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An approach-avoidance (Ap–Av) conflict arises when an individual has to decide
whether to accept or reject a compound offer that has features indicating both reward
and punishment. During value judgments of likes and dislikes, arousal responses
simultaneously emerge and influence reaction times and the frequency of behavioral
errors. In Ap–Av decision-making, reward and punishment differentially influence valence
and arousal, allowing us to dissociate their neural processing. The primate caudate
nucleus (CN) has been implicated in affective judgment, but it is still unclear how
neural responses in the CN represent decision-related variables underlying choice. To
address this issue, we recorded spikes and local field potentials (LFPs) from the CN
while macaque monkeys performed an Ap–Av decision-making task. We analyzed 450
neuronal units and 667 beta oscillatory activities recorded during the performance
of the task. To examine how these activities represented valence, we focused on
beta-band responses and unit activities that encoded the chosen value (ChV) of
the compound offer as derived from an econometric model. Unit activities exhibited
either positive (65.0% = 26/40) or negative (35.0% = 14/40) correlations with the
ChV, whereas beta responses exhibited almost exclusively positive correlations with
the ChV (98.4% = 62/63). We examined arousal representation by focusing on beta
responses and unit activities that encoded the frequency of omission errors (FOE),
which were negatively correlated with arousal. The unit activities were either positively
(65.3% = 17/26) or negatively (34.6% = 9/26) correlated with the FOE, whereas the beta
responses were almost entirely positively correlated with the FOE (95.8% = 23/24). We
found that the temporal onset of the beta-band responses occurred sequentially across
conditions: first, the negative-value, then low-arousal, and finally, high-value conditions.
These findings suggest the distinctive roles of CN beta oscillations that were sequentially
activated for the valence and arousal conditions. By identifying dissociable groups of
CN beta-band activity responding in relation to valence and arousal, we demonstrate
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that the beta responses mainly exhibited selective activation for the high-valence and
low-arousal conditions, whereas the unit activities simultaneously recorded in the same
experiments responded to chosen value and other features of decision-making under
approach-avoidance conflict.

Keywords: caudate nucleus, beta oscillation, valence, arousal, approach–avoidance conflict, cognitive
engagement, decision-making, primate

INTRODUCTION

The classic work of Miller (1944) introduced researches on the
conflict that is felt when individuals must decide whether to
accept or to reject something that has attractive and unpleasant
qualities and what rewarding or negative results they would
receive would depend on their decision. This conflict situation
was instantiated in the so-called approach-avoidance (Ap–Av)
conflict task, which, with modifications, has been used to
study the reactions of humans, old world monkeys, rats, and
mice (Miller, 1944; Elliot, 2008; Aupperle and Paulus, 2010;
Amemori and Graybiel, 2012; McNaughton and Corr, 2014;
Friedman et al., 2015, 2017; Amemori et al., 2018; Ironside
et al., 2019). In such tasks, arousal responses occur, and these
can be estimated by examining reaction times (RT) and the
frequency of omission errors (FOE) (Roesch and Olson, 2004;
Amemori et al., 2015). The rewarding and punishing aspects of
the offers, that is, their valence can be distinguished from arousal,
allowing one the chance to dissociate the biological basis of these
different behavioral responses (Lang et al., 1998). For instance,
a rewarding offer increases both the valence and the level of
arousal. Contrarily, a punishment offer reduces the valence but
activates the arousal level by enhancing the motivation to avoid it.
The increase in the arousal level has been shown to be associated
with changes in physiological measurements such as increases
in pupil size and skin conductance (Loggia et al., 2011) and
reductions of the RTs and the FOEs (Amemori et al., 2015).
Because these autonomous nervous systems similarly responded
to pleasant and unpleasant visual pictures (Bradley et al., 2008),
researchers have considered it possible for arousal processes that
respond to the saliency of such offers (Bradley et al., 1992) to exist
in the nervous system (Matsumoto and Hikosaka, 2009).

Valence and arousal give us a two-process view that could
underlie affective judgment. Psychological theories pointed out
that sustained cognitive engagement is a necessary factor for
the performance of affective judgments (Lazarus, 1991). Ap–
Av decision-making could thus consist of multiple processes,
including valence-related processes and those of cognitive
engagement related to arousal. Researchers have identified
distinctive groups of neuronal activities individually involved in
either valence or arousal (Roesch and Olson, 2004; Colibazzi
et al., 2010; Amemori et al., 2015; Ebitz and Platt, 2015).
However, few studies have addressed the neuronal interaction
between valence and arousal during Ap–Av decision-making in
the primate striatum.

The involvement of striatal beta oscillation in movement
preparation is well-documented (Murthy and Fetz, 1992; Crone
et al., 1998; Courtemanche et al., 2003; Goldberg et al., 2004),

but recent studies challenged this classic view by pointing out
the modulation of beta oscillations during decision-making.
Corticostriatal beta oscillations have been shown to be affected
by decision-related variables (Leventhal et al., 2012; Spitzer
and Haegens, 2017; Amemori et al., 2018; Eisinger et al.,
2018), and they have been shown to encode categorical choices
rather than upcoming movement (Haegens et al., 2011). In the
non-human primate studies, the striatal beta oscillation was
reported to be modulated during lack of dopamine (Goldberg
et al., 2004), movement suppression (Courtemanche et al., 2003)
and postperformance period at the end of the task execution
(Feingold et al., 2015). However, the information encoded during
the decision period is still unclear.

We examined features of the neural processing of valence and
arousal by focusing on the unit and local field potential (LFP)
oscillatory activities in the primate caudate nucleus (CN) under
Ap–Av performance conditions. Studies have shown that the
beta-band oscillatory signals of LFP activity recorded from the
cerebral cortex (Sherlin and Congedo, 2005; Haegens et al., 2011;
Schutter and Knyazev, 2012) and striatum (Leventhal et al., 2012)
encode decision-variables that could vary as a function of state
anxiety (Velikova et al., 2010; Poppelaars et al., 2018), depression
(Saletu et al., 2010; Roh et al., 2016) and Ap-Av motivation
(Amemori et al., 2018). Also for the CN neuronal units, previous
work has shown that the activity of single units in the CN
can encode variables related to value-based decision-making
(Samejima et al., 2005; Lau and Glimcher, 2007), suggesting that
the primate CN could be a functional node in affective judgment
(Kim and Hikosaka, 2013; Amemori et al., 2018). In this study,
we thus focused on the temporal characteristics of the CN unit
and beta oscillatory activities with the aim of understanding the
interaction of valence and arousal.

