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Abstract 

 

Live Attenuated Influenza Vaccine (LAIV) is used in immunisation 

campaigns but may alter the dynamics of naturally occurring nasal colonisation 

by Streptococcus pneumoniae (Spn), a common human pathogen. We tested 

how the attenuated influenza viruses contained in the vaccine and Spn interact 

in the host’s nasopharynx using for the first time an Experimental Human 

Pneumococcal Challenge model (EHPC) with multiple live pathogens: LAIV and 

Spn of serotype 6B. Two double blinded randomised clinical trials represented 

two scenarios of controlled co-infection: 1) Antecedent LAIV administration 

followed by nasopharyngeal Spn inoculation or 2) Concurrent LAIV administration 

during established Spn colonisation, separated by a 3 day interval. We validated 

non-invasive micro-sampling techniques for mucosal immunity analysis by 

comparing reliability and reproducibility of available methods. Absorptive 

matrices and nasal curettes were established as the preferred techniques to 

investigate lining fluid and immune cells in the nasal mucosa. In addition, we 

collected nasal wash, BAL and serum from healthy adults to investigate immune 

cell recruitment, cytokine and influenza-specific antibody responses using flow 

cytometer, human cytokine 30-plex panel and ELISA analysis. Here, we showed 

that LAIV-induced inflammation in the nasopharynx was associated with Spn 

colonisation. Immune responses to Spn and to the attenuated influenza virus 

were impaired by LAIV, reducing chemoattractant cytokines, recruitment of 

monocytes, and activation of T-cells and neutrophils. In the lung, our results 

demonstrated that LAIV induces inflammatory cytokines produced by T-cells and 

that tissue-resident memory T-cells have an important role in producing specific 
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cytokines against the attenuated influenza virus. In short, LAIV was shown to be 

immunogenic in healthy adults, but less in Spn colonised individuals, highlighting 

the significance of nasal microbiota when developing vaccines and assessing its 

efficacy.  
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1.1 Streptococcus pneumoniae 
 

Streptococcus pneumoniae (Spn) is a gram-positive cocos of 

approximately 1μm of diameter. This bacteria is a facultative anaerobe, 

generating energy by carbohydrate fermentation. They are generally grouped in 

pairs (diplococci) or in short chains and are able to replicate outside host cells, 

for example in circulation, connective tissues, and tissue spaces such as the 

airway lumen. 

The Spn are coated with a polysaccharide capsule which is its main 

virulence factor 1,2 and protects the bacteria from phagocytosis by host immune 

cells 3,4 as well as reduces the autolysis process 5. Spn capsules vary in size, 

composition, and antiphagocytic properties 6–8 and bacteria presenting different 

types of capsule can colonise hosts simultaneously 9. Moreover, its cytoplasmic 

membrane is composed of lipoprotein bound to lipoteichoic acid by hydrophobic 

interactions. Penicillin-binding proteins represent a small percentage of the 

membrane and are the primary targets of anti-microbials 10. In addition, the 

capsule’s chemical composition is used to categorise the pathogen into 

serotypes, with over 95 serotypes identified 6–8,11–13. Notably, the distribution of 

serotypes varies according to population, geographic region, time of year and 

age of the patient 7.  

Furthermore, many factors contribute to Spn pathogenicity, such as 

pneumolysin, autolysin A, neuroaminidases (NA), choline binding proteins, Spn 

protein C (PspC), Spn surface protein A (PspA) and, especially, pilus subunits 14–

18. Importantly, pneumolysin is a multifunctional toxin that acts as a protective 

antigen 19,20, showing cytotoxic action and activation of the host complement 

system 18 while bacterial pili contributes to Spn adherence 21. Furthermore, Spn 
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can form biofilms that aid growth during colonisation and contributes to the 

development of invasive diseases 17,22. 

 

1.1.1 Spn colonisation and transmission 
 

Spn is part of the common children’s upper respiratory tract microbiota, 

colonising nostrils, pharynx and larynx 23 for up to 2 weeks, although some 

studies have observed events lasting up to 30 weeks 3,24–28. The nasopharynx is 

the natural site of colonisation 29 and prevalence in healthy individuals varies 

mainly with age, with colonisation rates higher in children than adults and elderly. 

Importantly, Spn colonisation events start soon after birth and prevalence 

increases between 1 and 2 years of age, followed by rate reduction to below 10% 

in adults 27,30–32. In addition, colonisation rates are variable depending on location 

9,33,34. In England, Spn colonisation was observed in 52% of children under 2 

years and 45% in 3 to 4 year old 30, whereas in Gambia and Kenya, the 

prevalence is 80% and 66%, respectively 35,36.  

However, it is important to notice that colonisation rates may vary 

according to sampling techniques and devices used as well as the site and 

frequency of collection in humans. Various methods have been used for 

quantification of Spn colonisation density through nasal lavage such as nasal pool 

devices 37, micro-suction 38, aspiration 39, sponges 40, nasal secretion collectors 

41, gauzes 42 and swabs 43,44. The nasal lavage technique selected in this thesis 

was nasal wash based on the methodology published by Naclerio et al.  45 and 

was previously used successfully in several clinical trials 46–53. This method 

combined with cell culture have been proven effective for assessing colonisation 
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47, cytological analysis 54 and quantification of inflammatory markers even in 

children 55. 

Nevertheless, regarding increased Spn colonisation rates,  the host can 

show susceptibility characteristics such as sickle cell anaemia, HIV infection, 

neoplasia and chronic degenerative conditions, for instance diabetes mellitus, 

chronic renal failure, nephrotic syndrome, chronic obstructive pulmonary disease 

and chronic liver diseases 56. Additionally, the interaction between Spn and the 

resident microbiota in the upper respiratory tract affect colonisation rates as 

observed in studies with Haemophylus influenzae 57 and Staphylococcus aureus 

17,58,59. Importantly, the continuous use of antibiotics is shown to develop 

resistance in Spn and impact prevalence of bacteria in the population 60,61. 

In healthy individuals, an asymptomatic colonisation triggers immunisation 

9, providing benefits to the host as it develops cellular and adaptive immunity 

49,62. However, even when asymptomatic, colonisation is not entirely benign as it 

primes the host for transmission, tissue invasion or dissemination into the lower 

airways, a prerequisite for invasive disease 58. Notably, the transmission of Spn 

between humans occurs through direct contact or dispersion of aerosol 

secretions by colonised people 27,58,63 with higher rates during the winter season 

64. Moreover, outbreaks of increased Spn transmission can occur in nursing 

homes, day care centres, military units, shelters, schools and prisons 65–71  

 

1.1.2 Pneumococcal epidemiology and disease 
 

Previous to antibiotics development, pneumonia and invasive 

pneumococcal disease were the leading cause of death in humans 19,72 and 

currently - according to the World Health Organisation 73- it is estimated that 1.6 
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million people die every year from pneumococcal disease worldwide, with nearly 

all these deaths occurring in children living in low income settings.  

The vast majority of Spn disease are associated with a relatively small 

number of serotypes 74 and requires colonisation of the nasopharynx 58 as well 

as high bacterial load 75,76 and aspiration to the lungs 77 that elicits inflammatory 

pathology in the host 78. Pathogenesis ranges from less severe infections such 

as conjunctivitis, otitis and sinusitis to severe disease such as pneumonia, 

bacteremia and meningitis 79,80. Importantly, invasive pneumococcal disease 

have increased rates in elderly as well as people that present dementia, 

convulsive disorders, heart failure, cerebrovascular disease, chronic lung 

disease, HIV infection, alcoholism, smoking, malnutrition, diabetes, liver cirrhosis, 

renal failure, antibody deficiency and phagocytic function deficiency 81,82. 

 

1.1.3 Immunity to Spn 
 

After Spn entry in the nasopharynx, the host elicits immune responses 

against major infection events, that start with the recognition of bacteria by the 

host immune system which Spn can evade to colonise the nasal mucosa, with 

subsequent invasion into epithelial tissue resulting in damage to the host’s cells 

20,83. Specifically, the innate immune response acts to defend against the bacteria 

by first recognising pathogen-associated molecular patterns (PAMPs) through 

pattern recognition receptors (PRRs) such as the Toll-like receptor (TRL) family 

84,85. In addition, surfactant proteins also play an important role in innate immunity 

phagocytosis of Spn by modulating cellular responses 85,86, activating 

macrophages and neutrophils as well as inducing cytokine production 87,88. In 

short, the ability of the host to control epithelium damage, inflammatory 
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responses and bacteria multiplication without releasing excessive debris in the 

nasopharynx is essential for bacterial clearance and prevention of subsequent 

invasive Spn disease 89,90. 

The innate immune responses against Spn consists of pre-infection 

protective host mechanisms, typically non-specific responses using physical 

(mucus ciliary clearance) and chemical barriers, blood proteins, resident 

phagocytes, neutrophils, macrophages, NK-cells, cytokines and dendritic cells 

(DCs) 91. Indeed, in healthy individuals, asymptomatic colonisation responses 

include classic activation of macrophages, Spn-specific memory CD4+ T-cells, as 

well as sustained TGF-β levels, responsible for increasing T-regulatory cells (T-

regs) in the nasopharynx and protection of the host from exaggerated 

inflammation and tissue damage 49,92–95.  

In addition, this immunising stable colonisation is maintained by a fine 

balance between pro-inflammatory and anti-inflammatory immune responses 96. 

After Spn recognition, monocytes are attracted to the site of the infection and are 

considered one of the essential players in immunity against Spn. Moreover, 

monocytes are white blood cells that typically circulate through the blood for 1 to 

3 days before migrating into other tissues, where they become macrophages or 

DCs 91. Particularly, macrophages are monocytes that have migrated from the 

bloodstream into the tissue where they aid in Spn phagocytosis and cleaning of 

cellular debris 91.  

Activation of macrophages in pneumococcal disease is signalled by TLR - 

a class of PRRs surface receptors expressed by phagocytes and other cell types 

- particularly TLR-2 and TLR-4 97–102 which recognize Spn molecular structures 

such as surface lipoteichoic acid 103, pneumolysin 97,104 and lipoproteins 105, and 
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enables further host immune responses 106. In mice, the recruitment of monocytes 

correlates with Spn clearance, dependent of TLR-2 and IL-17A 94. Furthermore, 

early recruited monocytes differentiated into macrophages and produce MCP-1 

107. In turn, this cytokine attracts more monocytes to the site. Studies in elderly 

mice have demonstrated that reduced monocyte recruitment to the nasopharynx 

results in decreased bacterial clearance 108. 

Also part of the initial innate immune response are DCs, that play an 

important role in eliciting T-cell responses against Spn later in the infection 91. 

When immature, DCs are located in the respiratory system epithelium and 

migrate to the lymph nodes where they maturate and reside 91. Further, when at 

the infection site, DCs are activated via TLR 109 and decrease Spn-induced 

apoptosis of host’s cells 110,111. In addition, the complement system mediate 

protection from Spn in early infection 112. This mechanism is subverted by the 

bacteria by altering expression of its surface proteins 113. 

Subsequently, if the innate defence is not enough to control the bacteria, 

the adaptive responses armoury of humoral and cellular immunity will mediate 

clearance at the nasal mucosa 89,101. Contrary to initial innate responses, adaptive 

immunity is pathogen specific and elicits memory cells that prevent future 

infections 91. 

Firstly, humoral response develops with the production of antibodies by B-

cells. Notably, induction of antibodies against Spn in human proteins occurs 

naturally throughout the life course as a result of continuous exposure to the 

bacteria, with reported increases in titres of lung and serum antibodies IgA and 

IgG, associated with protection from colonisation 114 and reduced bacteraemia 

115,116. IgA is known to bind to Spn in the nasopharynx in order to promote 
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bacterial agglutination and adherence to host cells 117 as well as phagocytosis 

118,119. Spn IgA protease can however be used to evade host IgA defences and 

instead facilitate internalisation of Spn in the epithelium 120.  

Secondly, cellular immune responses have been demonstrated to 

modulate inflammatory responses to Spn, with production of cytokines by 

resident cells. Spn induces production of cytokines TNF-α, IL-6, IL-12, IL-4, IFN-

 and IL-10 121,122. This cytokine cascade then mediate the recruitment of 

neutrophils, monocytes and other effector cells to clear bacteria 78,123 as week as 

differentiate T-cells into T-helper 17 (Th17), T-helper 2 (Th2) and T-regs 124–132.  

Notably, the cytokine TNF- is essential for both innate and adaptive 

responses to Spn, specially for recruitment and activation of neutrophils 133 and 

monocytes 91 to the site of infection. Moreover, IL-4 elicits development of CD4+ 

Th2 cells and IgG signalling 91. whereas IFN- induces activation of T-cells 134, T-

regs 135 and NK-cells 136,137. Importantly, macrophages and DCs produce anti-

inflammatory cytokine IL-10 during pneumococcal disease 3 and is associated 

with host protection against exaggerated pro-inflammation and tissue damage, in 

part because of its ability to inhibit DC activity 138,139.  

In murine models, the bacteria can evade adaptive immunity by inducing 

T-cell death 140. As expected, this mechanism is associated with increases in the 

disease severity 141 and susceptibility to pneumonia 142,143 as Spn colonisation 

control is dependent on CD4+ T-cells 144,145. 

 

1.2 Influenza virus 
 

The influenza virus is an single-stranded, segmented RNA virus, of 

spherical or filamentous form and about 80 nanometers when observed in nature 

http://www.jimmunol.org/content/180/9/5771.full#fn-4
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146. The viral lipidic envelope derives from the host cell’s plasma membrane and 

presents surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) 147 - 

the main targets of immune responses 146 - as well as nucleoprotein molecules 

that protect the RNA strand 148. Both proteins are known to bind to sialic acid 

receptors on the surface of host’s cells, mediating the fusion of the viral envelope 

to the cell membrane 146,149,150. 

Importantly, influenza virus is unique among respiratory virus regarding 

their capability for antigenic variations, as it continuously undergoes mutation to 

escape host immune mechanisms 151. The surface proteins HA and NA can 

mutate in two distinct ways: antigenic drift or antigenic shift. On one hand, 

antigenic drift occurs when there is an accumulation of point mutations due to the 

virus low ability to correct errors after RNA replication 152 and is a common result 

of the pressure exerted by the host immunity 153. On the other hand, antigenic 

shift is the exchange of segments between different influenza virus 154.  

Moreover, the genetic and antigenic differences in virus HAs and NAs are 

commonly used to categorise into types A, B and C 146,153,155. Importantly, 

humans are mostly infected by types A and B, although type C can cause 

subclinical disease 146,156–159. 

 

1.2.1 Influenza epidemiology, transmission and disease 
 

The influenza virus is responsible for an acute infection, also called 

influenza, with global distribution and mostly associated with winter due to 

increased transmission 160,161. The constant contact between humans and the 

various types of influenza virus allows the host to create immunological memory. 

Influenza virus often causes epidemics due to its unique ability to mutate and 
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adapt as well as, less frequently, pandemics 156–158,162. The epidemic and 

pandemic outbreaks of infection results in significant morbidity in all age groups 

163, and mortality in children 164–169, elderly 170,171, as well as in patients with 

chronic and autoimmune diseases 172,173, resulting in over 5 million cases of 

severe illness and approximately half a million deaths annually 174. 

Importantly, since the 16th century, at least 30 pandemic episodes have 

been caused by various mutants and combinations of influenza virus. Noteworthy 

pandemics that occurred in 1918 and 2009 (known as spanish flu and swine flu, 

respectively) were both caused by H1N1 variant of influenza virus, whereas the 

1957, 1968 and 2004 pandemics (known as asian flu, Hong-Kong flu and avian 

flu, respectively) were caused by the H2N2, H3N2 and H5N1 strains 156–158,162,175,176.  

Notably, the spanish flu was known as the deadliest pandemic that ever 

affected humans, infecting 50% of the world’s population and causing 40 to 50 

million related deaths 177. The pandemic occurred in two waves, with the first 

being mild and the second with higher mortality as infection spread even in 

remote areas and islands 178. 

The influenza virus incubation period ranges from 1 to 3 days and recovery 

usually occurs between 4 to 7 days after infection 179. Moreover, transmission 

occurs through direct contact with secretions or aerosols as well as surfaces 

contaminated with the virus 180. In addition, it can remain viable for 8 to 10 hours 

on porous surfaces and for up to 48 hours on non-porous surfaces and hands 181. 

Importantly, transmission is increased under low temperature, high humidity and 

decreased ultraviolet radiation. Furthermore, animal hosts can serve as reservoir 

for virus with transmission to humans after virus mutation 182. 
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Importantly, symptoms include fever accompanied by respiratory and 

systemic symptoms such as nasal obstruction, cough, muscle aches and fatigue 

183,184. In addition, the severity of the influenza infection varies greatly, ranging 

from mild rhinopharyngitis to fatal lung pathology 185.  

 

1.2.2 Immunity to influenza virus 
 

When wild-type influenza virus infects the host, it passes through the 

mucus layer of the upper respiratory tract and is recognised by epithelial cells’ 

pattern recognition receptors TLR2 and Nod2 107,186. In the early stages of 

respiratory infection, T-cells move to the site independent of their specificity 187 

which allows a cascade of adaptive immune responses following virus 

recognition. 

Adaptive immunity elicited against influenza include CD4+ and CD8+ T-cell 

proliferation as well as the production of type I IFNs, IL-6 and MCP-1 186,188 189. 

This inflammatory process recruits neutrophils 189 that limit viral replication in the 

nasopharynx and eliminate infected cells 190. Although influenza virus lung 

infection induces recruitment of monocytes and neutrophils, it decreases their 

ability to phagocytose pathogens as well as the ciliary action of the epithelium 

mucosa 124,191–193.  

Notably, CD8+ T-cells play a critical role in viral clearance through 

production of cytokines that regulate recruitment and function of a broad array of 

cells 194,195. Furthermore, these cells contributes to lysis of influenza-infected cells 

196 by releasing cytolytic granules and producing cytokine IFN- 197–199. 

Interestingly, the absence of CD8+ or IFN--producing CD8+ T-cells were 

associated with severe cases of influenza 199,200.  
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1.2.3 Vaccination against influenza virus 
 

  A World Health Organisation committee meets twice a year to formalize 

the recommendation of influenza virus strains to be included in the vaccine 

composition 201. This committee uses epidemiological data collected throughout 

the year so that the appropriate formulation for the next circulating influenza virus 

is obtained 202,203. Importantly, the benefits of influenza vaccination have been 

extensively proven flu reduction 204–206, with reduction in otitis media incidence 

and use of antibiotics against secondary bacterial infections, as well as school 

absence and transmission 207–209. 

Currently, there are two types of influenza vaccines developed for 

immunisation, containing inactivated or attenuated influenza virus, showed to be 

effective in preventing the development of the disease in multiple placebo-

controlled studies 210,211. Since 1977, the influenza vaccine composition 

recommendation has included three viral strains: 2 type A strains, respectively of 

the H1N1 and H3N2 subtypes, and 1 type B, so the vaccine is considered trivalent. 

Recently, since 2012, licenced vaccines that contain H1N1, H3N2 and 2 type B are 

also used for immunisation and are called tetravalent inactivated influenza 

vaccine (TIV) 212, which is given intramuscularly, and live attenuated influenza 

vaccine (LAIV) 213, which is administered intranasally. 

Inactivated vaccines are produced with the influenza virus inactivated with 

formaldehyde in embryonated chicken eggs 214 and are available in whole, 

fractional and subunit virus forms. On one hand, the whole virus vaccine is 

composed of the whole viral particle, including lipidic cell membrane that is highly 

immunogenic 215. On the other hand, the fractionated vaccine contains viral 
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components such as HA, NA and nucleoproteins, that are fragmented and then 

purified 216. Moreover, the subunit vaccine consists only of HA and NA, and also 

provides satisfactory protection rates 217. After vaccination with inactivated 

vaccines, the most frequent adverse reactions occur at the application site, such 

as pain and redness in 15% of vaccinated and rarely (in 1 to 2%) fever and 

myalgia is observed 218. 

Similarly, the attenuated vaccine is also produced from the infection of 

influenza virus into embryonic chicken eggs, but in the presence of antibodies 

against the strain’s surface glycoproteins 219–221. However, contrary to the 

inactivated vaccine, production of attenuated influenza virus vaccine takes 

advantage of the segmented nature of the viral genome to recombine genes that 

encode wild-type virus HA and NA as well as 6 internal segments from attenuated 

virus (segments PB1, PB2, PA, M, NP, and NS) 222. Additionally, adverse effects 

from vaccination such as nasal congestion, rhinorrhoea, fever and muscle pain 

223 are uncommon, whereas severe reactions are rare, although it has been 

reported cases of wheezing and post-vaccine hospitalisation 223. 

While both vaccines protect against influenza infection 224, studies have 

shown differences in the immune responses elicited by the inactivated vaccine 

when compared to the live attenuated one. The primary response to inactivated 

vaccine is from B-cells 218,225 that are activated at the immunisation site and 

recruited into the lymph nodes where they proliferate and specialise to migrate to 

other host tissues 226–229. B-cells produce specific antibodies, specially influenza-

specific IgG antibodies in the serum, and lower concentrations of IgM and IgA 

230,231. Importantly, these antibodies stimulate host response against viral HA and 
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NA , and can be cross-reactive 232. Further, antibody production elicits memory 

233 and adaptive immunity, especially CD4+ T-cells 234,235. 

On the other hand, with attenuated vaccines, the goal is to induce similar 

immune response to a wild-type influenza infection in the upper respiratory tract, 

inducing local and systemic immunity by viral replication 236, especially influenza 

specific memory T-cells and B-cells 237,238. Notably, only attenuated virus 

stimulates recruitment of CD8 and TCR- T-cells 14,239. In addition, systemic 

immunity is elicited by the attenuated vaccine, however, serum antibodies IgA 

and IgM peak only after 2 weeks post-vaccination whereas IgG takes at least 4 

weeks to reach its maximum levels 240 and titres are not as marked as with 

inactivated vaccines 217 .  

Nevertheless, even with delayed antibody responses, studies have shown 

that the attenuated vaccine formulation present greater persistence 241,242 and 

efficacy against influenza virus in vitro and in children when compared to 

inactivated virus vaccines 210,225,243–247. This suggests that the most appropriate 

way to investigate antibody production against influenza following vaccination is 

by measuring responses in the nasopharynx - the site of infection and replication 

of the wild-type virus 248. Indeed, the attenuated influenza vaccine has been 

shown to induce antibody production in nasal wash, particularly IgA until 6 months 

after vaccination 240, not seen in inactivated vaccines. 

Interestingly, attenuated vaccines have an advantage in those with no 

prior immunity to influenza virus as its efficacy depends on the attenuated virus 

replication in the nose to elicit host immune memory 249. However, inactivated 

vaccines are superior in those with greater prior exposure such as elderly, who 
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do not elicit immune responses to influenza after vaccination with attenuated virus 

vaccines 250.  

 

1.3 Spn and wild-type influenza virus co-infection 
 

1.3.1 Epidemiology and disease 

 

Secondary infection following pandemic and seasonal influenza virus 

infection is a significant cause of mortality worldwide and, of all influenza co-

infections, Spn is the pathogen most commonly detected 251 - especially during 

influenza pandemics 177,252–255. Spn and wild-type influenza virus co-infection is 

associated with 3 times increased odds of Spn colonisation 46 256 and it causes 1 

in 3 cases of bacterial pneumonia following severe influenza infection 257. In 

addition, higher susceptibility to co-infection has been demonstrated in elderly 

and immunosuppressed, with greater risk of mortality 258 

 

1.3.2 Window of susceptibility to co-infection 

 

A fine balance of pro- and anti-inflammatory responses maintains a stable 

and asymptomatic Spn colonisation 96, however, this equilibrium is altered by 

wild-type influenza virus co-infections, affecting essential inflammatory 

mechanisms in the nasal mucosa 190. The impact on Spn colonisation is due to 

complex interactions between virus, host and bacteria, associated with 

morphologic and immunological alterations of the upper respiratory tract 259. For 

that reason, following host initial recognition and response to virus entry in the 

nasopharynx, influenza infection can cause a window of susceptibility to Spn that 
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generally starts 48 hours after virus infection 186,260,261. Notably, studies have 

demonstrated this modified state can last several months after resolution of 

influenza 262. 

Initially, the virus causes damage to the epithelium, the first line of defence 

against the Spn 196. Viral NAs denude the host epithelial surface by removing 

sialic acid which increases its availability as nutrients for bacteria. The damaged 

epithelium exposes Spn to new receptors in the membrane such as platelet-

activating factor receptor (PAFR) 263,264, increasing bacterial adherence mediated 

by Spn such as PspC 62. Additionally, the virus reduces mucociliary bacterial 

clearance 196 and desensitizes epithelial cells to Spn pathogen-associated 

molecular pattern, impairing bacterial TLRs 193,196,265–267. 

In order to clear the virus, the host elicits production of IFN- mainly by 

CD4+, CD8+ T- and NK-cells, however, this cytokine also modifies macrophages 

in its scavenger receptor, reducing innate defences against Spn by inhibiting its 

phagocytosis 124,186,191,192,262,268. Regarding this aspect, Metzger and Sun 269 

hypothesize that the mechanism of macrophage receptor alteration could have 

evolved to prioritise specific and efficient anti-influenza T-cell memory in acute 

infections. Moreover, reduction in macrophage efficacy consequently diminishes 

the overall production of TNF-α, a strong chemoattractant of neutrophils 188,270.  

In addition, neutrophil influx is also impacted by the increased expression 

of cytokine IL-10, stimulated by rises in IFN-, and type I IFNs levels produced by 

CD8+ T-cells 92,132,186,262,271. Importantly, epidemiological studies in humans show 

that CD8+ T-cell levels were increased by influenza in the lung 188, a critical aspect 

considering the strong correlation between higher levels of IFN--producing CD8+ 

T-cells and less severity of co-infection disease 199. 
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Furthermore, type I IFNs are responsible for inducing anti-viral cytokines 

and chemokines to stop virus replication and stimulate adaptive immunity. 

