IFNs in response to enveloped viruses, bacteria and tumor cells, which led to the term 

“natural IFN-producing cells” (IPCs) 6, 7, 8, 9, 10, 11, 12. Since their discovery it has been difficult 

to assign these cells to a specific lineage as they resembled plasma blasts and expressed both 

lymphoid as well as myeloid antigens 8, 9, 12, 13. The observation that stimulation of these cells 
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with IL-3 and CD40L induced their maturation into T helper type 2 (Th2) priming mature 

dendritic cells (DCs), led Grouard et al in 1997 to assign them to the dendritic cell lineage 14. 

It took two additional years until Cella et al 15 and Siegal et al 16 demonstrated that IPCs, 

plasmacytoid monocytes and plasmacytoid T cells were de facto the same cell, which produced 

high amounts of IFNs during antiviral immune reactions. In 2000, their ability to induce also 

TH1 priming, similar to conventional DCs (cDCs), led to the new and definitive nomenclature 

of plasmacytoid DCs (pDCs) 17.  

In 2001 three independent groups identified pDCs in mouse tissues. Similar to their 

human counterpart, murine pDCs showed the same morphology as well as capacity to produce 

IFN but were characterized by high B220 and Ly6C expression levels, whereas CD123 (IL-

3Ra), MHC-II and co-stimulatory molecules were low under steady state conditions and only 

increased upon Flt3L or CpG ODN stimulation, respectively 18, 19, 20. Collectively, their 

expression of MHC-II, of co-stimulatory molecules, and of the integrin receptor Itgax (CD11c), 

consistent with their capacity to prime T cell responses, further supported their assignment to 

the DC lineage 18, 19, 20 (Figure 1). 

The identification of pDC specific cell surface markers facilitated future work that 

aimed at a better characterization and definition of their functional properties. In humans, two 

novel antigens were identified: BDCA-2 (CD303) and BDCA-4 (CD304) 21 (Figure 1). BDCA-

2 is a type II C-type lectin transmembrane glycoprotein, which if crosslinked with monoclonal 

antibodies, suppresses the production of IFN- a/b by pDCs22. BDCA-4 is a neuronal receptor 

of the class 3 semaphorin subfamily, which also functions as a coreceptor of endothelia or 

tumor cell produced vascular and endothelial growth factor A (VEGF-A). Stimulation of 

BDCA-4 by monoclonal antibodies does not alter the function of pDCs, making it a perfect 

choice for pDC purification assays 23 (Figure 1). In mice, two independent groups generated 

antibodies targeting Bone marrow Stromal antigen (BST2, clone 927 and 120G8) and Sialic 

acid binding immunoglobulin-like lectin H (SiglecH, clone 440c or 551) 24, 25, 26 (Figure 1). 

BST2 was shown to be specifically expressed by pDCs under steady state conditions and mice 

treated in vivo with aBST2 monoclonal antibodies are effectively depleted of pDCs. However, 

since BST2 is upregulated on other cell subsets such as B lymphocytes or endothelial cells 

following exposure to Type I or II IFNs, caution is necessary in using this antibody to identify 

pDCs, or interpreting results of mice treated with this antibody. Additionally, in vitro activation 

of aBST2 purified pDCs shows a reduction of IFN-a secretion, implicating an important role 

for BST2  in the regulation of pDC function. SiglecH is highly expressed on pDCs but not 
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exclusively. A specialized macrophage subset present in the spleen, lymph node and brain as 

well as progenitor cells in the BM show expression of SiglecH 26, 27. Similar to BST2, aSiglecH 

monoclonal antibodies profoundly impair IFN-a secretion in response to CpG stimulation, 

whereas the production of other cytokines such as IL6, IL-10 or TNF-a is not affected. 

Remarkably, no depletion of pDCs was observed in vivo upon aSiglecH treatment 25, 26, 27 

(Figure 1). 

 
Figure 1: Shown are surface markers expressed on murine (blue) and human (pink) pDCs. Markers shared between mouse 
and human pDCs are indicated by the overlap (purple). Additionally, antibody clones are depicted which are used for functional 
detection, modulation or depletion of pDCs. 

 

The development of pDCs: 
 

Hematopoiesis: 
 

Hematopoiesis is a hierarchical process in which self-renewing multipotent hematopoietic stem 

cells (HSCs) generate all downstream progenitors as well as all mature blood cells (Figure 2) 
28, 29. It was shown that a fraction of active HSCs can generate different subsets of multipotent 

progenitors (MPPs) 30 that further differentiate into two separate branches, becoming either 

common lymphoid progenitors (CLPs) 31 or common myeloid progenitors (CMPs) 32. CLPs 

generate all lymphoid cells, namely ILCs, NK-, B- and T cells but lack the potential to generate 

myeloid and erythroid cells. CMPs can differentiate into megakaryocyte and erythrocyte 

progenitors (MEP) as well as granulocyte and macrophage precursors (GMP) 32. Within the 

GMP precursors, a monocyte and dendritic cell progenitor (MDP) with the potential to generate 

monocytes as well as DCs but not neutrophils was recently identified and characterized 33, 34. 

MDPs can be further segregate into common monocyte progenitors (cMoPs) and common 

dendritic cell precursors (CDPs). Adoptively transferred cMoPs give rise to Ly6Chi and 
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Ly6Clow monocytes 35, whereas CDPs have the potential to generate pDCs as well as cDC1 and 

cDC2 36. Immediate precursors with exclusive differentiation potential have been identified for 

both cDC subsets 37. Although the molecular mechanism defining cDC1 lineage specification 

has been characterized, cDC2 specification is still unclear 37. Multiple pathways appear to 

converge into a phenotypically homogenous but transcriptionally heterogeneous cDC2 lineage 
38, 39, 40. In addition, the developmental trajectory leading to pDC commitment seems to be 

uncertain, since both the myeloid derived CDPs as well as lymphoid derived CLPs were shown 

to have the potential to generate pDCs, as shown in Figure 2 36, 41, 42, 43. 

 
 

 
Figure 2: Hematopoietic development in the Bone Marrow. Shown are the progressive developmental stages which occur 
during hematopoiesis and that lead to the formation of distinct immune cells. Abbreviations: Hematopoietic Stem Cell (HSC); 
Multipotent precursor (MPP); Common Lymphoid Progenitor (CLP); Natural Killer Cell (NK cell); Innate Lymphoid Cell 
(ILC); Common Myeloid Precursor (CMP); Myeloid and Erythroid Precursor (MEP); Granulocyte Macrophage Precursor 
(GMP); Macrophage and Dendritic Cell Precursor (MDP); common Monocyte Precursor (cMoP); Common Dendritic cell 
Precursor (CDP); conventional Dendritic cell (cDC) and plasmacytoid Dendritic Cell (pDC). 
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Required cytokines and known progenitors in pDC development: 
 

The developmental path and lineage affiliation of pDCs have since their discovery been 

controversial, partly because these cells show features associated to the myeloid as well as the 

lymphoid branch. The expression of surface markers as well as their ability to prime T cells 

led to their assignment to the DC lineage, which separates pDCs from cDCs. In support of a 

common origin is also the expression of the Fms-like tyrosine kinase 3 receptor (Flt3)  as well 

as the dependency of its corresponding ligand Flt3L by both subsets cDCs and pDCs. 44, 45. 

However, since myeloid as well as lymphoid subsets show massive perturbations in Flt3 or 

Flt3L deficient mice, the argument for a common developmental lineage trajectory remains 

questionable 46, 47. BM progenitors, cultured in the presence of Flt3L develop into cDCs and 

pDCs, suggesting an instructive role for this cytokine. Generation of pDCs and cDCs results 

from the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and 

phosphoinositide 3-kinase (PI3K) mediated activation of mammalian target of rapamycin 

(mTOR) 48, 49. Interestingly, it was shown that the synergistic interaction of Flt3L and Type I 

IFN induce the generation of pDCs from CLPs, hinting towards a lymphoid developmental 

pathway during inflammatory conditions 50.  

Collectively, the question whether pDCs derive from lymphoid or myeloid progenitors 

has not been solved since their identification and characterization in 1958. Several groups 

showed that both, CLPs as well as CMPs have the potential to generate pDCs 41, 42. Corcoran 

et al proposed a developmental progression through a lymphoid pathway, since around 30% of 

splenic and thymic pDCs undergo DH-JH rearrangements, a process occurring early and 

exclusively during lymphoid development 51. Additionally, Bendriss-Vermare et al and Res et 

al showed that pre-T cell receptor a (pTa) transcripts are present in human thymic pDCs 52, 53. 

The manifestation of classical B as well as T cell lymphoid lineage markers, therefore suggests 

a possible contribution of the lymphoid developmental pathway. Nevertheless, earlier studies 

showed that the induction of lymphoid transcriptional programs are not only restricted on CLP 

derived pDCs, but that also a small fraction of CMP derived pDCs exhibited rearrangements 

of the immunoglobulin heavy chain 41, 42. However, caution is needed as recent single cell 

technologies supported the evidence that, the so far identified progenitors, including CMPs, 

are a rather heterogeneous  population 54. Olweus et al placed pDCs within the myeloid branch 

due to the pDC generation potential of CD34+ progenitors which express the granulomonocytic 

marker M-CSFR 55. Indeed, pDCs can be derived from M-CSFR+ CDPs, a myeloid progenitor 

that has the potential to differentiate to all DC subsets 56. Additionally, in the absence of its 
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ligand M-CSF, mice have impaired DC development, showing a 50-70% reduction of all DC 

subsets 57. However, a decrease was not only observed within the myeloid compartment, also 

lymphoid derived cells such as splenic B and T cells were reduced in M-CSF deficient mice. 

This might be explained by the fact that these mice are severely osteopetrotic and therefore 

have significantly reduced BM cavities which lead to disrupted BM niches 58. Nevertheless, 

the addition of M-CSF seems to support the development of pDCs in vitro and in vivo in the 

absence of FLT3L 59. Interestingly, progenitors with the highest potential to generate pDCs 

upon M-CSF stimulation were CLPs and not the myeloid progenitors CMPs nor GMPs, despite 

the absence of detectable  surface M-CSFR expression 59. A recent study identified a pDC 

progenitor with clonogenic pDC developmental potential within a precursor population that 

lacks expression of myeloid M-CSFR and lymphoid markers IL-7R, defined as M-CSFR- 

CDPs 60. This progenitor population arises directly form Lymphoid-primed Multi Potent 

Progenitors (LMPPs)60. A similar study identified the immediate BST2+CCR9- pDC precursors 

within the mature compartment 61, which led to the hypothesis that CCR9- pDC precursors 

circulate and seed tissues before undergoing final maturation in pDCs 62.  

 

Lineage restricted reporters: 
 

To better understand DC development, experiments were performed by several groups 

in which the relationship of a precursor cell and its progeny can be defined in vivo. The most 

common method uses the lineage restricted expression of the Cre recombinase which mediates 

the site-specific excision of loxP-flanked chromosomal DNA sequences 63. Mice expressing 

Cre under lineage specific promotor genes were crossed with mice, which have an inserted 

loxP-flanked STOP sequence followed by the Enhanced Yellow Fluorescent Protein gene 

(EYFP) in the ubiquitously expressed ROSA 26 locus (Rosa26LSL-EYFP) 64.  

In order to study DC development several lineage specific Cre lines were generated and 

used: the myeloid specific M-CSFR Cre (Csf1rCre) 65, the lymphoid specific IL-7R Cre (IL-

7RCre) 66 and hCD2 Cre (hCD2Cre) 67 or the DC specific CD11c Cre (ItgaxCre) 68, Zbtb46 Cre 

(Zbtb46Cre) 65 and Clec9a Cre (Clec9aCre) 69 (Figure 3A). Labeling of precursor cells and its 

progeny by crossing these cre lines with Rosa26LSL-EYFP allowed for more detailed 

characterizations of developmental trajectories.  

Most known myeloid progenitors such as MDPs, cMoPs and CDPs are characterized 

by the expression of M-CSFR. Therefore, it is not surprising that Csf1rCre x Rosa26LSL-EYFP 

mice show over 95% labelling of all myeloid cells such as the pre DCs, cDCs, red pulp 



Introduction 
 

  8 

macrophages and monocytes 65. In addition, about 70% of pDCs are labelled, indicating and 

further supporting the original idea of a myeloid origin of the majority of pDCs. However, 

whether cre mediated deletion occurred in cell types other than myeloid cells, especially in the 

lymphoid lineage such as the CLPs or the mature compartment of B, T and NK cells, was not 

evaluated. Interestingly, two recent studies showed that not only myeloid cells express high 

levels of Csf1r transcripts, but also 50% to 70% of lymphoid derived T and B cells expressed 

during their development Csf1r, justifying a broader labeling capacity in the Csf1r-Cre lineage 

tracer mice and therefore not allowing for a clear answer about developmental origins of DC 

subsets 70, 71. 

Interleukin-7 receptor (IL-7R) is the most crucial cytokine receptor driving 

lymphopoiesis in vivo and a key cell surface marker for discriminating lymphoid progenitors 

in the BM. An Il-7RCre mouse was generated in 2010 by Schlenner et al and used to characterize 

and trace lymphocyte development 66. The cre mediated deletion was evident in about 10% 

LMPPs and over 85% of CLPs, whereas myeloid CMP and GMP as well as erythroid MEP 

progenitors had infrequent labeling below 5%. As expected, the majority of splenic 

lymphocytes were irreversibly labeled in Il-7RCre x Rosa26LSL-EYFP mice, with B-, T and NK 

cells being more than 95% EYFP positive. Myeloid cells, on the other hand, showed cre 

induced labelling of approximately 3% within Macrophages or neutrophils. Interestingly, the 

labeling efficiency within the DC compartment varied: while more than 85% of pDCs were 

EYFP positive, only 10% of cDCs were EYFP positive. Nevertheless, as correctly stated by 

the authors, no conclusion on lymphoid or nonlymphoid origins of pDCs can be drawn, since 

these high labeling frequencies likely result on IL-7R expression in mature pDCs 66. Another 

cre transgenic mouse which is acting specifically within the lymphoid lineage was 

characterized in 2003. De Boer et al generated a transgenic line that expressed iCre under the 

control of the hCD2 promotor 67. The authors showed that Cre mediated recombination 

occurred only in T and B cells 67. Additional analysis of the hCD2Cre x Rosa26LSL-EYFP mice by 

Siegemund et al showed that all lymphoid cells, such as B, T and NK cells, and only a small 

fraction below 5% of myeloid cells such as Granulocytes and macrophages were labeled 

Interestingly, all pDCs as well as 20% of the cDCs showed the recombination of the LoxP 

sites, indicating a lymphoid origin of the majority of pDCs and a small fraction of cDCs 72.  

Later studies aimed at specifically labelling all or some of the DC subsets to understand 

the relation among them and their lineage of origin. Transgenic mice in which the CD11c 

promoter drives the expression of EYFP were extensively studied and showed that more than 

95% of splenic cDCs and around 86% of pDCs were labelled 68, 73. However, cre mediated 
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deletion was additionally observed in 100% alveolar macrophages, 70% splenic red pulp 

macrophages, 35% of marginal zone macrophages, 30% of blood monocytes and 20% 

peritoneal macrophages 73. The awareness that ItgaxCre mice did not show the desired DC 

specificity, moved the scientific community to develop more specific Cre lines. The group of 

Nussenzweig generated a Cre line, in which an IRES Cre cassette was inserted into the 3’ UTR 

of the endogenous cDC specific gene Zbtb46 74. Zbtb46 is a transcription factor which appears 

to be exclusively expressed by cDCs, as shown by the group of Ken Murphy 75. Indeed, 

Zbtb46Cre x Rosa26LSL-EYFP mice show a more cDC specific deletion, in which about 65% of 

cDCs and less than 10% of pDCs, monocytes, red pulp macrophages, small intestine 

macrophages as well as B and T cell lymphocytes are labeled 65. Another cDC specific Cre line 

was generated in 2013 by Schraml et al 69. Clec9a expression is first detected on CDPs and 

maintained in mature cDC1 and pDCs but not in cDC2 69, 76, 77. The Clec9aCre line was 

generated by substituting the first two exons with a Cre cassette. Clec9aCre x Rosa26LSL-EYFP 

mice show about 10% of labelling in CDPs, whereas mature DCs have distinct labelling 

resulting in 100% for cDC1, 50% for cDC2 and only 20% for pDCs 69. Other cells such as 

monocytes or macrophages remain unlabeled, indicating high DC specificity, even though cre 

mediated deletion was not observed evenly within the different DC subsets 69.  

In 2016, Sawai et al described a genetic system in which cre mediated permanent 

labelling is induced in HSCs, thus allowing the assessment of precursors-progeny relationship 

in unperturbed animals. The authors created a transgenic mouse, which expresses a tamoxifen 

inducible Cre recombinase estrogen receptor fusion protein (CreER) under the control of the 

5’ truncated Pdzk1ip1 BAC clone (Pdzk1ip1CreER) 78. Pdzk1ip1CreER mice were crossed to 

Rosa26LSL-tdTomato mice (Pdzk1ip1CreER x Rosa26LSL-tdTomato), and HSCs were permanently 

labelled upon tamoxifen injections. The labelled HSCs rapidly contributed to committed 

progenitors of all lineages, where about 25% and 20% of CDPs and CLPs, respectively were 

labelled after 11 weeks. Splenic cDCs and pDCs were replaced with a fast kinetic by a marked 

progeny reaching 20% of labelling after 11 weeks. Lymphoid derived showed a different 

degree of labelling depending of the subset. 10% of immature and about 5% mature B cells in 

the BM was labelled, while NK cells showed a labelling efficiency of about 18%, reaching 

comparable percentages as cDCs as well as pDCs 78. The different degree of labelling was 

therefore not conclusive in regard to the developmental history of pDCs, since both myeloid as 

well as lymphoid cells exhibited similar developmental kinetics. 
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Cellular Barcoding: 
 

The biggest disadvantage in Cre mediated fate mapping experiments is the inability to 

trace the developmental relationship and plasticity of individual progenitors. Nowadays, this 

limitation can be circumvented by using “cellular barcoding”, a method in which different 

progenitors get tagged with semi-random, non-coding DNA sequences. Progenitors and their 

progeny can be marked either in vitro by transducing unique DNA barcodes into target 

progenitor cells or in vivo by Cre mediated excision of artificial DNA cassettes, thus allowing 

random and large combinatorial diversity 79. Shalin H. Naik et al developed in 2013 a barcoding 

assay, in which Lymphoid primed multi potent progenitors (LMPPs) were permanently marked 

with a library of heritable DNA barcodes and subsequently transferred into sub lethally 

irradiated hosts. 80. 14 days later the progeny was analyzed. Interestingly, around 50% of the 

LMPPs were classified as DC biased, whereas 10% of the progenitors contributed to either B 

or myeloid cells and only a small fraction of 3% showed multi lineage potential. The authors 

conclude that the broad developmental potential of LMPPs rather seems to rely on single cell 

heterogeneity which has imprinted lineage biases rather than single cell multipotentiality 80. 

Nevertheless, these barcoding experiments were only performed with LMPPs but not with 

other downstream progenitors such as the lymphoid or myeloid progenitors CLPs or CDPs, 

respectively. Therefore, no conclusion on lymphoid or nonlymphoid origins of pDCs can be 

drawn. Nevertheless, a recent study published by Dawn S. Lin et al combined cellular 

barcoding with high throughput methods to assess DC development in FLT3L cultures 81. The 

authors cultured barcode labelled hematopoietic stem and progenitor cells (HSPCs) under 

FLT3L conditions and serially measured barcode signatures from different DC subsets. They 

visualized these multidimensional data using developmental interpolated t-distributed 

stochastic neighborhood embedding (DiSNE) time laps movies and were able to show that cDC 

and pDC development bifurcation already occurs early during hematopoiesis and does not go 

over a common progenitor such as CDP 81. Helft et al and Lee et al additionally showed that 

early lineage and even DC subset imprinting on clonal basis takes place within individual 

human HSPCs 82, 83 supporting the early developmental bifurcation of cDCs and pDCs which 

was suggested by Lin et al 81.  

 In 2017 Pei et al performed cellular barcoding experiments by taking advantage of the 

Polylox mouse system. The polylox mice contains multiple barcoding elements composed out 

of ten LoxP sites in alternating orientations and spaced apart with unique 178 bp in the Rosa26 

locus, thus allowing specific and unique tagging of single cells and their progeny upon Cre 
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mediated recombination 79. Most HSC clones gave rise to multilineage or oligolineage fates, 

arguing against early lineage priming of HSCs. Further, they confirmed the classical model of 

hematopoietic lineage specification by revealing a basic split between common lymphocyte 

development and common erythroid and myeloid development. Unfortunately, no information 

was provided by the authors on the developmental trajectories from HSCs to the DC lineages.  