MATERIALS AND METHODS

Subjects and the Ap–Av
Decision-Making Task
We studied two female Macaca mulatta monkeys (monkey S:
7.5 kg, ∼6 years old; monkey P: 6.8 kg, ∼5 years old). We
conducted the experiments under the Guide for Care and Use
of Laboratory Animals of the United States National Research
Council. All procedures were approved by the Committee on
Animal Care of the Massachusetts Institute of Technology.
We reanalyzed the same data that were published previously
(Amemori et al., 2018) by newly focusing on the encoding of
valence and arousal in the neural responses.
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Two female monkeys were trained to perform the Ap–
Av decision-making task (Figure 1A) (Amemori and Graybiel,
2012). This task started when the monkey put her hand on
a sensor in front of a joystick. After the 2-s precue period, a
compound visual cue made up of red and yellow horizontal bars
appeared in the center of a monitor in front of the monkey. The
monkeys had to learn that the length of the red bar indicated
the offered size of a reward, but that the length of the yellow
bar indicated the offered pressure strength of an airpuff to
the face that would accompany the indicated level of reward.
The red and yellow bar lengths were varied independently so
that during a given ∼700 trial session, many decisions could
be registered for analysis. After a 1.5-s cue period, cross and
square targets appeared up and down of the cue, their positions
interchanging randomly from trial to trial. The monkey reported
her decision during the 3-s response period by using the joystick
to move a cursor to either target. When she chose the cross target
(approach, Ap), we provided an airpuff with the indicated (yellow
bar) pressure to the face. We then delivered the liquefied food
reward with the indicated amount (red bar). When she chose the
square (avoidance, Av), we did not give airpuff, but a minimal
amount of reward was delivered so that we could ensure that
she would continue to perform the task. If the monkey did not
respond during the response period, we provided an airpuff with
the indicated pressure so that she actively chose the Av choice.

Arousal Defined by the Level of Task
Engagement
Arousal and valence are both hidden variables used by
psychologists to explain behavior. Their relationships to
experimental observables are thus somewhat complicated.
Arousal has been defined as “disposition to react with varying
degrees of energy or force” (Lang et al., 1990). A lackadaisical
behavioral response would thus indicate low arousal. Arousal
should increase with the expectation of either reward or
punishment, so anything that shows a positive correlation
with either (or both) of those measures might also be taken
as an indicator of arousal. To define the “arousal,” we referred
to previous psychology articles (Lang et al., 1997, 1998),
and examine the behavioral and physiological responses in
“high-reward,” “low–low” and “high-punishment” conditions
(Figure 1D, right panel). Lang et al. (1997) and Lang and Bradley
(2007) produced by the international affective picture system
(IAPS) by collecting pictures that could induce various pleasure
and arousal responses, and then found that the relationship
between the self-assessed ratings of pleasure and arousal
showed a V-shape. Using this relationship, they examined
psychophysiological measurements such as skin conductance,
pupil diameter, and heart rate responding to each picture
(Bradley et al., 2001, 2008; Lang and Bradley, 2007). They
found that the physiological responses also showed a V-shape
relationship and concluded that those physiological responses
encoded arousal. In this article, we followed their definition of
arousal and examined whether or not the unit and beta responses
in the “high-reward,” “low–low,” and “high-punishment”
conditions showed a V-shape.

As the monkeys made their decisions to accept or to reject
the offers, depending on the offered amounts of reward and the
offered strength of airpuff indicated by the cues (Figure 1B),
we observed longer RTs for Av choices than for Ap choices and
found that the RTs were also lengthened around the decision
boundary (Figure 1C). Long RTs were thus often associated with
what we imagine to be difficult choices, but in some cases, they
might be taken to indicate a lack of arousal. Certain types of
errors unambiguously show a lack of arousal. Error trials were
classified into omission errors (i.e., failure of response during the
response period) (Figure 1D) and fixation breaks during the cue
period. Omission errors, by definition, represent a lack of task
engagement. Lack of task engagement constitutes a disposition
not to react to task events, and in the absence of a compelling
distractor, it therefore equates to lack of arousal.

The frequency of omission errors (FOE) was high only when
the offered reward and punishment were both low (“low–low”
condition), suggesting that task engagement was enhanced by
either a large reward (“high-reward” condition) or a substantial
punishment (“high-punishment” condition) (Amemori et al.,
2015). Because the FOE was inversely correlated with the level of
task engagement, we used this feature to characterize the arousal
level (Figure 1D, left). In the Ap–Av task, the FOE indeed showed
V-shape relationship (Kuppens et al., 2013) by examining the
values in the “high-punishment,” “low–low,” and “high-reward”
conditions (Figure 1D, right), and we concluded the FOE
corresponded to the level of arousal (Lang and Bradley, 2007).

Valence Defined by Chosen Value
To infer the value judgment of the monkey, we applied an
econometric model (Train, 2003; Glimcher et al., 2005). The
probability of choosing the Ap choice can be written as
pAP = 1/(1+ exp(−(UAP −UAV))). UAP and UAV are the utilities
for choosing Ap and Av. We modeled the function UAP − UAV
as f (x, y) = ax + by + c, where x was the reward size, y was
the airpuff strength. Generalized linear regression was used to fit
the function to the monkey’s choices pattern by determining the
coefficients (a, b, and c) that minimize the mean squared error.
We modeled the utility of choosing Ap as UAP = ax + by and
the utility of choosing Av as UAV = −c. The chosen value – the
expected outcome value associated with the selected option – was
thus calculated as ChV = pAPUAP + (1 – pAP)UAV (Figure 1E,
left). Because ChV estimates the subjective outcome value of
a given offer, we defined valence as ChV. The ChV became
high in the “high-reward” condition and low in the “low–low”
condition. The ChV in the “high-punishment” condition is −c,
which was close to zero, as the monkey always chose Av in the
“high-punishment” condition (Figure 1E, right).

Electrophysiological Recording of CN
Units and Beta Oscillations
After placement of the recording chamber, we implanted
for chronic recording sets of 18 platinum-iridium electrodes
(impedance, 0.1–1.0 M�; FHC) targeting the CN in the left
hemisphere in the monkey P, and 15 electrodes in the right
hemisphere in the monkey S (Figure 1F) (Feingold et al., 2012).
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We simultaneously recorded spike and LFP activities while
the monkeys performed the Ap-Av decision-making task. The
original filter setting during recording LFP was between 0.1 Hz to
32k Hz. We recorded 958 LFP activities from different recording

sites. Most of these LFPs (81%, 780 channels) exhibited beta-
band (13–28 Hz) oscillations. Because over three-quarters of
them (76%, 728 channels) showed peaks within the beta range,
we focused on these beta oscillations. The majority of the beta