However, the exaggerated accumulative production of type I IFNs has been 

related to susceptibility and Spn colonisation, indicated by mice's resistance to 

co-infections in the absence of type I IFN signalling 186,262.  

In short, wild-type influenza virus facilitates adhesion to cells and impairs 

host’s innate and cellular protection, resulting in increased susceptibility to 

colonisation by Spn due to its higher levels in the nasopharynx. Importantly, 

bacterial transmission is increased by influenza infections, and driven by 

increased Spn density 256. 

 

1.3.3 Established Spn and wild-type influenza virus co-infection 

 

Following establishment of Spn and wild-type influenza virus co-infection, 

the presence of high levels of both pathogens in the nasopharynx leads to 

disbalance of inflammatory responses in an attempt to contain invasive virus and 

bacteria 193,196,265,266. In murine models, pneumococcal disease prior to influenza 

virus leads to improved survival, with less morbidity and lung immunopathology 

272. On the other hand, if virus infection occurs before bacterial infection, as first 

shown in a ferret model by McCullers 273, the infection presents increased Spn 

density in the upper respiratory tract 76,92,274. Additionally, there is evidence that 

viral load also increase during co-infection 275 although the unbalanced immune 

responses have no proven correlation to the augmented virus titers 276. 

Importantly, in humans, clearance of co-infection requires a robust adaptive 

immunity 271 as innate defences alone are unable to provide protection to the host 

188. 



 

 
 

39 General Introduction 

Firstly, the host’s nasopharynx reacts to co-infection with Spn-induced 

TGF-β and T-reg levels increase 92. Importantly, exaggerated production of this 

cytokine during co-infection suppresses NK-cells induction and macrophages 

activation 132 and is associated with decrease in IL-2 concentration which, in turn, 

impairs T-cell development 188 and reduces levels of CD3+ and CD4+ T-cells 270. 

Further, the established co-infection express signals to the host from both 

pathogens, causing reducing of TCR- and Th17 T-cells levels 270.  

In addition, modulation of B-cell response is altered by inhibition of cell 

development and activation 188,270,277. The reduced B-cell immunity is possibly 

due to the decreased numbers of CD4+ T-cells, which reduces support of B-cell 

function and production of cytokines 270. Interestingly, murine models 

demonstrate that the decrease in influenza-specific T-cell response correlates 

with the increase in T-regs 188 due to T-reg production of adenosine, perforin and 

granzymes that are toxic to T-cells 278. Moreover, similarly to influenza virus 

infection alone, low levels of CD8+ T-cells are associated with virus and Spn co-

infection severity 188,199. Importantly, in murine models of coinfection, CD8+ T-

cells are presented in lower levels 188, consequently reducing production of 

cytokines such as TNF- 188 and recruitment of immune cells 188.  

Interestingly, studies have shown contradictory results regarding how 

excess production of type I IFN affects Spn and wild-type-influenza co-infection. 

Although there are studies where type I IFNs do not affect neutrophil recruitment 

186, the majority of researches demonstrate impairment in both neutrophils 

192,279,280 and macrophages due to lower expression of keratinocyte 

chemoattractant (KC) and MCP-1, of critical role in control of co-infection 186. 

Furthermore, in co-infection models, the increased production of type I IFN 
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suppresses expression of pro-inflammatory cytokine IL-17 - especially by TCR-

 - associated with increased Spn density 262 due to its involvement in the early 

control of bacteria by recruiting neutrophils to the infection site.  

In summary, Spn and wild-type influenza virus co-infection deregulates 

innate and adaptive immune defences and increases Spn colonisation rates and 

density which, in turn, increases Spn transmission 273, susceptibility to invasive 

disease 186 and bacterial density 260,261. 

 

  



 

 
 

41 General Introduction 

1.4 Murine Spn and live attenuated influenza virus (LAIV) co-

infection 
 

A controversial epidemiological aspect of Spn and wild-type influenza virus 

co-infection is the use of live attenuated influenza virus to immunize the mucosa 

due to its mimicry of virus natural infection in the nasopharynx and activation of 

host inflammatory immune responses. Importantly, this transitory attenuated 

virus replication, known as viral shedding, increases Spn levels analogously to 

wild-type influenza virus infection and affects Spn-induced immunity as well as 

colonisation density, transmission and host susceptibility to invasive disease 281. 

Similarly to Spn and wild-type influenza co-infection models, when mice 

were primarily colonised with Spn, LAIV is efficient in controlling infection and 

reducing mortality 76. Additionally, in models where mice are first vaccinated, it 

has been shown an inflammatory state 274 presenting increased type I IFN levels 

274, bacterial density and duration of Spn colonisation 282 as well as bacteria 

transmigration to the middle ear 274 283. On the other hand, LAIV was not shown 

to increase Spn density in the lower respiratory tract 274 as the vaccine consists 

of temperature sensitive virus strains that replicates only in the upper airways. 

Interestingly, human models of co-infection with Spn and LAIV is also associated 

with increased Spn density 284 and disease. However, opposite to mice models, 

some studies indicate that LAIV in humans is protective against acute otitis media 

during influenza season 209,285,286. 
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1.5 Experimental Human Pneumococcal Challenge model for 

study of Spn and attenuated influenza virus co-infection 
 

The Experimental Human Pneumococcal Colonisation (EHPC) 47 is an 

unique model of controlled infection that induces nasal Spn colonisation in 

healthy adults at a typical density and duration (1 to 3 weeks) in 50% of subjects 

following inoculation with different strains of Spn 47. This model is the ideal 

biological system to study immune protection mechanisms as the onset, duration 

and termination of a colonisation episode are known and serial measurements 

of immune responses can be made with controlled rates of Spn acquisition and 

density. 

In healthy adults, EHPC was used to determine that Spn challenge 

confers protection against recolonisation and development of invasive disease 

by inducing immunoglobulin production in the nasal mucosa 62 and blood 49 as 

well as pulmonary IL-17A+ CD4+ memory T-cells 287. Furthermore, in the nasal 

mucosa, protection granted by EHPC is associated with pre-existing antibodies 

against PspA but not with antibodies against capsular polysaccharide 288. In 

addition, establishment and maintenance of Spn colonisation after EHPC was 

associated with TGF-β1 and T regulatory cells 92. 

The EHPC model has also been used as a new method for vaccine testing 

51,52 and investigation of nasal microbiota and its interaction with Spn. Past 

studies have demonstrated that viral infections increase susceptibility to EHPC, 

eliciting higher levels of mucosal factor H and Spn density. This occurs due to 

higher Spn adherence caused by increased epithelial layer inflammation and 

factor H 46. Moreover, different microbiota profiles were associated with Spn 
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colonisation of the nasopharynx using EHPC and different strains inoculated 

were demonstrated to cause disturbances in microorganism diversity 289.  

1.6 Thesis Aims 
 

Our main goals and specific aims for this thesis were to:  

 

1. Determine the best methodology for investigation of immune responses in 

the nasopharynx by: 

a. Comparing phenotypes of cells collected by nasal curettage and 

nasal wash. 

b. Analysing cytokine levels using nasosorption and nasal wash. 

 

2. Investigating if Spn colonisation, LAIV and TIV alter cell-mediated 

response in the nasal mucosa of human hosts by: 

a. Assessing recruitment of monocytes, neutrophils, T-cells and DCs. 

b. Measuring activation levels of neutrophils and T-cells. 

 

3. Assess if Spn colonisation, LAIV and TIV alter cytokine responses in the 

nasal mucosa of human hosts by: 

a. Analysing induction of cytokines related to pro- and anti-

inflammatory responses. 

b. Investigating levels of elicited cytokines that regulate cell growth 

and adaptive immunity. 
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4. Determine the effects of Spn colonisation, LAIV and TIV on immunity 

against influenza antigens by: 

a. Establishing levels of induced T-cell subsets producing cytokines 

after stimulation with influenza, including CD4+, CD8+, T-regs, TCR-

 and TRM T-cells. 

b. Comparing antibody levels to influenza (IgA and IgG) in serum, 

nasal wash and lung. 

 



 
Materials and methods 
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MATERIALS AND METHODS 
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2.1 Funding and study approvals 
 

Funding for Antecedent LAIV as well as Concurrent LAIV studies were 

received by the Bill and Melinda Gates Foundation, the UK Medical Research 

Council, the Liverpool School of Tropical Medicine, the Royal Liverpool, 

Broadgreen University Hospitals NHS Trust (United Kingdom) and Coordenação 

de Aperfeiçoamento de Pessoal de Nível Superior (Brazil). 

Ethical approvals are shown in Table 2 and were obtained from the 

National Health Service Research Ethics Committees (REC), and Royal 

Liverpool and Broadgreen University Hospitals Trust. The clinical trial 

authorisation was granted by the Medicines and Healthcare products Regulatory 

Agency (MHRA). Volunteer appointments took place in the Clinical Research Unit 

at the Royal Liverpool University Hospital. 

 

Table 2 Ethical and clinical trial approvals for Concurrent LAIV and Antecedent LAIV studies. 

Registry Approval 

REC 14/NW/1460 

EudraCT 2014-004634-26 

ISRCTN Registry ISRCTN16993271  
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2.2 Recruitment and ethics/ consent 
 

The recruitment for the Antecedent LAIV study cohort took place in the 

period between October 2015 and April 2016 while the Concurrent LAIV study 

cohort was recruited between October 2016 and April 2017. Volunteers gave 

written and informed consent and recruited if they were healthy, non-smokers 

and aged 18-50.  

 

Subjects were unable to participate if they fell under any of the following 

exclusion criteria during screen:  

• Influenza or Spn vaccination or clinically confirmed disease in the 

preceding 2 years; 

• Close contact with “high-risk” individuals (children under 5, 

immunosuppressed or elderly); 

• Current febrile illness; 

• Use of antibiotics; 

• Immune-modulating medication; 

• Pregnancy. 
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2.3 Study design 
 

In both the Antecedent LAIV and Concurrent LAIV studies subjects were 

randomised using a permuted-block algorithm (1:1 in blocks of 10) held in sealed 

envelopes and distributed in two groups based on vaccination status: TIV 

(Control) or LAIV. 

Volunteers participating in the Antecedent LAIV study were vaccinated at 

day -3 and inoculated at day 0 relative to Spn inoculation serotype 6B (Figure 1). 

On the other hand, subjects in the Concurrent LAIV study were inoculated with 

Spn at day 0 and vaccinated at day +3 post-inoculation. Vaccinations were done 

in the TIV control group with TIV flu jab (2015/2016 Fluarix Tetra, 

GlaxoSmithKline, UK) and the LAIV group with LAIV nasal spray (Fluenz Tetra 

and FluMist Tetra, AstraZeneca, UK). 

In the Antecedent LAIV study, 222 participants consented, 162 were 

screened, 137 vaccinated (n=68 with LAIV, n=69 with TIV) and 130 were 

inoculated. Volunteers were excluded from analysis based on screen failure 

(n=5), stopping follow-up appointments (n=7), vaccination error (n=8), natural 

colonisation by Spn at baseline (n=1) and use of antibiotics (n=1). In addition, 

demographics were similar between groups (Table 4). 

Furthermore, in the Concurrent LAIV study, 316 participants consented, of 

which 206 were screened, 198 were inoculated and 194 were vaccinated (n=97 

with LAIV, n=97 with TIV). Volunteers were excluded from analysis based on 

screen failure (n=8), stopping follow-up appointments (n=4), vaccination error 

(n=13), naturally colonisation by Spn at baseline (n=13) and naturally acquired 

Spn colonisation during the study (n=4). Moreover, demographics were also 

similar between groups in this study (Table 5). 
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Figure 1. Design for Antecedent LAIV and Concurrent LAIV studies. The diagram represents 

nasopharyngeal inoculation with Spn serotype 6B as a red dotted line, and vaccination as a dotted 

purple line. In the Antecedent LAIV study, participants were screened on day -4, vaccinated on 

day -3, inoculated on day 0, and samples were collected on days +2, +7, +9, +29 and +30 relative 

to inoculation. In the Concurrent LAIV study, participants were screened at day -5, inoculated at 

day 0, vaccinated at day +3, and provided samples during visits on day +2, +6, +9, +27 and +30 

post-inoculation.  
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Table 3. Demographics of volunteers enrolled in the Antecedent LAIV and Concurrent LAIV 

studies. 

Antecedent LAIV 

 LAIV TIV Overall 

Median age (range) 20.0 (18.0 - 34.0) 20.0 (18.0 - 48.0) 20.0 (18.0 - 48.0) 

Female (%) 65.5 51.6 58.1 

Median dose (range) – 

CFU/nostril 

74,500 (51,000 - 

88,000) 

77,250 (51,000 - 

88,000) 

76,333 (51,000 - 

88,000) 

Time from vaccination to 

inoculation – days±SD 
3.0 ± 0.1 3.0 ± 0.1 3.0 ± 0.1 

Concurrent LAIV 

 LAIV TIV Overall 

Median age (range) 20.0 (17.0 - 46.0) 20.0 (18.0 - 32.0) 20.0 (17.0 - 46.0) 

Female (%) 53.4 56.7 55.2 

Median dose (range) - 

CFU/nostril 

82,167 (60,667 - 

93,000) 

81,083 (60,667 - 

93,000) 

82,167 (60,667 - 

93,000) 

Time from vaccination to 

inoculation – days ± SD 
3.0 ± 0.2 3.0 ± 0.1 3.0 ± 0.1 
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2.4 Study schedules 
  

During the studies, volunteers were sampled for nasal wash (NW), nasal 

cells, nasosorption (NS), serum and bronchoalveolar lavage (BAL) in specific 

timepoints after screening (Table 5 and 6). All sampling, processing and analysis 

were made while blinded to vaccination group and colonisation status, assuring 

unbiased analysis. 

 

Table 4. Visit schedule for sample collections in the Antecedent LAIV study. 

 

 

Table 5. Visit schedule for sample collections in the Concurrent LAIV study. 
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2.5 Clinical procedures 
  

2.5.1 Clinical consumables 
 

Procedure Consumables 

Vaccination 

LAIV (Fluenz Tetra and FluMist Tetra, 

AstraZeneca, UK); TIV (2015/2016 Fluarix Tetra, 

GlaxoSmithKline, UK) 

Nasal cells collection 

Rhinoprobe (ASL Rhino-Pro©, Arlington 

Scientific); 

PBS+Ca+Mg 

Nasosorption collection 
Nasosorption strip (Nasosorption™, Hunt 

Developments) 

BAL collection 

Benzodiazapine antagonist (flumazenil)  

Benzodiazepine (midazolam)  

Sphygmomanometer Instilagel (lidocaine gel)  

2% and 4% lidocaine (Xylocaine)  

Nasal speculae Cannula (18-20G)  
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2.5.2 Volunteers symptoms log and evaluation of procedures 
 

Volunteers from the Antecedent study (n=148) documented local and 

general symptoms for a period of 7 days since baseline (day -4). Severity ratings 

ranged from 1 (less severe) to 7 (more severe). Symptoms evaluated were 

sneezing, runny or itchy nose, congestion, throat symptoms, cough, eye or ear 

symptoms, headache, as well as additional symptoms added by the participants. 

For evaluation of the tolerance to the sample collection procedures, 

volunteers were asked to use a 5-point modified Likert scale. A range of 1 to 5 

was used to collect individual opinions about how painful and how uncomfortable 

the procedure was, along with if it made their eyes water. 

 

2.5.3 Experimental Human Pneumococcal Carriage (EHPC) 

model 
 

Volunteers (n=130 in Antecedent and n=198 in Concurrent study) received 

100µl of Spn inoculum prepared in advance (see section 2.6.3) inside each nostril 

and remained seated for up to 15 minutes without blowing their nose or sniffing 

up. Each subject received an emergency pack including: Amoxicillin 9x500mg, 

antibiotic information sheet, thermometer and inoculation information sheet. 
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2.5.4 Vaccination 
 

Participants were vaccinated (n=137 in Antecedent and n=194 in 

Concurrent study) with either nasal LAIV (Fluenz Tetra or FluMist Tetra, 

AstraZeneca, UK, used interchangeably due to acquisition shortages) paired with 

intramuscular placebo (0.5 mL of normal saline) or with intramuscular TIV 

(2015/2016 Fluarix Tetra, GlaxoSmithKline, UK) paired with nasal placebo (0.2 

mL normal saline) as control. In the Antecedent study, 65 volunteers received 

LAIV and 64, TIV, whereas in the Concurrent study 97 subjects were vaccinated 

with LAIV and 97 with TIV. 

 

2.5.5 Nasal wash collection 
 

The NW method used in the thesis was previously described by Gritzfeld 

et al. 47 and based on the methodology published by Naclerio et al. 45. For 

collection of NW, participants received 5 mL of saline in one nostril, rapidly 

expelling the liquid for collection in a foil bowl 45. This procedure was repeated 

until 20 mL was used in one nostril. The liquid collected was stored at room 

temperature for further processing described in Section 2.6.5. Importantly, NW 

was performed after nasosorption but before nasal curettage in order to keep 

samples uncontaminated. 

 

2.5.6 Nasal cells collection 
 

The nasal inferior turbinates were visualised with a light with the participant 

being seated with the head tilted posteriorly. A curette (ASL Rhino-Pro©, 

Arlington Scientific) was used to scrape a small collection of cells from the nasal 

mucosa. Two scrapes per nostril were taken and placed in a 15 mL Falcon tube 
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placed on ice containing PBS+Ca+Mg (Section 2.5.1) for processing, described 

in Section 2.6.6. Importantly, nasal scrape was performed before NW and 

nasosorption since the intervention could contaminate other collected samples. 

For this procedure to be done consistently, all clinical staff responsible for 

nasal cell collection was trained using 3D models of human noses as well as 

volunteers. The results of collected epithelial, immune, neutrophils, T-cells and 

monocytes were compared between the clinical staff. In addition, quality checks 

of the results were performed continuously throughout the studies and additional 

training was given if staff did not show the accuracy necessary for trustworthy 

analysis.  
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2.5.7 Nasosorption collection 
 

The nasosorption collection technique used in this thesis was based on 

the methodology previously published by Thwaites et al. 290. An adsorptive matrix 

strip (Nasosorption™, Hunt Developments) was held parallel to the volunteers’ 

nasal septum with the absorptive part inside one of the nostrils for nasal fluid 

collection. The nostril was pressed so that the strip held its place for 2 minutes. 

After that, the strip was deposited in its original tube and froze immediately in a -

80oC freezer for further analysis. Importantly, nasosorption was the first sample 

collected from the nose of volunteers, before NW and nasal curettage, in order to 

preserve the nasal lining from contamination. 

 

2.5.8 Serum collection 
 

Serum was sampled from volunteers by collecting 5 mL of blood and 

storing in a tube with anticoagulant EDTA. Immediately after collection, the 

sample was placed in a -80oC freezer for future experiments. 

 

2.5.9 Bronchoalveolar lavage collection 
 

The collection of BAL cells was conducted at the clinical research unit 

(CRU) of the Royal Liverpool Hospital. To assure safety during the procedure, 

monitoring equipment was available (three lead ECG, pulse oximeter, 

spygnomanometer and anaesthetic support, Section 2.5.1). 

First, oxygen was delivered via nasal cannula at up to 4L/min and topical 

anaesthesia with lidocaine was achieved in the nasal passages (using Instilagel) 

and the oral mucosa (using Xylocaine). After topical anaesthesia at the larynx 
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was completed using 4% lidocaine, further mucosal anaesthesia was achieved 

by using 2 mL aliquots of 2% lignocaine.  

Following, the bronchoscope was inserted in the nostril and positioned. 

Further, hand suction was performed using 50 mL saline syringe and repeated 3 

times, using a maximum volume of 200mL. The sample was kept in ice and the 

bronchoscope was slowly withdrawn and processed as described in Section 

2.6.8. For an additional following of volunteers’ health, participants were followed-

up at 1-5 days post-procedure with a clinical examination. 

  

2.5.10 Safety monitoring 
 

 Every volunteer that enrolled in the studies was required to send a text 

message to the clinical team every day for a week. If the text was not received, 

the volunteer was contacted personally to ensure their safety.  

Antibiotics were used if the volunteer was colonised with Spn at the end of 

the study or in the event they were unwell. In case of serious disease, a direct 

admission to the Infectious Disease ward at the Royal Liverpool University 

Hospital was available. 
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2.6 Laboratory procedures 
 

2.6.1 Laboratory consumables 
 

Procedure Consumables 

Bacterial stock 

preparation 

- Blood agar plates PB0122A (Oxoid, Basingstoke, UK) 

- Vegitone media (Oxoid, Basingstoke, UK) 

- Glycerol 

- PBS (Thermo Fisher Scientific, Waltham, MA) 

- 6 and 12-well plates (Thermo Fisher Scientific, Waltham, MA) 

- Spectrophotometer (FLUOstar Omega plate reader) 

Experimental 

Human Spn 

Inoculation 

- Blood agar plates PB0122A (Oxoid, Basingstoke, UK) 

- 96-well Nunc Maxisorp plates (Thermo Fisher Scientific, Waltham, MA) 

Nasal cells 

staining 

- 70 µm filter (Thermo Fisher Scientific, Waltham, MA) 

- Cytometer (LSRII, BD Bioscience, UK) 

 

- Antibodies for Concurrent LAIV study: Epcam-PE; HLADR-PE.Cy7; 

CD66b-FITC (Biolegend, San Diego, CA); CD3-APC.Cy7; CD14-

Percp.Cy5.5 (BD Biosciences, San Jose, California, USA); CD45-

PACOrange (Thermo Fisher Scientific, Waltham, MA). 

 

- Antibodies for Antecedent LAIV study: Epcam-PE; HLADR-PE.Cy7; 

CD16-APC; CD66b-FITC, CD19-BC650, CD8-BV785 (Biolegend, San 

Diego, CA); CD3-APC.Cy7; CD14-Percp.Cy5.5 (BD Biosciences, San 
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Jose, California, USA); CD45-PACOrange (Thermo Fisher Scientific, 

Waltham, MA). 

 

- Anti-Rat Ig, κ/Negative Control Compensation Particles Set (BD 

Biosciences, San Jose, CA). 

- Anti-Mouse Ig, κ/Negative Control Compensation Particles Set (BD 

Biosciences, San Jose, CA). 

Luminex human 

cytokine 30-plex 

- Human cytokine magnetic 30-plex panel (Thermo Fisher Scientific, 

Waltham, MA) 

- Hu Cytokine Mag 30-plex antibody bead solution (Thermo Fisher 

Scientific, Waltham, MA) 

- Hu Cytokine Mag 30-plex Biotinylated Ab (Thermo Fisher Scientific, 

Waltham, MA) 

- Hu 14-Plex standard (Thermo Fisher Scientific, Waltham, MA) 

- Hu 16-Plex standard (Thermo Fisher Scientific, Waltham, MA) 

- Wash Solution Concentrate (Thermo Fisher Scientific, Waltham, MA) 

- Incubation buffer (Thermo Fisher Scientific, Waltham, MA) 

- Biotin Diluent (Thermo Fisher Scientific, Waltham, MA) 

- Streptavidin RPE diluent (Thermo Fisher Scientific, Waltham, MA) 

- Streptavidin RPE concentrate (Thermo Fisher Scientific, Waltham, MA) 

- Assay diluent (Thermo Fisher Scientific, Waltham, MA) 

- Luminex MAGPIX calibration/verification kits. Calibration Kit MPX-CAL-

K25 and Performance Verification Kit MPX-PVER-K25 (Thermo Fisher 

Scientific, Waltham, MA) 
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- Luminex MAGPIX + xPonent software for Luminex (Thermo Fisher 

Scientific, Waltham, MA) 

- 96-well Nunc Maxisorp plates (Thermo Fisher Scientific, Waltham, MA) 

- Magnetic 96-well plate separator (Thermo Fisher Scientific, Waltham, 

MA) 

- Luminex Flat bottom 96-plate and black cover (Thermo Fisher Scientific, 

Waltham, MA) 

BAL processing 

- 6-, 12-, 24-, 48- and 96-well plates (Thermo Fisher Scientific, 

Waltham, MA) 

- Complete medium: RPMI, 10% of heat-inactivated fetal bovine serum 

(FBS, Thermo Fisher Scientific, Waltham, MA), PSN antibiotic mixture 

(Penicillin-Streptomycin-Neomycin). 

- FBS-DMSO: 90% heat-inactivated fetal bovine serum (FBS) and 10% 

Dimethyl sulfoxide (DMSO), (Thermo Fisher Scientific, Waltham, MA) 

BAL intracellular 

staining 

- PBS (Thermo Fisher Scientific, Waltham, MA) 

- Cytometer (LSRII, BD Bioscience, UK and Becton Dickinson, UK) 

- TIV (2015/2016 Fluarix Tetra, GlaxoSmithKline, UK) 

 

- Antibodies: CD3-APCH7 (clone SK7), TCR-–PECy7 (clone 11F2), IL-

10–BV786 (clone JES3-9D7), IL-17A–BV510 (clone N49-653), (BD 

Biosciences, San Jose, California, USA), CD4–PerCP5.5 (clone SK3), 

CD8–AF700 (clone SK1), CD69–BV650 (clone FNSO), CD25-

PE.TxsRed (clone M-A251), CD103–BV605 (clone Ber-ACT8), CD49a-

APC (clone TS2/7), FOXP3-FITC (clone 259D), IFN--PE (clone 

4S.B3), TNF-α–BV711 (cloneMAb11) (Biolegend, San Diego, CA). 
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- Anti-Rat Ig, κ/Negative Control Compensation Particles Set (BD 

Biosciences, San Jose, CA). 