 

Transcription factors required during pDC development: 
 

CDPs are thought to be the progenitor stage, at which the developmental bifurcation of 

cDC1, cDC2 and pDCs occurs. Molecularly, the divergence of pDCs from cDCs as well as the 

final maturation steps involve a number of different transcription factors, including Pu.1, Irf8, 

Ikaros, Bcl11a, Tcf4, Id2, Zeb2, SpiB and Runx2 (Figure 3B).  

The transcription factor PU.1 plays an essential role in lymphoid as well as myeloid 

development by directly regulating the expression of Flt3 84. PU.1 deficiency results in 

dramatical perturbations of several immune cell subsets: granulocytes are expanded, while 

lymphoid as well as myeloid development is greatly impaired as a consequence of  the loss of 

their corresponding progenitors 85, 86. PU.1 was shown to bind to closed chromatin and prime 

enhancers by recruiting IRF8. This interaction results in histone H3-Lysin-27 acetylation 

(H3K27ac), resulting in an open conformation at enhancer elements and determining the 

induction of the myeloid transcriptional program that ultimately leads to the generation of 

monocytes and DCs 87, 88. This hypothesis is further supported by a recent study, which showed 

skewing within the DC lineages, where pDC numbers are increased at the expanse of cDCs, 

upon conditional ablation of PU.1 in CD11c expressing cells 89.  

While PU.1 is supposed to act as a pioneer factor for multiple lineages, IRF8 can 

function as a transcriptional activator or repressor depending on the context and on its binding 

partners 91, 92, 93 94. Within the lymphoid branch, IRF8 was shown to play an intrinsic role in 

cell fate decision of pre-pro B cells. Binding of Irf8 and PU.1 at EICE (Ets-IRF composite 

elements) is key for the induction of the B cell specific transcription factor Ebf1 95. Within the 

myeloid branch, Irf8 deficiency results in disordered enhancer landscapes, which leads to 

impaired monocyte and cDC1 development while development and production of neutrophils 

is greatly enhanced in humans and mice 96, 97, 98, 99, 100. Interestingly, pDCs were shown to be 

absent in humans which have point mutations affecting the DNA binding domain of IRF8, an 

observation which was also described in Irf8 deficient mice in 2002 by Schiavoni et al 101, 102, 

but revised in 2016 by Sichien et al 100. In the latter study, the group of Guilliams showed that 
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complete or late deletion of IRF8 had no impact on pDC development. Nevertheless, Irf8 

deficient pDCs were altered in their transcriptional signature, leading to a pDC with atypical 

surface marker expression and functional properties100. Interestingly, IRF8 and IRF4 double 

deficient mice were completely devoid of pDCs, highlighting a possible compensatory role of 

IRF4 in IRF8 deficient mice 100, 103.  

Another transcription factor important in early hematopoiesis is Ikaros (also known as 

Ikzf1). Ikaros is a zinc finger transcription factors which is essential for the development of 

several hematopoietic cell lineages 104, 105, 106, 107, 108. It acts mainly as a repressor by binding 

DNA as homodimer or heterodimer with other members of the Ikaros family, such as Helios, 

a transcription factor expressed in early hematopoietic progenitor, or Aiolos, a zinc finger 

protein being expressed in B and T cells 109, 110, 111, 112. Not much is known about the role of 

Ikaros during DC development. The expression of a dominant negative form results in 

complete abrogation of cDC development, while a null mutation in Ikaros specifically inhibits 

the development of cDC2 but not cDC1 113. Allman et al showed in 2006 that splenic pDCs but 

not cDCs are greatly reduced in mice which have the hypomorphic mutation in the Ikaros locus 

(IkarosL/L) 114. Interestingly, IkarosL/L mice still generate an early pDC progenitor population 

in the BM that appears to be developmentally blocked. This population expresses genes, that 

are normally not present in WT pDCs but expressed on lymphocytes such as Vpreb1, Lck, 

Tcrb-V13, Ptcra and Hes1 114. The same group also showed that Ikaros cooperates with Notch 

signaling, promoting pDC differentiation and cell fate decision by correctly regulating the 

expression of DC specific target genes and antagonizing TGFb signaling 115. Additionally, a 

recent independent study on humans shows that a heterozygous mutation in IKZF1 decreases 

pDC numbers and expands cDC1 116. Further, it was shown that treatment with lenalidomide, 

a drug which induces proteasomal degradation of IKZF1, effectively reduces pDC numbers in 

vivo 116. 

Bcl11a encodes a Krüppel-like zinc finger transcription factor which is known to 

regulate early hematopoiesis. Bcl11a is essential for the development of B cells and thymocyte 

maturation 117 and was also shown to silence the fetal hemoglobin locus in cooperation with 

the transcription factor SOX6 along the erythroid lineage 118, 119. The first publication assessing 

the role of Bcl11a in pDC development was published in 2013 by Wu et al. The authors 

showed, that Bcl11a in fetal progenitors is necessary for the expression of FLT3 and IL-7R and 

that fetal liver reconstituted wild type mice have severely reduced numbers of pDCs 120. 

Further, adult Bcl11a floxed mice crossed with the Vav-icre line (Bcl11afl/fl x VaviCre) had 
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severely decreased BM and splenic pDCs, confirming the requirement of Bcl11a for pDC 

development. Additionally, genome wide analysis of DNA binding revealed that Bcl11a 

regulates the expression of transcription factors important during DC specification such as the 

E protein transcription factor Tcf4, the inhibitor of DNA binding (Id) protein Id2 and the ETO 

family protein Mtg16 121.  

E proteins form homodimers or heterodimers with class II basic helix loop helix 

(bHLH) proteins, which function as transcriptional activators or repressors through the 

recruitment of distinct co-activator or repressor complexes. Four E protein transcription factors 

were identified in mice: TCFE2A and TCF3 (also known as E12 and E47), two isoforms 

generated by the Tcf3 gene (also known as E2a), TCF12 (also known as HEB) and TCF4 (also 

known as E2-2) 122. Cisse et al and Nagasawa et al showed that pDC lineage specification and 

transcriptional regulation in mice and humans is mediated by Tcf4 123, 124, suggesting this 

transcription factor as the master regulator for pDCs development. Furthermore, they could 

show that continuous expression of TCF4 is essential for pDC maintenance, regulating a large 

proportion of pDC-specific genes 123, 124. Constitutive deletion of Tcf4 leads to an exclusive 

block of pDC development but not of other lineages, whereas deletion in mature pDCs has a 

severe impact on the identity of pDCs, inducing the loss of pDC associated markers, 

spontaneous dendrite formation, upregulation of MHC-II molecules and ultimately to an 

increased antigen presentation capacity 123, 125. Depsite the major advances in understanding 

the differentiation of the pDC, the transcriptional regulatory network that promotes the 

commitment and lineage determination is still not fully understood. E proteins were shown to 

heterodimerize with Id proteins, which express an HLH domain without the basic region, 

therefore preventing E proteins from binding to DNA 126. Development into cDC1 depends on 

the expression of ID2, which was shown to specifically inhibit TCF4 and therefore pDC lineage 

commitment 125, 127. Indeed, while Id2 deficient mice show a sever defect in cDC1 

development, pDC numbers seem to be increased 127. These studies support the hypothesis that 

the balance of ID2 and TCF4 at the CDP stage determines lineage specification towards these 

two lineages. In particular, it was shown by Grajakowska et al that the pDC specific long 

isoform of TCF4 (TCF4L) in complex with the MTG16 induces transcription of pDC-related 

genes while repressing Id2 and therefore cDC1 commitment 128. However, the mechanism 

which controls the level of Tcf4, Id2 and Mtg16 at CDP stage and during pDC specification is 

still unclear and an active topic of investigation. 

Zeb2 is a potential modulator which was recently described to be important in lymphoid 

as well as myeloid development. It belongs to the family of zinc-finger E-box-binding 
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transcription factors and plays an important role in cell fate decisions of melanocytes 129 and 

neuronal oligodendrocytes 130, 131, 132.  Furthermore, during embryonic development it acts as a 

modulator of epithelial-to-mesenchymal-transition (EMT) 133, 134. Although its role in 

hematopoiesis is largely unknown, it was recently shown that Vav-iCre mediated deletion of 

Zeb2 led to neonatal lethality which was induced by intracephalic hemorrages 135. Zeb2 

deficient HSCs have altered adhesion and homing properties, display migratory defects and 

therefore impaired re-location of hematopoiesis from the fetal liver to BM cavities 135. Zeb2 

was also shown to cooperate with T-bet and thus to promote terminal NK and CD8+ T cell 

maturation 136, 137, suggesting also for this TF, multiple actions depending on the cellular 

context. Deficiency within the hematopoietic compartment results in the expansion of 

neutrophils and loss of monocytes and of B cells 138, 139, suggesting to counteract the effects of 

IRF8. Recently, two studies showed the importance of Zeb2 also for DC development 139, 140. 

Deficiency in CD11c expressing cells results in decreased pDCs and cDC2 numbers, with an 

expansion of the cDC1 compartment.  Overexpression of Zeb2 leads into slightly decreased 

cDC1 but unaltered cDC2 and pDCs numbers 140. Interestingly, Zeb2 deficiency is linked to 

increased Id2 levels in pDCs and cDC2. This led the authors to the interpretation that Zeb2 

plays a key role in cDC1, pDC and cDC2 specification and commitment, in which it potentially 

represses the expression of Id2 140. Nevertheless, the function of Zeb2 in DC development is 

still a matter of investigation, as the unaltered pDC pool in Zeb2 transgenic mice cannot be 

explained by the suggested transcription factor network and is probably more complex than the 

hypothesized pDC–cDC1 dichotomy. 

The two transcription factors Spi-B as well as Runx2 were shown to play an essential 

role during the late phase of pDC development Spi-B also belongs to the ETS family of 

transcription factors and shares with other members of the group a conserved ETS domain 

which mediates DNA binding 141. In 2004, Schotte et al were able to prove the requirement of 

Spi-B during human pDC development. Knockdown of Spi-B strongly inhibited the potential 

of CD34+ progenitors to generate pDCs in vitro as well as in vivo, while enhanced the 

development of pro-B cells 142. Furthermore, overexpression of Spi-B in hematopoietic CD34+ 

fetal liver stem cells enhanced pDC development, while inhibiting NK-, T- and B cell 

development 143. Nagasawa et al suggested in 2008 that cells overexpressing Spi-B had reduced 

levels of Id2, implying an inhibitory mechanism 124. However, all experiments performed were 

based on over-expression or knock-down assays, which might not reflect the physiologic 

conditions in vivo. Indeed, a less severe phenotype was observed in Spi-B knockout mice: only 

BM pDCs seem to be reduced, whereas splenic, LN and blood pDCs were increased, 
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suggesting a migratory rather than a developmental  defect 144. Nevertheless, the absence of 

Spi-B, results in a functional impairment of pDCs, which display altered expression of pDC-

specific markers, such as reduced expression of the anti-apoptotic BCL2-A as well as defects 

in TLR7 and TLR9 mediated Type I IFN production 144, 145. 

Other transcription factors which were shown to play a central role within the 

hematopoietic system are the Runx genes. The Runx family consists of the three transcription 

factors Runx1, Runx2 and Runx3. These proteins are orthologues of the RUNT protein in 

Drosophila melanogaster and regulate the expression of target genes by forming heterodimers 

with the common subunit CBFb. While the repressor function of Runx1 and Runx3 was 

extensively studied in CD4-CD8 T cell lineage choices, only little is known about the role of 

Runx2 within the hematopoietic system 146. Runx2 was described as master regulator of bone 

development, where it acts primarily as activator, facilitating the generation of osteoblasts and 

therefore being indispensable for bone formation 147. Sawai et al reported in 2013 that Runx2 

is specifically expressed in pDCs in a Tcf4 dependent manner, where it regulates the expression 

of Ccr5 allowing for pDC migration to the periphery 148. An additional study from 2016 further 

highlighted the essential role of Runx2 in the localization and function of pDCs 149. In this 

study Runx2 appears to be required for the downregulation of CXCR4, the BM homing 

chemokine receptor, and also essential to mount a robust anti-viral immune response 149. 

Despite major advances in our understanding of gene network regulation, we still do 

not understand how hematopoietic lineage commitment and specification is achieved. Indeed, 

it becomes apparent that regulation at enhancer as well as at promoters defines the 

transcriptional landscape. However, more efforts are needed to fully grasp the key steps of such 

a dynamic process, where epigenetic regulatory cis- and transelements cooperate in defining 

the identity of a cell through its developmental origin. 
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Figure 3: Essential Developmental stages and Transcription factors in lymphocyte and DC hematopoiesis. (A) Shown in dark 
gray are the different cre transgenic mouse lines and the specific developmental stages, in which the cre is active. (B) Indicated 
in red are the transcription factors required for the depicted cell populations. Abbreviations: Hematopoietic Stem Cell (HSC); 
Multipotent precursor (MPP); Common Lymphoid Progenitor (CLP); Natural Killer Cell (NK cell); Innate Lymphoid Cell 
(ILC); Common Myeloid Precursor (CMP); Myeloid and Erythroid Precursor (MEP); Granulocyte Macrophage Precursor 
(GMP); Macrophage and Dendritic Cell Precursor (MDP); common Monocyte Precursor (cMoP); Common Dendritic cell 
Precursor (CDP); conventional Dendritic cell (cDC) and plasmacytoid Dendritic Cell (pDC). 

 

The function of pDCs: 
 

Trafficking of pDCs: 
 

DCs are key players of the immune system that operate at the boundary of innate and 

adaptive immunity. The migratory capacity of DCs was associated with tissue tolerance and 

the pathogenesis of a range of diseases. Initial studies demonstrate that the migratory pattern 

of pDCs differs from that of cDCs: final matured BM pDCs exit the BM via the bloodstream 

and migrate to secondary lymphoid organs such as the LNs by entering through the high 

endothelial venules (HEV) and not the afferent lymphatics, as it is the case for mature cDCs. 

The egression of pDCs from the BM is achieved by a tightly controlled process, in which the 

expressions of distinct chemokine receptor is regulated. While CXCR4 is involved in the 

retention of immature pDCs within the correct BM stromal niche 148, CCR2 and CCR5 are 

progressively being expressed during maturation, allowing the egression from the BM into the 

blood 149, 150. CCR2 was additionally shown to drive the recruitment of pDCs to skin regions 
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which were topically treated with imiquimod, a process which leads to apoptosis in 

keratinocytes and therefore to CCL2 production in mastcells 150. The migration of pDCs into 

the splenic white pulp is mediated by the co-expression of CXCR4 and CCR7 151, whereas high 

CXCL12 gradients in tumor areas result in infiltrations of pDCs which express CXCR4 152. 

Additional chemokine receptors were shown to drive pDC migration into different tissues: 

CXCR3 and CCR5 mediate the migration towards inflamed tissues 153, 154, whereas CCR6 and 

CCR10, chemokine receptors expressed on human pDCs, induce the translocation towards 

inflamed tissues in response to CCL20 and CCL27 155. The recruitment of pDCs into the small 

intestine and the thymus are dependent on the expression of CCR9 156, 157, whereas pDC 

migration into the colon seems to be CCR9 independent 158. Interestingly, the migration into 

the mucosal intraepithelial compartment is mediated by Mucosal addressin cell adhesion 

molecule 1 (MadCAM-1) and b7 integrins 159. pDCs also express the receptors C3aR and 

C5aR, which allows them to sense the anaphylatoxins C3a and C5a and therefore to migrate 

into lesions of inflammatory skin diseases such as cutaneous lupus erythematosus and allergic 

contact dermatitis 160. The expression of Cx3cr1 was also described, however its role in pDC 

migration and homeostasis is unknown and still matter of investigation. 

 

The role of TLR7 and TLR9 in viral sensing: 
 

The recognition of viruses or self-nucleic acids in pDCs is meditated by Toll like 

receptor 7 (TLR-7) and TLR-9. Both are located in the endosomal compartment and induce the 

secretion of either Type I IFNs or pro-inflammatory cytokines, a process which is mediated by 

the myeloid differentiation primary response protein 88 (MyD88)-IRF7 or the MyD88-nuclear 

factor-kB (NF-kB) pathway, respectively 161, 162, 163. TLR7 was shown to recognize RNA 

viruses, endogeneous RNA and synthetically produced oligoribonucleotides, whereas TLR9 

senses DNA viruses containing unmethylated CpG-rich DNA regions, endogeneous DNA as 

well as synthetic CpG oligodeoxyribonucleotides (ODN). Whether engagement of TLR7 and 

TLR9 results in the production of Typ I IFNs or proinflammatory cytokines is dependent on 

the localization in which the interaction between the receptors and their corresponding ligands 

occurs. It was shown that multimeric CpG-A oligonucleotides preferentially aggregate in early 

endosomes, where they induce the secretion of Type I IFNs via the MyD88-IRF7 pathway 164. 

Monomeric CpG-B stimulation on the other hand leads to the activation of TLR9 in the 

endolysosomal compartment, a process which activates the MyD88-NF-kB pathway and 

therefore the upregulation of co-stimulatory molecules as well as the secretion of the pro-
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inflammatory cytokines TNFa, IL-6 and IL12p40 164. The reason why CpG-A and CpG-B 

localize to different endosomal compartments is still matter of investigation. Studies suggest 

that the structural conformation of different CpGs determines their distinct localization. This 

theory was proposed after the observation that CpG-B complexed with the cationic lipid 

DOTAP (dioleoyloxytrimethylammoniumpropane) results in the localization of CpG-B within 

the early endosomal compartment in pDCs. This re-localization mediates the expression of 

Type I IFN production and not to the production of pro-inflammatory cytokines 164, 165. 

Nevertheless, further studies are required to fully understand the mechanisms that lead to the 

distribution of different ligands to distinct cellular endosomal compartments and therefore to 

the expression of Typ I IFNs or proinflammatory cytokines. 

There are different theories on how pDCs are able to sense ongoing viral infections. An 

important mechanism of viral pathogen sensing is the direct recognition of viral particles. In 

this process pDCs get activated by directly internalizing replication deficient viruses, leading 

to endosomal TLR signaling 20, 166, 167, 168. Another mechanism is the antibody-Fc mediated 

stimulation of pDCs. Fc receptor FcgRIIA promotes the uptake of antibody coated viral or 

endogeneous nucleic acids which then induces TLR mediated secretion of IFNs in pDCs 169, 

170. Nevertheless, the IRF7 mediated secretion of IFNs in pDCs makes them largely resistant 

to viral infections, suggesting that recognition of viruses occurs via mechanisms that are 

distinct from direct pDC infections 167, 171. This new paradox of viral sensing was introduced 

by several studies in which they used Vesicular stomatitis Virus (VSV) or the hepatocyte 

specific hepatitis C virus (HCV) as an infection model. Both studies showed that cells which 

are infected with these RNA viruses trigger a robust IFN response in pDCs, a process which 

requires an active viral replication and which is cell-cell contact as well as TLR-7 signaling 

dependent 172, 173. Additionally, it was shown that the release of exosomes containing HCV 

derived RNA by infected hepatocytes mediated the activation of pDCs 174, a mechanism which 

is also observed with other RNA viruses such as retroviruses 175, 176, lymphocytic 

choriomeningitis virus (LCMV) 177, Dengue and West Nile viruses 178, hepatitis-A virus 179 as 

well as Ebstein Barr Virus (EBV) 180. Interestingly, TLR-9 mediated recognition of infected 

cells has only be described partially. In 2007 Megjugorac et al suggested that cells infected 

with the DNA Herpes simplex virus (HSV) secrete viral as well as cellular compartments, 

which mediate pDCs to produce IFNs 181. Further, a more recent publication showed that type 

I IFN producing pDCs are localized in close proximity to MCMV infected cells. There, the 

recognition of primary infected cells was achieved by the formation of interferogenic synapses 



Introduction 
 

  19 

between pDCs and infected cells. This interaction is established by LFA-1 mediated adhesion 

and is abrogated in experiments, where LFA-1 was blocked in vitro 182 or genetically depleted 

in vivo 183. 

 

The role of other innate immune sensors: 
 

TLR7 and TLR9 are important viral innate immune sensors in pDCs, but also other 

pattern recognition receptors (PRR) were shown to play a role in pDC mediated immunity. 

Dasgupta et al showed in 2014 that pDCs exposed to Polysaccharide A (PSA), an 

immunomodulatory molecule expressed by the ubiquitous gut microorganism Bacteroides 

fragilis, increase costimulatory molecules and specifically mediate the secretion of IL-10 by 

CD4+ T cells. This process is triggered by TLR2 and was shown to protect against colitis 184. 

The role of TLR12 was described in 2013 by Koblanksy et al. It was shown that pDCs which 

recognize toxoplasma gondii profilin by TLR12 induce the secretion of IL-12 and Type I IFN 

which subsequently results in the activation of NK cells 185. Furthermore, TLR12 deficient 

mice were shown to be highly susceptible to T.gondii infections, which suggests an important 

role for pDCs in the induction of innate immune responses and host resistance 185. 