FIGURE 1 | The behaviors of the Ap–Av decision-making task. (A) Task procedure of the Ap–Av decision-making task. During the cue period, the red and yellow
horizontal bars, respectively signaling the offered amounts of reward and punishment, appeared on the monitor. The monkeys decided between acceptance and
rejection of the combined offer and reported it by choosing either of two targets (cross for Ap; square for Av) that appeared during the response period. Locations of
the targets were alternated randomly. When the monkey did not respond during the response period, the trial was counted as an omission error. (B) The Ap–Av
choice pattern in a single session. The x-axis indicates the offered reward amount, and the y-axis shows the offered airpuff strength. Blue crosses indicate Ap
choice. Red squares indicate Av. (C) Mean Ap–Av choices (left). Mean reaction times (RTs) mapped onto the decision matrix (right). Each datum was spatially
smoothed by a square window (20% by 20% in the decision matrix). (D) Frequency of omission errors (FOE) (left) and the schematic of arousal (right). When the
monkey did not move the joystick during the 3-s response period, the trial was regarded as an omission error. To compare the valence and arousal, we focused on
the “high-reward,” “high-punishment,” and “low–low” condition (right). We observed omissions almost exclusively at the “low–low” condition punishment offer,
suggesting that both reward and punishment facilitated task engagement. Arousal level was thus defined as a V-shape relationship as it became high either in the
“high-punishment” or in the “high-reward” condition (left). (E) The chosen value (ChV) (left) and the schematic of valence (right). The ChV corresponds to the
expected outcome value associated with the selected option. We defined valence by the ChV. Valence became high in the “high-reward” condition and low in the
“low–low” condition. It became zero in the “high-punishment” condition as the monkey always chose Av in the condition. (F) Positions of the implanted electrodes
(circles) on the recording grid system for monkey P (left) and monkey S (right). Grids were placed on the skull with 5◦ tilt from the horizontal plane. Electrodes were
implanted in the anterior portion of the CN (light blue shading). The numbers along the midline indicate the intra-aural anterior-posterior coordinates of the grid
system in millimeter. The color of the circles indicates the group of electrodes that shared the same reference signal.
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oscillations (86%, 667 channels) were defined as task-related, as
they exhibited significant changes in magnitude (P < 0.05, two-
tailed z-test, Bonferroni corrected) during the time from the
precue period (the 4-s period before cue onset) to the cue period.
To reduce volume conductance, local-averaged reference signals
were computed by averaging the signals from the electrodes in
each local electrode group, as shown in Figure 1F.

Figure 2 illustrates the procedures used to calculate beta power
magnitudes recorded from a single CN electrode channel. To
characterize the task-related modulation of the beta responses
during the cue period, we performed band-pass filtering to extract
the beta power for each trial (Figures 2A,B). For each trial, we
derived the beta power averaged over the cue period (Figure 2C)
and referred to it as a “cue-period beta magnitude.” We projected
the activities onto the decision matrix (Figure 2D). We refer
to the matrix of beta power magnitudes as a “beta response.”
Similarly, for the neuronal unit activities, we focused on the spike
count during the cue period for each trial and referred to it as
a “cue-period unit activity.” We projected the activities onto the
decision matrix and referred to it as a “unit response.”

Multidimensional Scaling and Clustering
of Beta Responses and Units
We performed following multidimensional scaling (MDS) to
identify groups of beta and unit responses by the similarities of

each class (beta and spike) of neural responses. This procedure
does not require explanatory variables that we arbitrarily define,
and the groups identified by the MDS procedure extract the
features that the beta responses originally contain. Figure 3
illustrates the procedure of an unbiased clustering of the beta
responses to identify the groups of recorded LFPs whose activities
similarly responded to the cue. We calculated a correlation
distance matrix D = [dij] where dij = 1 – rij using the correlation
rij between beta responses of channel i and j (Figure 3A).
We performed MDS using the mdscale function of MATLAB
to derive feature coordinates that maximally differentiated the
responses (Figure 3B). The eigenvalue d (Figure 3C) represented
the explanatory power of each dimension. To cluster these
channels, we then fitted a Gaussian mixture distribution (using
fitgmdist function of MATLAB) to the set of values in each
dimension of the new feature space (i.e., to each column of
the configuration matrix). We adopted the Bayesian information
criterion (BIC) to derive the number of groups (Figure 3C). We
then projected each channel onto the first two dimensions of the
MDS (called MDS map) (Figures 3D–F).

Regression Analyses for CN Beta
Responses and Unit Responses
To examine the features encoded by the cue-period beta
responses and unit activity (Figure 4), we applied all-possible

FIGURE 2 | Example of beta oscillation recorded from a CN electrode. (A) Example of the LFP activity recorded from a CN electrode aligned to the onset of the cue
period. The time scale is the same as in (B). Gray and red lines in the top panel indicate the LFP activity and the band-pass-filtered (13–28 Hz) activity. We derived
the power magnitude using the difference between the upper and lower envelopes that were represented by blue dotted lines. The right inset shows a magnified
view of the region inside the rectangle. The bottom panel shows the power magnitude of the envelopes. The variously colored bar above the power trace shows the
same power data color-coded using the same color scale as in (B). (B) The trial-by-trial power magnitudes as a pseudo-colored raster plot (inset shows color scale).
The x-axis indicates the time from the cue onset. Y-axis indicates the trial number. (C) The mean power of the beta magnitudes averaged over the 1.5-s cue period.
(D) The beta response that was produced by mapping the cue-period mean power onto the decision matrix. The mapped data were spatially smoothed by a
20%-by-20% square window. X-axis and Y-axis indicate the offered sizes of reward and punishment, respectively.
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FIGURE 3 | Multidimensional scaling and clustering of beta responses. (A) Matrix of correlation distance between pairs of all beta response matrices (D = [dij ]). The
color of each element shows the correlation distance (dij = 1 - rij ), where rij is the cross-correlation between decision matrices of beta response i and response j.
(B) Configuration matrix derived from the multidimensional scaling. (C) Eigenvalues showing the explanatory power of each feature dimension. Inset shows the BIC
values for different numbers of Gaussian peaks. Gray lines indicate the BIC values for each of many independent runs of a procedure that did the
mixture-of-Gaussian fitting for each number of peaks from 1 to 10. The minimum BIC was given by five Gaussian peaks and denoted as a red circle. (D) Beta
response matrices projected onto the first two dimensions of the MDS. Each cross indicates an individual channel. The color indicates the group that the channel
belongs to (red: N group, blue: P group, green, cyan, and magenta: other groups). (E) The group means of beta responses in the decision matrix. Each group (N, P,
cyan, green, or magenta group) was defined by the MDS clustering shown in (D). (F) Spatial distribution of sites at which we recorded LFPs classified as N (red), P
(blue), and other (black) groups. The size of each circle indicates the number of LFPs at the location. Data from monkey S were projected onto outline drawings of
the striatum of monkey P.