- Anti-Mouse Ig, κ/Negative Control Compensation Particles Set (BD 

Biosciences, San Jose, CA). 

- ArC Amine Reactive Compensation Bead Kit (Invitrogen Corporation, 

Carlsbad, CA). 

IgG and IgA 

ELISA 

- 96-well Nunc Maxisorp plates (Thermo Fisher Scientific, Waltham, MA) 

- TIV (2015/2016 Fluarix Tetra, GlaxoSmithKline, UK) 

- PBS (Sigma Aldrich, Gillingham, UK) with 0.005% Tween 20 (Sigma, 

PP1379, Deisenhofen, Germany) 

- 1% bovine serum albumin (BSA) in PBS 

- 0.1% bovine serum albumin (BSA) in PBS 

- Detection antibodies: anti-human-IgG (Sigma, A3188, Deisenhofen, 

Germany) and anti-human-IgA (Sigma, I1261, Deisenhofen, Germany) 

- Streptavidin−Alkaline Phosphatase (Bio-rad, STAR6B, Hercules, CA) 

- p-Nitrophenyl Phosphate (Sigma-Aldrich, Poole, U.K.) 

- FLUOstar Omega ELISA microplate reader (BMG Labtech) 

- Omega Analysis (BMG Labtech). 
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2.6.2 Reagent preparations 
 

2.6.2.1 For Experimental Human Spn Inoculation 
 

Reagent Consumables and procedures 

STGG medium291 

Consumables:  

- Oxoid tryptone-soya broth (CM 129) 3.0mL 

- glucose 0.5g 

- Oxoid skim milk powder (CM L31) 2.0g 

- glycerol 10.0mL; double distilled water 100.00mL.  

Procedure: 1 mL amounts were dispensed into bijoux’s and autoclaved 

at 15lb for no more than 10 min. The tubes were stored at 4-6°C. 

 

2.6.2.2 For nasal wash processing 
 

Reagent Consumables and procedures 

STGG medium291 

Consumables:  

- Oxoid tryptone-soya broth (CM 129) 3.0mL 

- glucose 0.5g 

- Oxoid skim milk powder (CM L31) 2.0g 

- glycerol 10.0mL; double distilled water 100.00mL.  

Procedure: 1 mL amounts were dispensed into bijoux’s and autoclaved 

at 15lb for no more than 10 min. The tubes were stored at 4-6°C. 
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2.6.2.3 For nasal cells processing and staining 
 

Reagent Consumables and procedures 

PBS+Ca+Mg 

Consumables:  

- phosphate-buffered saline (PBS, Thermo Fisher Scientific, Waltham, 

MA) 

- heat-inactivated fetal bovine serum (FBS, Thermo Fisher Scientific, 

Waltham, MA) 

- ethylenediaminetetraacetic acid (EDTA, Thermo Fisher Scientific, 

Waltham, MA) 

Procedure: Phosphate-buffered saline (PBS) + 0.5% heat-inactivated 

fetal bovine serum (FBS) and 2.5 mM ethylenediaminetetraacetic acid 

(EDTA) 

Violet viability dye 

working solution 

Consumables:  

- LIVE/DEAD Fixable Dead Cell Stain kit (Invitrogen, UK) 

- PBS+Ca+Mg 

Procedure: 1µL of Violet Live/Dead staining in 500µL PBS+Ca+Mg. 
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2.6.2.4 For Luminex human cytokine 30-plex 
 

Reagent Consumables and procedures 

Wash buffer 

Consumables: Wash Solution Concentrate (Thermo Fisher Scientific, 

Waltham, MA) 

Procedure: 15 mL of Wash Solution Concentrate (20X) to 285 mL of 

ddH20. 

Detector antibody 

mix 

Consumables: Biotin Diluent and Biotinylated Antibody (Thermo Fisher 

Scientific, Waltham, MA) 

Procedure: 25µL of Biotin Diluent and 2.5µL of 10x Biotinylated Antibody 

per well 

Substrate mix 

Consumables: RPE-Diluent and Streptavidin-RPE (Thermo Fisher 

Scientific, Waltham, MA) 

Procedure: 25µL of RPE-Diluent and 2.5µL of 10x Streptavidin-RPE per 

well 
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2.6.2.5 For staining of non-adherent cells from BAL tissue 
 

Reagent Consumables and procedures 

Complete Medium 

- RPMI (Thermo Fisher Scientific, Waltham, MA) 

- FBS (10%, heat inactivated, Thermo Fisher Scientific, Waltham, 

MA) 

- PSN antibiotic mixture (Penicillin-Streptomycin-Neomycin) 

TIV for stimulation TIV (2015/2016 Fluarix Tetra, GlaxoSmithKline, UK) 

Violet Viability dye 

working solution 

Consumables:  

- Violet Viability dye (LIVE/DEAD Fixable Dead Cell Stain kit, 

Invitrogen, UK) 

- PBS (Thermo Fisher Scientific, Waltham, MA) 

Procedure: 1µL of Live/Dead diluted in 300µL PBS 

BD Golgiplug BD Golgiplug (BD Biosciences, San Jose, California, USA) 

Fix/Perm working 

solution 

Consumables: Foxp3/Transcription Factor Staining Buffer Set 

(eBioscience, 00-5523) 

Procedure: 300µL of FOXP3 Fix/Perm Concentrate in 900µL of FOXP3 

Diluent. 

FIX/Perm wash 

buffer 

Consumables: Foxp3/Transcription Factor Staining Buffer Set 

(eBioscience, 00-5523) 

Procedure: 90µL of 10x Permeabilisation buffer (Foxp3/Transcription 

Factor Staining Buffer Set, eBioscience, 00-5523) in 810µL of ddH2O 
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2.6.3 Bacterial stock preparation 
 

For the preparation of the bacterial stock used in the Experimental Human 

Spn Inoculation, first a “parent” stock was prepared, quantified, aliquoted and 

frozen for future use. To assure no animal products besides Spn was inoculated 

into volunteers, the stock was grown in Vegitone Infusion broth (Oxoid, 

Basingstoke, UK) as well as all processing involving the bacteria was performed 

with sterile fumehood, incubator and pippetes. 

The first stock was prepared by streaking Spn of serotype 6B in a blood 

agar plate (Oxoid, Basingstoke, UK), which was incubated overnight at 37°C and 

5% CO2. After that, each half of the plate was swabbed and mixed separately 

with 12 mL of Vegitone. The cell cultures were incubated in plates (Thermo Fisher 

Scientific, Waltham, MA) at 37°C until detection of turbidity in the liquid was 

achieved or at least for a period of 2 hours. 

Subsequently, 40 mL of Vegitone was added to each culture, the OD was 

quantified in a Spectrophotometer and adjusted to 0.15 OD at 620nm using the 

Bacterial stock quantification method (see section 2.6.3.1) for further incubation. 

During incubation at 37°C and 5% CO2, the culture’s OD were measured hourly 

until an OD between 0.30-0.35 - early-mid log phase - was achieved. In one 

culture, 10% sterile glycerol was added, and 1 mL aliquots were prepared and 

frozen in a -80°C freezer while the other culture was centrifuged at 3345xg for 15 

minutes. Afterwards, the supernatant was removed, and the pellet was 

resuspended with 22.5 mL of Vegitone. 

Aliquots of 1 mL were prepared and stored at -80°C. Later, 10% sterile 

glycerol was added to the culture and after at least 48 hours, three aliquots were 

quantified to ensure the accuracy in the stocks’ CFU.  



 

 
 

67 Materials and methods 

2.6.3.1 Bacterial stock quantification 
 

To determine the CFU/mL in the final aliquots of bacterial stock, we diluted 

it by adding 20µL of stock to 180µL of sterile saline. After that, a dilution of 1:10 

was prepared in a 96-well plate (Thermo Fisher Scientific, Waltham, MA) and 

three 10µL drop of the 6 first dilutions were added to a blood agar plate divided 

in 6 parts (Figure 2). The plate was left to dry and then incubated for 9 to 16 hours 

at 37°C and 5% CO2. 

 

Figure 2. Agar blood plate layout for quantification. Division of agar blood plate into 6 sections 

represented by black lines and three 10µL drops of diluted bacterial stock per session represented by blue 

drops. 

 

In the next day, the visible colonies in each plate division were counted by 

dividing the number of colonies by three, taking the average number, multiplying 

by the dilution factor and further dividing by the volume of 10mL. Finally, the 

number was multiplied by 1000 to obtain a result in CFU/mL as described in the 

equation below with x being the number of colonies: 

 

(

𝑥
3 × 10𝑥

10µ𝐿
) × 1000 
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2.6.4 Experimental Human Spn Inoculation 
 

 For the inoculation of volunteers, after quantification of stable and accurate 

CFU results from the bacterial stock, an aliquot was thawed from the -80oC 

freezer and centrifuged at 17000xg for 3 minutes. The supernatant was removed, 

the pellet was resuspended with 1 mL of saline and centrifuged again with the 

same specifications. One more time, the supernatant was removed, and 1 mL of 

saline was added to the sample. 

Using the original concentration of stock, the aliquots were diluted 1:10 

according to the desired dose of 80,000CFU/100μl by using the Bacterial stock 

quantification procedure (see section 2.6.3.1). 

 

2.6.5 Nasal Wash Processing 
 

Following NW collection (see section 2.5.4), the sample obtained from the 

volunteer was immediately centrifuged at 3345xg for 10 min at room temperature. 

Aliquots of 1 mL were taken from the supernatant and stored in a -80oC freezer 

for further analysis. 

 After that, the pellet was resuspended with 100µL of STGG and quantified 

for investigation of respiratory pathogens, using the Bacterial stock quantification 

procedure (see section 2.6.3.1). 
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2.6.6 Nasal cells processing 
 

Upon collection of nasal cells described in Section 2.5.5, the sample was 

dislodged from the rhinoprobes by washing the cells with PBS+Ca+Mg (Section 

2.6.2.3). Subsequently, the cells were centrifuged at 440xg for 5min at 4oC and 

the supernatant was removed so the cells could be stained (see section 2.6.6.1). 

 

2.6.6.1 Nasal cells staining 
 

After processing, the nasal cells from volunteers were resuspended in 

50µL of Violet viability dye working solution (Section 2.6.2.3) and incubated for 

15 minutes in ice. Afterwards, the antibody mixture was added accordingly 

(Section 2.6.6.1.1) and incubated for 15 minutes in ice. 

 Then, the stained cells were washed with 3.5 mL of PBS+Ca+Mg (Section 

2.6.2.3) at 440g for 5mins and 4oC, resuspended, filtered over a pre-wetted 70µm 

filter and placed into a tube for further cytometry analysis. The contents were 

centrifuged again and resuspended in 200µL of PBS+Ca+Mg in the Antecedent 

LAIV and of cell fix (BD Biosciences) in the Concurrent LAIV study for acquisition 

on a flow cytometer (LSRII, BD Bioscience, UK and Becton Dickinson, UK). 

 

2.6.6.1.1 Antibodies for nasal cell staining 

 

In order to investigate cells populations in the human nasopharynx and 

cell-mediated immune responses to LAIV and Spn colonisation, nasal cells were 

stained for monocytes, neutrophils, lymphocytes and cell activation markers.  

During the Antecedent LAIV study (Table 6), cells were dyed with the 

extracellular antibodies CD45 (for identification of neutrophils and immune cells), 

Epcam (the epithelial cellular adhesion molecule was used as a marker for 
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epithelial cells), CD14 (to distinct monocytes), CD3 (for recognition of T-cell 

population), CD16 and CD66b (for measurement of neutrophil recruitment) as 

well as the marker HLA-DR was analysed, an MHC class II cell surface receptor 

expressed by human leukocytes and commonly used to identify an activation 

signal 292,293. 

Likewise, in the Concurrent LAIV study (Table 6), volunteers’ cells were 

stained with CD45, Epcam, CD14, CD19, CD3, CD66b and HLADR, with 

additional BDCA-1, BDCA-2, CD4 and CD8, markers for a deeper 

immunophenotyping of subsets of dendritic and T-cells present in the sample. 

The results were analysed using FlowJo X (Treestar Oregon, USA) and the gating 

strategy is shown in Figures 3 and 4 for the Antecedent and Concurrent LAIV 

studies, respectively. Samples with less than 500 immune cells (15% of all 

samples measured) or 250 epithelial cells were excluded from further analysis. 

Flow cytometry compensation was set individually for each of the 

fluorochromes in the panel in order to adjust for spillover (physical overlap) 

between fluorochrome channels and acquire trustworthy results. Two sets of 

single-stained compensation samples were prepared using Anti-mouse and anti-

rat BD positive and BD negative compensation beads accordingly (Biosciences, 

San Jose, CA, Section 2.6.1). Compensation staining for the Violet fluorescent 

dye was performed separately using the ArC Amine Reactive Compensation 

Bead Kit (Biosciences, San Jose, CA, Section 6.2.1). 
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 Table 6. Surface antibody markers applied to nasal cells in each study as well as volume used 

for each sample. 

 

 

 

 

Concurrent LAIV study 

Antibody 
Volume per test 

(µL) 

CD66b-FITC 1 

EpCAM-PE 1,5 

HLA-DR-PE.cy7 1,5 

CD8-BV785 1,5 

CD45-PacOrange 3 

CD3-APC.Cy7 3 

CD19-BV650 3 

CD4-BV605 3 

CD14-PerCP.Cy5.5 5 

BDCA-1-BV711 5 

BDCA-2-APC 5 

Antecedent LAIV study 

Antibody 
Volume per test 

(µL) 

CD3-APC.Cy7 3 

CD16-APC 5 

CD14-PerCP.Cy5.5 5 

CD66b-FITC 5 

CD45-PacOrange 5 

EpCAM-PE 5 

HLA-DR-PE.Cy7 5 
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Figure 3. Representative flow plots of nasal ells from the Antecedent LAIV study analysis by flow cytometry. The gating tree was set as follows. 

A: FSC-A/FSC/SSC-A (represents the distribution of cells in the light scatter based on size and intracellular composition, respectively) to B: FSC-H/FSC-

A (to distinct single cells) to C: Viability/Epcam (Live gate represents the fraction of viable cells within the sample analysed and Epcam was used for 

identification of epithelial cells) to D: AlexaFluor/CD45 positive (represents the immune cells) to E: SSC-A/CD66b (identifies non-neutrophils and 

neutrophils) to F: CD66b/CD16 (from the analysed neutrophils, CD66bHi were gated) or G: CD3/CD14 (from the analysed aneutrophils, T-cells, monocytes 

and other cells populations were identified) to H: SSC-A/HLA-DR (from analysed T-cells, HLA-DR+ cells were gated) 
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Figure 4. Representative flow plots of nasal T-cells from the Concurrent LAIV study analysed by flow cytometry. The gating tree was set as 

follows. A: FSC-A/FSC/SSC-A (represents the distribution of cells in the light scatter based on size and intracellular composition, respectively) to B: FSC-

H/FSC-A (to distinct single cells) to C: Viability/Epcam (Live gate represents the fraction of viable cells within the sample analysed and Epcam was used 

for identification of epithelial cells) to D: AlexaFluor/CD45 positive (represents the immune cells) to E: SSC-A/CD66b (identifies non-neutrophils and 

neutrophils) to F: SSC-A/CD66b (from the analysed neutrophils, CD66bHi were gated) or G: SSC-A/CD14 (from the analysed non-neutrophils, T-cells, 

monocytes and other cells populations were identified) to H: HLA-DR/CD19 (identifies B-cells) to I: CD8/CD3 (from non-B-cells, identifies NK cells, CD8+ 

T-cells and CD8- T-cells). 
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2.6.7 Luminex Human Cytokine 30-plex of nasal fluid 
 

Nasal fluid was collected, processed and frozen from a set of volunteers 

(see section 2.5.6). After thawing, the nasosorption strip (NS) was washed with 

100µL of Assay Diluent (Thermo Fisher Scientific, Waltham, MA. Section 2.6.1) 

and centrifuged for 10 min at 16000xg in order to elute the sample. Subsequently, 

30µL of the liquid was placed on a plate followed by addition of 30µL of Assay 

diluent and 30µL of incubation buffer to each well.  

Afterwards, 75µl of the mixture was transferred to the Luminex plate. 

Furthermore, 60µL of standard was combined with 30µL of incubation buffer and 

75µL of this solution was also moved to the Luminex plate (all Thermo Fisher 

Scientific, Section 2.6.1). At this time, 12.50μL of Antibody Bead was added into 

the wells of the Luminex plate filled with samples or standards. The duplicate 

samples were acquired by transferring 43.75µl from a well to the well beside it. 

The plate was incubated overnight at 4oC under agitation on an orbital shaker 

(500 rpm agitation). 

On the next day, the plate was washed twice with 200μL Wash Solution 

and 25μL Biotinylated Detector Antibody was added to each well (Thermo Fisher 

Scientific). Following incubation for 1 hour, the plate was washed twice one more 

time and 25μL Streptavidin-RPE solution was added to each assay well (Thermo 

Fisher Scientific). The samples were incubated for 30 minutes at room 

temperature on an orbital plate shaker. 

Moreover, the wells were washed three times and 105μL 1X Wash 

Solution to each assay well and placed on an orbital plate shaker for 2–3 minutes 

prior to analysis. The plate was then acquired using a 30-plex magnetic human 

Luminex cytokine kit ((Thermo Fisher Scientific). Results were analysed on a 
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LX200 with xPonent 3.1 software following manufacturer’s instructions. Cytokines 

with a CV>50% for a given sample were excluded from further analysis. 

 

2.6.8 BAL Processing 
 

2.6.8.1 Isolation of non-adherent cells from BAL tissue 
 

The BAL sample collected from a set of volunteers (see Section 2.5.8) was 

passed through a sterile medical cotton gauze into 50 mL Falcon tubes in ice in 

order to remove viscous portions of the lavage. Next, 10 mL of sample from the 

filtered sample was separated and centrifuged at 400xg for 10min at 4oC. Its 

supernatant was removed, and the pellet resuspended with 2 to 3 mL of complete 

medium (Section 2.6.1). After that, the centrifugation process was carried on 

again and the pellet was resuspended in FBS-DMSO (Section 2.6.1) to obtain a 

concentration of 2x105 cells/mL Finally, the BAL cells were stored in a -80oC 

freezer overnight then transferred to liquid nitrogen for storage and further 

analysis. 

 In order to isolate BAL lymphocytes for antibody staining, on the next day, 

the aliquot was resuspended and washed with 1 mL of complete medium at a 

time until clean. The sample was topped up with media to complete 50 mL and 

centrifuged at 400xg for 10 minutes in 4oC. The pellet was then reconstituted with 

complete medium and plated (Thermo Fisher Scientific) to obtain a final 

concentration of 5x105 macrophages per well. Following, the plates were 

incubated at 37°C for 2 to 3 hours to promote adherence of macrophages. Finally, 

the non-adherent cells were removed from the plate supernatant after rinsing and 

washing with 3 mL of complete medium. 
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2.6.8.2 Intracellular staining of non-adherent cells from BAL 

tissue 
 

Non-adherent BAL cells obtained from volunteers (see section 2.6.8.1) 

were counted and incubated at 1x106 cells/mL in complete medium at 37oC. 

Samples were stimulated with influenza antigens (TIV) concentrated at 1.2g/mL 

(see Section 2.6.2.5) or left unstimulated as negative control and incubated for 2 

hours. Then, 1000x diluted BD Golgiplug (see Section 2.6.2.5) was added and 

cells were incubated for an additional 16 hours as previously described. 

After 16 hours, the cells were washed with 3 mL of PBS, resuspended and 

stained with Violet Viability dye working solution (see Section 2.6.2.5). After 15 

minutes, cells were stained with the surface markers CD3-APCH7 (clone SK7), 

TCR-–PECy7 (clone 11F2) from BD Biosciences (San Jose, California, USA), 

CD4–PerCP5.5 (clone SK3), CD8–AF700 (clone SK1), CD69–BV650 (clone 

FNSO), CD25-PE.TxsRed (clone M-A251), CD103–BV605 (clone Ber-ACT8), 

CD49a-APC (clone TS2/7) from Biolegend (San Diego, CA) according to Table 7 

and incubated for 15 minutes. Cells were fixed and permeabilised using the 

Foxp3/Transcription Factor Staining Buffer Set as per manufacturer’s instructions 

described in Section 2.6.2.5. Cells were stained with intracellular markers 

FOXP3-FITC (clone 259D), IFN--PE (clone 4S.B3), TNF-α–BV711 

(cloneMAb11) Biolegend (San Diego, CA) and IL-10–BV786 (clone JES3-9D7) 

IL-17A–BV510 (clone N49-653) from BD Biosciences (San Jose, California, 

USA). (Table 7). For investigation of TRM T-cell responses to influenza, we used 

the extracellular markers CD69, CD103 and CD49a. In this thesis, TRM was 

ultimately defined as CD4+ CD69+ cells, following scientific consensus 294, as over 

one third of CD4+ CD69+ cells did not express the additional resident memory 
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markers CD103 and CD49a. In addition, to assess the frequency of regulatory T-

cells (T-regs) in the lung, we measured the frequency of CD25hi FOXP3+ T-regs 

among CD4+ T-cells using intracellular staining. 

After 30 minutes, samples were washed with 3 mL of PBS and 

resuspended in 200µL of PBS for acquisition on a BD LSR flow cytometer (Becton 

Dickinson, UK). Flow cytometry data was analysed using FlowJo cell analysis 

software version 10 (FlowJo, LLC, Ashland, Ore) and the gating strategy as 

shown on Figure 5 and 6. For participants displaying less than 500 immune cells 

for a given sample, the participant was excluded from further analysis. Similarly, 

to staining nasal cells, flow cytometry compensation was done individually for 

each of the fluorochromes in the panel as described on section 2.6.6.1.1. 
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Table 7 Surface antibody markers applied to BAL cells as well as volume used for each sample. 

Extracellular staining 

Antibody Volume (µL) 

CD49a-APC 3 

CD69 – BV650 3 

CD3-APCH7 3 

TCR- – PECy7 3 

CD25-PE.TxsRed 2 

CD103 – BV605 1.5 

CD4 – PerCP5.5 0.5 

CD8 – AF700 0.5 

 

 

Intracellular 

staining 

Antibody 
Volume 

(µL) 

FOXP3-

FITC 

5 

IL-10 – 

BV786 

3 

IFN- - 

PE 

3 

IL17A – 

BV510 

3 

TNF- – 

BV711 

3 
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Figure 5. Representative flow plots of BAL T-cells and cytokine production analysed by flow 

cytometry using intracellular staining. To assess the frequency of cells in human BAL, we employed the 

following gating strategy. (A) FSC-A/SSC-A to (B) FSC-H/FSC-A (in order to exclude doublets) to (C) 

CD3/Viability to (D) CD4/TCR-γδ to (E) SSC-A/CD8. (F) The markers CD25/FOXP3 (CD25hi and FOXP3+) 

were used to assess the frequency of T-regulatory cells in human BAL after restimulation with influenza 

antigens. A negative control (CD25- and FOXP3-) was used to validate flow cytometric data. To assess 

cellular production of (G) IFN-, (H) IL-17A, (I) TNF-α, cells were stained by intracellular staining after 

overnight mock or influenza-stimulation. Fluorescence Minus One (FMO) controls were used to verify flow 

cytometric data 
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Figure 6. Representative plots of TRM T-cells identified by flow cytometry. The markers 

CD69, CD103 and CD49a were used to assess the frequency of TRM cells in human BAL. (A) 

CD4+ T-cells gated into CD69 negative and positive cells. CD103 and CD49 marker expression 

are shown for (B) CD4+ CD69+ T-cells and (C) CD4+ CD69- T-cells. (D) CD8+ T-cells gated into 

CD69 negative and positive cells. CD103 and CD49 marker expression are shown for (E) CD8+ 

CD69+ T-cells and (F) CD8+ CD69- T-cells. 
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2.6.9 ELISA procedures 
 

2.6.9.1 IgG and IgA ELISA on serum, nasal wash and BAL 
 

ELISA was used to quantify levels of IgG and IgA antibodies to influenza 

in the serum, nasal wash and BAL supernatant from volunteers participating in 

the Antecedent LAIV study. Pooled sera of 7 TIV vaccinated volunteers was heat-

inactivated (at 56oC for 30 min) and used as standard in both total IgA and IgG 

to influenza ELISA. Antibody levels were expressed in arbitrary units. For IgG 

standard preparation, a dilution of 1:4000 was applied, while for IgA was diluted 

1:40.  

Briefly, 96-well plates (Thermo Fisher Scientific) were coated with 100µL 

of 0.2 µg/mL TIV in PBS overnight at room temperature. During the experiment, 

each wash consists of washing plates three time with PBS with 0.005% Tween 

(Sigma, see Section 2.6.1). After incubation overnight, plates were washed 

following blocking with 100µL of PBS with 1% BSA for 1 hour in room 

temperature. Then, plates were washed, and samples were added in duplicate 

and incubated for 2 hours at room temperature.  

For detection of IgG and IgA, a 1:5000 and 1:4000 dilution of anti-human-

IgG and anti-human-IgA antibodies respectively(Sigma, see Section 2.6.1), was 

made using 0.1% BSA and 100µL added to each well after washing and 

incubated at room temperature for 2 hours. For IgA ELISA, 100µL of 1:2000 

dilution of Streptavidin−Alkaline Phosphatase using 0.1% BSA was added to 

each well and incubated at room temperature for 1 hour. 

Then, for both IgA and IgG to influenza, plates were washed and 100µL of 

p-Nitrophenyl Phosphate (Sigma ) was added to the wells. Plates were incubated 
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at room temperature for a fixed period (IgA: 30 min and IgG: 90 minutes). The 

optical density of each well was measured at 405nm using a FLUOstar Omega 

ELISA microplate reader, the average blank corrected value was calculated for 

each sample and the data analysed using Omega Analysis. 

