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ARTICLE INFO ABSTRACT

Background and aims: The role of artificial intelligence in the diagnosis of Helicobacter pylori gastritis based on en-
doscopic images has not been evaluated. We constructed a convolutional neural network (CNN), and evaluated
its ability to diagnose H. pylori infection.

Methods: A 22-layer, deep CNN was pre-trained and fine-tuned on a dataset of 32,208 images either positive or
negative for H. pylori (first CNN). Another CNN was trained using images classified according to 8 anatomical lo-
cations (secondary CNN). A separate test data set (11,481 images from 397 patients) was evaluated by the CNN,
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Hi%: a; er pylori and 23 endoscopists, independently.
Endoscopy Results: The sensitivity, specificity, accuracy, and diagnostic time were 81.9%, 83.4%, 83.1%, and 198 s, respectively,

for the first CNN, and 88.9%, 87.4%, 87.7%, and 194 s, respectively, for the secondary CNN. These values for the
23 endoscopists were 79.0%, 83.2%, 82.4%, and 230 + 65 min (85.2%, 89.3%, 88.6%, and 253 + 92 min by 6
board-certified endoscopists), respectively. The secondary CNN had a significantly higher accuracy than
endoscopists (by 5.3%; 95% CI, 0.3-10.2).
Conclusion: H. pylori gastritis could be diagnosed based on endoscopic images using CNN with higher accuracy
and in a considerably shorter time compared to manual diagnosis by endoscopists.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Artificial intelligence
Convolutional neural networks

1. Introduction

Gastric cancer is one of the most common malignancies, with one
million cases estimated around the world in 2012 (O'Connor et al.,
2017). Among the underlying causes, Helicobacter pylori (H. pylori) infec-
tion plays a central role in the pathobiology of gastric cancer; it induces
atrophic gastritis and intestinal metaplasia, eventually resulting in the
development of gastric cancer (Correa, 1995; Correa and Houghton,
2007; Take et al., 2015; Shichijo et al.,, 2015). Given the increased risk

* Corresponding author at: Department of Gastrointestinal Oncology, Osaka
International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka 541-8567, Japan.
E-mail address: shichijiyou-tky@umin.acjp (S. Shichijo).

https://doi.org/10.1016/j.ebiom.2017.10.014

of gastric cancer in H. pylori-infected patients, and the decreased inci-
dence of gastric cancer following H. pylori eradication, the International
Agency for Research on Cancer has categorized H. pylori as a definite car-
cinogen (Ogura et al., 2008; Fukase et al., 2008; Ford et al., 2014; Yoon et
al, 2014).

An endoscopic examination is often performed for the screening of
gastric cancer and other diseases. It is also useful for the detailed exam-
ination of various epigastric symptoms, positive barium meal studies for
gastric diseases, and abnormal serum pepsinogen levels. Additionally,
an endoscopic examination is helpful in diagnosing H. pylori infection;
atrophy, diffuse redness, mucosal swelling, enlarged folds, and
nodularity are representative findings for H. pylori-positive gastritis,
while a regular arrangement of collecting venules and fundic gland

2352-3964/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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polyps are characteristic of H. pylori-negative gastric mucosa (Kato,
2016). A precise endoscopic diagnosis of H. pylori infection will trigger
confirmation by various tests such as blood or urine anti-H. pylori IgG
levels, fecal antigen test, urease breath test, or rapid urease test. Subse-
quently, patients with a positive test result are considered for H. pylori
eradication therapy for the prevention of gastric cancer and other dis-
eases, which are covered by national health insurance in Japan.

However, a diagnosis based on endoscopic findings requires training
(Sugano et al., 2015; Watanabe et al., 2013), is time-consuming and sub-
jective, and may result in false-positive and false-negative results de-
pending on the skill of the endoscopist. Further, fatigue may adversely
affect the diagnostic yield of this investigation as shown in a previous re-
port, wherein the adenoma detection rates via colonoscopy declined
with increasing procedural hours (Almadi et al.,, 2015).

Recent reports suggest a role for artificial intelligence (Al) using deep
learning in various medical fields, especially as a system with the ability
to screen medical images, in areas including radiation oncology (Bibault
et al., 2016), skin cancer classification (Esteva et al., 2017), and diabetic
retinopathy (Gulshan et al., 2016). In the context of medical imaging,
deep learning has the potential to become a powerful machine learning
technique that can interpret medical images based on a set of unique al-
gorithms developed by historically accumulated data (LeCun et al.,
2015). Deep learning allows computational models that are composed
of multiple processing layers to learn representations of data with multi-
ple levels of abstraction (LeCun et al., 2015).

