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We study the flow equation of the O(N ) ϕ4 model in d dimensions at the next-to-leading
order (NLO) in the 1/N expansion. Using the Schwinger–Dyson equation, we derive 2-pt and
4-pt functions of flowed fields. As the first application of the NLO calculations, we study the
running coupling defined from the connected 4-pt function of flowed fields in d +1-dimensional
theory. We show in particular that this running coupling has not only an ultraviolet fixed point
but also an infrared fixed point (Wilson–Fisher fixed point) in 3-dimensional massless scalar
theory. As the second application, we calculate the NLO correction to the induced metric in
d + 1 dimensions with d = 3 in the massless limit. While the induced metric describes a
4-dimensional Euclidean Anti-de-Sitter (AdS) space at the leading order, as shown in the pre-
vious paper, the NLO corrections make the space asymptotically AdS only in the UV and IR
limits. Remarkably, while the AdS radius does not receive an NLO correction in the UV limit,
the AdS radius decreases at the NLO in the IR limit, which corresponds to the Wilson–Fisher
fixed point in the original scalar model in 3 dimensions.
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1. Introduction

In the previous paper (Ref. [1]), the present authors studied the proposal (Ref. [2]) that a (d + 1)-
dimensional induced metric can be constructed from a d-dimensional field theory using gradient
flow (Refs. [3–6]), applying the method to the O(N ) ϕ4 model. We showed that in the large N limit
the induced metric becomes classical and describes Euclidean Anti-de-Sitter (AdS) space in both
ultraviolet (UV) and infrared (IR) limits of the flow direction. The method proposed in Ref. [2] may
provide an alternative way to understand the AdS/CFT (or more generally gravity/gauge theory)
correspondence (Ref. [7]), and the result in Ref. [1] might be related to the correspondence between
O(N ) vector models in d dimensions and (generalized) gravity theories in d+1 dimensions (Ref. [8]).

To further investigate a possible connection between Refs. [1] and [8] at the quantum level, one
must calculate, e.g., the anomalous dimension of the O(N ) invariant operator φ2(x), which requires
the next-to-leading order (NLO) of the 1/N expansion for the flow equation to evaluate necessary
quantum corrections. Since the method employed in Refs. [1,2] is a specific one adopted for the large
N limit, some systematic way to solve the flow equation in the 1/N expansion is needed.

© The Author(s) 2017. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
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In this paper, we employ the Schwinger–Dyson equation (SDE) to solve the flow equation in the
1/N expansion for the O(N ) invariant ϕ4 model in d dimensions. Using this method we explicitly
calculate the 2-pt and 4-pt functions at the NLO.

As the first application of the NLO calculations, we define a running coupling from the connected
4-pt function of flowed fields, which runs with the flow time t such that t = 0 corresponds to the UV
limit while t = ∞ is the IR limit. This property establishes that the flow equation can be interpreted
as a renormalization group transformation (see Ref. [9] as an earlier attempt). In particular at d = 3,
we show that the running coupling so defined has not only an asymptotic free UV fixed point but
also a Wilson–Fisher IR fixed point for the massless case.

As the second application, we investigate the NLO correction to the induced metric in 3 + 1
dimensions from the massless scalar model in 3 dimensions. In the massless limit, the whole
4-dimensional space becomes AdS at the leading order, as shown in Ref. [1]. The NLO correc-
tions give a small perturbation to the metric, which makes the space asymptotically AdS in UV
(t = 0) and IR (t = ∞) limits only. A remarkable thing is that, while the NLO corrections do not
change the AdS radius in the UV limit, the AdS radius is reduced by the NLO correction in the IR
limit, which corresponds to the Wilson–Fisher IR fixed point of the original theory. In other words,
a nontrivial fixed point in the field theory leads to a change of the AdS radius in the geometry at
NLO. The induced metric at NLO describes a 4-dimensional space connecting one asymptotically
AdS space at UV to another asymptotically AdS space at IR, which have different radii.

This paper is organized as follows. In Sect. 2, we first introduce the O(N ) invariant ϕ4 model
in d dimensions. We then formulate the Schwinger–Dyson equation (SDE) for the flowed fields,
and solve it to derive 2-pt and 4-pt functions of flowed fields at the NLO. In Sect. 3, we define
a running coupling from the connected 4-pt function of flowed fields and investigate its behavior
as a function of the flow time t. In Sect. 4, we study the induced metric from the 3-dimensional
massless scalar model at the NLO. We finally give a summary of this paper in Sect. 5. We col-
lect all technical details in appendices. In Appendix A, using the SDE, we present results at the
NLO in the 1/N expansion of d-dimensional theory, necessary for the main text. We also perform
the renormalization of d-dimensional theory at the NLO, and explicitly calculate renormalization
constants for various d. In Appendix B, we give detailed derivations of solutions to the SDE for
the flow fields at the NLO. We explicitly evaluate 2-pt and 4-pt functions of the flowed field in
Appendix C while in Appendix D we derive the induced metric for the massless scalar theory in 3
dimensions.

2. 1/N expansion of the flow equation in d + 1 dimensions
2.1. Model in d dimensions

In this paper, we consider the N -component scalar ϕ4 model in d dimensions, defined by the action

S(μ2, u) = N
∫

ddx

[
1

2
∂kϕ(x) · ∂kϕ(x)+ μ2

2
ϕ2(x)+ u

4!
(
ϕ2(x)

)2]
, (1)

where ϕa(x) is an N -component scalar field, ( · ) indicates an inner product of N component vectors
such that ϕ2(x) ≡ ϕ(x) ·ϕ(x) =∑N

a=1 ϕ
a(x)ϕa(x),μ2 is the bare scalar mass parameter, and u is the

coupling constant of the ϕ4 interaction, whose canonical dimension is 4 − d. While it is consistent
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to take u as N independent, as will be seen later the mass parameter μ2 is expanded as

μ2 = μ2
0 + 1

N
μ2

1 + · · · , (2)

where μ2
i is cut-off dependent in order to make the physical mass finite, order by order, in the 1/N

expansion.
This model describes the free massive scalar at u = 0, while it is equivalent to the nonlinear σ

model (NLSM) in the u → ∞ limit, whose action is obtained from Eq. (1) as

S(λ) = N

2λ

∫
ddx ∂kσ(x) · ∂kσ(x), σ 2(x) = 1, (3)

with the replacement

σ a(x) = √
λϕa(x), λ = lim

u→∞ − u

6μ2 . (4)

Some regularization that preserves O(N ) symmetry is assumed in this paper, so that we can always
make formal manipulations without worrying about divergences.1 Calculations of 2-pt and 4-pt
functions at the NLO of the 1/N expansion in d dimensions will be given in Appendix A.

2.2. Flow equation in the 1/N expansion

In this paper, we consider the flow equation, given by

∂

∂t
φa(t, x) = − 1

N

δS(μ2
f , uf )

δϕa(x)

∣∣∣∣∣
ϕ→φ

=
(
� − μ2

f

)
φa(t, x)− uf

6
φa(t, x)φ2(t, x), (5)

φa(0, x) = ϕa(x),

where μ2
f and uf can be different from μ2 and u in the original d-dimensional theory. As in the case

of d dimensions, uf is kept fixed and N independent, whereas μ2
f is adjusted as

μ2
f = m2

f − uf

6
Z(mf ), Z(mf ) ≡

∫
Dq

1

q2 + m2
f

, Dq ≡ ddq

(2π)d
, (6)

where mf is a renormalized mass. The flow with μf = μ and uf = u is called gradient flow, as it is
given by the gradient of the original action.

In the case of free flow (uf = 0), the solution is easily given by

φa(t, x) = exp
(

t(� − μ2
f )
)
ϕa(x). (7)

We therefore consider the interacting flow (uf �= 0) hereafter unless otherwise stated.
The above flow equation leads to the SDE (Ref. [10]) as

〈Df
zφ

a(z)O〉 = −uf

6
〈φa(z)φ2(z)O〉, Df

z ≡ ∂

∂t
− (� − μ2

f ), (8)

1 We will call the infinite cutoff (	 → ∞) limit the “continuum limit”.
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where z = (t, x), O is an arbitrary operator, and the expectation value 〈O〉 should be calculated in d
dimensions as

〈O(ϕ)〉 ≡ 1

Z

∫
[Dϕ] O(ϕ) exp

(−S(μ2, u)
)

, Z =
∫

[Dϕ] exp
(−S(μ2, u)

)
. (9)

If we take O =∏2n−1
i=1 φai(zi), the SDE becomes

Df
z 


aa1···a2n−1
2n (z, z1, . . . , z2n−1) = − uf

6N 2

∑
b



abba1···a2n−1
2n+2 (z, z, z, z1, . . . , z2n−1), (10)

where 
n is the n-point function defined by


a1···an
n (z1, . . . , zn) = N n−1

〈 n∏
i=1

φai(zi)

〉
≡ 
n[12 · · · n], (11)

which is analogous to the d-dimensional counterpart in Eq. (A.3). We consider only the symmetric
phase in this paper, where 
2n−1 = 0 for all positive integers n.

We consider the next-to-leading order of the 1/N expansion, so that the following two SDEs need
to be considered:

Df
1 
2[12] = − uf

6N 2

∑
b


4[1bb2], (12)

Df
1 
4[1234] = − uf

6N 2

∑
b


6[1bb234], (13)

where zb = z1, so that the sum over b runs over the O(N ) index only.
The connected parts of 4-pt and 6-pt functions are introduced as


4[1234] = K4[1234] + N {
2[12]
2[34] + 
2[13]
2[24] + 
2[14]
2[23]} , (14)


6[123456] = K6[123456] + N {
2[12]K4[3456] + 14 perms.}
+ N 2 {
2[12]
2[34]
2]56] + 14 perms.} . (15)

Furthermore, decompositions in O(N ) indices are given by


2[12] = δa1a2
(z1, z2), (16)

K4[1234] = δa1a2δa3a4K(z1, z2; z3, z4)+ 2 perms., (17)

K6[123456] = δa1a2δa3a4δa5a6H (z1, z2; z3, z4; z5, z6)+ 14 perms., (18)

where 
(z1, z2), K(z1, z2; z3, z4), and H (z1, z2; z3, z4; z5, z6) are invariant under the exchange of
arguments such that z2i−1 ↔ z2i or (z2i−1, z2i) ↔ (z2j−1, z2j).

