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We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor
lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT),
we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a
lattice spacing of 0.11 fm with four pion masses ranging betweenMπ ≃ 290 MeV and 540 MeVand with a
strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to
calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer
is studied by using the reweighting technique and the twisted boundary conditions for the quark fields,
respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading
order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the
pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii,
and find reasonable agreement with phenomenological and experimental results.

DOI: 10.1103/PhysRevD.93.034504

I. INTRODUCTION

The rapid increase of computational power and
improvements in simulation algorithms allow us to perform
large-scale simulations of unquenched lattice QCD in the
chiral regime, where the nonperturbative dynamics is
characterized by chiral symmetry. Chiral perturbation
theory (ChPT) [1,2] is an effective theory in this regime,
though its Lagrangian has unknown parameters, called low-
energy constants (LECs). A detailed comparison between
lattice QCD and ChPT may validate numerical lattice
calculations and analytical predictions of ChPT. This also
provides a first-principle determination of LECs, and hence
widens the applicability of ChPT to different physical
observables.
In such a program, chiral symmetry plays an essential

role. However, it is violated in most of the existing lattice
calculations, and the comparison had to be made after
carefully taking the continuum limit. Effects of the explicit
violation by the use of conventional Wilson and staggered
fermion formulations on the lattice were studied at next-to-
leading order (NLO) in ChPT [3–8]: in general, it modifies
the functional form of the ChPT expansion of physical
observables, and introduces additional unknown LECs. It is
therefore not clear how one can disentangle the next-to-
next-to-leading order (NNLO) corrections, which are
significant in kaon physics, from the extra terms due to
the explicit chiral violation. Lattice QCD with exact chiral

symmetry provides a clean framework for an unambiguous
comparison between lattice QCD and ChPT. The JLQCD
and TWQCD Collaborations have performed such simu-
lations employing the overlap quark action [9,10], and
studied the chiral behavior of various observables in
detail [11].
Pion and kaon electromagnetic (EM) form factors are

fundamental quantities in ChPT. The charged pion EM
form factor Fπþ

V is defined through the matrix element of
the EM current Jμ sandwiched by the pion states

hPðp0ÞjJμjPðpÞi ¼ ðpþ p0ÞμFP
VðtÞ; t ¼ ðp − p0Þ2;

ð1Þ

Jμ ¼
2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμs; ð2Þ

where jPðpÞi specifies the light meson state (i.e., the
charged pion P ¼ πþ) of momentum p, and t¼ðp−p0Þ2
is the momentum transfer. This form factor is known up to
NNLO both in SU(2) ChPT [1,12,13], where the depend-
ence on the strange quark mass ms is implicitly encoded in
LECs, and in SU(3) ChPTwith strange mesons as dynami-
cal degrees of freedom [14,15]. Detailed analyses of
experimental data based on NNLO ChPT have led to
precise estimates of the charge radius [13,15],
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hr2iPV ¼ 6
∂FP

VðtÞ
∂t

����
t¼0

; ð3Þ

which can be used as a benchmark of lattice calculations.
Its dependence on the momentum transfer t and mass of
degenerate up and down quarks ml has been studied in
unquenched lattice QCD [16–26]. Recent detailed compar-
isons with SU(2) ChPT [22–26] show that lattice data at the
pion mass Mπ ≲ 500 MeV are described reasonably well
by the NNLO chiral expansion, and reproduce the exper-
imental value of the pion charge radius. The NNLO
contribution turns out to be non-negligible in accordance
with the two-loop ChPT analysis [13]. This test has not yet
been extended to SU(3) ChPT, in which thems dependence
of Fπþ

V and hr2iπþV is explicitly taken into account.
The EM form factors of the charged and neutral kaons

are similarly defined through Eq. (1) with P ¼ Kþ and K0,
respectively. Since strange valence quarks are involved, we
need SU(3) ChPT to describe their chiral behavior [27].
These form factors are known up to NNLO [15]. The ms
expansion is expected to have poorer convergence than that
in terms of ml due to ms ≫ ml. A detailed examination of
the convergence and first-principle determination of rel-
evant LECs are helpful for a better understanding of kaon
physics: for instance, the phenomenologically important
form factors of the K → π semileptonic decays share LECs
with the EM form factors [29,30]. To our knowledge, there
has been no lattice calculation nor detailed comparison
with ChPT.
In the present work, we calculate the pion and kaon EM

form factors in three-flavor lattice QCD. We employ the
overlap quark action [9,10] to maintain exact chiral
symmetry for a direct comparison of our lattice data with
ChPT up to NNLO. The form factors are precisely
calculated using the all-to-all quark propagator [31,32].
We also utilize the reweighting technique [33,34] and the
twisted boundary conditions [35] to study their dependence
onms and t, respectively. We compare their chiral behavior
with NNLO SU(2) and SU(3) ChPT in detail, and present
an estimate of the relevant LECs and charge radii. Our
preliminary analysis has been reported in Ref. [36].
This paper is organized as follows. Section II introduces

our method of generating the gauge ensembles and of
calculating relevant light meson correlators. The EM form
factors are extracted at the simulation points in Sec. III. We
then study the chiral behavior of the form factors based on
NNLO SU(2) and SU(3) ChPT in Secs. IV and V,
respectively. We summarize our conclusions in Sec. VI.

II. SIMULATION METHOD

A. Configuration generation

We simulate Nf ¼ 2þ 1 QCD, in which the strange
quark has a distinct mass from degenerate up and down
quarks. We employ the Iwasaki gauge action [37] and the

overlap quark action [9,10]. The Dirac operator of the latter
is given by

DðmqÞ ¼
�
1 −

mq

2m0

�
Dð0Þ þmq; ð4Þ

Dð0Þ ¼ m0ð1þ γ5sgn½HWð−m0Þ�Þ: ð5Þ
Heremq represents the quarkmass, whereas−m0 is themass
parameter of the Hermitian Wilson-Dirac operator HW
appearing in the construction of the overlap fermion as a
kernel. We set m0 ¼ 1.6 so that the overlap-Dirac operator
DðmqÞ has good locality [38]. This action exactly preserves
chiral symmetry at finite lattice spacing [39]. This enables us
to directly compare the lattice results for the form factors at a
finite lattice spacing with ChPT in the continuum limit,
where the NNLO chiral expansion is available.
We introduce an auxiliary determinant [40,41]

ΔW ¼ det½HWð−m0Þ2�
det½HWð−m0Þ2 þ μ2� ðμ ¼ 0.2Þ ð6Þ

into the Boltzmann weight in the generation of the gauge
ensembles. This suppresses exact- and near-zero modes of
HWð−m0Þ, and hence remarkably reduces the computa-
tional cost without changing the continuum limit of the
theory. Another interesting property ofΔW is that the global
topological chargeQ is unchanged during the update of the
gauge fields with the hybrid Monte Carlo (HMC) algo-
rithm. In this study, we simulate the trivial topological
sector,Q ¼ 0. We note that local topological excitations are
active, and the topological susceptibility is consistent with
the ChPT expectation [42]. The effect of the fixed global
topology is a part of finite volume effect, which is sup-
pressed by the inverse of the space-time volume [43].
We set the gauge coupling β ¼ 6=g2 ¼ 2.30, where the

lattice spacing determined from the Ω baryon mass is
a ¼ 0.112ð1Þ fm. We perform simulations at four values of
degenerate up and down quark mass ml that cover a range
of Mπ ∼ 290–540 MeV. The gauge ensembles are gener-
ated at a strange quark mass ms ¼ 0.080, which is close to
its physical value ms;phys ¼ 0.081. The EM form factors at
a different value ms ¼ 0.060 are calculated by the
reweighting method [33,34].
We set a spatial lattice extent to Ns ¼ L=a ¼ 24 at ml ≤

0.025 and to 16 at ml ≥ 0.035 in order to control finite
volume effects by satisfying a condition MπL≳ 4. The
additional finite volume effect due to the fixed global
topology turned out to be small in our previous study in
Nf ¼ 2 QCD on similar or even smaller lattice volumes.
The temporal lattice size is fixed to Nt ¼ T=a ¼ 48.
At each combination of ml and ms, we generate 50 gauge
configurations separated by 50 HMC trajectories. The
statistical error quoted in this article is estimated by a
single-elimination jackknife method. Our simulation
parameters are summarized in Table I.
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B. Calculation of meson correlators

We employ the all-to-all quark propagator [31,32] in
order to improve statistical accuracy of the meson corre-
lators. Let us consider an expansion of the quark propagator
DðmqÞ−1 in terms of the eigenmodes of the overlap
operatorDðmqÞ, wheremq ðq ¼ l; sÞ represents the valence
quark mass. Light meson observables including the EM
form factors are expected to large contributions from the
low-lying modes. We calculate this important part by

fDðmqÞ−1glowðx; yÞ ¼
XNe

k¼1

1

λðqÞk

ukðxÞu†kðyÞ; ð7Þ

where λðqÞk represents the kth lowest eigenvalue of DðmqÞ,
and uk is the normalized eigenvector associated with λðqÞk .
Note that the overlap action has advantages in solving the
eigenvalue problem: (i) the eigenvector does not depend on
mq, which only changes the normalization and the additive
shift of D [see Eq. (4)], and (ii) the left and right
eigenvectors are equal to each other, since D is normal.
We employ the implicitly restarted Lanczos algorithm to
calculate the low modes, the number of which is Ne ¼ 240

(160) on the 243 × 48 (163 × 48) lattice.
The remaining contribution from higher eigenmodes is

evaluated stochastically by the noise method [44] with the
dilution technique [32]. We prepare a complex Z2 noise
vector for each configuration, and split it into Nd ¼ 3 ×
4 × Nt=2 vectors ηdðxÞðd ¼ 1;…; NdÞ, each of which has
nonzero elements only for a single combination of color
and spinor indices and at two consecutive time slices. The
high-mode contribution can be estimated as

fDðmqÞ−1ghighðx; yÞ ¼
XNd

d¼1

xðqÞd ðxÞη†dðyÞ ð8Þ

by solving a linear equation for each diluted source,

DðmqÞxðqÞd ¼ Phighηdðd ¼ 1;…; NdÞ: ð9Þ

Here Phigh ¼ 1 − Plow, and Plow ¼ PNe
k¼1 uku

†
k is the pro-

jector to the eigenspace spanned by the low modes.
The typical size of the momentum transfer is jtj≳

ð500 MeVÞ2 on our lattice of size L ∼ 1.8–2.7 fm, if we
insert the meson momenta by using the Fourier trans-
formation with the standard periodic boundary condition.
Our previous study in two-flavor QCD [23] suggested that
the next-to-next-to-next-to-leading order (N3LO) correc-
tion to the pion form factor Fπþ

V can be sizable in this region
of t. In order to suppress such higher-order contributions,
which are not known in ChPT, we simulate near-zero
momentum transfers jtj≲ ð300 MeVÞ2 by employing the
twisted boundary condition [35] for the valence quarks

qðxþ Lk̂; x4Þ ¼ eiθqðx; x4Þ;
q̄ðxþ Lk̂; x4Þ ¼ e−iθq̄ðx; x4Þ ðk ¼ 1; 2; 3Þ; ð10Þ

where k̂ is a unit vector in the kth direction. We set a
common twist angle θ in all three spatial directions for
simplicity. This boundary condition induces a quark
momentum of pk ¼ θ=L ≤ 2π=L. We choose the angles
listed in Table I, so that jtj ≲ ð300 MeVÞ2, where the N3LO
correction to Fπþ

V is expected to be insignificant.
We calculate the all-to-all quark propagator for each

choice of θ. By combining Eqs. (7) and (8), the all-to-all
propagator can be expressed as

fDðmq; θÞ−1gðx; yÞ ¼
XNv

k¼1

vðqÞk;θðxÞwðqÞ†
k;θ ðyÞðq ¼ l; sÞ ð11Þ

with the following two sets of vectors v and w:

fvðqÞ1;θ ;…;vðqÞNv;θ
g¼

�
u1;θ

λðqÞ1;θ

;…;
uNe;θ

λðqÞNe;θ

;xðqÞ1;θ ;…;xðqÞNd;θ

�
; ð12Þ

fwðqÞ
1;θ ;…; wðqÞ

Nv;θ
g ¼ fu1;θ;…; uNe;θ; η

ðqÞ
1;θ ;…; ηðqÞNd;θ

g; ð13Þ

where Nv ¼ Ne þ Nd.
Meson two-point functions with a temporal separation

Δx4 and a spatial momentum p can be expressed as

TABLE I. Simulation parameters. Meson masses, Mπ and MK are in units of MeV.

