

A Systematic Literature Review on DevOps and its

Definitions, Adoptions, Benefits and Challenges

Gustaf Österberg

38864

Master’s Thesis in Computer Engineering

Supervisor: Kristian Nybom

Åbo Akademi University

Faculty of Science and Engineering

Department of Information Technologies

April 2020

 Gustaf Österberg

i

Abstract

The increased pace of software development and rapid changes of business- and

technological requirements have introduced a new type of software development culture

called DevOps. IT Operations and Software Development have endured poor

communication and collaboration with each other, which have resulted in bottlenecks

throughout the software development life cycle. The discrepancy has contributed to

delayed software updates with inferior quality and a culture, that complicates the goals

of organisations, to produce high-quality software for its customers. DevOps can

streamline the software development process by removing the constraints on the teams,

by increasing collaboration, automation, sharing and measurement principles. This is

possible through the change of mindset and culture of the organisation. Since the

concept of DevOps is loosely defined, it is an interesting topic to research. This thesis

provides an insight on the definitions, implementations, benefits and challenges of

DevOps, through a systematic literature review. The literature review was conducted by

identifying and analysing the related literature on DevOps. The results were 25 primary

studies on the definition, adoption methods, benefits and challenges of DevOps. The

result presents ways to define DevOps, some tools and methods on how to adopt

DevOps within an organisation and some perceived benefits and challenges of adopting

DevOps. The contribution of the thesis provides an overall understanding of DevOps

and its core principles and practices. The contribution also includes, approaches for

adopting DevOps, the premise behind its adoption and obstacles that may occur during

the process.

 Gustaf Österberg

ii

Table of Contents

Abstract .. i

List of Abbreviations ... iv

List of Figures ... v

List of Tables ... vi

1 Introduction ... 1

1.1 Research Motivation .. 2

1.2 Previous Research .. 3

2 Key topics .. 4

2.1.1 The Waterfall Model .. 5

2.1.2 Agile software development ... 6

2.1.3 Lean software development .. 8

3 Central concepts in DevOps .. 10

3.1 DevOps practises ... 11

3.1.1 Continuous Planning .. 12

3.1.2 Continuous Monitoring .. 12

3.1.3 Continuous Deployment & Continuous Delivery 13

3.1.4 Continuous Integration ... 13

3.1.5 Continuous Testing ... 14

3.1.6 Automation ... 14

3.2 DevOps Culture ... 15

4 Systematic Literature Review ... 17

4.1 Literature Review .. 17

5 Results ... 22

5.1 DevOps definition (RQ1) ... 24

5.1.1 Collaboration .. 24

5.1.2 Ownership and Shared Responsibility .. 25

5.1.3 Defining principles of DevOps ... 26

5.2 DevOps adoption (RQ2) .. 27

5.2.1 CI/CD Pipeline ... 28

5.2.2 Monitoring .. 28

5.2.3 Tools ... 29

5.3 Benefits (RQ3) ... 30

5.3.1 Faster release cycles ... 30

 Gustaf Österberg

iii

5.3.2 Higher productivity .. 31

5.3.3 Quality .. 32

5.4 Challenges (RQ4) .. 33

5.4.1 Lack of skills and knowledge ... 33

5.4.2 Resistance to change ... 34

5.4.3 Scarcity and cost of tools and automation .. 35

6 Discussion ... 36

6.1 Threats to Validity ... 38

7 Conclusions ... 39

Svensk sammanfattning .. 40

References .. 43

 Gustaf Österberg

iv

List of Abbreviations

CD – Continuous Deployment

CDE – Continuous Delivery

CI – Continuous Integration

QA – Quality Assurance

RAD – Rapid Application Development

SDLC – Software Development Life Cycle

SLA – Service-Level Agreement

TPS – Toyota Production System

XP – eXtreme Programming

 Gustaf Österberg

v

List of Figures

Figure 1. The Software Development Lifecycle. ... 4

Figure 2. The Waterfall Model. .. 5

Figure 3. An example of a Kanban Board. ... 9

Figure 4. The defining principles of DevOps. .. 27

Figure 5: CI/CD Pipeline, adopted from. ... 28

 Gustaf Österberg

vi

List of Tables

Table 1. Search strings used. .. 18

Table 2. Checklist defining the quality of the primary studies. 20

Table 3. Data Extraction Form. .. 21

Table 4. The primary studies included. .. 22

Table 5. The identified themes, and the primary studies discussing them. 23

 Gustaf Österberg

1

1 Introduction

Software development has previously been a slow and tedious process, generally

adopting slow development methods such as waterfall and the v-model. These models

have previously been used in large organisations, while in smaller organisations, more

agile methods have been utilised to develop software. The smaller organisations have

proven that by decreasing the release cycle of a project they can significantly reduce

risks and overall development times. This is something that larger organisations have

started to realise, and they also want to rake the benefits of faster release cycles. Since

larger organisations usually have more tedious bureaucracy, they are limited from easily

implementing agile principles into their development process [1].

In larger organisations the development process involves several teams, all with

different goals and priorities. Development teams are responsible for creating the

software and with an increasingly faster development pace, with changes and new

features demanded to be released up to several times a day. Operations teams are used

to tailor the software for the customer environment, which involves ensuring that the

software runs smoothly without failures. Operations teams usually do not want frequent

changes, since they increase the risk of failures within the production environment.

Operations teams have therefore had problems to keep up with the faster development

pace resulting in bottlenecks appearing between the teams [2].

These teams have generally not communicated very well nor worked well together,

resulting in even further bottlenecking. These issues have resulted in long release

cycles, up to several months, which impair the competitiveness of the organisation.

More agile methods can cut release cycle times down to only a few hours resulting in

better risk management, more satisfied customers and overall better competitiveness [2].

A way to tackle these problems is DevOps, which is the emergence of a new way of

collaborating and releasing software. DevOps is coined from the names of two core

teams, development and operations. The term does not have a clear definition and is

portrayed as an extension of Agile methods [3]. DevOps uses certain practices, tools

and automation to make the overall creation of software more efficient. By adopting

DevOps, organisations try to tear down the figurative wall, that stands between

developers and operation personnel. DevOps therefore puts emphasis on changing the

 Gustaf Österberg

2

culture of the organisation and increasing collaboration between the different teams

within the software development process [2].

1.1 Research Motivation

The motivation for conducting this research is that DevOps lacks a clear definition.

There is no clear model or framework for how to implement it and organisations might

be unaware of the benefits and challenges it imposes [4] [3] [5]. DevOps is also a rather

new concept, with the term emerging in 2009, and getting ground several years later [6].

The novelty of DevOps contributes to the fact that there is quite scarce amount of

research conducted on the topic, with article databases only providing a few hundred

results, when searching for “DevOps”. Nevertheless, DevOps can be considered a topic

that organisations are quite interested in, which also provides some merit for conducting

the research. According to [7], there are still several challenges for implementing

DevOps:

Through 2022, 75% of DevOps initiatives will fail to meet

expectations due to issues around organizational learning and

change.

This prediction gives some insight on the research problem and motivates continued

research on DevOps. This thesis aims to provide a deeper understanding on the

challenges, which the future DevOps initiatives probably must tackle. Furthermore, the

State of DevOps Report of 2018, provides some insight on the importance of highly

evolved organisations for adopting DevOps [8].

As stated before, there has been quite little academic research conducted into DevOps.

The literature mainly discuss common principles and practises, while some researchers

try to define DevOps. The problem is that organisations adopt DevOps differently,

depending on their organisational structure, available tools, etcetera [9]. Defining a clear

framework or method around DevOps is therefore challenging and most organisations

adopt DevOps differently, with mixed success [8]. This thesis will provide some general

insight into the emergence of DevOps, some key topics related to DevOps, and central

concepts. The main contribution of the thesis is to provide different views on how

 Gustaf Österberg

3

DevOps is defined, different adoption methods, and finally, benefits and challenges of

DevOps.

1.2 Previous Research

There has been some prior research that adopted a similar research approach as this

thesis. The prior research will be presented to provide an understanding on the premise

of the research in the thesis and how the thesis might have been influenced by prior

research.

The literature review [5], discuss the principles and benefits of DevOps, such as core

principles like culture of collaboration, automation, measurement, sharing and Quality

Assurance (QA). However, the literature review does not discuss DevOps adoption nor

benefits or challenges very comprehensively. Therefore, this thesis aims to contribute to

the existing literature, by reviewing a large number of studies, in order to get a broader

view of different aspects of DevOps.

The systematic literature review [10], is conducted in a similar fashion as the study of

this thesis. The systematic literature review discuss the definitions of DevOps, its

practises, benefits and challenges. They try to define DevOps using the literature and

provide some benefits and challenges of adopting DevOps. The conclusions were that

there are no definitive framework or process to adapt DevOps, nor a clear definition of

DevOps. Nevertheless, the review provides an overview of DevOps, which is similar to

this thesis.

Lastly, the multivocal literature review [11], provides definitions, practices, benefits and

challenges on DevOps. The summary of the findings were that DevOps is a cultural

change with a set of practices, such as changing the responsibilities between

development and operations, automating the software development and continuously

monitoring the software. Benefits were realised as improvements of release cycle times,

Continuous Deployment and knowledge and skills. The challenges were defined as

problems to automate and high demand for skills.

 Gustaf Österberg

4

2 Key topics

The Software Development Lifecycle (SDLC) is a systematic approach to software

development. The SDLC is a process which contains phases vital for developers, such

as planning, analysis, design, implementation and maintenance, as shown in Figure 1.

The need for such a model exists, since creating software today is a very rigorous

process, requiring a vast number of stakeholders and resources. With so many

collaborators, the risks of projects have increased, since they all want their own agenda

fulfilled. The projects are also vastly different and require different approaches to the

SDLC, which are called software development models. Some examples of such models

are: The Waterfall Model, The V-Model, The Spiral Model, Rapid Application

Development, and others [12]. The models range from very non-iterative models like

Waterfall to very iterative models like Agile [1]. DevOps can be seen as a further step

beyond Agile and is by some research defined as an extension to Agile [3].

Figure 1. The Software Development Lifecycle, where the different phases of software

development ties together to potentially form an infinite loop. Partially adopted from

[1].