The convolutional neural network (CNN) has been developed by
Szegedy et al., and is the most popular network architecture for deep
learning for images. To evaluate whether CNN has a role in identifying
H. pylori infection based on endoscopic images, we constructed an Al-
based diagnostic system that was trained using >30,000 endoscopic im-
ages. We tested this system by comparing its diagnostic accuracy for H.
pylori gastritis with that of endoscopists.

2. Methods
2.1. Esophagogastroduodenoscopy Procedures

Thirty-three endoscopists performed esophagogastroduodenoscopy
(EGD) at Tada Tomohiro Institute of Gastroenterology and Proctology
(Saitama, Japan). The indications for EGD were referral from a primary
care physician for evaluation of epigastric symptoms, positive results
from gastric disease screening by barium meal, abnormal serum pepsin-
ogen levels, a previous history of gastroduodenal disease, or as a part of
routine screening for gastric cancer. Patients who received H. pylori
eradication therapy were excluded from the current study. We per-
formed standard EGD (EVIS GIF-XP290N, GIF-XP260, GIF-XP260NS,
GIF-N260; Olympus Medical Systems, Co., Ltd., Tokyo, Japan) and cap-
tured esophagogastroduodenal mucosal images. Fig. 1 shows the typical
images obtained by us. We did not use magnified images in this study.

2.2. Clinical Diagnosis of H. pylori as Reference Standard

All patients were tested for H. pylori infection by at least one of the
following tests; blood or urine anti-H. pylori IgG levels, fecal antigen
test, or urease breath test. Patients who tested positive on any of these
assays were classified as H. pylori-positive.

2.3. Development Data Preparation

We prepared a data set (development data set) that was used to ed-
ucate and construct the Al-based diagnostic system. The images of EGD
performed for 1750 patients from January 2014 to December 2016 were
retrospectively reviewed. Patients with the presence or the history of
gastric cancer, ulcer, or submucosal tumor were excluded from the de-
velopment data set. The endoscopic images of the stomach diagnosed
as H. pylori-positive or H. pylori-negative, were further screened by

endoscopists to exclude images that were unclear owing to various rea-
sons, including food residue in the stomach, bleeding following biopsy,
and halation. Finally, 32,208 images from patients that were classified as
H. pylori-positive (735 patients) or negative (1015 patients) were pre-
pared for the development data set (Table 1).

The 32,208 original endoscopic images for development were ran-
domly rotated between 0 and 359°, their black frames were cropped,
and the images were zoomed in/out on a scale of 0.9-1.1. Subsequently,
they were augmented by a factor of 15. Blurred images were also used in
the development dataset during training.

First, we constructed the CNN using all the images together. Second,
we constructed the other CNN using the images classified according to 8
different locations in the stomach (cardia, upper body, middle body,
lesser curvature, angle, lower body, antrum, and pylorus).

24. Test Data Preparation

To evaluate the diagnostic accuracy of the constructed CNN, and to
compare it with endoscopists, a separate test data set was prepared.
Among 587 patients who underwent endoscopic examination at the
Tada Tomohiro Institute of Gastroenterology and Proctology from Janu-
ary to February 2017, 190 patients were excluded for various reasons:
completed H. pylori eradication, 166; unknown H. pylori infection status,
23; and underwent gastrectomy, 1. Finally, the test data set included a
total of 11,481 images from 397 patients (72 H. pylori positive, and 325
negative, respectively) (Fig. 2). Patient demographics and image charac-
teristics are shown in Table 1. The diagnosis was established by a fecal an-
tigen test in 172 (43%), and urine anti-H. pylori IgG levels in 87 (21%).
There was no overlap between the test and the development datasets.

2.5. Training Algorithm

To construct an Al-based diagnostic system, we used a state-of-the-
art deep neural network architecture, GoogLeNet (https://arxiv.org/
abs/1409.4842), which had been developed by Szegedy et al. GoogLeNet
is adeep CNN that consists of 22 layers. A Caffe deep learning framework,
one of the popular and most widely used frameworks that was originally
developed at the Berkeley Vision and Learning Center (BVLC), was then
used to train, validate, and test the CNN.