 Even though TLRs have been established as the main innate receptors involved in pDC 

activation, other cytosolic sensors were described to be important during immune responses. 

One group of cytosolic sensors was identified by mass spectrometry analysis, in which purified 

CpG binding proteins were purified and characterized 186. The authors were able to show that 

DExD/H-box helicas 36 (DHX36) and DHX9 in pDCs were acting as specific cytosolic sensors 

for CpG-A and CpG-B, respectively. While binding of CpG-A by DHX36 results in the nuclear 

translocation of IRF7 and Type I IFN secretion, interaction between CpG-B and DHX9 

mediates the activation of the NF-kB pathway and therefore the secretion of pro-inflammatory 

cytokines 186. Other major cytosolic sensors, such as cGMP-AMP synthetase (cGAS) and 

stimulator of IFN genes protein (STING) were also suggested to play a role during the 

responses to extrinsic or intrinsic derived DNA. Indeed, recent publications suggest that 

cytosolic DNA activates the cGAS-STING pathway in pDCs, thereby mediating the production 

of type I IFN independently of TLR9. Further, knockdown of STING resulted in reduced IFN 

expression, suggesting an important regulatory role of the cGAS-STING pathway in the 

recognition of cytosolic DNA 187, 188, 189. Nevertheless, further studies may provide a better 

understanding in the crosstalk between different cytosolic proteins and elucidate the molecular 

mechanisms that is induced during cytosolic mediated immune responses. 
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pDCs in health and disease: 
 

The regulation of type I IFN production: 
 

The potential to produce high levels of type I IFNs is a key hallmark of pDCs. It was 

shown that IFN secretion by pDCs in response to viral infections seems to have beneficial 

effects for the host. Nevertheless, a variety of autoimmune diseases are characterized by a high 

type I IFN signature, which implicates that tightly regulated processes are required which 

prevent detrimental side effects caused by aberrant IFN production. Indeed, several 

mechanisms were characterized, which control the amplitude of type I IFN production. Mouse 

as well as human pDCs express surface receptors, which regulate the secretion of TLR7 or 

TLR9 mediated IFNs 190, 191. The murine receptors SiglecH 25, 192, BST2 193, Ly49Q 194, PDC-

Trem 195,  PIR-B 196 and EBI2 197, were shown to modulate the secretion of  type I IFN, whereas 

human pDCs express the regulatory receptors BDCA2, ILT7, NKp44, CD300A and CD300C, 

DCIR, CD32, BST2 and LAIR1. Many of these receptors either contain intracellular tyrosine 

based inhibitory motifs (ITIM) or associate with adaptor proteins such as DAP12 or FceRg 

which then deliver signals via an intracellular tyrosine based activation motif (ITAM). Murine 

SiglecH as well as human BDCA2 and ILT7 inhibit the secretion of IFNs upon engagement 

with agonistic antibodies and signal through DAP12 or FceRg and the tyrosine kinase SYK. 

Other mechanisms which were described to modulate the secretion of IFNs are the 

inhibitory posttranscriptional regulatory mechanisms, mediated by microRNAs as well as 

hormones. TLR7 and TLR9 induced downstream signaling results in the expression of miR-

146a, a microRNA that suppresses NF-kB activation and TLR mediated signaling in pDCs 198. 

Further, it was shown that TLR7 stimulation induces the expression of miR-155 and its star 

form partner miR-155*. Both have opposing effects in Type I IFN production, in which miR-

155* is induced shortly after TLR7 stimulation and enhances IFN expression by inhibiting 

IRAK3, whereas miR-155 induction occurs later where it inhibits IFN secretion by inhibiting 

TAB2 translation 199. Another microRNA which was shown to regulate the function and the 

survival of pDCs is mir-126: deficient mice for mir-126 show an impairment in pDC 

homeostasis and their capacity to respond to TLR ligands. This process is mediated by targeting 

the mTOR pathway and therefore regulating the expression of Tlr7, Tlr9 and Nfkb1 200. 

Recently it was additionally shown that estrogen positively regulates the TLR-7 mediated 

response of pDCs in vivo. This might provide a possible explanation for the observation that 

pDCs from women produce more type I IFNs in response to HIV than pDCs from men 201. 
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The role of pDCs in antigen presentation:  
 

The ability of pDCs to express MHC-class II and the co-stimulatory molecules CD80, 

CD86 and CD40 opens up the question about the antigen presentation potential of pDCs. 

Recent studies have proposed that pDCs can present antigens to CD4+ T cells, although not as 

efficient as cDCs 202, 203. In murine models, pDCs have mostly been studied for their potential 

on presenting antigens to CD4+ T cells, whereas human studies mostly focused on pDC antigen 

presentation to CD8+ T cells 204, 205. Recent studies showed that pDCs can prime the immune 

system into an activating or tolerogenic state, depending on the stimulation. Activation of pDCs 

through TLRs or other pattern recognition receptors induce an immunogenic immune response. 

On the other hand, unstimulated or alternatively activated conditions which induce the 

expression of indoleamine 2,3-dioxygenase (IDO) 206, 207, 208, 209, ICOSL 210, OX40L 211, 

programmed cell death protein ligand 1 (PDL1) 212 or granzyme B 213, rather promote a 

tolerogenic immune response to tumor cells, alloantigens and harmless antigens. Indeed, a 

CCR9+ pDC subset with immunosuppressive characteristics was described in 2008 by Hadeiba 

et al. The authors showed that these pDCs mediate the generation of regulatory T cells (Treg) 

and are therefore able to inhibit an acute graft versus host driven immune response in allogeneic 

CD4+ donor T cell experiments 214. Further, CD8a+ pDCs were shown to suppress the 

development of airway hyper reactivity in a mouse model of lung inflammation by mediating 

the generation of Tregs 215. Nevertheless, to examine the antigen presentation potential of pDCs 

in vivo, several research groups generated pDC specific antibodies which were conjugating 

with antigens. A recent study used transgenic mice, in which human BDCA2 is specifically 

expressed on pDCs. They showed that targeting antigens to BDCA2 resulted in significant 

suppression of Ag-specific CD4+ T cells upon secondary exposure to Ag, a process that 

involved both the maintenance of Tregs and the decrease in effector CD4+ T cells 216. Further, 

treating mice with antibodies specific for SiglecH which were conjugated with myelin 

oligodendrocyte glycoprotein (MOG) results in a reduced expansion of Th1 and Th17 cells, 

subsequently leading to a delayed onset and decreased severity level of MOG-induced 

experimental autoimmune encephalomyelitis (EAE) disease 217. Additionally, OVA delivery 

through BST2 antibodies resulted in robust cellular and humoral immune responses and 

protected mice against OVA-encoding viruses as well as B16-OVA melanoma cells 218. Thus, 

antigen targeting to pDCs can either result in an activating or tolerogenic immune response 

which is antigen, stimulation as well as delivery dependent. 

 



Introduction 
 

  22 

pDCs in acute vs chronic viral infections: 
 

The in vivo role of pDCs during acute or chronic viral infections has since their 

discovery been surprisingly difficult to demonstrate. The powerful potential of pDCs to 

produce IFNs in response to nearly all enveloped viruses would suggest their indispensable 

role during antiviral immune responses. Nevertheless, the potent type I IFN secretion by pDCs 

in response to acute viral infections is usually limited in time and amplitude. The production 

of IFNs by pDCs in responses to viruses such as murine cytomegalovirus (MCMV), herpes 

simplex virus 1 (HSV1), VSV and LCMV is most evident during the early phase in systemic 

infections and leads to the suppression of viral replication. However, pDC derived IFNs 

become less important in the late onset of viral infections as other cells become more dominant 

producers of type I IFNs. Thus, pDCs are not strictly required for the in vivo control of such 

murine model viruses, since the multilayered nature of a viral immune response might 

compensate for the loss of one immune subset. For instance, cDCs were able to compensate 

for the absence of pDCs in infections with ectromelia virus or MCMV. Further, alveolar 

macrophages were shown to be the primary source of type I IFNs during pulmonary infections 

with Newcastle disease virus (NDV), but when depleted, pDCs take over and become the major 

source of Type I IFNs 219. A strict requirement of pDC-derived type I IFNs was only observed 

in mouse hepatitis virus (MHV) and HSV2 infections. MHV infection is normally controlled 

in a TLR7 and IFNAR dependent manner and induces a fast and massive production of Type I 

IFNs in pDCs which is required to sustain the survival of cDCs and Macrophages 220, 221. In 

systemic HSV infections, NK cell activation and survival are mediated by pDC produced Type 

I IFNs which results in reduced morbidity as well as mortality 222. Further, mouse models in 

which pDCs were inducibly (BDCA2-DTR mice) or constitutively (Tcf4fl/fl mice) depleted 

revealed the importance of pDCs in viral infections such as MCMV or LCMV 223, 224. pDC 

depleted mice which were infected with VSV revealed an increased viral burden and impaired 

survival and accumulation of virus specific cytotoxic T cells 223. Further, recent publication in 

human showed that IRF7 deficiency causes a severe defect in pDC function and this resulted 

in higher susceptibility to influenza virus 225. Additionally, mouse models in which IRF7 

signaling is restricted to pDCs showed that IRF7 signaling in pDCs controls both Dengue as 

well as Chikungunya acute viral infection by amplifying downstream antiviral responses 226. 

Overall, the impact of pDCs in acute viral infections might depend on several factors such as 

the infecting virus, the route of infection as well as the genetic background. 
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Even though the complexity of chronic viral immune responses is still elusive and 

matter of investigation, an enormous effort was made in the last decade to elucidate and clarify 

the functional role of pDCs in chronic HIV infections. Recent papers suggest that HIV 

infections in pDCs mediate the dysregulation of several pDC functions such as cytokine as well 

as Type I IFN production, migration patterns as well as T cell stimulation potential. HIV 

induces pDC activation by stimulating TLR7 signaling but can also directly infect pDCs by 

targeting the cell surface receptors CD4, CXCR4 and CCR5. Patients infected with HIV 

revealed reduced numbers of pDCs in the blood, which is promoted by the migration to 

peripheral LNs 227. Further, migratory patterns towards the gut mucosa are observed in simian 

immunodeficiency virus (SIV) and HIV infections, which correlate with the upregulation of 

the gut homing molecules a4b7 and CD103 on pDCs 227, 228 but not with the viral load 229. 

Whether pDCs contribute to the chronicity of HIV is still not clear. It is known that HIV 

stimulated pDCs persistently produce Type I IFNs and express low levels of maturation 

molecules, therefore mediating a low T cell response 230. Furthermore, later stages of chronic 

viral infections result in pDC exhaustion, which is mediated by impaired development, 

enhanced self-renewal in the periphery and persistent signaling through TLR7 231. 

Additionally, HIV infected pDCs were shown to promote the expression of IDO, an enzyme 

which induces the generation of Treg cells 232. Whether pDCs contribute to a beneficial or 

detrimental outcome in chronic viral infections, might also depend on the time point of their 

actions. While early administration of IFNa2 in mice infected with SIV increases the 

expression of Interferon stimulated genes (ISG) and therefore prevents systemic infection, 

sustained administration of IFNa2 results in type I IFN desensitization, decreased antiviral 

gene expression, increased viral load and accelerated CD4+ T cell loss 233. Additionally, mice 

infected with chronic LCMV which are devoid of pDCs or lack the ability to signal through 

TLR7 and TLR9 have a defect in T cell priming as well as viral clearance 224, 234. This 

dysfunctional T cell priming may be mediated at least partially through the interaction of pDCs 

with cDCs 235, in particularly the recruitment of cDC1 that induce the activation of cytotoxic 

CD8+ T cells 236. Further, early administration of Type I IFN prevented chronic LCMV 

infections, whereas late treatment had no beneficial effects 237. Moreover, inhibition of Type I 

IFN signaling in chronic LCMV infections resulted in improved T cell functions as well as 

reduced viral loads 238, 239.   

 
 



Introduction 
 

  24 

pDCs in autoimmunity: 
 

The potentially important role of pDCs in autoimmunity was proposed in numerous 

publications, since a variety of autoimmune diseases are characterized by an elevated type I 

IFN signature. Several studies proposed that pDCs might be involved in autoreactive immune 

responses which lead to diseases such as systemic lupus erythematosus (SLE), psoriasis as well 

as type 1 diabetes (T1D). SLE is characterized by the production of antinuclear antibodies 

which are able to complex with endogenous nucleic acids. These immune complexes are 

internalized into the endosome by pDCs via the Fc receptor CD32, where they induce the 

secretion of Type I IFN by activating TLR7 and TLR9 169, 170, 240. This process might further 

be enhanced by the release of neutrophil extracellular traps (NETs), a process in which 

neutrophils secrete TLR9 inducing molecules such as chromatin DNA, the antimicrobial 

peptide  LL-37 (also known as CAMP)  and HMGB1 241, 242. Nevertheless, SLE prone 

Mrl.Faslpr mice showed markedly exacerbated lupus when crossed with mice which are not 

able to secrete NETs (NOX2 deficient mice), suggesting that endogenous nucleic acids might 

derive from other sources, such as necroptotic or pyroptotic cells or NADPH-independent 

released mitochondrial DNA 243. Studies confirmed that sustained activation and secretion of 

Type I IFNs in pDCs contribute to the pathogenesis of SLE. The BXSB lupus prone strain 

which develops spontaneous autoimmunity, reduces disease severity and extends survival upon 

early Type I IFN signaling blockade 244. Similar results were obtained in Mrl.Faslpr mice: 

disruption of Type I IFN results in therapeutic benefits, however does not affect mortality. 

Further, it was shown that autoimmune skin inflammation which is induced by tape stripping 

is reduced in lupus prone NZB x NZW F1 mice after antibody mediated pDC depletion or 

TLR7 and TLR9 blockade 245. The in vivo role of pDCs in SLE was further specifically 

addressed in several genetically modified mice. Deletion of IRF8 in NZB mice and a mutation 

on Slc15a4 in C57BL/6.Faslpr mice resulted in reduced autoantibody production and overall 

weaker disease manifestation 246. Additionally, characterization of Mrl.Faslpr mice which lack 

MyD88 showed that pDCs contribute to SLE pathogenesis, in particular to B lymphopenia but 

not glomerulonephritis 247. The use of mouse models in which pDCs were transiently or 

constitutively depleted, further confirmed the pathogenic role of pDCs in SLE. Global or 

CD11c Cre induced Tcf4 deletion in lupus prone mice abolished autoantibody generation as 

well as glomerulonephritis 247. On the other hand, transient depletion of pDCs in BXSB mice 

resulted in a reduced Type I IFN signature in tissues and abolished activation and expansion 

of B and T cells, which lead to a reduced production of anti-nuclear antibodies 248. 
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  The chronic activation of pDCs and the subsequent production of IFNs and 

inflammatory cytokines seem to be contributing factors for other autoimmune diseases such as 

psoriasis as well as T1D. Patients suffering from psoriasis have high pDC infiltrates in early 

skin lesions, where self-nucleic acids aggregate with anti-microbial peptides and activate pDCs 

through TLR7 and TLR9 249, 250, 251. It was shown that by blocking the secretion of Type I IFN 

or inducing antibody mediated depletion of pDCs in xenograft psoriasis models resulted in 

reduced skin lesion formations 252. Interestingly, treatment of human and mouse pDCs with the 

vitamin D analogue calcipotriol resulted in an impaired capacity of pDCs to mediate the 

activation and differentiation of effector T cells 253. Nevertheless, genetic depletion of pDCs 

revealed only a negligible role of pDCs in a genetic model of psoriasis 254 and no importance 

at all in chemically induced psoriasis 255.  The role of pDCs in T1D was suggested, as increased 

numbers of pDCs in pancreatic islets were observed during the onset of human disease as well 

in non-obese diabetes (NOD) mouse models 256, 257. In NOD mice, secretion of DNA reactive 

antibodies by B1a cells mediates the release of LL-37 from neutrophils, which subsequently 

binds to self DNA 257. This promotes the generation of DNA/antibody complexes which in turn 

activate pDCs through TLR9. Indeed, genetic depletion of pDCs in NOD models results in 

ameliorated insulitis and decreased incidence of diabetes confirming the pathogenic role of 

pDCs in NOD induced diabetes 258. 

 

pDCs in cancer: 
         

 pDCs are regularly found in a wide variety of tumors including tissue carcinomas, 

melanomas and other hematopoietic malignancies and thought to mediate the interaction 

between the innate and the adaptive immunity. Tumor infiltrating pDCs in breast and ovarian 

cancers are associated with a poor prognosis: they were characterized to be poor Type I IFN 

producers and rather mediate a tolerogenic immune response by inducing Treg differentiation 
259, 260, 261. The mechanism which lead to the impaired Type I IFN production and the 

immunosuppressive immune response is dependent on the secretion of transforming growth 

factor-b (TGFb) and tumor necrosis factor-a (TNFa) 261. Indeed, genetic pDC depletion 

models confirm the role of TGFb and the tumor-promoting properties of pDCs 262. 

Nevertheless, pDCs were also shown to contribute to antitumor immunogenic responses. 

Administration of activated pDCs into melanoma patients lead to desired CD4+ and CD8+ T 

cell responses 263. Further, intertumoral injections of TLR7 ligands in murine mammary tumor 

models resulted in the activation of tumor associated pDCs and therefore to an antitumor 
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immune response 264. Additionally, TLR activated pDCs were shown to induce tumor killing 

by expressing TRAIL and granzyme B and activate NK cells in the B16 melanoma mouse 

model 150, 265. Overall, pDCs were shown to contribute to both, tumor progression as well as 

antitumor immune responses. However, the molecular mechanism which determines the pDC 

fate in tumor environment remains to be fully elucidated and represents an important challenge 

for the future. 

 

Heterogeneity of pDCs: 
 

 The variety of functions ascribed to pDCs suggests two possible scenarios: either 

different environmental cues mediate responses within the same cell or a heterogeneous pool 

of mature pDC subsets performs specifically the described functions during an immune 

response. Bar-On et al characterized a DC subset, which exhibits a unique pDC gene signature 

but expresses surface markers reminiscent of the cDC lineage 266. This CX3CR1+ CD8a+ DC 

subset is functionally not able to produce Type I IFNs but is highly dependent on the expression 

of the key pDC transcription factor TCF4 266. A more recent publication further described a 

CD2hiCD5+CD81+ pDC subset, which expresses classical pDC markers but does not have the 

potential to produce Typ I IFN upon CpG stimulation 267. Furthermore, the authors showed that 

this subset is a potent stimulator in B cell activation and antibody production and a strong 

inducer of T cell proliferation and Treg formation 267. Additionally, recent single cell RNA seq 

analysis on human peripheral blood mononuclear cells (PBMCs) revealed a new DC subset 

that shares common markers with pDCs such as IL3R, BDCA2 and BDCA4 268, 269, 270. 

However, there were some phenotypical as well as functional differences described. In contrary 

to conventional pDCs, non-canonical pDCs express the cell surface markers AXL, SIGLEC6, 

CD33 and CX3CR1, do not produce Type I IFNs upon CpG stimulation and potently activate 

T cells 268, 269, 270. The fact that non-canonical pDCs express markers which were used in earlier 

studies to assess the function of conventional pDCs urges us to reconsider some obtained 

results and therefore different aspects of pDC biology. Some functional observations might be 

attributed to the contamination of undetected non-canonical pDCs within the conventional pDC 

gate, and therefore possibly explaining the controversial results obtained from different studies.
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Aim of the project: 
 

Most characterized hematopoietic progenitors are composed of heterogeneous subsets, 

which contribute to the development of specific blood cells. The origin of pDCs, for instance, 

has long been controversial and exclusively committed progenitors to this lineage have never 

been described. The aim of this project is to characterize the developmental stages in which 

pDC commitment occurs and to further identify a committed progenitor with exclusive pDC 

potential. Besides, we aim to understand the transcriptional program which regulates pDC 

lineage specification and that subsequently induces pDC lineage commitment.  
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Dendritic cells (DCs) are a specialized immune subset dedi-
cated to sensing pathogens and inducing the appropriate 
immune response1. Under steady-state conditions, DCs can 

be subdivided into cDCs and pDCs2–5. cDCs are specialized in anti-
gen uptake and presentation to naïve T cells and can be further sub-
divided into cDC1 and cDC2, expressing the transcription factors 
IRF8 and IRF4, respectively6–8. pDCs are a distinct lineage dedicated 
to the production of high amounts of type 1 interferons in response 
to viral infections9–11. Development of DCs occurs in the bone mar-
row (BM) and requires a complex transcriptional network, in which 
progressive lineage specification gradually and hierarchically lim-
its and excludes alternative fates4,8. A CDP able to give rise to both 
cDCs and pDCs has been described in the BM12,13. Furthermore, 
cDCs and pDCs share not only their dependency on the cytokine 
FLT3L but also the expression of several transcription factors, thus 
suggesting common regulatory networks14–16.