 Gustaf Österberg

5

2.1.1 The Waterfall Model

The Waterfall Model has been in use since Dr Winston Royce published his article

“Managing the development of large software systems” [13]. The model portrays the

different steps of software development in a downwards fashion, shown in Figure 2,

which is why the model is named The Waterfall Model. The article highlights some key

properties that The Waterfall Model emphasises on. Communication via documentation

is the most important part of the model, which ensures that no one has a significant

impact on the project without it being written down. Similar to an extensive

documentation the project has to be designed and analysed thoroughly in the beginning

of the project to reduce the risk of errors. Subsequently, each step has to be completed

as thoroughly to reduce the risks of problems surfacing in the later stages, when they are

more difficult to resolve. Each step of the process has milestones specified to ensure the

completion of the product. This worked quite well when the systems were developed in

a simple domain where cause equals effect i.e. the domain was subject to little change.

In the following sections, more iterative models are presented [1].

Figure 2. The Waterfall Model, which portrays the software development process in its

different steps, illustrated like a waterfall [1].

 Gustaf Österberg

6

2.1.2 Agile software development

Some of the Agile thinking has been around since the birth of the Lean Toyota

Production System (TPS), developed by Toyota in the 1960s. While the TPS focuses on

Lean manufacturing of products, on a production line, Agile thinking is fixed on Lean

product development. Agile thinking is therefore more reliant on innovative and

creative development environments, since these are core principles of product

development. During the 1990s, many frameworks were developed, utilising Agile

thinking. The Rapid Application Development (RAD) framework was developed during

the mid-1990s, focusing on creating prototypes and developing through an adaptive

process, with less emphasis on planning and documentation. Later in the 1990s, the

eXtreme Programming (XP) framework was created, which focuses on the technical

values and practices of software development. XP also emphasis on pair programming,

extensive code review and unit testing. Following these new frameworks, the software

development domain has shifted from slow and non-iterative development methods,

such as Waterfall and the V-Model, to these faster and more iterative Agile frameworks

[14]. A proper definition of Agile software development was first introduced in 2001

through the Agile Manifesto [15], which explains the principles of agile development.

The manifesto brings forward a culture where the customer is in the focus and where

change is welcomed.

The Agile manifesto brings forward four main values of Agile software development.

Firstly, Individuals and interaction over processes and tools, which describes how

motivated and enabled people are the factor that brings the most value to the customer.

Nevertheless, people need excellent tools and processes to enhance the capability to

deliver superior value. Secondly, the Agile manifesto values working software over

comprehensive documentation. Working software brings added value directly to the

customer and proper documentation which delivers value to the stakeholders. Thirdly,

customer collaboration over contract negotiation, which means that collaboration

between the customer and the development team is crucial. The teams must understand

the business side of the project to be able to assess the time frame and business need of

the project. Furthermore, the business side must have knowledge about the product and

its technology to ensure that there is no misunderstanding when assessing the

functionality and requirements of the product. Fourthly, responding to change over

 Gustaf Österberg

7

following a plan, which means that change has to be embraced and should be made the

main part of the development process, instead of treating it as an external threat that has

to be combated. There are a few models describing change, which are discussed in [1].

The first model showcases 11 steps of leadership, for example, build close relationships

with staff, be tolerant, trust one’s staff, be a visionary, express one’s feelings, be

dynamic, and be humble. The second model discusses how to take advantage of

provided opportunities, how change should be achieved and how to strengthen the

information stream throughout the organisation. Lastly, the J-curve change model

presents five stages that describe behaviour patterns that organisations express [14].

2.1.2.1 Scrum

The goal of agile development methods is to increase the development pace,

communication, improve reactivity and reduce risks of software development. Scrum

focuses on completing a small number of tasks within a small timeframe, to ensure the

full completion of each task before tackling the next ones. Therefore, the main

difference between traditional software development methods and Scrum is that the

planning horizon for a project is usually defined in weeks, instead of months or years.

These few weeks long development cycles are called sprints. The sprint can be seen as a

short-ranged schedule, with its own tasks and goals. The tasks of the sprint are defined

in the sprint backlog, which contains those tasks that are meant to be completed during

the sprint. The goal of the sprint is to have the defined tasks fully implemented with a

fully working product or prototype by the end of the sprint. This provides a way for the

development team to receive feedback on the working software after each sprint and to

reduce the risks and misunderstandings that may arise during the project. The tasks are

mainly derived from requirements defined at the beginning of the project. In scrum,

these requirements are usually called user stories, which are used to present the way the

software is meant to function. User stories are usually portrayed on a story board with

different areas depending on the state the user story is in, i.e. backlog, sprint, testing or

completed. The amount of work a user story will require can be described by using

story points [16].

 Gustaf Österberg

8

2.1.3 Lean software development

The Waterfall model comes with its flaws and is not suitable for every project.

Practitioners wanted to find alternative methods, that would better suit software

development. The solution was found in the Lean software development methods,

which was introduced by Toyota in the 1960s. The main principles of Lean software

development are to eliminate waste, respect the team, deliver quickly and with quality,

defer commitment and building knowledge. Waste elimination refers to clarifying

requirements and eliminating unnecessary features of the project. Useless repetition and

bureaucracy are also to be eliminated. The project team needs respect to work

efficiently and the members should be able to work in a cross-functional manner to

make the use of resources more efficient. Decision making has to be made in an

intelligent fashion. A new feature should be implemented at a later stage of the project,

if several factors are still unclear. It is also important to take the customers’ needs into

account, before making extensive investments into a project. Lastly, Lean development

methods emphasise short development iterations to provide value to customers in a fast

manner [1].

2.1.3.1 Kanban

The Kanban system originates in the TPS, which is a type of lean manufacturing system

developed by Toyota in the 1960s (discussed in section 3). The idea of Kanban was

introduced during the beginning of the 21st century and further defined by David J.

Anderson in 2010 [17]. In his book, Anderson defines six core practices of Kanban. The

key is to make the workflow visible, by using boards and post-it notes, as shown in

Figure 3. Kanban limit the amount of work (WiP limit) performed at a given time, by

using quantitative limits on the number of ongoing tasks. These limitations on the

number of tasks worked on at a given time, reduces the number of failed deliveries,

which keeps customer relations on a high level. Furthermore, by following these two

practises, organisations can more easily detect bottlenecks and improve communication

by identifying the stakeholders that are tied to a specific task. The third practise is to

manage the workflow by resolving current issues before tackling new tasks. It is also

important to validate whether or not the new feature or change produces the desired

 Gustaf Österberg

9

value and lives up to the goals set in the planning stage. The goal of Kanban is to have a

fast and continuous workflow. To manage the workflow, tasks are categorised into

different levels of urgency, which are defined by the Service-Level Agreement (SLA),

specified in agreement with the customer. Daily stand-up meetings are held to meet the

SLAs at the desired time and to enhance the communication between the team

members. Therefore, feedback is a vital practise of Kanban. The daily stand-up

meetings should be conducted in the teams but also on a larger scale, throughout the

entire value chain to provide insight into the current work situation. Kanban also

emphasises that policies must be definitive and clear to all of the stakeholders. If a

policy does not work, it has to be changed accordingly. Lastly, the use of methods and

models provides better collaborative improvements. It is not necessary to reinvent the

wheel, when already proven solutions can be reused to ensure the added value of the

practise. The Kanban core practises distance themselves from strict prescriptions and set

rules by implementing a loose but adaptive workflow, with positive restrictions tied to

the workload and priorities [18].

Figure 3. An example of a Kanban Board [19].

 Gustaf Österberg

10

3 Central concepts in DevOps

The concepts behind DevOps, such as lean development, had been used previously for

many years. A prime example is the TPS, which was developed by Toyota’s chief of

production in the 1960s. The TPS had three main principles, keeping inventory low,

minimising the que of orders and maximising the efficiency of the manufacturing

process [20].

In 2001, Agile was introduced by a group of 17 technology leaders, such as Alistair

Cockburn and Martin Fowler. Together they created a manifesto, “The Agile

Manifesto” that described agile principles for software development. The main

argument for the movement was to eliminate slow and documentation-oriented software

development methods. The goal was to make these slow methods more iterative and

agile with the customer and end-user in focus. They wanted to remove requirement

documentation and large deadlines and more focus on using the working software itself

as a way to measure progress [21]. These Agile principles were still not enough for

some agile practitioners.

Patrick Debois, who is a consult and passionate about agile development, realised the

mismatch between the IT operations and software development teams. In 2008, he

discussed his frustrations with another agile practitioner, Andrew Schafer. Together,

they shared their issues on software development and the discrepancy between the IT

operations and software development teams. In 2009, Debois organised the conference

“Devopsdays” in Belgium, where the term DevOps was used for the first time. He

gained confidence to act, after he had listened to the now famous “10+ Deploys per

Day: Dev and Ops Cooperation at Flickr.”, a presentation given by two Flickr

employees at the O´Reilly Velocity conference earlier in 2009. This presentation is seen

as the important moment when the methods, now known as DevOps, first gained their

ground [22].

A few years later in 2011 the DevOps movement started to build open-source tools by

using the virtual deployment environment Vagrant. This was to implement the

philosophies created during the years prior. In 2012, IBM joined the DevOps market by

offering consulting services for adopting DevOps [2]. A year after in 2013, IBM

invested further by acquiring UrbanCode, a company that helps organisations enable

 Gustaf Österberg

11

Continuous Delivery in the cloud, on-premise and in mainframe applications. Later the

same year, the author Gene Kim released “The Phoenix Project”. With the book, Gene

Kim brought DevOps into the mainstream of software development. He has also been

proficient within the DevOps community by releasing the yearly “State of DevOps

Report” together with Jez Humble and Puppet Labs. The report is built around data

received from surveys performed by technical professionals from around the world [21]

[23] [24].

DevOps is a portmanteau of the two teams, Development (Dev) and Operations (Ops).

The Development team is the entity that create code, test the code and provide QA on

the developed code and software. They are often the teams that business personnel are

dependent on to create software in a fast-paced environment. This results in the fact that

software developers are forced to produce their code very fast [25]. The problems occur

when the other entity, the Operations team, is involved. The Operations unit is

responsible for maintaining the live software in the production environment, that the

customer is continuously using. The operations team has to ensure that the software is

running without problems and they are not keen on updating and changing the running

software as often as the developers are producing new features. This results in a

bottleneck between developers and operations personnel. The problem is intensified

when there is poor or lack of communication and collaboration between the two units

[25].