The deep CNN was trained using backpropagation (Fig. 3), a method
of training neural networks, by which loss gradients for all the weights in
the network can be computed efficiently. All layers of the network were
fine-tuned by using Adam (https://arxiv.org/abs/1412.6980), a method
for stochastic optimization with a global learning rate of 0.0001. To opti-
mize our images for GoogLeNet, they were resized to 244 x 244 pixels.
We used a pre-trained model that learned natural-image features
through ImageNet. This procedure, known as transfer learning, is useful
even with sparse training data.

2.6. Evaluation Algorithm

The trained neural network generated a continuous number between
0 and 1 for H. pylori positive or negative, corresponding to the probability
of that condition being present in the image. Receiver operating curves
(ROC) were plotted by varying the operating threshold.

2.7. Performance Comparison Between CNN and Endoscopists on Test Data
Sets

The test endoscopic images were classified by the CNN, and 23
endoscopists of varying experience as H. pylori-positive or negative, in
the absence of any other prior information. Six of the 23 endoscopists
were Board Certified Gastroenterologists of the Japanese Gastroentero-
logical Endoscopy Society (certified group). The other 17 endoscopists
were further classified as: the “relatively experienced group”, having
performed >1000 EGDs (n = 9); and the “beginner group”, having
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positive

negative

Fig. 1. Representative endoscopic images of Helicobacter pylori-positive, and —negative stomach. Atrophy and diffuse redness are seen in the presence of infection. A regular arrangement of

collecting venules (RAC) is seen in the uninfected stomach.

performed <1000 cases (n = 8). The sensitivity, specificity, and accura-
cy of H. pylori diagnosis of the CNN and the endoscopists were mea-
sured, and compared by using a two-tailed two sample proportions test.

The ROC for the diagnostic accuracy of CNN was described by using
the R software. We used STATA/MP version 14.2 for all statistical analy-
ses, and a p-value of <0.05 was considered statistically significant.

All patient information was de-identified prior to the data analyses
for maintaining patient anonymity. Patient details were not accessible
to any of the endoscopists involved in the study. This study was ap-
proved by the Institutional Review Board of the Japan Medical Associa-
tion (ID JMA-IIA00283), and conducted under the Declaration of
Helsinki.

3. Results
3.1. Performance of Convolutional Neural Network

The CNN constructed in this study provided an output of the proba-
bility of H. pylori infection per image. This was followed by the algorithm
calculating a mean square of the probabilities per patient. First, we exam-
ined the performance of the CNN constructed with unclassified images of
the stomach. The area under the curve (AUC) for the ROC was 0.89. At a
cut off value of 0.43, the value for which the point on the ROC curve cor-
responds to 100% sensitivity and specificity, the sensitivity, specificity,
and accuracy of the CNN were 81.9% (95% confidence interval [CI],
71.1-90.0), 83.4% (95% (I, 78.9-87.3), and 83.1% (95% (I, 79.1-86.7), re-
spectively. The diagnostic time for analyzing all the images by the CNN
was 3 min and 18 s. For the 67 cases of “wrong diagnosis” attributed to
the CNN, the average accuracy by the 23 endoscopists was 57.6% (stan-
dard deviation [SD], 33.2).

Table 1
Baseline characteristics.

Characteristics Development data set Test data set
No. of images 32,208 11,481
No. of endoscopists 33 13
No. of patients 1768 397
Age, mean (SD), y 52.7 (13.2)* 504 (11.2)
Sex, No. (%)
Male 480 (45)* 168 (43)
Female 598 (55)° 226 (57)
H. pylori status, No. (%)
Positive 753 (43) 72 (18)
Negative 1015 (57) 325(82)

SD, standard deviation.
¢ Data were available for 1078 cases.

Next, we examined the performance of the other CNN constructed
with images classified by their location in the stomach, and found that
the AUC increased to 0.93 (Fig. 5). At a cutoff point of 0.34, the sensitivity,
specificity, and accuracy of this CNN were 88.9% (95% CI, 79.3-95.1),
87.4% (95% (I, 83.3-90.8), and 87.7% (95% CI, 84.0-90.7), respectively.
The diagnostic time for analyzing all the images by this CNN was 3 min
and 14 s. The diagnosis was accurate for 348 cases out of 397, and the av-
erage endoscopist-accuracy for the 49 cases misdiagnosed by the CNN
was 46.3% (SD, 34.9).