Lattice ml ms Mπ MK θ

163 × 48 0.050 0.080 540(4) 617(4) 0.00, 0.40, 0.96, 1.60
163 × 48 0.035 0.080 453(4) 578(4) 0.00, 0.60, 1.28, 1.76
243 × 48 0.025 0.080 379(2) 548(3) 0.00, 1.68, 2.64
243 × 48 0.015 0.080 293(2) 518(3) 0.00, 1.68, 2.64
163 × 48 0.050 0.060 540(4) 567(4) 0.00, 0.40, 0.96, 1.60
163 × 48 0.035 0.060 451(7) 524(5) 0.00, 0.60, 1.28, 1.76
243 × 48 0.025 0.060 378(7) 492(7) 0.00, 1.68, 2.64
243 × 48 0.015 0.060 292(3) 459(4) 0.00, 1.68, 2.64
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Cπ
ϕϕ0 ðΔx4;pÞ ¼

1

Nt

XNt

x4¼1

X
x0;x

hOπ;ϕ0 ðx0; x4 þ Δx4ÞOπ;ϕðx; x4Þ†ie−ipðx0−xÞ

¼ 1

Nt

XNt

x4¼1

XNv

k;k0¼1

Oðl;lÞ
γ5;ϕ0;kk0;θθ0 ðx4 þ Δx4ÞOðl;lÞ

γ5;ϕ;k0k;θ0θ
ðx4Þ: ð14Þ

CK
ϕϕ0 ðΔx4;pÞ ¼

1

Nt

XNt

x4¼1

X
x;x0

hOK;ϕ0 ðx0; x4 þ Δx4ÞOK;ϕðx; x4Þ†ie−ipðx0−xÞ

¼ 1

Nt

XNt

x4¼1

XNv

k;k0¼1

Oðs;lÞ
γ5;ϕ0;kk0;θθ0 ðx4 þ Δx4ÞOðl;sÞ

γ5;ϕ;k0k;θ0θ
ðx4Þ; ð15Þ

where pi ¼ ðθ0 − θÞ=L (i ¼ 1, 2, 3) represents the
meson momentum induced by the twisted boundary
conditions. Interpolating operators for πþ and Kþ are
given by

Oπ;ϕðx; tÞ ¼
X
r

ϕðjrjÞd̄ðxþ r; tÞγ5uðx; tÞ; ð16Þ

OK;ϕðx; tÞ ¼
X
r

ϕðjrjÞs̄ðxþ r; tÞγ5uðx; tÞ; ð17Þ

where ϕðjrjÞ is a smearing function. Note that light quarks
are degenerate and are denoted by lð¼ u; dÞ in this paper.
The quantity

Oðq;q0Þ
Γ;ϕ;kk0;θθ0 ðx4Þ¼

X
x;r

ϕðrÞwðqÞ†
k;θ ðxþr;x4ÞΓvðq

0Þ
k0;θ0 ðx;x4Þ

ð18Þ

can be considered as a smearedmeson field constructed from
thev andwvectors at a time slice x4. In this study,we employ
both the local and an exponential smearing function, namely
ϕlðrÞ ¼ δr;0 and ϕsðrÞ ¼ exp½−0.4jrj�. The latter turned out
to be effective in reducing excited state contamination in our
previous study of Fπþ

V in two-flavor QCD [23].
Three-point functions needed to calculate the EM form

factors can be constructed in a similar way. For example,
the kaon three-point function with the light-quark current

VðlÞ
μ ¼ l̄γμl is expressed as

CK
VðlÞ
μ ;ϕϕ0 ðΔx4;Δx04;p;p0Þ¼ 1

Nt

XNt

x4¼1

X
x;x0;x00

hOK;ϕ0 ðx00;x4þΔx4þΔx04ÞVðlÞ
μ ðx0;x4þΔx4ÞOK;ϕðx;x4Þ†i×e−ip

0ðx00−x0Þe−ipðx0−xÞ

¼ 1

Nt

XNt

x4¼1

XNv

k;k0;k00¼1

Oðs;lÞ
γ5;ϕ0;k00k0;θ00θ0 ðx4þΔx4þΔx04ÞOðl;lÞ

γμ;ϕl;k0k;θ0θ
ðx4þΔx4Þ×Oðl;sÞ

γ5;ϕ;kk00;θθ00
ðx4Þ; ð19Þ

where Δx4 (Δx04) represents the temporal separation be-
tween the vector current and meson source (sink) operator.
The initial and final meson momenta are given by the twist
angles as

pi ¼
θ − θ00

L
; p0

i ¼
θ0 − θ00

L
ði ¼ 1; 2; 3Þ: ð20Þ

Note that we need to apply different twist angles to the
quark and antiquark fields in OP;ϕ and VðqÞ

μ so that the
mesons can carry nonzero momentum.
We only calculate connected diagrams because of the use

of the twisted boundary condition. The contribution of the
disconnected diagram to Fπþ

V vanishes due to charge

conjugation symmetry [45]. As a numerical check, we

calculate the disconnected contributions to Ffπþ;Kþ;K0g
V with

meson momenta p ¼ ð2π=L; 0; 0Þ and p0 ¼ ð0; 0; 0Þ using
the Fourier transformation and the periodic boundary con-
dition also for the valence quarks. The disconnected contri-
butions turnout to be insignificantwithour statistical accuracy.
By using the all-to-all propagator, we can average the

meson correlators over the location of the source operator,
i.e. the summation over x and x4 in Eqs. (14), (15), and
(19). Figure 1 compares the statistical fluctuation of the
pion three-point function with a certain choice ofΔx4ð0Þ and
pð0Þ. We observe that an average over the temporal
coordinate x4 reduces the statistical error of the pion (kaon)
three-point functions by about a factor of 2 (4).
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C. Reweighting

We use the gauge ensembles generated at the single value
of ms ¼ 0.080. In order to study the ms dependence of the
EM form factors, the meson correlators are calculated at a
different value m0

s ¼ 0.060 by utilizing the reweighting
technique [33,34]. The kaon three-point function at m0

s is
estimated on the gauge configurations at ms as

hCK
VðlÞ
μ ;ϕϕ0 im0

s
¼ hCK

VðlÞ
μ ;ϕϕ0 ~wðm0

s; msÞims
; ð21Þ

where h� � �ims
represents the Monte Carlo average at ms,

and ~w is the reweighting factor for each configuration,

~wðm0
s; msÞ ¼

wðm0
s; msÞ

hwðm0
s; msÞims

;

wðm0
s; msÞ ¼ det

�
Dðm0

sÞ
DðmsÞ

�
: ð22Þ

It is prohibitively time consuming to exactly calculate the

quark determinant det½Dðmð0Þ
s Þ�. Instead, we decompose w

into contributions from low and high modes,

wðm0
s; msÞ ¼ wlowðm0

s; msÞwhighðm0
s; msÞ; ð23Þ

wlow ðhighÞðm0
s; msÞ ¼ det

�
Plow ðhighÞ

Dðm0
sÞ

DðmsÞ
Plow ðhighÞ

�
;

ð24Þ

and the low-mode contribution wlow is exactly calculated by
using the low-lying eigenvalues. We estimate the high-
mode contribution whigh by a stochastic estimator for

w2
highðm0

s; msÞ ¼
1

Nr

XNr

r¼1

e−
1
2
ðPhighξrÞ†ðΩ−1ÞPhighξr ; ð25Þ

with Ω ≡ DðmsÞ†fDðm0
sÞ−1g†Dðm0

sÞ−1DðmsÞ. We
introduce Nr normalized Gaussian random vectors
fξ1;…; ξNr

g.
At ml ¼ 0.050, we study how many Gaussian random

vectors are needed to reliably estimate the high-mode
contribution whigh for the reweighting from ms ¼ 0.080
tom0

s ¼ 0.060. The normalized reweighting factor ~w shows
rather minor dependence on Nr, as shown in Fig. 2. This
suggests that ~w is dominated by the low-mode contribution
wlow for our choice of the number of low modes Ne and the

000200010
HMC trajectory
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FIG. 1. Statistical fluctuation of three-point functions, Cπ
VðlÞ
4
;ϕsϕs

ðΔx4;Δx04;p;p0Þ (left panel) and CK
VðlÞ
4
;ϕsϕs

ðΔx4;Δx04;p;p0Þ (right
panel), with Δx4 ¼ Δx04 ¼ 10, θ ¼ θ00 ¼ 0.00, θ0 ¼ 1.68 at ðml;msÞ ¼ ð0.015; 0.080Þ. We plot the value at each jackknife sample, and
the horizontal axis represents the HMC trajectory count of the excluded configuration for the jackknife analysis. Triangles and circles
are data before and after averaging over the temporal location of the source operator x4. Each data point is normalized by the statistical
average.
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FIG. 2. Monte Carlo history of the reweighting factor
~wðm0

s; msÞ at ml ¼ 0.050 with different numbers of the Gaussian
random vectors Nr.
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lattice size N3
s × Nt. We do not need many random vectors,

so we set Nr ¼ 10 in this study.
Figure 3 compares ~w at different values of ml. We

observe that ~w is typically in a range [0.5, 2.0]. There is no
systematic trend in the magnitude of the statistical fluc-
tuation of ~w, as we decrease ml. We therefore consider that
a large value ~w≃ 8 observed at ml ¼ 0.025 and at the
1800th HMC trajectory is accidental.