3.1 DevOps practises

DevOps practices are used to bring development and operations into alignment to better

be able to deliver quality software in a fast manner. According to [26], the main

objective of DevOps is to achieve Continuous Deployment, which is possible by

utilising DevOps practises. Therefore, the core DevOps practices will be presented in

this section.

 Gustaf Österberg

12

3.1.1 Continuous Planning

Planning is part of the SDLC and is usually conducted in the beginning of the project.

Planning can be seen as a precondition to continuous practices. Therefore, the success

of the whole project can depend on the planning phase and inadequate planning in the

development process is usually a cause of the failure of a project [27]. The problem with

planning, within software development, has been the lack of flexibility and agility.

Planning has been disjointed and divided into planning segments, each occurring for an

extensive amount of time. Therefore, planning also require Agile-like methods to better

synergise with the faster paced and more customer-oriented development standards

[27]. Continuous planning provides better synergy between the business side and the

developers. With continuous planning, the plan-cycles are much shorter, which provides

the developers with smaller tasks, which also provide working software faster to the

customer. The customer is able to provide feedback of the product, which will be

reviewed and used in the next planning phase. The planning-phase is therefore brought

to a similar level of agility and flexibility, as the rest of the SDLC, resulting in a more

quickly produced product, with higher quality [28].

3.1.2 Continuous Monitoring

Development teams ensure the stability and functionality of their applications by

continuously monitoring them in the production environment. The monitoring is used to

assure success of the deployment process, how the application is running once deployed

and to receive knowledge of the usage behaviour of the system. The automation of the

monitoring process is enabled by using monitoring tools, such as Graylog, Kinesis and

New Relic, which can also send automated notifications to team members, in case of

errors. The data from the monitoring process is used in graphs and dashboards to

display trends and patterns of the stability of the system [29].

 Gustaf Österberg

13

3.1.3 Continuous Deployment & Continuous Delivery

When delivering new changes to production, the practice, in the scope of DevOps is

called Continuous Delivery (CDE). The commonly used term describes the iterative

delivery of software, in short cycle times to make sure that the software is always in a

deployable state. The deployment process is validated through automated tests and

quality checks. CDE is the method of delivering changes to production for manual

approval. In CDE, the code is not continuously deployed to production like in

Continuous Deployment (CD) [30]. The practice of CD is used when an organisation

wants to continuously and automatically deploy changes to the production environment.

According to [30] [31], the CD practice is an extension to CDE and is considered more

challenging to adopt that CDE. Furthermore, CD practices are supported by the usage of

the CI/CD Pipeline (see Section 5.2.1), which enables the change to be automatically

built, tested, configured and deployed.

3.1.4 Continuous Integration

Within software development the process, which is responsible for running code,

running unit tests, validating code and checking compliance is called Continuous

Integration (CI). CI is the practice where team members of software development

integrate their work on a frequent basis, usually a few times per day. The CI process is

in most cases automated and is considered a central part of DevOps. The goal of CI is to

bridge the gap between developers and operations personnel by using automation in the

building and testing of software [31]. Martin Fowler defines CI as follows:

Continuous Integration is a software development practice where

members of a team integrate their work frequently, usually each person

integrates at least daily - leading to multiple integrations per day. Each

integration is verified by an automated build (including test) to detect

integration errors as quickly as possible. [32]

Fowler continues to define some key practices of CI, such as automation, single source

repositories, that everyone should commit code to the primary code branch and that

 Gustaf Österberg

14

broken builds should be fixed immediately. Automation can be used for several parts of

the continuous integration process, such as build-, test- and deployment automation.

Code repositories are used to store code, test scripts, database schemas, properties files

and install scripts. It is important that everyone has access to the repository and that

they all store the essential files used within CI. Fowler continues to describe the benefits

of CI and the core benefit of CI is reduced risk and a reduced number of errors in the

system. Risk is reduced since CI makes the whole integration process is very

predictable and the time it takes to integrate is also low, due to automation. Errors in the

code (bugs), are easier to find, due to automated tests, which identify errors as they are

written instead of later in the process, when they are harder to resolve [32].

3.1.5 Continuous Testing

Testing has always been a part of the development process of software. Testing the

software comes with a cost, since the time it takes to create the tests, run them and

evaluate the result, reduces the time available for producing more code. Nevertheless,

testing is a very important part of the development process and the extensiveness of the

bugs are likely increased the further testing is postponed. The solution for this problem

can be Continuous Testing, which is testing that is performed in the background of the

developer’s computer. The tests, often regression tests, are performed continuously

while the developer writes code. This is done to prohibit the new code from affecting

existing functionality and to prevent new trivial bugs from appearing into the new

feature or functionality. The continuous testing works by keeping the version of the

code being tested, in synchronisation with the code being edited. The continuous test

suite can then provide feedback continuously without any input from the developer,

since the developer does not have to think about when to run his tests. Continuous

testing is said to reduce development times by up to 10-15% for single-developer

projects [33].

3.1.6 Automation

When implementing DevOps, a key characteristic is the highly reduced release cycle

times. To achieve this, some parts of the SDLC have to be automated. A pipeline (see

 Gustaf Österberg

15

CI/CD Pipeline) is usually used where software code goes through a set of stages, where

it is tested and evaluated. If the code fulfils the pre-set requirements it will advance to

the next stage in the pipeline. These tests and evaluations are done automatically, which

enhances the need of proper automation. When the software code passes all stages, it is

ready to be deployed into production, which also might be automated, if continuous

deployment is used. By using this type of pipeline, with its automated steps,

organisations achieve a more iterative and agile approach to software development [34].

As previously stated, automation is used all over the SDLC and according to [35], there

are several technological enablers of DevOps that utilise automation. Some of the

technological enablers are build-, test-, deployment-, monitoring-, recovering- and

infrastructure automation. The different types of automation practices can be used to

streamline the development process, while letting the employees focus on research and

development tasks instead of monotone testing and build tasks.

3.2 DevOps Culture

The concept of organisational culture was first introduced in the 1950s and further

defined by researchers such as Geert Hofstede and Edgar Schein. Organisational culture

is the idea that a group of people work together, with shared values and behaviours. The

culture also influences how members of the culture react to changes of the culture. In

the scope of DevOps, culture plays a major role and is seen as a core part of the DevOps

movement. This implies that DevOps cannot be implemented by starting to use a set of

tools or workflows. The correct organisational culture is mandatory for a successful

DevOps adoption [4] [36] [37] [38]. The first step of implementing a DevOps culture is

to remove the concept of having separate development and operations teams. This

provides a way for the teams to work towards common goals, without hindering each

other’s work. This is not something that can be changed in an instant and requires the

cooperation of the whole organisation. The challenge can be to convince senior

management that the culture might have to be changed in order to fully rake the benefits

of DevOps [39]. According to [38], there are some key cultural characteristics that

define the DevOps culture. Open communication is the backbone of a DevOps culture.

Therefore, communication practises such as ticketing systems, rigid request procedures

and a general siloed mentality are considered to be a detriment to a successful DevOps

 Gustaf Österberg

16

implementation. It is far more important to discuss and develop the product throughout

its lifecycle by reviewing its requirements, resources, features and schedule. The

product should be in focus and different metrics related to the production environment

and the build sequence should be available to everyone. Further, responsibility and

motivation to create the best product, is another part of the DevOps culture. Developers

and operations personnel should be rewarded for creating a good product, not by

number of lines of code or by successful deployments. Subsequently, developers must

have a mindset of responsibility and proudness of the code they create, to the extent that

they want to supervise its correct functionality. For a collaborative culture to exist,

respect should be shown to all team members and other teams. The contributions of

others should be recognized, while respectful discussions and the ability to teach and

learn from others is vital for everyone’s learning experience. Finally, the development-,

operations-, QA- and management teams have to trust each other’s abilities to create a

successful product. If the teams do not trust each other, the implemented DevOps

practises will not perform to their full potential.

 Gustaf Österberg

17

4 Systematic Literature Review

This chapter presents the protocol used to conduct the systematic literature review. The

protocol can be utilised to reproduce the study and provides an insight into the validity

of the research. The protocol describes the premise of the research, the method of

retrieving the literature, the criteria of selecting the literature, how data was extracted

from the primary studies and how the data was interpreted. The purpose of the review

was to gain insight into what DevOps is, how it can be utilised for software

development and in what ways the implementation affects the organisation.

4.1 Literature Review

A. Research Questions

The following research questions (RQs) were defined:

RQ1. How is “DevOps” defined?

RQ2. How to adopt DevOps in a company?

RQ3. What are the benefits of DevOps?

RQ4. What are the challenges of DevOps?

The objective of the first research question (RQ1) is to provide a clear definition of

DevOps, the characteristics of DevOps and its practices. The second research question

(RQ2) has the goal of defining the required steps organisations must take to successfully

adopt DevOps. Research question three (RQ3) aims at highlighting the perceived

benefits of adopting DevOps in an organisation. The last research question (RQ4)

presents challenges and shortcomings of adopting DevOps in organisations. This

question is limited to the direct challenges of adopting DevOps itself, not challenges

that might exist prior to adopting DevOps.

 Gustaf Österberg

18

B. Strategy to find primary studies

Based on the research questions, search strings were defined to find the most relevant

prior studies on the topic. The somewhat trivial search strings were selected, since

existing research on DevOps is quite scarce, which resulted in a relatively low number

of search hits.

I) Search Strings: The search was conducted using the search strings in Table 1.

Table 1. Search strings used.

Search string

1 “DevOps” AND “adopt*”

2 “DevOps” AND “benefit*”

3 “DevOps” AND “challenge*”

4 “DevOps” AND “defin*”

II) Databases: Three databases were selected for the study:

• ACM Digital Library

• IEEE Xplore

• Science Direct

The search strings were applied to the different search methods of each digital library.

Duplicates were automatically removed from the collected results.

C. Inclusion Criteria for Primary Studies

The inclusion criteria for the primary studies were as follows:

• The article was written in English.