By expanding 
, K , and H as


 =
∞∑

i=0


i

N i , K =
∞∑

i=0

Ki

N i , H =
∞∑

i=0

Hi

N i , (19)

the above two SDEs are reduced to

Df
1
0(12) = −uf

6

0(12)
0(11) (20)
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at the LO of the 1/N expansion, and

Df
1
1(12) = −uf

6
[K0(12; 11)+ 
0(12)
1(11)+ 
1(12)
0(11)+ 2
0(12)
0(11)], (21)

Df
1K0(12; 34) = −uf

6
[
0(12)K0(11; 34)+ 
0(11)K0(12; 34)+ 2
0(12)
0(13)
0(14)] (22)

at the NLO.

2.3. Solutions to the flowed SDE at NLO

The solutions to the SDE at NLO are summarized below. Details of calculations can be found in
Appendix B.

At the NLO, the 2-pt function is given by

〈φa1(z1)φ
a2(z2)〉

= δa1a2

N

Z(mf )

(ζ(t1)ζ(t2))1/2

∫
Dp

exp
(−p2(t1 + t2)

)
exp (ip(x1 − x2))

p2 + m2

[
1 + 1

N
G1(t1, t2|p)

]
, (23)

where ζ(t) is defined in Eq. (B.7), and the NLO contribution G1(t1, t2|p) is given in Appendix B.3.2.
In the continuum limit, ζ(t) approaches ζ0(t) and is finite as long as t > 0, where

ζ0(t) ≡
∫

Dp
exp
(−2p2t

)
p2 + m2 = exp

(
2tm2

)
md−2

(4π)d/2

(1 − d/2, 2tm2) (24)

with the incomplete gamma function 
(a, x), while Z(mf ) diverges at d > 1.
The leading contribution of the connected 4-pt function appearing at the NLO of the 1/N expansion

can be obtained as

〈φa1(z1)φ
a2(z2)φ

a3(z3)φ
a4(z4)〉c = 1

N 3

[
δa1a2δa3a4K0(12; 34)+ 2 perms.

]
, (25)

where

K0(12; 34) =
∫

dP4 g(12; 34|12; 34),

dP4 ≡
4∏

j=1

Dpj

(
Z(mf )

ζ(tj)

)1/2 exp
(
ipjxj

)
exp
(− p2

j tj
)

p2
j + m2

, (26)

g(12; 34|12; 34) = X (23|12; 34)+ X (13|21; 34)+ X (24|12; 43)+ X (14|21; 43)

+ Y (2|12; 34)+ Y (1|21; 34)+ Y (3|43; 12)+ Y (4|34; 12)

+ Z(|12; 34). (27)
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Here the variables to the left of the vertical line refer to flow times and those to the right refer to
momenta. Explicitly we have in the continuum or NLSM limits,

X (t1, t2|12; 34) = δ̂(p2
2 + m2)(p2

3 + m2)

×
∫ t1

0
ds1

∫ t2

0
ds2 exp

(
s1(p

2
2 − p2

1)
)

exp
(
s2(p3 − p2

4)
)
ω(s1, s2|p34), (28)

Y (t|21; 34) = δ̂(p2
1 + m2)

∫ t

0
ds exp

(
s(p2

1 − p2
2)
)
ψ(s|34), (29)

Z(|12; 34) = −δ̂ 2

6/u + B(0|p34)
, (30)

where δ̂ ≡ (2π)dδ(p1 + p2 + p3 + p4), p34 = p3 + p4,

B(t|Q) =
∫

Dq1Dq2
exp
(−t(q2

1 + q2
2)
)

(q2
1 + m2)(q2

2 + m2)
(2π)dδ(q12 − Q), q12 = q1 + q2, (31)

and thus B(0|Q) = B(Q2), defined in Appendix A. Here ψ and ω satisfy

ρ(t|34)+
∫ t

0
ds K(t, s|p34)ψ(s|34) = 0, (32)

ρ(t1, t2|Q)− 2
∫ t1

0
ds1 K(t1, s1|Q)

∫ t2

0
ds2 K(t2, s2|Q) ω(s1, s2|Q) = 0, (33)

where

K(t, s|Q) =
∫

Dq1Dq2 (2π)dδ(q12 − Q)
exp
(−(t + s)q2

1 − (t − s)q2
2

)
q2

1 + m2
, (34)

ρ(t|34) = exp
(−t(p2

3 + p2
4)
)− B(t|p34)

6/u + B(0|p34)
, (35)

ρ(t1, t2|Q) = B(t1 + t2|Q)− B(t1|Q)B(t2|Q)
6/u + B(0|Q) . (36)

The derivation of these results is given in Appendix B.

3. Running coupling from flowed fields
3.1. Definitions

Using the connected 4-pt functions g ≡ δ̂ĝ for the flow fields given in Eq. (25), we define the
t-dependent dimensionless coupling as

g(t) = −3ĝ(t, t; t, t|{p}sym.)t
2−d/2, (37)

where {p}sym. is given by p2
i t = 3�/4 (i = 1 ∼ 4) and p2

12t = p2
34t = � (pij = pi + pj), which is

the symmetric point for d > 2, and t2−d/2 is introduced to make the coupling dimensionless. Here
� is an arbitrary dimensionless constant but we can take � = 1 without loss of generality by the
rescaling t → �t. Explicitly we have

ĝ(t, t; t, t|{p}sym.) = 4X̂ (t, t|{p}sym.)+ 4Ŷ (t|{p}sym.)+ Ẑ(|{p}sym.), (38)
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where we remove δ̂ by defining O = δ̂Ô for O = g, X , Y , Z , and

X̂ (t1, t2|12; 34) = (p2
2 + m2)(p2

3 + m2)

×
∫ t1

0
ds1

∫ t2

0
ds2 exp

(
s1(p

2
2 − p2

1)
)

exp
(
s2(p

2
3 − p2

4)
)
ω(s1, s2|p34), (39)

Ŷ (t|12; 34) = (p2
2 + m2)

∫ t

0
ds exp

(
s(p2

2 − p2
1)
)
ψ(s|34), (40)

Ẑ(|12; 34) = −1

3

u

1 + u
6 B(0|p34)

. (41)

3.2. Free flow

For simplicity, we first consider free flow, where ĝ(t, t; t, t|{p}sym.) = Ẑ(|{p}sym.). Taking � = 1,
the running coupling is given by

g(t) = ut2−d/2

1 + u

6
B (1/t)

, (42)

where B(p2) = B(0|p).

3.2.1. d = 2
In 2 dimensions, we obtain

g(t) = ut

1 + ut

6π
(
1 + 4m2t

)1/2 tanh−1

(
1(

1 + 4m2t
)1/2

) , (43)

which behaves in the UV limit (t → 0) and the IR limit (t → ∞) as

g(t) �

⎧⎪⎪⎨⎪⎪⎩
ut

1 − ut log(m2t)/(12π)
→ 0, t = 0,

ut

1 + u/(24πm2)
→ ∞, t = ∞.

(44)

In the massless limit m2 → 0, we have

g(t) � − 12π

log(m2t)
→ 0. (45)

3.2.2. d = 3
At d = 3, the running coupling is given by

g(t) = u
√

t

1 + u
√

t

24π
arctan

(
1(

4m2t
)1/2

) , (46)
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which behaves as

g(t) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u
√

t

1 + u
√

t/48
→ 0, t = 0,

u
√

t

1 + u/(48πm)
→ ∞, t = ∞.

(47)

In the massless limit, we have

g(t) = u
√

t

1 + u
√

t/48
=
{

→ 0, t → 0,

→ 48, t → ∞,
(48)

which correspond to the asymptotic free UV fixed point and the Wilson–Fisher IR fixed point,
respectively.

3.2.3. d ≥ 4
Since B(Q2) diverges as 	d−4 (log	 at d = 4) at d ≥ 4, the running coupling vanishes as the
cut-off is removed (	 → ∞). Thus the theory is trivial in the continuum limit at d ≥ 4.

3.3. Interacting flow in the massless limit at d = 3

3.3.1. Massless limit
We next consider the interacting flow case, where we need to evaluate X̂ and Ŷ , which are difficult
to calculate in general. We therefore consider the massless limit.2 In this limit, the kernel function
is reduced to

K(t, s|{p}sym.) = Dd/2−1k0(Dt, Ds), (49)

where

k0(w, v) = ev−ww1−d/2

2d−1(2π)d/2

∫ 1

0
dz zd/2−2 exp

[
(w − v)2z

2w

]
, (50)

and we regard D ≡ Q2 = �/t as an independent variable. Here the z integral is convergent for
d > 2 while the bubble integral B(0|Q) is finite for d < 4. We thus concentrate on the d = 3 case
hereafter.

In this limit, we obtain (see Appendix C for details)

Ẑ(|{p}sym.) = −16
√

D
ū(D)

1 + ū(D)
, ū(D) ≡ u

48
√

D
, (51)

Ŷ (t|{p}sym.) = 3

4

√
D

{
ξ
(1)
0 (�)− 8ξ (2)0 (�)

ū(D)

1 + ū(D)

}
, (52)

X̂ (t, t|{p}sym.) = 9

16

√
D

{
�0(�)− 4{ξ (2)0 (�)}2 ū(D)

1 + ū(D)

}
, (53)

2 We will indicate the massless limit by the subscript 0.
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where

ξ
(i)
0 (�) =

∫ �

0
dw φ(i)0 (w), i = 1, 2, (54)

�0(�) =
∫ �

0
dw
∫ �

0
dv�0(w, v), (55)

and φ(i)0 and �0 are solutions to the integral equations

e−3w/2 +
∫ w

0
dv k0(w, v) φ(1)0 (v) = 0, (56)

b0(w)+
∫ w

0
dv k0(w, v) φ(2)0 (v) = 0, (57)

b0(w + v)− 2
∫ w

0
dx k0(w, x)

∫ v

0
dy k0(v, y)�0(x, y) = 0, (58)

where b0(w) is the massless bubble integral given by Eq. (C.3). These equations can be solved
numerically, and at � = 1, e.g., we have ξ (1)0 (1) = −14.8440(1), ξ (2)0 (1) = −1.60557(1) and
�0(1) = 16.6753(1).