Immediate precursors with exclusive differentiation potential 
have been identified for both cDC subsets17. Although the molecu-
lar mechanism defining cDC1 lineage specification has been dis-
sected17, cDC2 commitment is still unclear4. Multiple pathways 
appear to converge into a phenotypically homogenous but tran-
scriptionally heterogeneous cDC2 lineage4,5,18,19. In addition, pDC 
development seems to be ‘promiscuous’, because both CDPs and 
common lymphoid progenitors can give rise to pDCs13,16,20,21. Two 
distinct pDC progenitors have been characterized22,23. Within the 
BM, CCR9–MHC-IIlo pDCs have been characterized as the imme-
diate precursors of CCR9+ mature pDCs22,23, although these pDC 
precursors already express mature markers and appear functional. 
pDCs have also been reported to arise mostly from CD135+CD115–

CD127– precursor cells. Despite their greater pDC potential than 
CDPs, these progenitors maintain the ability to generate cDCs, thus 
suggesting that they are either heterogeneous or still uncommitted 
in nature22–24.

Molecularly, pDC development and identity depend on the 
expression of the transcription factor TCF4 (also referred to as 

E2-2)25,26. TCF4 deficiency is prenatally lethal, and haploinsuf-
ficiency in humans results in Pitt–Hopkins syndrome, which is 
characterized by impaired pDC development, thus indicating a 
conserved requirement of TCF4 across species25. Whereas commit-
ment to pDCs is regulated by the expression of TCF4, development 
into cDC1 depends on the expression of the transcriptional repres-
sor ID2, which specifically inhibits TCF4 and therefore pDC lineage 
commitment26. The branching of these two DC subsets at the CDP 
stage is determined by the balance of ID2 and TCF4. In particular, 
the long isoform of TCF4 (TCF4L) in complex with the transcrip-
tion factor CBFA2T3 (also referred to as MTG16) induces pDC-tar-
get genes while repressing Id2 and therefore cDC1 commitment27,28. 
The zinc-finger transcription factor ZEB2 has also been shown to be 
involved in the regulation of early DC development29,30. Zeb2 defi-
ciency results in decreases in pDCs and cDC2, and in an increase of 
cDC1, whereas its overexpression leads to slightly decreased cDC1 
and unaltered numbers of cDC2 and pDCs29. According to these 
observations, and the elevated expression of Id2 observed in Zeb2−/− 
mice29, ZEB2 has been suggested to potentially repress Id2, which is 
required for cDC1 commitment. However, the unaltered pDC pool 
in Itgax-cre × R26-Zeb2Tg/Tg mouse progeny indicates that an active 
lineage commitment involving a more complex, TCF4-dependent 
transcriptional network that goes beyond the previously supposed 
cDC1–pDC dichotomy is required during pDC development. 
Furthermore, these results may also suggest a dual origin of pDCs, 
in which the requirement for TCF4 and ZEB2 is lineage and stage 
specific. The complete absence of pDCs in the progeny of Zeb2fl/fl 
crossed to Mx1-cre30 mice, and their partial decrease in Itgax-cre29, 
supports either a CDP-independent origin of pDCs or an incom-
plete deletion of Zeb2 in CDPs.

A prerequisite for determining the molecular mechanisms 
involved in lineage specification is to define the developmental 
stage at which pDC commitment occurs and to identify the pDC-
committed precursor (pre-pDC) with exclusive lineage potential. 
Given the complexity of the transcriptional interactions occurring 

Distinct progenitor lineages contribute to the 
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Plasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in 
response to viral infections. Whereas conventional dendritic cells (cDCs) originate mostly from a common dendritic cell pro-
genitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors. Here, we found that pDCs 
developed predominantly from IL-7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commit-
ment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC develop-
ment requires high expression of the transcription factor IRF8, whereas pDC identity relies on TCF4. RNA sequencing of IL-7R+ 
lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed in single-cell analysis. Both mature pDC 
subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and pres-
ent antigen.
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at different stages during pDC and cDC commitment and the pos-
sible developmental convergence from lymphoid and myeloid lin-
eages into a single phenotypically consistent population, we decided 
to perform an in-depth exploration of the paths leading to pDC 
differentiation. Here, we found that pDCs developed mostly from 
IL-7R+ lymphoid precursor cells (IL-7R+ LPs) and identified a bona 
fide committed pre-pDC with exclusive lineage potential within the 
IL-7R-expressing pool. In addition, we characterized the transcrip-
tional landscape of pDC development from IL-7R+ LPs to mature 
pDCs. Transcriptionally, the pre-pDC precursors identified here 
showed high expression of IRF8 before the acquisition of pDC iden-
tity and functionality, which was gained only after the expression of 
TCF4. Finally, we showed, through single-cell analysis, that despite 
developmental convergence to a phenotypically similar population, 
lymphoid- and myeloid-derived mature pDCs are transcriptionally 
and functionally heterogeneous.

Results
pDCs develop primarily from IL-7R+ LPs. Both CDPs and com-
mon lymphoid progenitors are able to generate pDCs in vitro, but 
the independent contributions of these two subsets to the mature 
pDC pool in vivo are unclear12,13,16,21. All DCs, including cDCs and 
pDCs, originate from Lin–B220–Ly6C–CD117int/loCD135+ hema-
topoietic progenitor cells. Within this subset, the expression of 
CD115 (CSF1R) and CD127 (IL-7R) allowed for the identifica-
tion of three populations: CD115+CD127– cells (CDPs hereafter), 
CD115–CD127+ cells (IL-7R+ LPs hereafter) and CD115–CD127– 
cells (CSF1R–IL-7R– NPs hereafter) (Fig. 1a). The frequency and 
abundance of CDPs and IL-7R+ LPs were similar in the BM of 
wild-type mice under steady-state conditions (Fig. 1b). To under-
stand the cDC and pDC potential of each BM progenitor sub-
set, we cultured them in the presence of FLT3L and assessed the 
development of CD45RA+CD317+ pDCs, CD11c+MHC-IIhi cDCs, 
CD11c+MHC-IIhiCD11b+ cDC2 and CD11c+MHC-IIhi CD24+ 
cDC1, unless otherwise specified. IL-7R+ LPs generated approxi-
mately fivefold more pDCs than did CDPs, which predominantly 
gave rise to cDCs, and more than threefold more pDCs than did 
CSF1R–IL-7R– NPs (Fig. 1c,d and Supplementary Fig. 1b). Because 
IL-7R+ LPs represent approximately 0.12% of total BM cells and 
include approximately 0.04% Sca1+ common lymphoid progeni-
tors31, which are progenitors of B cells, we assessed the ability of 
CDPs, IL-7R+ LPs and CSF1R–IL-7R– NPs to develop into CD19+ 
B cells by culturing them under B cell–polarizing conditions in the 
presence of FLT3L and OP9 stromal cells (Methods). Only IL-7R+ 
LPs developed into CD19+ B cells and remained the most efficient 
population at generating pDCs under these B cell–permissive con-
ditions (Supplementary Fig. 1a,c).

To examine the pDC, cDC and B cell potential of these progenitor 
subsets under competitive conditions, we isolated IL-7R+ LPs from 
the BM of CD45.2 mice and cocultured them with CDPs or CSF1R–

IL-7R– NPs from CD45.1 congenic mice (Supplementary Fig. 1i). 
Regardless of the presence or absence of stromal cells, IL-7R+ LPs 
had significantly greater pDC potential than did CDPs or CSF1R–

IL-7R– NPs at all analyzed time points (Fig. 1e,f and Supplementary 
Fig. 1g) and were the only progenitors able to differentiate into 
CD19+ B cells (Supplementary Fig. 1f,h). To exclude differen-
tial proliferative capacity and the possibility that these progenitor 
subsets might be distinct developmental stages of one another, we 
performed a time-course analysis (Fig. 1g). The total cell output 
from CDPs and IL-7R+ LPs was comparable and peaked at day 4. 
However, IL-7R+ LP–derived pDCs outnumbered those derived 
from CDPs at every time point (Supplementary Fig. 1d). In con-
trast, cDCs were mostly CDP derived (Fig. 1g and Supplementary 
Fig. 1e). After day 4 of culture, the total cellular output from CDPs 
was higher than that of IL-7R+ LPs (Fig. 1g), thus suggesting that 
the ability of IL-7R+ LPs to generate progeny decreased, that the 

IL-7R+ LP–derived cells had diminished survival ability in vitro, or 
a combination of both. To discriminate among these possibilities, 
we performed the same experiment, using the proliferation tracer 
CellTrace Violet. We detected no major differences in the prolifera-
tion rates of CDP- or IL-7R+ LP–derived cells (data not shown), thus 
suggesting that in vitro–generated pDCs have lower survival ability 
than in vitro–generated cDCs, independently of their origin, in line 
with previous reports32.

To assess the pDC, cDC and B cell in vivo potential of these 
progenitors, we co-transferred IL-7R+ LPs isolated from BM in 
a 1:1 ratio with congenic CSF1R–IL-7R– NPs (Fig. 1h,i) or CDPs 
(Fig. 1j,k and Supplementary Fig. 1l) into sublethally irradiated 
mice and analyzed the BM and spleen of the recipient mice by 
flow cytometry 4 d after transfer (Fig. 1h–k). IL-7R+ LPs gener-
ated a 5- to 15-fold-higher output of SiglecH+CD317+ pDCs than 
CSF1R–IL-7R– NPs or CDPs in both tissues (Fig. 1h–k). Donor-
derived CD19+ B cells were detected only in the BM and were 
exclusively IL-7R+ LP derived (Fig. 1k and Supplementary Fig. 1l), 
whereas cDCs, which were recovered only in the spleen, were 80% 
CDP derived (Fig. 1k and Supplementary Fig. 1l). Early uncom-
mitted Lin–c-kithi BM progenitors, when co-injected, had equal 
potential to generate SiglecH+CD317+ BM and splenic pDCs, thus 
suggesting that both congenic strains had equal pDC reconstitu-
tion potential (Supplementary Fig. 1j–k). Collectively, mature BM 
and splenic pDCs differentiate in vitro and in vivo predominantly 
from IL-7R-expressing BM progenitors and not from CDPs or 
CSF1R–IL-7R– NPs.

SiglecH+Ly6D+ IL-7R+ LPs have exclusive pDC potential.  
We then further investigated the pDC and B cell potential within 
the IL-7R+ LPs. Staining for SiglecH and Ly6D allowed us to subdi-
vide IL-7R+ LPs into three fractions with relatively equal distribu-
tion: SiglecH–Ly6D– (double negative, DN), SiglecH–Ly6D+ (single 
positive, SP) and SiglecH+Ly6D+ (double positive, DP) (Fig. 2a and 
Supplementary Fig. 2a). All three subsets showed a high differen-
tiation potential into CD317+CD45RA+ pDCs that increased from 
DN to SP to DP (Fig. 2b). Furthermore, DP cells had almost exclu-
sive pDC lineage potential, showing a pDC commitment of more 
than 90% (Fig. 2b). To understand the developmental relationship 
among DN, SP and DP progenitors, we sorted and performed a 
time-course analysis examining the pDC output over 7 d of culture. 
All three subsets had a similar total output of mature pDCs (Fig. 2c).  
However, DP progenitors developed into mature pDCs faster, peak-
ing at day 3 (Fig. 2c), thus suggesting that DP progenitors may 
be a more mature subset. In vitro, the pDC developmental abil-
ity of DP progenitors was also largely superior to those of CDPs 
and the previously reported pDC precursors CSF1R–IL-7R– NPs23 
and CD11c+CD317+CCR9– cells (CCR9– progenitors hereafter)22,24 
(Supplementary Fig. 2b–d). The percentage of CD317–CD45RA– 
non-pDCs that developed in FLT3L-treated cultures in vitro 
was approximately 40% for DN cells and 30% for SP cells, and 
was limited to approximately 5% for DP progenitors (Fig. 2b and 
Supplementary Fig. 2e). Most of these CD317–CD45RA– cells 
expressed cDC markers such as CD172, CD11b, CD24 and MHC-II. 
In comparison, CDPs generated approximately 50% cDC1 and 35% 
cDC2, and showed a pDC output of approximately 15% (Fig. 2d and 
Supplementary Fig. 2c–e). When we exposed DN, SP and DP cells, 
CSF1R–IL-7R– NPs, CCR9– progenitors and CDPs to B cell–polar-
izing conditions (FLT3L and OP9 stromal cells; Supplementary  
Fig. 2f–j), CSF1R–IL-7R– NPs, CCR9– progenitors and CDPs had no 
CD19+ B cell potential, IL-7R+ LPs and SP had CD19+ B cell poten-
tial, and DP progenitors were unable to develop into CD19+ B cells 
and maintained a high pDC output (Fig. 2d–e and Supplementary 
Fig. 2f,g,i). SiglecH+Ly6D+IL-7R+ LPs are committed to the pDC 
lineage: they showed almost exclusive pDC potential in the pres-
ence of FLT3L and had no ability to differentiate into B cells when 
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cultured under B cell–polarizing conditions in the presence of OP9 
stromal cells.

SiglecH+Ly6D+ DP cells are bona fide pDC progenitors. Because 
SiglecH and Ly6D33 are expressed on mature pDCs, we pheno-
typically and functionally compared DP progenitors directly with 
freshly isolated BM and splenic mature pDCs. We detected higher 
expression of CD127, CD135, CCR9, CD45RA, Ly6C, B220, CD11c, 
MHC-II, Sca1 and CD317 on mature SiglecH+B220+Ly6D+Ly6C+ 
pDCs than on DP progenitors (Fig. 3a and Supplementary  
Fig. 3a). Further, DP progenitors did not express CCR9 (Fig. 3a), thus 
indicating that pDC progenitors reside within the CCR9– compart-
ment22. In Zbtb46gfp/+ mice, Zbtb46-GFP or CD115, which are cDC-
specific markers, were not detected on either DP cells or mature 
pDCs. (Fig. 3a and Supplementary Fig. 3a). Stimulation with CpG-A 
induced the production of the cytokine IFN-α  by mature BM and 
splenic pDCs, but not by DP progenitors, which acquired this ability 
after 4 d in culture (Fig. 3b). Similarly, SP and DN progenitors pro-
duced type 1 IFN only after 4 d, upon maturation (Supplementary 
Fig. 3b). Morphologic maturation, as assessed by Giemsa staining, 

was achieved by DN, SP and DP progenitors after 4 d in culture  
(Fig. 3c and Supplementary Fig. 3c).

We next tested whether the DN, SP and DP maturation stages 
could be recapitulated in vitro. A time-course analysis of cell-sorted 
DN progenitors showed progressive accumulation of SP and DP 
cells, which were detectable in culture at day 2 (Fig. 3d). Mature 
CD45RA+SiglecH+ pDCs developed from DP progenitors after 2 d 
of culture, whereas SP progenitors initially upregulated SiglecH at 
day 1 and transitioned into mature cells from day 3 (Supplementary 
Fig. 3d,e). Similarly, analysis of proliferation showed that DP cells 
required fewer divisions than SP and DN cells to develop into mature 
pDCs (Fig. 3e), thereby indicating progressive maturation from DN 
via SP to DP status. Thus, DP progenitors acquire the expression of 
lineage-specific markers, the morphology and the ability to produce 
IFN-α  characteristic of mature splenic pDCs after two cell divisions.

Stage-specific transcriptional signatures define pDC commit-
ment. We next sought to define the transcriptional signature 
that recapitulates the commitment to pDCs. We performed RNA 
sequencing on DN, SP and DP progenitors isolated from wild-type 
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Fig. 1 | pDCs develop primarily from IL-7R+ lymphoid progenitors. a,b, All subsets are pregated on Lin–B220–Ly6C–CD117int/loCD135+. Shown are the 
gating strategy (a) of CDPs (CD115+CD127–), IL-7R–M-CSFR– NPs (CD115–CD127–) and IL-7R+ LPs (CD115–CD127+), and the frequency (b) of the indicated 
progenitors in the BM of C57BL/6 mice (n!= !6; each dot represents a mouse, and thin lines represent the mean!± !s.d.). c,d, Sort-purified CDPs, IL-7R–M-
CSFR– NPs and IL-7R+ LPs were cultured for 4 d in the presence of FLT3L. pDC output was determined according to the expression of CD317 (Bst2) and 
CD45RA (c) and is shown as percentage output (d) (n!= !6; each dot represents a mouse, and thin lines represent the mean!± !s.d.). e–k, Sort-purified 
progenitors isolated from CD45.1 and CD45.2 mice were cocultured (e,f) for 4 d in the presence of FLT3L. Shown are two-color histograms for the 
expression of CD45.1 and CD45.2 pregated on CD45RA+CD317+ pDCs (e) and percentage output (f) (n!= !3; each dot represents a mouse, and thin lines 
represent the mean!± !s.d.). g, IL-7R+ LPs and CDPs were cultured in competitive settings in a 1:1 ratio. Shown is the total, pDC and cDC output over 8 d of 
culture (n!= !3 mice; thin lines represent the mean!± !s.e.m.). h–k, BM and splenic pDC output was determined 4 d after intravenous co-transfer of  
CD45.2-positive IL-7R+ LPs in competition with CD45.1-positive IL-7R–M-CSFR– NPs (h,i) or CDPs (j,k). Shown are two-color histograms for the expression 
of CD45.1 and CD45.2 pregated on CD45RA+CD317+ pDCs (h,j) (n!= !6 mice). Shown are percentage donor-derived BM pDCs and B cells and splenic 
pDCs and cDCs, as indicated (i,k) (n!= !6; each dot represents a mouse, and thin lines represent the mean!± !s.d.). Statistical analysis was done with one-
way ANOVA with Tukey post-test (d,f) or two-tailed Student’s t test (i,k). *P!< !0.05, **P!< !0.01, ***P!< !0.001, ****P!< !0.0001.
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BM and compared their transcriptional landscapes with that of 
B220+SiglecH+Ly6C+Ly6D+ mature BM pDCs. Principal compo-
nent analysis (PCA) showed individual segregation of mature pDCs 
and DP progenitors: whereas DN cells and SP cells clustered together 
and partially shared their transcriptomes, DP cells were a distinct 
subset also different from mature pDCs (Fig. 4a). Hierarchical clus-
tering of the subsets on the basis of Pearson’s correlation coefficient 
confirmed the results obtained by PCA (Fig. 4b), in which DP cells 
were transcriptionally closely related to mature pDCs.

To better understand the dynamics of pDC commitment, we 
generated a heat map based on genes uniquely expressed at the DN 
stage (switch 1) and at the DN and SP stages (switch 2) through the 
mature pDC stage (switch 6) (Fig. 4c). Transcripts were also distrib-
uted according to shared expression patterns across two cell subsets, 
defined as peaks (Fig. 4c and Supplementary Table 1). The result-
ing developmental-expression heat map reflected the transcrip-
tional landscape for pDC commitment and was used to evaluate 
switch-specific transcription factors and surface receptors (Fig. 4d,e 
and Supplementary Fig. 4a,b). Spib and Irf7 were highly expressed 
only in mature pDCs (Fig. 4d), a result consistent with the inabil-
ity of DN, SP and DP progenitors to produce IFN-α  and with their 
requirement at later stages of development. The SP stage, which is 
the only one permissive for B cell development, was marked by the 
expression of B cell–specific transcription-factor transcripts, such 
as Pax5 and Ebf1 (Fig. 4d) as well as surface-receptor transcripts, 
such as Cd19, Vpreb1 and Vpreb2, and Cd79a (Fig. 4e). Transcripts 
encoding transcription factors known to be essential during 
pDC development, particularly Tcf4, Irf8, Zeb2 and Bcl11a, were 
expressed at the DP stage and were further upregulated after matu-
ration (Fig. 4d), thus suggesting that pDC lineage specification was 
achieved at the DP stage. Importantly, whereas the Il7r transcript 
as well as IL-7R protein are expressed during development and on 
mature pDCs, the Csf1r transcript was detected on all progenitors, 

in the absence of the protein at all stages (Fig. 4e and Fig. 2a). This 
result provides a potential explanation for the apparent conflict of 
lineage tracing in mice, in which pDCs were labeled in both Il7rcre 
(ref. 34) and Csf1rcre mice35.

We next searched for differentially expressed genes between DP 
cells and all the other analyzed subsets (Supplementary Fig. 4d–f 
and Supplementary Table 1). Gene set enrichment analysis between 
DP progenitors and mature pDCs identified changes in three major 
pathways: E2F targets, the G2–M checkpoint and IFN-α  produc-
tion, thus suggesting that maturation was achieved through the 
downregulation of cell-cycle-associated genes and the upregulation 
of genes mediating functional properties (Fig. 4f, Supplementary 
Fig. 4c and Supplementary Table 2). Collectively, these data reveal 
that pDC lineage specification is already transcriptionally estab-
lished at the DP stage.