• The article was published in a journal, conference proceeding, conference

workshop.

• The article discussed some or all of the defined research questions.

 Gustaf Österberg

19

D. Title and abstract screening

The inclusion criteria were applied during the title and abstract screening process. Since

the whole study was performed by only one researcher, the title and abstract screening

was performed once and by one person. This somewhat increased the researcher bias of

the title and abstract screening process. Since the articles that were found were on a

manageable level, the abstract and title screening was performed concurrently.

E. Full Text Screening

To find the most suited articles for the primary study, a full text screening process was

completed. The inclusion criteria as defined above, were applied while conducting the

full text screening. The articles that did not contain relevant information to the study

were excluded. The full text screening was performed by one researcher, which might

have reduced the validity of the screening process.

F. Quality Assessment of the Primary Studies

The quality assessment of the study was performed by checking whether the selected

primary studies from the previous phase meet the minimum quality requirements of the

study. If the paper did not meet the requirement, it was excluded from the study. The

studies that passed this quality assessment are the final papers in the primary study. This

part of the research was also performed by one researcher, which might increase the

threat to the validity of the study.

The checklist used as a reference for the quality assessment is shown in Table 2. Each

statement is evaluated on a three-level numeric scale, the levels being: yes (2 points),

partial (1 point) and no (0 points). With 14 questions in the checklist, the maximum

number of points a study could receive were 28 points and the minimum of 0 points.

The articles had to receive a fourth of the maximum points (28/4 = 7) to be included in

the final primary studies. Therefore, an article that received 7 or less points was

excluded from the research for having lacklustre quality, with this study in mind. It is

important to note that the articles were assessed on the premise of relevance to this

study. Even a very well-written article could have been excluded, if it did not have the

desired relevance in regard to this study. The checklist was designed to find relevant

 Gustaf Österberg

20

articles to this study, and the aim was not to rank the articles depending on the scored

points. The goal was simply to exclude those articles that did not contribute enough

towards the research.

Table 2. Checklist defining the quality of the primary studies. Adopted from [40].

G. Data extraction

The data extraction was performed by using the data extraction form shown in Table 3.

The primary studies were analysed with the predefined research questions in mind. For

every primary study, the most relevant keywords were extracted for each research

question. The keywords were used to divide the research questions into categories,

shown in Table 5. The data extraction was performed by one researcher, which might

affect the validity.

Question

Theoretical contribution

1 Is at least one of the research questions addressed?

2 Was the study designed to address some of the research questions?

3 Is a problem description for the research explicitly provided?

4 Is the problem description for the research supported by references to other

work?

5 Are the contributions of the research clearly described?

6 Is there sufficient evidence to support the claims of the research?

Experimental Contribution

7 Is the research design, or the way the research was organized, clearly

described?

8 Is an empirical study presented?

9 Is the experimental setup clearly described?

10 Are results from multiple different experiments included?

11 Are the experimental results compared with other approaches?

12 Are negative results, if any, presented?

13 Are the limitations or threats to validity clearly stated?

14 Are the links between data, interpretation and conclusions clear?

 Gustaf Österberg

21

Table 3. Data Extraction Form. Partially adopted from [40].

Data Item Value Notes

General

Data extractor name

Data extraction date

Study identifier

Title, authors, year, journal/conference/workshop

Author affiliations and countries

Publication type (journal, conference or workshop)

DevOps related

RQ1: How is “DevOps” defined

RQ2: Tips for adopting DevOps in a company

RQ3: What are the benefits of DevOps?

RQ4: What are the challenges of DevOps?

 Gustaf Österberg

22

5 Results

In this section the results of the study is presented. The search was performed on June

26, 2019, using the search strings mentioned (see Section 4.1.B). The search yielded

554 articles. Based on the initial abstract and title screening process there were 77

articles selected for full text screening. During the full text screening, 34 articles were

selected for further analysis. These articles provided a basis for answering the specified

research questions. Nevertheless, they still had to be further assessed based on their

theoretical- and experimental contribution. The quality assessment (see Table 2) was

performed and a set of 25 primary studies were selected for the final study, shown in

Table 4.

Table 4. The primary studies included, with the research questions they provided

answers for.

Study Identifier Reference RQs Answered

S1 [3] RQ1 & RQ2

S2 [41] RQ2 & RQ4

S3 [42] RQ1

S4 [29] RQ1 & RQ2 & RQ3 & RQ4

S5 [26] RQ1 & RQ2 & RQ3 & RQ4

S6 [4] RQ1 & RQ3 & RQ4

S7 [36] RQ2

S8 [31] RQ2

S9 [43] RQ1 & RQ2

S10 [44] RQ1 & RQ2

S11 [45] RQ2

S12 [46] RQ2

S13 [47] RQ1 & RQ3 & RQ4

S14 [48] RQ2 & RQ4

S15 [49] RQ4

S16 [50] RQ2

S17 [51] RQ4

S18 [52] RQ1

S19 [53] RQ4

S20 [30] RQ4

S21 [54] RQ3

S22 [55] RQ2 & RQ4

S23 [56] RQ2 & RQ3 & RQ4

S24 [35] RQ1 & RQ2

S25 [57] RQ1 & RQ2

 Gustaf Österberg

23

The data provided through the data extraction process was categorised depending on

theme and research question. Three themes were identified for each research question.

The themes were selected based on the impact they made for answering the research

questions and the backing they received from the primary literature. The generated

themes are shown in Table 5.

Table 5. The identified themes, and the primary studies discussing them.

Theme Study Identifier

Definition

Collaboration S1 S6 S7 S8 S9 S10 S12 S16 S18 S24

Ownership and

Responsibility
S4 S5 S7 S9 S10 S24 S25

Principles of

DevOps
S3 S6 S9 S13 S18

DevOps Adoption

CI/CD pipeline S5 S12 S13 S23

Monitoring S5 S7 S8 S11 S12 S23 S24

Tools S2 S4 S7 S10 S14 S16 S19 S23 S25

Benefits

Faster release

cycles
S4 S5 S6 S13 S21 S23

Higher productivity S4 S5 S6 S21

Quality S4 S5 S6 S13 S23

Challenges

Lack of skills and

knowledge
S4 S5 S13 S15 S17 S23 S14

Resistance to

change
S5 S6 S13 S15 S17 S14

Scarcity and cost of

tools
S2 S5 S6 S17 S19 S20 S23

 Gustaf Österberg

24

5.1 DevOps definition (RQ1)

It is clear that there is no unified definition of DevOps in published research. There are

some attempts to try to define the concept. Nevertheless, there are still not enough

research to support a certain way of defining DevOps. In this section, key defining

topics on DevOps will be provided.

5.1.1 Collaboration

While conducting the literature review, eleven primary studies related to collaboration

were found [S1, S6-S10, S12, S16, S18, S23, S24]. All of the primary studies related to

collaboration, emphasise on the fact that collaboration between the development teams,

operations teams and other teams involved in the SDLC is important for DevOps.

The primary studies [S1, S7, S9] list collaboration as a core category or component of a

successful DevOps implementation. Collaboration results in better synergy between the

development and operations teams and is often discussed in junction with culture,

metrics and sharing of responsibilities. Collaboration is a way for development and

operations teams to foster DevOps adoption, resolve the lack of communication

between the teams and provide a means to adopt DevOps principles [S6-S9].

According to [S8, S10, S12], collaboration is key to enable CD and to reduce the release

cycle of the development process. This requires collaboration throughout the SDLC,

including the developers, operations personnel, testers and QA personnel. The teams

must only collaborate, it is not required for the different teams to do both operations-

and development tasks.

The primary articles [S16, S18], provide a few definitions of DevOps and collaboration

is a key part in most of them. This provides some ground to the fact that collaboration is

a vital part of the definition of DevOps. Lastly, the primary study [S24] presents

cultural enablers for DevOps, such as shared goals, shared ways of working, shared

values, responsibility and collective ownership. These enablers require a substantial

amount of collaboration to function properly.

 Gustaf Österberg

25

5.1.2 Ownership and Shared Responsibility

Many researchers conclude that ownership of code and shared responsibility between

teams are key defining characteristics of DevOps [S4, S5, S7, S9, S10, S24, S25].

According to [S4, S5], ownership and responsibility are required to achieve the desired

steps within the SDLC. Development teams should take full responsibility for their

software and carry out changes fast, while the operations team assists with automation,

security knowledge, scalability and performance. Furthermore, the developers that

create the software should also be responsible for it. This is also the case after the

software has been deployed into production, developers cannot just hand over the

completed work to the operations team, to then forget about it.

The primary article [S5], also discusses ownership and responsibility and describes

DevOps as a journey, where developers not only hand over their finished work to

system administrators, but also show responsibility for their work and communicate

with the administrators to ensure a collaborative handover. Development teams should

also be responsible for writing infrastructure scripts and partake in the monitoring of the

system after its deployment.

According to [S10], some research groups have started to adopt DevOps practises. The

lack of a QA team within research groups, is considered viable since researchers should

take responsibility of their own projects and therefore test their own code. This method

is also in line with the development methods discussed by [58], which describes

Facebook’s lack of a QA team. The developers are themselves responsible for their

code, for writing test cases and testing them. They also have to support the operational

use of the software they have created.

The primary studies [S7, S9, S24, S25], emphasise on the fact that shared

responsibilities between the development and operations teams is a vital part of the

DevOps culture. Both the development and operations teams have to take shared

responsibility of all the stages in the SDLC. Blaming the other team for errors and not

providing help to resolve issues originated by the other team, is not how DevOps should

be practised [S7, S24, S25]. Therefore, teams must make decisions together, be

accountable for the work they have completed and collaborate to solve the problems

that might arise.

 Gustaf Österberg

26

5.1.3 Defining principles of DevOps

According to the primary studies [S3, S6, S9, S13, S18], DevOps is mainly defined by

using four core principles: culture, automation, measurement and sharing, which is also

referred to as the CAMS-model, first introduced by Damon Edwards and John Willis

[S6, [59]]. The model contains the most important principles of DevOps and can be

used as a framework for implementing DevOps. These four principles are often grouped

together when researchers try to define DevOps.