3.3.2. Running coupling and the β function
Using the above results, the running coupling at d = 3 is given by

g0(μ) = G1 + G2
ū(�)

√
t

1 + ū(�)
√

t
, ū(�) = u

48
√
�

, (59)

where μ = 1/
√

t and

G1 = −9
√
�

[
ξ
(1)
0 (�)+ 3

4
�0(�)

]
, G2 = 48

√
�

[
1 + 3

4
ξ
(2)
0 (�)

]2

≥ 0. (60)

With the numerical values given above we obtain G1 = 21.0378(1) and G2 = 2.00105(1) at� = 1.3

We then calculate the β function for g0(μ) as

β(g0) ≡ μ
∂

∂μ
g0(μ) = (g0(μ)− G1 − G2)(g0(μ)− G1)

G2
, (61)

which becomes zero at g0(μ) = G1 and g0(μ) = G1 + G2. The coupling g0(μ) near G1 behaves as

g0(μ)− G1 � CUV
u

μ
→ 0, μ → ∞, CUV =

[
1 + 3

4
ξ
(2)
0 (�)

]2

, (62)

approaching the UV fixed point from above, while near G1 + G2 we have the IR fixed point

g0(μ)− G1 − G2 � −CIR
μ

u
→ 0, μ → 0, CIR =

{
48

√
�

[
1 + 3

4
ξ
(2)
0 (�)

]}2

, (63)

3 It turns out that G2(�) has only one zero at � = 0.36228(1).
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where the coupling approaches from below the Wilson–Fisher fixed point in 3-dimensional scalar
theory. Note that the derivative of the β function with respect to g0 at the fixed point becomes

β ′(g0) ≡ dβ(g0)

dg0
=
{

−1, g0 = G1,

1, g0 = G1 + G2,
(64)

which should be compared with the same quantities calculated for the standard running coupling
in the 3-dimensional massless theory in Ref. [11], where β ′(0) = −1 (UV) and β ′(48) = 1 (IR).
The derivative of the β function at the fixed point gives the anomalous dimension of the operator
conjugate to the coupling in the conformal theory at the fixed point, and thus is universal. Our flow
coupling indeed satisfies this condition and the derivatives at the two fixed points agree with those
for the conventional definition of the coupling. This establishes that our flow coupling gives a good
definition of the running coupling of the theory. The scaling dimension γ of the operator conjugate
to the running coupling g0 is given by γ = d + β ′(g0), so that γUV = 2 and γIR = 4 in this model.
Interestingly γUV = 2 corresponds to the canonical dimension of the ϕ4 operator in 3 dimensions,
which is the interaction term in our theory.

By the redefinition of the coupling as g(μ) ≡ (g0(μ)− G1)/G2, the corresponding β function is
simplified as

β(g) ≡ μ
∂

∂μ
g(μ) = g(μ)(g(μ)− 1). (65)

4. NLO corrections to the induced metric

In Ref. [1], the induced metric has been calculated from the flowed scalar field in the large N limit.
It has been shown that the metric from the massive scalar field describes a space that becomes the
Euclidean AdS space asymptotically in both UV and IR limits, where the radius RIR in IR is larger
than the radius RUV in UV since

R2
UV = d − 2

2
R2

IR < R2
IR, (66)

while the metric describes the whole AdS space in the massless limit with the radius RUV. In this
section, we consider the NLO correction to the induced metric in the 1/N expansion as another
application of the NLO calculation, in particular, in the massless case at d = 3, in order to see
whether the space remains AdS or not and how the radius changes at the NLO.

4.1. Induced metric at the NLO

The vev of the induced metric is defined from the normalized flowed field as (Ref. [1])

gμν(z) = R2
0〈∂μσ a(z)∂νσ

a(z)〉 (67)

with some length scale R0, where z = (τ = 2
√

t, x) and μ, ν = 0, 1, . . . , d. Here σ a(z) is the
normalized flowed field such that 〈σ 2(z)〉 = 1, and the corresponding 2-point function is explicitly
given at the NLO as

〈σ a1(z1)σ
a2(z2)〉 = δa1a2

N

1

(ζ0(t1)ζ0(t2))1/2

(
1 − ζ1(t1)+ ζ1(t2)

2N

)

×
∫

Dp
exp
(−p2(t1 + t2)

)
exp (ip(x1 − x2))

p2 + m2

[
1 + G1(t1, t2|p)

N

]
, (68)
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where

ζ1(t) = 1

ζ0(t)
H [G1(t, t|p)], H [f (t|p)] ≡

∫
Dp

exp
(−2p2t

)
p2 + m2 f (t|p). (69)

After some algebra (see Appendix D), we obtain

gij(τ ) = δij
R2

0

d
A(t) (i, j = 1, 2, . . . , d), g00(τ ) = −R2

0 t

2
∂tA(t), (70)

where

A(t) = −1

2

∂tζ0(t)

ζ0(t)
+ 1

N
A1(t), (71)

and A1(t), given in Appendix D, in general is a very complicated function.

4.2. Induced metric in the massless limit at d = 3

In the massless limit at d = 3, the metric at the LO is given by

gij(τ ) = δij
R2

0

3τ 2 , g00(τ ) = R2
0

2τ 2 , (72)

which describes the AdS space for all τ .
At the NLO, A1(t) is given by

A1(t) = 1

2
√

t

∫
DQ htotal(Q

2)
ū(Q2)

(1 + ū(Q2)
√

t)2
, ū(Q2) = u

48
√

Q2
, (73)

∂tA1(t) = − 1

4
√

t3

∫
DQ htotal(Q

2)
ū(Q2)(1 + 3ū(Q2)

√
t)

(1 + ū(Q2)
√

t)3
, (74)

which leads to

gij(τ ) = δij
R2

0

3τ 2

[
1 + τ

N

∫
DQ htotal(Q

2)
ū(Q2)

(1 + ū(Q2)τ/2)2

]
, (75)

g00(τ ) = R2
0

2τ 2

[
1 + τ

2N

∫
DQ htotal(Q

2)
ū(Q2)(1 + 3ū(Q2)τ/2)

(1 + ū(Q2)τ/2)3

]
, (76)

where htotal(Q2) is a function given in Appendix D.

4.3. UV and IR limits

The above expression in the UV limit (τ → 0) leads to

gij(τ ) � δij
R2

0

3τ 2

[
1 + τ

N

∫
DQ htotal(Q

2)ū(Q2)

]
, τ → 0, (77)

g00(τ ) � R2
0

2τ 2

[
1 + τ

2N

∫
DQ htotal(Q

2)ū(Q2)

]
, τ → 0, (78)

which shows that the NLO correction is less singular than the LO contribution. Therefore the space
becomes asymptotically AdS in the UV limit at the NLO whose AdS radius is equal to that at
the LO.
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We cannot naively take the τ → ∞ limit in Eqs. (75) and (76), on the other hand, due to the
enhancement of the UV contribution of the Q integrals. Careful evaluations of these Q integrals in
Appendix D give

gij(τ ) � δij
R2

0

3τ 2

[
1 + r

N

]
, g00(τ ) � R2

0

2τ 2

[
1 + r

N

]
, τ → ∞, (79)

where r = −0.41869(1).4 Therefore, the space becomes asymptotically AdS again in the IR limit,
whose radius, however, is smaller than that in the UV limit.5 The induced metric at the NLO describes
a 4-dimensional space that is asymptotically AdS in both UV and IR regions with different radii but
non-AdS in between.

It is clear that the NLO correction to the AdS radius in the IR limit is related to the Wilson–Fisher
fixed point in the original 3-dimensional scalar theory, since Eqs. (75) and (76) can be written as

gij(τ ) = δij
R2

0

3τ 2

[
1 − 1

24N

∫
DQ htotal(Q

2)β(g(48μ
√

Q2))

]
, (80)

g00(τ ) = R2
0

2τ 2

[
1 − 1

24N

∫
DQ htotal(Q

2)

{
1 + μ

2

∂

∂μ

}
β(g(48μ

√
Q2))

]
, (81)

where μ = 1/
√

t = 2/τ , and β(g(x)) is the β function for the running coupling g(x) from the
free-flow field defined in the previous section with � = 1 as

β(g) = g(g − 48)

48
, g(x) = 48

u

x + u
. (82)

5. Summary

In this paper, we studied the flow equation of the O(N ) ϕ4 model in d dimensions at the NLO in the
1/N expansion, employing the Schwinger–Dyson equation. We calculated the 2-pt and 4-pt functions
at the NLO.

As an application of the NLO calculation, we investigated the running coupling defined from the
connected 4-pt function of flowed fields. In particular at d = 3 in the massless limit, we showed that
the running coupling has two fixed points, the asymptotic free one in the UV region and the Wilson–
Fisher one in the IR region. We also derived the corresponding β function. Our study suggests that
the flow equation can be interpreted as a renormalization group transformation.

We also calculated the NLO correction to the (d+1)-dimensional metric induced from the massless
scalar field theory at d = 3. In the massless limit, the whole 4-dimensional space becomes AdS at the
LO of the 1/N expansion (Ref. [1]). We found that the NLO corrections give small perturbations to
the metric, which make the space only asymptotically AdS in both UV (t = 0) and IR (t = ∞) limits.
In addition, while the NLO corrections do not change the AdS radius at the LO in the UV limit, the
AdS radius is reduced by the NLO correction in the IR limit, which corresponds to the Wilson–Fisher

4 This is independent of uf �= 0 (the interacting flow). In the case of free flow (uf = 0), however, r =
8/3π 2 � 0.27019.

5 It is interesting and also suggestive to see that the F-coefficient of the 3-dimensional O(N ) scalar model
is given by FIR = FUV − ζ(3)/(8π 2) + O(1/N ), where FUV = NFS with FS � 0.0638 as an example of
a conjecture, the so-called “F-theorem”, which claims that the F-coefficient monotonically decreases along
an RG trajectory connecting two 3-dimensional CFTs. Furthermore, in the holographic dual picture, the
F-coefficient is proportional to the AdS radius squared. (See Ref. [12] and references therein.)
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IR fixed point of the original theory. The nontrivial fixed point in the field theory appears as a change
of the AdS radius at the NLO. The induced metric at NLO describes a 4-dimensional space that
connects one asymptotically AdS space at UV to the other asymptotically AdS space at IR.

This paper contains two important messages. One is that the flow equation can provide an alternative
method to define a renormalization group transformation. The other is that the massless scalar field
in d dimensions plus the extra dimension from the RG scale not only generates a (d +1)-dimensional
AdS space at LO (Ref. [1]) but also gives an NLO correction, which makes the (d + 1)-dimensional
space asymptotically AdS only in the UV and IR limits at d = 3. In particular, the AdS radius in
the IR limit, which corresponds to the Wilson–Fisher fixed point, becomes smaller than that in the
UV limit, which is equal to the radius at the LO. Although the relation found in this paper between
the massless scalar field theory and the induced geometry is very suggestive, further studies will be
needed to establish an alternative interpretation of AdS/CFT correspondences proposed in Ref. [2]
in terms of field theories.
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Appendix A. The 1/N expansion in d-dimensional theory

In this appendix, we consider the 1/N expansion in d-dimensional theory.