Expression of IRF8 marks pDC lineage commitment on SP cells. 
Given the sustained expression of CD135 and CD127 at all stages of 
pDC development and on mature pDCs, we examined the require-
ment of the corresponding ligands FLT3L and IL-7 during commit-
ment. Flt3l−/− mice showed impaired pDC development across all 
stages, with approximately tenfold-fewer total DN progenitors than 
those in wild-type control mice (Fig. 5a and Supplementary Fig. 5a,e). 
Il7−/− mice, compared with wild-type controls, had unaltered num-
bers of DN and DP progenitors, as well as mature pDCs, but mark-
edly lower numbers of SP progenitors and mature B cells (Fig. 5a and 
Supplementary Fig. 5a,e,f). This result correlated with the greater B 
cell–specific developmental and transcriptional bias of SP precur-
sors and suggested that SP cells were heterogeneous and already 
committed to either the B or the pDC lineage. Quantitative PCR 
analysis validated the stage-specific expression of several transcrip-
tion factors important for B, pDC and cDC development4,8,36 (Fig. 5b 
and Supplementary Fig. 5b). Transcripts for Spib and Irf7 were low 
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or absent on progenitors but were induced in mature pDCs, whereas 
the expression of Irf8, Tcf4 and Runx2 was already established at the 
DP progenitor stage and further increased in mature pDCs (Fig. 5b). 
Notably, Ebf1 expression was confined within the SP subset, in agree-
ment with the exclusive ability of SP progenitors to generate B cells 
(Fig. 5b). To address whether SP progenitors were heterogeneous, we 
examined the expression of EBF1 and IRF8 on DN, SP and DP pro-
genitors in wild-type, Il7−/− and Flt3l−/− mice. Indeed, SP progenitors 
could be split into EBF1+IRF8int and EBF1–IRF8hi cells, whereas DP 
cells were exclusively EBF1–IRF8hi (Fig. 5c). Furthermore, induction 
of EBF1, but not IRF8 expression, was compromised at the SP stage 
in Il7−/− mice compared with littermate controls, in agreement with 
fewer mature B cells37 (Supplementary Fig. 5c,d).

Whereas FLT3L deficiency resulted in a partial decrease in DP 
progenitors, Irf8−/− or Irf8R249C mutant mice (Methods), in which an 
R249C mutation prevents the interaction with partner transcription 
factors such as PU.1, IRF2 and SpiB38, completely lacked DP cells6,39 
(Fig. 5d,e). SP cells accumulated in both Irf8−/− and Irf8R249C mice, a 
result indicative of a developmental block at the transition from SP to 
DP cells (Fig. 5d). In agreement with this finding, Irf8−/− mice lacked 
mature SiglecH+B220+ pDCs in the BM and SiglecHhiCD317hi in 
the spleen (Fig. 5e–h). However, a population of SiglecHintCD317int 
pDC-like cells was detected and was even found to be elevated in 
the Irf8−/− spleens (Fig. 5g,h). These results indicate that SP cells can 

be subdivided into IRF8hi, IL-7-independent pDC-committed and 
EBF1+, IL-7-dependent B cell–committed progenitors.

IRF8 and EBF1 define pDC and B cell lineage dichotomy. To dis-
sect the heterogeneity of the SP compartment, we used IRF8-eGFP 
and EBF1-hCD2 reporter mice, which express a 3′  IRES-GFP and 
an IRES-human CD2, respectively, thus allowing us to trace the 
genes and sort the expressing subsets. SP cells from IRF8-eGFP 
or EBF1-hCD2 mice could be sorted into IRF8-GFPint (IRF8int SP) 
or IRF8-GFPhi (IRF8hi SP) and into EBF1-hCD2– (EBF1− SP) and 
EBF1-hCD2+ SP (EBF1+ SP) cells (Supplementary Fig. 6a,c). We 
then assessed the pDC- and B cell–differentiation potential of each 
SP subset in vitro, as described above. IRF8hi SP progenitors had 
almost exclusive pDC output and could not differentiate into B cells 
(Fig. 6a–d and Supplementary Fig. 6b,d), thus suggesting that the B 
cell potential was lost concomitant with the induction of high IRF8 
expression at the SP precursor stage. Similarly, EBF1– SP progeni-
tors did not differentiate into B cells on OP9 stromal cells under B 
cell–polarizing conditions (Supplementary Fig. 6e–h), thus suggest-
ing that EBF1 expression at the SP stage is necessary to promote B 
cell lineage commitment.

Expression of TCF4, specifically its long isoform (Tcf4L), is 
required for pDC development, because pDCs do not develop in 
its absence25,27. RT–qPCR analysis indicated comparable expression 
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of Tcf4L in DP cells and mature BM and splenic pDCs (Fig. 6e). The 
expression of Irf8 in IRF8 hi  SP cells was comparable to that observed 
in DP cells and mature pDCs, whereas the expression of Tcf4L in 

IRF8hi SP cells was low, and similar to that in DN cells (Fig. 6e),  
thus suggesting that the expression of IRF8 but not TCF4L mirrored 
the acquisition of pDC-lineage specification.
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BM niches are likely to influence progenitor lineage choice 
through the availability of cytokines and other cues. We simulated 
the contact and the exposure to the BM stromal environment by 
using a Transwell culture system, in which SP cells and DP cells were 
cultured in the presence of FLT3L, either in direct contact with OP9 
stromal cells or exposed to soluble factors released by OP9 stromal 
cells. Differentiation of SP and DP cells toward CD317+ pDCs was 
significantly inhibited by direct contact with OP9 stromal cells, 
whereas differentiation of SP cells toward CD19+ B cells required 
direct contact (Supplementary Fig. 6i–l). To understand the role 
played by polarizing cytokines in pDC and B cell lineage specifica-
tion, we examined the induction of IRF8 and EBF1 in uncommitted 
DN and c-kithi progenitors exposed to FLT3L and IL-7. Exposure of 
DN and c-kithi precursors to FLT3L resulted in a strong induction 
of IRF8 expression as well as accumulation of DP progenitors after  
5 d of culture (Fig. 6f). The addition of IL-7 promoted the accu-
mulation of SP progenitors and induced EBF1 expression in the 
absence of OP9 stromal cells (Fig. 6f). This result indicates that lin-
eage specification toward pDCs or B cells occurs in SiglecH–Ly6D+ 

SP cells and is defined by the mutually exclusive, high expression 
of IRF8 or EBF1, which was in turn governed by the exposure to 
FLT3L or IL-7 and influenced by contact with stromal cells.

Single-cell analysis elucidates pDC heterogeneity. To under-
stand how tissue imprinting as well as ontogeny might influence 
the transcriptional landscape of pDCs, we performed bulk as well 
as single-cell RNA sequencing. Bulk RNA sequencing was done 
on ex vivo–isolated mature pDCs from the BM and spleen, and on  
in vitro–generated CD317+SiglecH+ pDCs from IL-7R+ LPs and 
CDPs. A high correlation coefficient ranging from 0.8 to 0.95 was 
obtained across all pDC samples analyzed (Supplementary Fig. 7a).  
Through PCA, we were able to highlight differences related to  
in vitro–generated versus ex vivo–isolated pDCs (principal com-
ponent 1, 49%), and differences associated with tissue imprinting, 
in splenic versus BM pDCs (principal component 2, 14%) (Fig. 7a).  
Further analysis of the sample was performed after filtering for 
the 25% most variable genes. By focusing on differences related to 
their ontogeny and using a stringent cutoff (log2 fold change > 2)  
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we identified 107 genes differentially expressed in CDP- and 
IL-7R+ LP–derived pDCs (Fig. 7b and Supplementary Fig. 7c,d). 
Importantly, whereas pDC-related transcripts, such as Irf8, Siglech, 

Tcf4 and Bst2, showed high expression, most of the genes expressed 
differentially between CDP and IL-7R+ LP–derived pDCs, such as 
Rag2 and Cd14, were expressed at low levels (Supplementary Fig. 7b). 

a

PC1 (48.95%)

P
C

2 
(1

4.
28

%
)

PC1 (14.01%)

P
C

2 
(5

.1
0%

)

−5

0

5

10

−10 −5 0 5 10 15

d

e

CDP pDCs
Spl pDCs

BM pDCs
IL-7R+ LP pDCs

−0.2

0.0

0.2

0.4

−0.2 0.0 0.2

Tnfsf9
Pros1
Rab3il1
Cd300lg
Zbtb46
Card9
Sema4a
Bcl3
Spint1
S100a4
Ckb
Emilin2
Palld
Ifitm6
Alox5
Ckap4
Mst1r
Rag2
Gfra1
Padi4
Sparc
Cd81
Ccr10
Nlrc3
Cd247
Prf1
Cd79a
Tnfsf10
Fam46a
Ly6i
Adora2b
Klf4
Hfe
Fcgrt
Shtn1
Cd14
Plbd1
Slamf8
Il13ra1
Cd209e

b Spl 
pDCs

BM 
pDCs

IL-7RR+ LP 
pDCs

CDP 
pDCs

PC1 (14.01%)

P
C

2 
(5

.1
0%

)

BM pDCs
Spl pDCs

c

−5

0

5

10

−10 −5 0 5 10 15

Cd74
H2-Eb1
H2-Aa
H2-Ab1 
Rbm3 
Tuba1b 
Tubb5 
Hmgb1 
H2afz 
Hmgb2 
Stmn1 
Hist1h2ap 
2810417H13Rik 
Crip1 
Vim 
Cd7 
Gmfg 
H2afy 
S100a10 
Tmsb10 
Lgals1 
S100a6
Fxyd5
Gm2a
Cst3
Ccr2 
Lgals3 
Ms4a6c
Cfp
Ifi30
H2-DMb1
H2-DMa
Cd209d
Cd209a
Ccl4
Fos
Junb
Ier2
Zfp36
Btg1
Ier5
Klf6
Gpr171
Rilpl2
Stk17b
Cd69
Tsc22d3
Irf1
Zfp36l1
Ly6a
Ly6c2
Klk1
Klk1b27
Rpgrip1
Ccr9
Smim5
Btg2
D13Ertd608e
Prkca
P2ry14
Tsc22d1
Gm5547
Scimp
Lair1
Slamf9
Ctsl 
Grn
Malat1
Siglech
Jun
Cd52
Cyba
Srgn
Cd4
H2-Q4 
Ubc
H2-Q6
H2-K1
Fth1
B2m 
H2-D1
Evi2a
Klra17
Cybb
H2-Q7
Pltp
Lag3
Ifi27l2a
Irf7
Pkib
Stat 
Mndal
Ifi203
Ifitm3
Isg15
Usp18
Ly6d
Cox6a2
Mzb1
Khk
Clec10a
Rgs10
Ccnd1
Clec12a
Ptprcap
Sdc4
Fcrla
Ldhb
Apoe 
Dntt
Zeb2 
Rps28
Rnaset2b 
Hspa5
Calr
Hsp90aa1
Fdps
Msmo1
Dynll1
Actg1
Actb 
Hspa8
Slpi
Klrd1
Rgs2
Atp1b1
Cd8b1
Slc3a2
Nfkbia
Herpud1
Shisa5
Cd8a
Cd44
Sub1
Plaur
Rgs
5430427O19Rik 
Trib1
Pir 
Glipr1 
Pgam2 
H2-DMb2 
Ltb
Gm43291
Ccl3
Nr4a1
Rgcc
Ly6k

−4

−2

0

2

4

Lgals3 Zbtb46 Cd14

Ly6d Ccr9 Dntt

Irf8 Tcf4 Bst2

Cluster
1
2
3
4
5
6
7
8

f

0

1

2

3

4

Cluster

C
el

l c
ou

nt
 (

10
3 )

1 2 3 4 5 6 7 8

BM pDCs
Spl pDCs

−5

0

5

10

−10 0 10

P
C

2 
(5

.1
0%

)

PC1 (14.01%)

Cluster
1
2
3
4
5
6
7
8

BM pDCs
Spl pDCs

g

log2 CPM
0
1
2
3

−4

−2

0

2

4

log2 FC

Runx2

Cx3cr1

Mzb1

log2 FC

Fig. 7 | Single-cell analysis elucidates pDC heterogeneity. a,b, Bulk RNA sequencing on mature BM and splenic pDCs, and on IL-7R+ LP– and CDP-derived 
pDCs, performed as described in Methods. a, PCA performed on the 25% most variable genes. b, Heat map showing relative expression for differentially 
expressed genes (log2 fold change!> 2.0) from IL-7R+ LPs versus CDP-derived pDCs. c–g, Single-cell RNA sequencing, performed as described in Methods, 
on sort-purified BM and splenic pDCs. c,d, PCA based on the 148 hypervariable genes (biological variation!> 0.1 and false discovery rate!< 0.05). Colors 
indicate the tissue of origin (c) or the identified clusters (d). e, Number of cells identified for each cluster in the BM and spleen. f, Heat map for 148 
hypervariable genes across all 14,744 cells. At top, colors indicate the identified clusters as in d. g, Expression of the indicated genes from individual BM 
(blue) and splenic (red) pDCs. The size of each dot corresponds to the relative expression of a given gene for each cell. The contour lines indicate the 
density of the BM (blue) and splenic (red) cells in the PCA space. Cells for bulk and single-cell RNA sequencing were harvested from n!= !3 mice in 3 
independent experiments.

NATURE IMMUNOLOGY | VOL 19 | JULY 2018 | 711–722 | www.nature.com/natureimmunology 719
© 2018 Nature America Inc., part of Springer Nature. All rights reserved.



Results 
 

  38 

 

 

ARTICLES NATURE IMMUNOLOGY

In line with their ontogeny, IL-7R+ LP–derived pDCs were enriched 
in expression of lymphoid-associated genes, such as Rag2 and Cd79, 
whereas CDP-derived pDCs expressed several cDC- and myeloid-
related genes, such as Zbtb46, Cd14 and Klf4 (Fig. 7b). To validate 
the ontogeny-based heterogeneity of mature pDCs, we performed 
single-cell RNA sequencing on approximately 8,000 BM and 7,000 
splenic CD317+SiglecH+ pDCs, detecting approximately 2,000 genes 
per cell. PCA based on 148 hypervariable genes confirmed tissue-
specific identity at the single-cell level. Each cell was plotted in two-
dimensional PCA space, and whereas splenic pDCs split into two 
discrete subgroups, BM pDCs spread along a diagonal over principal 
components 1 and 2 (Fig. 7c). Clustering analysis (Methods) identi-
fied eight clusters (Fig. 7d–f), with splenic pDCs splitting into three 
major clusters (1, 4 and 8), and BM pDCs splitting into six clusters  
(2, 3, 5, 6, 7 and 8) (Fig. 7e and Supplementary Fig. 7e). The rela-
tive and absolute frequency of cells belonging to each cluster showed 
almost exclusive tissue specificity for each cluster except for clus-
ter 8, which was equally represented in both tissues and accounted 
for approximately 5% of the total pDC population (Fig. 7e and 
Supplementary Fig. 7e). A pairwise comparison of the differentially 
expressed genes (absolute log2 fold change > 1.5) across all clusters 
showed limited differences across clusters 1–6, and only clusters 

7 and 8 diverged from the other clusters (Supplementary Fig. 7f). 
The numbers of detected genes per cluster and cell-cycle-associated 
genes indicated that BM cluster 7 was actively cycling and was prob-
ably an immediate precursor of cluster 8 (Supplementary Fig. 7g,h). 
Transcripts associated with cluster 8, i.e., Lgals3, Zbtb46 and Cd14, 
were reminiscent of the CDP-derived pDCs. Clusters 1 to 6 showed 
expression of genes previously identified in IL-7R+ LP–derived pDCs 
(Fig. 7b,g and Supplementary Table 3), i.e., Ly6d, Ccr9 and Dntt. All 
clusters expressed high amounts of pDC-specific transcripts, such as 
Tcf4, Irf8 and Bst2 (Fig. 7g), thus ruling out contamination of cluster 
8 with other myeloid lineages. As such, single-cell analysis revealed 
heterogeneity of the pDC compartment and validated the segrega-
tion of lymphoid and myeloid signatures in two distinct subsets: the 
conventional pDCs and cluster 8, referred to as pDC-like cells.

The functional heterogeneity of pDCs is developmentally 
encoded. A prerequisite for performing a functional analysis of 
pDC-like cells was the identification of specific markers and the 
establishment of a gating strategy, which would enable us to sort 
and directly compare pDCs and pDC-like cells. We used Zbtb46gfp/wt  
mice to sort Zbtb46-GFP–SiglecHhiCD317+ pDCs and Zbtb46-
GFP+SiglecHintCD317+ pDC-like cells (Fig. 8a and Supplementary 
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Fig. 8a). We extended our phenotypic analysis of pDCs and pDC-
like cells by comparing the transcript expression and, when possi-
ble, the protein expression of several pDC- and cDC-related genes. 
Both subsets expressed similar levels of pDC- and cDC-specific 
transcripts, such as Siglech, Bst2, Ly6c, H2-Aa, Itgax, Runx2 and 
Irf8. In addition, the protein expression of SiglecH, Bst2, MHC-II, 
CD11c and Ly6C was comparable between the two subsets, and 
only slight differences were detetcted (Supplementary Fig. 8b–f). 
However, CX3CR1 was expressed exclusively on pDC-like cells 
(Supplementary Fig. 8d,e), a result reminiscent of nonconventional 
CX3CR1+CD8α + DCs previously identified40, with the exception 
that pDC-like cells were CD8α – (data not shown). Both subsets 
produced IFN-α  when stimulated with CpG-A (Fig. 8b). However, 
unlike conventional pDCs, pDC-like cells did not respond to CpG-B 
stimulation (Fig. 8b), thus suggesting different signal regulation. 
Furthermore, when stimulated with CpG-A, pDC-like cells had 
higher surface expression of MHC-II and the co-stimulatory mol-
ecule CD86 than did conventional pDCs (Fig. 8c,d). Importantly, in 
contrast to conventional pDCs, pDC-like cells from BM and spleen 
were efficient at taking up, processing and presenting protein and 
induced strong proliferation of OT2 T cells, at levels comparable to 
those observed in cDCs41 (Fig. 8e) and consistent with their expres-
sion of cDC transcripts. In summary, pDC-like cells were phenotyp-
ically and transcriptionally similar to conventional pDCs but also 
exhibited several cDC features, including efficient antigen process-
ing and presentation.

Discussion
Here we demonstrated that pDC development predominantly 
occurred from IL-7R+ LPs rather than from CDPs or the previ-
ously identified CSF1R–IL-7R– NPs2,23. Within the IL-7R+ LPs, 
Ly6D+SiglecH+ DP precursors gave rise almost exclusively to pDCs 
when cultured in the presence of FLT3L, thus suggesting that they 
might represent committed pre-pDCs that depend on the expression 
of IRF8 and are only two divisions away from maturity. Whereas 
Ly6D–SiglecH– DN progenitors were still uncommitted and showed 
the broadest lineage potential, Ly6D+SiglecH– SP cells were able to 
differentiate into pDCs and B cells, depending on the expression of 
IRF8 or EBF1, respectively. High expression of IRF8 within the SP 
cells determined loss of B cell potential and pDC lineage specifica-
tion, which already occured in the absence of TCF4L, thus suggest-
ing that the amount of IRF8 is key for pDC commitment.

How IRF8 is induced and regulated during pDC development 
remains an open question. Proliferation may be a key factor deter-
mining accumulation or dilution rates, as has been suggested for 
PU.1 during macrophage versus B cell differentiation42. BM niches 
rich in IL-7 would promote high proliferation of precursors, main-
tain low levels of IRF8 and allow for the induction of Pax5 by EBF1, 
thus leading to efficient B cell differentiation. Progressive expan-
sion of the progenitor pool would also separate distal cells from the 
IL-7-rich BM niches, thereby limiting their proliferation and con-
sequently leading to the accumulation of a specific IRF8 threshold 
promoting pDC development. A transcriptional mechanism may 
conceivably result in autoregulatory induction of IRF8 acting dur-
ing pDC lineage specification, similarly to the one described for 
cDC1 (ref. 17). Beside the induction of IRF8 at the SP stage, transi-
tion to DP cells was characterized by the progressive expression of 
lineage-specific genes, including TCF4L, IRF7 and SpiB, concomi-
tant with the downregulation of cell-cycle-associated genes. Further 
studies will be necessary to characterize the intrinsic and extrinsic 
players acting in the context of pDC development, given that dif-
ferent mechanisms are likely to shape differentiation along the lym-
phoid and the myeloid branch. Although the levels of ID2 and TCF4 
were shown to be critical for the commitment toward cDC1 and 
pDCs along the myeloid differentiation pathway, repression of ID2 
and cDC1 commitment may not be necessary along the lymphoid, 

IL-7R+ LP–derived developmental pathway, in which B cell poten-
tial instead must be prevented.