 

2.7 Statistical analysis 
 

All sampling, processing and analysis were performed while blinded to 

vaccination and colonisation group to achieve unbiased results. Non-parametric 

tests were used for statistical analysis since number of samples were insufficient 

for a normal distribution of results. Statistics were calculated in GraphPad prism 

version 5.0, 6.0 and 7.0 for Windows (GraphPad Software, California USA) and 

R Statistical Software (R Foundation for Statistical Computing) with packages 

gplots, shiny, mass, vegan and RcolorBrewer. Differences were considered 

statistically significant if p≤0.05. Benjamini-Hochberg multiple correction was 

performed in R for 30-plex cytokine data. 
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CHAPTER THREE 

 

DEVELOPMENT OF METHODOLOGY FOR NASAL 

MUCOSA ANALYSIS 
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3.1 Introduction 
 

The human oro/nasopharynx is the major site of Spn colonisation 295 and 

LAIV attenuated virus replication 153,296. In order to establish reliable and 

reproducible methodologies for nasal cell immunophenotyping and cytokine 

analysis of the mucosal immune responses, we assessed and compared 3 

minimally-invasive micro-sampling techniques (nasal wash, nasal curettage and 

nasosorption). 

Currently, the most used method for collecting cells from within the 

nasopharynx is a NW procedure. The technique is well tolerated, however, 

luminal cell populations can vary significantly from intra-mucosal populations 

297,298. Cell collection using nasal curettes is an alternative method that has 

previously been used to collect epithelial cells for culture, as well as for gene 

expression analysis 299,300. Herein, we sampled the nasal mucosa using nasal 

curettes and studied the composition of nasal cells using flow cytometry. Nasal 

immune cell yields and viability were compared between nasal curettes and nasal 

washes. 

Cytokines and other soluble immune mediators are also commonly 

measured in NW samples. However, an absorptive matrix to collect nasal fluid 

(NS) has been tested in neonates, and has the potential to be better tolerated 

and more widely applicable 301. This technique has recently been used to 

investigate nasal responses to grass pollen, LPS and rhinovirus 302–304.  

Immunological findings in murine, or other animal models, often fail to 

translate to humans, which indicate the need for more accurate non-invasive 

techniques to measure immunological response in the nose. Furthermore, an 

improved method of sampling the nasal mucosa would certainly lead to a greater 
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understanding of the cellular components in the human nasopharynx. In this 

chapter, we aimed to compare cells and cytokines detection between different 

techniques.  
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3.2 Methods 
 

3.2.1 Volunteers recruitment 

In total 240 samples were collected from 139 healthy individuals 

(requirements described in Section 2.2) from the Antecedent Study (Section 2.3) 

to investigate techniques for studying immune responses at the mucosal level. 

 

3.2.2 Collection of nasal samples 

All participants were sampled for NW (Section 2.5.4) using 20 mL of sterile 

saline and underwent nasal curettage and NS collection. 

In order to collect nasal cells by curettage, volunteers had their inferior 

turbinates scraped using a rhinoprobe (BRAND ASL Rhino-Pro©, Arlington 

Scientific) in each nostril, as described in Section 2.5.5. The sample was placed 

in 8 mL of PBS +Ca+Mg and placed on ice for further analysis. 

For NS collection, an adsorptive matrix strip (Nasosorption™, Hunt 

Developments) was inserted into the nostril and placed against the nasal lining 

of the inferior turbinate for 2 minutes and then placed in its transport tube (Section 

2.5.6). 
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3.2.3 Flow cytometry analysis 

As described in Section 2.6.6.1, cells were dislodged from the curette and, 

were spun down (440xg for 5 minutes) and resuspended in PBS+Ca+Mg 

containing LIVE/DEAD Fixable Aqua Dead Cell Stain (ThermoFisher). After 15 

minutes incubation on ice, a cocktail of conjugated antibodies against key cell 

surface markers such as Epcam-PE, HLADR-PECy7, CD16-APC, CD66b-FITC 

(Biolegend), CD3-APCCy7, CD14-PercpCy5.5 (BD Biosciences) and CD45-

PACOrange (ThermoFisher) was added to the cells. Following a further 15 

minutes incubation on ice, cells were filtered over a 70μm filter (ThermoFisher). 

Next, the cells were spun down (440xg for 5 minutes), resuspended in 

PBS+Ca+Mg and acquired on a flow cytometer (LSRII, BD). NWs were similarly 

processed excluding the dislodging step as described in Section 2.6.5. Flow 

cytometry data were analysed using Flowjo V.10 (Treestar). 

 

3.2.4 Cytokine detection  

As described in Section 2.6.7, nasal lining fluid was extracted from 

nasosorption strips by centrifugation (1880xg for 10 minutes) and frozen at -80oC 

until use. Supernatant from NW was collected by centrifugation at 1008xg for 3 

minutes and was stored at -80oC until use. The human magnetic 30-plex cytokine 

kit (ThermoFisher) was used to detect 30 cytokines simultaneously on a LX200 

with xPonent3.1 software (Luminex) following manufacturer’s instructions 

described in Section 2.6.7. 
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3.2.5 Scoring tolerability of nasal sampling procedures 

Following NS, nasal curettage and NW, participants rated using a 5-point 

modified Likert scale (Section 2.5.2) how ‘painful’ and how ‘uncomfortable’ each 

procedure was, and how much it made their ‘eyes water’. 39 participants also 

completed a symptoms log for 7 days documenting both local and general 

symptoms with severity ratings from 1 to 7 (Section 2.5.2). 

 

3.2.6 Multi-dimensional scaling and heat map generation  

Multi-dimensional scaling and heat map representations were generated 

using statistical software R. Flow cytometry data (epithelial cell yield, 

immunophenotyping and activation) was log-transformed and a distance-matrix 

was calculated. The Kruskal stress was calculated using the ‘MASS’ package on 

the R software. Heat maps of log-transformed cytokine data were generated 

using the ‘gplots’ package. 

 

3.2.7 Statistical analysis  

As described in Section 2.7, non-parametric two-tailed tests were used 

throughout using Prism 5 (Graphpad). If 2 groups were compared, a Mann-

Whitney test was used. If multiple groups were compared, a Kruskal-Wallis test 

was used, followed by a Dunn’s post-test. A Spearman test was used to measure 

correlations between 2 continuous variables. Analysis of similarity (ANOSIM) 

testing was performed using the ‘vegan’ package in R. 

 

  



 

 
 

89 Development of methodology for nasal mucosa analysis 
 

3.3 Results 
 

 

Nasal curettage yields robust and reproducible data 

To verify the repeatability of nasal curettage, we initially collected samples 

from the left and right nostril of 3 healthy volunteers and performed flow cytometry 

to identify cellular composition (Figure 7). 

Samples from both nostrils were processed independently and 

frequencies of neutrophils, monocytes and T-cells were compared for each of the 

3 volunteers. Cellular samples collected from the 2 nostrils were similar for each 

of the 3 volunteers, compared to samples collected from the other 2 volunteers. 

These results demonstrate the repeatability of nasal curettage as well as the 

presence of inter-individual variation in immune cells in the nose. 
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Figure 7. Repeatability of nasal curettage sampling. Nasal cells were collected from the left (L) 

and right (R) nostril of three volunteers, processed independently and their composition was 

assessed by flow cytometry. After excluding debris and doublets, epithelial cells were identified by 

Epcam expression. A viability dye and CD45 were used to identify live immune cells. Among those 

cells, side scatter, CD66b, CD14 and CD3 were used to identify neutrophils, monocytes and T-cells 

respectively. 
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To verify that nasal curette sampling yields stable data, cells were 

collected from healthy volunteers (n=117) over a 5-month period (Figure 8). The 

percentage of neutrophils and T-cells among immune cells was stable during this 

period (Figure 8A). Moreover, for a subset of volunteers, up to 4 nasal samples 

were collected during a 33 day period. The levels of both neutrophils and T-cells 

correlated on an intra-individual level between repeated sampling (Figure 8B and 

8C). These results demonstrate that despite variation between individuals, the 

immunological profile in the nose is stable in the absence of disease or immune 

intervention such as vaccination. 
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Figure 8. Nasal curettage yields reproducible and consistent results over time. (A) The percentage of 
neutrophils (red) and T-cells (blue) in 218 nasal cell samples collected over a 5-month period (n=117 volunteers, 
sampled up to 5 times). Circles represent individual samples and loess curves are depicted for both populations. (B, 
C) Correlations for individuals in 4 repeated measurements over a 33-day period for (B) neutrophils and (C) T-cells 
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Nasal curettage and nasal wash yield different cell populations 

We then compared the yield and composition of nasal cells collected using 

curettes to those collected using a NW (Figure 9A and 9B). Nasal curettage 

yielded a median of 4367 (interquartile range, IQR: 1511–10348) immune cells 

and 1407 (IQR: 570–3194) epithelial cells, respectively. The number of immune 

cells obtained was similar between NW and nasal curette. In contrast, there were 

a median 22.7-fold increased numbers of epithelial cells collected by nasal 

curette (Figure 9A, p<0.05). Figure 9B shows the composition of the collected 

immune cells. NW immune cells consisted almost exclusively of neutrophils 

(median 96%, IQR: 93–97%). On the other hand, nasal curette samples 

contained predominantly neutrophils (median 64%, IQR: 39–79%, p<0.0001 

compared to NW), but also consisted of a larger fraction of T-cells than NW 

(median 16%, IQR: 9–38%, p<0.0001 when compared to NW).  

A median of 2591 (IQR: 691–7666) neutrophils and 633 (IQR: 210–1740) 

T-cells were acquired per sample. Nasal curette samples also contained more 

HLA-DR+ cells, which are likely to consist of B-cells and DCs (median 1.7%, IQR 

0.9–3.2%, p<0.001 compared to NW). Of all immune cells collected by curettage 

and NW, 81.7% and 96.4% could be characterised, respectively. 
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Figure 9. Comparison of samples collected by nasal wash and nasal curette. (A) Immune 

(black) and epithelial (grey) cell yields were compared between nasal wash pellets and nasal 

curette samples. Individuals samples and median with interquartile range are shown. (B) Median 

levels of neutrophils (blue), T-cells (red), monocytes (black) and lineage- HLA-DR+ (grey) among 

immune cells in nasal curette (n=139 individuals) and nasal wash (n=8) samples. **p<0.01, 

***p<0.001, ****p<0.0001 Mann-Whitney test. 
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Cytokine detection from nasal lining fluid using nasosorption 

devices  

To investigate cytokines in the nose, we used NW and NS to collect nasal 

lining fluid. The median volume of nasal lining fluid returned using this technique 

was 42.5μL (IQR: 29.25–71.25μL, n=41). We compared cytokine levels in nasal 

lining fluid and NW supernatant for 30 cytokines by Luminex (Figure 10A).  

Levels of different cytokines varied considerably, with median levels of IL-

1RA at 212,000pg/mL and GM-CSF at 2pg/mL in nasal lining fluid. Relative 

cytokine abundancy correlated well between NS and NW, as cytokines that were 

abundant in NS were also highly present in NW. Of interest, T-cell cytokines (IL-

10, IL-17, IFN-, TNF-α, IL-4, IL-5, IL-2) were only present at low levels (Figure 

10B), which correlates with the absence of T-cells in the lumen. Growth factors 

as EGF, HGF and VEGF were expressed at moderately high levels, reflecting the 

homeostatic nature of mucosal surfaces. 

Levels of cytokines were higher in NS compared to NW (median 4.7x, IQR: 

3.1–8.0x). However, some cytokines had a ratio between NS and NW that 

differed substantially from this: IL-1RA and IL-5 were respectively 51.5x and 

45.2x higher in NS than in NW. In contrast, MIG, RANTES and IP-10 were found 

at similar levels in NS and in NW (ratio of 1.5x, 1.0x and 0.9x, respectively) 

(Figure 10B). 
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Figure 10. Comparison of cytokine levels in samples collected by NW and using NS strips. (A) A heat 

map depicts log-transformed cytokine concentrations, with yellow and blue indicating low and high levels, 

respectively. Each of the columns corresponds to 1 sample (n=6 NW and NS) and each of the rows to 1 

cytokine. A distance tree shows similarity between cytokines. (B) The ratio of cytokine concentrations 

measured in paired NS and NW (median and IQR are shown, n=6). 
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Methods of nasal micro-sampling are well tolerated by 

volunteers and do not lead to symptoms 

Using the 5-point modified Likert scale, 20 participants gave ratings for 

nasal curettage (88 ratings) and NS (60 ratings) with regards to pain, discomfort 

and lacrimation (Table 2).  

For nasal curettage and NS (Figure 11), the proportion of responses that 

reported any degree of pain (any score > 1) were 73% and 10%, respectively. 

Additionally, the proportion of responses that reported any degree of discomfort 

(score > 1) were 86% and 47%, respectively. Moreover, the proportion of 

responses that reported any degree of lacrimation (score > 1) were, 84% and 

28%, respectively.  

For NS the maximum rating was moderate for levels of discomfort, pain or 

causing lacrimation. A small proportion of responses rated nasal curettage as 

very painful (2%), uncomfortable (8%) or causing lacrimation (6%). 

Finally, we assessed whether these sampling methods led to increased 

general and nasal symptoms over a longer period in 39 healthy volunteers (Table 

3). All participants had NW procedures and 20 of those participants had nasal 

curettage and NS to investigate whether these additional sampling methods 

affect nasal symptoms. Daily symptom logs for nasal and general symptoms were 

completed by all volunteers. Age and sex distribution were similar in each group. 

The median ratings for overall nasal symptoms were 1 (range 1–4) and 1 (range 

1–5) in the group with and without additional nasal sampling, respectively.  

In the symptoms log, a score of 1 represented ‘none to occasional 

symptoms’ and 5 represented ‘moderately bothersome’. Comparison of area 

under the curve between the 2 groups showed no significant difference in either 

overall nasal symptoms or general symptoms. In addition, we compared nasal 
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and general symptoms between participants with and without additional nasal 

sampling on day 1 (before additional sampling) and day 3 (after additional 

sampling). There were no significant differences between nasal or general 

symptoms with or without additional nasal sampling at these time points. 
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Table 8. Levels of pain, discomfort and lacrimation associated with nasal curettage and NS. 

Volunteer responses (%, n) 

PAIN RATING 

Pain rating Nasal curettage Nasosorption 

1 - Not at all  27% (24) 90% (54) 

2 – Slightly 43% (38) 10% (6) 

3 – Moderately 27% (24) 0% (0) 

4 – Very 3% (2) 0% (0) 

5 – Extremely 0% (0) 0% (0) 

DISCOMFORT RATING 

Discomfort rating Nasal curettage Nasosorption 

1 - Not at all  13% (12) 53% (32) 

2 – Slightly 47% (42) 40% (24) 

3 – Moderately 32% (28) 7% (4) 

4 – Very 8% (7) 0% (0) 

5 – Extremely 0% (0) 0% (0) 

LACRIMATION RATING 

Lacrimation rating Nasal curettage Nasosorption 

1 - Not at all  17% (14) 71% (4) 

2 – Slightly 60% (53) 22% (13) 

3 – Moderately 18% (16) 7% (4) 

4 – Very 3% (3) 0% (0) 

5 – Extremely 2% (2) 0% (0) 
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Figure 11.Tolerability of novel nasal sampling methods. The percentage of volunteers rating (A) nasal 

curettage and (B) nasosorption on discomfort, pain and lacrimation. 
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3.4 Discussion 
 

Here we described 2 novel non-invasive nasal mucosal micro-sampling 

techniques and their use for measuring immunological parameters in the nasal 

mucosa: 1) using nasal curettes to collect cells from the inferior turbinate and; 2) 

absorptive matrices to collect nasal lining fluid (NS). Both techniques were well 

tolerated and yielded reproducible and robust data. We demonstrated differences 

in immune populations and activation state in nasal mucosa compared to 

nasopharyngeal lumen in healthy adults. We also found superior cytokine 

detection with NS compared to NW. This was the first time that nasal cells 

collected in this way were analysed by flow cytometry, demonstrating the 

presence of immune cells in these samples. 

NW yielded almost exclusively neutrophils, indicating differences in 

immune cells were collected by NW and nasal curette. The lack of T-cells in NWs 

reflects earlier findings showing that neutrophils and monocytes readily enter the 

lumen in the gut, while T-cells are mostly associated with the sub-epithelial layer 

47,305,306. 

We also assessed the use of NS devices to collect nasal lining fluid. 

Importantly, the nasal lining fluid contained cytokines in concentrations that were 

increased compared to concentrated NW. Moreover, a positive correlation 

between cytokine levels that were detected in both nasal lining fluid and those 

from NW was observed. However, the ratio between cytokine concentrations in 

nasal lining fluid and NW was not similar for all cytokines assessed, which could 

be due to the existence of cytokines in different nasopharyngeal compartments. 

As NWs sample the entire nasopharynx in contrast to a localised sample coming 

from the NS strip this might lead to different returned cytokine levels. 
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Alternatively, these differences could arise from cytokines binding affinities to the 

NS paper. NW is currently the most commonly used method to obtain samples 

from the nasopharynx, however, it has limited application in multiple clinical 

scenarios such as sampling of children as NW consists of holding in and expelling 

saline through the nose. Here we have demonstrated that NS has greater 

sensitivity than the traditional NW and is extremely well tolerated by participants. 

Nevertheless, there are potential issues with sample collection using NS devices, 

such as poor return volume, which was corrected in future samplings by adding 

diluent buffer to the samples afterwards. 

In conclusion, non-invasive mucosal sampling yields nasal cells and nasal 

lining fluid that can be used to study both cellular and soluble immune responses 

at the mucosal surface. Such samplings are well-tolerated and do not lead to a 

change in nasal symptoms being ideal for research. These techniques were used 

throughout the 2 LAIV studies and can be widely implemented in order to provide 

researchers with an effective tool to study immunological responses in the 

respiratory tract. 
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CHAPTER FOUR 

 

EFFECT OF SPN AND LAIV ON RECRUITMENT OF 

IMMUNE CELLS TO NASAL MUCOSA 
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4.1 Introduction 
 

The mucosal tissue is described to have an epithelial cell layer that 

interacts directly with the environment, making it the body's first line of defence 

against infectious agents. Mucosal surfaces have a high tolerance to antigens 

that are not dangerous, coming from ingested food or commensal 

microorganisms, inhibiting unnecessary local and systemic immune responses in 

order to maintain homeostasis and normal physiological functions 307. 

The mucosa form the largest mammalian lymphoid organ system. As part 

of this complex barrier, the nasal mucosae are protected by specialised innate 

and adaptive immune mechanisms can recruit a large number of immune cells 

such as monocytes, neutrophils, DCs and T-cells, which can be resident cells or 

migratory cells that travel through the mucosa-associated lymphoid tissue 

(MALT) 308,309. 

Nasopharyngeal Spn colonisation is the primary reservoir for bacterial 

transmission 310 and a prerequisite of invasive disease 311. However, it is common 

for humans to be naturally colonised by Spn asymptomatically many times during 

lifetime for weeks or even months at a time 312. Therefore, a successful control of 

the Spn load by immune cells in the nasal mucosa is the key for preventing severe 

illness 313 as uncontrolled Spn colonisation and increased bacterial load has been 

associated with transmission within households 310, elevated risk of Spn 

pneumonia 266 and mortality 314.  

Moreover, it is known that during Spn and wild-type influenza virus co-

infection, the host ability to control bacterial growth is affected 75,270,315–317. The 

presence of the virus induces additional adaptive CD8+ T-cell responses in the 

nasal mucosa to achieve virus clearance and support innate host defences 188. 
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Consequently, adaptive and innate responses synergize to culminate in an 

inflammatory cytokine and chemokine storm 271. 

It is important to notice that influenza attenuated viruses contained in the 

LAIV can impact on Spn density in children 318. Furthermore, LAIV in 2 to 4 year 

old increased prevalence of Spn when compared to other microbiota in the nose 

318. In adults, asymptomatic viral infection has been shown to predispose to 

experimental colonisation by facilitating Spn adherence to the epithelium 46. 

Murine models also confirms that LAIV increases susceptibility to and duration of 

Spn colonisation with similar mechanisms to the wild-type influenza virus 282. 

However, as most of the observed interactions between Spn, attenuated 

influenza virus and host derive from mice and children models, these findings 

may not accurately correspond to the human adult counterpart. Therefore, it 

becomes important to confirm this observation using samples from healthy 

adults. 
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4.2 Methods 
 

4.2.1 Volunteer recruitment, vaccination and inoculation 

216 healthy adult volunteers were recruited to the Antecedent and 

Concurrent LAIV study (Section 2.2) and received vaccination (LAIV or TIV as 

control) and intranasal inoculation with Spn6B (EHPC). In the Antecedent study, 

vaccine was administered 3 days before inoculation, while in the Concurrent 

study, subjects received the vaccine 3 days after the inoculation (Section 2.3). 

 

4.2.2 Nasal cells collection, processing and staining 

Before and after vaccination and inoculation, 106 volunteers recruited to 

the Antecedent study and 110 to the Concurrent study had their inferior turbinates 

scraped with a rhinoprobe (Section 2.5.5) on predetermined timepoints. 

Nasal cells were washed (Section 2.6.6) and stained with extracellular 

antibodies (Section 2.6.6.1). In the Antecedent study, nasal cells were stained 

with against CD45, Epcam, CD14, CD3, CD16, CD66b and HLADR cell surface 

markers , whereas in the Concurrent study 2 additional antibodies for DCs (anti-

BDCA-1 and anti-BDCA-2) were included in the flow cytometry panel. 

Volunteers were stratified into 4 groups for analysis: TIV Spn-, vaccinated 

with TIV and negative for Spn colonisation (Antecedent n=25, Concurrent n=33); 

TIV Spn+, vaccinated with TIV and Spn colonised (Antecedent n=18, Concurrent 

n=25); LAIV Spn-, vaccinated with LAIV and not colonised (Antecedent n=26, 

Concurrent n=30); LAIV Spn+, vaccinated with LAIV and Spn colonised 

(Antecedent n=22, Concurrent n=22). 

 



 

 
 

107 Effect of Spn and LAIV on recruitment of immune cells to nasal mucosa 

4.2.3 Flow cytometry and statistical analysis 

To account for the differences in the length of sample collected by 

curettage and accurately compare the number of immune cells recruited to the 

nasal mucosa, the analysis of specific cell numbers was made using the number 

of the specific cell population compared to the epithelial cell numbers contained 

in the collected sample. The recruitment of immune cells was analysed in each 

group by comparing the median number of immune cells to epithelial cell ratio at 

each timepoint compared to baseline (Antecedent study: day -4; Concurrent 

study: day -5 from Spn inoculation) by Wilcoxon test. Comparisons of median 

results between groups were done by Mann-Whitney test.  

Stained nasal cells were analysed in a flow cytometer using FlowJo X 

(Treestar) and gating strategy is shown in Section 2.7. Statistical analysis was 

done using Prism 7 (Graphpad) software. 
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4.3 Results 
 

4.3.1 Antecedent LAIV 

In the Antecedent study, 106 volunteers were vaccinated with either TIV 

(n=51) or LAIV (n=55) and inoculated with Spn 3 days later. Subjects were 

sampled for nasal cells on days -4 (baseline), +2, +7, +9, +29 relative to Spn 

inoculation. For analysis, volunteers were stratified into the groups: TIV Spn-, TIV 

Spn+, LAIV Spn- and LAIV Spn+. In addition, for analysis regarding only Spn 

colonisation status, volunteers were divided into the groups: Spn- (not Spn 

colonised, n=60) and Spn+ (Spn colonised, n=46). 
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Induction of monocyte recruitment to the nose by Spn colonisation 

is impaired by antecedent LAIV vaccination 
 

Here we compared the recruitment of monocytes to the nasopharynx using 

the median of monocytes to epithelial cell ratio. When assessing all volunteers 

colonised by Spn independent of vaccine, Spn-induced monocyte recruitment 

was significant at day +2 (Spn- vs. Spn+, median 2.1-fold increase, p=0.014, 

Figure 12B). Importantly, when stratified by vaccination, colonised volunteers 

showed a significant induction in recruitment at day +2 when compared to 

baseline, but only when vaccinated with TIV (TIV Spn+: median 2.3-fold increase, 

p=0.038). Further, at day +9, a median 3.4-fold increase in monocyte levels was 

still observed in TIV Spn+ (p=0.002). The significant induction shown in this group 

continued to be demonstrated as far as day +29, with 3.1-fold increase (p=0.030, 

Figure 12A). However, in colonised subjects, LAIV given before inoculation 

reduced the Spn-induced recruitment of monocytes. 
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Figure 12. Induction of 

monocyte recruitment to 

the nose by Spn 

colonisation is impaired 

by antecedent LAIV 

vaccination. (A) 

Recruitment of monocytes 

was measured in 106 

volunteers (n=20-31 in 

each group) by comparing 

the ratio of median of 

monocytes to epithelial cell 

in each timepoint 

compared to its baseline 

(day -4). (B) Median of 

monocyte to epithelial cell 

ratio of volunteers stratified 

by Spn colonisation status. 

Comparison between 

groups was made by 

Mann-Whitney test with p 

value signifying *p≤0.05. 



 

 
 

111 Effect of Spn and LAIV on recruitment of immune cells to nasal mucosa 

Monocyte recruitment is associated with density of Spn only in TIV 

vaccinated. 
 