III. EM FORM FACTORS AND CHARGE
RADII AT SIMULATION POINTS

A. EM form factors

Two- and three-point functions of the light mesons
(P ¼ π, K) are dominated by the ground-state contri-
bution,

CP
ϕϕ0 ðΔx4;pÞΔx4 → ∞						!ZP;ϕ0 ðpÞ�ZP;ϕðpÞ

2EPðpÞ
e−EPðpÞΔx4 ; ð26Þ

CP
Jμ;ϕϕ0 ðΔx4;Δx04;p;p0ÞΔx4;Δx04 → ∞

										!ZP;ϕ0 ðp0Þ�ZP;ϕðpÞ
4EPðp0ÞEPðpÞ

1

ZV
hPðp0ÞjJμjPðpÞi × e−EPðp0ÞΔx0

4e−EPðpÞΔx4 ; ð27Þ

in the limit of large temporal separations between the meson source/sink operators and the EM currentΔx4,Δx04 → ∞. Here
ZV is the renormalization factor for the vector current, and ZP;ϕðpÞ ¼ hPðpÞjOP;ϕi is the overlap of the meson interpolating
field to the physical state. We consider a ratio

RPQ
V ðΔx4;Δx04;p;p0Þ ¼ CP

J4;ϕsϕs
ðΔx4;Δx04;p;p0ÞCQ

ϕsϕl
ðΔx4; 0ÞCQ

ϕlϕs
ðΔx04; 0Þ

CQ
J4;ϕsϕs

ðΔx4;Δx04; 0; 0ÞCP
ϕsϕl

ðΔx4;pÞCP
ϕlϕs

ðΔx04;p0Þ ; ð28Þ

with three choices of ðP;QÞ ¼ ðπþ; πþÞ, ðKþ; KþÞ and ðK0; KþÞ. Since ZKþ;ϕ ¼ ZK0;ϕ with our simulation setup
mu ¼ md, normalization factors ZP;ϕfl;sg and ZV as well as the exponential damping factors e−EPðpð0ÞÞΔx4ð0Þ cancel in the ratio,
provided that they are dominated by the ground-state contribution [46]. Therefore we can calculate the effective value of the
EM form factors through this ratio as

FP
VðΔx4;Δx04; tÞ ¼

FP
VðΔx4;Δx04; tÞ

FQ
V ðΔx4;Δx04; 0Þ

¼ 2MQ

EPðpÞ þ EPðp0ÞR
PQ
V ðΔx4;Δx04;p;p0Þ; ð29Þ

where we assume the vector current conservation FQ
V ð0Þ ¼

1 (Q ¼ πþ, Kþ), and use MP and EP determined by fitting
two-point functions to Eq. (26).
Taking the ratio RPQ

V turns out to be effective also in
reducing statistical fluctuation induced by reweighting. The
reweighting factor in our study is typically in a region
~w ∈ ½0.5; 2.0�, and significantly enhances the statistical
fluctuation of the meson correlators. In Fig. 4, for instance,
we observe about a factor of 5 increase in the statistical
error of the pion three-point function Cπ

J4;ϕsϕs
at

ml ¼ 0.050. The enhanced fluctuation, however, largely

cancels in the ratio RPQ
V , whose error increases only by

≈15% by reweighting. This is also the case at ml ¼ 0.025,
where the reweighing factor in Fig. 3 takes occasionally a
rather large value ~w≃ 8. As suggested in Fig. 5, the
reweighting increases the error of Cπ

J4;ϕsϕs
by about a factor

of 24, which is however remarkably reduced to 1.6 in the

ratio RPQ
V .

We extract the EM form factor FP
VðtÞ by a constant fit to

the effective value FP
VðΔx4;Δx04; tÞ. Figures 6–11 show

examples of this fit for Fπþ
V (Figs. 6–7), FKþ

V (Figs. 8–9),
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and FK0

V (Figs. 10–11). We summarize numerical results in
Tables II–IX.
The charged meson form factors are the sum of the

contributions with the light and strange quark currents,

Fπþ
V ∝

2

3
hπjūγμujπi þ

1

3
hπjd̄γμdjπi ¼ hπjl̄γμljπi; ð30Þ

FKþ
V ∝

2

3
hKþjūγμujKþi þ 1

3
hKþjs̄γμsjKþi

¼ 2

3
hKþjl̄γμljKþi þ 1

3
hKþjs̄γμsjKþi: ð31Þ

Their normalizations are fixed as FP
Vð0Þ ¼ 1 (P ¼ πþ, Kþ)

from the vector current conservation. Equation (29) implies
that what we study using RPP

V is a ratio FP
VðtÞ=FP

Vð0Þ,
namely the finite t correction to FP

VðtÞ. Since we explore
near-zero momentum transfer t ∼ 0, this correction is
not large, typically FP

Vð0Þ − FP
VðtÞ≲ 0.1 as seen in

Tables II–IX. Its statistical accuracy is typically 5% atms ¼
0.080 and 10% at ms ¼ 0.060. For these fitted values of
FP
V , we observe about a factor of 2 larger error after the

reweighting from ms ¼ 0.080 to 0.060.
ChPT suggests that finite volume effects are exponen-

tially suppressed as ∝ exp½−MπL� [47], which is roughly
2% or less on the lattices with MπL≳ 4. It has been
recently argued in Ref. [48] that the twisted boundary
condition breaks reflection symmetry and gives rise to an
additional correction, which is at the level of 0.1% for
meson masses and decay constants at MπL ∼ 4. These
effects are well below the accuracy of the finite t correction
to FP

V . Yet another finite volume correction appears in
our simulations due to the fixed global topology. We
expect from our previous study on a similar volume [23]
that this effect is also small compared to the statistical
accuracy.
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The neutral kaon form factor is the difference between
the contributions of the light and strange quark currents

FK0

V ∝ −
1

3
hπjl̄γμljπi þ

1

3
hπjs̄γμsjπi; ð32Þ

which vanishes at t ¼ 0. In the region of small jtj, FK0

V ðtÞ is
close to zero as seen in Figs. 10 and 11. The use of the all-to-
all quark propagator enables us to calculate this small form
factor with an error of ≳15%. The aforementioned finite
volume corrections are negligible at this level of uncertainty.
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B. Charge radii

In this article, we determine the charge radii hr2iPV of the
light mesons (P ¼ πþ, Kþ, K0) at the physical quark
masses from ChPT-based parametrizations of FP

V . In this
subsection, we assume a t dependence of FP

V based on
phenomenological models, and estimate the radii at simu-
lated quark masses.
Figures 12–14 show the results for FP

VðtÞ as a function
of the momentum transfer t. We observe that their t

dependence is reasonably well described by the vector
meson dominance (VMD) hypothesis (in the plots shown
by dot-dashed curves)

Fπþ
V ðtÞ ¼ 1

1 − t=M2
ρ
; ð33Þ

FKþ
V ðtÞ ¼ 2

3

1

1 − t=M2
ρ
þ 1

3

1

1 − t=M2
ϕ

; ð34Þ
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TABLE II. Fit results for EM form factors at ðml;msÞ ¼
ð0.050; 0.080Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 0.40 0.00 0.9936(13) 0.9944(13) 0.000 29(27)
0.00 0.96 0.00 0.9632(22) 0.9659(21) 0.001 57(47)
0.00 1.60 0.00 0.9082(29) 0.9114(32) 0.004 26(58)
0.40 0.96 0.00 0.9875(33) 0.9900(29) 0.000 44(64)
0.40 1.60 0.00 0.9476(44) 0.9508(36) 0.002 67(73)
0.96 1.60 0.00 0.9837(66) 0.9870(54) 0.0009(10)

TABLE III. Fit results for EM form factors at ðml;msÞ ¼
ð0.050; 0.060Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 0.40 0.00 0.9936(24) 0.9939(28) −0.000 06ð12Þ
0.00 0.96 0.00 0.9634(30) 0.9645(36) 0.000 31(22)
0.00 1.60 0.00 0.9071(46) 0.9089(39) 0.001 30(31)
0.40 0.96 0.00 0.9878(42) 0.9888(52) −0.00 0 16ð34Þ
0.40 1.60 0.00 0.9472(46) 0.9477(50) 0.000 67(42)
0.96 1.60 0.00 0.9823(61) 0.9830(78) −0.000 04ð61Þ
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FK0

V ðtÞ ¼ −
1

3

1

1 − t=M2
ρ
þ 1

3

1

1 − t=M2
ϕ

: ð35Þ

Here and in the following, Mρ and Mϕ represent light and
strange vector meson masses calculated at the simulated
quark masses. The small deviation may be attributed to the
effects of higher poles and cuts, and is approximated by a
polynomial correction in the following analysis. Because
quadratic and higher-order corrections turn out to be
insignificant in the region of small t, we employ the
following fitting forms:

Fπþ
V ðtÞ ¼ 1

1 − t=M2
ρ
þ aπt; ð36Þ

FKþ
V ðtÞ ¼ 2

3

1

1 − t=M2
ρ
þ 1

3

1

1 − t=M2
ϕ

þ aKþt; ð37Þ

FK0

V ðtÞ ¼ −
1

3

1

1 − t=M2
ρ
þ 1

3

1

1 − t=M2
ϕ

þ aK0t ð38Þ

to estimate the charge radii defined in Eq. (3). We also carry
out linear and quadratic fits

FP
VðtÞ ¼ bP0 þ bP1 tðþbP2 t

2Þ ð39Þ

with bπ
þ

0 ¼ bK
þ

0 ¼ 1 and bK
0

0 ¼ 0. The systematic uncer-
tainty due to the choice of the parametrization form (36)–
(38) is estimated by the difference in hr2iPV from these
polynomial fits.
In Figs. 12–14, we also plot fit curves with these

parametrizations. Numerical results for hr2iPV are summa-
rized in Table X. The radii have the larger systematic error
on the larger lattice, namely at ml ≤ 0.025, simply because
we simulate only three values of t in order to reduce the
computational cost. At each simulation point, our data
favor a smaller radius for the heavier charged meson Kþ
than for the lighter one πþ, though the difference is not
large. The radius of the neutral meson K0 is much smaller
than those for the charged mesons. (Notice the scale of the
vertical axis in Fig. 14.) These are qualitatively in accor-
dance with ChPT and experiments. We give quantitative
comparisons in the next sections.

TABLE IV. Fit results for EM form factors at ðml;msÞ ¼
ð0.035; 0.080Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 0.60 0.00 0.9793(25) 0.9821(20) 0.000 20(60)

0.00 1.28 0.00 0.9244(54) 0.9302(41) 0.002 88(80)

0.00 1.76 0.00 0.8735(65) 0.8791(57) 0.006 17(91)

0.60 1.28 0.00 0.9666(76) 0.9712(61) −0.0017ð22Þ
0.60 1.76 0.00 0.9318(85) 0.9375(74) 0.0007(15)

1.28 1.76 0.00 0.9627(19) 0.971(11) −0.0032ð31Þ

TABLE V. Fit results for EM form factors at ðml;msÞ ¼
ð0.035; 0.060Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 0.60 0.00 0.9805(34) 0.9794(42) −0.000 32ð44Þ
0.00 1.28 0.00 0.9235(68) 0.9232(55) 0.001 28(49)

0.00 1.76 0.00 0.8717(87) 0.8711(70) 0.002 66(71)

0.60 1.28 0.00 0.9661(90) 0.9695(81) −0.0016ð18Þ
0.60 1.76 0.00 0.929(11) 0.9287(92) −0.0002ð15Þ
1.28 1.76 0.00 0.957(21) 0.965(12) −0.0022ð16Þ

TABLE VI. Fit results for EM form factors at ðml;msÞ ¼
ð0.025; 0.080Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 1.68 0.00 0.9432(20) 0.9435(14) 0.005 74(50)
0.00 2.64 0.00 0.8777(34) 0.8748(23) 0.012 19(94)
1.68 2.64 0.00 0.9934(77) 0.9799(37) 0.001 97(82)

TABLE VII. Fit results for EM form factors at ðml;msÞ ¼
ð0.025; 0.060Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 1.68 0.00 0.9398(95) 0.9400(75) 0.004 26(42)
0.00 2.64 0.00 0.874(13) 0.8715(85) 0.008 28(53)
1.68 2.64 0.00 0.992(20) 0.983(15) 0.001 78(66)

TABLE VIII. Fit results for EM form factors at ðml;msÞ ¼
ð0.015; 0.080Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 1.68 0.00 0.9407(35) 0.9400(22) 0.0062(10)
0.00 2.64 0.00 0.8784(60) 0.8684(33) 0.0149(13)
1.68 2.64 0.00 0.995(12) 0.9790(62) 0.0020(24)

TABLE IX. Fit results for EM form factors at ðml;msÞ ¼
ð0.015; 0.060Þ.
θ θ0 θ00 Fπþ