Beyond these four principles, the primary studies [S6, S9] provide a few more

principles that they believe are vital for defining DevOps. They both characterise QA as

a principle of DevOps and emphasise on that development, operations and customers all

have to perform their duties in a reliable and efficient manner. Quality is increased if

these stakeholders work in a close relation, to understand issues and risks. Leanness is

also mentioned in the primary study [S6]. As previously mentioned, Lean is the

backbone of both Agile methods and DevOps. Lean processes are vital for DevOps to

enable continuous practises to develop and deliver software continuously and in an

incremental fashion [S6]. As a result, six core principles were defined. These principles,

shown in Figure 4, are: Collaboration, Automation, Measurement, Sharing, Quality

Assurance and Lean.

 Gustaf Österberg

27

Figure 4. The defining principles of DevOps.

5.2 DevOps adoption (RQ2)

The process of adopting DevOps can be challenging in many ways (see Section 5.4),

since there is no clear method or framework for adopting DevOps. Organisations might

also want to adopt DevOps in slightly different ways, depending on their current

DevOps maturity level. This section will provide some general suggestions on the

methods and tools that can help during a DevOps adoption process.

 Gustaf Österberg

28

5.2.1 CI/CD Pipeline

The primary studies [S5, S12, S13, S23] describe the main objectives of a successful

DevOps adoption. The objectives are to achieve continuous delivery and to successfully

implement a CI/CD Pipeline. The pipeline has automated steps in the delivery process,

from testing the code to deploying it into production. Each step validates and tests the

code change, and if approved, the code is sent to the next stage. The process is aborted

if the code change fails any of the pipeline stages and the developers are notified to

resolve the problem.

The primary study [S23] describes the CI/CD Pipeline as a way to fully automate the

delivery process, to significantly reduce release cycle times and to reduce costs and

risks of the software development project. Further, they define the CI/CD Pipeline as

the last step of the supply chain in software development. The automated pipeline can

be implemented differently, depending on organisation. The solution presented in [S5]

consists of the following steps: units tests, platform tests, deliver to staging, application

acceptance tests, deploy to production and post deploy tests, shown in Figure 5. The

primary studies [S13, S23] present similar pipelines, including steps like building,

automated testing and deployment. According to [S5, S12, S23], the pipeline was quite

challenging to implement, requiring a wide range of tools (see Section 5.2.3) and testing

to implement. The whole process also has to be monitored, which will be discussed in

the next section.

Figure 5: CI/CD Pipeline, adopted from [S5]

5.2.2 Monitoring

Monitoring is a vital part of DevOps and can be applied to most parts of the SDLC.

Monitoring is discussed in the primary studies [S5, S7, S8, S11, S12, S23, S24]. In the

context of DevOps, the monitoring process is often automated and performed

continuously [S5, S7, S8, S11, S23, S24]. Some researchers believe that it is paramount

 Gustaf Österberg

29

that the monitoring process is a part of the continuous delivery process and that logs are

continuously aggregated during the coding face [S8]. Some of the primary studies [S7,

S24] also divide monitoring into two categories, infrastructure monitoring and

application monitoring. The infrastructure is monitored to enhance the planning and

development processes to bring increased value and business results. According to the

primary study [S7], monitoring automation is “the ability to monitor the applications

and infrastructure without human intervention”. The monitoring process is there to

control the functionality and state of the system and to alarm the developers if

something in the system malfunctions. The notification can be sent out, using a chat

tool, such as Slack or Hip Chat [S5, S7, S11]. The primary study [S11], presents a

model for DevOps task categories and communication. In this model, monitor

automation is a system actor within the SDLC and workers are monitored, information

is extracted from the Source Control System and the state and functionality of all other

systems within the SDLC are monitored, notifying the correct actor if an issue occurs.

According to [S5], dashboards are a basic service, used for monitoring releases, users

using the system and the country the users originate from. There were also dashboards

to enable unique teams to monitor their part of the application. Lastly, the primary study

[S12], discusses monitoring as a means to confirm whether a deprecated feature is still

in use or whether it can be removed from the application.

5.2.3 Tools

The primary studies that discuss DevOps tools are [S2, S4, S7, S10, S14, S16, S19, S23,

S25], and they all present tools as a core factor in adopting DevOps. Tools are used

throughout the development process and within the CI/CD Pipeline. The primary

studies mainly discuss tools used for communication, monitoring, testing and releasing.

Tools are used to support the development of software and aid the development and

operations teams to more easily collaborate, develop and deploy software. Collaboration

tools are discussed in the primary articles [S7, S16]. Collaboration tools such as Slack

and Hip Chat are used for communication via messaging and to report alarms through

notifications from monitoring tools.

According to [S4, S16, S14, S19], tools used for version control are mainly git-based

tools, such as GitHub and Bitbucket. Git enables each developer to control its code in a

 Gustaf Österberg

30

local repository and the developer is then able to push the changes to a centralised

repository or pull changes done by others. The older versions of the code are also

available, if any changes have to be reverted. Monitoring tools such as New Relic,

Graylog and Kinesis are briefly mentioned by [S4]; they provide monitor automation,

the ability to send out error notifications to the teams and graphs and dashboards that

represent the monitored data. According to [S4, S19], testing can be done using

Selenium or TestNG, with the help of the automation tool Jenkins. Selenium is able to

test for clicks, links, CSS, text, tag names, etcetera. After the testing is completed, tools

such as Jenkins, Chef, Puppet, Ansible and Docker are used for automation,

containerisation, delivery and deployment. These are also the tools that enable

continuous integration and the CI/CD Pipeline [S4, S10, S14, S16, S19].

5.3 Benefits (RQ3)

When analysing literature on DevOps, there are many benefits of adopting DevOps.

During the literature review, I found six articles that display these benefits [S4-S6, S13,

S21, S23]. All the articles provide similar conclusions of the known benefits of

DevOps. Therefore, the merits of DevOps should be known for organisations adopting

DevOps, even though the process is far from trivial.

5.3.1 Faster release cycles

A release cycle describes the process that begins with the completion of code and ends

with the release of the code in production. In a DevOps setting, the release cycle is often

very short, ranging from a few hours to a few weeks. All of the six articles above agree

that faster release cycles are a benefit for adopting DevOps, which implies that more

frequent release cycle times is one of the more prevalent benefits of DevOps. This is

also supported by the fact that DevOps is believed to extend Agile principles [S1, S13],

which also addresses more frequent release cycle times as one of its core principles

[60].

Faster release cycle times were also discussed in the case study performed in [S4]. They

conclude that “An improved speed in the delivery of software changes was the most

 Gustaf Österberg

31

commonly perceived benefit of DevOps”, which was the perspective presented by four

out of five case companies in their study. The release times were reduced to a few days

from previously being several months. The articles [S5, S6, S21] also mention that

DevOps reduces the release cycles and it can be concluded that release cycles is an

important benefit of DevOps adoption. Lastly, the survey results of [S23] conclude that:

[…] majority of the respondents highlighted the advantage of the

DevOps activities are found to reduce the software cycle time as what

they believe DevOps practice can achieve.

Since this statement is also consistent with the other literature discussing benefits of

DevOps, one can conclude that one of the key benefits of DevOps is faster release

cycle.

5.3.2 Higher productivity

Productivity can be defined in many ways, for example as the measurement of the

effectiveness of a person or system to convert inputs into outputs. The value of

productivity is calculated by dividing the output, with the costs incurred or resources

spent. With software development, productivity can be measured by lines of code. The

number of lines of code can be compared to another factor, such as the time it take to

write the line, which can be measured as lines of code per hour. Within the scope of this

study in mind, the output is the feature or code that is being released and the input the

labour and other costs of the process. Productivity can also be measured as number of

releases in a given timeframe. There are some practices of DevOps that increase

productivity, such as automation, better collaboration and communication. The primary

study provided some proof of improved productivity when adopting DevOps. The

primary studies [S4, S5, S21] argue that better communication, less bureaucracy and

decreased organisational boundaries improved the productivity of development and

operations teams. Further, the development and operations team must improve their

communication to collaborate better, which would increase their productivity. By

adopting DevOps, bottlenecks can be eliminated, which can greatly increase the

productivity of the different teams. According to [S6], the implementation of continuous

integration and continuous feedback increases the productivity of development teams.

 Gustaf Österberg

32

Lastly, productivity is enhanced by sharing knowledge across the different teams, by

tools to manage the shared knowledge and by tracking the knowledge needs throughout

the development life cycle [S21].

5.3.3 Quality

In the scope of this research, the term quality is used to describe the quality of code and

the quality of systems and applications. The literature on the benefits of DevOps is

unanimous in the sense that both code quality and application quality is an important

benefit of DevOps [S4-S6, S13, S23]. The primary studies [S4, S5, S23] have

conducted case studies, analysing companies using DevOps. They all came to the same

conclusion that the quality increases when implementing DevOps practices. They also

conclude that with increased responsibility and ownership of developers’ own code, the

developers tend to produce code of higher quality. As a result, they believe that the

work they do is more significant, since they are also a part of the deployment and

postdeployment-stages. Furthermore, with smaller incremented releases the developers

are more confident that their code is going to pass the tests and be deployed into the

production environment. The primary studies [S6 and S13], discuss the QA of DevOps

and conclude that DevOps can drive QA by enhancing communication and feedback

loops. The case study conducted by [S14], reports that all the companies in the study

recognised that DevOps enhances production quality and reduces risks. The automation

of processes, such as testing and deployment, made a strong impact on the quality of the

code. Faster release cycles enabled deployment in smaller increments, which increased

the production quality, since the risks and quality were easy to control.

 Gustaf Österberg

33

5.4 Challenges (RQ4)

While the benefits of adopting DevOps are clear, there are still several challenges

related to adopting DevOps. There were eleven articles that discussed challenges of

adopting DevOps [S2, S4-S6, S13, S15, S17, S19-S20, S22-S23]. I was able to find

three main themes that especially challenged organisations, while adopting DevOps.

The themes were the lack of skills and knowledge of the personnel implementing

DevOps, the resistance to change by management and the organisation itself and the

cost and scarcity of tools and automation.