A.1. Schwinger–Dyson equation (SDE)

In order to perform the 1/N expansion, we consider the SDE of this model, which can be written
compactly as

〈δa
x X [ϕ]〉 = 〈X [ϕ]δa

x S(μ2, u)〉, (A.1)

where δa
xϕ

b(y) = δabδ(d)(x − y)ε with a small parameter ε, so that

δa
x S(μ2, u) = Nε

[
(−� + μ2)ϕa(x)+ u

3!ϕ
a(x)ϕ2(x)

]
. (A.2)

Here the vacuum expectation value of an operator O is defined in Eq. (9).
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We define 2n-point functions 
2n as6


a1a2···a2n(x1, x2, . . . , x2n) = N 2n−1

〈
2n∏

i=1

ϕai(xi)

〉
≡ 
2n[12 · · · (2n)], (A.3)

which can be written in terms of their connected parts K2n as


4[1234] = K4[1234] + N {
2[12]
2[34] + 
2[13]
2[24] + 
2[14]
2[23]} , (A.4)


6[123456] = K6[123456] + N {
2[12]K4[3456] + 14 perms.}
+ N 2 {
2[12]
2[34]
2[56] + 14 perms.} , (A.5)

and so on. As mentioned in the main text, we assume we are working in a phase where O(N )
symmetry is not broken. We therefore do not add the external source term hϕ(x) to the action, so
that the action has symmetry under ϕ → −ϕ, which implies 
2n−1 = 0 for all positive integers n.

In terms of these, the SDE for X (ϕ) = ϕa2(x2) becomes

δ12 = (−� + μ2)x1
2[12] + u

3!N 2

∑
b

(K4[bb12] + N {
2[bb]
2[12] + 2
2[b1]
2[b2]}) , (A.6)

where δ12 ≡ δa1a2δ(d)(x1 − x2) and xb = x1, so that b in the summation runs over the O(N ) indices
only.

For X (ϕ) = ϕa2(x2)ϕ
a3(x3)ϕ

a4(x4), on the other hand, we have

δ12
2[34] + 2 perms. = (−� + μ2)x1

1

N
(K4[1234] + N {
2[12]
2[34] + 2 perms.})

+ u

3!N 3

∑
b

(
K6[bb1234] + N {
2[bb]K4[1234] + 14 perms.}

+ N 2 {
2[bb]
2[12]
2[34] + 14 perms.} ), (A.7)

which can be simplified by using Eq. (A.6) to

0 = (−� + μ2)x1K4[1234] + u

3!N 2

∑
b

(
K6[bb1234] + N
2[bb]K4[1234]

+ 2N {
2[b1]K4[b234] + 
2[b2]K4[1b34] + 
2[b3]K4[12b4] + 
2[b4]K4[123b]}
+ N {
2[12]K4[bb34] + 
2[13]K4[b2b4] + 
2[14]K4[b23b]}
+ 2N 2 {
2[b2]
2[b3]
2[14] + 
2[b2]
2[b4]
2[13] + 
2[b3]
2[b4]
2[12]}

)
. (A.8)

Using the O(N ) symmetry and assuming translational invariance (e.g., infinite volume or periodic
boundary condition), we can write


2[12] ≡ δa1a2
(x12), x12 ≡ x1 − x2 (A.9)

K4[1234] ≡ δa1a2δa3a4K(x1, x2; x3, x4)+ 2 perms., (A.10)

K6[123456] ≡ δa1a2δa3a4δa5a6H (x1, x2; x3, x4; x5, x6)+ 14 perms., (A.11)

6 Note that we use the same notation 
2n for the 2n-point functions in both d and d + 1 dimensions, since
no confusion may occur.
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where K(x1, x2; x3, x4) is invariant under 1 ↔ 2 or 3 ↔ 4 as well as (12) ↔ (34), and similar
invariances hold for H (x1, x2; x3, x4; x5, x6).

We finally obtain

δ(d)(x1 − x2) =
[
(−� + μ2)x1 + u

3!
(0)
]

(x12)

+ u

3!N
[(

1 + 2

N

)
K(x1, x1; x1, x2)+ 2
(0)
(x12)

]
, (A.12)

and

0 =
[
(−� + μ2)x1 + u

3!
(

1 + 2

N

)

(0)

]
K(x1, x2; x3, x4)

+ u

3!
(x12)

[
2
(x13)
(x14)+

(
1 + 2

N

)
K(x1, x1; x3, x4)+ 2

N
K(x1, x3; x1, x4)

]
+ u

3!N
[(

1 + 2

N

)
H (x1, x1; x1, x2; x3, x4)+ 2

N
H (x1, x2; x1, x3; x1, x4)

]
+ 2u

3!N [
(x13)K(x1, x2; x1, x4)+ 
(x14)K(x1, x2; x3, x1)] . (A.13)

A.2. LO in the 1/N expansion

We introduce the 1/N expansion as


(x12) =
∞∑

i=0

N−i
i(x12), K(x1, x2; x3, x4) =
∞∑

i=0

N−iKi(x1, x2; x3, x4), (A.14)

and so on, together with μ2 =∑∞
i=0 N−iμ2

i .
At the LO of the 1/N expansion, Eq. (A.12) in momentum space becomes

1 =
(

p2 + μ2
0 + u

6

∫
Dq 
̃0(q)

)

̃0(p), 
0(x) =

∫
Dp 
̃0(p) exp (ipx) , (A.15)

which can easily be solved as


̃0(p) = 1

p2 + m2 , m2 = μ2
0 + u

6
Z(m), (A.16)

where m ≥ 0 is the renormalized mass and Z(m) is given in Eq. (6). Thus the 2-pt function at the
LO becomes

〈ϕa(x)ϕb(y)〉 = δab

N

∫
Dp

exp (ip(x − y))

p2 + m2 . (A.17)

Equation (A.13) at the LO leads to

(−� + m2)x1K0(x1, x2; x3, x4)+ u

3!
0(x12)K0(x1, x1; x3, x4)

= −2u

3! 
0(x12)
0(x13)
0(x14). (A.18)
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Introducing a function G0(p1, p2, p3, p4) to rewrite K0(x1, x2, x3, x4) as

K0(x1, x2; x3, x4) =
{

4∏
i=1

∫
Dpi

exp (ipixi)

p2
i + m2

}
G0(p1, p2, p3, p4)(2π)dδ(p1 + p2 + p3 + p4), (A.19)

we obtain

G0(p1, p2, p3, p4) = G0(p1 + p2) = − 2u

6 + uB(p2
12)

, (A.20)

where p12 = p1 + p2, and

B(Q2) =
∫

Dq1Dq2
(2π)dδ(q1 + q2 − Q)

(q2
1 + m2)(q2

2 + m2)
=
∫ 1

0
dx
∫

Dq1
θ(	2 − q2

1)

(q2
1 + m2 + x(1 − x)Q2)2

. (A.21)

This agrees with the previous result obtained by a different method (Ref. [11]). Here we specify the
way we introduce the cut-off 	 for the case where B(Q2) diverges.

A.3. NLO correction to the 2-pt functions

Let us consider the NLO correction to the 2-pt function 
2. At the NLO, Eq. (A.12) leads to

0 = (−� + m2)
1(x12)+
{u

6
(2Z(m)+ γ1)+ μ2

1

}

0(x12)+ u

6
K0(x1, x1; x1, x2), (A.22)

γ1 =
∫

Dq 
̃1(q), (A.23)

which can be solved in momentum space as


̃1(p) = − 1

(p2 + m2)2

(
μ2

1 + u

6
γ1 + u

3
S(p2)

)
, (A.24)

where

S(p2) =
∫

DQ

(p − Q)2 + m2

6

6 + uB(Q2)
, (A.25)

and the condition for γ1 is solved as

γ1 = −μ
2
1B(0)+ C2

1 + u
6 B(0)

, C2 ≡ −
∫

DQ
6
u + B(Q2)

d

dm2 B(Q2). (A.26)

Substituting Eq. (A.26) into Eq. (A.24), we finally obtain


̃1(p) = − 1

(p2 + m2)2

{
g(p2)+ C̃

}
, (A.27)

where

g(p2) =
∫

DQ
6
u + B(Q2)

{
1

(Q + p)2 + m2 + 1

(Q − p)2 + m2 − 2

Q2 + m2

}
, (A.28)

C̃ = C1 + μ2
1

1 + u
6 B(0)

− C2
6
u + B(0)

, C1 =
∫

DQ
6
u + B(Q2)

2

(Q2 + m2)
, (A.29)
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and g(p2) can be expanded as

g(p2) = Z1p2 + g̃(p2), g̃(p2) = O(p4), (A.30)

where

Z1 = 2

d

∫
DQ

6/u + B(Q2)

[
4 − d

(Q2 + m2)2
− 4m2

(Q2 + m2)3

]
. (A.31)

A.4. Renormalization

Let us now consider the renormalization of the theory.
Our renormalization condition for the renormalized 2-pt function 
R is given in momentum

space as


̃−1
R (p) � p2 + m2, p2 � 0, (A.32)

where m is interpreted as the renormalized mass, which is independent of both N and the cut-off.
Relating the bare field to the renormalized field by the renormalization constant ZR as Z1/2

R ϕR = ϕ,
we explicitly obtain

ZR
̃R(p) = 
̃(p) = 1

p2 + m2 + 1

N
�1(p2)

+ O

(
1

N 2

)
, (A.33)

where

�1(p
2) = Z1p2 + C̃ + g̃(p2). (A.34)

At the LO of the 1/N expansion, the above condition implies

μ2
0 = m2 − u

6
Z(m), ZR = 1, (A.35)

where Z(m) is potentially divergent at d > 1. We therefore introduce the momentum cut-off 	 to
regulate the integral, and μ2

0 is tuned to cancel the effect of Z(m) including such divergences, in
order to keep the renormalized mass m finite and constant. The lattice regularization or dimensional
regularization is more consistent than the momentum cut-off, but calculations become much more
complicated in the lattice regularization or power divergences are difficult to deal with in the dimen-
sional regularization. Since the momentum cut-off is enough to see the leading divergences, we adopt
it in this paper.

At the NLO, the renormalization condition implies

ZR = 1 − Z1

N
, μ2

1 =
(

1 + u

6
B(0)

)
Z1m2 + u

6
C, (A.36)

where

C = −
∫

DQ
6
u + B(Q2)

[
dB(Q2)

dm2 + 2
6
u + B(0)

Q2 + m2

]
. (A.37)
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The renormalization condition for the coupling, which first appears at the NLO of the 1/N expan-
sion, is given by G0(Q2 = s) = −ur(s)/3, so that ur(s) is regarded as the renormalized coupling at
the scale s. Equation (A.20) thus leads to

ur(s) = u

1 + u
6 B(s)

, (A.38)

where B(Q2) is divergent at d ≥ 4. Therefore the renormalized coupling goes to zero as

ur(s) � 6

B(s)
→ 0, 	 → ∞ (A.39)

at d ≥ 4. This indicates the triviality of the ϕ4 theory at d ≥ 4.