V ðtÞ FKþ
V ðtÞ FK0

V ðtÞ
0.00 1.68 0.00 0.941(11) 0.9396(60) 0.004 67(81)
0.00 2.64 0.00 0.877(10) 0.8664(56) 0.0115(11)
1.68 2.64 0.00 0.997(22) 0.985(11) 0.0001(20)
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FIG. 13. Charged kaon EM form factor FKþ
V ðtÞ as a function of momentum transfer t.
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FIG. 14. Neutral kaon EM form factor FK0

V ðtÞ as a function of momentum transfer t.
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IV. CHIRAL EXTRAPOLATION BASED
ON SU(2) CHPT

In this section, we fit our data of the pion EM form
factor Fπþ

V ðtÞ to the NNLO formula in SU(2) ChPT as a
function of Mπ and t. We observe in Ref. [49] that the
chiral expansion of the pion mass and decay constant
shows better convergence by using the expansion param-
eter ξπ ¼ M2

π=ð4πFπÞ2 rather than x ¼ 2Bml=ð4πFÞ2,
where B and F are LECs in the LO chiral
Lagrangian; F is the decay constant in the SU(2) chiral
limit, and B appears in the LO relation Mπ ¼ 2Bml. We
employ this “ξ-expansion” throughout this paper to
describe the quark mass dependence of the form factors.
A typical functional form of the chiral logarithms at
n-loops is ξnπ lnm ½M2

π=μ2� ðm ≤ nÞ. We set the renorm-
alization scale μ ¼ Mρ.
We denote the NNLO chiral expansion as

Fπþ
V ðtÞ ¼ Fπþ

V;0 þ Fπþ
V;2ðtÞ þ Fπþ

V;4ðtÞ: ð40Þ

The LO contribution Fπþ
V;0 arises from the diagram shown in

Fig. 15(a), and Fπþ
V;0 ¼ Fπþ

V ð0Þ ¼ 1 from the vector current
conservation. Examples of the NLO (NNLO) diagrams
leading to Fπþ

V;2 (Fπþ
V;4) are shown in Figs. 15(b) and 15(c)

[Figs. 15(d), 15(e) and 15(f)]. These are expressed as [13]

Fπþ
V;2ðtÞ ¼

��
−Nlr6 −

1

18

�
s −

N
6
sLþ N

6
ðs − 4ÞJ̄ðsÞ

�
ξπ;

ð41Þ

Fπþ
V;4ðtÞ ¼ N2fPV;4ðsÞ þUV;4ðsÞgξ2π; ð42Þ

PV;4ðsÞ ¼
�
−
1

2
k1;2 −

1

12
k4 þ

1

2
k6−lr4

�
2lr6 þ

1

9N

�
þ 23

36N
Lþ 5

576N
þ 37

864N2
þ rrV;1

�
s

þ
�
1

12
k1;2 þ

1

24
k6 þ

1

9N

�
lr1;2 þ

1

2
lr6 −

1

12
L −

1

384
−

47

192N

�
þ rrV;2

�
s2; ð43Þ

UV;4ðsÞ ¼
�
−
1

3
lr1;2ðs2 − 4sÞ þ 1

3
lr4ðs − 4Þ − 1

6
lr6ðs2 − 4sÞ− 1

36
ðs2 þ 8s − 48ÞLþ 1

N

�
7

108
s2 −

97

108
sþ 3

4

��
J̄ðsÞ

þ 1

9
K1ðsÞ þ

1

9

�
1

8
s2 − sþ 4

�
K2ðsÞ þ

1

6

�
s −

1

3

�
K3ðsÞ −

5

3
K4ðsÞ; ð44Þ

where
N ¼ ð4πÞ2; s ¼ t

M2
π
; L ¼ 1

N
ln

�
M2

π

μ2

�
; ki ¼ ð4lri − γiLÞL; ð45Þ

with γ1 ¼ 1=3, γ2 ¼ 2=3, γ1;2 ¼ γ1 − γ2=2 ¼ 0, γ4 ¼ 2, and γ6 ¼ −1=3. Here lri denotes the LECs in the NLO chiral
Lagrangian L4. In the following, we refer to lri ’s and L4 as Oðp4Þ couplings and the Oðp4Þ chiral Lagrangian, respectively.
Note thatM2

fπ;Kg and t areOðp2Þ quantities in the chiral order counting. We define lr1;2 ¼ lr1 − lr2=2, because l
r
1 and l

r
2 appear

in Fπþ
V only through this linear combination. The loop integral functions are defined as

TABLE X. Charge radii hr2iPV at simulated quark masses.

ml ms hr2iπþV (fm2) hr2iKþ
V (fm2) hr2iK0

V (fm2)

0.050 0.080 0.268ð12Þð þ0
−17Þ 0.251ð12Þð þ0

−15Þ −0.0129ð23Þðþ15
−0 Þ

0.050 0.060 0.270ð16Þð þ2
−16Þ 0.263ð15Þð þ0

−17Þ −0.0036ð12Þðþ6
−0Þ

0.035 0.080 0.339ð23Þð þ0
−23Þ 0.305ð18Þð þ0

−20Þ −0.0157ð28Þðþ31
−0 Þ

0.035 0.060 0.344ð31Þð þ0
−22Þ 0.333ð23Þð þ0

−22Þ −0.0072ð20Þðþ20
−0 Þ

0.025 0.080 0.334ð10Þð þ0
−32Þ 0.317ð6Þð þ0

−29Þ −0.0345ð23Þðþ58
−0 Þ

0.025 0.060 0.346ð43Þð þ0
−34Þ 0.332ð28Þð þ0

−32Þ −0.0256ð15Þðþ56
−0 Þ

0.015 0.080 0.366ð19Þð þ0
−42Þ 0.343ð9Þð þ0

−39Þ −0.045ð3Þðþ11
−0 Þ

0.015 0.060 0.368ð36Þð þ0
−48Þ 0.354ð17Þð þ0

−44Þ −0.0349ð28Þð þ0
−89Þ

(a) (b) (c)

(d) (e) (f)

FIG. 15. Example of (a) LO, (b)–(c) NLO, and (d)–(f) NNLO
diagrams. Straight and wavy lines represent the Nambu-
Goldstone (NG) boson and photon, respectively. The solid
circle (square) represents a vertex from Oðp4Þ [Oðp6Þ] chiral
Lagrangian L4 (L6).
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J̄ðsÞ ¼ hðsÞzðsÞ þ 2

N
; ð46Þ

K1ðsÞ ¼ zðsÞhðsÞ2; ð47Þ

K2ðsÞ ¼ zðsÞ2hðsÞ2 − 4

N2
; ð48Þ

K3ðsÞ ¼ N
zðsÞhðsÞ3

s
þ 1

16

hðsÞ
s

−
1

32N
; ð49Þ

K4ðsÞ ¼
1

szðsÞ
�
1

N
J̄ðsÞ þ 1

2
K1ðsÞ þ

1

3
K3ðsÞ þ

ðπ2 − 6Þs
12N2

�
;

ð50Þ
using

zðsÞ ¼ 1 −
4

s
; hðsÞ ¼ 1

N
ffiffiffiffiffiffiffiffi
zðsÞp ln

" ffiffiffiffiffiffiffiffi
zðsÞp

− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðsÞ þ 1

p
#
: ð51Þ

Therefore, PV;4ðsÞ in Eq. (42) represents the NNLO
contribution polynomial in s ∝ t, whereas UV;4ðsÞ is the
remaining one involving nonanalytic loop functions in
terms of s.
The chiral expansion (40) involves five unknown param-

eters: three Oðp4Þ couplings lr6, lr1;2, lr4, and two couplings
rrV;1 and rrV;2 from the Oðp6Þ (NNLO) Lagrangian L6. In
order to obtain a stable chiral fit, we treat only lr6, r

r
V;1, and

rrV;2 as fitting parameters, because (i) lr6 is the only free
parameter appearing in the possibly large NLO correction,

and (ii) rrV;1 and r
r
V;2 from L6 are poorly known and should

be determined on the lattice.
The Oðp4Þ couplings, lr1;2 and lr4, appear only at NNLO.

We fix them to a phenomenological estimate summarized
in Table XI, where we quote a scale-invariant combination

l̄i ¼
2N
γi

lri − NL: ð52Þ

The input value for lr1;2 is obtained from a phenomeno-
logical analysis of the ππ scattering [50]. The value of lr4
suggested in Ref. [51] covers a phenomenological estimate
as well as lattice averages for 2 ≤ Nf ≤ 4 obtained by the
Flavor Lattice Averaging Group [52]. The uncertainty due
to this choice of inputs is estimated by repeating our
analysis with lr1;2 and lr4 shifted by their uncertainty quoted
in Table XI.
Figure 16 shows the chiral extrapolation using the NLO

expression at each ms. The lattice data at the largest and
smallest ml tend to deviate from the fit curve and lead to
large values of χ2=d.o.f ∼ 1.9–2.9. Note that lr6 is the only
free parameter appearing at NLO and may be too few to
describe both the ml and t dependences. The NNLO fit
shown in Fig. 17 describes our data better and χ2=d.o.f is
significantly reduced to 0.9–1.2.
The convergence of this NNLO expansion seems rea-

sonable around the physical strange quark mass ms ∼
ms;phys as plotted in Fig. 18. We observe that the NLO
contribution Fπþ

V;2 is at most 20% of the total value Fπþ
V in

our simulated region of t and ml. The slightly worse
convergence at lighter ml is because Fπþ

V;2 is proportional to
F−2
π in the ξ-expansion. The magnitude of the NNLO

contribution relative to NLO is about 0.5 at our largest ml;
however, it decreases to ≲0.1–0.2 around our lightest ml
and down to ml;phys.

TABLE XI. Input values for Oðp4Þ couplings in SU(2) ChPT.

l̄1;2 l̄4

−2.55ð60Þ 4.3(0.3)
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FIG. 16. Chiral extrapolation of Fπþ
V using NLO SU(2) ChPT formula at ms ¼ 0.080 (left panel) and 0.060 (right panel). The data at

four different ml’s are plotted as a function of t. Solid and dotted lines show the NLO fit curve and its statistical error. The lines
correspond to ml ¼ 0.050, 0.035, 0.025, and 0.015 from top to bottom, respectively.
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For a more detailed look, we decompose the NLO and
NNLO contributions into LEC-dependent and independent
parts and rewrite the chiral expansion (40) as

Fπþ
V ðtÞ ¼ Fπþ

V;0 þ Fπþ
V;2;lðtÞ þ Fπþ

V;2;bðtÞ þ Fπþ
V;4;lðtÞ

þ Fπþ
V;4;rðtÞ þ Fπþ

V;4;bðtÞ: ð53Þ

Here Fπþ
V;2;l (F

πþ
V;2;b) represents the lri -dependent (indepen-

dent) NLO term, which arises from the diagrams shown in
Fig. 15(b) [Fig. 15(c)]. The rrV;i- and lri -dependent NNLO
terms, Fπþ

V;4;r and Fπþ
V;4;l, mainly come from the tree

diagrams involving an L6 vertex and the one-loop diagrams
with an L4 vertex, respectively. An example of these
diagrams is shown in Figs. 15(d) and 15(e). The LEC-
independent NNLO term Fπþ

V;4;b is from two-loop diagrams

such as Fig. 15(f). Figure 19 compares these terms at
ml ¼ 0.050, 0.015, and ml;phys. We observe that the NLO
contribution Fπþ

V;2 is largely dominated by the lri -dependent

analytic term Fπþ
V;2;l. The NNLO contribution Fπþ

V;4 is

dominated by the lri -dependent term Fπþ
V;4;l at our largest

ml, whereas the rrV;i-dependent term Fπþ
V;4;r tends to domi-

nate Fπþ
V;4 at smallerml. Therefore the uncertainty due to the

use of the phenomenological input for lr1;2 and lr4 may not
be large for our results at physical ml, such as the charge
radius hr2iπþV [see Eq. (60)]. Compared to these LEC-
dependent contributions, Fπþ