5.4.1 Lack of skills and knowledge

From the literature it became clear that DevOps lacks a clear definition or framework on

how it is supposed to be implemented. This results in companies being uneducated

about DevOps, which makes it more difficult to adopt. Therefore, the lack of education,

skills and knowledge around DevOps is an extensive challenge, which is also discussed

in most of the articles related to DevOps challenges [S4, S5, S13, S15, S17, S23]. The

articles present a clear problem with the lack of skills, knowledge, education and clear

instructions on how to adopt DevOps. In [S4], the researchers found that the necessary

skills and knowledge are required to develop, test, integrate and deploy software. In one

of the cases in their study, the company adopting DevOps had vast difficulties with new

technologies and platforms being implemented at the same time. Even in a company

with a high skillset of technology and knowledge, the practitioners had problems with

the DevOps approach. In another setting, the primary study [S5] acknowledges that

recruiting the correct personnel with adequate skillsets is vital. Furthermore, lack of

knowledge leads to poorer DevOps adoption:

The lack of appropriately skilled staff can lead to slowing down of the

DevOps adoption journey because the capabilities needed are missing at

the time of need.

The primary studies [S13, S15, S17] conclude that one of the main challenges of

DevOps is the lack of understanding and expertise on how to adopt DevOps. This is

seen as one of the main challenges of adopting DevOps. Lastly, the researchers in [S23]

 Gustaf Österberg

34

establish that the guidelines of DevOps adoption are lacking and can lead to delays in

the software release cycle.

5.4.2 Resistance to change

Another considerable challenge for adopting DevOps is the resistance to change,

expressed by practitioners and upper management. The literature discuss the matter

from two perspectives, the practitioners and the managers. The practitioners, such as

members of development and operations teams, might resist the adoption of DevOps for

fear of losing their job or by not agreeing with the collaborative atmosphere. The

different teams might have separate skills and tasks, which make it more difficult to

work together [S5, S13]. According to [S15], there are conflicting goals between

development and operations teams. Developers tend to want new features and bug fixes

to be released in production rapidly. Meanwhile, the operations team want to keep the

releases to a minimum, to preserve the stability and reliability of the system. The other

perspective is that of the senior management resisting DevOps adoption. The literature

provides some views on the problems emerged, as a result of senior management.

According to [S15]:

If the benefits of adopting DevOps are not clear, top management will

resist by questioning the feasibility and wisdom of implementing it.

The tools of DevOps are expensive and require proper management, which might deter

managers from seeing the value of DevOps. DevOps adoption is also limited by

hierarchical and inflexible management style [S6, S15, S17]. The researchers in [S17]

discuss the lack of productivity in the beginning of the adoption process, which is

portrayed as a problem for senior management. As a result of these productivity issues,

senior management can be hesitant to adopt DevOps,

 Gustaf Österberg

35

5.4.3 Scarcity and cost of tools and automation

Another common challenge that emerged from the primary studies was the lack of tools,

cost of them and poor knowledge of their usage. The primary studies [S2, S5, S6, S17,

S19, S20, S23] all present tools as a challenge for adopting DevOps. DevOps

practitioners are having difficulties finding the correct tools and using them in a reliable

manner for continuous practises [S2, S5, S20]. Furthermore, the initial setup of the

tools, the experimenting and making the decision on which tool to use, is seen as a time-

consuming, slow and complex endeavour [S5]. The high cost of DevOps tools is also

seen as a negative and management have a difficult time justifying the investment. The

tools are often unproductive in the early stages and require some setup and

management, which increases the threshold for implementing them [S6, S17, S19]. The

primary study [S20] point out that a lack of standardisation between tools is a hindrance

for adopting continuous practises and, therefore, DevOps. Lastly, tools be a liability if

they are managed poorly. The primary study [S23], found out that:

The evidence of this study shows that the asset can become a liability if

the resources control is managed wrongly. Respondents mentioned the

failure of resources control could lead to resources overhead during the

integration of the source codes when all source codes have been

deployed too often. As a result, this will jeopardize the Continuous

Delivery Pipeline. In some cases, the automated test is failed because of

the environment used in the production is different and very complex to

be executed with the automated test.

According to the statement above, the repeated deployment of features can result in the

version in production being too complex, failing the tests executed within the

Continuous Delivery Pipeline.

 Gustaf Österberg

36

6 Discussion

The result of this study provides some key areas that present the essence of DevOps.

Since there has not been any clear prior definition of DevOps, one of the main

contributions of this thesis has been to provide approaches to define DevOps. The

following themes were extensively discussed in the primary literature: collaboration,

ownership of code and shared responsibilities between teams. While these themes are

important for defining DevOps, they do not provide a conclusive definition for DevOps.

This fact provides the notion that a clear definition of DevOps was not obtained in this

research. The reasons for this are the scarcity of prior research into DevOps and the lack

of a clear definition of DevOps in prior literature. DevOps is more of a philosophy of

software development, than a concrete framework and organisations have different

means of adopting DevOps.

The adoption of DevOps is highly dependent on the organisations ability to automate

the various steps of the SDLC. A common practice used to achieve this, is to implement

a CI/CD Pipeline, that the new piece of code passes through, while being tested and

finally deployed into production. Sustaining a high level of deployability can be

challenging, but as shown in [46] it is more than possible and the benefits can be

tremendous. To research more into the CI/CD Pipeline, it would be beneficial to

implement a pipeline and try to find a general framework that could be followed to

more easily execute the implementation. Throughout the whole CI/CD Pipeline and

SDLC, the system is monitored for user behaviour, feedback and errors. The result of

this study provides a conclusive belief that monitoring is mainly automated and used

continuously for better efficiency and reliability. This is quite logical, since monitor

practices is better to do in the background, without having to use the time of developers

for monitoring. The research provided the notion, that monitoring is one of the more

mature DevOps practises, with several tools available for most of the monitoring needs.

Tools are also used for several other DevOps practices and they are a vital part of a

successful DevOps adoption. Tools are used to support practitioners with collaboration,

development and deployment tasks. Tools enable the automation of redundant and easy

tasks, which increases the efficiency of the software development teams. The State of

DevOps Report of 2018 [61], also view tooling as an important part of DevOps, and

they found that: “highly evolved orgs are 44x more likely to contribute to other teams’

 Gustaf Österberg

37

tooling”. This provides some proof that organisations that share their tools and use them

correctly, have a higher DevOps maturity level than organisations that do not.

The result also presented benefits and challenges of adopting DevOps. The most

discussed benefits were faster release cycles, higher productivity and higher quality.

The fact that DevOps accelerated the development and release cycles is quite expected,

since DevOps is an extension to Agile principles. Nevertheless, the fact that DevOps

can reduce the release of a new feature, from a few months to a few days or even a few

hours, is quite remarkable. The State of DevOps Report of 2013 [62] also back up the

findings, stating that organisations deploy software 30 times more frequently and 8000

times faster than other non-DevOps organisations. This makes DevOps a very

interesting way to enhance the productivity within software development. According to

the result, higher productivity was also found to be a strong benefit of adopting

DevOps. Productivity is a quite broad term, with many possible utilisations and

definitions. Nevertheless, in the setting of DevOps, one way is to measure the amount of

releases in a given timeframe. According to the result, many of the core DevOps

principles, such as automation, increase the productivity of software development. The

report [62] back this by stating: “Version control and automation together enable the

highest levels of efficiency and productivity” This fact is quite sensible, since a more

effective usage of recourses is a way to improve productivity. DevOps also improves

the quality of code and the quality of developed applications. Developers tend to create

code of higher quality if they are responsible for its whole lifecycle from creation to

deployment. This is quite logical, since by forcing developers to be accountable for their

own code, they have a greater chance to care about the end result, which should

promote them to produce code of higher quality.

Lastly, there are also challenges of adopting DevOps. According to the results of this

study, the lack of skills, education and knowledge around DevOps is a hindrance for its

adoption. This result is also backed up by the article [63], which conclude that: “Our

findings show the importance of skills and skill categories to build effective and

successful DevOps team”. It is quite sensible that the skill level of DevOps is high,

since developers now have to execute tasks that previously has been completed by the

operations team. This problem is not improved by the second DevOps challenge, which

is the fact that practitioners and management can have a high resistance to change. The

results coined from the primary studies present that resistance to change is a

 Gustaf Österberg

38

considerable challenge for adopting DevOps. This fact is also backed up by [64] and the

fact that change is hard to accept and the fear of losing ones job to automation, might

even enhance it. The last challenge identified through the research, was the cost and

scarcity of tools. The findings provide the impression that the correct tools can be

difficult to find, and the initial setup of tools can be costly and time-consuming.

Subsequently, the result provides a clear analysis on the definitions, adoption, benefits

and challenges of DevOps. Nevertheless, further research into the topics concerning

DevOps is required. This study could have benefited from another angle of approach,

either by interviewing DevOps practitioners or by implementing a DevOps solution,

such as a CI/CD Pipeline.

6.1 Threats to Validity

The research in this thesis has potentially been exposed to two types of biases, selection

bias and publication bias. A systematic approach was used to collect data from previous

literature on different aspects of DevOps. The protocol [40] was accurately followed,

which means that the same results should be yielded if the study is conducted again by

another researcher. Nevertheless, the protocol was performed entirely by one researcher,

which can be seen as a threat to the validity and cause some of the steps of the protocol

to be exposed to selection bias. The research in this thesis is also exposed to publication

bias, since researchers and organisations tend to present only positive results.

Organisations that have failed to adopt DevOps might therefore not write about it,

leaving out important evidence for the drawbacks of DevOps. These two types of biases

have been considered during the research process and the impacts of them has been

mitigated. The mitigation has been accomplished by using a very long and thorough

selection process for reducing the selection bias. The publication bias has been

mitigated by assessing the quality of the articles, by ensuring that also negative results

are present in the primary studies.

 Gustaf Österberg

39

7 Conclusions

The purpose of this thesis was to provide an understanding of the definition of DevOps,

how DevOps can be adopted and the benefits and challenges of adopting DevOps. The

research was conducted by carrying out a literature review to receive an understanding

on the previous research on DevOps and to answer the research questions. DevOps is an

interesting concept with numerous potentials within software development. DevOps is

something that organisations strives to adopt, but without a clear framework or

definition, it is hard to convince organisations to implement DevOps. The result

provides a view on the definitions, adoption, benefits and challenges of DevOps.