subset regression analysis with five selected explanatory variables,
consisting of offered reward size (Rew), offered airpuff size (Ave),
ChV (Figure 1E), RT (Figure 1C) and FOE (Figure 1D). Linear
regression analyses were performed exhaustively using every
possible combination of the five explanatory variables. Among

the combinations of variables that explained the cue-period
activity significantly well (P < 0.05, F-test of the overall fit), the
combination that produced the highest BIC score was selected.
We scored the quality of fit using the BIC and counted the
number of channels that were best explained by a single variable
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FIGURE 4 | Regression analyses that extract the information encoded by the cue-period beta magnitudes and cue-period unit activities. (A) The number of beta
responses classified by all-possible subset regression. The proportion of cue-period beta magnitudes explained by a single (54%) and combination (7%) of variables.
(B) All-possible subset regression analysis of beta responses using the five explanatory variables (Rew, Ave, ChV, RT, and FOE), sorted in decreasing order of total
number responses explained. The 360 responses explained by single variables were further separated into channels with responses that were correlated positively
(white) or negatively (gray) with the variable. Forty-seven beta responses were characterized by particular combinations of variables indicated by black squares in the
matrix on the bottom. (C) Classification of beta responses with all-possible subset regression analyses performed with different criteria (black, BIC; brown, AIC;
orange, Mallow’s Cp), and stepwise regression analysis (cream). Y-axis is the number of beta responses where the best model was the single variable on the x-axis.
(D) The population activity of the beta responses explained by single variables, sorted as in (B). Those correlated positively (+) and negatively (−) with the variables
were separately categorized. (E) The number of unit activities classified by all-possible subset regression. The proportion of the cue-period unit activities explained by
a single (37%) and combination (12%) of variables. (F) All-possible subset regression analysis of unit responses using the five explanatory variables (Rew, Ave, ChV,
RT, and FOE), sorted in decreasing order of total number responses explained. The cue-period unit activities of 195 units were explained by single variables and
were further separated into channels with responses that were correlated positively (white) or negatively (gray) with the variable. The activities of 62 units were
characterized by particular combinations of variables indicated by black squares in the matrix on the bottom. (G) Classification of units with different criteria as in (C)
(black, BIC; brown, AIC; orange, Mallow’s Cp; stepwise regression analyses, cream). (H) The population activity of the unit responses explained by single variables,
sorted as in (F). Those correlated positively (+) and negatively (−) with the variables were separately categorized.
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or a combination of variables. We also used Akaike Information
Criteria (AIC), Mallow’s Cp (Cp), and stepwise regression for the
scoring (Figures 4C,G). The beta responses and unit activities
used in these analyses did not have multicollinearity problems
diagnosed by Belsley’s criteria (Belsley et al., 1980). We use the
term “encode” to indicate that we interpreted that the unit or
beta activities exhibited differential responses specifically to the
variable. However, as the explanatory variables were arbitrarily
introduced, it did not mean that the unit or beta exhibited
selective responses only to the variables.

RESULTS

Classification of CN Beta and Units
We applied regression analyses to extract the information
encoded by the beta responses and unit activities (Figure 4). First,
we analyzed the cue-period beta magnitudes of 667 task-related
beta responses. Among them, 360 beta responses (54% = 360/667)
were accounted for by one of those variables (Figure 4A). Among
them, 93 beta responses (24.8%) encoded ChV and 24 responses
(6.7%) encoded FOE (Figures 4B,D). The beta responses
encoding ChV were regarded as those encoding valence, and
those encoding FOE were regarded as arousal-encoding. We used
BIC to derive these, but we confirmed that AIC, Cp, and stepwise
regression provided similar results (Figure 4C).

Secondly, we examined information encoded by cue-period
unit activity. We performed all-possible subset regression based
on the cue-period activities of 526 CN units. We found 195 units
with activities encoding single explanatory variables and did not
encounter multicollinearity problems in this analysis (Figure 4E).
Among them, the activities of 40 units (20.5%) encoded ChV and
those of 51 units (27.6%) encoded FOE (Figures 4F,H). We used
BIC to derive these but confirmed that the AIC, Cp, and stepwise
regression provided similar results (Figure 4G).

Comparing Beta and Unit That Encoded
Valence and Arousal
We then compared the beta responses and unit activities that
encoded valence. Among 93 channels that encoded ChV, 98.9%
of beta responses (92/93) were positively correlated with ChV,
putative valence (Figure 4B). By contrast, among 40 single
units encoding ChV, the activities of only 65.0% (26/40) were
positively correlated with the ChV, and 35.0% (14/40) showed
a negative correlation (Figure 4F). Thus, among the channels
that encoded valence, the proportion of beta responses encoding
positive valence (98.4%) was significantly larger than that of unit
responses encoding positive valence (65.0%) (P = 10−5 < 0.001,
Fisher’s exact test) (Figure 5A). These results suggest that the
CN beta-band oscillatory responses exhibited almost entirely
selective representation for positive valence, whereas the CN unit
responses represented valence both positively and negatively.

We examined arousal representation by focusing on the beta
responses and unit activities that encoded the FOE. Twenty-
four beta responses encoded FOE (Figure 4B). Among them, the
responses of 95.8% (23/24) were positively correlated with FOE,
and only one beta response was negatively correlated. On the

other hand, the activity of 26 units encoded FOE (Figure 4F)
either positively (65.3% = 17/26) or negatively (34.6% = 9/26).
Thus, among channels that encoded arousal, the proportion of
the beta responses that encoded negative arousal (i.e., positive
FOE, 95.8%) was significantly larger than that of unit activities
(65.3%) (P = 0.011 < 0.05, Fisher’s exact test) (Figure 5B).
These results suggest that the arousal-encoding beta responses
primarily represented low arousal by encoding FOE(+), but the
arousal-encoding units responded to either of the low and high
arousal conditions.

Unbiased MDS Clustering of Beta and
Unit Responses
The above decoding procedure depends on explanatory variables
that we arbitrarily defined. It is still essential to classify
recordings only by their response features without introducing
any arbitrarily defined variables. We thus introduced the MDS
clustering procedure (Figure 3) and identified groups of beta
and unit responses only by their similarities (Figure 5C). The
MDS clustering of the beta responses yielded five groups,
and those of the unit responses yielded two groups. Both for
beta and for the unit responses, we focused on the N and
P groups of the beta and unit responses because they were,
respectively, located at the minimal and maximum principal
coordinate values. To interpret the meaning of the principal
coordinates, we projected the explanatory variables onto the MDS
feature space by transforming each of the population response
matrices from Figures 4D,H into the MDS feature space. Each
explanatory variable has a response map for positively correlated
responses and one for negatively correlated responses, so that
each explanatory variable corresponds, in Figure 4, to a pair of
matrices that map to a pair of points in the MDS feature space.
Each such pair of points is plotted with a line connecting them
in Figure 5C. We found that the principal coordinates of the
MDS feature spaces for both beta (Figure 5C, left) and unit
(Figure 5C, right) responses similarly represent the differential
activities related to the offered reward (Rew) and the chosen
value (ChV).