Neither DP cells nor conventional type 1 IFN–producing pDCs 
develop in mice lacking IRF8 or carrying the IRF8R249C mutation. 
In these mice, we observed the expansion of an alternative type of 
pDCs, which were unable to produce type 1 IFNs in response to 
CpG-B39, a pDC-defining hallmark9–11, and which expressed sev-
eral features reminiscent of cDCs, including the ability to process 
and present antigens to T cells39. Nevertheless, caution is necessary 
when interpreting data from knockout mice. Although most pDCs 
arose from IL-7R+ LPs, they also developed from myeloid CDPs.  
In agreement with the greater contribution of lymphocyte pro-
genitors than CDPs to the mature pDC pool, pDCs have a slower 
turnover rate than cDCs. Approximately 10% of mature pDCs are 
replaced within 2 d, a rate similar to that of T cells, whereas the 
turnover of cDCs is much faster, such that approximately 50% of 
the mature pool is replaced within the same timeframe43. These 
results support either a different number of cell divisions necessary 
for pDCs and cDCs to acquire maturity from CDPs, or, as is more 
likely and is supported by our data, for a different ontogeny of most 
pDCs and cDCs. Further supporting a major lymphoid develop-
mental path of pDCs, a novel computational fate-mapping analysis 
performed on hematopoietic cells (FateID) revealed the presence of 
a common early progenitor shared by B cells and pDCs44.

The dual origin of pDCs may suggest a heterogeneous pool of 
mature cells able to perform the variety of functions ascribed to 
pDCs45. Our data on CDP- and IL-7R+ LP–derived pDCs as well as 
single-cell RNA sequencing highlighted this heterogeneity, reveal-
ing at least two subsets of mature pDCs: conventional pDCs and 
a small subset of pDC-like cells. pDC-like cells, which account for 
approximately 5–10% of the mature pDCs in the BM and spleen, 
were characterized by the concomitant expression of pDC-specific 
and cDC-associated transcripts. A small subset of peripheral blood 
mononuclear cells that combine features of pDCs and cDCs has 
recently also been identified in humans46,47. The use of Zbtb46gfp 
(ref. 48) mice was key in enabling us to identify and purify pDCs and 
pDC-like cells to perform a direct comparison of the two pDC sub-
sets. Beyond phenotypic differences, conventional pDCs and pDC-
like cells were functionally distinct. Although both subsets secreted 
type 1 IFNs in response to CpG-A stimulation, pDC-like cells were 
unable to do so when stimulated with CpG-B. Similarly to cDCs, 
pDC-like cells were better than conventional pDCs at antigen pro-
cessing and presentation. This feature, which is atypical for pDCs41, 
may explain the ability of mature pDCs, including pDC-like cells, 
to induce antitumor responses in clinical trials on patients with 
melanoma49. In summary, our investigation of the developmental 
trajectory of pDCs led to the identification and characterization of a 
novel subset of antigen-presenting cells, pDC-like cells, which share 
transcriptional and functional features with both pDCs and cDCs.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41590-018-0136-9.
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Methods
Mice. All animals were bred and maintained in a specific-pathogen-free animal 
facility according to institutional guidelines (Veterinäramt BS, license number 
2786_26606). Mice of the following genotypes were purchased from Jackson 
Laboratories: C57BL/6 J, CD11c-cre50, IRF8R249C (ref. 38) and Irf8f/f (ref. 51).  
Irf8−/− mice were generated by crossing Irf8f/f mice with CMV-Cre mice52.  
Il7−/− (ref. 53), Flt3l−/− (ref. 54), Ebf1hCD2 (ref. 55), Irf8egfp (ref. 56) and Zbtb46egfp48 were 
bred in house. For BM chimera experiments, B6.SJL57 mice were purchased from 
Jackson Laboratories. Unless otherwise indicated, experiments used sex- and age-
matched littermates between 6 and 14 weeks of age.

Progenitor-cell harvest. BM was collected from femurs, tibia and pelvic bones. 
Bones were fragmented with a mortar and pestle, and debris was removed 
by filtration through a 70-μ m strainer. Red blood cells were lysed with ACK 
lysis buffer. Cells were counted, then stained for analysis or cell sorting. c-kithi 
progenitors were identified as Lin−B220−Ly6C−CD16/32−CD117hiCD135+ cells; 
CDPs were identified as Lin−CD16/32−B220−Ly6C−CD117int/lo 
CD135+CD115+CD127− cells13; pDC progenitors were gated as 
Lin−CD16/32−B220−Ly6C−CD117int/loCD135+CD115–CD127− (CSF1R–IL-7R– 
NPs)23 and CD317+B220+CD11c+CCR9− (CCR9–) cells22; IL-7R+ LPs were identified 
as Lin−CD16/32−B220−Ly6C−CD117int/loCD135+CD115−CD127+ cells; DN, SP and 
DP progenitors were included within the IL-7R+ LP gate and were defined by the 
expression of SiglecH, and Ly6D, as indicated in Fig. 2a (lineage markers CD3, 
CD19, Ter119, CD105 and NK1.1). The following gating strategy was used for bulk 
RNA sequencing: mature BM pDCs were gated as Lin–CD11c+SiglecH+ 
Ly6C+Ly6D+, whereas mature splenic pDCs were characterized and sorted as 
Lin–SiglecH+Bst2+Ly6C+. For single-cell RNA sequencing, pDCs from the BM and 
spleen were sorted as Lin–CD11c+BST2+SiglecH+. For cell sorting, a BD FACSAria 
II instrument with a custom built-in violet laser was used. Cells were sorted into 
PBS supplemented with 0.5% BSA and 2.5 mM EDTA. Cell purities of at least 95% 
were confirmed by post-sort analysis.

In vivo transfer. 3 ×  104 to 6 ×  104 sort-purified CD45.1 or CD45.2 progenitors 
were co-injected intravenously at a 1:1 ratio into sublethally irradiated CD45.1/2 
mice. The reconstitution ability of progenitors was assessed 4 d after injection, 
through flow cytometry.

Cell culture. 5 ×  102 to 5 ×  103 sort-purified progenitors were cultured for 4 d 
in IMDM (Gibco) supplemented with 10% FCS (MPbio). To induce pDC or 
cDC development, cells were cultured in the presence of 100 ng/ml recombinant 
hFLT3L. To induce B cell differentiation, cells were cultured on irradiated OP9 
stromal cells in the presence of 100 ng/ml recombinant hFLT3L (Peprotech), as 
previously described58,59. In some experiments, as indicated, 100 ng/ml recombinant 
mIL-7 was added. For Transwell experiments (Corning), 5.6 ×  103 irradiated OP9 
stromal cells were plated in the lower compartment, and 2 ×  103 sort-purified 
progenitors were cultured either over stromal cells (lower chamber) or in the  
upper chamber.

Type 1 IFN ELISA. 2 ×  104 mature pDCs and 2 ×  103 progenitor cells were sort-
purified and stimulated with CpG-A 2216 (6 μ g/ml) or CpG-B 1826 (6 μ g/ml) for 
16 h at day 0 or after 4 d of culture. Supernatants were analyzed with a Mouse IFN 
alpha Platinum ELISA Kit (eBioscience).

May–Gruenwald Giemsa staining. Cytospins of 5 ×  103 sort-purified cells 
were stained with May–Gruenwald Giemsa (Sigma Aldrich), according to the 
manufacturer’s instructions. Slides were air-dried and sealed with Eukit quick-
hardening mounting medium (Sigma Aldrich), and images were taken with a Leica 
DMI 4000 microscope.

In vitro proliferation assays. Total splenocytes or sort-purified progenitors 
were stained with CellTrace Violet (Invitrogen), according to the manufacturer’s 
guidelines. Total splenocytes were cultured on dishes coated with anti-CD3 and 
anti-CD28 (0.5 mg/ml) and were used as a positive control. Dilution of the cell dye 
was determined by flow cytometry.

OT-II proliferation assays. 2 ×  103 sort-purified conventional pDCs, pDC-like 
cells and splenic cDCs were co-cultured with 1 ×  104 labeled OT-II CD4+ T cells 
in the presence of OVA protein (1 μ g/ml) and stimulated with LPS and CpG-A 
(both at 6 μ g/ml) or left unstimulated. OT-II T cells were labeled with CellTrace 
Violet (Thermo Fisher Scientific) according to the manufacturer’s instructions. 
Proliferation rates were measured after 4 d in culture. As controls, labeled and 
unlabeled OT-II T cells were cultured on anti-CD3 (1 µ g/ml) and anti-CD28  
(0.5 µ g/ml) precoated wells.

Antibodies and flow cytometry. Cells were stained as previously described18 with 
the antibodies listed in the Supplementary Information Note. Cells were analyzed 
on a BD LSR Fortessa instrument, and data were analyzed with FlowJo X software 
(TreeStar).

Intracellular cytokine staining. For intracellular cytokine staining, cells were 
surface stained and subsequently fixed and permeabilized with a BD Cytofix/
Cytoperm Kit.

Quantitative PCR. RNA of sort-purified progenitors was extracted, and cDNA 
was generated as previously described18. A KAPA SYBR Fast universal qPCR kit 
(KapaBiosystems) was used, and samples were run on an Applied Biosystems 
StepOnePlus qPCR machine. Primers are listed in the Supplementary  
Information Note.

Statistical analysis. Analysis of all data was done with paired two-tailed Student’s 
t test or one-way ANOVA with Tukey post-test with a 95% confidence interval 
(Prism, GraphPad Software). P <  0.05 was considered significant. *0.01 <  P <  0.05; 
**0.001 <  P <  0.01; ***P <  0.001; ****P <  0.0001.

RNA-seq analysis. Bulk RNA-seq. Total RNA was isolated from cells with an 
Ambion RNAqueous Micro Kit. RNA quality was assessed with a Fragment 
Analyzer. cDNA was prepared with a SMART-Seq v4 Ultra Low Input RNA 
Kit (Clontech). RNA libraries were prepared with a Nextera XT DNA Library 
Preparation Kit (Illumina). Indexed cDNA libraries were sequenced on an  
Illumina HiSeq 2500 machine and Illumina NexSeq 500. The sequence quality  
of the obtained single end reads (SR51) was assessed with the FastQC tool  
(version 0.11.3). Reads were mapped to the mouse genome assembly, version 
mm10 (http://genome.ucsc.edu/), with RNA-STAR (version 2.5.2a)60 with default 
parameters. As an exception, reporting for multimappers comprised only one hit 
in the final alignment files (outSAMmultNmax =  1) and filtering reads without 
evidence in the spliced junction table (outFilterType =  ”BySJout”). All subsequent 
gene expression data analysis was done in the R software package (R Foundation 
for Statistical Computing). With RefSeq mRNA coordinates from UCSC  
(http://genome.ucsc.edu/, downloaded in December 2015) and the qCount 
function from the QuasR package (version 1.16.0)61, we quantified gene expression 
as the number of reads that started within any annotated exon of a gene. The 
differentially expressed genes were identified with the Generalized Linear Model 
(GLM) framework in the edgeR package (version 3.18.1)62. Factors indicating 
mouse IDs were included in the model as covariates. Genes with a false discovery 
rate < 0.05 and a minimum log2 FC of 1 were considered differentially expressed 
genes. Gene set enrichment analysis was performed with the function ‘camera’ 
from the edgeR package and with all gene sets from the Molecular Signature 
Database (MSigDB v5.2). We considered only sets containing more than ten 
genes and used later implementations of camera, in which correlations of genes 
within gene sets were set to a fixed value of 0.01. Data were corrected for batch 
effects (mouse ID) for visualization purposes. A linear model with a single factor 
indicating mouse ID was fitted to the log-transformed data (The ‘voom’ function 
from the edgeR package was used to transform the data, and the lmFit function 
from the limma package (version 3.32.10) was used to fit the model.) The residuals 
from this model were used for PCA and heat-map figures. The developmental heat 
map was generated as follows: the samples were first ordered according to their 
developmental stages, and all possible combinations of peak/switch models were 
fitted to the expression of individual genes with the GLM framework in the edgeR 
package, with mouse ID used as a covariate. For each gene, the best-fitting model 
was selected, and the gene was assigned to the corresponding category. All genes 
with a false discovery rate < 0.05 and a FC > 1 were selected and plotted in  
Fig. 4c and are listed in Supplementary Table 1. Subsequently, the generated list was 
filtered for transcription-factor log2 FC > 1.5 (TF, GO 0003677) and cell-surface-
marker log2 FC > 3 (CS, GO:0009986), both filtered for log2 CPM > 1 in at least one 
set of replicates, and log2 FC > 1.5 values were individually plotted (Supplementary 
Fig. 4c,d). Each identified set of genes was tested for an enrichment in biological 
processes (package GO.db version 3.4.1) with the hypergeometric test implemented 
in the GOstats package (version 2.42.0).

Single-cell RNA-seq. BM and splenic pDCs were sorted from three mice and 
counted with a Countess II FL instrument (Life Technologies). 3,000 cells from 
each sample were loaded on a 10 ×  Genomics Chromium Single Cell Controller. 
Single-cell capture and cDNA and library preparation were performed with a 
Single Cell 3′  v2 Reagent Kit (10 ×  Genomics) according to the manufacturer’s 
instructions. Sequencing libraries were loaded on an Illumina NextSeq 500 
instrument with high-output 75-cycle kits and paired-end sequenced with the 
following read lengths: read 1, 26 cycles; read 2, 8 cycles; read 3, 58 cycles. Single-
cell sequencing files (basecalls) were processed with the Cell Ranger Single Cell 
Software Suite (version 2.0.0) to perform quality control, sample demultiplexing, 
barcode processing and single-cell 3′  gene counting (https://support.10xgenomics.
com/single-cell-gene-expression/software/overview/welcome/). Samples were first 
demultiplexed and then were aligned to the UCSC mouse (mm10) transcriptome 
and genome with ‘cellranger’ with default parameters for all six samples. UMI 
were counted with ‘cellranger count’. Samples were merged with the ‘cellranger 
aggregate’ procedure without downscaling. Further analysis was performed in R 
(version 3.4.0) with the scran (1.4.5) and scatter (1.4.0) packages by following the 
Bioconductor workflow (for version 3.5). Cells with log library sizes (or log total 
features) more than three median absolute deviations (MADs) below the median 

NATURE IMMUNOLOGY | www.nature.com/natureimmunology

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.



Results 
 

  42 

 

 

ARTICLES NATURE IMMUNOLOGY

log library size (or log total features) were filtered out. Similarly, cells with a 
proportion of reads mapping to the mitochondrial genome more than three MADs 
above the median percentage of reads mapping to the mitochondrial genome were 
removed. Low-abundance genes with average log2 CPM. counts < 0.0023  
were filtered out. This threshold was estimated from the distribution of average 
log2 CPM. counts after fitting two normal distributions (assuming two populations 
of genes: not expressed – background, and expressed) with Mclust function (mclust 
version 5.3) and choosing a threshold of P =  0.05 for background population. 
Expression values of 11,753 genes for 14,744 cells were kept. The raw UMI counts 
were normalized with the size factors estimated from pools of cells to avoid 
dominance of zeros in the matrix63. A mean-dependent trend was fitted to the 
variances of the log expression values of endogenous genes to distinguish between 
genuine biological variability and technical noise, under the assumption that most 
genes are not differentially expressed across cells, and their variance is mainly 
technical (trendVar function with ‘loess’ trend and span of 0.01 to better fit the 
sparse data). Afterward, the fitted technical noise was subtracted, the genes were 
sorted on the basis of the biological components of their variance, and those with 
a variance larger than 0.1 were used for clustering of cells and PCA (n =  148). 
The clustering of cells into putative subpopulations was done on log expression 
values (hierarchical clustering on the Euclidean distances between cells, with 
Ward’s criterion to minimize the total variance within each cluster). The clusters 
of cells were identified by applying a dynamic tree cut64, which resulted in eight 
putative subpopulations. Afterward, the marker genes specific for each cluster were 
identified with the findMarkers function (scran package), which fits a linear model 
to the log-transformed expression values for each gene with the imma framework65. 
The expression profiles of individual clusters were also compared in a pairwise 
analysis (P values in those analyses were considered only as ranks, because the 
same data were used for cluster identification and statistical testing).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The RNA-seq data generated in the current study are available in 
the Gene Expression Omnibus database under accession code GSE114315.
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Supplementary Figure 1:  pDCs develop primarily from IL-7R+ lymphoid progenitors.  

(a-c) CDPs, IL-7R+ LP and CSF1R-IL-7R- NP progenitors as gated in Fig. 1a were cultured over 8 days in the presence of 
FLT3L (b) or FLT3L and OP9 stromal cells (a,c). Shown are two color histograms for the expression of SiglecH and CD19 
at day 4 of culture (a). Relative cell output for pDCs (SiglecH+ CD317+CD19-), cDC1 (SiglecH-CD317-CD19-

CD11c+MHCII+CD24+CD11b-), cDC2 (SiglecH- CD317-CD19-CD11c+MHCII+CD24-CD11b+) and B cells (CD19+) was 
determined at day 4, 6 and 8 as indicated (n=6 independent experiments, thin line represents the mean +/-s.d.). (d-l) Sort 
purified progenitors as defined in methods were isolated from CD45.1 and CD45.2 mice and used in a 1:1 ratio for in vitro or 
in vivo experiments as explained in Supplementary Fig. 1i. (d,e) Shown are representative two-color histograms pre-gated on 
SiglecH+CD11c+ pDCs (d) or pre-gated on SiglecH-CD11c+MHCII+ cDCs (e) of IL- 7R+ LP (CD45.1) and CDPs (CD45.2) 
cultured over 8 days in the presence of FLT3L. (n=3 independent experiments). (f) Shown are representative two-color 
histograms for the expression of CD45.1 and CD45.2 pre-gated on CD19+ B cells of progenitor subsets, as indicated co-
cultured for 4 days in the presence of FLT3L and OP9 stromal cells. (g,h) Percent output of CD45RA+ SiglecH+ pDCs (g) and 
CD19+ B cells (h) of progenitors cultured as in (f) (n=3 independent experiments, each dot represents a mouse, thin line 
represents the mean +/-s.d.). (j-k) Bone marrow and splenic SiglecH+CD317+pDC output was determined 4 days after in vivo 
i.v. co-transfer of CD45.1 and CD45.2 Lin−B220-Ly6C-CD117hiCD135+ (c-kithi) progenitors. Shown are representative two-
color histograms for the expression of CD45.1 and CD45.2 (j) or percent donor derived pDCs in BM and spleen (k) (n=3 
independent experiments). (l) CD19+ BM B cells and splenic SiglecH-CD317-CD19-CD11c+MHCII+ cDC output was 
determined 4 days after in vivo i.v. co-transfer of CD45.1 CDPs and CD45.2 IL-7R+ LP (n=6 independent experiments). Shown 
are representative two-color histograms for the expression of CD45.1 and CD45.2. Statistical analysis was done using two-
way ANOVA with Tukey post-test (g,h,k) (* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001).  
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Supplementary Figure 2: SiglecH+Ly6D+ IL-7R+ LPs have exclusive pDC potential.  

(a) Shown are box plots (median, range and 25th/75th percentile) for the frequency in the bone marrow of C57BL/6 mice of 
progenitors and mature CD45RA+CD317+ pDCs as indicated (n=6 independent experiments). (b-j) Sort-purified 
CD317+B220+CD11c+CCR9- (CCR9-), Lin−B220-Ly6C-CD117highCD135+ (c-kithi), CDPs, CSF1R-IL-7R- NP, IL-7R+ LP and 
DP precursors, as defined in Methods, were cultured for 4 days in the presence of FLT3L (b-e) or in the presence of FLT3L 
and OP9 stromal cells (f-j). Shown are representative two-color histograms for the indicated markers (b,d,f,g), the total output 
(c,h,i) and the percent (e,j) mature CD45RA+CD317+ pDCs, SiglecH-CD317-CD19-CD11c+MHCII+CD24+CD11b- cDC1, 
SiglecH-CD317-CD19-CD11c+MHCII+CD24-CD11b+ cDC2 and CD19+ B cells derived from the indicated progenitors (n=3 
(d,e,g,j) n=5 (b,c,f,h,i) independent experiments, thin line represents the mean +/-s.d.). Statistical analysis was done using 
one-way ANOVA with Tukey post-test (c,h,i) (* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001).  
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Supplementary Figure 3: SiglecH+Ly6D+ DP cells are bona fide pDC progenitors.  