Nevertheless, it is still difficult to provide a clear definition of DevOps and further

research is needed for a conclusive definition to be found. The result is backed by 25

primary studies that were selected for analysis. The data extracted from these studies

resulted in twelve core themes, that were selected on the basis of their impact for

answering the research questions and the level of backing they received from the

primary studies. This contributed to the characterisation of many key topics on the

definition of DevOps, what organisations should have in mind while adopting DevOps,

the benefits and the challenges of adopting DevOps. The result identified the key

defining topics of DevOps to be culture of collaboration, automation, metrics, sharing,

QA and Lean. These are the principles, which serve as the backbone of DevOps. The

result also provided some insight into the structure of the CI/CD Pipeline, how

organisations can monitor the development process and the usage of their applications

and the tools they should consider when adopting DevOps. The benefits realised from

the results were the faster release cycles of software in organisations adopting DevOps.

The release cycle times were cut to mare days or hours, from several weeks or months.

These improvements also resulted in higher productivity within the SDLC. It is possible

to ensure higher quality of the produced software, through the automation of vital steps

within the SDLC and better interaction with different stakeholders. Challenges of

DevOps were also defined, and the most prevalent challenges were the lack of skills and

knowledge of DevOps, the resistance to change and the scarcity and costs of tools. The

overall result aid practitioners, management and anyone interested in DevOps on its

several key areas and helps stakeholders of software development organisations to

produce software more rapidly, more effectively and with higher quality.

 Gustaf Österberg

40

Svensk sammanfattning

DevOps - en systematisk litteraturstudie över definitioner,

implementationer, fördelar och utmaningar

Dagens programvaruproduktion präglas av hög konkurrens och höga krav. Företag är

tvungna att producera sin programvara mer effektivt för att vara konkurrenskraftiga på

marknaden. Programvaruproduktion har tidigare ansetts vara en trög procedur med

begränsad flexibilitet. Vattenfallsmetoden har varit den dominerande metoden för

programvaruproduktion, dock är metoden väldigt icke-flexibel och lämpar sig inte för

alla projekt eller organisationer [1]. För att lösa problemen med vattenfallsmetoden

infördes den agila systemutvecklingen i början av 2000-talet. Agila metoder förespråkar

ett mer iterativt och flexibelt sätt att producera programvara, en bättre relation till

kunden samt snabbare cykler för utgivning av programvaran [60]. Agila metoder är

dock mest lämpade för mindre företag som endast har ett team som jobbar med hela

programutvecklingsprocessen. I större programmeringsföretag är de som producerar

programvara oftast uppdelade i två team, de som kodar programmet och de som

publicerar koden i kundens miljö. Dessa två team har hittills inte kommunicerat eller

samarbetat på ett effektivt sätt, vilket har resulterat i flaskhalsar inom

programutvecklingsprocessen. Tanken bakom DevOps är att utöka de agila metoderna

och få teamen att samarbeta och kommunicera bättre. Detta är möjligt att genomföra

genom att förbättra företagskulturen, automatisera och övervaka

programutvecklingsprocessen samt genom att dela kunskap och ansvar mellan teamen

[65].

Syftet med avhandlingen är att få en bättre bild av hur DevOps definieras och införas.

Syftet med avhandlingen är också att få fram positiva och negativa sidor med

ibruktagandet av DevOps. Syftet stärks eftersom den befintliga forskningen i ämnet är

begränsad och det inte finns en klar definition över vad DevOps är eller ett lämpligt

ramverk för implementeringen av DevOps.

Metoden som använts för att uppnå avhandlingens resultat är en systematisk

litteraturstudie. De primära artiklarna som använts som grund för resultatet,

identifierades inom de elektroniska databaserna IEEE Xplore, ACM DL och Science

Direct. Sökningen bidrog till 554 artiklar varav 25 användes. Datainsamlingen skedde

 Gustaf Österberg

41

med hjälp av ett datainsamlingsformulär som tillämpades på de artiklar som valdes

inom ramen för litteraturstudien. Studiens reliabilitet kan ses som delvis partisk då alla

steg inom undersökningen endast utfördes av en person. En väldigt specifik process

följdes ändå för att identifiera de artiklar som tillhör studien, vilket torde bidra till en

högre trovärdighet.

Undersökningen genomfördes genom att välja ut de artiklar som bäst lämpades för att

besvara forskningsfrågorna. Valet av artiklar skedde i tre faser. Första fasen bestod av

en titel- och abstraktgenomgång varav 77 artiklar accepterades till nästa fas. I den andra

fasen valdes artiklar enligt textens hela innehåll och 34 artiklar accepterade i den andra

fasen. I sista fasen bedömdes de resterande artiklarnas kvalitet ur ett innehållsperspektiv

och enligt kvaliteten på själva forskningen i artikeln. De 25 artiklar som accepterades i

denna fas var även de slutgiltiga primära artiklarna som undersökningen grundades på.

Efter valprocessen och datainsamlingen identifierades de centralaste teman för varje

forskningsfråga. Dessa teman var: samarbete, äganderätt och ansvar, principer för

DevOps, övervakning, verktyg, snabbare lanseringscykler, högre produktivitet, kvalitet,

brist på färdigheter och kunskap, motstånd till ändring och brist på verktyg. Då dessa

kategorier var bestämda beskrevs de i avhandlingens resultat.

Avhandlingens resultat besvarar de fyra forskningsfrågorna. Den mest centrala delen av

undersökningen var att hitta en definition för DevOps. De tre teman som utgjorde en

betydelsefull del i datainsamlingen var samarbete, gemensamt ansvar och principer som

definierar DevOps. Undersökningen visade att samarbete mellan de olika teamen inom

produktionsutvecklingen är en av de centralaste egenskaperna hos DevOps. Genom

samarbete strävar man efter att minska på kommunikationsproblem mellan de olika

teamen inom produktionsutvecklingsprocessen. Via samarbete kan man också minska

på den tid det tar att producera programvara. De olika teamen ska även ta gemensamt

ansvar för de olika momenten inom programvaruutvecklingsprocessen. Kodare skall

genom hela processen ta fullt ansvar över sin kod, och produktionsteamet skall hjälpa

kodarna med automation och lanserandet av koden i kundens miljö. Eventuella problem

ska lösas genom diskussioner oberoende ursprunget till problemet. För att definiera

DevOps används oftast principer som samarbete, automation, delning och mätning.

Dessa kan även användas som ett ramverk för att införa DevOps inom organisationer.

Målet med DevOps anses vara att uppnå kontinuerlig leverans av programvara som

 Gustaf Österberg

42

även bygger på automation. För att uppnå detta används oftast en pipeline som den nya

koden passerar igenom, medan koden utsätts för tester och kvalitetskontroller. Utöver

detta så används övervakningsprogram för att övervaka de olika processerna för att

kunna ge feedback över hur bra det nya programmet fungerar för att meddela då det

sker något fel. Dessutom är DevOps beroende av en del verktyg för att underlätta de

olika stegen inom programvaruutvecklingsprocessen. Utöver övervakning, används

verktyg för automatisering, kommunikation, sparandet av kod, testning samt lansering

av programvara. Det finns en del fördelar med att använda sig av DevOps-metoder.

Enligt undersökningen som utfördes förbättras den tid det tar att lansera programvara

märkbart. Det framkom att då koden lanseras i kundens miljö mer frekvent så, förbättras

kvaliteten och riskerna minskar eftersom man lanserar koden i mindre fragment.

Produktiviteten ökar även när de olika teamen samarbetar bättre med varandra, när

byråkratin minskar och när organisatoriska gränser minskar. Genom att införa DevOps

kan man bli av med flaskhalsar inom programvaruutvecklingsprocessen, vilket kan öka

produktiviteten märkbart.

Slutligen finns det även utmaningar för att införa DevOps. Då företag har en snäv

uppfattning om DevOps och deras anställda inte har den nödvändiga utbildningen, finns

det risk för att implementeringen av DevOps inte lyckas eller blir bristfällig. Det kan

även finnas en del motstånd från den högre ledningen, eftersom vissa aspekter av

DevOps kan kräva stora investeringar och omstruktureringar inom organisationen. De

anställda kan även ha en rädsla för att deras jobb blir föråldrat, då automation tas i bruk.

Verktygen för att implementera DevOps kan även vara dyra och det finns inte alltid

lämpliga verktyg för alla delar inom programvaruutvecklingsprocessen.

 Gustaf Österberg

43

References

[1] R. Stephens, Beginning Software Engineering, John Wiley & Sons, Incorporated,

2017.

[2] A. Ravichandran, K. Taylor and P. Waterhouse, DevOps for Digital Leaders,

Berkley, CA: Apress, 2016.

[3] R. Jabbari, N. bin Al, K. Petersen and B. Tanveer, “What is DevOps?: A

Systematic Mapping Study on Definitions and Practices,” XP '16 Workshops:

Proceedings of the Scientific Workshop Proceedings of XP2016, 2016.

[4] N. de França, H. Jeronimo and G. H. Travassos, “Characterizing DevOps by

Hearing Multiple Voices,” SBES '16: Proceedings of the 30th Brazilian Symposium

on Software Engineering, 2016.

[5] F. Erich, C. Amrit and M. Daneva, “Report: DevOps Literature Review,” 2014.

[6] Google Inc, “Google Trends,” 2020. [Online]. Available:

https://trends.google.com/trends/explore?date=2009-02-24%202020-03-

24&q=%2Fm%2F0c3tq11. [Accessed 24 03 2020].

[7] Gartner Inc, “Gartner Conferances,” 2020. [Online]. Available:

https://www.gartner.com/en/conferences/apac/infrastructure-operations-cloud-

india/featured-topics/devops. [Accessed 24 03 2020].

[8] Puppet Labs (2019), “State of DevOps Report 2019,” 2019.

[9] A. Rathod, “Different Organizations, Different DevOps Outcomes,” MediaOps

Inc., 2019. [Online]. Available: https://devops.com/different-organizations-

different-devops-outcomes/. [Accessed 24 03 2020].

[10] M. Rütz, “DEVOPS: A SYSTEMATIC LITERATURE REVIEW,” 2019.