V;2;b and Fπþ
V;4;b coming from

genuine loop diagrams (namely without Lf4;6g vertices) are
rather small.
Numerical results of the NNLO fits at the simulated

strange quark masses are summarized in Table XII. We
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FIG. 17. Chiral extrapolation of Fπþ
V using NNLO SU(2) ChPT formula. We plot the fit curve (thin solid line) and its error (dotted line)

only for the largest and smallest ml’s for clarity. Those at the physical light quark mass ml;phys are also plotted in the left panel by thick
solid and dotted lines. Note that ms ¼ 0.080 is close to ms;phys.
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FIG. 18. Convergence of chiral expansion at ms ¼ 0.080. Left panel: ratio of the NLO contribution to the total jFπþ
V;2j=Fπþ

V . The dot-
dashed, dashed, and solid lines show data at ml ¼ 0.050, 0.015, and ml;phys, respectively. Right panel: ratio of the NLO and NNLO
contributions Fπþ

V;4=jFπþ
V;2j.
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estimate the charge radius hr2iπþV by using these results in
the NNLO ChPT expression [13]

M2
πhr2iπþV ¼ N

�
−6lr6 − L −

1

N

�
ξπ þ N2

�
−3k1;2 −

1

2
k4

þ 3k6 − 12lr4l
r
6 þ

1

N

�
−2lr4 þ

31

6
L

þ 13

192
þ 181

48N

�
þ 6rrV;1

�
ξ2π: ð54Þ

As plotted in Fig. 20, the NNLO fit reproduces the values in
TableX,which are evaluated at simulation points assuming t
dependence of Eqs. (36)–(38), reasonably well. This figure
also shows that the NNLO contribution is significant in our
simulation regionMπ ≳ 300 MeV (M2

π ≳ 0.09 GeV2 in the
horizontal axis of the figure). This is consistent with our
previous finding in two-flavor QCD [23].
Similar to the decomposition of Fπþ

V in Eq. (53), we
express the chiral expansion of hr2iπþV as
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FIG. 19. LEC-(in)dependent contributions to Fπþ
V in our chiral fit at ms ¼ 0.080 based on NNLO SU(2) ChPT. Top left

and right panels show data at our simulation points ml ¼ 0.050 and 0.015. The bottom panel is at the physical light quark
mass ml;phys.
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FIG. 20. Pion charge radius hr2iπþV as a function of M2
π . The

solid line represents hr2iπþV at ms ¼ 0.080 reproduced from the
NNLO SU(2) ChPT fit. The dashed line shows the NLO
contribution. We plot the values in Table X by solid circles
(ms ¼ 0.080) and squares (0.060). The diamond is the value
extrapolated to the physical point, which should be compared
with the experimental value [53] shown by the star.
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hr2iπþV ¼ hr2iπþV;2 þ hr2iπþV;4; ð55Þ

hr2iπþV;2 ¼ hr2iπþV;2;l þ hr2iπþV;2;b;
hr2iπþV;4 ¼ hr2iπþV;4;l þ hr2iπþV;4;r þ hr2iπþV;4;b: ð56Þ

Namely, hr2iπþV;2;l, hr2iπ
þ

V;4;l and hr2iπþV;4;r depend on lri and

rrV;i, whereas hr2iπþV;2;b and hr2iπþV;4;b are independent of the
LECs. These contributions are plotted as a function of M2

π

in Fig. 21. The NLO contribution is largely dominated by
the analytic term hr2iπþV;2;l, as Fπþ

V;2;l dominates Fπþ
V;2. The

charge radius has been considered as a good quantity to
observe the one-loop chiral logarithm 1

NF2
ðπÞ
ln½M2

π=μ2�,
which is not suppressed by a multiplicative factor M2

π

and hence diverges toward the chiral limit. In our notation,
this is included in the NLO loop correction hr2iπþV;2;b but
becomes significant only atMπ ≲ 300 MeV, namely below
our simulation points. In addition, the enhancement of
hr2iπþV;2;b is partly compensated by the decrease of the

NNLO contribution, particularly of hr2iπþV;4;l. Therefore, we
may be able to clearly observe the logarithmic singularity
only near the chiral limit. Our work in the so-called ϵ-
regime [54] is an interesting step in this direction.
The NNLO contribution hr2iπþV;4 turns out to be a 30%–

50% correction at the simulated values ofM2
π and becomes

small, ≲10%, only near the physical point. The two-loop
term hr2iπþV;4;b is rather small. The analytic term hr2iπþV;4;r
vanishes towards the chiral limit, whereas the similar term
Fπþ
V;4;r is not a small correction to Fπþ

V . This is becauseOðt2Þ
term of Fπþ

V with rrV;2 does not contribute to hr2iπþV , and

hr2iπþV;4;r ¼ 6NrrV;1ξπ=F
2
π is suppressed by M2

π in the chiral

limit. Hence the lri -dependent term hr2iπþV;4;l gives the largest
contribution at NNLO. Note that this term has nontrivial
M2

π dependence: it is roughly constant down to Mπ ≃
400 MeV and nonlinearly decreases towards the chiral
limit. It is therefore important to correctly take account of
the NNLO contributions for a reliable chiral extrapolation
of hr2iπþV .
In SU(2) ChPT, thems dependence of physical quantities

is encoded in that of LECs. We need to extrapolate our
results to the physical strange quark massms;phys in order to
obtain information about the real world. As far as the pion
observables Fπþ

V and hr2iπþV are concerned, the ms depend-
ence turns out to be mild as suggested by the good stability
of hr2iπþV between ms ¼ 0.080 and 0.060 as shown in
Fig. 20. This is confirmed also in Fig. 22, which shows that

TABLE XII. Numerical results of chiral fit based on NNLO SU(2) ChPT at ms ¼ 0.080 and 0.060. For the LECs,
we quote the values at the renormalization scale μ ¼ Mρ. The first error is statistical; the second is systematic due to
the choice of the input lr1;2 and lr4. We also quote results extrapolated to ms;phys.

ms lr6 × 103 rrV;1 × 105 rrV;2 × 105 hr2iπþV (fm2)

0.080 −10.65ð94Þð15Þ 5.9(5.9)(3.5) 19.9(9.3)(0.1) 0.395(26)(3)
0.060 −10.9ð2.4Þð0.2Þ 7(14)(4) 31(19)(0) 0.403(67)ðþ6

−3Þ
ms;phys −10.64ð94Þð15Þ 5.9(5.9)(3.5) 19.4(9.4)(0.1) 0.395(26)(3)

0 0.1 0.2 0.3

Mπ
2
 [GeV

2
]

0.0

0.2

0.4

<
r2 >

V
,n

,X

π+

 [
fm

2 ]

NLO (n = 2)
NLO, X = l
NLO, X = b
NNLO (n = 4)
NNLO, X = l
NNLO, X = r
NNLO, X = b

NNLO SU(2) ChPT, m
s
 = 0.080

FIG. 21. LEC-(in)dependent contributions at NLO and NNLO
to hr2iπþV .
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FIG. 22. Comparison of hr2iπþV between three-flavor QCD
(solid circles and squares) and two-flavor QCD (open triangles)
[23]. The latter was obtained on 163 × 32 at a ¼ 0.118ð2Þ fm
with four times higher statistics, but jtj ≳ ð500 MeVÞ2 without
the twisted boundary conditions. For a fair comparison, we use
the lattice spacing determined from r0 ¼ 0.49 fm [55] to convert
all data to physical units.
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the difference in hr2iπþV between three- and two-flavor QCD
is not large.
For the extrapolation of lr6 and hr2iπþV , we parametrize

their ms dependence by a linear function including the
NLO chiral logarithm [2],

lr6 ¼ al;0 þ
1

12N
ln½M2

K� þ al;1ms; ð57Þ

hr2iπþV ¼ ar2;0 −
1

2NF2
π
ln½M2

K� þ ar2;1ms: ð58Þ

Figure 23 shows that the logarithmic term ln½M2
K�

becomes significant only near the ms ¼ 0 limit, and
that the simulated value ms ¼ 0.080 is close to ms;phys.
Moreover, the ms dependence is rather mild as discussed
above. The extrapolation therefore does not deteriorate the
statistical accuracy, and is stable against the choice of the
parametrization form, for instance, removing the logarith-
mic term and/or including an Oðm2

sÞ correction. These
observations lead us to employ a simple linear form

rrV;i ¼ ari;0 þ ari;1ms ð59Þ

for rrV;i, which has a large statistical error.
The extrapolated values are summarized in Table XII.

We obtain

hr2iπþV ¼ 0.395ð26Þð3Þð32Þ fm2; ð60Þ

where the first error is statistical, and the second is the
systematic error due to the choice of the input values of lri .
The third is the discretization error at our finite lattice
spacing, which is conservatively estimated by an order
counting OððaΛQCDÞ2Þ ∼ 8% with ΛQCD ¼ 500 MeV.
Note that the systematic error due to the choice of the
inputs lr1;2 and lr4 is rather small for this quantity, because

only the NNLO lri -dependent terms, Fπþ
V;4;l and hr2iπþV;4;l,

contain these inputs and decrease towards the physical
point. As shown in Fig. 24, our result is consistent with the
experimental value hr2iπþV ¼ 0.452ð11Þ fm2 [53] as well as
recent lattice results obtained by chiral extrapolations based
on NNLO SU(2) ChPT [22–25] and by a direct calculation
at the physical point [26].
For the Oðp4Þ coupling, we obtain

l̄6 ¼ 13.49ð89Þð14Þð81Þ
ðlr6 ¼ −10.64ð94Þð15Þð86Þ × 10−3Þ: ð61Þ

This is consistent with our estimate l̄6 ¼ 11.9ð1.2Þ in two-
flavor QCD [23] as well as with phenomenological
estimates 16.0(0.9) [13] from the experimental data of
Fπþ
V , and 15.2(4) obtained together with the π → eνγ decay

and the V − A spectral function [51,56]. Our results for the
Oðp6Þ couplings at μ ¼ Mρ are

rrV;1 ¼ 5.9ð5.9Þð3.5Þð0.5Þ × 10−5; ð62Þ

rrV;2 ¼ 19.4ð9.4Þð0.1Þð1.6Þ × 10−5: ð63Þ

V. CHIRAL EXTRAPOLATION BASED
ON SU(3) CHPT

In this section, we extend our analysis to SU(3) ChPT,
which is applicable also to the kaon EM form factors FKþ

V

and FK0

V . According to Ref. [15], and similar to Eq. (53), we
write the chiral expansion of the EM form factors of the
light mesons (P ¼ πþ; Kþ; K0) as

FP
VðtÞ ¼ FP

V;0 þ FP
V;2ðtÞ þ FP

V;4ðtÞ þ FP
V;6ðtÞ; ð64Þ

-20
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FIG. 23. Extrapolation of lr6 (top panel) and hr2iπþV (bottom
panel) to ms;phys.
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FIG. 24. Comparison of hr2iπþV with recent lattice studies
[22–26]. Top, middle, and bottom panels show results for
Nf ¼ 4, 3, and 2 QCD, respectively. Our results are plotted
by the filled circles. The shaded region represents �1σ range of
the experimental value.
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FP
V;2ðtÞ ¼ FP

V;2;LðtÞ þ FP
V;2;BðtÞ;

FP
V;4ðtÞ ¼ FP

V;4;LðtÞ þ FP
V;4;CðtÞ þ FP

V;4;BðtÞ: ð65Þ

Here FP
V;0, F

P
V;2;B and FP

V;4;B are LEC-independent LO,
NLO, and NNLO contributions, whereas FP

V;2;L, F
P
V;4;L, and

FP
V;4;C depend on the LECs. Because ms ≫ ml, the chiral

expansion in SU(3) ChPT may have poorer convergence
than in SU(2) ChPT. Hence we include a possible higher-
order correction FP