(a) Shown are single-color histograms for the indicated markers expressed by DP progenitors (blue), CDPs (green), mature 
pDCs (gray) (n=3 independent experiments). (b) IFN-�was measured on supernatant collected 16h after stimulation with 
CpG-A from DN or SP progenitor cultured over-night (day 0) or after 4 days in the presence of FLT3L, as indicated (n=3 
independent experiments, shown is a representative experiment. Each dot represents a technical replicate, thin line represents 
the mean +/-s.d.). (c) May-Gruenwald staining on cytospins of ex-vivo sort-purified DN and SP progenitors as described in 
Methods (8 representative images taken from 3 independent experiments, scale=10 um). (d,e) DP (d) and SP (e) progenitors 
were sorted as described in Methods and cultured over 5 days in the presence of FLT3L. Shown are representative two-color 
histograms for the expression of CD45RA and SiglecH at the indicated time points (n=3 independent experiments).  

 

 

 

 

 

 

 

 

a

0 10
3

10
4

10
5

0

50

100

150

0 10
3

10
4

10
5

0

50

100

150

0 10 3 10 4 10 5

0

10

20

30

40

50 DP

mature pDCs

MHC-II Bv510

C
ou

nt

Zbtb46 GFP

CDP

Sca1 PE

0

0.2

0.4

0.6

IF
N

-
 p

er
 c

el
l (

pg
/m

l)

0

0.5

1.0

1.5

CpG 
PBS

SP day 0 SP day 4DN day 0 DN day 4

IF
N

-
 p

er
 c

el
l (

pg
/m

l)

DN day 0

SP day 0

b

c d

0 10
3

10
4

10
5

70%

0 10
3

10
4

10
5

83%

0 10
3

10
4

10
5

89%

0 10
3

10
4

10
5

91%

0 10
3

10
4

10
5

14%

C
D

45
R

A 
P

E

SiglecH APC

0 10
3

10
4

10
5

Day 2

30%

0 10
3

10
4

10
5

Day 3

63%

0 10
3

10
4

10
5

Day 4

71%

0 10
3

10
4

10
5

Day 5

79%

0 10
3

10
4

10
5

0

10
3

10
4

10
5

Day 1

2.4%

C
D

45
R

A 
P

E

SiglecH APC

Day 2 Day 3 Day 4 Day 5Day 1

Supplementary Figure 3

0 10
3

10
4

10
5

0

20

40

60

80

100

0 10
3

10
4

10
5

0

20

40

60

80

100

SiglecH APC Ly6D FITC

e



Results 
 

  47 

 

Supplementary Figure 4: Stage-specific transcriptional signatures define pDC commitment.  

(a-f) RNASeq was performed on sort purified DN, SP, DP and mature BM pDCs as described in Methods. (a,b) Shown are 
developmental heatmaps, as described in Fig 4c, for transcription factors with expression values log2FC >1.5 (a), or cell-
surface markers with expression values log2FC > 3 (b). (c) Shown is Gene-Set Enrichment Analysis (GSEA) performed on 
Hallmark Signatures comparing DP pre-pDC progenitors with mature pDCs. (d-f) Volcano plots showing pair-wise 
comparisons of DP pre-pDC against DN, SP and mature pDC transcripts as indicated. Depicted in red are up-regulated 
transcripts (log2FC > 1), in blue down-regulated transcripts (log2FC < -1). (n=4 independent experiments. For each 
experiment, all progenitors were obtained from one mouse). 
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Supplementary Figure 5: Expression of IRF8 at the SP stage marks pDC lineage commitment.  

(a) Shown are percent mature BM and splenic pDCs, DN, SP and DP progenitors, gated as described in Methods present in 
C57BL/6, Flt3L-/- and IL-7-/- mice. (b) QRT-PCR of the indicated genes on sort purified DN, SP and DP progenitors, gated as 
described in Methods, SiglecH+B220+Ly6D+Ly6C+ BM mature and SiglecH+CD317+CD11c+ splenic mature pDCs, splenic 
CD11c+MHCIIhiCD24+XCR1+ cDC1 and CD11c+MHCIIhi CD11b+Sirp-a+ cDC2. (n=3 independent experiments, shown are 
mean values of representative results, dots represent technical replicates +/-s.d.). (c-f) C57BL/6, Flt3l-/- and IL-7-/- mice were 
analyzed. Shown are representative two-color histograms (c-e) for the indicated markers and total splenic CD19+ B cells, 
CD11c+MHC-IIhiCD24+CD11b- cDC1, and CD11c+MHC-IIhiCD24-CD11b+ cDC2 (f) of mice of the indicated genotype. (c-d) 
DN (black), SP (red) and DP (blue) progenitors, pre-gated as described in Methods were analyzed for the expression of IRF8 
and EBF1 (right panels) in Flt3l-/- (c) and IL-7-/- (d). ((a,c-f) n=6 independent experiments. (f) Individual mice are plotted, 
mean +/- s.d). Statistical analysis was done using two- tailed Student’s t test (f) (* = p < 0.05, ** = p < 0.01, *** = p < 0.001, 
**** = p < 0.0001).  
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Supplementary Figure 6: IRF8 and EBF1 define pDC and B cell lineage dichotomy.  

(a,c) Shown are gating strategies for DN, SP and DP progenitors in IRF8-eGFP (a) and Ebf1-hCD2 (c) reporter mice (n=3 
independent experiments, shown is a representative experiment). (b,d) Shown is the total output of CD45RA+CD317+ pDCs 
(b) or CD19+ B cells (d) per plated progenitor cell cultured in the presence of FLT3L (b) or FLT3L and OP9 stromal cells (d) 
(n=3 independent experiments, shown is mean +/-s.d.). (e-h) Shown are two color histograms (e,g) for the expression of 
CD45RA/CD317 (e) and SiglecH/CD19 (g) of sort-purified SP progenitors from C57BL/6, Ebf1- SP and Ebf1+ SP progenitors, 
from Ebf1-hCD2 reporter mice as indicated culture for 4 days in the presence of FLT3L (e,f) or FLT3L with OP9 stromal 
cells. (g,h) Shown are mean +/-s.d. for percent CD45RA+CD317+ pDCs (f) and CD19+ B cells (h) obtained as described in e 
and g (n=3 independent experiments). (i-l) Shown are two color histograms for the expression of CD317/CD19 (i, k), and 
percent CD317+CD45RA+ pDCs and CD19+ B cells (j, l) of DP (i,j) and SP (k,l) progenitors isolated as described in Methods 
from C57BL/6 mice and cultured for 4 days in regular (left panels) or transwell® culture plates (middle and right panels). 
Progenitors cultured in transwell® were plated either in direct contact with OP9 stromal cells (lower chamber) or on the upper 
chamber, as indicated. (n=5 independent experiments. Shown are mean +/-s.d.). Statistical analysis was done using one-way 
ANOVA with Tukey post-test (b,d,h) or two-tailed Student’s t test (j,l) (* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = 
p < 0.0001).  

0 10 3 10 4 10 5

3

4

5

c

a

L
y6

D
 F

IT
C

SiglecH PE

L
y6

D
 F

IT
C

IRF8-GFP

L
y6

D
 F

IT
C

SiglecH PE

L
y6

D
 F

IT
C

Ebf1-hCD2 APC

h

f

0 10 3 10 4 10 5

0

-10 2

10 2

10 3

10 4

10 5

0 10 3 10 4 10 5

0

-10 2

10 2

10 3

10 4

10 5

0 10 3 10 4 10 5

0

-10 2

10 2

10 3

10 4

10 5

0 10 3 10 4 10 5

0

10 3

10 4

10 5

0 10 3 10 4 10 5

0

10 3

10 4

10 5

0 10 3 10 4 10 5

0

10 3

10 4

10 5

S
ig

le
cH

 P
a
ci

fic
B

lu
e

CD19 PE-Cy7

SP (C57BL/6)

C
D

4
5
R

A
 P

E

CD317 FITC

e

g

Ebf1- SP Ebf1+ SP

66% 72% 64%

33%

41% 26%

46%

53% 1.2%

19%

27% 54%

SP (C
57

BL/
6)

Ebf
1
-  S

P

Ebf
1
+  S

P

0

20

40

60

80

100

p
D

C
 (

%
)

0

20

40

60

80

C
D

1
9

+
 B

 c
e
lls

 (
%

)

** ****
****

Supplementary Figure 6

B220-Ly6C-Lin-CD127+

i

0 10
3

10
4

10
5

0

-10
2

10
2

10
3

10
4

10
5

0 10
3

10
4

10
5

0

-10
2

10
2

10
3

10
4

10
5

0 10
3

10
4

10
5

0

-10
2

10
2

10
3

10
4

10
5

0 10
3

10
4

10
5

0

-10
2

10
2

10
3

10
4

10
5

0 10
3

10
4

10
5

0

-10
2

10
2

10
3

10
4

10
5

0 10
3

10
4

10
5

0

-10
2

10
2

10
3

10
4

10
5

C
D

3
1

7
 F

IT
C

CD19 PE-Cy7

C
D

3
1

7
 F

IT
C

CD19 PE-Cy7

84%

16% 0%

89%

11% 0%

73%

27% 0%

66%

34% 0.8%

70%

29% 1%

55%

32% 13%

DP (Flt3L) DP(Transwell OP9+Flt3L)
j

k l

0

20

40

60

80

100

O
u
tp

u
t 
o
f 
ce

lls
 (

%
)

***
***

**

**

Upper chamber Lower chamber

SP (Flt3L) SP(Transwell OP9+Flt3L)

Upper chamber Lower chamber

Flt3
L

Upp
er

Lo
w
er

 

SP (C57BL/6)

0 10 3 10 4 10 5

0

-10 2

10 2

10 3

10 4

10 5

78%

0 10 3 10 4 10 5

0

10 3

10 4

10 5

32%

b

d
B220-Ly6C-Lin-CD127+

95%

DN

SP
DP

5.0%

7.0%

18%

DN

SP
DP

SP (C
57

BL/
6)

Ebf
1
-  S

P

IR
F8

hi  S
P

D
P

0

1

2

3

p
D

C
s/

p
la

te
d
 c

e
lls

0.0

0.2

0.4

0.6

0.8

B
 c

e
lls

/p
la

te
d
 c

e
lls

SP (C
57

BL/
6)

Ebf
1
-  S

P

IR
F8

hi  S
P D

P

***
****

****

**
*SP DP

SP DP

0 10 3 10 4 10 5

0

-10 2

10 2

10 3

10 4

10 5 7%36%

53%

15% 10%

69%

Merge

Merge

SP

pDCs B cells

0

20

40

60

80

100

O
u
tp

u
t 
o
f 
ce

lls
 (

%
)

Flt3
L

Upp
er

Lo
w
er

 

Flt3
L

Upp
er

Lo
w
er

 

Flt3
L

Upp
er

Lo
w
er

 

DP

pDCs B cells

SP (C
57

BL/
6)

Ebf1- SP Ebf1+ SP

Ebf
1
-  S

P

Ebf
1
+  S

P



Results 
 

  50 

 

Supplementary Figure 7: Single-cell analysis unravels pDC heterogeneity.  

Single cell RNA sequencing delineates heterogeneous clusters within mature pDCs. (a-d) RNA Sequencing was performed as 
described in Methods on mature BM and splenic pDCs, and on in vitro generated pDCs from IL-7R+ LPs and CDPs. (a) 
Hierarchical clustering of all samples based on Pearson's correlation coefficient calculated on 25% of genes with highest 
variance (calculated as inter-quartile range). (b) Shown is the average expression level across all samples for the indicated 
genes. (c-d) Shown are relative expression levels for differentially expressed transcription factors (c) or cell-surface genes (d) 
(log2FC >1.5). (e) The 8 clusters, identified from the single cell RNA sequencing analysis (Fig. 7d and 7e) are plotted as 
percentage. (f) Shown is the number differentially expressed genes (DEG) (Log2FC>abs(1.5)) of the identified clusters as a 
pairwise comparison. (g) The total number of detected genes is plotted for each cluster as a violin plot (median, range and 
25th/75th percentile). (h) PCA analysis for the identified clusters for genes related to G1/G0, G2 and S phase. Cells for bulk 
and single cell RNASeq were harvested from 3 mice on three independent experiments.  
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Supplementary Figure 8: Phenotypic characterization of pDC-like cells.  

(a-f) (a) Shown are the gating strategies for CD317+SiglecH+Zbtb46-GFP- pDCs (red) and CD317+SiglecH+Zbtb46-GFP+ pDC 
like cells (blue) pre-gated on CD3-CD19- cells (n=5). (b,d,f) Single cell analysis of BM and splenic pDCs as described in Fig. 
7. Shown is the relative expression level for the indicated genes. The size of each dot corresponds to the relative expression of 
a given gene for each cell. Contour lines indicate density of the BM (blue) and splenic (red) cells in the PCA space. (c,e) 
Single-color histograms for the indicated surface markers expressed by BM (empty) or splenic (full) pDCs (red) and pDC like 
cells (blue) gated as in a. (n=3).  
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Supplementary Methods 
 

Supplementary Tables 

 

All supplementary tables can be downloaded online under following link: 

https://www.nature.com/articles/s41590-018-0136-9#Sec32 

 

Supplementary Table 1: Stage-specific transcriptional signatures 

 

Listed are all genes shown in Fig. 4c with a fold change >1 and p-value < 0.05. A generalized 

linear model (GLM framework of "edgeR" package) was used to generate the selection of the 

genes listed. 

 

Supplementary Table 2: Stage-specific Gene Ontology (GO) enrichment analysis 

 

Listed are GO enriched biological processes within the indicated switch and peak regions. The 

“Size” corresponds to the total number of genes in the process (from the universe), whereas 

the “Count” values stand for the number of genes in the peak/switch regions, which are 

members of this process. The “ExpCount” describes the expected number of genes in the 

process, given the number of genes in process and size of the peak/switch set. The “OddsRatio” 

is the ratio between the “Count” and the “ExpCount”. Only sets containing more than 10 genes 

were considered. Universe: all genes from mouse genome version mm10 having at least 1 count 

in the dataset (16,200 genes). 

 

Supplementary Table 3: Top hit genes for each cluster 

 

Listed are all genes sorted by the „Top‟ value, which specifies the size of the candidate marker 

set from each pairwise comparison. This set allows the cluster to be distinguished from the 

others based on the expression of at least one gene. 

 
 
 
 
 



Results 
 

  53 

Antibodies: 
 

Antibody Clone Supplier Fluorophor Dilution Catalog Nr. 
CD3 17A2 Biolegend Bio 1/1600 100244 
CD3 17A2 Biolegend Pacific Blue 1/200 100214 
CD11b M1/70 Biolegend PerCP-Cy5.5 1/800 101228 
CD11c N418 Biolegend APC-Cy7 1/400 117324 
CD19 6D6 Biolegend Pe-Cy7 1/400 115520 
CD19 6D5 Biolegend Pacific Blue 1/1600 115523 
CD24 M1/69 Biolegend Pe-Cy7 1/1600 101822 
CD45.1 A20 Homemade FITC 1/800 - 
CD45.2 104 Biolegend AF700 1/400 109822 
CD45R RA3-6B2 Biolegend PeDazzle 594 1/1000 103257 
CD45RA 14.8 Miltenyi PE 1/200 130-102-526 
CD86 GL-1 Biolegend PE 1/800 105007 
CD103 2E7 eBioscience PE 1/100 12-1031-82 
CD115 AFS98 eBioscience Pe efluor610 1/800 61-1152-80 
CD115 AF298 Biolegend Bv605 1/800 135517 
CD117 2B8 Biolegend APC-Cy7 1/200 105825 
CD117 2B8 Biolegend Bv711 1/800 105835 
CD127 eBioSB/199 eBioscience Pe-Cy7 1/100 25-1273-82 
CD135 A2F10 eBioscience PerCP eFluor710 1/100 46-1351-82 
CD135 A2F10 eBioscience PE 1/100 12-1351-83 
CD172α P84 Biolegend Pe/Dazzle 594 1/500 144016 
CD317 927 Biolegend AF488 1/200 127012 
CD317 927 Homemade Pacific Blue 1/400 - 
Ebf1 T26-818 BD PE 1/200 565494 
hCD2 RPA-2.10 Biolegend APC 1/200 300213 
Irf8 V3GYWCH eBioscience PerCP-eFluor 710 1/200 46-9852-80 
Ly6C HK1.4 Biolegend AlexaFluor700 1/200 128024 
Ly6D 49-H4 Biolegend FITC 1/400 138606 
Ly6D 49-H4 Biolegend PE 1/1600 138604 
MHCII M5/114.15.2 Biolegend BV 510 1/400 107635 
NK1.1 PK136 Biolegend BV421 1/1000 108732 
SiglecH 551 Homemade APC 1/1000 - 
Ter119 Ter119 Biolegend Pacific Blue 1/200 116232 
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Primer Sequences: 
 

Bcl11a FW GATAAGCCGCCTTCCCCTTC 

Bcl11a RW GGGGATTAGAGCTCCGTGTG 

Mtg16 FW CAGCAGTTTGGCAGTGACATC 

Mtg16 RW GCACAGTGCAGGAGCTCAC 

Irf8 FW AAGGGCGTGTTCGTGAAG 

Irf8 RW GGTGGCGTAGAATTGCTG 

Tcf4 FW TGAGATCAAATCCGACGA 

Tcf4 RW CGTTATTGCTAGATCTTGACCT 

Tcf4 common RW TGCTGGCTGCTGGCTTGGAGGAA 

Tcf4L FW CCAGGAACCCTTTCGCCCACCAAAC 

Tcf4S FW ATCCCGGGCATGGGCGGCAACTC 

Runx2 FW CAACTTCCTGTGCTCCGTG 

Runx2 RW CGGCCCACAAATCTCAGATC 

SpiB FW CACTCCCAAACTGTTCAGC 

SpiB RW TGGGGTACGGAGCATAAG 

IRF7 FW TGGAGTTAACCTGCCACCC 

IRF7 RW CTGAGGCTCACTTCTTCCCT 

Ebf1 FW CAGGAAACCCACGTGACAT 

Ebf1 RW CCACGTTGACTGTGGTAGACA 

Batf3 FW AGACCCAGAAGGCTGACAA 

Batf3 RW CTGCACAAAGTTCATAGGACAC 

Id2 FW RT CATGAACGACTGCTACTCCAA 

Id2 RW RT GTGATGCAGGCTGACGATAGT 

Xbp1 FW GCGCAGACTGCTCGAGATAG 

Xbp1 RW                         CACCTCTGGAACCTCGTCAG 
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IRF4 FW                        CGGCCCAACAAGCTAGAAAG 

IRF4 RW                           TCTGTCTCTGAGGGTCTGGA 

Tcf3 FW                         TTCCACGTTCCTAGGAGCTG 

Tcf3 RW                       GCTGGGGAATGAGGGGTAAT 

Klf4 FW                       GAAGGGAGAAGACACTGCGT 

Klf4 RW                          TCGTTGAACTCCTCGGTCTC 

B-actin FW                            CTGTCGAGTCGCGTCCACC 

B-actin RW                        CGCAGCGATATCGTCATCCA 
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Discussion: 
 

 The origin of pDCs has long been controversial and committed progenitors to this 

lineage have never been described. Here we show that pDC development occurs predominantly 

from an IL-7R expressing lymphoid progenitor and not from CDPs or the previously identified 

CSF1R-IL-7R- NP precursors 56, 60. The expression of Ly6D and SiglecH within the IL-7R LPs 

marks a specification to the pDC lineage in vitro. We could further show that this 

developmental stage is dependent on high expression of IRF8 and still requires two rounds of 

proliferations until achieving complete maturation into pDCs. Specification towards the pDC 

lineage in  IL-7R LPs starts at the Ly6D-SiglecH- DN stage, which shows the broadest lineage 

differentiation potential, proceeds to the Ly6D+SiglecH- SP stage, which can differentiate 

towards B- or pDCs depending on the expression of either EBF1 or IRF8, respectively, and is 

completed at the DP stage.  

Additionally, we were able to show that high expression of IRF8 within the SP 

progenitors marks pDC lineage commitment concomitant with the loss of B cells potential. At 

this stage of development, besides high expression of IRF8, none of master regulators for  pDC 

development are present, such as TCF4L, suggesting that pDC lineage specification is TCF4 

independent but IRF8 dependent. However, how the dichotomy of pDC versus B cell choice is 

induced and regulated by Irf8 and Ebf1 is still unresolved and matter of investigation. A 

possible candidate factor which could poise the balance between EBF1 and IRF8 is the 

transcription factor Zinc Finger Protein 521 (Zfp521). Zfp521 is a DNA binding protein that 

contains 30 Krüppel-like zinc fingers and has been implicated in the differentiation of multiple 

cell subsets, including HSCs and B lymphocytes 271, 272. Zfp521 showed up in our RNA 

sequencing analysis as progressively increased during pDC lineage commitment. It is 

expressed at low levels already on DN and SP progenitors and its expression gradually 

increases on DP pre-pDCs, peaking on mature pDCs. It has been reported that Ebf1 expression 

and B cell specification are inhibited by Zfp521, through active binding of the Ebf1 carboxyl-

terminal region 271. In support to their hypothesis, the authors further showed that B cell 

development is strongly enhanced in Zfp521 knockdown experiments271. Taken together, it is 

possible that increased Zfp521 expression levels might induce the inhibition of Ebf1 and 

therefore mediate pDC commitment by preventing the specification towards the B cell lineage. 

