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Automated N-Glycosylation 
Sequencing Of Biopharmaceuticals 
By Capillary Electrophoresis
Marton Szigeti   1,2 & Andras Guttman1,3

Comprehensive analysis of the N-linked carbohydrates of glycoproteins is gaining high recent interest in 
both the biopharmaceutical and biomedical fields. In addition to high resolution glycosylation profiling, 
sugar residue and linkage specific enzymes are also routinely used for exoglycosidase digestion based 
carbohydrate sequencing. This latter one, albeit introduced decades ago, still mostly practiced by 
following tedious and time consuming manual processes. In this paper we introduce an automated 
carbohydrate sequencing approach using the appropriate exoglycosidase enzymes in conjunction with 
the utilization of some of the features of a capillary electrophoresis (CE) instrument to speed up the 
process. The enzymatic reactions were accomplished within the temperature controlled sample storage 
compartment of a capillary electrophoresis unit and the separation capillary was also utilized for 
accurate delivery of the exoglycosidase enzymes. CE analysis was conducted after each digestion step 
obtaining in this way the sequence information of N-glycans in 60 and 128 minutes using the semi- and 
the fully-automated methods, respectively.

The rapidly increasing usage of glycoproteins as biopharmaceutical products has created a demand for fast, effi-
cient and reliable bioanalytical techniques for comprehensive glycosylation analysis, including carbohydrate 
sequencing1. One of the fastest growing groups of these new generation protein therapeutics are monoclonal 
antibodies (mAbs) and fusion proteins containing the Fc portion of mAbs. MAbs, in most instances, possess a 
conserved N-linked glycosylation site on each of the CH2 domains of the Fc portion of the heavy chain of the mol-
ecule, but may also possess additional attached sugar structures at the Fab domains2. Increasing evidence shows 
that the carbohydrate moieties of biotherapeutics play important roles in their biological activity, physicochem-
ical properties, and effector functions3. Even minor changes in these carbohydrate structures (linkage, position 
and site occupancy) can influence the effectivity of the products. The extremely high diversity of glycosylation 
makes structural elucidation of these complex carbohydrate molecules very challenging and in most instances 
only the combination of various methods can provide the desired information4. The most frequently used ana-
lytical methods for the structural elucidation of complex carbohydrates include capillary electrophoresis (CE), 
nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and liquid chromatography (LC), 
often combined with with each other and/or with exoglycosidase digestion techniques5.

Attempts to sequence complex glycan molecules started in the late eighties in the last century by Khorlin et al., 
who used a variety of exoglycosidase enzymes and high performance liquid chromatography (HPLC) to analyze 
the structures of fluorophore labeled acid desialylated fetuin6. A detailed method was published later on micros-
cale sequencing of N-linked carbohydrates released by hydrazinolysis and separated by chromatography7. Lectins 
in conjunction with exoglycosidases were also utilized for structural analysis of carbohydrates8. Characterization 
of protein glycosylation by exoglycosidase digestion and laser desorption mass spectrometry was described by 
several groups in the mid nineties9–11. At the same time, the first capillary electrophoresis based oligosaccharide 
sequencing was reported by Guttman12.

For the analysis of biological samples, Rudd et al. reported the release and analysis of sub-picomole levels 
of N-glycans directly from SDS PAGE gel bands utilizing MS and HPLC13, 14. Mechref and Novotny used mass 
spectrometric mapping to sequence N-linked carbohydrates from submicrogram amounts of glycoproteins15, 
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while others applied ESI time-of-flight MS16, 17. Callewaert and coworkers used a multicapillary DNA sequencing 
instrument for large scale glycome mapping18. A two-dimensional array was applied by Tzur et al. for simultane-
ous sequencing of N- and O-linked carbohydrates using various lectins immobilized to a MALDI plate in the first 
dimension and sequential exoglycosidase digestion in the second dimension19.

Reusch et al. compared seven non-MS methods aiming Fc-glycosylation analysis and glycan structure iden-
tification of mAbs using multiple CE and HPLC platforms with various separation and labeling approaches20. A 
similar comparative study was organized by Lauc and coworkers aiming MS based methods for high throughput 
glycosylation analysis21. Based on different separation techniques and approaches on glycosylation analysis, the 
MIRAGE (minimum information required for a glycomics experiment) initiative was founded to establish guide-
lines for qualitative and quantitative results obtained by diverse types of glycomics analyses22. In addition, critical 
quality attributes (CQA) were established to ensure high quality and efficient results on Fc-linked glycan analysis 
and structural assignment23.

An early attempt towards automation was reported by Holland’s group, suggesting online glycan sequencing 
by phosphylipid assisted capillary electrophoresis24, 25. Packer and coworkers published a detailed protocol on 
structural analysis of N- and O-glycans using various techniques26. A recent report showed separation of N-linked 
carbohydrates from eight commercial recombinant mAb drugs by porous graphitized carbon (PGC) chromatog-
raphy on a microchip in conjunction with electrospray ionization hybrid quadrupole time-of-flight (ESI-Q-TOF) 
MS that allowed to establish a glycan library of over 70 carbohydrate structures27. Special software toolsets were 
also developed for targeted use of exoglycosidase digestions in structural analysis of carbohydrates28, 29.