In order to investigate if the monocyte infiltration observed was associated 

with the increase in Spn density in the nasal mucosa, we performed correlation 

tests by using the maximum Spn density and maximum ratio of monocytes in the 

nasal mucosa in a subset of 45 colonised volunteers of the Antecedent LAIV-

EHPC study (TIV n=22, LAIV n=23). We demonstrated that the peak in monocyte 

numbers correlates with Spn density in the TIV- (p=0.016, R2=0.64, Figure 13A), 

but not in the LAIV-vaccinated group (p=0.70, R2=-0.03, Figure 13B). 
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Figure 13. Monocyte recruitment is associated with density of Spn only in TIV vaccinated 

group. Levels of maximum Spn load are shown for the (A) TIV Spn+ (n=22) and (B) LAIV Spn+ 

group (n=23) and correlated with the maximum monocyte recruitment (fold-change to baseline). 

Individual subjects and Spearman correlation analysis are shown 
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Spn-induced activation of neutrophils in the nose is impaired by 

antecedent LAIV. 
 

To assess the levels of neutrophils we analysed CD66b, a marker for 

active neutrophils 319,320, in 106 volunteers divided in the groups. In addition, we 

measured the average median fluorescence intensity of CD66b from neutrophil 

(MFI of CD66b) to test the intensity of this marker. 

We observed that neither Spn colonisation nor influenza vaccination 

significantly alters the number of active neutrophils recruited to the nasal mucosa 

(Figure 14A, 14B). However, in TIV Spn-, the number of active neutrophils were 

slightly higher at day +2 when compared to baseline (Day +2 with median MFI of 

8534,8 and IQR 6495-14560 vs Day -4 with median 6846,6 and IQR 5260-11101, 

p=0.002, Figure 14C). Such a response was impaired in the LAIV group. When 

compared by Spn colonisation status, no significant differences in neutrophil 

recruitment between the groups were observed (Figure 14D). 
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Figure 14. Spn-induced activation of active neutrophils in the nose is impaired by 

antecedent LAIV. Recruitment of neutrophils was measured in 106 volunteers with groups 

stratified by vaccination status (TIV or LAIV) and Spn colonisation (Spn-, non-colonised, and 

Spn+, colonised): TIV Spn- (n=31), TIV Spn+ (n=20), LAIV Spn- (n=29) and LAIV Spn+ (n=26). 

We compared (A) the median of neutrophils to epithelial cell ratio in each timepoint to baseline 

(day -4). (B) Median of neutrophils to epithelial cell ratio in volunteers stratified by Spn colonisation 

status (Spn- and Spn+). (C) Activation of neutrophils was assessed by comparing the median of 

MFI of CD66b in each timepoint to baseline. (D) Median of MFI of CD66b was compared between 

groups stratified by Spn colonisation. Comparisons within groups were performed by using 

Wilcoxon test and between groups by Mann Whitney test with **p<0.01 

.  
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Antecedent LAIV induces activation of T-cells in the human nose. 
 

We examined T-cell recruitment to the nasal mucosa, comparing 106 

volunteers divided in groups considering vaccine and Spn colonisation status. 

Additionally, activation of T-cells was determined by analysing T-cell populations 

positive for the marker HLA-DR. 

Similar to neutrophils, neither the influenza vaccines nor Spn colonisation 

induced significant recruitment of CD3+ T-cells to the nose (Figure 15A and 15B). 

Nevertheless, antecedent LAIV induced T-cell activation independent of Spn 

colonisation status. LAIV administration before the bacterial challenge resulted to 

a peak of T cell activation 10 days (LAIV Spn+, day +7 median 1.3-fold increase, 

p=0.039) and 13 days after vaccination (LAIV Spn+, day +9, median 1.2-fold 

increase, p=0.042), whereas non-colonised subjects demonstrated a similar peak 

after 7 days (LAIV Spn-, median 1.3-fold increase, p=0.007) with another median 

1.3-fold increase 29 days post-inoculation (LAIV Spn-, p=0.046, Figure 16). 
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Figure 15. Antecedent influenza vaccines and Spn colonisation do not affect T-

cell recruitment to the human nasal lumen. (A) Nasal recruitment of T-cells was 

measured in 106 volunteers divided into groups: TIV Spn- (n=31), TIV Spn+ (n=20), 

LAIV Spn- (n=29) and LAIV Spn+ (n=26). We compared the (A) Median of T-cells to 

epithelial cell ratio in each timepoint to baseline (day -4) within groups using Wilcoxon 

test. (B) Median of T-cells to epithelial cell ratio in volunteers stratified by Spn 

colonisation status using Mann Whitney test for comparison between groups 
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Figure 16. Antecedent LAIV, but not TIV, induces activation of T-cells in the human nose. 

Activation of T-cells was measured by comparing median percentage of HLA-DR+ T-cells in 106 

volunteers (n=20-31) using Wilcoxon test for each timepoint to baseline (day -4) with *p≤0.05. 
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4.3.2 Concurrent LAIV 
 

During the Concurrent LAIV-EHPC study, 194 volunteers were inoculated 

with Spn and vaccinated with either TIV (n=97) or LAIV (n=97) 3 days later. Nasal 

cells were sampled by curettage on days -5 (baseline), +2 (no vaccine), +6, +9, 

+27 relative to Spn inoculation. To perform the analysis, subjects were stratified 

into the groups: TIV Spn-, TIV Spn+, LAIV Spn- and LAIV Spn+. 
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Spn colonisation of the nasopharynx induce neutrophil activation. 
 

For assessment of monocyte recruitment in nasal mucosa, we compared 

the median of monocytes to epithelial cell ratio in each timepoint to baseline using 

extracellular staining and flow cytometry analysis. Contrarily to the Antecedent 

study, no nasal recruitment of monocytes was observed after influenza 

vaccination or Spn colonisation (Figure 17A and 17B). 
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Figure 17. Induction of monocyte recruitment to the nose by Spn colonisation 

is affected by influenza vaccination.  (A) Recruitment of monocytes was 

measured in 99 volunteers (n=24-27) by comparing the ratio of median monocytes 

to epithelial cell in each timepoint compared to its baseline (day -5). (B) Median of 

monocyte to epithelial cell ratio of volunteers stratified by Spn colonisation status 

(Spn- and Spn+). Comparison within groups was made by Wilcoxon test and 

between groups was made by Mann-Whitney test. 
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Neutrophil levels were assessed in the same way by using the ratio of 

neutrophils to epithelial cells ratio in each timepoint. The concurrent influenza 

vaccines did not affect significantly the number of neutrophils at the nasal lumen 

(Figure 18A). However, in non-colonised (Spn-) group, levels of neutrophils were 

reduced by median 2.5-fold 27 days post Spn challenge when compared to 

baseline (p=0.046, Figure 18B). 

In response to Spn colonisation, LAIV Spn+ had a significant increase in 

neutrophil activation 2 days post-inoculation and before influenza vaccination 

(median 1.4-fold increase, p=0.048, Figure 18C). Although, the same pattern of 

neutrophil activation was observed in TIV Spn+, this increase did not differ 

significantly from the baseline. As these 2 groups received the influenza vaccine 

at Day 3 post pneumococcal inoculation, they can be pooled together up to Day 

2. Therefore, when volunteers were stratified by colonisation status, it was shown 

that indeed Spn induced neutrophils activation 2 days after inoculation (Spn+, 

median 1.66-fold increase, p<0.0001, Figure 18D). The induction was sustained 

6 days post-inoculation (median 1.4-fold increase, p=0.013), increasing further 

after 9 days (median 1.8-fold increase, p=0.022). 

Notably, differences in neutrophils activation were already significant at 

baseline (day -5), with TIV Spn+ being a median 1.5 and 1.6 times higher when 

compared to TIV Spn- (p=0.040) and LAIV vaccinated groups, respectively (vs 

LAIV Spn-, p=0.022, Figure 18C). 
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Figure 18. Spn colonisation of the nasopharynx induces neutrophil activation. (A) 

Recruitment of neutrophils was measured in 99 volunteers (n=24-27) by comparing the median 

of neutrophils to epithelial cell ratio in each timepoint to baseline (day -5) within groups using 

Wilcoxon test. (B) Median of neutrophils to epithelial cell ratio was measured in volunteers 

stratified by Spn colonisation status (Spn- and Spn+). The groups were compared in each 

timepoint by Mann Whitney test. (C) Activation of neutrophils was measured by comparing the 

median MFI of CD66b in each timepoint to baseline using Wilcoxon test and between groups 

using Mann Whitney test, with *p≤0.05. (D) MFI of CD66b stratified by Spn colonisation using 

Mann Whitney test with ****p<0.0001 and *p≤0.05. 
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LAIV in Spn colonised alters T-cell subsets induction and T-cell 

activation. 
 

We investigated CD3+ T-cell recruitment to the nose, as well as activation 

of T- cells using the marker HLA-DR in 99 volunteers divided in groups: TIV Spn- 

(n=24), TIV Spn+ (n=27), LAIV Spn- (n=24) and LAIV Spn+ (n=24).  

Interestingly, concurrent LAIV and Spn colonisation prevented a small 

median increase of 1.1-fold in T-cells levels 27 days post-inoculation which was 

significant in TIV Spn- (p=0.013, Figure 19A, Figure 19B). Interestingly, at this 

timepoint, the group TIV Spn- showed higher CD4+ T-cells levels, presenting 

median 1.6-fold increase in levels (p=0.013, Figure 20A) as well as a decrease 

of CD8+ T-cells with a small median 1.1-fold reduction (p=0.007, Figure 20B). 

Importantly, LAIV Spn- showed a significant decrease in T-cell activation 

2 days after Spn inoculation which was impaired in Spn colonised (median 1.4-

fold decrease, p=0.025, Figure 21). 
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Figure 19. Late increase of T-cells in Spn non-colonised. (A) Nasal 

recruitment of T-cells was measured in volunteers (n=24-27) by 

comparing the median of T-cells to epithelial cell ratio in each timeline to 

baseline (-5) within groups using Wilcoxon test with *p≤0.05. (B) Median 

of T-cells to epithelial cell ratio in volunteers stratified by Spn colonisation 

status (Spn-, n=60, and Spn+, n=46) using Mann Whitney test for 

comparison between groups. 

  



 

 
 

125 Effect of Spn and LAIV on recruitment of immune cells to nasal mucosa 

 

-5 + 2 + 6 + 9 + 2 7

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .1 0

0 .1 5

0 .2 0

C
D

4
+

 T
-c

e
ll

s
:E

p
it

h
e

li
a

l 
R

a
ti

o

*

A

 

-5 + 2 + 6 + 9 + 2 7

0 .0

0 .1

0 .2

0 .3

0 .4

0 .6

0 .8

1 .0

C
D

8
+

 T
-c

e
ll

s
:E

p
it

h
e

li
a

l 
R

a
ti

o

*

B

 

 

Figure 20. LAIV and Spn colonisation alters late CD4+ T-cells decrease and CD8+ increase. 

(A) Nasal recruitment of T-cells was measured in volunteers (n=24-27) by comparing the median 

of CD4+ T-cells to epithelial cell ratio in each timeline to baseline (-5). (B) Median of CD8+ T-cells 

to epithelial cell ratio. Comparisons were made within groups using Wilcoxon test with * p≤0.05. 
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Figure 21. LAIV and Spn colonisation alters T-cell activation. (A) Activation of T-cells was 

measured by comparing median percentage of HLA-DR positive T-cells using Wilcoxon test for 

each timepoint to baseline (day -5) with *p≤0.05. Groups were stratified by vaccination and Spn 

colonisation status (n=24-27). (B) Fold-change of median percentage of HLA-DR positive T-cells 

using Wilcoxon test with *p≤0.05. 
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We also assessed the recruitment of DCs, using the markers BDCA1 

(CD1c) for inflammatory DCs and BDCA-2 (CLEC4C) for plasmacytoid DCs. 

BDCA-1+ DCs is a subset of cells that present dendritic morphology and can 

induce robust T-cell stimulation 321, whereas BDCA-2+ DCs can affect the innate 

immune responses via TNF- and IFN- production 322. The median of BDCA-1+ 

and BDCA-2+ cells to epithelial cell ratio was measured in each timepoint and 

compared to baseline demonstrating no significant differences in cell recruitment 

(Figure 22A and 22B). 
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Figure 22. Concurrent influenza vaccines and Spn colonisation do not significantly affect 

BDCA-1+ and BDCA-2+ DC levels in the human nasal mucosa. (A) Nasal recruitment of DCs 

was measured in volunteers (n=24-27) by comparing the (A) median of BDCA1+ DC. (B) median 

of BDCA-2+ DC. 
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4.4 Discussion 
 

The immunological mechanisms that control Spn colonisation and the 

impact of LAIV vaccination thereon have been studied extensively in mice 

76,186,323,324 but remain poorly understood in humans. The Antecedent and 

Concurrent LAIV-EHPC studies allowed us to study the recruitment of immune 

cells to the human nasopharynx following Spn inoculation and influenza 

immunisation. We demonstrated that when LAIV proceeds Spn colonisation 

affects cellular responses, such monocytes recruitment in the nasal lumen, as 

well as activation of neutrophils and T-cells. Additionally, Spn colonisation 

induced neutrophil activation and impaired T-cells activation and abundance in 

the nasal mucosa.  

The human nasopharynx, the site where pneumococcal colonisation 

occurs, is equipped with both epithelial and immune cells that mount responses 

to S. pneumoniae 306. In mice, nasal mucosal immune responses to Spn are 

described by classic activation of macrophages and increase in regulatory T-cells 

(T-reg) levels 92. During a colonisation episode, monocytes together with 

neutrophils are supposed to contribute to the control of Spn density, as 

demonstrated by the recruitment of these type of cells in mice deficient for 

macrophage 325,122,326. In line with the data deriving from mice 327, in healthy 

adults monocytes were recruited to the nasal mucosa after Spn colonisation. 

Monocytes recruitment peaked at Day 9 post the bacterial challenge in the control 

group. On the other hand, primary infection with LAIV, which leads to a transient 

influenza virus replication in the nasal mucosa, impaired monocyte recruitment in 

those colonised with Spn. Moreover, only in the control group Spn density was 

associated with increased monocyte recruitment, which suggests that the 
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attenuated influenza viruses contained in the vaccine possibly disrupts host 

cytokine and chemokine signalling and subsequently impairs monocyte 

recruitment. 

Our finding on the effect of LAIV in Spn colonised individuals corroborate 

with studies in which LAIV impact monocyte recruitment similarly to the wild-type 

influenza infection in mice, offering an explanation for the association of LAIV 

administration with increase in Spn acquisition and bacterial load found in human 

studies 318,328. Monocytes seems to be key cells in controlling nasopharyngeal 

pneumococcal colonisation 94 329 and inhibition of their recruitment to the nasal 

mucosal has been associated with reduced bacterial clearance 108,330. Although 

our results are robust, they may not be translated accurately to young children, 

as monocyte recruitment to the nasal mucosa is observed during influenza 

infection 331. Interestingly, although concurrent LAIV was shown to increase 

levels of monocytes, recruitment of these immune cells was not significant. A 

possible explanation for this discrepancy between the two studies is that baseline 

levels of resident macrophages were approximately the double in the Antecedent 

LAIV study when compared to the Concurrent LAIV study. Further, in the 

presence of Spn or when undergo apoptosis, resident macrophages signal for 

the recruitment of blood circulating monocytes, which could further explain the 

increased concentration of monocytes in volunteers who already displayed high 

levels at baseline. In addition, reduced Spn density and colonisation periods were 

reported in the Concurrent study when compared to the Antecedent 50 which can 

also affect monocyte recruitment. 

Unlike monocytes, high levels of neutrophils can be found in healthy 

individuals 327. During Spn colonisation in murine models, Th17 cells secrete IL-
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17A contributing to neutrophil recruitment to the nasal mucosa 94. In the first 24 

hours of Spn colonisation, neutrophils perform essential roles in controlling the 

infection mainly through serine proteases 332 as well as degranulation, production 

of reactive oxygen and nitrogen species, and pro-inflammatory cytokines 92,327.  

Additionally, co-infection studies with antecedent wild-type influenza virus 

and Spn in mice demonstrate impairment in recruitment of neutrophils due to 

reduction in KC and chemokine MCP-1 expression, critical for infection control 

186, as well as increased expression of anti-inflammatory cytokine IL-10, 

commonly produced by CD8+ T-regs after viral clearance 92,127,188. In contrast to 

this mechanism described in murine models of antecedent influenza co-infection, 

we did not observe neutrophil recruitment to the nose following Spn colonisation. 

This underlies the importance of confirmation of data with the attenuated virus 

and human data to elucidate the impact of LAIV.  

However, when Spn colonised the nasal mucosa prior to influenza 

vaccination, it induced activation of neutrophils during 9 days after inoculation, 

indicating that the co-infection elicits additional immune mechanisms for control 

of both pathogens. The results corroborate neutrophil studies in mice which have 

demonstrated that Spn infection within 3 days of influenza infection induce 

clearance whereas co-infection within 6 to 10 days conferred inefficient bacterial 

control and colonisation of the nasopharynx 192. Importantly, although neutrophils 

are present in the nasal lumen of children of 9 to 11 years old 333, the results may 

not be transferable to younger ages considering studies in which Spn-induced 

neutrophils are not detected in the nasal mucosa of naive mice 94. Additionally, 

the depletion of these immune cells did not increase susceptibility to 

pneumococcal invasive disease in a mouse model 334. 
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When the innate immunity is not enough to allow for effective viral 

clearance, adaptive responses are also induced in the nasopharynx. Murine 

models show that in the human upper airways, viral pathogens are recognised 

through pattern recognition receptors (PRRs) such as TLRs and intracellular viral 

sensors that in turn induce adaptive responses 196, eliciting secretory antibodies 

and T-cells with mucosal homing properties, especially influenza-specific CD8+ 

T-cells, common in natural influenza infections 187. Here, we demonstrate that in 

human adults the presence of the attenuated influenza viruses did not affect T-

cell recruitment, although it induced T-cell activation. Increased activation 

indicates that the attenuated virus is presented to the host as a natural infection 

by producing intracellular influenza antigens eliciting T-cell responses similar to 

the wild-type influenza 335. 

In conclusion, the results presented in this chapter address important 

questions about the immune responses that control and clear Spn and how LAIV 

can alter these immune mechanisms, using for the first time an experimental 

human challenge model of co-infection with LAIV and Spn (EHPC). 
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CHAPTER FIVE 

 

EFFECT OF SPN AND LAIV ON THE NASOPHARYNX 

CYTOKINE PRODUCTION 
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5.1 Introduction 
 

A stable and asymptomatic Spn colonisation is not uncommon in children 

and adults, and provide benefits to the host as it develops cellular and adaptive 

immunity in the nasopharynx and systemically 49,62 . The immunising 

asymptomatic colonisation is maintained by a fine balance between pro- and anti-

inflammatory cytokines 92.  

However, influenza virus has the ability to interact with and modify the host 

nasal environment 196, and can leave individuals susceptible to uncontrolled Spn 

colonisation 262. First shown in a ferret model by McCullers 273, wild-type influenza 

virus causes deregulation between immune tolerance and inflammatory 

responses, which can lead to damage in nasal epithelium 190 and, in turn, facilitate 

Spn adhesion to cells and impairment of cellular protection against the bacteria 

76,92,274. Spn replicated continuously in the nose, increasing density and bacterial 

infiltration to the lungs as well as inducing more cytokines, chemokines and 

antimicrobial peptides 132,188,270. These elicited cytokines are shown to have a 

wide range of effects during co-infection in mice, acting on both innate and 

adaptive processes of the immune system 76,92,274. They can affect recruitment of 

immune cells, including monocytes, neutrophils and T-cells, as well as their 

activation 92,132,186,188,262,270,271.  

Furthermore, influenza vaccination with live attenuated virus – although an 

effective strategy to prevent infection in children 213 – also influence host immune 

responses to Spn, affecting Spn acquisition and density, transmission and 

susceptibility to invasive disease 281 due to its mimicry of wild-type influenza 

natural replication in the nasopharynx, known as viral shedding. Similarly to 

studies with wild-type influenza, LAIV vaccination in mice colonised with Spn also 
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induced deregulated cytokine responses in the nasopharynx 274, which highlights 

the necessity of validation of these findings in human. Herein, we used a 

controlled human LAIV-Spn co-infection model to investigate the cytokine 

responses elicited to Spn colonisation and how these responses are altered by 

either a primary or a simultaneous influenza viral infection.  

 

5.2 Material and methods 

5.2.1 Volunteer recruitment, vaccination and inoculation 

75 adult volunteers were recruited for the Antecedent and Concurrent 

studies (as described in Section 2.2) and received influenza vaccination (LAIV or 

TIV as control) and were inoculated with live Spn using EHPC. Individuals were 

vaccinated 3 days previous to Spn inoculation in the Antecedent study and 3 days 

after in the Concurrent study (Section 2.3 and 2.5.4).  

 

5.2.2 Nasosorption collection 

An adsorptive matrix strip was used in the nasal septum of volunteers for 

collection of nasal fluid and stored at -80oC (Section 2.5.7). 

 

5.2.3 Luminex and statistical analysis 

As described in Section 2.6.7 nasal fluid was washed and prepared for 

Luminex Human Cytokine 30-plex per manufacturer’s instructions. Results 

obtained were processed and analysed by a LX200 and xPonent 3.1 software. 

Statistical analysis was made in Prism 6 and 7 (Graphpad) and R software 

(Section 2.7). 
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5.3 Results 

In the Antecedent study, 75 volunteers were vaccinated with LAIV (n=38) 

or TIV as control (n=37) and 3 days later inoculated intranasally with live Spn. 

Volunteers were stratified into groups: TIV Spn- (n=19), TIV Spn+ (n=18), LAIV 

Spn- (=19) and LAIV Spn+ (n=19). NS was collected at baseline (day -4), day +0, 

+2, +7, +9 and +29 relative to Spn inoculation. Levels of 30 cytokines were 

measured in the nasal lining fluid by Luminex. 

In the Concurrent study, 56 volunteers were inoculated with live Spn, 

following vaccination with LAIV (n=28) or TIV (n=28) 3 days later. NS was 

collected at baseline (day -5) and at days +6, +9 and +27 relative to inoculation 

(or 3, 6 and 24 days after vaccination). Levels of 30 cytokines were measured in 

the nasal lining fluid by Luminex, however, only 6 volunteers became colonised 

in this subset of volunteers. Therefore, stratification for analysis was done 

regarding vaccination status with groups: TIV (n=28) and LAIV (n=28). 
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LAIV induces pro-inflammatory cytokines in nasopharynx, 

especially in Spn colonised. 
 

Firstly, we investigated the cytokine profile elicited by concurrent influenza 

vaccines in the human nasal mucosa in volunteers challenged by Spn but not 

colonised.  

Three days after vaccination (day +6), volunteers in the control group 

induced a median 1.4-fold decrease in levels of pro-inflammatory cytokine IL-1β 

(p=0.033, Figure 23A) and 6 days after (day +9) a median 2-fold decrease in GM-

CSF (p=0.049, Figure 23B).  

In contrast to TIV, LAIV vaccination elicited increase of IL-1β levels 3 days 

after vaccination (day +6) (median 1.2-fold increase) (p=0.049, Figure 24A). 

Moreover, we observed that LAIV induced a high pro-inflammatory cytokine 

response in the nose, with median 1.6-fold increase of IFN- and MIP-1 

(p=0.013, Figure 24B and Figure 24C), median 1.9-fold increase of MIP-1β levels 

(p=0.009, Figure 24D) and median 2.5-fold increase of TNF- levels (p=0.011, 

Figure 24E).  

Six days after vaccination (day +9), LAIV group maintained a similar to day 

+6 induction of IL-1β, MIP-1, TNF- and MIP-1β levels (IL.1β: median 1.3-fold 

increase, p=0.021, Figure 24A; MIP-1: median 1.5-fold increase, p=0.048, 

Figure 24C; TNF-: median 1.5-fold increase, p=0.026, Figure 24E; MIP.1β: 

median 1.5-fold increase, p=0.035, Figure 24D) but not for IFN-. Additional pro-

inflammatory cytokine response was elicited with increases in levels of MCP-1, 

IL-6 and IL-8 (MCP-1: median 1.8-fold increase, p=0.010, Figure 25A; IL-6: 

median 1.9-fold increase, p=0.035, Figure 25B; IL-8: median 1.3-fold increase, 

p=0.041, Figure 25C) with IL-8 sustained until day +29 (median 1.5-fold increase, 
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p=0.035, Figure 25C). Moreover, at day 24 after influenza vaccination (day +29), 

TNF- levels were sustained at levels similar to those observed at day +6 and +9 

(median 2.3-fold increase, p=0.018, Figure 25E) post LAIV. 
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Figure 23. TIV vaccinated group exhibits decrease in pro-inflammatory cytokines IL-1β and 

GM-CSF in the nasopharynx. Levels of (A) IL-1β and (B) GM-CSF measured in nasal lining of 

volunteers vaccinated with TIV (n=28) were compared at each timepoint to baseline (day -5) by 

Wilcoxon test with *p≤0.05. Medians and interquartile range of each timepoint are shown. 