A.5. Renormalization constants

Here we explicitly evaluate the renormalization constants.

A.5.1. d = 1
At d = 1, μ2

0 is finite since

Z(m) = 1

πm
arctan

(
	

m

)
(A.40)

is finite, and the coupling is also finite and nonzero since

B(Q2) = 1

m(Q2 + 4m2)
� 1

mQ2 + · · · , Q2 → ∞ (A.41)

has a finite limit as 	 → ∞.
The most divergent part of Z1 is given by

Z1 �

⎧⎪⎪⎨⎪⎪⎩
∫

DQ
u

(Q2 + m2)2
, u �= ∞,∫

DQ

B(Q2)

6

(Q2 + m2)2
, u = ∞,

(A.42)

which shows that Z1 is finite for all u including u = ∞. Equations (A.36) and (A.37) thus tell us that
μ2

1 is also finite for all u including u = ∞, and therefore, there is no divergence at d = 1 up to the
NLO.

A.5.2. d = 2
At d = 2, μ2

0 is logarithmically divergent since

μ2
0 = m2 − u

6
Z(m), Z(m) � 1

4π
log
(
	2 + m2

m2

)
. (A.43)

On the other hand, B(Q2) is finite since

B(Q2) =
tanh−1

((
Q2

Q2+4m2

)1/2
)

π
(
Q2(Q2 + 4m2)

)1/2 � 1

2πQ2 log
Q2

m2 − m2

π(Q2)2

(
log

Q2

m2 − 1
)

+ · · · , (A.44)

dB(Q2)

dm2 � − 2B(0)

Q2 + 4m2

[
1 + 2m2

Q2 log
Q2

m2 + · · ·
]

, B(0) = 1

4πm2 , (A.45)
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so that the renormalized coupling becomes

ur(s) = 6u

6 + u
tanh−1

((
s

s+4m2

)1/2
)

π
(
s(s + 4m2)

)1/2
� 12πus

12πs + u log(s/m2)
, s → ∞. (A.46)

The most singular term of Z1 for u �= ∞ becomes

Z1 � u

6

∫
DQ

2

(Q2 + m2)2
, (A.47)

which is manifestly finite, while at u = ∞ we have

Z1 =
∫

DQ

B(Q2)

[
2

(Q2 + m2)2
− 4m2

(Q2 + m2)3

]
, (A.48)

which diverges as Z1 � log
(
log	2

)
.

The most divergent part of μ2
1 is given by

μ2
1 �

⎧⎪⎪⎨⎪⎪⎩
−u

3
Z(m)δ1 (δ1 = 1), u �= ∞,

u

12π
log
(
	2 + 4m2

4m2

)
, u → ∞.

(A.49)

A.5.3. d = 3
At d = 3, μ2

0 is linearly divergent as

μ2
0 = m2 − u

6
Z(m), Z(m) � 1

2π2

[
	− m arctan

(
	

m

)]
, (A.50)

while B(Q2) is finite as

B(Q2) = 1

4π
√

Q2
arctan

((
Q2

4m2

)1/2
)

� 1

8|Q| − m

2πQ2 + 2m3

3π(Q2)2
+ · · · , (A.51)

dB(Q2)

dm2 = − 2B(0)

Q2 + 4m2 , B(0) = 1

8πm
, (A.52)

and the renormalized coupling becomes

ur(s) = 6u

6 + u

4π
√

s
arctan

(( s

4m2

)1/2
) � u

1 + u

48
√

s

, s → ∞. (A.53)

The most singular term of Z1 for u �= ∞ becomes

Z1 � u

9

∫
DQ

1

(Q2 + m2)2
, (A.54)

which is manifestly finite at d = 3. On the other hand, at u = ∞ we have

Z1 = 2

3

∫
DQ

B(Q2)

[
1

(Q2 + m2)2
− 4m2

(Q2 + m2)3

]
, (A.55)
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whose divergent part becomes

Z1 � 4

3π2 log	2. (A.56)

The most divergent part of μ2
1 becomes

μ2
1 �

⎧⎪⎨⎪⎩
−u

3
Z(m)δ1 (δ1 = 1), u �= ∞,

−m
2u

9π3 log	2, u → ∞.
(A.57)

A.5.4. d = 4
At d = 4, μ2

0 is quadratically divergent as

μ2
0 = m2 − u

6
Z(m), Z(m) � 1

16π2

[
	2 − m2 log

(
	2 + m2

m2

)]
. (A.58)

On the other hand, at d = 4 we have

B(Q2) = 1

(4π)2

[
log
(
	2

m

m2

)
+ 2

Q2 + 4	2
m − 2	2(

Q2(Q2 + 4	2
m)
)1/2 tanh−1

(
Q2

Q2 + 4	2
m

)1/2

− 2
(

Q2 + 4m2

Q2

)1/2

tanh−1
(

Q2

Q2 + 4m2

)1/2
]

, (A.59)

B(0) = 1

(4π)2

[
log

	2
m

m2 − 	2

	2
m

]
, 	2

m ≡ 	2 + m2, (A.60)

which diverge logarithmically, so that ur(s) = 0 as 	 → ∞.
Since tanh−1(x) �x→1 −1

2 log
(1−x

2

)
, we have

B(Q2)+ 6

u
= B̂

(
q2,α2) , q2 = Q2

	2 , α = m

	
, (A.61)

B̂(q2, 0) = −c0 log q2 + 6

u
+ c0F(q2), c0 = 1

(4π)2
, (A.62)

where

F(q2) = 2(q2 + 2)(
q2(q2 + 4)

)1/2 tanh−1
(

q2

q2 + 4

)1/2

. (A.63)

Let us now consider the continuum limit of Z1. By rescaling the momentum, we have

Z1 = − α2

8π2

∫ 1

0

t dt

B̂(t,α2)(t + α2)3
. (A.64)

As α2 → 0 in the 	 → ∞ limit, we have∫ 1

0

t dt

B̂(t,α2)(t + α2)3
�
∫ 1

0

t dt

B̂(t, 0)(t + α2)3

=
∫ 1/2

0

t dt

B̂(t, 0)(t + α2)3
+
∫ 1

1/2

t dt

B̂(t, 0)(t + α2)3
, (A.65)
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where the second term is finite in this limit, while the first term is bounded from above:∫ 1/2

0

t dt

B̂(t, 0)(t + α2)3
≤ − 1

c0

∫ 1/2

0

t dt

(t + α2)3 log(t + α2)

= 1

c0

[
log | log α2| +

∞∑
r=1

(− log α2)r

r r! + (finite terms)

]
, (A.66)

so that Z1 in Eq. (A.64) vanishes as α2 → 0.
The most divergent part of μ2

1 becomes

μ2
1 � −u

3

	2

16π2 δ1, δ1 =
∫ 1

0
dq2
(

c0T (q2)− 6/u

c0{log q2 − F(q2)} − 6/u

)
, (A.67)

T (q2) ≡ log q2 + 1 − q2

q2 + 4

(
1 + q2 + 6

q2 + 2
F(q2)

)
,

where δ1 is finite, but is not universal as it depends on how we regulate the integral.

A.5.5. d > 4
At d > 4, μ2

0 is O(	d−2) as

μ2
0 = m2 − u

6
Z(m), Z(m) � d

(4π)d/2(d − 2)
(1 + d/2)
	d−2. (A.68)

We also write

B(Q2) = d

(4π)d/2
(1 + d/2)

∫ 1

0
dx
∫ 	

0

pd−1dp[
p2 + m2 + Q2x(1 − x)

]2 , (A.69)

from which we obtain

B(Q2) = 	d−4B̂

(
Q2

	2 ,
m2

	2

)
, B̂(0, 0) = d

(d − 4)

1

(4π)d/2
(1 + d/2)
, (A.70)

dB(Q2)

dm2 = −2	d−6B̂m

(
Q2

	2 ,
m2

	2

)
, (A.71)

where

B̂(q2,α2) = d

(4π)d/2
(1 + d/2)

∫ 1

0
dx
∫ 1

0

yd−1dy[
y2 + α2 + q2x(1 − x)

]2 , (A.72)

B̂m(q
2,α2) = d

(4π)d/2
(1 + d/2)

∫ 1

0
dx
∫ 1

0

yd−1dy[
y2 + α2 + q2x(1 − x)

]3 (A.73)

so that B(Q2) = O(	d−4). As in the case at d = 4, ur(s) = 0 in the limit that 	 → ∞.
By the change of variable Q = 	q in Eq. (A.31) and then taking the limit 	 → ∞, we obtain

Z1 = 2(4 − d)

d

∫
q2<1

Dq

B̂(q2, 0)

1

(q2)2
. (A.74)

The fact that B̂(0, 0) �= 0 establishes that Z1 is finite at d > 4.
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The most divergent part of μ2
1 is given by

μ2
1 � −u

3
Z(m)δ1, (A.75)

where

δ1 = (d − 2)
∫ 1

0

qd−1dq

B̂(q2, 0)

(
B̂(0, 0)

q2 − B̂m(q
2, 0)

)
(A.76)

with the change of variables as q2 = Q2/	2. It is easy to show that δ1 is finite.

Appendix B. Solving the SDE for the flow equation

In this appendix we explicitly solve the SDE in d + 1 dimensions, in order to obtain the 2-pt and
4-pt functions for the flow fields at the NLO.