V;6, the explicit form of which is not
known in ChPT. The vector current conservation states that
the LO contribution for the charged mesons is

Fπþ
V;0 ¼ FKþ

V;0 ¼ 1: ð66Þ

The NLO analytic term

Fπþ
V;2;LðtÞ ¼ FKþ

V;2;LðtÞ ¼
2

F2
π
Lr
9t ð67Þ

arises from the diagram Fig. 15(b) with a vertex from L4,
which involves the Oðp4Þ coupling Lr

9. In contrast, these
contributions vanish,

FK0

V;0 ¼ FK0

V;2;LðtÞ ¼ 0; ð68Þ

for the neutral kaon EM form factor, which is the difference
of the light and strange quark currents as written
in Eq. (32).
The term FP

V;2;B represents the LEC-independent NLO
contribution coming from one-loop diagrams, such as
Fig. 15(c), and is given by

F2
πFπþ

V;2;BðtÞ ¼ ĀðM2
πÞ þ

1

2
ĀðM2

KÞ − 2B̄22ðM2
π;M2

π; tÞ − B̄22ðM2
K;M

2
K; tÞ; ð69Þ

F2
πFKþ

V;2;BðtÞ ¼
1

2
ĀðM2

πÞ þ ĀðM2
KÞ − B̄22ðM2

π;M2
π; tÞ − 2B̄22ðM2

K;M
2
K; tÞ; ð70Þ

F2
πFK0

V;2;BðtÞ ¼ −
1

2
ĀðM2

πÞ þ
1

2
ĀðM2

KÞ þ B̄22ðM2
π;M2

π; tÞ − B̄22ðM2
K;M

2
K; tÞ; ð71Þ

where Ā (B̄22) represents a t-independent (dependent) one-
loop integral function. Their definition and expression are
summarized in Appendix A.
The LEC-independent NNLO term FP

V;4;B involves
two-loop integrals, and hence its expression is rather
complicated. We refer the reader to Refs. [15,57] for details
on the two-loop integrals and expressions of FP

V;4;B. We

note, however, that this term in the ξ-expansion does not
contain any free parameters, and is not an obstacle to
obtaining a stable chiral extrapolation.
The Lr

i -dependent NNLO term FP
V;4;L mainly comes

from one-loop diagrams with one vertex from L4, such as
Fig. 15(e). This term can be expressed with Lr

i and the
one-loop integral functions as

F4
πFπþ

V;4;LðtÞ ¼ 8M2
πð2Lr

4 þ Lr
5ÞĀðM2

πÞ þ 4M2
πLr

5ĀðM2
KÞ þ tLr

9f6ĀðM2
πÞ þ 3ĀðM2

KÞg
þ f−16ð2Lr

4 þ Lr
5ÞM2

π þ 4ð4Lr
1 − 2Lr

2 þ 2Lr
3 − Lr

9ÞtgB̄22ðM2
π;M2

π; tÞ
þ ð−8Lr

5M
2
π þ 4Lr

3t − 2Lr
9tÞB̄22ðM2

K;M
2
K; tÞ; ð72Þ

F4
πFKþ

V;4;LðtÞ ¼ ð16Lr
4M

2
K þ 8Lr

5M
2
πÞĀðM2

KÞ þ 4Lr
5M

2
πĀðM2

πÞ þ Lr
9tf5ĀðM2

πÞ þ 4ĀðM2
KÞg

þ f−32Lr
4M

2
K − 16Lr

5M
2
π þ 4ð4Lr

1 − 2Lr
2 þ 2Lr

3 − Lr
9ÞtgB̄22ðM2

K;M
2
K; tÞ

þ ð−8Lr
5M

2
π þ 4Lr

3t − 2Lr
9tÞB̄22ðM2

π;M2
π; tÞ þ 16Lr

5L
r
9ðM2

π −M2
KÞt; ð73Þ

F4
πFK0

V;4;LðtÞ ¼ ð4Lr
5M

2
π þ Lr

9tÞf−ĀðM2
πÞ þ ĀðM2

KÞg þ f8Lr
5M

2
π − 2ð2Lr

3 − Lr
9ÞtgfB̄22ðM2

π;M2
π; tÞ − B̄22ðM2

K;M
2
K; tÞg:

ð74Þ
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Together with Eq. (67), we have the single Oðp4Þ
coupling Lr

9 at NLO, and an additional five Lf1−5g at
NNLO. Similar to our analysis in SU(2) ChPT, we treat Lr

9

as a fitting parameter, and fix others to a phenomenological
estimate. In Ref. [51], the authors present two types of the
NNLO ChPT fit of experimental data, such as the meson
masses and decay constants. A fit called “BE14” fixes Lr

4 to
a fiducial value 0.3 × 10−3, since this is difficult to
determine due to the strong (anti)correlation with F0.
(We note that the renormalization scale is set to μ ¼ Mρ

also in this section.) The other fit without the constraint on
Lr
4 obtains L

r
4 ¼ 0.76ð18Þ × 10−3, which is slightly higher

than that for BE14. In our analysis, we employ the authors’
preferred fit BE14 and consider the difference between
BE14 and the free fit as an additional uncertainty of Lr

i .
These input values are summarized in Table XIII.
The most important issue in obtaining a stable chiral

extrapolation is how to deal with Oðp6Þ couplings Cr
i [58]

in the NNLO analytic term FP
V;4;C, since these couplings are

in general poorly known in phenomenology. The three
NNLO analytic terms have six independent parameter
dependences,

F4
πFπþ

V;4;CðtÞ ¼ −4crπþ;πtM
2
πt − 8crπþ;KtM

2
Kt − 4crt2t

2; ð75Þ

F4
πFKþ

V;4;CðtÞ ¼ −4crKþ;πtM
2
πt − 4crKþ;KtM

2
Kt − 4crt2t

2; ð76Þ

F4
πFK0

V;4;CðtÞ ¼ −
8

3
crK0ðM2

K −M2
πÞt; ð77Þ

and seven Cr
i ’s enter into these six coefficients through the

L6 vertex in Fig. 15(d),

crπþ;πt ¼ 4Cr
12 þ 4Cr

13 þ 2Cr
63 þ Cr

64 þ Cr
65 þ 2Cr

90; ð78Þ

crπþ;Kt ¼ 4Cr
13 þ Cr

64; ð79Þ

crt2 ¼ Cr
88 − Cr

90; ð80Þ

crKþ;πt ¼ 4Cr
13 þ

2

3
Cr
63 þ Cr

64 −
1

3
Cr
65; ð81Þ

crKþ;Kt ¼ 4Cr
12 þ 8Cr

13 þ
4

3
Cr
63 þ 2Cr

64 þ
4

3
Cr
65 þ 2Cr

90;

ð82Þ

crK0 ¼ 2Cr
63 − Cr

65: ð83Þ

Hence our chiral fit cannot determine all these Oðp6Þ
couplings separately, but it can determine the six coeffi-
cients. We note that these are not totally independent,

crKþ;πt ¼ crπþ;Kt þ
1

3
crK0 ; ð84Þ

crKþ;Kt ¼ crπþ;πt þ crπþ;Kt −
1

3
crK0 : ð85Þ

We carry out simultaneous fit to Fπþ
V , FKþ

V , and FK0

V , in
which four coefficients, crπþ;πt, crπþ;Kt, crt2 , and crK0 , are
treated as fitting parameters.
Our chiral fit based on NLO SU(3) ChPT is plotted in

Fig. 25. Similar to the analysis in SU(2) ChPT, the NLO
formula is poorly fitted to our data resulting in a rather large
value of χ2=d.o.f ∼ 8.3. Note that SU(3) chiral symmetry
constrains the dependence of the form factors on ml, ms,
and t, and allows only single tunable parameter at NLO,
namely Lr

9 to describe the t dependence of Fπþ
V and FKþ

V .
Consequently, the NLO formula fails to reproduce the ml

dependence, particularly of FK0

V .
The value of χ2=d.o.f is largely decreased to 2.3 by

taking account of the NNLO contribution. We observe that
simulation data of FK0

V tend to deviate from the NNLO fit
curve and give rise to a large part of χ2. Since FK0

V has only
single free parameter crK0 even at NNLO, we also test a
fitting form with a N3LO analytic correction,

Fπþ
V;6 ¼ FKþ

V;6 ¼ 0; FK0

V;6 ¼
dK0

F6
π
M2

πðM2
K −M2

πÞt: ð86Þ

Note that the factor ðM2
K −M2

πÞt in FK0

V;6 is needed to satisfy

FK0

V ð0Þ ¼ 0 (vector current conservation) and FK0

V ðtÞ ¼ 0

in the SU(3) symmetric limit [see Eq. (32)]. This fit is
plotted in Fig. 26 and leads to a slightly smaller
χ2=d.o.f ¼ 1.8. Including more terms at N3LO and even
higher orders reduces χ2 only slightly, and the fitting
parameters in these corrections are poorly determined.
We therefore employ the NNLO ChPT fit including the
N3LO correction (86) in the following discussion.
Numerical results of the fit are summarized in Table XIV.

We estimate the systematic error due to the choice of the

TABLE XIII. Input values for Oðp4Þ couplings in SU(3) ChPT taken from Ref. [51]. The central value and first
error are from the authors’ preferred fit BE14, whereas we assign the difference from the other fit (see text) as the
second error.

Lr
1 × 103 Lr

2 × 103 Lr
3 × 103 Lr

4 × 103 Lr
5 × 103

0.53ð6Þðþ11Þ 0.81ð4Þð−22Þ −3.07ð20Þðþ27Þ 0.3ð0Þðþ0.46Þ 1.01ð6Þð−51Þ
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input Lf1;…;5g by shifting each of Lf1;…;5g by its uncertainty
quoted in Table XIII. In our analysis, the choice of L3 and
L5 tends to lead to the largest deviation in the fitting results.
This systematic uncertainty from Lf1;…;5g is generally well
below the statistical error, because the Lr

i -dependent

term Ffπþ;Kþg
V;4;L is not a dominant contribution at NNLO

(see below).
In Fig. 27 and 28, we examine the convergence of the

chiral expansion of Fπþ
V , which now explicitly depends on

ms in SU(3) ChPT. Figure 27 shows a decomposition to the
LEC-dependent and -independent terms in Eqs. (64)–(65).
Similar to our SU(2) ChPT fit, the NLO contribution Fπþ

V;2 is

largely dominated by the analytic term Fπþ
V;2;L with Lr

9. The

loop term Fπþ
V;2;B is a small correction compared to Fπþ

V;2;L,
but increases towards the physical point, possibly due to the
enhancement of the chiral logarithms ∝ ln½M2

π=μ�.
This can also be seen in Fig. 28, where we plot ratios

jFπþ
V;2j=Fπþ

V (NLO=total), jFπþ
V;4j=Fπþ

V (NNLO=total), and

Fπþ
V;4=jFπþ

V;2j (NNLO=NLO). We observe larger jFπþ
V;2j=Fπþ

V

at smallerml not only due to the enhancement of Fπþ
V;2;B but

also because Fπþ
V;2;L is enhanced by F−2

π in the ξ-expansion.

It turns out, however, that Fπþ
V;2 is a reasonably small

correction—at most ∼15% at ml ¼ ml;phys and
t ∼ −ð300 MeVÞ2. It decreases towards smaller t because
of the vector current conservation Fπþ

V ð0Þ ¼ Fπþ
V;0 ¼ 1.