  



 

 
 

139 Effect of Spn and LAIV on the nasopharynx cytokine production 

IL -1 

C
y

to
k

in
e

 (
p

g
/m

L
)

-5 + 6 + 9 + 2 7

0

1 0

2 0

3 0

2 0 0

4 0 0

6 0 0
*

*

A IF N -

C
y

to
k

in
e

 (
p

g
/m

L
)

-5 + 6 + 9 + 2 7

0

5 0

1 0 0

1 5 0

2 0 0

*

B

M IP -1

C
y

to
k

in
e

 (
p

g
/m

L
)

-5 + 6 + 9 + 2 7

0

2 0

4 0

6 0

8 0

1 0 0

1 0 0

1 5 0

2 0 0

2 5 0

*

*

C M IP -1 

C
y

to
k

in
e

 (
p

g
/m

L
)

-5 + 6 + 9 + 2 7

0

2 0 0

4 0 0

6 0 0

**

*

D

 

T N F -

C
y

to
k

in
e

 (
p

g
/m

L
)

-5 + 6 + 9 + 2 7

0

1 0

2 0

3 0

4 0

*

*

*

E

 

Figure 24. LAIV vaccinated group exhibits increase in pro-inflammatory cytokines in the 

nasopharynx. Levels of (A) IL-1β, (B) IFN-, (C) MIP-1, (D) MIP-1β and (E) TNF- measured 

in nasal lining of volunteers vaccinated with LAIV (n=28) were compared at each timepoint to 

baseline (day -5) by Wilcoxon test with *p≤0.05 and **p<0.01. Medians and interquartile range of 

each timepoint are shown. 
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Figure 25. LAIV vaccinated group exhibits increase in pro-inflammatory cytokines in the 

nasopharynx. Levels of (A) MCP-1, (B) IL-6 and (C) IL-8 measured in nasal lining of volunteers 

vaccinated with LAIV (n=28) were compared at each timepoint to baseline (day -5) by Wilcoxon 

test with *p≤0.05. Medians and interquartile range of each timepoint are shown. 
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Next, we examined the cytokine profile elicited in a second set of 

volunteers by antecedent influenza vaccines followed by Spn inoculation in the 

nose, with groups stratified by vaccination and colonisation status.  

Notably, antecedent LAIV in absence of Spn colonisation (day +0) induced 

cytokines IL-6 and MIG, as LAIV Spn- presented median 1.4- and 2.5-fold 

increase of IL-6 and MIG levels, respectively (p=0.021 and p=0.003, Figure 26A 

and 26B, respectively). Moreover, LAIV induced MCP-1 and TNF- secretion in 

the nasopharynx, but only MCP-1 levels were maintained up to Day 9 post 

inoculation in the LAIV Spn- (MCP-1, median 1.3-fold increase, p=0.029; TNF-, 

median 1.9-fold increase, p=0.030, Figure 27A and 27B). 

Additionally, in LAIV Spn-, Spn challenge also induced the secretion of the 

pro-inflammatory cytokines MIP-1, MIP-1β, IL-1β and RANTES 2 days after 

challenge (MIP-1, median 1.3-fold increase, p=0.024; MIP-1β, median 1.4-fold 

increase, p=0.036; IL-1β, median 1.7-fold increase, p=0.004; RANTES, median 

2.9-fold increase, p=0.026, Figure 28A, 28B, 28C and 28D respectively). 

Seven days after inoculation, volunteers continued to express Spn-

induced IL-1β although no other cytokine increase was demonstrated (median 

1.3-fold increase, p=0.020, Figure 28C). On the other hand, 9 days post-

inoculation another peak of pro-inflammatory cytokine levels was observed in this 

group with induction of MIG, MCP-1, IL-1β and RANTES (MIG, median 1.7-fold 

increase, p=0.030; MCP-1, median 1.4-fold increase, p=0.010, IL-1β, median 1.5-

fold increase, p=0.044; RANTES, median 2.5-fold increase, p=0.018. Figures 

26B, 27A; 28C and 28D respectively). 

The inflammation profile observed at day +0 in LAIV Spn+ was similar to 

the non-colonised group for cytokines IL-6 and MIG, presenting a median 1.6- 
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and 2.2-fold increase, respectively (p=0.012 and p=0.023, Figure 29A and 29B, 

respectively). Furthermore, LAIV with the influence of Spn, induced the 

production of cytokines IFN-, MIP-1, MIP-1β and IP-10 (median 1.1-, 1.2-, 1.3- 

and 3.6-fold increase, respectively. IFN-, p=0.009; MIP-1, p=0.023; MIP-1β, 

p=0.035; IP-10, p<0.001, Figure 30A, 30B, 30C and 30D respectively). 

Interestingly, LAIV Spn+ LAIV-induced IL-6 cytokine exhibited increased levels 5 

days after LAIV administration (median 1.8-fold increase, p<0.001, Figure 29A). 

Also 5 days after LAIV, in volunteers of the LAIV Spn+ group, Spn 

colonisation induced a median 1.4-fold increase in IL-1β (p=0.003, Figure 31). 

These volunteers also demonstrated higher levels of MIP-1 and MIP-1β (Figure 

30B and 30C), however this induction started before Spn inoculation (MIP-1, 

median 1.4-fold increase, p=0.038; MIP-1β, median 1.6-fold increase, p=0.017). 

Additionally, likewise responses at day +0, 2 days after Spn challenge, LAIV-

vaccinated and colonised were still the only group to induce IFN- (median 1.2-

fold increase, p=0.001, Figure 30A) and even higher levels of IP-10 (median 4.8-

fold increase, Figure 30D). 

Opposite to non-colonised, LAIV Spn+ did not show great cytokine level 

increases after 2 days since colonisation. In this group, we also observed only a 

moderate increase in IFN- induction 7 and 9 days post-inoculation (day +7, 

median 1.1-fold increase, p=0.028, day +9, median 1.1-fold increase, p=0.018, 

Figure 30A). 

Interestingly, the TIV Spn- exhibited an induction of MIG before (day +0), 

7 and 9 days after Spn challenge, which was not observed in the first set of 

volunteers vaccinated with concurrent TIV (day +7, median 1.4-fold increase, 
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p=0.010; day +9, median 1.9-fold increase, p=0.026. Figure 32A) as well as IP-

10 at day +9 (median 1.4-fold increase, p=0.026, Figure 32B). 
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Figure 26. Antecedent LAIV induces pro-inflammatory cytokines IL-6 and MIG in 

nasopharynx of non-colonised volunteers. Levels of (A) IL-6 and (B) MIG were measured in 

nasal lining of volunteers vaccinated with antecedent LAIV and not colonised by Spn (LAIV Spn-

, n=18-19). Results were compared at each timepoint to baseline (day -4) by Wilcoxon test with 

*p≤0.05 and **p<0.01 and medians and interquartile range of each timepoint are shown.  
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Figure 27. Antecedent LAIV induces pro-inflammatory cytokines MCP-1 and TNF- in 

nasopharynx of non-colonised volunteers. Levels of (A) MCP-1 and (B) TNF- were 

measured in nasal lining of antecedent LAIV-vaccinated and non-colonised volunteers (LAIV Spn-

, n=18-19) and compared at each timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05. 

Medians and interquartile range of each timepoint are shown. 
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Figure 28. Antecedent LAIV induces additional pro-inflammatory cytokines in nasopharynx 

of non-colonised volunteers. Levels of (A) MIP-1, (B) MIP-1β, (C) IL-1β and (D) RANTES were 

measured in nasal lining of volunteers vaccinated with antecedent LAIV and not colonised by Spn 

(LAIV Spn-, n=18-19). Results were compared at each timepoint to baseline (day -4) by Wilcoxon 

test with *p≤0.05 and **p<0.01 and medians and interquartile range of each timepoint are shown. 
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Figure 29. Antecedent LAIV induces pro-inflammatory cytokines IL-6 and MIG in 

nasopharynx of Spn colonised volunteers. Levels of (A, B) IL-6 and (C, D) MIG were measured 

in nasal lining of volunteers vaccinated with antecedent LAIV and colonised by Spn (LAIV Spn+, 

n=18-19). Results were compared at each timepoint to baseline (day -4) by Wilcoxon test with 

*p≤0.05, **p<0.01 and ***p<0.001. In A and C, medians and interquartile range of each timepoint 

are shown. In B and D each line represents one volunteers and each point the result of a single 

volunteers in a specific timepoint. 

 



 

 
 

148 Effect of Spn and LAIV on the nasopharynx cytokine production 

IF N -

C
y

to
k

in
e

 (
p

g
/m

L
)

-4 0 + 2 + 7 + 9

0

5 0

1 0 0

1 5 0
*

***
**

*

A

-4 0 2 7 9

0

50

100

150

IFN-

C
y
to

k
in

e
 (

p
g

/m
L

)

B

MIP-1

C
y
to

k
in

e
 (

p
g

/m
L

)

-4 0 +2 +7 +9
0

20

40

60

80

100

200
400
600
800

*
*

C

-4 0 2 7 9

0

200

400

600

800

MIP-1

C
y
to

k
in

e
 (

p
g

/m
L

)

D

MIP-1

C
y
to

k
in

e
 (

p
g

/m
L

)

-4 0 +2 +7 +9
0

50

100

150

200

250

1000

2000

3000

**
*

E

-4 0 2 7 9

0

500

1000

1500

2000

2500

MIP-1

C
y
to

k
in

e
 (

p
g

/m
L

)

F

 

IP-10

C
y
to

k
in

e
 (

p
g

/m
L

)

-4 0 +2 +7 +9
0

200

400

600

800

1000
1000

2000

3000

4000 ***
*

G

-4 0 2 7 9

0

500

1000

1500

2000

2500

IP-10

C
y
to

k
in

e
 (

p
g

/m
L

)

H

 



 

 
 

149 Effect of Spn and LAIV on the nasopharynx cytokine production 

Figure 30. Antecedent LAIV induces additional pro-inflammatory cytokines in nasopharynx 

of Spn colonised volunteers. Levels of (A, B) IFN-, (C, D) MIP-1, (E, F) MIP-1β and (G, H) 

IP-10 were measured in nasal lining of volunteers vaccinated with antecedent LAIV and colonised 

by Spn (n=18-19) and compared at each timepoint to baseline (day -4) by Wilcoxon test with 

*p≤0.05, **p<0.01 and ***p<0.001. In A, C, E and G medians and interquartile range of each 

timepoint are shown. In B, D, F and H each line represents one volunteers and each point the 

result of a single volunteers in a specific timepoint. 
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Figure 31. Antecedent LAIV induces pro-inflammatory cytokine IL-1β in nasopharynx of 

Spn colonised volunteers. Levels of IL-1β was measured in nasal lining of volunteers 

vaccinated with antecedent LAIV and colonised by Spn (LAIV Spn+, n=18-19). Results were 

compared at each timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05 and **p<0.01. (A) 

Medians and interquartile range of each timepoint are shown. (B) Each line represents one 

volunteer and each point the result of a single volunteers in a specific timepoint. 
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Figure 32. Non-colonised volunteers show induction of pro-inflammatory cytokines MIG 

and IP-10 in the nose . Levels of (A) MIG and (B) IP-10 were measured in nasal lining of 

volunteers in the control group that cleared Spn in the nasopharynx (TIV Spn-, n=18-19) and 

compared at each timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05 and **p<0.01. 

Medians and interquartile range of each timepoint are shown. 
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Antecedent LAIV-induction of cytokines that regulate adaptive 

immunity diverge between Spn colonised and non-colonised 

volunteers 
 

We assessed the levels of cytokines related to regulation of the adaptive 

immune responses after concurrent influenza vaccine administration in 

volunteers previously challenged with Spn, but not colonised. 

LAIV-vaccinated volunteers showed increase in cytokines IFN- and IL-15 

3 days after vaccination (day +6, IFN-: median 1.4-fold increase, p=0.035, Figure 

33A; IL.15: median 1.3-fold increase, p=0.041, Figure 33B). Six days after LAIV 

(day +9), the vaccine induced a moderate increase in IL-2R, IL-2 and IL-12 levels 

(IL-2R: median 1.1-fold increase, p=0.018, Figure 34A; IL-2: median 1.2-fold 

increase, p=0.073, Figure 34B; IL-12: median 1.5-fold increase, p=0.012, Figure 

34C), as well as for IFN- and IL-15 (IFN-: median 1.4-fold increase, p=0.047, 

Figure 33A; IL-15: median 1.1-fold increase, p=0.025, Figure 33B). Volunteers 

who received TIV had a slight increase in IL-4 6 days after vaccination (day +9, 

median 1.1-fold increase, p=0.018, Figure 35A). A similar increase of IL-4 was 

also observed in the LAIV-vaccinated group (median 1.1-fold increase, p=0.039, 

Figure 35B). 
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Figure 33. LAIV vaccinated show increase in cytokines IFN- and IL-15 in the nasopharynx. 

Levels of (A) IFN- and (B) IL-15 measured in nasal lining of volunteers vaccinated with LAIV 

(n=28) were compared at each timepoint to baseline (day -5) by Wilcoxon test with *p≤0.05. 

Medians and interquartile range of each timepoint are shown. 
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Figure 34. LAIV vaccinated show increase in cytokines that regulate adaptive responses 

in the nasopharynx. Levels of (A) IL-2R, (B) IL-2 and (C) IL-12 measured in nasal lining of 

volunteers vaccinated with LAIV (n=28) were compared at each timepoint to baseline (day -5) by 

Wilcoxon test with *p≤0.05. Medians and interquartile range of each timepoint are shown. 
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Figure 35. TIV- and LAIV-vaccinated show increase in the cytokine IL-4 in the nasopharynx. 

Levels of IL-4 was measured in nasal lining of volunteers vaccinated with (A) TIV (n=28) and (B) 

LAIV (n=28). Results compared at each timepoint to baseline (day -4) by Wilcoxon test with 

*p≤0.05 and medians and interquartile range of each timepoint are shown. 
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Further, we analysed a second set of volunteers, vaccinated with influenza 

vaccines followed by Spn challenge, and stratified into groups regarding 

vaccination and colonisation status.  

Before Spn inoculation (day +0), both groups of volunteers vaccinated with 

LAIV demonstrated a moderate induction of IL-4 (LAIV Spn-, median 1.2-fold 

increase, p=0.021, Figure 36A; LAIV Spn+, median 1.4-fold increase, p=0.008, 

Figure 36B), IL-2 (LAIV Spn-, median 1.1-fold increase, p=0.026, Figure 36C; 

LAIV Spn+, median 1.4-fold increase, p=0.001, Figure 36D), IFN- (LAIV Spn-, 

median 1.2-fold increase, p=0.009, Figure 37A; LAIV Spn+, median 1.3-fold 

increase, p<0.001, Figure 37B) and IL-15 (LAIV Spn-, median 1.3-fold increase, 

p=0.001; Figure 37C; LAIV Spn+, median 1.2-fold increase, p=0.024, Figure 

37D).  

Interestingly, in LAIV Spn- the vaccine also conferred a slight increase in 

IL-12 (median 1.2-fold increase, p=0.035, Figure 38A) and IL-2R levels (p=0.021, 

Figure 38B), which was not observed in LAIV Spn+. 

 Two days after Spn inoculation, LAIV continued to similarly induce 

cytokines expressed at day +0 in both non-colonised and Spn colonised. 

Importantly and similarly to the first set of volunteers vaccinated with antecedent 

vaccines, we observed that volunteers vaccinated with LAIV showed increase in 

IL-4 levels (LAIV Spn-: p=0.003, Figure 36A; LAIV Spn+: p=0.025, Figure 36B). 

Moreover, TIV Spn- demonstrated instead a median 1.3-fold decrease in IL-4 

(p=0.042, Figure 39).  

Only in the groups vaccinated with LAIV we observed moderate inductions 

of IL-2, IFN-, IL-15 2 days after inoculation (LAIV Spn-: IL-2, median 1.1-fold 

increase, p=0.010, Figure 36C; IFN-, median 1.1-fold increase, p<0.001, Figure 
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37A; IL-15, median 1.5-fold increase, p=0.006, Figure 37C; LAIV Spn+: IL-2, 

median 1.3-fold increase, p=0.004, Figure 36D; IFN-, median 1.3-fold increase, 

p=0.002, Figure 37B; IL-15, median 1.4-fold increase, p=0.021, Figure 37D). 

In addition, in non-colonised group IL-12 induction by LAIV was similar to 

this observed before the Spn challenge (day +0) (median 1.5-fold increase, 

p=0.035, Figure 38A). In the LAIV Spn+ group such an induction was observed 

only early post the challenge (median 1.2-fold increase, p=0.012, Figure 40A). 

Importantly, LAIV Spn+ were the only group to elicit a median increase of 1.5-fold 

in IL-17A levels (p=0.018, Figure 40B). 

 Nine days after inoculation, LAIV in LAIV Spn blocked an increase in IL-4 

(1.2-fold increase, p=0.021, Figure 36A), first induced by LAIV in non-colonised 

even before Spn challenge. 
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Figure 36. Antecedent LAIV induce cytokines IL-2 and IL-4 in the nose. Levels of cytokines 

measured in nasal lining of volunteers vaccinated with LAIV (n=18-19). IL-4 was measured in 

volunteers (A) not colonised by Spn (LAIV Spn-) and (B) colonised by Spn (LAIV Spn+). Similarly, 

IL-2 was measured in (C) not colonised and (D) colonised. Results were compared at each 

timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05 and **p<0.01 and medians and 

interquartile range of each timepoint are shown. 
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Figure 37. Antecedent LAIV induce cytokines IFN- and IL-15 in the nose. Levels of cytokines 

measured in nasal lining of volunteers vaccinated with LAIV (n=18-19). IFN- was measured in 

volunteers (A) not colonised by Spn (LAIV Spn-) and (B) colonised by Spn LAIV Spn) . IL-15 was 

measured in (C) not colonised and (D) colonised. Results were compared at each timepoint to 

baseline (day -4) by Wilcoxon test with *p≤0.05, **p<0.01 and ***p<0.001 and medians and 

interquartile range of each timepoint are shown. 
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Figure 38. Antecedent LAIV induce cytokines IL-12 and IL-2R in the nose of non-colonised 

volunteers. Levels of (A) IL-12 and (B) IL-2R were measured in nasal lining of volunteers 

vaccinated with LAIV and not colonised by Spn (LAIV Spn-, n=18-19) and compared at each 

timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05. Medians and interquartile range of 

each timepoint are shown. 
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Figure 39. Non-colonised volunteers show induction of IL-4 in the nose . Levels of IL-4 was 

measured in nasal lining of volunteers in the control group that cleared Spn in the nasopharynx 

(TIV Spn-, n=18-19) and compared at each timepoint to baseline (day -4) by Wilcoxon test with 

*p≤0.05. Medians and interquartile range of each timepoint are shown. 
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Figure 40. Antecedent LAIV induce cytokine IL-12 and IL-17A in the nose of volunteers 

colonised by Spn. Levels of (A) IL-12 and (B, C) IL-17A were measured in nasal lining of 

volunteers vaccinated with LAIV and colonised by Spn (LAIV Spn+, n=18-19) and compared at 

each timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05. In A and B, medians and 

interquartile range of each timepoint are shown. In C each line represents one volunteer and each 

point the result of a single volunteers in a specific timepoint. 
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LAIV induces cytokines that regulate cell growth in the 

nasopharynx especially in Spn colonised. 
 

Here, we investigated how concurrent LAIV and TIV in volunteers 

previously challenged with Spn but not colonised affect the production of 

cytokines that regulate growth of granulocytes, neuronal, epidermal, epithelial B, 

T-, NK- and hematopoietic stem cells, as well as embryonic development, 

morphogenesis, tissue repair, angiogenesis. 

Three days after vaccination (day +6), LAIV induced a median 2-fold 

increase in EGF (p=0.035, Figure 41A) while TIV-vaccinated showed a median 

1.3-fold decrease (p=0.033, Figure 41B). In addition, LAIV induced a median 1.4-

fold increase in VEGF (p=0.021, Figure 42A). Further, at 6 days post-vaccination 

(day +9) TIV-vaccinated volunteers did not show increased cytokine levels while 

LAIV continued to induce a median 1.5 and 1.4-fold increase in EGF and VEGF, 

respectively (p=0.010, Figure 41B, and p=0.047, Figure 42B). Interestingly, TIV 

vaccinated showed decrease in levels of FGF-Basic 24 days after vaccination 

(median 1.3-fold decrease, p=0.021, Figure 43). 
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Figure 41. LAIV- and TIV- vaccinated show increase in cytokines EGF in the nasopharynx. 

Levels of EGF were measured in nasal lining of volunteers vaccinated with (A) LAIV (n=28) and 

(B) TIV (n=28). Results were compared at each timepoint to baseline (day -5) by Wilcoxon test 

with *p≤0.05 and medians and interquartile range of each timepoint are shown 
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Figure 42. LAIV vaccinated show increase in cytokines VEGF in the nasopharynx. Levels 

of VEGF were measured in nasal lining of volunteers vaccinated with (A) LAIV (n=28) and (B) TIV 

(n=28) and compared at each timepoint to baseline (day -5) by Wilcoxon test with *p≤0.05. 

Medians and interquartile range of each timepoint are shown. 
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Figure 43. LAIV vaccinated show increase in cytokine FGF-Basic in the nasopharynx. 

Levels of FGF-Basic were measured in nasal lining of volunteers vaccinated with LAIV (n=28). 

Results were compared at each timepoint to baseline (day -5) by Wilcoxon test with *p≤0.05 and 

medians and interquartile range of each timepoint are shown. 
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Additionally, we measured cytokine production in a second set of 

volunteers, vaccinated with antecedent LAIV and TIV followed by Spn challenge, 

and stratified in vaccination and colonisation status. 

Before Spn inoculation (day +0), LAIV induced only a median 1.4-fold 

increase in G-CSF in those volunteers who would not achieve colonisation post 

the bacterial challenge (p=0.001, Figure 44A). On the other hand, vaccination in 

LAIV Spn+ induced a median 1.6-fold increase in G-CSF (p=0.001, Figure 44B) 

along with median 1.2-fold increase in FGF-Basic and VEGF (p=0.010 and 

p=0.044, Figure 45A and 45B, respectively).  

Two days after Spn inoculation, LAIV in LAIV Spn- continued to induce G-

CSF (median 1.2-fold increase, p=0.009, Figure 44A) and started to express 

higher levels of FGF-Basic and EGF (FGF-Basic: median 1.8-fold increase, 

p=0.023, Figure 46A; EGF, median 1.7-fold increase, p=0.010, Figure 46B). In 

LAIV colonised volunteers induction of G-CSF, FGF-Basic and VEGF persisted 

in this timepoint (G-CSF, median 1.4-fold increase, p=0.009, Figure 44B; FGF-

Basic, median 1.2-fold increase, p=0.004, Figure 45A; VEGF, median 1.1-fold 

increase, p=0.040, Figure 45B) with additional induction of IL-7, only elicited in 

LAIV vaccinated after Spn challenge (median 1.3-fold increase, p=0.027, Figure 

47). 

Importantly, only EGF was elicited exclusively by TIV Spn+ (median 1.7-

fold increase, p=0.005, Figure 48) showing similar induction in LAIV Spn- (median 

1.3-fold increase, p=0.048, Figure 46B). Further, at 7 and 9 days post-inoculation, 

the control group did not show increase in EGF, however, LAIV Spn- 

demonstrated a LAIV-induced median 2-fold increase (p=0.020, Figure 46B). In 

addition, in both non-colonised and colonised volunteers, LAIV induced a late 



 

 
 

168 Effect of Spn and LAIV on the nasopharynx cytokine production 

increase of a median 1.2-fold of G-CSF (LAIV Spn-: p=0.026, Figure 44A, LAIV 

Spn+: p=0.026, Figure 44B). Interestingly, this cytokine was induced by the 

attenuated influenza viruses since before Spn challenge at day +0. 
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Figure 44. Antecedent LAIV induce cytokine G-CSF in the nose of volunteers. Levels of G-

CSF was measured in nasal lining of volunteers vaccinated with LAIV and (A) not colonised and 

(B) colonised by Spn (n=18-19) and compared at each timepoint to baseline (day -4) by Wilcoxon 

test with *p≤0.05 and **p<0.01. Medians and interquartile range of each timepoint are shown. 
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Figure 45. LAIV induces FGF-Basic and VEGF in the nasopharynx of Spn colonised 

volunteers. Levels of (A) FGF-Basic and (B) VEGF were measured in nasal lining of volunteers 

vaccinated with LAIV and colonised by Spn (LAIV Spn+, n=18-19) and compared at each 

timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05 and **p<0.01. Medians and 

interquartile range of each timepoint are shown. 
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Figure 46. LAIV induces cytokine FGF-Basic and EGF in the nasopharynx of non-colonised 

volunteers. Levels of (A) FGF-Basic and (B) EGF were measured in nasal lining of volunteers 

vaccinated with LAIV and not colonised by Spn (LAIV Spn-, n=18-19) and compared at each 

timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05. Medians and interquartile range of 

each timepoint are shown. 
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Figure 47. LAIV induces cytokine IL-7 in the nasopharynx of Spn colonised volunteers. 

Levels of IL-7 was measured in nasal lining of volunteers vaccinated with LAIV and colonised by 

Spn (LAIV Spn+, n=18-19) and compared at each timepoint to baseline (day -4) by Wilcoxon test 

with *p≤0.05. Medians and interquartile range of each timepoint are shown. 
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Figure 48. Spn colonised show increased levels of cytokine EGF in the nasopharynx. 

Levels of EGF was measured in nasal lining of volunteers in the control group colonised by Spn 

(TIV Spn+, n=18-19) and compared at each timepoint to baseline (day -4) by Wilcoxon test with 

*p≤0.05. Medians and interquartile range of each timepoint are shown. 
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LAIV induction of anti-inflammatory cytokine response is 

impaired in the Spn colonised nasal mucosa 
 

Firstly, we assessed anti-inflammatory cytokines in the nasopharynx of 

volunteers challenged with Spn and not colonised, followed with vaccination with 

concurrent LAIV and TIV. Here, we demonstrated that LAIV induces only HGF, 6 

days after vaccination (median 1.3-fold increase, p=0.030, Figure 49). 
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Figure 49. TIV-vaccinated show increase in cytokine HGF in the nasopharynx. Levels of 

HGF was measured in nasal lining of volunteers vaccinated with TIV (n=28). Results were 

compared at each timepoint to baseline (day -5) by Wilcoxon test with *p≤0.05 and medians and 

interquartile range of each timepoint are shown. 
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Secondly, another set of volunteers vaccinated with antecedent influenza 

vaccines followed with Spn challenge, were stratified into groups regarding 

vaccination and colonisation status. 