B.1. Solution for 
0

We first solve the equation at the LO for 
0. If we introduce one unknown function F(t, p) as


0(12) =
∫

Dp
F(t1, p)F(t2, p)

p2 + m2 exp
(
−(p2 + μ2

f )(t1 + t2)
)

exp (ip(x1 − x2)) (B.1)

with the initial condition F(0, p) = 1, we have

Df
1 
0(12) =

∫
Dp

Ḟ(t1, p)F(t2, p)

p2 + m2 exp
(
−(p2 + μ2

f )(t1 + t2)
)

exp (ip(x1 − x2)) , (B.2)

−uf

6

0(12)
0(11) = −uf

6

∫
Dp

F(t1, p)F(t2, p)

p2 + m2

× exp
(
−(p2 + μ2

f )(t1 + t2)
)

exp (ip(x1 − x2)) 
0(t1), (B.3)


0(t1) = 
0(11) =
∫

Dp
F2(t1, p)

p2 + m2 exp
(
−2(p2 + μ2

f )t1
)

, (B.4)

where Ḟ means a t-derivative of F . Then, the SDE, Eq. (20), becomes

Ḟ(t, p)

F(t, p)
= −uf

6

0(t), (B.5)

which tells us that F(t, p) is independent of p, so we put F(t, p) = F(t). The above equation is thus
reduced to

Ḟ(t) = −uf

6
F3(t) exp

(
−2μ2

f t
)
ζ0(t), (B.6)

where ζ0(t) is defined in Eq. (24), whose solution is given by

F−2(t) = 1 + uf

3

∫ t

0
ds ζ0(s) exp

(
−2μ2

f s
)

≡ exp
(
−2μ2

f t
) ζ(t)

Z(mf )
, ζ(t) = ζ0(t)+�(t) (B.7)

where mf is defined in Eq. (6) and

�(t) = exp
(

2tμ2
f

) (
Z(mf )− Z(m)

)+
∫

Dp

(
p2 + m2

f

p2 + m2

)
exp
(

2tμ2
f

)
− exp

(−2tp2
)

p2 + μ2
f

. (B.8)
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In the case of the interacting flow with uf > 0, μ2
f negatively diverges as Z(mf ) → +∞ in the

continuum limit at d > 1 or as uf → +∞ in the NLSM limit. In these limits, �(t) vanishes as

lim
μ2

f →−∞
�(t) � −m2

f ζ0(t)− ζ̇0(t)/2

μ2
f

+ O
(

1/μ4
f

)
(B.9)

for t > 0. In the case of free flow (uf = 0), we simply have F(t) = 1.
We then obtain


0(12) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z(mf )

(ζ(t1)ζ(t2))1/2

∫
Dp

exp
(−p2(t1 + t2)

)
exp (ip(x1 − x2))

p2 + m2 , uf �= 0,∫
Dp

exp
(− (p2 + μ2

f )(t1 + t2)
)

exp (ip(x1 − x2))

p2 + m2 , uf = 0.

(B.10)

B.2. Solution for K0

We consider K0, which appears in the NLO. The equation for K0 in Eq. (22) is closed, once 
0 is
obtained. Using Eq. (26), we have

Df
1K0(12; 34) =

∫
dP4

[
Ḟ(t1)

F(t1)
+ ∂t1

]
g(12; 34|12; 34)

=
∫

dP4

[
−uf

6
F2(t1) exp

(
−2μ2

f t1
)
ζ0(t1)+ ∂t1

]
g(12; 34|12; 34), (B.11)


0(12)
0(13)
0(14) =
∫

dP4δ̂ (p
2
1 + m2)F2(t1) exp

(
−2μ2

f t1
)

exp
(
(p2

1 − p2
2 − p2

3 − p2
4)t1
)

,

(B.12)


0(11)K0(12; 34) = F2(t1) exp
(
−2μ2

f t1
)
ζ0(t1)

∫
dP4 g(12; 34|12; 34), (B.13)


0(12)K0(11; 34) = F2(t1) exp
(
−2μ2

f t1
) ∫

dP4δ̂ (p
2
1 + m2) exp

(
t1(p

2
1 − p2

2)
)

×
∫

Dq1Dq2
exp
(−t1(q2

1 + q2
2)
)

(q2
1 + m2)(q2

2 + m2)
g(11; 34|q1q2; 34), (B.14)

so that the SDE leads to

∂t1g(12; 34|12; 34) = −uf

6
F(t1)

2 exp
(
−2μ2

f t1
)
(p2

1 + m2) exp
(
t1(p

2
1 − p2

2)
)

× δ̂

[
2 exp

(−t1(p
2
3 + p2

4)
)

+
∫

Dq1Dq2
exp
(−t1(q2

1 + q2
2)
)

(q2
1 + m2)(q2

2 + m2)
g(11; 34|q1q2; 34)

]
. (B.15)

From Eq. (B.15), one can easily see ∂t2∂t1g(12; 34|12; 34) = 0, which implies

g(12; 34|12; 34) = X (23|12; 34)+ X (13|21; 34)+ X (24|12; 43)+ X (14|21; 43)

+ Y (2|12; 34)+ Y (1|21; 34)+ Y (3|43; 12)+ Y (4|34; 12)

+ Z(|12; 34), (B.16)
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where we require that X and Y satisfy

X (τ , τ ′|12; 34) = X (τ ′, τ |43; 21), X (τ , 0|12; 34) = 0, (B.17)

Y (τ |12; 34) = Y (τ |12; 43), Y (0|12; 34) = 0. (B.18)

Since g(12; 34|12; 34) agrees with the amputated connected 4-pt function in d-dimensional theory
at τi = 0 (i = 1, 2, 3, 4), we obtain

Z(|p1, p2, p3, p4) = −δ̂ 2

6/u + B(0|p34)
, (B.19)

where B(t|Q) is defined in Eq. (31). Then one can easily check that g satisfies the required symmetries

g(12; 34|12; 34) = g(21; 34|21; 34) = g(12; 43|12; 43) = g(34; 12|34; 12). (B.20)

B.2.1. Solution for Y
Terms that depend only on t1 in Eq. (B.15) can be written as

∂tY (t|21; 34) = −uf

3
F2(t) exp

(
−2tμ2

f

)
(p2

1 + m2) exp
(
t(p2

1 − p2
2)
)
δ̂

×
[
ρ(t|34)+

∫
Dq1Dq2

exp
(−t(q2

1 + q2
2)
)

Y (t|q1, q2; 34)

(q2
1 + m2)(q2

2 + m2)

]
, (B.21)

where ρ(t|34) is defined in Eq. (35). To solve this equation, we set

Y (t|21; 34) = δ̂(p2
1 + m2)

∫ t

0
ds exp

(
s(p2

1 − p2
2)
)
ψ(s|34), (B.22)

satisfying Eq. (B.18). Equation (B.21) is reduced to

ψ(t|34) = −uf

3
F2(t) exp

(
−2tμ2

f

) [
ρ(t|34)+

∫ t

0
ds K(t, s|p34)ψ(s|34)

]
, (B.23)

which shows ψ does not depend on p1, p2, where K is defined in Eq. (34). Since

uf F2(t) exp
(
−2tμ2

f

)
= uf Z(mf )/ζ(t) goes to infinity in the continuum limit at t > 0 and d > 1 or

in the NLSM limit uf → ∞, Eq. (32) must hold in either of the two limits.

B.2.2. Solution for X
We next consider the solution for X . Terms depending on both t1 and t3 in Eq. (B.15), and thereafter
replacing t3 by t2 and interchanging p1 ↔ p2, gives

∂t1X (t1, t2|12; 34) = −uf

6
F2(t1) exp

(
−2t1μ

2
f

)
(p2

2 + m2) exp
(
t1(p

2
2 − p2

1)
)
δ̂

∫
Dq1Dq2

× exp
(−t1(q2

1 + q2
2)
)

(q2
1 + m2)(q2

2 + m2)
{2X (t1, t2|q1, q2; 34)+ Y (t2|43; q1, q2)} , (B.24)

where

Y (t|43; q1, q2) = (2π)dδ(p34 + q12)(p
2
3 + m2)

∫ t

0
ds exp

(
s(p2

3 − p3
4)
)
ψ(s|q1, q2). (B.25)

24/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2017/4/043B01/3105629 by Kyoto D

aigaku Bungakubu Toshokan user on 14 April 2020



PTEP 2017, 043B01 Sinya Aoki et al.

We define

∂t2∂t1X (t1, t2|12; 34)

= δ̂(p2
2 + m2)(p2

3 + m2) exp
(
t1(p

2
2 − p2

1)
)

exp
(
t2(p

2
3 − p2

4)
)
β(t1, t2|12; 34), (B.26)

where properties of X imply β(t1, t2|12; 34) = β(t2, t1|43; 21) and β(t, 0|12; 34) = β(0, t|12; 34) =
0. Then the above equation becomes

β(t1, t2|12; 34) = −uf

6
F2(t1) exp

(
−2t1μ

2
f

)
×
[

g(t1, t2|p34)+ 2
∫ t1

0
ds1

∫
Dq1Dq2(2π)dδ(q12 + p34)

× exp
(−(t1 + s1)q2

1 − (t1 − s1)q2
2

)
q2

1 + m2
β(s1, t2|q1, q2; 34)

]
, (B.27)

where

g(t1, t2|Q) =
∫

Dq1Dq2(2π)dδ(q12 + Q)
exp
(−t1(q2

1 + q2
2)
)

(q2
1 + m2)(q2

2 + m2)
ψ(t2|q1, q2). (B.28)

Since the above expression tells us that β depends only on p34, we can write

β(t1, t2|12; 34) = ω(t1, t2|p34) = ω(t1, t2| − p34), (B.29)

so that we have

ω(t1, t2|p34) = −uf

6
F2(t1) exp

(
−2t1μ

2
f

)
×
[

g(t1, t2|p34)+ 2
∫ t1

0
ds1K(t1, s1|p34)ω(s1, t2|p34)

]
, (B.30)

which is reduced to

g(t1, t2|Q)+ 2
∫ t1

0
ds1K(t1, s1|Q)ω(s1, t2|Q) = 0 (B.31)

in the continuum limit or NLSM limit. Equation (B.31) leads to Eq. (33) in the main text, since∫ t2

0
ds2 K(t2, s2|Q)g(t1, s2|Q) = −ρ(t1, t2|Q). (B.32)

B.3. Solution for 
1

B.3.1. SDE at NLO
The SDE for 
1 is a little modified as

Df
1
1(12)+ μ2

1,f 
0(12)

= −uf

6

[
K0(12; 11)+ 
0(12)
1(11)+ 
1(12)
0(11)+ 2
0(12)
0(11)

]
, (B.33)

where we replace μ2
f by μ2

f + μ2
1,f

N
, so that Df

1 → Df
1 + 1

N
μ2

1,f . Here u2
1,f is given by Eq. (A.36)

with the replacements u, m → uf , mf .
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We parametrize 
1 as


1(12) = F(t1)F(t2)
∫

Dp
exp
(− (p2 + μ2

f )(t1 + t2)
)

exp (ip(x1 − x2))

p2 + m2 G1(t1, t2|p) (B.34)

with the boundary condition

G1(0, 0|p) ≡ b(p) = − �1(p)

p2 + m2 , (B.35)

where �1(p) is the self-energy at the NLO in d-dimensional theory.
The NLO SDE becomes

∂t1G1(t1, t2|p1)+ μ2
1,f = −uf

6
F2(t1) exp

(
−2t1μ

2
f

)
H [G1(t1, t1|p)] + λ(t1, t2|p1) , (B.36)

where H is defined in Eq. (69) and

λ(t1, t2|p1) ≡ −uf

6
F2(t1) exp

(
−2t1μ

2
f

)
�(t1, t2|p1), (B.37)

�(t1, t2|p1) = 2ζ0(t1)+ exp
(
t1p2

1

) ∫ 4∏
i=2

Dpi exp
(−t1p2

i

)
p2

i + m2

{
Z(|21; 34)+ 2Y (1|34; 21)

+ 2X (11|12; 34)+ Y (1|12; 34)+ 2X (21|21; 34)+ Y (2|21; 34)
}

. (B.38)

Using solutions X and Y , we have, in the continuum limit,

λ(t1, t2|p1) =
∫

dp2
exp
(
t1(p2

1 − p2
2)
)

p2
2 + m2

[
ψ(t1|12)+ (p2

2 + m2)

∫ t1

0
ds exp

(
s(p2

2 − p2
1)
)
ω(t1, s|p12)

+ (p2
1 + m2)

∫ t2

0
ds exp

(
s(p2

1 − p2
2)
)
ω(t1, s|p12)

]
. (B.39)

Since the right-hand side of Eq. (B.39) is finite, �(t1, t2|p) → 0 in the continuum limit.