3.2. Performance of Endoscopists

Table 2 shows the results of image evaluation of the test data by the
23 endoscopists. The overall sensitivity, specificity, and accuracy for the
diagnosis of H. pylori infection were 79.0% (SD, 11.7), 83.2% (SD, 9.8%),
and 82.4% (SD, 8.4%), respectively. The average diagnostic time to eval-
uate all the images of the test data sets was 230.1 (SD, 65.0) min. The
board-certified group was found to have significantly higher specificity
(89.3% vs. 76.3%, p < 0.001) and accuracy (88.6% vs. 75.6%, p < 0.001)
than the beginner group. Similarly, a significant difference in the speci-
ficity (85.1% vs.76.3%, p<0.001) and accuracy (84.4% vs. 75.6%, p <0.05)
was observed between the relatively experienced group and the begin-
ner group.

3.3. Comparison Between CNN and Endoscopists

At a cutoff point of the operating threshold of 0.43, and an AUC of
0.89, the CNN constructed with the unclassified images of the stomach
was not statistically different from the 23 endoscopists in terms of its
sensitivity, specificity, and accuracy (Fig. 4). At a cutoff point of 0.34,
and an AUC of 0.93, the secondary CNN, constructed with images classi-
fied according to their location in the stomach, was found to have a sig-
nificantly higher accuracy than the endoscopists (by 5.3%; 95% CI, 0.3-
10.2, Fig. 5), although their sensitivity and specificity were comparable.

Endoscopy from 4" Jan 2017 to 20t Feb
n =587

Excluded n =190

+ After successful H. pylori eradication therapy n = 166
+ Unknown for H. pylori infection status n =23

+ After gastrectomy n=1

Evaluated
n =397

Fig. 2. Patient recruitment flowchart.
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4. Discussion

We constructed a CNN algorithm for the diagnosis of H. pylori gastritis
based on the analysis of endoscopic images and compared its diagnostic
accuracy with that of endoscopists. The diagnostic ability of the CNN ap-
peared to be comparable to that of experienced endoscopists. Addition-
ally, the diagnostic time with the CNN was considerably shorter than
with the endoscopists. Our results indicate that the screening system de-
veloped by us based on the CNN has adequate sensitivity and specificity
for it to be introduced into clinical practice, and it has the potential to
markedly reduce the workload of endoscopists.

In Japan, H. pylori infection is prevalent, especially among the elderly.

— The endoscopic mass screening for gastric cancer that was started in
B 2016 has resulted in a large volume of endoscopic images to be proc-
essed, necessitating a more efficient method of screening the images.
The results of our study suggest that an automated analysis of these
stored images by using the CNN developed by us can effectively screen
for H. pylori infection and aid in identifying cases that need a confirmato-
Iy test.

It should be noted that the shorter screening time, and the absence of
fatigue with CNN, may enable the provision of results immediately fol-
lowing the endoscopic examination. Further, the diagnosis of H. pylori in-
fection by the CNN can be performed completely “online,” and may
contribute to the incorporation of endoscopy reporting as a part of “tele-
medicine,” thereby addressing the problem of inadequate numbers of
doctors in remote and distant locations.

Recently, deep learning algorithms for the detection of skin cancer
and diabetic retinopathy have been reported (Esteva et al., 2017;
Gulshan et al., 2016). The sensitivity and specificity of CNNs in diagnos-
ing skin cancer were >90%, while their ability to diagnose retinopathy
was comparable to that of ophthalmologists. Unlike the skin or retina,
the stomach is complex in its form, and endoscopy images are acquired
from different parts of the stomach, including the cardia, body, angle,
and pylorus. This may make the discrimination and interpretation of im-
ages by a CNN difficult. The conversion of three dimensional structures
into two dimensional images may alter the interpretation of such images
by endoscopists as well as CNN. Therefore, the construction of a deep
learning algorithm for diagnosing H. pylori gastritis based on endoscopic
images was considered to be difficult. To solve this problem, we success-
fully constructed a secondary CNN by using images that were classified
according to their location in the stomach.

The gastric mucosal changes caused by H. pylori infection such as at-
rophy and intestinal metaplasia initially occur at the distal stomach (an-
trum), and gradually expand to involve the proximal stomach (corpus).
As such, in those stomachs with mild changes limited to the antrum, a di-
agnosis based on the normal mucosa of the corpus may result in a misdi-
agnosis. Endoscopists reach a diagnosis after identifying the location of
the stomach in the image and correlate the mucosal changes therein.
We demonstrated that training the CNN by using images classified ac-
cording to their anatomical locations in the stomach resulted in an in-
crease in sensitivity from 81.9% to 88.9%, and improved its ability to a
level matching that of the board-certified endoscopists.