In this paper, we report on a novel automated approach for N-glycan sequencing of biopharmaceuticals using 
instrumental capillary electrophoresis. The sample compartment of the CE unit was used as a temperature con-
trolled reaction chamber for the enzyme digestion steps accommodating both the semi- and fully-automated 
approaches. The separation capillary played a dual role as in addition to the CE analysis of the analyte molecules it 
was also utilized to deliver the appropriate enzymes into the reaction mixture in case of the fully automated setup.

Results
In this study, rapid and automated exoglycosidase digestion based carbohydrate sequencing of human immuno-
globulin G (IgG) and Enbrel (etanercept) fusion protein N-glycans was performed by utilizing the sample storage 
compartment of the CE instrument for reaction temperature control and the separation capillary as enzyme deliv-
ery device. Accurate temperature setting of the compartment allowed rapid exoglycosidase digestion reactions 
performed in the required temperature range of 40 °C to 60 °C. Commonly used approaches for glycan structure 
identification included both serial or array based exoglycosidase digestion of complex glycan pools by sequen-
tially cutting off the individual sugar residues from the non-reducing end of the carbohydrate structures (in our 
case including sialic acid, galactose and N-acetylglucosamine residues). The resulting reaction products were 
identified by the CE migration time shifts of the affected peaks after each digestion step.

Please note that in our work the otherwise frequently used core fucosylation digestion was not included to 
avoid the highly structure specific results caused by the possible steric hindrance of the enzyme that might occur 
during the cleaving reaction. As a matter of fact, core fucosylated and non-core fucosylated structures can be 
readily distinguished by their CE migration time differences and the corresponding glucose unit (GU) unit val-
ues. Thus, core fucosylation removal was apparently not necessary for N-glycan sequence analysis of the bio-
pharmaceuticals examined (IgG and Etanercept). Nonetheless, non-core fucosylation – if present –, as well as 
high mannose structures can be readily identified using GU value calculation from the glycan profile and search 
in the relevant databases (NIBRT – glycobase.nibrt.ie, HLBS – www.hlbs.org). The resulted electropherograms 
were aligned using co-injected bracketing standards (DP2 and DP15) and the GU values of the peaks were cal-
culated after each sequencing step using our earlier published triple internal standard approach30. The actual 
sugar residue losses were identified from the IgG and Enbrel glycans by their GU shifts corresponding to the 
monosaccharides released as shown in Table 1. Their positional and anomeric information were specified by 
the exoglycosidases used. The shift values were considered to calculate and build up the glycan structures in the 
sample after all enzymes applied and the reaction products were analyzed by CE4.

N-linked glycans were first enzymatically removed from the IgG molecules by peptide N glycanase F (PNGase 
F) digestion, then labeled with aminopyrene trisulfonate (APTS), purified with magnetic beads and eluted with 
DDI water prior to CE-LIF analysis, as published earlier by Váradi et al.31. Capillary electrophoresis profiling was 
done before and after each sequencing reaction steps. The exoglycosidase digestion reactions (sequencing) were 
applied by using the appropriate enzymes to remove the corresponding individual sugar residues from the glycan 
pool for structural identification. Albeit, pH and temperature optimums of the various exoglycosidase enzymes 
may slightly vary, in our case the glycans were kept in water after our earlier described magnetic bead based 
purification process31, and optimized the reaction temperature without additional buffering steps (i.e., buffer 
exchange or addition). Sequencing reaction temperatures were controlled in the sample storage compartment of 
the capillary electrophoresis instrument up to 60 °C. A wireless thermometer was used to record the actual reac-
tion temperature during the study. Despite of the possible conductive heat transfer through the air in the com-
partment, efficient temperature control was achieved even at 60 °C. A minimal temperature drop of up to 4 °C was 
observed during the injection process when the compartment door was open. However, the target temperature 
was reached again within a few minutes.

Please note that exoglycosidase digestion reactions are conventionally performed overnight at 37 °C, requiring 
one day for array based methods and several days in the serial enzyme reaction approach to complete the entire 
carbohydrate sequencing process. Utilizing the sample compartment to set the enzymatic digestion temperature 
in the reaction vials offered the following advantages for our CE based automated glycan sequencing approach: 
(i) The actual digestion and separation temperatures were decoupled.; (ii) Since the sequencing reactions were 
not conducted within the separation capillary the entire effective column length was available for separation also 
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offering the user full control over separation parameter adjustments. (iii) The separation method was not lim-
ited to the use of special buffer systems and additional reaction plugs (different pH, salt and concentration) for 
on-column digestion. (iv) Provided the opportunity to follow the efficiency of the enzymatic reaction steps with 
in situ measurement of the samples during the processes, by simply injecting a small portion of the reaction mix-
ture into the separation capillary; and finally (v) The developed method was simple, robust and completely system 
independent, thus, easily applicable for routine use. It is important to note that besides capillary electrophoresis, 
other liquid phase separation techniques (e.g., LC) could be also used provided accurate temperature control in 
the sample storage compartment in the given temperature range and the option of precise exoglycosidase enzyme 
delivery.