B.3.2. Solution to the SDE
Let us define

G1(t1, t2|p) ≡ b(p)+ κ(t1, t2|p)+ H (t1)+ H (t2) (B.40)

with κ(t1, t2|p) = κ(t2, t1|p) and κ(0, 0|p) = H (0) = 0, where

∂t1κ(t1, t2|p) = λ(t1, t2|p), (B.41)

dH (t)

dt
= −uf

6
F2(t) exp

(
−2tμ2

f

)
[H [G1(t, t|p)] − 2ζ(t)δ1] . (B.42)

The second equation (B.42) can be rewritten as

dH (t)

dt
= −uf

6
F2(t) exp

(
−2tμ2

f

)
[2ζ0(t)H (t)+ b0(t)+ κ0(t)− 2ζ(t)δ1], (B.43)

26/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2017/4/043B01/3105629 by Kyoto D

aigaku Bungakubu Toshokan user on 14 April 2020



PTEP 2017, 043B01 Sinya Aoki et al.

so that we have in the continuum limit

H (t) = −b0(t)+ κ0(t)

2ζ0(t)
+ δ1, (B.44)

where we define b0(t) = H[b(p)] and κ0(t) = H[κ(t, t|p)].
The first equation (B.41) can be solved as

κ(t1, t2|p) = k2(t1, t2|p)+ k1(t1|p)+ k1(t2|p), (B.45)

where

k1(t|p) =
∫ t

0
ds λ1(s|p), (B.46)

λ1(t|p) =
∫

Dq
exp
(
(p2 − q2)t

)
q2 + m2 ψ(t|p, q)

+
∫ t

0
ds
∫

Dq exp
(
(p2 − q2)(t − s)

)
ω(t, s|Q), (B.47)

k2(t1, t2|p) =
∫ t1

0
ds1

∫ t2

0
ds2

∫
Dq

p2 + m2

q2 + m2 exp
(
(p2 − q2)(s1 + s2)

)
ω(s1, s2|Q), (B.48)

with Q = p + q.

Appendix C. Calculations in the massless limit at d = 3

It can be shown that the flow bubble integral can be represented as

B(t|{p}sym.) = −2
∫ t

0
ds K(s, 0|{p}sym.)+ B(0|{p}sym.), B(0|{p}sym.) = 1

8
√

D
, (C.1)

which can be rescaled as

B(t|{p}sym.) = 1√
D

b0(Dt), (C.2)

where

b0(w) = 1

8
−

√
w

2(2π)3/2

∫ 1

0

dx√
x

e−wx
∫ 1

0

dz√
z

ewzx/2. (C.3)

Rescaling,

ρ(t|{p}sym.) = R0(Dt, D), ψ(t|{p}sym.) = √
Dφ0(Dt, D), (C.4)

the integral equation for ψ in the massless limit is written as

R0(w, D)+
∫ w

0
dv k0(w, v)φ0(v, D) = 0, (C.5)

where

R0(w, D) = e−3w/2 − 8b0(w)
ū(D)

1 + ū(D)
, ū(D) = u

48
√

D
. (C.6)
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Since the problem is linear, we can write

φ0(w, D) = φ
(1)
0 (w)− 8φ(2)0 (w)

ū(D)

1 + ū(D)
, (C.7)

where φ(i)0 , i = 1, 2 solve the momentum-independent Eqs. (56) and (57). We thus finally obtain
Eq. (52).

As the source term can be rescaled as

ρ(t, s|{p}sym.) = 1√
D

[
b0(D(t + s))− 8b0(Dt)b0(Ds)

ū(D)

1 + ū(D)

]
, (C.8)

the equation for ω in the massless limit is written for ω(t, s|{p}sym.) = √
DW0(Dt, Ds, D) as

b0(D(t + s))− 8b0(Dt)b0(Ds)
ū(D)

1 + ū(D)

= 2
∫ Dt

0
du k0(Dt, u)

∫ Ds

0
dv k0(Ds, v)W0(u, v, D), (C.9)

which can be solved as

W0(w, v, D) = �0(w, v)− 4φ(2)0 (w)φ(2)0 (v)
ū(D)

1 + ū(D)
, (C.10)

where�0 solves the momentum-independent (D-independent) equation (58).We thus obtain Eq. (53).

Appendix D. Induced metric in the massless limit at d = 3
D.1. Induced metric

The space component of the induced metric is given by

gij(z) = δij
R2

0

dζ0(t)

(
1 − ζ1(t)

N

)
H
[

p2
(

1 + G1(t, t|p)
N

)]
. (D.1)

We then evaluate

ζ1(t) = 1

ζ0(t)
H[G1(t, t|p)] = 2δ1, H[1] = ζ0(t), H[p2] = −∂tζ0(t)

2
, (D.2)

H[p2G1(t, t|p)] = H[λ(t, t|p)] + ζ0(t)∂tH (t)− ∂tζ0(t)δ1 = ζ0(t)∂tH (t)− ∂tζ0(t)δ1, (D.3)

where in the last equation we use H[λ(t, t|p)] = 0. Altogether we obtain

gij(z) = δijR
2
0

[
g(0)(t)+ 1

N
g(1)(t)

]
, g(0)(t) = − ∂tζ0(t)

2dζ0(t)
, g(1)(t) = ∂tH (t)

d
. (D.4)

The time component is evaluated as

g00(t) = t∂t1∂t2

[
R2

0

(ζ0(t1)ζ0(t2))1/2

∫
Dp

exp
(−p2(t1 + t2)

)
p2 + m2

(
1 + G̃1(t1, t2|p)

N

)]
t1=t2=t

(D.5)

= R2
0

{
g(0)00 (t)+ 1

N
g(1)00 (t)

}
, (D.6)
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where

G̃1(t1, t2|p) = −2δ1 + G1(t1, t2|p). (D.7)

The leading term is

g(0)00 (t) = t

4
∂2

t [log ζ0(t)] (D.8)

and for the NLO term we have

1

t
g(1)00 (t) = ∂t1∂t2

I (t1, t2)

(ζ0(t1)ζ0(t2))1/2

∣∣∣∣
t1=t2=t

, (D.9)

where

I (t1, t2) =
∫

Dp
exp
(−p2(t1 + t2)

)
p2 + m2 G̃1(t1, t2|p). (D.10)

With this notation,

1

t
g(1)00 (t) = 1

4

(∂tζ0(t))2

ζ 3
0 (t)

I (t, t)− 1

2

∂tζ0(t)

ζ 2
0 (t)

∂t I (t, t)+ 1

ζ0(t)
∂t1∂t2I (t1, t2)

∣∣
t1=t2=t . (D.11)

Since

I (t, t) = H[G̃1(t, t|p)] = 0, (D.12)

the first two terms vanish. Further,

∂t1∂t2I (t1, t2)
∣∣
t1=t2=t = H[(p2)2G̃1(t, t|p)−2p2λ(t, t|p)+∂t2λ(t, t2|p)

∣∣
t2=t

]+∂tH (t)∂tζ0(t). (D.13)

Using the identities

H[λ(t, t|p)] = 0, H[p2G̃1(t, t|p)] = ζ0(t) ∂tH (t) (D.14)

and their derivatives, this can be further simplified:

∂t1∂t2I (t1, t2)
∣∣
t1=t2=t = −1

2 ζ0(t)∂
2
t H (t)+ H[∂t2λ(t, t2|p)

∣∣
t2=t − ∂tλ(t, t|p)/2]. (D.15)

Here the second term vanishes and we finally obtain

g(1)00 (t) = − t

2
∂2

t H (t). (D.16)

D.2. Calculation of H (t) in the massless limit

We recall the definition of H (t) as

H (t) = −b0(t)+ κ0(t)

2ζ0(t)
+ δ1 (D.17)
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where

b0(t) = H[b(p)], κ0(t) = H[κ(t, t|p)], (D.18)

with

b(p) = − �1(p)

p2 + m2 , κ(t, t|p) = k2(t, t|p)+ 2k1(t|p). (D.19)

Here k1 and k2 are given in Eqs. (B.46), (B.47), and (B.48).
Hereafter we consider the massless limit at d = 3, where we have ζ0(t)−1 = 2(2π)3/2

√
t.