[11] L. Lwakatare, “DEVOPS ADOPTION AND IMPLEMENTATION IN

SOFTWARE DEVELOPMENT PRACTICE,” 2017.

[12] N. Ruparelia, “Software Development Lifecycle Models,” ACM SIGSOFT

Software Engineering Notes, 2010.

[13] W. Royce, “Managing the development of large software systems,” 1970.

[14] P. Measey, Agile Foundations: Principles, practices and frameworks, BCS

Learning & Development Limited, 2015.

[15] Beck et. al, “Manifesto for Agile Software Development,” 2001. [Online].

Available: https://agilemanifesto.org/. [Accessed 10 2 2020].

[16] K. Pries and J. Quigley, Scrum Project Management, CRC Press LLC, 2010.

 Gustaf Österberg

44

[17] D. Andersson, Kanban: Successful Evolutionary Change for Your Technology

Business, Blue Hole Press, 2010.

[18] K. Leopold and S. Kaltenecker, Kanban Change Leadership: Creating a Culture of

Continuous Improvement, John Wiley & Sons, Incorporated, 2015.

[19] H. Hyytiälä, “The Kanban method,” Reaktor Group Oy, 2011. [Online]. Available:

https://www.reaktor.com/blog/the-kanban-method/. [Accessed 21 02 2020].

[20] Lean Enterprise Institute, Inc, “TOYOTA PRODUCTION SYSTEM,” 2020.

[Online]. Available: https://www.lean.org/lexicon/toyota-production-system.

[Accessed 10 2 2020].

[21] S. Sharma, The DevOps adoption playbook : a guide to adopting devOps in a

multi-speed IT enterprise, Indianapolis: John Wiley and Sons, 2017.

[22] S. Mezak, “The Origins of DevOps: What’s in a Name?,” MediaOps Inc, 28 1

2018. [Online]. Available: https://devops.com/the-origins-of-devops-whats-in-a-

name/. [Accessed 10 2 2020].

[23] J. Hamunen, “Challenges in Adopting a Devops Approach to Software

Development and Operations,” 2016.

[24] IBM , “IBM UrbanCode,” 2020. [Online]. Available:

https://www.ibm.com/cloud/urbancode. [Accessed 10 2 2020].

[25] S. Hussaini, “Strengthening harmonization of Development (Dev) and Operations

(Ops) silos in IT environment through Systems approach.,” 2014 IEEE 17th

International Conference on Intelligent Transportation Systems (ITSC), 2014.

[26] M. Senapathi, J. Buchan and H. Osman, “DevOps Capabilities, Practices, and

Challenges: Insights from a Case,” EASE'18 Proceedings of the 22nd International

Conference on Evaluation and Assessment in Software Engineering, pp. 57-67,

2018.

[27] B. Fitzgerald and K.-J. Stol, “Continuous Software Engineering and

Beyond:Trends and Challenges,” RCoSE 2014: Proceedings of the 1st

International Workshop on Rapid Continuous Software Engineering, 2014.

[28] M. Virmani, “Understanding DevOps & Bridging the gap from Continuous

Integration to Continuous Delivery,” Fifth international conference on Innovative

Computing Technology (INTECH 2015), 2015.

[29] L. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, P. Kuvaja, V. Heikkilä, J.

Itkonen, T. Mikkonen, M. Oivo and C. Lassenius, “DevOps in practice: A multiple

case study of five companies,” Information and Software Technology, vol. 114, pp.

217-230, 2019.

[30] M. Shahin, M. A. Babar, M. Zahedi and L. Zhu, “Beyond Continuous Delivery: An

Empirical Investigation of Continuous Deployment Challenges,” Proceedings of

 Gustaf Österberg

45

the 11th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, 2017.

[31] M. Shahin, M. A. Babar and L. Zhu, “The Intersection of Continuous Deployment

and Architecting Process: Practitioners' Perspectives,” Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, pp. 1-10, 2016.

[32] M. Fowler, “martinFowler.com,” 1 05 2006. [Online]. Available:

https://martinfowler.com/articles/continuousIntegration.html. [Accessed 11 2

2020].

[33] D. Saff and M. Ernst, “An Experimental Evaluation of Continuous Testing During

Development,” ACM SIGSOFT Software Engineering Notes, 2004.

[34] R. Sturm, C. Pollard and J. Craig, Application Performance Management (APM) in

the Digital Enterprise, Elsevier Inc, 2017.

[35] J. Smeds, K. Nybom and I. Porres, “DevOps: A Definition and Perceived Adoption

Impediments,” Continuous Strategy Process in the context of Agile and Lean

Software Development, pp. 166-177, 2015.

[36] W. Luz, G. Pinto and R. Bonifácio, “Building a collaborative culture: a grounded

theory of well succeeded devops adoption in practice,” ESEM '18: Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, 2018.

[37] T. Theunissen and U. Heesch, “Specification in Continuous Software

Development,” Proceedings of the 22nd European Conference on Pattern

Languages of Programs, 2017.

[38] M. Walls, Building a DevOps Culture, O'Reilly Media, Inc., 2013.

[39] P. Mahanta, V. Adige, A. Pole and R. M, “DevOps Culture and its impact on Cloud

Delivery and Software Development,” 2016 International Conference on Advances

in Computing, Communication, & Automation (ICACCA) (Spring), 2016.

[40] K. Nybom, A. Ashraf and I. Porres, “A Systematic Mapping Study on API

Documentation Generation Approaches,” 2018 44th Euromicro Conference on

Software Engineering and Advanced Applications, 2018.

[41] L. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H. Olsson, J. Bosch and M.

Oivo, “Towards DevOps in the Embedded Systems Domain: Why is It so Hard?,”

2016 49th Hawaii International Conference on System Sciences, 2016.

[42] V. Gupta, P. Kapur and D. Kumar, “Modeling and measuring attributes influencing

DevOps implementation in an enterprise using structural equation modeling,”

Information and Software Technology, 2017.

 Gustaf Österberg

46

[43] T. Theunissen and U. van Heesch, “Specification in Continuous Software

Development,” EuroPLoP '17: Proceedings of the 22nd European Conference on

Pattern Languages of Programs, 2017.

[44] M. de Bayser, L. Azevedo and R. Cerqueira, “ResearchOps: The case for DevOps

in scientific applications,” 2015 IFIP/IEEE International Symposium on Integrated

Network Management (IM), 2015.

[45] C. Cois, J. Yankel and A. Connell, “Modern DevOps: Optimizing software

development through effective system interactions,” 2014 IEEE International

Professional Communication Conference (IPCC), 2014.

[46] L. Chen, “Microservices: Architecting for Continuous Delivery and DevOps,”

IEEE International Conference on Software Architecture, 2018.

[47] M. Ibrahim, S. Syed-Mohamad and M. Husin, “Managing Quality Assurance

Challenges of DevOps through Analytics,” ICSCA '19: Proceedings of the 2019

8th International Conference on Software and Computer Applications, 2019.

[48] S. Jones, J. Noppen and F. Lettice, “Management Challenges for DevOps Adoption

within UK SMEs,” QUDOS 2016: Proceedings of the 2nd International Workshop

on Quality-Aware DevOps, 2016.

[49] M. Kamuto and J. Langerman, “Factors Inhibiting the Adoption of DevOps in

Large Organisations: South African Context,” 2017 2nd IEEE International

Conference On Recent Trends In Electronics Information & Communication

Technology, May 19-20, 2017, India, 2017.

[50] G. Doukoure and E. Mnkandla, “Facilitating the Management of Agile and Devops

Activities: Implementation of a Data Consolidator,” 2018 International Conference

on Advances in Big Data, Computing and Data Communication Systems (icABCD),

2018.

[51] P. Perera, M. Bandara and I. Perera, “Evaluating the Impact of DevOps Practice in

Sri Lankan Software Development Organizations,” 2016 International Conference

on Advances in ICT for Emerging Regions (ICTer): 281 - 287, 2016.

[52] D. Ståhl, T. Mårtensson and J. Bosch, “Continuous Practices and DevOps: beyond

the buzz, what does it all mean?,” 2017 43rd Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2017.

[53] A. Agarwal, S. Gupta and T. Choudhury, “Continuous and Integrated Software

Development using DevOps,” 2018 International Conference on Advances in

Computing and Communication Engineering (ICACCE-2018), 2018.

[54] S. Hussaini, “A Systemic Approach to Re-inforce Development and Operations

Functions in Delivering an Organizational Program,” Procedia Computer Science,

2015.

 Gustaf Österberg

47

[55] K. Kuusinen, V. Balakumar, S. Jepsen, S. Larsen, T. Lemqvist, A. Muric, A.

Nielsen and O. Vestergaard, “A Large Agile Organization on Its Journey Towards

DevOps,” 2018 44th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2018.

[56] M. Zulfahmi, S. Sahibuddin and M. Mahrin, “Adoption Issues in DevOps from the

Perspective of Continuous Delivery Pipeline,” the 2019 8th International

Conference, 2019.

[57] K. Nybom, J. Smeds and I. Porres, “On the Impact of Mixing Responsibilities

Between Devs and Ops,” International Conference on Agile Software

Development, 2016.

[58] D. Feitelson, E. Frachtenberg and K. Beck, “Development and Deployment at

Facebook,” IEEE Internet Computing, 2013.

[59] J. Willis, “What Devops Means to Me,” 2010. [Online]. Available:

https://blog.chef.io/what-devops-means-to-me/. [Accessed 30 03 2020].

[60] Beck, K., et al., “The Agile Manifesto,” Agile Alliance, [Online]. Available:

http://agilemanifesto.org/. [Accessed 31 01 2020].

[61] Puppet Labs (2018), “State of DevOps Report 2018,” 2018.

[62] Puppet Labs (2013), “State of DevOps Report 2013,” 2013.

[63] A. Wiedemann and M. Wiesche, “ARE YOU READY FOR DEVOPS?

REQUIRED SKILL SET FOR DEVOPS TEAMS,” ECIS 2018 Proceedings, 2018.

[64] I. Bucena and M. Kirikova, “Simplifying the DevOps Adoption Process,” BIR

Workshops, 2017.

[65] L. E. Lwakatare and e. al, “DevOps in practice: A multiple case study of five

companies,” Information and Software Technology, vol. 114, pp. 217-230, 2019.