After vaccination but before inoculation (day +0), LAIV resulted in a 

considerable increase in IL-10 levels (median 3.7-fold increase, p=0.006, Figure 

50A) in LAIV Spn-. This induction was unique, as was not observed in any other 

group. Two days after challenge, a median 2.8-fold increase in IL-10 was still 

observed (p=0.002). Additionally, an induction of HGF (median 1.3-fold increase, 

p=0.009, Figure 50B) was observed in the same group post Spn inoculation.  

Interestingly, in the control group, Spn colonisation prevented an increase 

of anti-inflammatory cytokine IL-10 7 days post-inoculation, observed in TIV Spn- 

(median 1.4-fold increase, p=0.026, Figure 51), but not in the first set of 

volunteers vaccinated with concurrent vaccines. Further, at 9 days post-

inoculation, LAIV Spn- showed an induction of IL-10, similarly demonstrated at 

day +0 and +2 (median 2.3-fold increase, p=0.034, Figure 50A). 
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Figure 50. LAIV induces anti-inflammatory cytokines IL-10 and HGF in the nasopharynx of 

non-colonised volunteers. Levels of (A) IL-10 and (B) HGF were measured in nasal lining of 

volunteers vaccinated with LAIV and not colonised by Spn (LAIV Spn-, n=18-19) and compared 

at each timepoint to baseline (day -4) by Wilcoxon test with *p≤0.05 and **p<0.01. Medians and 

interquartile range of each timepoint are shown. 
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Figure 51. Non-colonised volunteers show increased levels of IL-10 in the nose. Levels of 

IL-10 was measured in nasal lining of volunteers in the control group that cleared Spn in the 

nasopharynx (TIV Spn-, n=18-19) and compared at each timepoint to baseline (day -4) by 

Wilcoxon test with *p≤0.05. Medians and interquartile range of each timepoint are shown. 
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5.4 Discussion 

Here, we assessed cytokine responses elicited by Spn and/or LAIV in the 

human nasal mucosa by collecting nasal lining fluid (nasosorption, NS) from 

volunteers from 2 consecutives randomised controlled clinical trials and 

measured cytokine levels with 30-plex human cytokine panel. Our results have 

demonstrated that the control group, vaccinated with TIV and not colonised by 

Spn, was associated with less general inflammation. The detectable levels of 

inflammatory cytokines in this group corroborate the view of Spn as a commensal 

bacterium that can asymptomatically be present in the nose of healthy adults 336.  

Conversely, the attenuated influenza viruses contained in the LAIV elicited 

induction of pro-inflammatory cytokines, as well as cytokines that regulate 

adaptive immunity and cell growth. However, we observed divergent cytokine 

profiles promoted by antecedent LAIV vaccination in non-colonised and Spn 

colonised, which imply that differences in the host responses to Spn after primary 

influenza infection may affect susceptibility to Spn colonisation. As described in 

wild-type influenza virus and secondary Spn co-infection 271, antecedent LAIV 

vaccination induces an exacerbated immune response that is regulated by a loop 

of positive feedback between immune cells and cytokines. In our results this 

response was characterised mainly by increases in IL-6, IFN-, IP-10, MIP-1, 

MIP-1β and IL-17A in the LAIV/Spn+ group.  

The cytokine IL-6 is considered one of the major physiological mediators 

of acute infection and plays an important role on acquired immune response by 

stimulation of antibody production and of effector T-cell development in vitro and 

in vivo. In mice colonised with Spn, antecedent LAIV-induced IL-6 is shown to be 

increased in the upper respiratory tract 186,188, which is corroborated by our results 
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in humans. Additionally, LAIV in Spn colonised induced an increase in IL-17A, a 

cytokine observed in murine models following colonisation and critical for defence 

against bacterial infections, especially Spn 327,333,337. IL-17A is known to induce 

neutrophil recruitment and enhance macrophage capacity to kill Spn in vitro 287. 

The increased IL-17A levels observed in Spn colonised volunteers suggest that 

proliferation of neutrophils may occur in the nasal mucosa after bacterial 

challenge, in order to facilitate control and clearance of growing Spn colonisation. 

On the other hand, although LAIV induced a high pro-inflammatory profile 

in Spn colonised, vaccination reduced specific responses to Spn in humans, 

mainly confined in the chemoattractant cytokines MCP-1, RANTES, MIG, TNF-

, IL-1β and IL-10. In mice models it has been shown that MIG and TNF- 

possess anti-viral activities 188,199,338,339, whereas IL-1β is known for mediate Spn 

clearance 295.  

In addition, LAIV-induced anti-inflammatory IL-10 was reduced by Spn 

colonisation, cytokine that is a central factor for regulating immune responses to 

virus and bacteria 340,129. Here we showed that the attenuated influenza viruses 

contained in the LAIV do not show similar effect to murine models of antecedent 

wild-type influenza and Spn co-infection that have associated impact on the nasal 

epithelium with induction of IL-10 127,341. 

In this study we addressed important questions about how immune 

responses are elicited by LAIV as well as how the attenuated influenza viruses 

contained in the LAIV can alter Spn control in the host. By using for the first time 

2 double human infection challenge model with LAIV and Spn, we revealed that 

Spn colonisation caused minimal alteration in the nasal cytokine milieu, whereas 

LAIV trigger a robust pro-inflammatory response, which was impaired in Spn 
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colonised. Our findings are in agreement with studies shown that antecedent 

LAIV increases susceptibility to Spn acquisition and promotes bacterial growth 

284. Secondary Spn infection following wild-type viral respiratory tract infection has 

a large burden of disease worldwide, therefore it is essential to understand how 

LAIV can affect cytokine immune responses that, in turn, lead to increased 

bacterial loads and transmission. 
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CHAPTER SIX 

 

EFFECT OF SPN AND LAIV ON INNATE AND 

ADAPTIVE IMMUNITY TO INFLUENZA 
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6.1 Introduction 

Each year, 5–15% of the world's population will suffer from an influenza 

infection, with up to 5 million cases of severe disease and 5 hundred thousand 

deaths 342. Influenza viruses have the ability to mutate 343 and hence escape 

immune defence mechanisms of the host 344, which require annual vaccine 

updates. As described before, the current available vaccines are the TIV and 

LAIV.  

The different vaccination routes of TIV and LAIV trigger distinct immune 

mechanisms and pathways of protection. TIV leads to host protection by inducing 

neutralising antibodies to strain-specific glycoproteins HA and NA 345. LAIV is a 

cold-adapted vaccine that replicates only in the nasopharynx - mimicking a 

natural influenza infection 346. The nasal replication of the attenuated influenza 

viruses leads to recognition of its pathogen-associated molecular patterns 

(PAMPs) by host pattern recognition receptors (PRRs), which initiates a cascade 

of cellular immune responses 344.  

In mice, LAIV vaccination increases the frequency of CD4+ and CD8+ T-

cells in the lung and cytokine production upon influenza re-stimulation compared 

to the inactivated virus vaccination or no vaccine administration 186,188,347,348. 

Moreover, LAIV seeds the murine lung with both CD4+ and virus-specific CD8+ 

TRM T-cells. TRM have been shown to provide long-term cross-strain protection 

to influenza 347. In humans, the immune responses elicited by LAIV have been 

found to provide broader clinical protection in children compared to the 

inactivated influenza vaccines 349. However, the detailed immunological 

mechanisms of this remain incompletely understood. 
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Each year influenza vaccines are formulated according to circulating 

strains, but their effectiveness varies as influenza replication often results in 

antigenic drift and shift, changing the viral genome 350. Estimates from the World 

Health Organisation (WHO) suggest that influenza vaccines effectiveness rarely 

exceeds 60% and has fallen below 30% in some years 351,352. Due to poor 

effectiveness among 2 to 17 year-olds, during previous seasons, the CDC 

Advisory Committee on Immunisation Practices (ACIP) suggested the exclusion 

of LAIV from US national childhood influenza immunisation programme during 

2016-2017 and 2017-2018 season 353, whereas it expressed no preference for 

the LAIV vaccine over the inactivated one for the 2018-2019 influenza season. 

Many underlying causes for this variation have been suggested, including poor 

matching with circulating strains 354, differential ability of some LAIV to induce 

immunity, in particular against H1N1 strains, and interactions with the existing 

microbiome during LAIV replication in the nose 355. 

Despite several reports about the microbiota and its impact on vaccination 

responses 356–359 - including responses to influenza vaccine 358,360 - it is still 

unclear how the microbiome effects LAIV immunogenicity in humans 277. In 

murine models, Spn colonisation altered the anti-viral B-cell responses during co-

infection with wild-type influenza virus, potentially compromising long-term 

antiviral antibody-mediated immunity 277. As colonisation of the nasopharynx with 

Spn is very common during childhood, with 50% of infants in resource-rich 

settings and up to 90% in low and middle income countries colonised at any time 

361, it is essential to continue the investigation on how Spn could affect immune 

responses elicited by the currently available influenza vaccines. 
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Here, we showed that in humans, concurrent LAIV elicits immune 

responses primarily at mucosal sites- both nose and lung. Interestingly, pre-

existing nasal Spn colonisation impacted on LAIV immunogenicity, dampening 

the LAIV-mediated nasal and lung immune responses  
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6.2 Methods 

 

6.2.1 Volunteer recruitment, vaccination and inoculation 
 

170 healthy adult volunteers were recruited to the Concurrent study 

(Section 2.2). In the Concurrent study, subjects were inoculated with Spn using 

EHPC and 3 days later, vaccinated with either LAIV (n=80) or TIV as control 

(n=90) (Section 2.5.4 and 2.6.4). 

To investigate the immune responses to influenza vaccination, samples of 

NW and serum were collected at baseline and 24 days after vaccination. For 

comparisons within the lung datasets, BAL fluid and lung lymphocytes were 

collected at 1 timepoint, as well as from an unvaccinated subset of volunteers 

(Spn-, n=10 and Spn+, n=10) which were used as a control since each volunteer 

was only able to provide a single time point sample. 

 

6.2.2 Nasal wash, BAL and serum collection and processing 
 

NW was collected by washing volunteers’ nostrils with saline (Section 

2.5.5) while BAL was collected by washing off the lungs with saline (Section 

2.5.9). In addition, serum was also collected (Section 2.5.8). NW and serum 

samples were stored in a -80oC freezer for future analysis (Section 2.6.5), 

whereas BAL was processed for experiments immediately (Section 2.6.8). 
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6.2.3 Intracellular cytokine staining of BAL cells 
 

As described in Section 2.6.8.2, non-adherent BAL cells were counted and 

stimulated with TIV or left unstimulated as negative control, and incubated. Cells 

were washed and stained with extracellular markers CD3, TCR-, CD4, CD8, 

CD69, CD25, CD103 and CD49a and intracellular markers FOXP3, IFN-, TNF-

α, IL-10 and IL-17A for analysis in a flow cytometer. 

 

6.2.4 Enzyme-linked immunosorbent assay (ELISA) 
 

ELISA was used to quantify levels of IgG and IgA antibodies to influenza 

in the serum, NW and BAL supernatant of volunteers vaccinated with TIV or LAIV 

as described in Section 2.6.9.5. The average blank corrected value was 

calculated for each sample and the data analysed using Omega Analysis. 

 

6.2.5 Statistical analysis 

The levels of antibodies were analysed by comparing baseline and 24 

days after vaccination (D24) by Wilcoxon test. As described in Section 2.7, the 

number of positive cells were compared between mock and flu-stimulated within 

groups by Wilcoxon test and between groups by Mann-Whitney test. 
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6.3 Results 

To assess and compare the immune responses elicited by influenza in 

volunteers inoculated with Spn and vaccinated with concurrent LAIV, we 

collected a series of samples. Mucosal samples, such as NW and BAL, as well 

as serum samples, were collected from the groups TIV Spn- (n=21), TIV Spn+ 

(n=19), LAIV Spn- (n=37) and LAIV Spn+ (n=43). For the assessment of lung 

immune responses, we included a non-vaccinated cohort (Spn-, n=10 and Spn+, 

n=10), as we were only able to sample the human lung only post challenge and 

vaccination. 
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Concurrent LAIV increases the frequency of influenza-specific 

TNF- and IFN-γ producing CD4+ and TRM CD4+ T-cells in the 

lung 
 

Data from animal models suggest that concurrent LAIV, but not TIV, elicits 

protective cellular responses in the lung 324,362. To assess if influenza vaccination 

induced cellular responses in humans, BAL cells were stimulated with influenza 

antigens. T-cell subsets (CD4+, CD8+ and TCR-+) were immunophenotyped 

and the frequency of positive IFN-, IL-17A and TNF--producing, influenza-

specific T-cells measured. Frequencies of total CD4+, CD8+ and TCR-+ T-cells 

were not affected by vaccination status (Figure 52).  

Furthermore, we investigated the presence of TRM T-cell responses to 

influenza, using the extracellular markers CD69, CD103 and CD49a. As over 1/3 

of CD4+ CD69+ cells, commonly defined as TRM 294 did not express the additional 

resident memory markers CD103 and CD49a, we defined TRM only as CD69+. 

In contrast, nearly all CD8+CD69+ cells also expressed CD103 and CD49a. 
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Figure 52. Concurrent LAIV and TIV do not affect frequencies of total CD4+, CD8+ and 

TCRδ+ T-cell subsets in the lung. Subset frequencies among viable T-cells were measured 

after an overnight incubation of isolated BAL cells. Bars depict the median proportion of T-cell 

subsets among total T-cells for TIV Spn- (n=9), TIV Spn+ (n=11), LAIV Spn- (n=11) and LAIV 

Spn+ (n=9). Also, unvaccinated Spn- (n=3) and unvaccinated Spn+ (n=5). 
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CD4+ TNF- production upon influenza stimulation was observed in both TIV 

and LAIV recipients regardless of colonisation status, but not in unvaccinated 

individuals (Figure 61A and 61B). However, levels of influenza-specific TNF- 

were significantly increased in LAIV Spn- when compared to the unvaccinated 

(mean 2.6-fold increase, p=0.015, Figure 61B).  

Following stimulation with influenza antigens, CD4+ TRM T-cells produced 

TNF- in all vaccinated groups but not in the unvaccinated group (Figure 61C). 

The induction of TNF- producing CD4+ TRM following stimulation did not 

significantly differ between TIV and LAIV, but was more pronounced in the LAIV-

vaccinated, in both Spn colonised and non-colonised individuals (LAIV Spn+: 

mean 6.5-fold change to unvaccinated, p=0.004; LAIV Spn-: mean 7.7-fold 

change to unvaccinated, p=0.024) compared to the unvaccinated group (Figure 

61D). 

We also assessed IFN- production by total CD4+ and TRM CD4+ T-cells 

residing in the human lung. IFN- production by total CD4+ T-cells was observed 

in all groups upon stimulation, including the unvaccinated group (Figure 61E). 

The levels of IFN- producing CD4+ T-cells were not different when comparing 

vaccinated and unvaccinated groups. However, the induction of IFN- producing 

CD4+ TRM T-cells was greater in the LAIV-vaccinated volunteers (Figure 61F). 

In contrast to total CD4+ T-cells, stimulation of TRMs of unvaccinated individuals 

did not elicit an IFN- response (Figure 61F).  

Furthermore, the proportion of IL-17A producing CD4+ T-cells or CD4+ TRM 

T-cells was not affected by concurrent vaccination with either TIV or LAIV (Figure 

62). 
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Figure 53. Concurrent LAIV increases frequency of influenza-specific TNF- and IFN--producing 

CD4+ and TRM CD4+ T-cells in the lung. Frequencies of cytokine-producing CD4+ and TRM CD4+ T-cells 

were measured in human BAL samples with and without (mock) in vitro influenza antigen stimulation. 

Volunteers were divided by vaccine and colonisation status in TIV Spn- (n=6), TIV Spn+ (n=8), LAIV Spn- 

(n=10), LAIV Spn+ (n=9), unvaccinated (Spn-, n=3 and Spn+, n=5) group. (A) Production of TNF-α by total 

CD4+ T-cells in each group [paired unstimulated (mock) and stimulated condition (flu)]. (B) influenza-specific 

production of TNF-α by total CD4+ T-cells (Difference between influenza-stimulated and unstimulated) in 

each group. (C) Production of TNF-α by CD4+ CD69+ T-cells in each group. (D) Production of influenza-

specific TNF-α by CD4+ CD69+ T-cells in each group. (E) Production of IFN- by total CD4+ T-cells and (F) 

CD4+ CD69+ T-cells in each group. Each individual dot represents a single volunteer and the conditions from 

one individual are connected. Medians with IQR are depicted for influenza-specific responses, *p<0.05, 

**p<0.01 by Wilcoxon test for comparisons within the same group and by Mann-Whitney test for between-

group comparisons. 
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Figure 54. Concurrent LAIV and TIV do not increase the frequency of influenza-specific, IL-

17A-producing T-cells in the lung. The frequency of cytokine-producing cells was measured by 

intracellular staining flow cytometry analysis after stimulation with influenza antigens or 

unstimulated for TIV Spn- (n=8), TIV Spn+ (n=6), LAIV Spn- (n=10), LAIV Spn+ (n=9), 

unvaccinated Spn- (n=3), unvaccinated Spn+ (n=5). IL-17A production in (A) total CD4+ T-cells, 

(B) CD4+ CD69+ T-cells, (C) total CD8+ T-cells and (D) CD8+ CD69+ T-cells. Each individual dot 

represents a single volunteer and the conditions from one individual are connected. **p<0.01. 

The unstimulated and influenza antigen-stimulated responses were compared within each group 

by Wilcoxon test. Influenza-specific responses (influenza-stimulated - unstimulated) were 

compared between the groups using Mann-Whitney test. 
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Concurrent LAIV increases the frequency of TNF- producing 

influenza-specific CD8+ and TRM CD8+ T-cells in the lungs 
 

Re-stimulation induced increased production of TNF-α producing CD8+ T-

cells in LAIV but not TIV or unvaccinated group. LAIV-vaccinated non-colonised 

had a mean 2.3-fold increase of TNF-α producing CD8+T-cells post stimulation 

compared to the non-stimulated condition (p=0.030), whereas the same type of 

cellular response was less pronounced in the Spn colonised volunteers (mean 

1.9-fold increase, p=0.007, Figure 63A). Similarly, TNF-α production by TRM 

CD8+ cells was only observed in the LAIV-vaccinated group, increased by median 

3.1- (p=0.006) and 2.1- (p=0.004) fold change in non-colonised and colonised 

subjects, respectively (Figure 63B). 

In contrast to CD4+ responses, production of IFN- by stimulated CD8+ T-cells 

was only induced in the LAIV-vaccinated colonised by Spn (mean 1.6-fold change 

with IQR: 1.5x-2.7x, p=0.007, Figure 63C). TIV and control group had no 

significant increase in the proportion of IFN- producing CD8+ T-cell post 

stimulation with influenza antigens. In addition, IFN- production by lung TRM 

CD8+ T-cells not significantly altered post stimulation in any of the groups (Figure 

63D).  

Stimulation did not elicit production of IL-17A producing CD8+ T-cells, except 

for IL-17A production by TRM CD8+ T-cells in the Spn colonised group (mean 

2.6-fold increase, p=0.008, Figure 64).  
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Figure 55. Concurrent LAIV increases frequency of TNF- producing influenza-specific 

CD8+ and TRM CD8+ T-cells in the lungs. Frequencies of cytokine-producing CD8+ T-cells were 

measured in human BAL samples by intracellular staining flow cytometry analysis following 

stimulation with influenza antigens or non-stimulation (mock) in each group. Volunteers were 

divided by vaccine and colonisation status in TIV Spn- (n=6), TIV Spn+ (n=8), LAIV Spn- (n=10), 

LAIV Spn+ (n=9) and unvaccinated (Spn-, n=3 and Spn+, n=5) group. Production of TNF-α by (A) 

total CD8+ T-cells and (B) TRM CD8+ T-cells in each group (paired unstimulated [mock] and 

stimulated condition [Flu]). Production of IFN- production by (C) total CD8+ T-cells and (D) TRM 

CD8+ T-cells in each group. Each individual dot represents a single volunteer and the conditions 

per individual are connected. *p<0.05, **p<0.01 by Wilcoxon test. 
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Figure 56 Concurrent LAIV and TIV do not increase the frequency of influenza-specific, IL-

17A-producing T-cells in the lung. The frequency of cytokine-producing cells was measured by 

intracellular staining flow cytometry analysis after stimulation with influenza antigens or 

unstimulated for TIV Spn- (n=8), TIV Spn+ (n=6), LAIV Spn- (n=10), LAIV Spn+ (n=9), 

unvaccinated Spn- (n=3), unvaccinated Spn+ (n=5). IL-17A production in (A) total CD4+ T-cells, 

(B) CD4+ CD69+ T-cells, (C) total CD8+ T-cells and (D) CD8+ CD69+ T-cells. Each individual dot 

represents a single volunteer and the conditions from one individual are connected. **p<0.01. 

The unstimulated and influenza antigen-stimulated responses were compared within each group 

by Wilcoxon test. Influenza-specific responses (influenza-stimulated - unstimulated) were 

compared between the groups using Mann-Whitney test. 
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Concurrent LAIV increases frequency of influenza-responding 

IFN- producing TCR-δ+ in the lungs of non-colonised 

individuals 
 

TCR-δ+ cells, a subset of specialised innate-like T-cells that can exert 

effector functions immediately upon activation, play an important role in 

pulmonary infection 363,364. Therefore, we assessed whether TCR-δ+ T-cell 

responses to influenza antigens were induced following vaccination. No 

significant increase in TNF-α producing TCR-δ+ was observed after stimulation 

in any of the groups (Figure 65A). However, the proportion of IFN- producing 

TCR-δ+ was significantly greater in LAIV vaccinated non-colonised (median 2.9- 

fold increase upon stimulation compared to the unstimulated condition, (p=0.002, 

Figure 65B). None of the other vaccinated or unvaccinated groups showed a 

significant induction of IFN- production. Similar to the other T-cell subsets, IL-

17A producing TCR-δ+ cells did not significantly increase after stimulation with 

influenza antigens (Figure 65C). 
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Figure 57. Concurrent LAIV increases frequency of IFN- producing influenza-specific 

TCR-δ+ in the lungs of Spn non-colonised individuals. Frequency of cytokine-producing 

TCR-δ+ T-cells was measured in human BAL samples by intracellular staining flow cytometry 

analysis after in vitro stimulation with influenza antigens or non-stimulation (mock). Volunteers 

were divided by vaccine and colonisation status in TIV Spn- (n=6), TIV Spn+ (n=8), LAIV Spn- 

(n=10), LAIV Spn+ (n=9) and unvaccinated (Spn-, n=3 and Spn+, n=5) group. Production of (Α) 

TNF-α, (Β) IFN- and (C) IL-17A by lung TCR-δ+ T-cells. Individual dot represents a single 

volunteer and the conditions per individual are connected. **p<0.01 by Wilcoxon test. 
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Concurrent LAIV increases frequency of CD4+ regulatory T-cells 

in the lung of non-colonised individuals 
 

A balanced immune response in the lung has been demonstrated to be 

important in preventing pneumonia 132. To investigate whether concurrent LAIV 

could alter frequency of T-regs in the lung, we measured the frequency of CD25hi 

FOXP3+ T-regs among CD4+ T-cells using intracellular staining. Increased levels 

of CD4+ T-regs were only significantly different in BAL samples of LAIV non-

colonised when compared to unvaccinated individuals (mean 1.5-fold increase, 

p=0.039, Figure 66).  
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Figure 58. Concurrent LAIV increases frequency of CD4+ regulatory T-cells in the lung of 

Spn non-colonised individuals. Frequency of unstimulated CD4+ T-regs (CD3+ CD4+ CD25+ 

FOXP3+) was measured by flow cytometry in human BAL samples from TIV Spn- (n=6), TIV Spn- 

(n=8), LAIV Spn- (n=10), LAIV Spn+ (n=9) and unvaccinated (Spn-, n=3 and Spn+, n=5). Each 

individual dot represents a single volunteer and geometric means with 95% CI are shown. *p<0.05 

by unpaired t test. 
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TIV but not concurrent LAIV vaccination increases levels of IgG 

to influenza in serum 
 

In addition to cellular responses, we sought to assess humoral responses 

elicited by TIV and concurrent LAIV vaccination both systemically and at the 

mucosal sites (nasal and lung). In serum samples, IgG levels against influenza 

antigens were measured at baseline (prior to bacterial challenge and influenza 

immunisation) and at 24 days post vaccination. TIV induced a median 5.9-fold 

increase (p<0.0001) of influenza-specific IgG, while LAIV intranasal 

administration did not confer increase of sera IgG levels (Figure 59A). Prior 

colonisation of the nasopharynx with Spn did not alter influenza-specific IgG 

levels induced in response to either vaccine. (Figure 59B). 
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Figure 59. TIV but not concurrent LAIV vaccination increases levels of IgG to influenza in 

serum. (A) Geometric mean of IgG levels to influenza, measured by ELISA, in serum of LAIV 

(n=36) and TIV (n=36) vaccinated subjects at baseline (8 days pre-vaccination) and D24 (24 days 

post-vaccination). (B) Fold change (D24/Baseline) of paired IgG titres to influenza in serum 

following TIV or LAIV vaccination. TIV Spn- (n=20), TIV Spn+ (n=16), LAIV Spn- (n=18); LAIV 

Spn+ (n=18). Medians with IQR are shown. ****p<0.0001 by Wilcoxon test for comparisons within 

the same group, and ***p<0.001 by Mann-Whitney test for comparisons between groups. 
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IgG but not IgA is induced by influenza vaccines in the lung, with 

concurrent LAIV mediated-responses being impaired by Spn 

colonisation 
 

Humoral responses in the lung following TIV or concurrent LAIV vaccination 

were assessed in BAL samples collected between 26 to 46 days post influenza 

vaccination. Due to the single timepoint sampling of the lung, 20 unvaccinated 

subjects (10 Spn-colonised and 10 non-colonised) were used as a control group.  