To cluster the beta responses, the MDS identified a group
of beta responses (the “N group”) that mainly coded negatively
for the offered reward size (33/65 channels, Figure 5D). The
population activity of N-group beta responses (Figure 3E)
showed peak activation near the “low–low” condition, raising
the possibility that the N-group beta responses could primarily
be activated for lack of arousal. In fact, this group contained
a large number of channels that positively coded for either
RT (15/65), which can also be interpreted as reflecting
lack of arousal, or for FOE (14/65), which unambiguously
indicates lack of arousal. Only two channels correlated
with other explanatory variables, only one of which was
ChV (valence). The N group of beta responses was thus
consistently associated with an apparent lack of interest or
motivation to perform the task. By contrast, the N group of
unit responses (Figure 5E) was much more heterogeneous,
including both positive and negative responses related to
offered aversion, as well as negative coding for ChV. Among
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FIGURE 5 | Comparison between beta and unit that encoded valence and arousal. (A) Comparison between valence-encoding beta and valence-encoding unit
responses. The percentage of positive-valence beta responses was significantly larger than that of unit responses (Fisher’s exact test, ***P < 0.001). (B) Comparison
between the arousal-encoding beta and unit responses. The percentage of the negative-arousal beta responses was significantly larger than that of unit responses
(Fisher’s exact test, *P < 0.05). (C) MDS clustering for the beta (left) and unit (right) responses. The beta and unit responses were projected onto the first two
dimensions of the MDS (MDS map). Each cross indicates an individual response. Two groups (P and N groups) were defined by the Gaussian mixture model. The
positions of the five explanatory variables were projected onto the MDS map. Blue and red circles indicate, respectively, positive and negative correlation with the
variables. (D) The representation of beta responses for each group identified by the MDS clustering. The number of beta responses encoding the five behavioral
variables shown separately for each group. The stacked bars that go up indicated positive correlations, and those that go down indicated negative correlations.
(E) The representation of unit responses for N and P groups identified by the MDS clustering. Stacked bars that go up and down indicate positive and negative
correlations, respectively. (F) Comparison of beta and unit responses in the P and N groups (dark colors, beta; light colors, units). Stacked bars that go up and down
indicate positive and negative correlations, respectively. Statistically significant differences between the proportion of units and proportion of beta are marked
(Fisher’s exact test, ***P < 0.001, **P < 0.01).

129 P-group of beta responses, 70 responses (54.2% = 70/129)
encoded ChV(+), but none of the P group encoded FOE
(Figure 5D). These results suggest that the subsets of P-group
beta responses encoded valence. None of them explicitly
encoded arousal (as FOE), and only 8.5% (11/129) encoded
RT. The P-group units, like the N-group units, responded

in relation to multiple features, not exclusively in relation to
valence (Figure 5E).

To clarify these relationships, we directly compared the
proportions of the beta and unit responses that encoded each
variable in each group (Figure 5F). The proportion of valence-
encoding unit responses in the N group (15/71) was much
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larger than that of the beta responses in the N group (1/65)
(P = 0.0011 < 0.01, Fisher’s exact test). These results suggest
that, while the N-group units encoded valence and arousal
almost equally in proportion, the N-group beta responses did
not encode valence. The proportion of arousal-encoding unit
responses in the P group (10/126) was also significantly larger
than that of the beta responses (0/129) (P = 0.0017 < 0.01, Fisher’s
exact test), whereas that of valence-encoding beta responses
in the P group (70/129) was significantly larger than that of
the unit responses (25/126) (P = 10−4 < 0.001, Fisher’s exact
test). These results suggest that, while substantial proportions of
P-group units encoded, respectively, both valence and arousal,
the majority of P-group beta responses encoded positive valence
only, not arousal.

Using MDS clustering, we identified five distinct groups that
showed differential decision-related features without introducing
arbitrarily defined explanatory variables. The mean responses
identified by the MDS clustering (Figure 3E) thus reflected the
actual contours across the decision matrix of the beta responses
within each cluster. After the clustering, we performed regression
analysis on each cluster to interpret its decision-related features.
We focused on the N and P groups in both the beta and unit
responses because the principal coordinate value was sufficient
to distinguish them in the MDS map. Unit response clusters
related to a wide variety of different decision-related features,
whereas the P and N groups of beta responses related to
distinctive decision-related features. The N group beta responses
encoded FOE (our marker for arousal) but not ChV (our marker
for valence), suggesting that they mainly represented negative
arousal. The fact that negative offered reward size (Rew) was
the only other feature encoded by a substantial number of N
group beta channels is consistent with this interpretation. By
contrast, most of the P group beta responses encoded ChV
but not FOE, suggesting that the P group mainly represented
positive valence, which is consistent with the fact that almost
all of the other channels in the P group encoded positive
offered reward size. These results suggest that the beta responses
mainly exhibited selective activation for the high-valence and
low-arousal conditions, whereas the unit activities responded to
various decision-related features in the Ap–Av decision-making.

Unit Representation of Arousal and
Valence
To characterize the response features of the arousal-encoding
units, we focused on the activities of FOE units in the “low–low,”
“high-reward,” and “high-punishment” conditions. We selected
these conditions so that we can compare our neural results
with the definition of arousal level proposed by previous studies
(Lang and Bradley, 2007; Kuppens et al., 2013). The activities
of FOE(+) and those of FOE(−) units exhibited, respectively,
positive and negative correlations with FOE. Regardless of the
sign of the correlation with the FOE, both of them could be
involved in the arousal process. We thus flipped the sign of the
FOE(+) activity to align to show the strength of the relationship
with arousal consistently across the FOE(+) and FOE(−) groups.
For each unit, we defined the preferred condition as the one in

which the activity was higher than that in the other conditions
(Figure 6A). The preferred condition of the FOE(+) units,
in which they exhibited higher activity, was the “low–low”
condition. The FOE(−) units preferred conditions other than the
“low-low” condition. The time course of the population activities
of the arousal-encoding units exhibited significant differences
during the early stage of the cue-period.

Further, we compared the population activities of arousal-
encoding units in the “high-reward” and “high-punishment”
conditions to confirm that these activities were not influenced
by valence. The primary feature of the arousal-encoding units
is that they did not discriminate between high-punishment
and high-reward conditions. We compared the means of the
increases in activity from activity in the “low–low” condition
(Figure 6B, right). In this figure, the sign of the FOE(+) activities
is inverted to allow comparisons of the mean magnitudes of the
correlations with the arousal level. We observed a significant
increase either in the “high-reward” condition (P = 10−3 < 0.001,
paired t-test) or in the “high-punishment” condition (Figure 6B)
(P = 10−8 < 0.001, paired t-test). There was no significant
difference between the means in the “high-reward” and “high-
punishment” conditions (P = 0.29 > 0.05, paired t-test),
indicating that the arousal-encoding units responded to the
strength of the offer rather than to its value. As these units did
not discriminate reward from punishment, we concluded that the
FOE units encoded arousal exclusively and were not influenced
by valence, at least in their mean population activity.