We observe in Fig. 28 that the NNLO contribution is
even smaller in the whole region of M2

π , M2
K , and t.

Figure 27 shows that the analytic term Fπþ
V;4;C is the largest

NNLO contribution at the largest ml. The first two terms in

Eqs. (75)–(76) largely contribute to Ffπþ;Kþg
V;4;C , because we

simulate jtj ≲M2
π;M2

K , and the coefficients crπþ;πt, c
r
πþ;Kt,

and crt2 are of the same order. Towards the chiral limit, these
terms are suppressed by the NG boson masses,M2

π andM2
K ,

and hence Fπþ
V;4 decreases, whereas Fπþ

V;2 increases in this

limit. This is why the magnitude of Fπþ
V;4=jFπþ

V;2j rapidly
decreases at smaller ml as shown in the bottom panels of
Fig. 28. Namely, the convergence between NNLO and
NLO is largely improved towards the chiral limit.
While Fπþ

V;4=jFπþ
V;2j≳ 0.5 at the largest ml, we do not

expect large N3LO or even higher order corrections. We
note that around our largest jtj ∼ ð300 MeVÞ2, the NNLO
correction Fπþ

V;4 is statistically insignificant: namely, it has
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FIG. 25. Chiral extrapolations of Fπþ
V (top left panel), FKþ

V (top right panel) and FK0

V (bottom panel) based on NLO SU(3) ChPT.
Triangles and thin lines show our data and their fit curves atms ¼ 0.080. We also plot the fit curve at the physical point ðml;phys; ms;physÞ
by the thick lines. Note that there is no tunable parameter for FK0

V at NLO.

S. AOKI et al. PHYSICAL REVIEW D 93, 034504 (2016)

034504-20



≳50% statistical error. Towards t ¼ 0, the error decreases
but its central value also decreases due to the vector current
conservation: at jtj≲ ð150 MeVÞ2, for instance, Fπþ

V;4 is a
subpercent correction with the statistical accuracy of
≳30%. We therefore expect that even smaller N3LO
correction is insignificant within our accuracy, and con-
clude that our data of Fπþ

V are reasonably well described by
NNLO SU(3) ChPT.

A comparison with Figs. 18 and 19 suggests that the
convergence of the chiral expansion of Fπþ

V is not quite
different between SU(2) and SU(3) ChPT.
The right panels of Figs. 27 and 28 suggest similar

convergence properties for FKþ
V , which involves the strange

quarks as the valence degree of freedom in contrast to Fπþ
V .

This is mainly because the NLO contribution FKþ
V;2 is

dominated by the analytic term FKþ
V;2;L, which mildly
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FIG. 26. Chiral extrapolations of Fπþ
V (top panels), FKþ

V (middle panels), and FK0

V (bottom panels) based on NNLO SU(3) ChPT. The
left and right panels show our data at ms ¼ 0.080 and 0.060. In the left panel for ms ¼ 0.080 ∼ms;phys, we also plot the fit curve at the
physical point ðml;phys; ms;physÞ by the thick lines.
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depends on ml and ms only through the factor F−2
π . At

NNLO, in addition, a large part of FKþ
V;4 is composed of the

analytic term FKþ
V;4;C, and the coefficients in Eqs. (75)–(76)

for Fπþ
V and FKþ

V are of the same magnitude, namely,
crπþ;πt ≈ crKþ;πt and crπþ;Kt ≈ crKþ;Kt.
Interestingly, we observe that the charged meson vector

form factors, Fπþ
V and FKþ

V , are dominated by the NLO
analytic term. A comparison between the analytic and loop
terms in ChPT formulas leads to a naive order estimate
Lr
i ¼ Oðð4πÞ−2Þ ¼ Oð6 × 10−3Þ and Cr

i ¼ Oðð4πÞ−4Þ ¼
Oð4 × 10−5Þ [51]. Our fit results are roughly consistent
with this order estimate, suggesting that the magnitude of

the analytic terms Ffπþ;Kþg
V;2;L and Ffπþ;Kþg

V;4;C is not unexpect-
edly large, but loop terms are small. We in fact observe a
large cancellation among the two-loop diagrams, possibly

to satisfy Ffπþ;Kþg
V;4;B ð0Þ ¼ 0 required from the vector current

conservation.
The neutral kaon form factor FK0

V is the difference
between the light and strange quark current contributions
as seen in Eq. (32). While the LO and NLO analytic terms

dominate Ffπþ;Kþg
V , those for FK0

V , namely FK0

V;0 and FK0

V;2;L,

vanish even at t ≠ 0. As a result, FK0

V shows much poorer

convergence than Ffπþ;Kþg
V as examined in Figs. 29 and 30.

There is only the parameter-free term FK0

V;2;B within NLO.
At the largest ml, this term is rather small compared to our
simulation results, and hence the large part of FK0

V is
composed of higher-order corrections FK0

V;4 þ FK0

V;6.

However, FK0

V;2;B increases as we approach to ml;phys with
ms held fixed. This is in accordance with the VMD
hypothesis (35): larger FK0

V with larger Mϕ −Mρ. As a
result, the convergence is rapidly improved towards the
physical point, where both NNLO and N3LO corrections
become small compared to the leading term FK0

V;2.

We also note that the large N3LO contributions FK0

V;6 may
be partly attributed to the fact that the analytic NNLO and
N3LO contributions, FK0

V;4;C and FK0

V;6, are difficult to
distinguish with our simulation setup, and hence crK0 in
Table XIV is poorly determined. A better determination of

crK0 and dK0 may need simulations with a wider region and
better resolution of Mπ . We leave this for future work.
We also decompose the charge radii into the LEC-

dependent and -independent terms as

hr2iPV ¼ hr2iPV;2 þ hr2iPV;4 þ hr2iPV;6; ð87Þ

hr2iPV;2 ¼ hr2iPV;2;L þ hr2iPV;2;B;
hr2iPV;4 ¼ hr2iPV;4;L þ hr2iPV;4;C þ hr2iPV;4;B; ð88Þ

where P ¼ πþ, Kþ, or K0. The NLO terms are given
by [14]

hr2iπþV;2;L ¼ hr2iKþV;2;L ¼ 12

F2
π
Lr
9; hr2iK0

V;2;L ¼ 0; ð89Þ

hr2iπþV;2;B ¼ −
1

2NF2
π

�
2 ln

�
M2

π

μ2

�
þ ln

�
M2

K

μ2

�
þ 3

�
; ð90Þ

hr2iKþ
V;2;B ¼ −

1

2NF2
π

�
ln

�
M2

π

μ2

�
þ 2 ln

�
M2

K

μ2

�
þ 3

�
; ð91Þ

hr2iK0

V;2;B ¼ hr2iKþ
V − hr2iπþV ¼ 1

2NF2
π
ln

�
M2

π

M2
K

�
: ð92Þ

The higher-order analytic terms are obtained straight-
forwardly from Eqs. (75)–(77) and (86) through the
definition (3)

F4
πhr2iπþV;4;C ¼ −24ðcrπþ;πtM2

π þ 2crπþ;KtM
2
KÞ; ð93Þ

F4
πhr2iKþ

V;4;C ¼ −24ðcrKþ;πtM
2
π þ crKþ;KtM

2
KÞ; ð94Þ

F4
πhr2iK0

V;4;C ¼ −16crK0ðM2
K −M2

πÞ ð95Þ

and

hr2iπþV;6 ¼ hr2iKþ
V;6 ¼ 0;

F6
πhr2iK0

V;6 ¼ 6dK0M2
πðM2

K −M2
πÞ: ð96Þ

The NNLO nonanalytic terms FP
V;4;L þ FP

V;4;B have rather
complicated expression, and are not large as discussed
above. We therefore do not derive an explicit formula for
the corresponding terms for the radii hr2iPV;4;L þ hr2iPV;4;B,
but estimate them by taking numerical derivative of
FP
V;4;L þ FP

V;4;B with respect to t.
The chiral extrapolation of the pion charge radius hr2iπþV

is shown in the left panel of Fig. 31. In Sec. III B, we
estimate hr2iπþV at the simulation points by assuming the
phenomenological t dependence Eq. (36). These values are

reproduced by our simultaneous chiral fit of Ffπþ;Kþ;K0g
V

reasonably well. This does not necessarily hold true: the

TABLE XIV. Numerical results of chiral fit based on NNLO
SU(3) ChPT. LECs are the values at the renormalization scale
μ ¼ Mρ. The first error is statistical, and the second is systematic
due to the choice of the input Lr

f1;…;5g. We also quote crKþ;πt and

crKþ;Kt calculated using Eqs. (84)–(85).

Lr
9 × 103 crπþ;πt × 105 crπþ;Kt × 105 crt2 × 105

4.6ð1.1Þðþ0.1
−0.5Þ −1.95ð84Þðþ38

−21Þ −1.4ð1.2Þðþ0.1
−0.7Þ −6.4ð1.1Þð0.1Þ

crK0 × 105 dK0 × 107 crKþ;πt × 105 crKþ;Kt × 105

0.15ð62Þðþ12
−7 Þ −37ð12Þð2Þ −1.3ð1.2Þðþ0.1

−0.7Þ −3.4ð1.9Þðþ0.1
−0.3Þ
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nonanalytic chiral behavior of Fπþ
V may not be well

described by our simple assumption (36), which is essen-
tially a low-order polynomial in t in our region jtj ≪ M2

ρ.
The reasonable consistency is partly because Fπþ

V is largely
dominated by the analytic terms Fπþ

V;2;L þ Fπþ
V;4;C. In fact, the

right panel of the same figure shows that hr2iπþV is also
dominated by the analytic terms hr2iπþV;2;L þ hr2iπþV;4;C. This
supports our strategy of the chiral fit: namely, we determine

Lr
9 and Oðp6Þ couplings appearing in these large analytic

terms from our simulations, whereas other Lr
i ’s in the small

loop corrections are fixed to the phenomenological
estimate.
More importantly, the value extrapolated to the physical

point is in excellent agreement with the experimental value.
The enhancement of the NLO chiral logarithm is important
for this agreement. It is however partly compensated by the
decrease of the NNLO contribution, similar to the analysis
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FIG. 27. LEC-(in)dependent NLO and NNLO contributions in our chiral fit based on NNLO SU(3) ChPT. The left and right panels
show data for Fπþ

V and FKþ
V , whereas top, middle, and bottom panels are for ðml;msÞ ¼ ð0.050; 0.080Þ, (0.015,0.080), and the physical

point ðml;phys; ms;physÞ, respectively.
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in SU(2) ChPT. The logarithmic singularity is therefore
difficult to directly observe at our simulation region
of Mπ ≳ 300 MeV.
We also observe good agreement for the charged kaon

radius between simulation results and the experimental

value hr2iKþ
V ¼ 0.314ð35Þ fm2 [53] as plotted in the left

panel of Fig. 32. A comparison of the right panels of
Figs. 31 and 32 suggests that the difference between hr2iKþ

V

and hr2iπþV is mainly due to the suppression of the NLO
chiral logarithms in Eqs. (90)–(91), and because the NNLO
term FKþ

V;4;L becomes negative near the physical point with
our choice of the input Lr

f1;…;5g.