Levels of IgA to influenza in the lung did not differ between TIV, LAIV and 

control groups (Figure 60A). In terms of IgG levels, TIV was associated with a 

high IgG response (median 5.8-fold increase compared to control, p<0.0001), 

whereas LAIV conferred a modest IgG induction (median 1.6-fold change 

compared to control, p=0.028, Figure 60B). TIV elicited influenza-specific IgG 

levels were 3.7x greater than LAIV-induced responses in the pulmonary mucosa 

(Figure 60B).  

IgA levels were not significantly increased in the lung by vaccination and were 

not affected by Spn colonisation (Figure 61C). Spn colonisation affected IgG titres 

in the LAIV vaccinated group, but not in the TIV group. IgG to influenza was higher 

in LAIV Spn- compared to colonised (LAIV Spn+, median 1.35-fold increase, 

p=0.010), however the colonised group was not different from the control group 

(p=0.006, Figure 60D). 
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Spn colonisation impairs nasal IgA induction following LAIV but 

does not alter responses to TIV 
 

To assess antibody responses at the nasal mucosa, we measured influenza-

specific IgA and IgG levels in NW samples at baseline and 24 days following 

influenza immunisation. TIV induced a median 2.2- and a 5.2-fold increase in 

influenza virus-specific IgA and IgG levels, respectively, 24 days post-vaccination 

(Figure 61A and 61B). On the other hand, LAIV-induced IgG antibody responses 

were weakened compared to those induced by TIV. LAIV nasal administration 

resulted to increase of IgA titres to influenza (median 1.3-fold increase, IQR: 0.7x-

2.1x, Figure 61A), whereas the induction of IgG levels (median 1.4-fold increase) 

was moderated if seen alongside the corresponding induction resulted by TIV. 

(Figure 61B).  

Reduced LAIV-mediated immunogenicity, as observed for lung cellular 

responses, was also observed for humoral responses at the nasal mucosa of Spn 

colonised volunteers. Concurrent colonisation of the nasopharynx with Spn 

affected IgA titres, but not IgG, in the LAIV-vaccinated (Figure 61C and 61D). At 

day 24 post-vaccination, LAIV-vaccinated non-colonised had significantly greater 

levels of IgA to influenza circulating in the nasal lumen, compared to the colonised 

group (LAIV Spn- median=1.69, IQR: 0.98-2.65 vs LAIV Spn+ median=1.24, IQR: 

0.66-1.81, p=0.020, Figure 60C). Concurrent Spn colonisation did not alter 

antibody responses to influenza in the TIV-vaccinated individuals (Figure 61C 

and 61D).  
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Figure 60. IgG but not IgA is induced by influenza vaccines in the lung, with concurrent 

LAIV responses being reduced during Spn colonisation. (A)-(B) Geometric mean of IgA and 

IgG titres to influenza for TIV (n=20), LAIV (n=19) vaccinated subjects and unvaccinated (n=20) 

was measured by ELISA in BAL fluid. (C)-(D) Geometric mean of IgA and IgG titres grouped 

based on vaccination and colonisation status, as TIV Spn- (n=9), TIV Spn+ (n=11), LAIV Spn- 

(n=11), LAIV Spn+ (n=8), unvaccinated (n=20). *p<0.05, **p<0.01, ****p<0.0001 by Wilcoxon test 

for comparisons within the same group and by Mann-Whitney test for comparisons between 

groups. 

 



 

 
 

203 Effect of Spn and LAIV on innate and adaptive immunity to influenza 

 

Figure 61. Spn colonisation impairs nasal IgA induction following concurrent LAIV but 

does not alter responses to TIV. (A) Geometric mean of IgA and (B) IgG titres to influenza 

measured by ELISA in NW of TIV (n=40) and LAIV (n=80) vaccinated subjects at baseline (8 days 

pre-vaccination) and D24 (24 days post-vaccination). (C) Fold change (D24/Baseline) of paired 

IgA and (D) IgG titres to influenza in NW following vaccination with TIV Spn- (n=21), TIV Spn+ 

(n=19), LAIV Spn- (n=37), LAIV Spn+ (n=43). Medians with IQR are shown. *p<0.05, ***p<0.001, 

****p<0.0001 by Wilcoxon test for comparisons within the same group and by Mann-Whitney test 

for comparisons between groups. 
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6.4 Discussion 

As we demonstrated here, the 2 available influenza vaccines (TIV and 

LAIV), induce immune responses in the host via the innate and adaptive 

pathways 365. However, there is a lack of detailed understanding of the 

immunological mechanisms induced by these vaccines and how this induction 

affects Spn colonisation. 

In this study, we sought to investigate the cellular and humoral immune 

responses elicited by TIV and concurrent LAIV, focusing on respiratory tract 

mucosal sites, in addition to assessing whether colonisation of the nasopharynx 

with Spn influences vaccine immunogenicity. The results indicate that TIV and 

LAIV confer differential immunity to adults. TIV mainly induces high levels of 

influenza-specific antibodies in the serum and mucosal sites, while LAIV 

combines less pronounced mucosal humoral responses with enhanced cellular 

immunity in the lung. Importantly, LAIV immunogenicity is diminished by the nasal 

presence of Spn and this important confounder should be considered when 

assessing LAIV efficacy. 

TIV, as well as other inactivated influenza vaccines 366,367, is known to 

induce higher titres of serum hemagglutination-inhibiting IgG and IgA antibodies 

when compared to LAIV 366–368. On the other hand, LAIV was demonstrated to 

induce higher levels of nasal mucosa IgA to influenza when compared to TIV 14, 

which mainly elicits IgG antibodies in the nasal mucosa 222.  

Mucosal lymphocytes are considered the dominant source of IgA 29 and 

IgG 369 in the nose, with IgG also originated by transudation or diffusion from 

plasma 369. It is important to be mentioned that IgA is the most abundant 

immunoglobulin in the upper respiratory tract and both bacteria and viruses 
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express signals that play immunomodulatory role in these mucosal surfaces 29. 

In the nose, IgA performs critical functions such as neutralisation of antigens 370, 

modulation of B-cell responses 188,270,277. While IgA is the predominant 

immunoglobulin found in the upper airways, IgG titers increase progressively in 

the lower respiratory tract - being the predominant immunoglobulin in the lung 29 

– and IgG deficiency is associated with susceptibility to pneumonia and 

respiratory tract infections 29. 

In agreement with previous studies213, TIV vaccination induced high 

systemic and mucosal antibody responses, whereas LAIV elicited both mucosal 

(mainly IgA) influenza virus-specific antibodies and cell-mediated immune 

responses. Interestingly, pre-existing Spn colonisation of the nasopharynx 

reduced these LAIV-mediated immune responses but left TIV-induced responses 

unaltered which is corroborated by studies that show that Spn can impact LAIV-

induced responses in the human nasal microbiome as it develops cellular and 

adaptive immunity to the bacteria in the site of the attenuated influenza viruses 

replication 49,62. 

We also showed that – in contrary to published results of immune 

responses 10 days 371 and 6 weeks after vaccination in mice 372– the numbers of 

CD3+, CD4+ and CD8+ T-cells in the lung were similar between TIV and LAIV 

vaccinated subjects.  

In the lungs, LAIV prevailed over TIV on cellular induced responses. LAIV 

nasal administration led to increased lung levels of TNF-α and IFN- producing 

CD4+ T-cells, including TRMs, as well TNF-α producing CD8+ T-cells, upon in 

vitro stimulation. Interestingly, we observed that influenza-specific CD4+ T-cell 

lung responses were more pronounced in individuals not colonised with Spn at 
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the time of vaccination. Similarly, there was a higher proportion of IFN- producing 

TCR-+ T-cells in the non-colonised LAIV recipients. Moreover, LAIV was 

associated with increased frequencies of lung regulatory T-cells only in the 

absence of nasal Spn colonisation. On the other hand, LAIV-vaccinated 

individuals who were colonised by Spn elicited IL-17A-producing CD8+ T-cells 

which is consistent with findings in previous studies with humans 287 and mice in 

which this cytokine was essential for bacterial control and clearance during wild-

type influenza and Spn co-infection 256. 

Humoral responses were highly induced by TIV, whereas LAIV conferred 

an overall modest antibody induction. Systemically, TIV elicited influenza virus-

specific IgG responses, which were not observed in the LAIV vaccinated arm. In 

the nose, TIV conferred predominantly IgG induction, while LAIV was mainly 

associated with high levels of IgA. Colonisation of the nasopharynx with Spn at 

the time of LAIV administration impaired the induction of mucosal IgA to influenza 

in the nose, but not in the lung. 

LAIV in adults, unlike children, does not confer superior protection 

compared to TIV 14. This is probably related to the life-long accumulation of 

influenza immunity through natural exposure and previous vaccinations, which 

can prevent the nasal replication of the attenuated virus and shorten the viral 

replication cycle 373. Consequently, LAIV may elicit less potent responses in 

adults compared to children, thus any extrapolation from findings in adults to 

children, the target population for this vaccine, must be done with caution.  

Our finding that concurrent Spn colonisation could inhibit LAIV-induced 

immune responses is a variable that should be taken into account when 

evaluating LAIV efficacy, as children display high rates of Spn colonisation 374,375. 
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This finding would potentially explain why one study in Senegal showed no 

efficacy of vaccination with LAIV 376, as Spn colonisation rates are higher in low-

income countries (up to 93% of children colonised by Spn) 377. The impaired 

LAIV-induced immunity during established Spn colonisation was associated with 

a lack of a pro-inflammatory response in the nasal lumen following LAIV 

vaccination. A possible explanation for this is that Spn colonisation affects local 

immune and epithelial cell responses upon LAIV vaccination, which could 

diminish immune cells infiltration and antigen presenting cells (APC) activation, 

impacting on the downstream memory responses 282,378. Alternatively, it is 

possible that Spn colonisation interferes with the viral replication cycle 256,379. 

Ideally, an effective and broadly protective influenza vaccine should 

induce both humoral and cellular immunity. Whereas antibody responses to 

influenza show some degree of strain cross-reactivity 380,381 they are insufficient 

to provide heterosubtypic, cross-strain influenza protection 382,383 Recent data 

from natural history cohort studies have focused on the potential of T-cells as key 

players in mediating heterosubtypic immunity in humans 124,384. We observed that 

even in the absence of vaccination, healthy adults showed CD4+ T-cell responses 

to influenza stimulation, which likely reflects their lifelong exposure to influenza 

viruses. The use of purified influenza antigens included adjuvant, to measure 

cellular responses, would possibly lead to greater T-cells responses. Our results 

demonstrated that LAIV induced influenza-specific cytokine-producing CD8+ and 

CD4+ T-cells, including TRM in the lung. As part of T-cell immune response to 

influenza, recent studies have elucidated the importance of TRM in protection of 

mucosal barrier tissues against pathogen challenge by producing chemokines for 

cell recruitment 385. It has been shown that TRM T-cells provide superior 
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protection to influenza infection when compared with circulating T-cells386. By 

seeding the lungs with these cells, it is possible to establish long-term 

heterosubtypic protection to influenza 387,388.  

We have also demonstrated that, in volunteers not colonised by Spn, LAIV 

increased levels of T-regs in the lung compared to unvaccinated individuals. 

CD4+ T-regs contribute to homeostasis of the immune system, controlling 

infection by respiratory viruses and avoiding tissue damage92 and secondary 

bacterial infection 389. As a result of recurrent exposure to virus and bacteria, 

CD4+ T-regs increase in frequency with age 390. For this reason, our findings in 

adults might underestimate the effect of LAIV on frequency of T-regs in the lung 

of children. 

In conclusion, using a controlled human infection model at a known time 

relative to vaccination, this study was able to highlight differences in 

immunogenicity between LAIV and TIV at relevant mucosal sites. Moreover, we 

identified Spn colonisation as an important variable in LAIV-induced immunity.
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7.1 Introduction  

 

The investigation of host immune responses to pathogens during 

attenuated influenza virus (LAIV) and Spn co-infection in the nasopharynx is 

essential for deeper understanding of interactions between host, attenuated virus 

and bacteria. These insights clarify effects of co-infection on viral and bacterial 

clearance, acquisition, replication, transmission as well as efficacy of the 

attenuated influenza vaccine to ultimately to promote better immunisation 

approaches to the population. In humans, wild-type influenza virus can 

predispose to secondary Spn colonisation and, likewise, the bacteria can induce 

viral shedding 391 which, in turn, deregulates inflammatory responses and leads 

to loss of control of Spn density 392. Interestingly, in murine models of co-infection, 

sialic acid cleaved from host’s epithelium by the influenza virus is consumed by 

Spn promoting growth 75 which indicates the need for further research in humans 

in order to corroborate the hypothesis. 

In this study, LAIV-induced influenza-specific immune responses were 

compared to TIV using nasal wash, nasosorption, nasal cells, BAL and serum of 

healthy adult volunteers. In addition, by inoculating individuals with live Spn 

(EHPC), we assessed how responses to LAIV affect Spn colonisation as well as 

how the bacteria affects vaccine immunogenicity. The primary underlying 

mechanisms of cell recruitment, cytokine and antibody production were also 

investigated. Altogether, this thesis is part of the largest conducted vaccine 

testing studies using a controlled human infection model as well as the first 

controlled challenge studies in humans using two live pathogens to directly 

assess the impact of a vaccine on microbiota. In short, we observed that different 

profiles of responses are observed in TIV- and LAIV-vaccinated as well as LAIV-
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vaccinated volunteers who became colonised by Spn when compared to non-

colonised.  

7.2 Summary and discussion of findings 
 

To gather knowledge about LAIV and how the attenuated influenza virus 

vaccination affects Spn colonisation is essential for accurate assessment of 

vaccine immunogenicity in humans and its effect on the nasopharyngeal 

microbiota and host immunity. This work was based on previous studies with wild-

type influenza virus and Spn co-infection that show it to be associated with 

increased bacterial nasal load in mice 275,281,393 and humans 256,266. Importantly, 

LAIV administration has also been correlated with increase in Spn density in mice 

75,76 and humans 318,394, however the underlying mechanisms were still not 

elucidated. 

Here, we showed that LAIV in healthy adults induces inflammatory 

responses in the nasopharynx, including cytokines that regulate adaptive 

immunity as previously described in other studies 395. Importantly, our results 

confirm that the attenuated virus elicits many of the same immune responses as 

the wild-type influenza, such as induction of cytokines IL-6 262 and IL-1β 396. 

In addition, in the lung LAIV alone still induced moderate antibody levels 

against influenza after 30 days post-vaccination. Moreover, T-cell responses 

were increased with higher percentages of CD4+ T-cells producing IFN- as well 

as CD4+ and CD8+ T-cells producing TNF-, two cytokines also induced in the 

murine lung by LAIV administration 372. Additionally, TRM T-cells, which persist 

in the lung for long periods after infection 388 - were shown to have an important 

role for lung cytokine response against the attenuated influenza virus, similar to 

results from studies with the wild type virus 386,397 . 
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Models of co-infection with the attenuated influenza virus and Spn show 

induction of adaptive immune responses in the nose and lung to achieve viral and 

bacterial clearance to be necessary during co-infection 188. In this thesis, we 

showed that LAIV induces a state of inflammation in the nasopharynx 

independent of Spn that predisposes the host to colonisation. In addition, is 

possible that vaccination also causes epithelial damage, dysfunction or 

denudation in the colonised nose as indicated by increases in cytokines that 

regulate cell growth and that corroborates results in murine models with wild-type 

influenza and Spn co-infection 193,271,398. Furthermore, we have shown that in the 

lung co-infection of attenuated influenza virus and Spn does not elicit IL-17A-

producing CD8+ T-cells, which opposes previous studies with wild-type influenza 

256,287.  

However, when compared to non-colonised volunteers, our results show 

that some of the host immune responses were affected by LAIV which 

corroborated murine models of wild-type influenza virus and Spn co-infection 

that, likewise, demonstrate impaired induction of anti-inflammatory cytokines 

127,399, of monocyte recruitment 186, of influenza specific antibodies 188 and of 

neutrophils activation 192. Notably, we demonstrated for the first time that LAIV 

vaccination in Spn colonised volunteers impaired activation of T-cells in the 

nasopharynx.  

Additionally, LAIV impaired the induction of chemoattractant to monocytes 

such as MCP-1 400 and RANTES 401,402 in the Spn colonised nasopharynx, 

possibly limiting monocyte recruitment to the nose as observed in our results. 

These results confirm the hypothesis that unbalanced cytokines affect 

recruitment of immune cells during Spn co-infection with the attenuated influenza 
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virus similarly to the wild-type virus 403. Furthermore, the impairment of MCP-1 

can also explain decreased induction in levels of IL-1β whereas the impairment 

of RANTES can clarify reduced T-cell activation 404 demonstrated in our results.  

It is important to notice that previous studies have demonstrated that Spn 

colonisation induces cytokines TNF- 122 in the nasopharynx, however our results 

show that LAIV affects Spn-induced TNF-, possibly affecting control of the 

infection. Moreover, here we confirmed that LAIV induces specific antibody 

responses against influenza characterised by IgG and particularly IgA in nasal 

wash 240, however, we showed for the first time that LAIV-induced IgA production 

was reduced in the Spn colonised nasopharynx which adds to the uncontrolled 

bacterial growth 370 by neither neutralising antigens or preventing the attenuated 

influenza virus and Spn adherence to epithelial cells 29 

Importantly, the detected LAIV impact in the lung of colonised volunteers 

corroborate wild-type influenza virus and Spn co-infection animal models in which 

influenza-specific IgG and CD4+ T-cells were impaired when compared to non-

colonised individuals 270. However, our results in adults do not confirm murine 

studies in which CD4+ T-reg are increased in co-infected animals 188. 

In summary, we demonstrated that LAIV induces an inflammatory state in 

the nasopharynx of healthy adults. On one hand, the immune deregulation 

caused by LAIV vaccination in Spn colonised individuals caused substantial 

inflammation but, on the other hand, impaired responses that control viral and 

bacterial clearance. 
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7.3 Limitations of LAIV research in humans 
 

Despite its proven success in preventing infectious diseases, the vast 

majority of vaccines used today for human immunisation have been developed 

empirically, at first often with little understanding of the immune mechanisms by 

which they induce protective immunity. This work has uncovered some limitations 

in the assessment of immunogenicity and research of LAIV-induced responses 

which will contribute to more accurate understanding of the vaccine as well as to 

shed a light on the impact of vaccination on other pathogens, specifically Spn. 

Importantly, LAIV vaccination in adults induces different immune 

responses compared to children 14 - the target population for this vaccine - as a 

result of induced neutralising antibodies due to previous exposure to influenza 

virus during their lives. Continuous exposure to influenza virus can prevent the 

nasal replication of the attenuated virus contained in the LAIV 373 as well as elicit 

natural immunity against influenza antigens. Consequently, extrapolation of these 

results to the paediatric population must be done with caution especially 

regarding T-regs, recruitment of monocytes and activation of neutrophils, already 

proven to not be analogous to adults. 

In addition, the relationship between LAIV and Spn colonisation rates 

presented in this thesis uses nasal wash and classical microbiology. Other 

techniques or devices for assessment of colonisation rates such as nasosorption 

405, nasal curettage 406 and bronchoabsorption 407 were not validated and should 

be compared to this thesis results with caution.  
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7.4 Future research directions and questions derived from this 

thesis 
 

Most studies on co-infection of LAIV and Spn have been done in animal 

models. Here we have shown discrepancies in results when comparing LAIV or 

wild-type influenza virus and Spn co-infection results from murine models with 

human models. The extrapolation of immune responses between murine models 

and humans can be problematic since mice doesn't represent the complexity of 

microbiome and immunity of the human host 408. As noted by Ferreira, Jambo 

and Gordon 53, humans are natural hosts of Spn and each individual has been in 

contact and colonised numerous times throughout their life while mice models 

are pathogen-free and only susceptible to the bacteria in laboratorial conditions, 

skewing the results. In addition, chinchillas and ferrets are also used as co-

infection models but likewise present great difficulties to confirm similar results in 

humans 260. 

Moreover, to study co-infection of the attenuated influenza virus and Spn, 

we have used only one Spn serotype 6B isolate, which limits the scope of our 

results. Future studies using other isolates with variable invasive phenotypes 

could answer how generalizable these findings are across serotypes. 

In addition, further studies into mucosal immunology using different 

techniques for sample collection can validate the results found in this thesis and 

enable further discoveries on patient groups who are unable to undergo the 

procedures proposed. Importantly, methods for collection of nasal lavage, nasal 

cells and lung lavage used in this thesis (NW, nasal curettage, nasosorption and 

BAL) can be compared to alternative techniques such as nasosorption with 

different synthetic absorptive matrix, bronchial brush and bronchoabsorption.  
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Moreover, serial nasosorption can be performed for assessment of nasal 

cytokines, antibodies and viral load kinetics. For instance, studies of early hours 

kinetics can be done with this technique as well as NW and saliva 409 for further 

understanding mucosal events since many cytokine responses are concentrated 

in the first 48 hours of immunological response. 

Notably, it is critical to continue the assessment of the best sampling 

device and site to measure Spn colonisation and bacterial density. This can be 

done by comparison of sampling and analysis methods, for instance nasosorption 

results against NW, nasal transcriptomics of nasal curettage results against flow 

cytometry as well as bronchoabsorption results against BAL. 

It is important to notice that methodologies such as nasal curettage can 

take into consideration the rate of ciliated respiratory epithelial cells to squamous 

stratified epithelial cells as to assure the results accuracy of cell recruitment to 

the mucosa. 

Continuous development of the EHPC method as well as other multiple 

pathogens challenge models are essential to elucidate the potential for viral 

pandemics, secondary infections and interactions between bacteria, virus and 

human host as well as identification of health indicators and therapies for 

prevention of high morbidity scenarios. Furthermore, studies focused on analysis 

of the 4 specific virus strains contained in the LAIV can validate novel 

combinations of viruses to be added in the annual influenza vaccine. 
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Table 9. Suggestions for future studies, method validation and development of 
challenge models. 

 

Field of research Suggested studies Specific suggestions 

Alternative methods 

for sample collection 

Development of alternative 

sampling methods for different 

patient groups (smokers, elderly, 

asthmatics, children). 

• Bronchial brush. 

• Bronchoabsorption; 

• Serial nasosorption; 

 

Challenge models for 

vaccine testing 

Development of a human nasal 

challenge model with LAIV and 

viral vaccines to measure 

responses to nasal strain-specific 

viruses with more detailed 

mucosal kinetics. 

• Focus on collection of 

serial nasosorption, 

nasal scrape and 

bronchoabsorption; 

• LAIV and novel viral 

vaccines studies; 

• Topical nasal 

vaccines. 

Pneumococcal 

serotypes 

Validation of results in this thesis 

using different serotypes of Spn. 

• Serotypes 1, 3, 4, 5, 

6A, 6B, 7F, 9V, 14, 

18C, 19A, 19F, and 

23F. 

Point-of-care assays 

Development of antibody, 

cytokines, viral and bacterial load 

indicators of healthy and 

unhealthy patients. 

 

• Cytokines and 

chemokines; 

• Nasal mucosal 

antibodies (IgG and 

IgA); 
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• Spn, bacteria and 

microbiome; 

• Viral infections. 

Secondary viral 

infections 

Study of the relationship between 

respiratory and gastrointestinal 

pathogens and human 

microbiome in diseases in which 

virus are the main cause of 

hospitalising exacerbations and 

mortality. In addition, studies on 

the propensity of different viruses 

to alter innate respiratory 

mucosal immunity. 

• Asthma; 

• Chronic obstructive 

pulmonary disease; 

• Cystic fibrosis. 

• Idiopathic pulmonary 

fibrosis; 

Spn density 

assessment 

Validation of novel sampling and 

measurement methods of Spn 

colonisation and density. 

• BAL; 

• Bronchial brushing; 

• Nasal curettage; 

• Nasal curettage 

followed by 

transcriptomics. 

Validation of results 

Validation of this thesis results 

using different sampling 

techniques.  

- Bronchoabsorption; 

- Cough plates; 
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- Nasal curettage 

assessed by 

transcriptomics; 

- Nasal swabs; 

- Nasopharyngeal 

aspirates; 

- Nasosorption for 

measurement of Spn 

density; 

- Nasosorption with 

different synthetic 

absorptive matrix;  

- Other methods of 

nasal lavage; 

- Collection of saliva. 

Viral challenge 

models 

Development of experimental 

challenge models using virus 

besides influenza. 

• HRV; 

• RSV. 

 

7.5 Conclusion 
 

LAIV vaccination remains efficient in the long term as it protects children 

and elderly from flu with subclinical side effects that usually only affects hosts that 
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lack preformed virus antibodies 395. Importantly, LAIV vaccination protects the 

host from future virus infections thus preventing a secondary Spn colonisation 274.  

Our finding that Spn colonisation could inhibit LAIV-induced immune 

responses is a variable that should be taken into account when evaluating LAIV 

efficacy, as children display high rates of Spn colonisation 374,375. As colonisation 

rates are higher in low-income countries (up to 93% of children colonised by Spn) 

377, these results could potentially explain one study in Senegal that showed no 

efficacy of vaccination with LAIV 376 , although mismatch of circulating influenza 

virus strains with the vaccine was a limitation to accurate assessment. 

In short, this thesis provides new topics for continuity of human research 

into LAIV and its relationship with the microbiota, which is necessary to further 

elucidate the impacts of mass immunisation with live attenuated virus vaccines 

especially regarding its impact on Spn density and transmission.  
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