Nevertheless, how this is achieved and the role of IRF8, Ebf1 or Zfp521 is still unclear. Zfp521 

deficient mice were recently generated and characterized, revealing an unexpected defect in 
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CLPs as well as B and T cell precursors 273, arguing for a more complex transcriptional 

network, than previously hypothesized.  The observed findings could be explained by either 

cell extrinsic mediated changes of the bone marrow microenvironment which then affects 

lymphoid development, or cell intrinsic processes, which would alter early hematopoietic 

progenitors impairing lymphoid lineage specification. To be able to understand the function of 

Zfp521 during lymphopoiesis the generation of conditional mice is necessary, where Zfp521 

can be specifically ablated at different stages of development and within specific subsets.  

Other questions such as how IRF8 shapes pDC development and which intrinsic or 

extrinsic cell signals mediate the development and specification towards the pDC lineage, still 

remain unclear. The fact that pDC commitment in lymphoid progenitors goes along with high 

expression levels of IRF8, additionally opens up the question about the transcriptional role of 

IRF8 in pDC development. It could well be that an autoregulatory induction of IRF8 mediates 

pDC lineage specification, similarly to the one described for cDC1 37. This autoregulatory loop 

might result in the accumulation of IRF8 within progenitors which would ultimately promote 

the expression of pDC lineage specific genes such as Tcf4L, Zeb2, IRF7 and SpiB and mediate 

the commitment towards pDC lineage.  

The proliferation rate of progenitors within a specific niche might also be a key factor 

determining the accumulation or dilution of transcription factors such as IRF8, as it has been 

suggested for PU.1 during B cell versus macrophages lineage choice 274. The close proximity 

of progenitors to an IL-7 riche BM niche induces proliferation and therefore dilution of IRF8, 

which possibly allows for the expression of B cell lineage determining transcription factors 

such as Ebf1 and Pax5. On the other hand, progenitors which progressively proliferate would 

move away from the IL-7-rich niche, thus reducing their proliferation rate, accumulate high 

IRF8 levels, and therefore commit to the pDC lineage. Indeed, we confirmed that expression 

of IRF8 plays a major role during pDC development: neither DP pre-pDCs nor conventional 

mature pDCs develop in Irf8 deficient or Irf8R249C mutant mice. Further, an alternative type of 

pDCs ,which has reduced expression of pDC markers and is unable to produce Type I IFN, 

expands in these mice. This “pDC-like” cells also express several features reminiscent of cDCs, 

such as high levels of MHC-II, co-stimulatory molecules and CD11c, and are able to capture, 

process and present antigen to naïve CD4 T cells. The complete absence of mature pDCs and 

the expansion of these alternative pDC-like cells in IRF8 mutant mice, could suggest that 

deletion of IRF8 in hematopoietic progenitors may differently impair the generation of pDCs  

and pDC-like cells. While pDCs would strictly dependent on the expression of IRF8, its 

absence would not impair pDC-like development. Further, hypothesizing that pDCs would 
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mostly differentiate from lymphoid, while pDC-like cells from myeloid progenitors, IRF8 

deficiency would only impair the lymphoid branch. To validate this hypothesis, we need to 

generate lines in which IRF8 is specifically deleted on individual progenitors. Those studies 

are currently ongoing. An Alternative scenario, would be compatible with a migratory defect 

in DP pre-pDCs of IRF8 deficient mice: excessive migration from the BM to the periphery, 

would result in reduced  BM pDCs and increased  splenic pDC-like cells. Other explanations 

are also possible, such as overall perturbed hematopoietic development in IRF8 deficient mice. 

Collectively, more studies are required to identify and characterize the key intrinsic and 

extrinsic factors of pDC development.  

 To better understand the transcriptional regulation that leads to the progressive 

differentiation and generation of pDC and pDC-like cells we plan to perform next generation 

single cell sequencing on distinct BM progenitors as well as mature pDCs. Cellular indexing 

of transcriptome and epitopes sequencing (CITE-Seq) is a new method that combines detection 

of surface antigens with whole RNA sequencing at a single cell level 275. Currently, most of 

the studies either use cell sorting to determine the lineage and differentiation potential of 

progenitors or use genome wide sequencing either on specific subsets or at a single cell level.  

The possibility to analyze the transcriptome of single cells gating on specific progenitors, for 

which we would know the developmental options, is an attractive approach. In parallel single 

cell ATAC sequencing (scATAC-seq) allows us to dissect the epigenomic regulation 276. The 

complexity of single cell approaches has exponentially increased over the past years and the 

challenge remains in developing the computational tools for the analysis. Efforts in designing 

lineage developmental maps based on single cell RNA sequencing exist, however how to 

translate them into epigenomic regulation is still an open question.  

A novel computational fate-mapping analysis (FateID) that was recently developed was 

used to analyze hematopoiesis 277. In agreement with our data, this study shows that B cells 

and pDCs originate from a common progenitor, which expresses IL-7R. Furthermore, two 

recent studies highlighted the presence of a small fraction of cells in human peripheral blood 

that share pDC markers and which also have myeloid features 268, 269, 270. This subset, defined 

as AS-DCs or pre-DCs, appears related to our pDC-like cells. What remains to be defined, 

besides the developmental origin of pDC and pDC-like cells, is their function. pDC-like cells 

resemble conventional pDCs but express myeloid specific markers, such as Zbtb46. The use of 

Zbtb46-GFP reporter mice allowed us to discriminate conventional pDCs from the newly 

identified pDC-like cells. A direct comparison of these two pDC subsets revealed that beyond 

phenotypical they also have functional differences. Both subsets produced equal amounts of 
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IFN- a upon CpG-A stimulation, but only conventional pDCs  did respond to CpG-B. 

Importantly, only pDC like could process and present antigens to T cells, a feature 

characteristic of cDCs.  

 The identification of these two distinct pDC subsets has several implications. Firstly, 

we can now isolate and functionally characterize both subsets in greater detail. A multitude of 

functions have been attributed to pDCs, with often conflicting data in literature. It is 

conceivable that the presence of pDC-like cells could have accounted for the antigen 

presentation ability of conventional pDCs amongst the different functions. Furthermore, the 

involvement of pDCs in mediating and/or sustaining diseases has to be reevaluated. The 

presence of high levels of IFNs is a hallmark for many autoimmune conditions, such as SLE 

and arthritis, and has long been attributed to the sustained activation of pDCs in these patients. 

However, the pathogenesis of the disease is still unclear. On one hand, activated pDCs could 

sustain high IFN levels in the serum of these patients, while pDC like cells could account for 

the priming of autoreactive T cells. It will be essential to determine the role of both subsets 

during the priming as well as during the onset of disease. In this regard it becomes essential to 

specifically target each subset individually. By looking at the transcriptional profiles of 

conventional pDCs and pDC-like cells, we were able to identify kallikrein 1 (Klk1) as a highly 

specific gene, exclusively expressed by both subsets but no other immune cells. Klk1 is a 

member of the peptidase S1 family, which belongs to the subgroup of serine proteases. It has 

been implicated in the regulation of inflammation, apoptosis, local blood pressure, as well as 

in the development of renal fibrosis and SLE 278, 279. Lupus prone mice produce less klks than 

wild type controls and treatment with exogeneous klks leads to an amelioration of disease 279. 

How the expression of KLK1 by pDCs and pDC-like cells is implicated in the pathogenesis of 

the disease is not clear. However, its exclusive expression on both subsets makes it an ideal 

target for specific depletion of either subset. In order to target pDCs we plan to generate a new 

mouse line by crossing the IL-7RCre or hCD2Cre with a line expressing LoxP-STOP-LoxP 

cassette followed by a diphtheria toxin alpha (LSL-DTA) within the klk1 locus (Klk1LSL-DTA). 

The cre recombinase expressed by lymphoid progenitors would induce the expression of the 

DTA, resulting in the depletion of conventional pDCs. In order to target pDC-like cells we plan 

to cross Zbtb46Cre or Cx3cr1Cre lines with Klk1LSL-DTA. Expression of the cre recombinase on 

CDPs would result in the depletion of pDC-like cells but not conventional pDCs. We are 

currently designing the proposed lines. Preliminary studies will be required to assess the 

specificity of the expression. Nevertheless, understanding the specific function of conventional 
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pDCs and pDC like cells may be instrumental to dissect the pathogenesis of autoimmune 

diseases and be instrumental for the design of targeted therapies. 

In summary, our investigation on the developmental trajectory of pDCs led to the 

identification of a committed pre-pDC within IL-7R expressing lymphoid precursors and to the 

reassignment of conventional pDCs to innate lymphocytes. Further, we characterized a novel 

subset of antigen-presenting cells, that we defined as pDC-like cells, which share 

transcriptional and functional features with both pDCs and cDCs. This subset appears myeloid 

derived and is capable to capture, process and efficiently present antigens to T cells. The role 

of this subset in shaping the immune response to pathogens will be the focus of our future 

studies. It will also be important to understand how developmental cues can change during 

infections and alter the mature pool. Further, the contribution of distinct lineages to the 

heterogeneity of pDCs raises the question whether other immune subsets in general or DCs in 

particular can also differentiate from lymphoid as well as myeloid biased progenitors, and if 

this developmental heterogeneity could reflect functional diversity.  
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Abbreviations: 

bHLH 
basic Helix Loop Helix ................................................................................................................................................. 13 

BST2 
Bone marrow Stromal antigen 2 .................................................................................................................... 3, 7, 19, 21 

cDCs 
conventional dendritic cells .......................................................................................................................................... 1 

CDP 
common dendritic cell progenitor ............................................................................................................. 1, 4, 10, 13, 59 

cGAS 
cGMP-AMP Synthetase............................................................................................................................................... 18 

CLPs 
common lymphoid progenitors ....................................................................................................... 1, 4, 6, 7, 8, 9, 10, 56 

cMoP 
common Monocyte Progenitor ..................................................................................................................................... 4 

CMPs 
Common Myeloid Progenitors .................................................................................................................................. 4, 6 

CreER 
Tamoxifen inducible Cre recombinase Estrogen Receptor fusion protein ....................................................................... 9 

DC 
Dendritic Cell ....................................................................................................... 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 25 

DHX 
DexD H-box helicase ................................................................................................................................................... 18 

DiSNE 
Developmental interpolated t-distributed Stochastic Neighborhood Embedding.....................................................10, 70 

DOTAP 
Dioleoyloxytrimethylammoniumpropane .................................................................................................................... 17 

DP 
double positive ............................................................................................................... 1, 45, 46, 47, 48, 49, 56, 57, 58 

EAE 
Experimental Autoimmune Encephalomyelitis ............................................................................................................ 21 

EBV 
Ebstein Barr Virus ..................................................................................................................................................17, 77 

 
 



Abbreviations 
 

  62 

EMT 
Epithelial-to-Mesenchymal-Transition ...................................................................................................................13, 74 

Flt3 
Fms-like tyrosine kinase 3 ....................................................................................................................................... 5, 11 

Flt3L 
Fms-like tyrosine kinase 3 Ligand ......................................................................................................................... 3, 5, 48 

GMP 
Granulocyte and Macrophage Precursor ................................................................................................................... 4, 8 

H3K27ac 
Histone H3 Lysin 27 acetylation .................................................................................................................................. 11 

HCV 
Hepatocyte specific C Virus ......................................................................................................................................... 17 

HEV 
High Endothelial Venules ............................................................................................................................................ 15 

HSCs 
Hematopoietic Stem Cells ............................................................................................................................................. 4 

HSPCs 
Hematopoietic Stem and Progenitor Cells ................................................................................................................... 10 

HSV 
Herpes Simplex Virus ................................................................................................................................. 17, 21, 77, 80 

HSV1 
Herpes Simplex Virus 1 ............................................................................................................................................... 21 

Id 
Inhibitor of DNA binding ........................................................................................................................................13, 73 

IDO 
Indoleamine 2,3-dioxygenase ..................................................................................................................................... 20 

IFNs 
interferons .................................................................................................... 1, 2, 3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 

IL-7R 
Interleukin-7 receptor ................................................................................................ 1, 6, 7, 8, 12, 44, 45, 50, 56, 58, 59 

IPCs 
Interferon Producing Cells ........................................................................................................................................ 2, 3 

IRF8 
interferon regulating factor 8 .......................................................................................... 1, 11, 12, 23, 48, 49, 56, 57, 58 

ISG 
Interferon Stimulated Genes ...................................................................................................................................... 22 
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ITAM 
Intracellular Tyrosin based Activation Motif ................................................................................................................ 19 

ITIM 
Intracellular Tyrosine based Inhibitory Motifs ............................................................................................................. 19 

LCMV 
Lymphocytic Choriomeningitis Virus ............................................................................................... 17, 21, 22, 23, 74, 81 

LCR 
Locus Control Region .................................................................................................................................................... 8 

LMPPs 
Lymphoid-primed Multi Potent Progenitors ......................................................................................................... 6, 8, 10 

MadCAM-1 
Mucosal addressin Cell Adhesion Molecule 1 .............................................................................................................. 16 

MCMV 
Murine Cytomegalovirus .......................................................................................................................................18, 21 

MDP 
Monocyte and Dendritic cell Progenitor ........................................................................................................................ 4 

MEP 
Megacaryocyte and Erythrocyte Progenitors ............................................................................................................. 4, 8 

MHV 
Mouse Hepatitis Virus ................................................................................................................................................ 21 

MPP 
Multi Potent Progenitor................................................................................................................................................ 4 

MyD88 
Myeloid Differentiation primary response protein 88 ............................................................................ 16, 17, 23, 76, 82 

NDV 
Newcastle Disease Virus ............................................................................................................................................. 21 

NETs 
Neutrophil Extracellular Traps .................................................................................................................................... 23 

NF-kB 
Nuclear Factor-kb ...................................................................................................................................... 16, 17, 18, 19 

NOD 
Non Obese Diabetes ................................................................................................................................................... 24 

ODN 
Oligodeoxyribonucleotides .................................................................................................................................. 3, 4, 16 

PBMCs 
Peripheral Blood Mononuclear Cells ........................................................................................................................... 25 
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pDCs 
plasmacytoid dendritic cells ............................................................................................................................................ 

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 44, 45, 46, 47, 48, 49, 50, 51, 56, 

57, 58, 59, 60 

PDL1 
Programmed cell Death Protein 1 Ligand 1.................................................................................................................. 20 

pre-pDCs 
precursors of pDCs ....................................................................................................................................................... 1 

PRR 
Pattern Recognition Receptor ..................................................................................................................................... 18 

PSA 
Polysaccharide A ........................................................................................................................................................ 18 

pTa 

 pre-T cell receptor alpha .............................................................................................................................................. 6 

SiglecH 
Sialic acid binding immunoglobulin-like lectin H .................................................. 1, 3, 4, 19, 20, 44, 45, 46, 49, 51, 53, 56 

SIV 
Simian Immunodeficiency Virus .................................................................................................................................. 22 

SLE 
Systemic  Lupus Erythematosus ....................................................................................................................... 23, 24, 59 

STING 
Stimulator of IFN genes .............................................................................................................................................. 18 

T1D 
Type 1 Diabetes.....................................................................................................................................................23, 24 

TCF4 
transcription factor 4 ................................................................................................................................... 1, 13, 25, 56 

Th2 
T helper 2..................................................................................................................................................................... 3 

TLR 
Toll Like Receptor ................................................................................................................ 16, 17, 19, 20, 25, 76, 79, 81 

Treg 
regulatory T cells ....................................................................................................................................... 20, 22, 24, 25 

VEGF-A 
Vascular and Endothelial Growth Factor A .................................................................................................................... 3 

VSV 
Vesicular Stomatitis Virus ......................................................................................................................................17, 21 
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Education 
 

02/2015 – 03/2019 Doctor of Philosophy (PhD) in Cell Biology 
   Department of Biomedicine, Faculty of Science, University of Basel 
   PhD Thesis: “Dissecting the development of plasmacytoid DCs” 
   Laboratory: Prof. R. Tussiwand 
   Final mark: 6.0 (summa cum laude) 

 
03/2013 – 10/2014 Master of Science in Molecular Biology 
   Department of Biomedicine, Faculty of Science, University of Basel 

Master Thesis: “The role of BAFF-R in B-cell development & autoimmunity” 
   Laboratory: Prof. A. Rolink 
   Final mark: 5.5 (magna cum laude) 

 
09/2009 – 02/2013 Bachelor of Science in Biology with Major in Molecular Biology 
   Faculty of Science, University of Basel 
   Major Subjects:  Structure Biology/Biophysics 
      Biochemistry 
      Microbiology/Immunology 
      Neurobiology/Cell Biology 

 
               
 
Additional Education 
 

03/2018 – 06/2018 Analysis of genomic data with R/Bioconductor 
University of Basel – An advanced R course where an overview was given in 
the analysis of different NGS data files from microarray, chip Seq and RNA  
Seq experiments. 
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09/2017 – 12/2017 Introduction to R 

University of Basel – Basic Introduction to R. 
 

06/2016 – 06/2016 LTK Module 1 
University of Zürich – Introductory Course in Laboratory Animal Science  
(FELASA category B) 

     
05/2015 – 05/2015 BD FACS ARIA III operator training  

A one-week operator training on the BD FACS ARIA III cell sorter at the BD 
Bioscience headquarter in Erembodegem (Belgium). 
 

09/2008 – 09/2009 Bachelor of Science in Informatics  
   Faculty of Science, University of Basel 

       
               
 
Research Experience 
 

03/2019 – present Postdoc in Prof. R. Tussiwand’s Laboratory 
The characterization and functional role of pDC like cells. 

 
02/2015 – 03/2019 PhD student in Prof. R. Tussiwand’s Laboratory 

The identification and characterization of a specific pDC precursor. 
 

10/2014 – 02/2015 Continuation in Prof. A. Rolink’s Laboratory as an internship 
The role of the pro survival cytokine BAFF and its receptor BAFF-R in B cell 
development and autoimmunity. 

 
03/2013 – 10/2014 Master student in Prof. A. Rolink’s Laboratory 

The role of the pro survival cytokine BAFF and its receptor BAFF-R in B cell 
development and autoimmunity. 
 

               
 
Supervision of Students 
 

09/2018 – 03/2019 Athanasios Kouklas  
   Department of Biomedicine, Faculty of Science, University of Basel 

Master Thesis: “Characterizing the development of DCs”. 
   Laboratory: Prof. R. Tussiwand 
    

               
 
Oral and Poster Presentations 
 

10/2018  URI Group Meeting – Freiburg, Germany 
Annual meeting of the Upper Rhine Immunology groups 
Poster: “Heterogeneity of pDCs is revealed by a Distinct Lineage of Origin” 
Presentation: “Distinct progenitor lineages contribute to the heterogeneity of 
pDCs”  
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06/2018  DC 2018 – Aachen, Germany 

The 15th International Symposium on Dendritic Cells. 
Poster: “Heterogeneity of pDCs is revealed by a Distinct Lineage of Origin” 
 

06/2018  TOLL 2018 – Porto, Portugal 
A meeting with the focus on recent advances in innate immunity. 
Poster: “Heterogeneity of pDCs is revealed by a Distinct Lineage of Origin” 
 

09/2017  Innate Immunity Symposium 2017 – Freiburg, Germany 
International meeting with the focus on Innate Immunity. 
Poster prize: “Heterogeneity of pDCs is revealed by a Distinct Lineage of Origin” 
 

03/2017 & 02/2018 Junior myeloid group meeting – Engelberg, Switzerland 
Conference organized by Prof. R. Tussiwand where groups working on myeloid 
cells have the chance to discuss about ongoing research in innate immunity. 
Presentation: “Dissecting the development of pDC development” (2018)  
Presentation: “Defining pDC commitment” (2017)  
 

11/2016 & 11/2017 UBICO Retreat – Engelberg, Switzerland 
Yearly conference of the Uni Basel Immune Community. 
Poster: “Dissecting the development of pDC development” (2017)  
Presentation: “Defining pDC commitment” (2016) 

               
 
Membership in Scientific Societies 
 

02/2016 - present SGAI 
Swiss Society for Allergology and Immunology 

    
               
 
Publications 
 

   Rodrigues, P. F., Alberti-Servera, L., Eremin, A., Grajales-Reyes, G. E., Ivanek, R., & Tussiwand, R. 
“Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells” 
Nature immunology, 1 (2018) 
 

               
	