-0.10 -0.05 0.00

t  [GeV
2
]

0.00

0.10

0.20
|F

V
,2

π+ (t)
|  

/
F

V

π+ (t)
m

l
 = 0.050, m

s
 = 0.080

m
l
 = 0.015, m

s
 = 0.080

m
l
 = m

l,phys
, m

s
 = m

s,phys

NNLO SU(3) ChPT + N
3
LO analytic

-0.10 -0.05 0.00

t  [GeV
2
]

0.00

0.10

0.20

|F
V

,2

K
+

(t
)| 

 /
F

V

K
+

(t
)

m
l
 = 0.050, m

s
 = 0.080

m
l
 = 0.015, m

s
 = 0.080

m
l
 = m

l,phys
, m

s
 = m

s,phys

NNLO SU(3) ChPT + N
3
LO analytic

-0.10 -0.05 0.00

t  [GeV
2
]

0.00

0.10

0.20

|F
V

,4

π+ (t)
|  

/
F

V

π+ (t)

m
l
 = 0.050, m

s
 = 0.080

m
l
 = 0.015, m

s
 = 0.080

m
l
 = m

l,phys
, m

s
 = m

s,phys

NNLO SU(3) ChPT + N
3
LO analytic

-0.10 -0.05 0.00

t  [GeV
2
]

0.00

0.10

0.20

|F
V

,4

K
+

(t
)| 

 /
F

V

K
+

(t
)

m
l
 = 0.050, m

s
 = 0.080

m
l
 = 0.015, m

s
 = 0.080

m
l
 = m

l,phys
, m

s
 = m

s,phys

NNLO SU(3) ChPT + N
3
LO analytic

-0.10 -0.05 0.00

t  [GeV
2
]

-1.0

-0.5

0.0

F
V

,4

π+ (t )
  /

  |
F

V
,2

π+ (t)
|

m
l
 = 0.050, m

s
 = 0.080

m
l
 = 0.015, m

s
 = 0.080

m
l
 = m

l,phys
, m

s
 = m

s,phys

NNLO SU(3) ChPT + N
3
LO analytic 

-0.10 -0.05 0.00

t  [GeV
2
]

-1.0

-0.5

0.0

F
V

,4

K
+

(t
) 

 / 
 |F

V
,2

K
+

(t
)|

m
l
 = 0.050, m

s
 = 0.080

m
l
 = 0.015, m

s
 = 0.080

m
l
 = m

l,phys
, m

s
 = m

s,phys

NNLO SU(3) ChPT + N
3
LO analytic

FIG. 28. Convergence of chiral expansion of Fπþ
V (left panels) and FKþ

V (right panels) near ms;phys. Top panels: ratio of the NLO

contribution to the total jFfπþ;Kþg
V;2 j=Ffπþ;Kþg

V . The dot-dashed (dashed) line shows data at ml ¼ 0.050 (0.015) and ms ¼ 0.080, whereas

the solid line is at ðml;phys; ms;physÞ. Middle panels: ratio of the NNLO contribution to the total jFfπþ;Kþg
V;4 j=Ffπþ;Kþg

V . Bottom panels: ratio

of the NNLO and NLO contributions Ffπþ;Kþg
V;4 =jFfπþ;Kþg

V;2 j.
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Our chiral extrapolation also reproduces the experi-
mental value of the neutral kaon radius hr2iK0

V ¼
−0.077ð10Þ fm2 as shown in Fig. 33. Similar to FK0

V , the
parameter-free leading term hr2iK0

V;2 becomes the largest
contribution only at small pion massesMπ ≲ 300 MeV. As
already mentioned, the pion radius hr2iπþV is considered as a
good quantity to observe the one-loop chiral logarithm.
We note that hr2iK0

V has no analytic term at this order
(hr2iK0

V;2;L ¼ 0) and could be another good candidate
provided that one simulates Mπ below 300 MeV with
ms held fixed at a rather heavier value.
Since we simulate at a single lattice spacing, we assign

the discretization error to our numerical results by an order
counting OððaΛQCDÞ2Þ ∼ 8%. At the renormalization scale
μ ¼ Mρ, we obtain

Lr
9 ¼ 4.6ð1.1Þ

�þ0.1
−0.5

�
ð0.4Þ × 10−3; ð97Þ

crt2 ¼ −6.4ð1.1Þð0.1Þð0.5Þ × 10−5: ð98Þ

These are in good agreement with Lr
9 ¼ 5.9ð0.4Þ × 10−3

and crt2 ¼ Cr
88 − Cr

90 ¼ −5.5ð0.5Þ × 105 obtained from a

phenomenological analysis of the experimental data of Fπþ
V

in NNLO SU(3) ChPT [15]. Other Oðp6Þ couplings,

crπþ;πt ¼ −1.95ð84Þ
�þ38

−21

�
ð16Þ × 10−5; ð99Þ

crπþ;Kt ¼ −1.4ð1.2Þ
�þ0.1
−0.7

�
ð0.1Þ × 10−5; ð100Þ

crKþ;πt ¼ −1.3ð1.2Þ
�þ0.1
−0.7

�
ð0.1Þ × 10−5; ð101Þ

crKþ;Kt ¼ −3.4ð1.9Þ
�þ0.1
−0.3

�
ð0.3Þ × 10−5; ð102Þ

crK0 ¼ 0.15ð62Þ
�þ12

−7

�
ð1Þ × 10−5; ð103Þ

are poorly known phenomenologically, and we obtain

dK0 ¼ −37ð12Þð2Þð3Þ × 10−7 ð104Þ

for the coefficient of the higher-order correction to FK0

V .
Our numerical results for the light meson charge radii,
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FIG. 29. Same as Fig. 27, but for FK0

V .
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FIG. 30. Convergence of chiral expansion of FK0

V . Top left, top right, and bottom panels show jFK0

V;2j=FK0

V , jFK0

V;4j=FK0

V , and jFK0

V;6j=FK0

V ,
respectively. The dot-dashed (dashed) line shows data at ml ¼ 0.050 (0.015) and ms ¼ 0.080, whereas the solid line is at
ðml;phys; ms;physÞ. Note that FK0

V;0 ¼ 0 and the chiral expansion starts from FK0

V;2.
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FIG. 31. Left panel: pion charge radius hr2iπþV as a function ofM2
π . The solid line represents hr2iπþV atms ¼ 0.080 reproduced from our
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hr2iπþV ¼ 0.458ð15Þ
�þ9

−1

�
ð37Þ fm2; ð105Þ

hr2iKþ
V ¼ 0.380ð12Þ

�þ7

−1

�
ð31Þ fm2; ð106Þ

hr2iK0

V ¼ −0.055ð10Þð1Þð4Þ fm2; ð107Þ

are in reasonable agreement with experiment.

VI. CONCLUSIONS

In this article, we have presented our detailed study
of the chiral behavior of the light meson EM form
factors. Chiral symmetry is exactly preserved in our
simulations for a direct comparison with continuum
ChPT at NNLO. Another salient feature is that we
precisely calculate the EM form factors by using the
all-to-all quark propagator.
Our analyses in SU(2) and SU(3) ChPT suggest

reasonable convergence of the NNLO chiral expansion

of the charged meson EM form factors Ffπþ;Kþg
V . This is

mainly because the nontrivial correction Ffπþ;Kþg
V − 1 is

largely dominated by the NLO analytic term, which
mildly depends on the quark masses. This term, how-
ever, vanishes in the neutral kaon form factor FK0

V .
Although the corresponding chiral expansion shows
poorer convergence at our simulated pion masses
Mπ ≳ 300 MeV, it is rapidly improved towards the
physical pion mass.
The NNLO tree diagrams with the Oðp6Þ couplings

also tend to give rise to a large part of the NNLO
contribution. We observe small but non-negligible loop
corrections, which have nonanalytic dependence on the
quark masses and momentum transfer. These confirm
the importance of the first-principle determination of the
relevant LECs based on the NNLO ChPT.
Our results for the LECs l̄r6, L

r
9 and crt2 ¼ Cr

88 − Cr
90 are

consistent with phenomenological estimates, and we also
observe a reasonable agreement of the charge radii with
experiment.
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FIG. 32. Same as Fig. 31, but for FKþ
V .
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FIG. 33. Same as Fig. 31, but for FK0
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Our results for the phenomenologically poorly known
Oðp6Þ couplings would be useful for studying different
observables based on ChPT. An interesting application is
the form factor of the K → πlν semileptonic decays,
since its vector form factor fKπþ ðtÞ shares many Oðp6Þ
couplings with the EM form factors [30]. These decays
provide a precise determination of the Cabibbo-
Kobayashi-Maskawa matrix element jVusj through a
precision lattice calculation of the normalization
fKπþ ð0Þ. A comparison of the form factor shape with
experiment can demonstrate the reliability of such a
precise calculation. Our results of the LECs may enable
us to study the normalization and shape simultaneously
based on NNLO SU(3) ChPT.
Our analysis suggests that the charge radii show the

one-loop chiral logarithm belowMπ ≈ 300 MeV. Pushing
simulations towards such small pion masses is interesting
for unambiguous observation of the logarithmic singu-
larity in QCD. Extension towards finer lattices is also
important, because the largest uncertainty in our numeri-
cal results is the discretization error. Simulations in these
directions are underway [59] by using a computationally
cheaper fermion formulation with good chiral sym-
metry [60].
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APPENDIX: ONE-LOOP INTEGRALS
IN SU(3) CHPT

We summarize the expression of the one-loop integral
functions in SU(3) ChPT in this section. The reader is

referred to the original paper [15] for more detailed
discussions.
The one-loop integral functions are defined as

AðM2
1Þ ¼

1

i

Z
ddk
ð2πÞd

1

k2 −M2
1

; ðA1Þ

BðM2
1;M

2
2; tÞ ¼

1

i

Z
ddk
ð2πÞd

1

ðk2 −M2
1Þfðk − qÞ2 −M2

2g
;

ðA2Þ

BμðM2
1;M

2
2; tÞ ¼

1

i

Z
ddk
ð2πÞd

kμ
ðk2 −M2

1Þfðk − qÞ2 −M2
2g

;

ðA3Þ

BμνðM2
1;M

2
2; tÞ ¼

1

i

Z
ddk
ð2πÞd

kμkν
ðk2 −M2

1Þfðk − qÞ2 −M2
2g

;

ðA4Þ

BμναðM2
1;M

2
2; tÞ ¼

1

i

Z
ddk
ð2πÞd

kμkνkα
ðk2 −M2

1Þfðk − qÞ2 −M2
2g

;

ðA5Þ

where q2 ¼ t and d ¼ 4 − 2ϵ. The scalar function A is
needed to evaluate diagrams such as shown in Fig. 34(a),
and hence does not depend on t. The t-dependent “B”
functions are needed for Fig. 34(b).
The Lorentz decomposition of the vector and tensor

functions is given as

BμðM2
1;M

2
2; tÞ ¼ qμB1ðM2

1;M
2
2; tÞ; ðA6Þ

BμνðM2
1;M

2
2; tÞ ¼ qμqνB21ðM2

1;M
2
2; tÞ

þ gμνB22ðM2
1;M

2
2; tÞ; ðA7Þ

BμναðM2
1;M

2
2; tÞ ¼ qμqνqαB31ðM2

1;M
2
2; tÞ þ ðqμgνα þ qνgαμ þ qαgμνÞB32ðM2

1;M
2
2; tÞ: ðA8Þ

The B functions in the right-hand side are expressed in terms of the scalar functions A and B,

(a) (b)

FIG. 34. Example of one-loop diagrams involving momentum-
transfer independent (a) and dependent loop integrals (b).
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with Δ12 ¼ M2
1 −M2

2. The pole, finite, and OðϵÞ parts of the one-loop integrals relevant to the EM form factors can be
expressed in terms of those of A and B functions,

AðM1Þ2 ¼ ApoleðM2
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where

Σ12 ¼ M2
1 þM2

2; ðA20Þ

ν212 ¼ t2 − 2Σ12tþ Δ2
12; ðA21Þ

λ0 ¼
1

ϵ
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ϵ
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The one-loop contributions in Eqs. (69)–(71) are expressed in terms of the finite parts Ā and B̄22.
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