To examine the features of valence-encoding units, we focused
on ChV units. We defined the preferred condition of ChV(+)
units to be the condition in which the monkey made Ap choices,
and the preferred condition of the ChV(−) units to be the
condition in which the monkey made Av choices (Figure 6C). We
mapped the activities of ChV(+) units and the inverted activities
of ChV(−) units onto the decision matrix shown in Figure 6D.
We calculated the means of the increased activities from the
“low–low” condition. We then observed a significant increase in
the “high-reward” condition (P = 10−6 < 0.001, paired t-test) but
no change in the “high-punishment” condition (P = 0.87 > 0.05,
paired t-test), indicating that activities of the valence-encoding
units dissociated reward and punishment.

These findings suggest that during the performance of the
Ap–Av task, the CN units that we sampled could be divided
into units responding in relation either to arousal or to
valence. The arousal-encoding units were activated only for
the magnitude of the offer without discriminating between the
levels of reward and punishment indicated by the offers. The
value-encoding units represented the value of the expected
outcome, in having differential activities for the offered levels of
reward and punishment.

Beta Representation of Valence and
Arousal
By all-possible subset regression, 93 beta responses were classified
as valence-encoding. Among them, 92 responses showed a
positive correlation with the ChV [ChV(+)]. These are mapped
onto the decision matrix in Figure 7A. Only one showed a
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FIGURE 6 | Features of units encoding arousal and valence. (A) Population activity of the arousal-encoding units for the preferred (blue) and non-preferred (red)
conditions. The time courses of the activities of the FOE unit were normalized by their precue period activities. Preferred and non-preferred conditions of
arousal-positive or FOE(−) unit (top) and of arousal-negative or FOE(+) units (bottom) are shown on the left. (B) Mean of the differential activity relative to the
“low–low” condition. Activities of FOE(−) units and the inverse of FOE(+) activities were mapped on the decision matrix (left). We compared the population mean
activity in the “high-punishment,” “low–low,” and “high-reward” conditions (Paired t-test, ***P < 0.001; N.S.: P = 0.29 > 0.05). The arousal-encoding units did not
discriminate between high-punishment and high-reward conditions. (C) Population activity of valence-encoding units. Preferred (blue) and non-preferred (red)
conditions of the ChV(+) unit (top) and of ChV(−) units (bottom) are shown on the left. (D) Mean of the differential activity relative to the “low–low” condition. Activities
of ChV(+) units and the inverse of ChV(−) activities were mapped on the decision matrix (left). We compared the population mean activity in the “high-punishment,”
“low-low,” and “high-reward” conditions (Paired t-test, ***P < 0.001; N.S.: P = 0.87 > 0.05).

negative correlation with the ChV [ChV(−)], and the inverse
of its activity is mapped onto the same decision matrix. We
calculated the mean of the differential activities relative to
the “low–low” condition. The mean was significantly lower
in the “high-punishment” condition (P = 10−8 < 0.001,
paired t-test) and was significantly higher in the “high-
reward” condition (P = 10−7 < 0.001, paired t-test), suggesting
that the valence-coding beta responses discriminated reward
from punishment.

The regression analyses identified 24 beta responses as
encoding arousal (Figure 4A). The beta responses encoding
FOE(−) and the inverses of the beta responses encoding FOE(+)
were mapped onto the decision matrix (Figure 7B). We again
calculated the mean of the differential activities from the “low–
low” condition. The mean exhibited a significant increase in
both the “high-punishment” (P = 10−4 < 0.001, paired t-test)
and “high-reward” conditions (P = 10−6 < 0.001, paired t-test).
However, the mean activities were not different between “high-
reward” and “high-punishment” conditions (P = 0.47 > 0.05,
paired t-test). These results suggest that the arousal-encoding
beta oscillation responded to the magnitude of the offer without
discriminating between reward and punishment during the
decision period. As the beta oscillation did not discriminate
reward from punishment, we concluded that the FOE beta
responses exhibited exclusive responses to arousal and were not
influenced by valence. The peak frequencies of most of the
valence-encoding (Figure 7A) and most of the arousal-encoding

beta responses (Figure 7B) were less than 20 Hz, within the
low-beta range (13–20 Hz).

Temporal Profiles of Beta Responses
Encoding Valence and Arousal
We analyzed the timing at which discrimination of upcoming
choices could be detected by performing cumulative onset
analyses. We calculated the beta power magnitude at each
time point, after smoothing with a moving average filter
(window = 100 ms). We defined discrimination onset as the
earliest time at which the test consecutively returned the required
significance level (P < 0.05, Wilcoxon rank-sum test) for 100 ms.

One hundred beta responses exhibited differential activities
with higher magnitude for Ap choices with onsets in the latter
phase of the cue period (Figure 8A). Among all task-related
beta responses, 17 beta responses showed higher activities for
Av choices, and their discrimination onsets were in the early
stage of the cue period (Figure 8B). We also analyzed the
timing of discrimination between the “low–low” and the other
conditions (Figure 8C). Seventeen beta responses exhibited a
higher magnitude for the “low–low” condition. By examining
the cumulative distributions of the onset times, we found that
different classes of beta responses were sequentially activated,
first for the Av choice (or low-valence), then for the “low–low”
condition (or low-arousal), and finally for the Ap choice (or
high-valence) (Figure 8D).
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FIGURE 7 | Features of beta responses encoding valence and arousal. (A) Features of valence-encoding beta responses. The left panel shows the mean of the
differential activity from the “low–low” condition for the valence-encoding beta responses. Activities of valence-encoding beta responses were mapped onto the
decision matrix. Those of ChV(+) beta responses were added, and those of ChV(−) were subtracted. The middle panel shows the mean increase in activities from
the “low-low” condition. The valence-encoding beta responses discriminated the “high-punishment” and “high-reward” conditions (Paired t-test, ***P < 0.001),
showing differential responses to reward and punishment. The right panel shows the mean (±SEM) power spectra of the valence-encoding beta responses
(baseline-subtracted), peaking at 18.7 Hz. The light blue histogram indicates the distribution of peaks of power spectra. (B) Features of arousal-encoding beta
responses. The left panel shows the mean of the differential activity from the “low–low” condition for arousal-encoding beta responses. Activities of FOE(−) beta
responses were added, and those of FOE(+) were subtracted. The middle panel shows the mean increase in activities from the “low–low” conditions. The activities in
the “high-punishment” and “high-reward” were significantly higher than those in the “low–low” condition (Paired t-test, ***P < 0.001). The arousal-encoding beta
responses did not discriminate the “high-punishment” and “high-reward” conditions (N.S.: P = 0.47 > 0.05). The right panel shows the mean (±SEM) power spectra
of the arousal-encoding beta responses (baseline-subtracted), peaking at 18.9 Hz. The light blue histogram indicates the distribution of peaks of power spectra.