There are several future possibilities in the Al-based diagnosis of H.
pylori infection. Our study included archived images obtained by nasal
endoscopes that have lesser information compared to images acquired
by transoral endoscopes or with real-time imaging. In addition, there
are reports detailing the diagnosis of H. pylori gastritis by image en-
hanced endoscopy (Dohi et al., 2016) or magnifying endoscopy
(Kanzaki et al., 2012; Anagnostopoulos et al., 2007; Yagi et al., 2014).

AveragePoo|
TxI41V)

MaicPool
3x3+1(5)

AveragePoal
5x5+3(V)

Fig. 3. Deep convolutional neural network (CNN) layout. We used a CNN technique for
image classification. Data flow is from bottom to top direction. With a given input
image, the CNN architecture produces a probability distribution over classes as H. pylori
positive or negative. The GoogLeNet, a deep CNN of 22 layers, is pre-trained on the
ImageNet dataset and fine-tuned on our own dataset of about 400,000 endoscopic
images, which are pre-augmented. GoogLeNet architecture published from https://arxiv.
org/abs/1409.4842.
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Table 2
Diagnostic accuracy: CNN vs. endoscopists.
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CNN Endoscopists

First CNN Secondary CNN Certified Relatively experienced Beginner Total
No. of endoscopists 6 9 8 23
Sensitivity (SD), % 81.9 88.9 85.2 (4.5) 81.0 (10.2) 72.2 (14.3) 79.0 (11.7)
Specificity (SD), % 834 874 89.3 (2.6) 85.1(8.7) 76.3 (10.8) 83.2(9.8)
Accuracy (SD), % 83.1 87.7 88.9(2.9) 84.4(7.1) 75.6 (8.2) 82.4 (8.4)
AUC 0.89 0.93
Time (SD), min 33 32 252.5(92.3) 236.1 (51.9) 206.6 (54.7) 230.1 (65.0)

SD, standard deviation; AUC, area under the receiver operating curve.

The use of such advanced technology may improve the diagnostic accu-
racy for humans as well as for CNN. It is interesting to estimate the im-
provement in the diagnostic ability of the CNN in combination with
more advanced techniques. Further, the role of real-time diagnosis by
CNN based on “live” images during the endoscopic examination also
needs to be explored. We did not include patients that underwent H. py-
lori eradication in this study. We plan to construct a CNN for diagnosing
patients following H. pylori eradication in a future study as a means of
assessing the success of H. pylori eradication.

There are several limitations in this study. First, the development data
set as well as the test data set were obtained from a single center. Valida-
tion by using images obtained at other facilities, and other endoscopy de-
vices and techniques may enhance the generalizability of our results;
however, we used more than ten thousand images in this study, and
that may overcome this limitation. Second, the tests used to confirm
the diagnosis of H. pylori infection status, and blood or urine anti-H. pylori
IgG levels, as well as fecal antigen tests or urease breath tests, are not
100% sensitive or specific (Kato et al., 2000; Murakami et al., 2011;
Sato et al., 2012; Ferwana et al., 2015). This may have influenced our as-
sessment of the diagnostic ability of the CNN. This limitation may be
overcome by providing information related to the method of confirming
H. pylori infection status in the construction design of the CNN. Third, H.
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Fig. 4. Receiver operating curves for CNN trained by uncategorized data and prediction of
the endoscopists. Each endoscopist's prediction is represented by a single red point. The
green point is the average prediction of the endoscopists. The CNN outputs a H. pylori
probability P per image, and then the program calculates a mean square of the
probabilities per patient. The area under the receiver operating curve is over 89%.

pylori infection status was confirmed in most patients using only one
tests. However, by excluding patients after H. pylori eradication, who
sometimes still harbor antibodies, and adding confirmation tests when
experienced board certified endoscopists had doubt about the first
tests results, the possibility of a false positive or negative H. pylori diagno-
sis was considered negligible.

In conclusion, the accuracy of the CNN was comparable to that of
endoscopists in diagnosing H. pylori infection based on endoscopic im-
ages of the stomach. CNNs may aid in screening for H. pylori infection
at a substantially shorter time and contribute to reducing the workload
of endoscopists. Further research should be conducted for validation
and widespread application of the CNN.
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