D.2.1. Calculation of b0(t)
We first calculate b0(t). In the massless limit, we have

Hb(t) ≡ − b0(t)

2ζ0(t)
= 1

2ζ0(t)

∫
Dp

exp
(−2p2t

)
(p2)2

g(p2) (D.20)

since C̃ = Z1m2 = 0 and

g(p2) = u

3

∫
DQ

1 + ū(Q2)

{
1

(Q + p)2
− 1

Q2

}
. (D.21)

After rescaling, we obtain

Hb(t) =
∫

DQ hb(Q
2)

ū(Q2)
√

t

1 + ū(Q2)
√

t
, (D.22)

where

hb(Q
2) = 32

√
2
√
π3
√

Q2

∫
Dp

exp
(−2p2

)
(p2)2

{
1

(Q + p)2
− 1

Q2

}
. (D.23)

D.2.2. Calculation of κ0(t)
For this we need ψ and ω in the massless limit, which can be obtained as

ψ0(t|p, q) =
√

Q2

[
ϕ0(Q

2t, z)− 8φ(2)0 (Q2t)
ū(Q2)

1 + ū(Q2)

]
, (D.24)

ω0(t, s|Q) =
√

Q2

[
�0(Q

2t, Q2s)− 4φ(2)0 (Q2t)φ(2)0 (Q2s)
ū(Q2)

1 + ū(Q2)

]
(D.25)

with z = (p2 + q2)/Q2, where φ(2)0 and�0 have already been obtained in Sect. 3, while ϕ0 satisfies

e−zw +
∫ w

0
dx k0(w, x)ϕ0(x, z) = 0, (D.26)

instead of Eq. (56), and thus ϕ0(x, 3/2) = φ
(1)
0 (x).
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Using these, we first calculate

H (1)
κ (t) ≡ − 1

ζ0(t)

∫
Dp

exp
(−2p2t

)
p2

∫ t

0
ds
∫

Dq
exp
(
(p2 − q2)s

)
q2 ψ0(s|p, q)

= H (1)
κ (0)+

∫
DQ

∫ 1

0
dx φ(2)0 (Q2x)h11(x, Q2)

ū(Q2)
√

t

1 + ū(Q2)
√

t
, (D.27)

where H (1)
κ (0) is some constant and

h11(x, Q2) = 32
√

2
√
π3
√

Q2

∫
Dp Dq (2π)3δ(q + p − Q)

exp
(−(2 − x)p2 − xq2

)
p2q2 . (D.28)

Similarly we have

H (2)
κ (t) ≡ − 1

ζ0(t)

∫
Dp

exp
(−2p2t

)
p2

∫ t

0
ds
∫

Dq exp
(
(p2 − q2)s

)
×
∫ s

0
dr exp

(
(q2 − p2)r

)
ω0(s, r|Q)

= H (2)
κ (0)+ 2

∫
DQ

∫ 1

0
dx φ(2)0 (Q2x)

∫ x

0
dy φ(2)0 (Q2y) h10(x − y, Q2)

× ū(Q2)
√

t

1 + ū(Q2)
√

t
, (D.29)

where

h10(z, Q2) = 8
√

2
√
π3
√

Q2

∫
Dp Dq (2π)3δ(q + p − Q)

exp
(−(2 − z)p2 − zq2

)
p2 . (D.30)

The last contribution becomes

H (3)
κ (t) ≡ − 1

2ζ0(t)

∫
Dp exp

(−2p2t
)

×
∫ t

0
ds
∫

Dq
exp
(
(p2 − q2)s

)
q2

∫ t

0
dr exp

(
(p2 − q2)r

)
ω0(s, r|Q)

= H (3)
κ (0)+

∫
DQ

∫ 1

0
dx φ(2)0 (Q2x)

∫ 1

0
dy φ(2)0 (Q2y) h10(2 − x − y, Q2)

× ū(Q2)
√

t

1 + ū(Q2)
√

t
. (D.31)

D.3. Total contributions

We thus obtain the H (t) as7

H (t) = H (0)+
∫

DQ htotal(Q
2)

ū(Q2)
√

t

1 + ū(Q2)
√

t
, (D.32)

7 Here H (0) is potentially divergent but it does not contribute to the metric.
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where

H (0) = H (1)
κ (0)+ H (2)

κ (0)+ H (3)
κ (0)+ δ1, (D.33)

htotal(Q
2) = hb(Q

2)+
∫ 1

0
dx φ(2)0 (Q2x)

{
h11(x, Q2)+ 2

∫ x

0
dy φ(2)0 (Q2y)h10(x − y, Q2)

+
∫ 1

0
dy φ(2)0 (Q2y)h10(2 − x − y, Q2)

}
, (D.34)

which leads to Eqs. (73) and (74) by A1(t) ≡ ∂tH (t) and ∂tA1(t) ≡ ∂2
t H (t).

D.4. IR behaviors

D.4.1. Some definitions
We write the NLO induced metric as

gij(τ ) = δij

{
R2

0

12t

[
1 + R(t)

N

]}
, g00(τ ) = −t∂t

{
R2

0

8t

[
1 + R(t)

N

]}
, (D.35)

where the relative correction is a sum of four contributions:

R(t) = Rb(t)+
3∑

i=1

R(i)κ (t), Rb(t) ≡ 4t∂tHb(t), R(i)κ (t) ≡ 4t∂tH
(i)
κ (t). (D.36)

We also introduce G(v) by

φ
(2)
0 (v) = −(2π)

3/2
√

v
G(v), G(0) = 1/8, G(v) ∼ exp(−v/2), v → ∞ (D.37)

and use the time variable T = u
√

t/48.
In the following we will use the fact that a double 3-dimensional integral of any function depending

only on the absolute values p, q, and |Q|, where Q = p + q, can be written∫
Dp
∫

Dq f (p, q, Q2) = 1

(2π)4

∫ ∞

0
p dp

∫ ∞

0
q dq

∫ (q+p)2

(q−p)2
dQ2 f (p, q, Q2). (D.38)

D.4.2. The Rb contribution
Here we can do the angular part of the Q2 integral analytically and find

Rb(t) = 32T√
2π

5

∫ ∞

0

q dq

(q + T )2
ρb(q), (D.39)

where

ρb(q) = q2
∫ ∞

0

dp

p3 exp
(−2p2) {ln

(p + q)2

(p − q)2
− 4p

q

}
, (D.40)

which behaves as ρb(q) = O(q) for small q, while

ρb(q) ∼
√

2π

3q
, (D.41)
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for large q. Thus we can establish that Rb(t) = O(T ) for small t, while for large t,

rb ≡ Rb(∞) = 8

3π2 = 0.27019. (D.42)

D.4.3. The R(1)κ contribution
We have

R(1)κ (t) = −32(2π)3
∫

Dp
∫

Dq
∫ 1

0

dx√
x

exp
(−p2(2 − x)− q2x

)
p2q2

|Q|T
(T + |Q|)2 G(Q2x). (D.43)

Doing the q2 integral first and introducing x = y2 we can rewrite it as

−32

π

∫ ∞

0

dp

p
exp
(−2p2) ∫ ∞

0

Q2T

(T + Q)2
dQ
∫ 1

0
dy G(Q2y2)

∫ (Q+p)2

(Q−p)2

exp
(
(p2 − q2)y2

)
q2 dq2.

(D.44)
After some further rescaling we get

R(1)κ (t) = −64

π

∫ ∞

0
dQ

QT

(T + Q)2
ρ(1)κ (Q), (D.45)

where

ρ(1)κ (Q) =
∫ ∞

0

dp

p
exp
(−2p2) ∫ Q

0
dz G(z2)Y

(
p

Q
, z

)
, (D.46)

Y (ε, z) =
∫ 1+ε

|1−ε|
dξ

ξ
exp
(
(ε2 − ξ2)z2) = 2ε exp

(−z2)+ O(ε2). (D.47)

From this we see that ρ(1)κ (Q) = O(Q) for small Q, while

ρ(1)κ (Q) ∼ 2

Q

∫ ∞

0
dp exp

(−2p2) ∫ ∞

0
dz G(z2) exp

(−z2)
= 1

Q

(π
2

)1/2
∫ ∞

0
dz G(z2) exp

(−z2) (D.48)

for large Q, so that we numerically obtain

r(1)κ ≡ R(1)κ (∞) = − 64√
2π

∫ ∞

0
dz G(z2) exp

(−z2) = −1.14734. (D.49)

D.4.4. The R(2)κ contribution
Similarly

R(2)κ (t) = 16
√

2π
9
∫

Dp
∫

Dq
∫ 1

0

dx√
x

∫ x

0

dy√
y

T

(T + |Q|)2 G(Q2x)G(Q2y)

× exp
(−2p2

)
p2 exp

(
(p2 − q2)(x − y)

)
. (D.50)
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Doing the q2 integrations first, we have

R(2)κ (t) = 64
√

2π
∫ ∞

0
dQ

QT

(T + Q)2

∫ ∞

0

dp

p
exp
(−2p2)

×
∫ 1

0
dx
∫ x

0
dy G(Q2x2)G(Q2y2)

∫ (Q+p)2

(Q−p)2
exp
(
(p2 − q2)(x2 − y2)

)
dq2. (D.51)

The q2 integral can be done analytically and we find

R(2)κ (t) = 128
√

2π
∫ ∞

0
dQ

QT

(T + Q)2
ρ(2)κ (Q), (D.52)

where

ρ(2)κ (Q) =
∫ ∞

0

dp

p
exp
(−2p2) ∫ Q

0
dz
∫ z

0
dw G(z2)G(w2)

× exp
(
w2 − z2

)
z2 − w2 sinh

2p

Q
(z2 − w2). (D.53)

Thus ρ(2)κ = O(Q) for small Q, while

ρ(2)κ (Q) ∼ 1

Q

∫ ∞

−∞
dp exp

(−2p2) ∫ ∞

0
dz
∫ z

0
dw G(z2)G(w2) exp

(
w2 − z2) (D.54)

for large Q, and

r(2)κ ≡ R(2)κ (∞) = 128π
∫ ∞

0
dz
∫ z

0
dw G(z2)G(w2) exp

(
w2 − z2) = 0.45846. (D.55)

D.4.5. The R(3)κ contribution
For R(3)κ we find

R(3)κ (t) = 32
√

2π
∫ ∞

0
dQ

QT

(T + Q)2
ρ(3)κ (Q) (D.56)

with

ρ(3)κ (Q) =
∫ 1

0
dx
∫ 1

0
dy
∫ ∞

0
p dp exp

(−2p2 + p2(x2 + y2)
)

G(Q2x2)G(Q2y2)

×
∫ (Q+p)2

(Q−p)2

exp
(−q2(x2 + y2)

)
q2 dq2. (D.57)

After rescaling,

ρ(3)κ (Q) = 1

Q2

∫ Q

0
dz
∫ Q

0
dw G(z2)G(w2)

∫ ∞

0
p dp exp

(−2p2)Z

(
p

Q
, z2 + w2

)
, (D.58)

where

Z(ε, A) = 2 exp
(
Aε2) ∫ 1+ε

|1−ε|
exp
(−Aξ2

)
ξ

dξ ≈ 4εe−A, ε → 0. (D.59)
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Thus ρ(3)κ (Q) = O(Q) for small Q, while

ρ(3)(Q) ∼ 4

Q3

∫ ∞

0
dz
∫ ∞

0
dw G(z2)G(w2)

∫ ∞

0
p2dp exp

(−2p2 − z2 − w2)
=
(π

8

)1/2
(∫ ∞

0
dz G(z2) exp

(−z2))2 1

Q3 , (D.60)

for large Q, which leads to

r(3)κ ≡ R(3)κ (∞) = 0. (D.61)

Thus the total relative correction is negative:

r = rb + r(1)κ + r(2)κ + r(3)κ = −0.41869. (D.62)
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