We examined the temporal patterns of the differential activity
by separating the 1.5-s cue period into six 250-ms bins. The
population activity of the 100 beta responses that had higher
activity magnitudes for the Ap choice exhibited higher rebound
500 ms after the cue onset and initial shallow dip in both
(Figure 8E). The population activity of the 17 beta responses
that showed higher magnitude for the Av choice exhibited
significantly smaller suppression for the Av choice immediately
after the cue onset (Figure 8F). The population activity of the
17 beta responses encoding low arousal (Figure 8G) exhibited
a significant difference in the second 250-ms bin. These results
agree with the analysis of the cumulative distributions of onset
times in indicating the sequence of beta response during the
decision period was the Av choice first, then the “low–low”
condition, and the Ap choice last.

DISCUSSION

A classic view is that beta oscillations in decision-making
reflect motor preparation. However, recent studies have pointed

to the direct modulation of beta oscillations during decision-
making (Haegens et al., 2011; Leventhal et al., 2012; Spitzer
and Haegens, 2017; Amemori et al., 2018; Eisinger et al., 2018).
Also, for the CN unit activities, unit activities have been found
to exhibit correlations with the chosen value (Samejima et al.,
2005; Lau and Glimcher, 2007, 2008; Yamada et al., 2007, 2013)
and aversive stimuli (Blazquez et al., 2002). Further work has
provided evidence that the primate CN is causally involved in
associative learning (Williams and Eskandar, 2006; Kim and
Hikosaka, 2013; Santacruz et al., 2017), hyperactive behavior
(Worbe et al., 2011), and Ap–Av decision-making (Amemori
et al., 2018; Saga et al., 2019). These studies suggest that the
primate CN is a node in neural circuits that determine the
Ap–Av decision, and that beta oscillations could reflect activity
states underlying such choice behavior. Psychological theories
suggest that task engagement or motivation to perform the task
is necessary for Ap–Av decisions (Lazarus, 1991; Ben-Eliyahu
et al., 2018). Cortical regions that could specifically be involved
in task engagement rather than affective judgments have been
identified (Roesch and Olson, 2004; Northoff et al., 2006). Here
we examined neuronal processes in the CN related to Ap–Av
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FIGURE 8 | Time-course of beta responses encoding valence and arousal. (A) The time-course of Ap–Av discrimination ability for each Ap-responding beta channel
represented by z-score of the Wilcoxon rank-sum test. The z-scores are shown as pseudocolor rasters, with shades of blue indicating higher power for Ap choice,
and red indicating higher power for Av choice. We defined the onset of choice discrimination as the earliest time at which the test returned P < 0.05 consecutively
for more than 100 ms. The blue line indicates the onset of the increase of the beta magnitude for the Ap choice. (B) The time-course of Ap–Av discrimination ability
for each Av-responding beta channel, as in (A). The red line indicates the onset of the increase of the beta magnitude for the Ap choice. (C) The time-course of
discrimination ability for different arousal conditions. The z-scores are shown with shades of blue indicating higher power for high arousal conditions, and red
indicating higher power for the “low–low” condition. The green line indicates the onset of the increase of the beta magnitude for the “low–low” condition. (D) The
cumulative onset times at which beta responses discriminated between upcoming Ap and Av choices or between high and low arousal levels. The onsets of
increase in the magnitude for the Av choice (red line) were significantly earlier than those for the “low–low” conditions (green line; **P < 0.01, Kolmogorov–Smirnov
test) and for the Ap (blue line) choice (***P < 0.001). The onsets of increase for the “low–low” conditions were significantly earlier than those for the Ap choice
(*P < 0.05). (E) Means (±SEM) of the beta power time course of the Ap-responding channels (top; blue traces = Ap, red traces = Av). Two-sided t-tests were
performed for the time points to show the t-scores (bottom, blue line) of the differential activity between Ap and Av choices. We aggregated the activities into 250-ms
bins to derive the significance level of the discrimination (*P < 0.05, **P < 0.01, ***P < 0.001, two-sample t-test). The light blue shows the first bin that showed a
significant increase in the Ap condition. (F) Means (±SEM) of the beta power time course of the Av-responding channels (top; blue traces = Ap, red traces = Av). We
also show the t-scores (bottom, red line) of the differential activity between Ap and Av choices (bottom). The light red indicates the first bin first, which showed a
significant increase in the Av condition. (G) The group means (±SEM) of the beta power time course of the channels that showed an increase for the “low–low”
condition (top; red traces = ”low–low”). We also show the t-scores (green line) of the differential activity for the “low–low” and other conditions (bottom). The light
green indicates the first bin that showed a significant increase in the “low–low” condition.

decision-making by focusing on activities correlated with valence
and arousal.

CN Unit Activity and Beta-Band
Oscillatory Activity Are Differentially
Related to Valence and Arousal
We identified dissociable groups of CN beta-band responses and
unit activities encoding valence and arousal. The key to this
distinction rests in the task structure that required the monkeys
to integrate reward and punishment. The expected outcome
value of the combined offers, here represented as chosen value
(ChV), was increased by the offered reward but was decreased by

the offered punishment. By performing regression analyses, we
found a distinctive group of unit and beta oscillatory activities
that specifically encoded the ChV. Their activities increased in
the “high-reward” condition compared to those in the “high-
punishment” and “low–low” conditions.

One of the distinctive features of arousal is that it does not
obligatorily depend on a distinction between the positive and
negative aspects of the offers (Bradley et al., 2008; Kang et al.,
2014). Here, we identified groups of CN unit and beta oscillatory
activities that preferentially occurred during the “low–low”
conditions, here identified by performance omissions (FOE),
and their activities did not discriminate between the levels of
forthcoming reward and punishment indicated by the offers. For
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unit and beta responses encoding FOE, we compared the means
of the differential activities relative to the low arousal “low–low”
condition and confirmed that there was no significant difference
between the means in the “high-reward” and “high-punishment”
conditions (Figures 6B, 7B). We thus conclude that the CN
contains both arousal-related units and beta oscillatory activity
related to the strength of the offers irrespective of their value.

Differences in the Number of Units and
Beta Responses Encoding Valence and
Arousal
We found sharp differences in the numbers of the recorded unit
and beta oscillatory activities that encoded ChV and FOE as
calculated with the same regression analyses. The unit activities
exhibited either a positive or a negative correlation with the ChV,
whereas the beta-band responses nearly exclusively had a positive
correlation with the ChV. The unit activities had either positive
or negative correlations with the FOE, but the beta responses
nearly exclusively had a positive correlation with the FOE. The
difference in the number of these units and beta responses
suggests differential functions of units and beta oscillation, with
the beta responses mainly exhibiting differential activity for the
high-valence and low-arousal conditions, and the unit activities
responding in relation to valence as well as other features of the
Ap-Av decision-making.

The above regression analyses require arbitrarily determined
explanatory variables. We thus also performed unbiased (MDS)
clustering to extract the groups of LFP recordings in which the
beta responses exhibited similar patterns when mapped onto the
behavioral decision matrix (Figures 3D,E). The MDS clustering
identified two major distinctive groups of beta responses that
we named the P and N groups. Notably, the P group of beta
responses contained valence-encoding responses but did not
contain arousal-encoding responses at all. By contrast, the N
group of beta responses contained arousal-encoding responses
but contained very few valence-encoding responses (Figure 5D).
These results further support our hypothesis that the P and N
groups reflect neural processes related to valence and arousal.

Prospective Coding of Upcoming Target
In this study, the Ap and Av choices were associated with
cross and square targets. Neural responses that were categorized
as those encoding upcoming Ap and Av could thus represent
prospective images of the targets. In a type of matching to
sample task, in which the monkeys needed to recall the images
of pictures, researchers reported that some neurons exhibited
prospective coding of an object (Sakai and Miyashita, 1991;
Rainer et al., 1999). In our current paradigm, although the
monkeys were not required to recall the visual target object
to be chosen, we could not entirely exclude the possibility
that the Ap and Av neurons contained information of the
object to be selected. However, the neural responses of valence
(Figures 6C,D) exhibited parametric modulation representing
the expected value of the outcome (Watanabe, 1996) rather than
the discrete visual target identities. It is thus unlikely that our

valence-encoding neural responses are only prospectively coding
the visual target objects.

We also note that the monkeys did not know which way they
would have to move following the decision period because the
locations of the cross and square targets were varied randomly
from trial to trial. Thus responses during the decision period
might be related to aspects of readiness to respond, for example,
but not to the direction of forthcoming joystick responses.

Sequential Beta Responses to Valence
and Arousal
Lastly, we examined the timing of encoding valence and arousal.
The LFP is considered as a summation signal of excitatory
and inhibitory membrane currents from neurons around the
recording site (Buzsáki et al., 2012; Einevoll et al., 2013)
and perhaps to glial activity (Tewari and Parpura, 2015). The
onset analyses demonstrated that the modulation of the beta
responses was sequential, according to condition (Figure 8).
Therefore, the sequential encoding of the population of the
beta responses could reflect the summation of the unit activities
dominating at each temporal stage. The time-course of these
beta responses showed that the beta oscillations exhibited initial
“suppression” and later “rebound” in power during the Ap–
Av decision-making (Figures 8E–G). The initial “suppression”
differentially responded in relation to the value exhibiting
shallower “suppression” for low-value conditions (Figure 8F).
The “rebound” activity exhibited a high magnitude for the low-
arousal condition (Figure 8G), followed by a high “rebound”
activity for the Ap choice (Figure 8E). Previous studies have
reported that the beta oscillations in the sensorimotor cortex
show a marked decrease in power and assumed it to reflect
local desynchronization (Pfurtscheller and Lopes da Silva, 1999).
The beta “suppression” was often followed by a “rebound” of
power, which is assumed to be resynchronization after movement
(Pfurtscheller et al., 1996; Pfurtscheller and Lopes da Silva, 1999;
Kilavik et al., 2013). Importantly, at the timing of the initial
“suppression” of the beta responses, the neuronal unit activities
exhibited an increase in activity, suggesting that the task features
encoded by units and beta magnitudes exhibit opposite response
patterns, which was also observed in our previous analysis
(Amemori et al., 2018). Here we report that such a sequential
pattern of beta desynchronization and resynchronization could
also be part of the underlying mechanism of Ap–Av decision-
making. Increased levels of the cholinergic drive are assumed
to underlie aberrant striatal beta oscillations (McCarthy et al.,
2011). That pattern of beta activity reported here could be a
reflection of the activity of striatal cholinergic interneurons,
and the desynchronization triggered by the visual cue could be
additionally enhanced by the arrival of synchronous signals from
the cerebral cortices (Crone et al., 1998). From the dorsolateral
prefrontal cortex and the ACC, we had recorded neuronal activity
related to valence and arousal during the task period when the CN
beta oscillation exhibited desynchronization in the present data
set (Amemori et al., 2015). It is thus possible that the CN beta
oscillation could be involved in integrating valence and arousal to
allow a decision of whether to engage in the task or not during the
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early phase of the cue period. After the monkey decided to engage
in the task, the integrated values represented by the N group beta
oscillation could be transferred to the P group beta oscillation that
explicitly encoded the upcoming choice variables.

Beta-band oscillatory activity has also been implicated in the
maintenance of the current status (Engel and Fries, 2010), and
the N group beta responses could be related to this function.
In our previous study (Amemori et al., 2018), we found that
microstimulation of the CN could induce abnormally repetitive
Av choices. By the effective CN microstimulation, we observed
a significant enhancement of the beta magnitude before the
presentation of the next offers following Av choices. Such
a precue beta oscillation may have maintained a continuous
negative state after Av choices and might have played a
role in the linkage between ongoing emotional status and
the upcoming decision. In this study, we found that N
group beta responses represented negative arousal in the early
phase of the decision period, suggesting a possible link with
the precue beta oscillation. Since the N group beta activity
appeared early in the decision period, it could contribute
to the linkage between the prior emotional state and the
current decision process. However, further study is needed
to prove this hypothesis. The key findings of this study are
that there are distinctive decision-related features of the beta-
band oscillations and unit responses that we observed in the
CN during Ap–Av decision-making and that the distinctive
timing of the beta responses are condition-dependent. First,
by taking advantage of the fact that reward and punishment
differentially influence valence and arousal in Ap–Av decision-
making, we tested for, and found, dissociable groups of CN
beta responses and unit activities encoding valence and arousal.
Whereas the population of CN units from which we recorded
contained units with valence activities of both polarities,
the beta responses were almost entirely positively correlated
with FOE and ChV. Therefore, the beta responses mainly
exhibited exclusive activation for the high-valence and low-
arousal conditions, whereas the unit activities responded for
positive and negative valence, as well as other features of the
Ap–Av decision-making. Secondly, by examining the onset of
the discrimination of conditions exhibited by the beta-band
responses, we found that the beta responses were sequentially
activated for strongly negative-valence, for low-arousal, and for
strongly high-valence conditions. If the beta-band oscillations
reflect the sum of these neuronal activities, then the sequential
changes in beta representation might reflect the temporal shift
in the priority of CN information processing. Initially, the CN

activity might link to an emotional response to the offer, and
then to a decision to engage in the task, and then to the
final choice of a behavioral plan to obtain the best possible
final value.
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