Effect of temperature.  The bottom trace in Fig. 1 shows the CE-LIF separation of the APTS labeled IgG 
N-glycan pool. The upper electropherograms compare the digestion performance of the β-galactosidase enzyme 
on the desialylated samples (control trace) at different temperatures using the incubation times (elapsed time) 
shown on the traces. First, the sample compartment temperature was set at 40 °C. At this temperature the 
β-galactosidase enzyme exhibited high cleavage capacity towards the FA2(3)G1, FA2B(6)G1 and FA2G2 struc-
tures (peaks 9, 10 and 11, respectively)(traces with 4, 16, 28 and 1 h 16 min elapsed times). However, the fact that 
peaks corresponding to FA2(6)G1 (peak 8) and FA2BG2 (peak 12) were still detectable even after 76 minutes, 
suggested that the digestion process for these structures was not complete at 40 °C. Thus, the reaction tempera-
ture was increased to 50 °C at the elapsed time point of 1 h 20 min that apparently accommodated the comple-
tion of the β-galactosidase digestion process for all structures within the remaining 16 minutes (1 h 36 min total 
elapsed time). The arrows in the right side of Fig. 1 depict other possible reaction routes showing that conducting 
the entire β-galactosidase digestion step at 50 °C or 60 °C, complete β-galactose removal were achieved in 45 or 
30 minutes, respectively. Similar reaction temperature optimization was accomplished for the other two enzymes 
(sialidase and hexosaminidase) applied in this study to determine the shortest time required for complete removal 
of the corresponding sugar residues.

Peak Structure
Migration 
time (min)

GU 
value

Monoisotopic 
Mass [Da] 
NIBRT

Human IgG glycan pool (Fig. 2; 25 °C)

1 FA2G2S2 3.224 5.00 2368.84

2 FA2BG2S2 3.253 5.14 2571.92

3 FA2(3)G1S1 3.451 6.04 1915.69

4 FA2G2S1 3.605 6.80 2077.75

5 FA2BG2S1 3.643 6.98 2280.83

6 FA2 3.781 7.69 1462.54

7 FA2B 3.885 8.23 1665.62

8 FA2(6)G1 3.990 8.76 1624.60

9 FA2(3)G1 4.057 9.11 1624.60

10 FA2B(6)G1 4.070 9.18 1827.68

11 FA2G2 4.262 10.16 1868.70

12 FA2BG2 4.336 10.55 1989.73

13 F(6)M3 3.567 6.75 1056.39

Enbrel glycan pool (Fig. 3; 30 °C)

1 A2G2S2 2.767 5.18 2222.78

2 FA2G2S2 2.825 5.50 2368.84

3 FA2(6)G1S1 2.899 5.90 1915.69

4 FA2(3)G1S1 2.991 6.42 1915.69

5 A2G2S1 3.030 6.65 1931.69

6 A2 3.053 6.78 1316.49

7 M5 3.072 6.89 1234.43

8 FA2G2S1 3.119 7.17 2077.75

9 FA2 3.214 7.75 1462.54

10 FA2(6)G1 3.390 8.82 1624.60

11 FA2(3)G1 3.446 9.16 1624.60

12 A2G2 3.464 9.27 1640.59

13 FA2G2 3.619 10.22 1868.70

14 M3 2.737 4.94 910.33

15 F(6)M3 2.873 5.67 1056.39

Table 1.  Identified migration time and GU values of IgG and Enbrel N-glycan pools at the corresponding 
separation temperatures.
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Semi-automated glycan sequencing.  Two techniques were developed utilizing the temperature con-
trolled sample storage compartment as incubation chamber for automated exoglycosidase digestion based oligo-
saccharide sequencing. The semi-automated approach (Fig. 2, Panel A) required three parallel reaction mixtures 
with the relevant array of enzymes, i.e., sialidase, sialidase + galactosidase and sialidase + galactosidase + hex-
osaminidase. The released and APTS labeled IgG N-glycan pool was used as control (Fig. 2, Panel B, bottom trace). 
The corresponding reagent mixtures (1.0 µL volume each) containing 5.0 mU Sialidase A, 5.0 mU Sialidase A + 25 
mU β-galactosidase and 5.0 mU Sialidase A + 25 mU β-galactosidase + 25 mM β-N-Acetyl-hexosaminidase, 
respectively, were added manually to the reaction tubes prior to the incubation step. The control and the three 
reaction mixtures were placed into the sample tray and incubated in the storage compartment at 60 °C. First, 
the undigested control sample was analyzed (12 min separation time) followed by the exoglycosidase enzyme 
array containing reaction mixtures after 12 minute (sialidase), 36 minute (sialidase + β-galactosidase) and 48 min-
ute (sialidase + β-galactosidase + β-N-Acetyl-hexosaminidase) digestion times as depicted in Fig. 2, Panel A. 
Additional incubation time was applied after sialidase digestion to ensure full galactosidase and hexosaminidase 
release. The semi-automated approach required 60 min total glycan sequencing time including the CE-LIF sepa-
rations. The resulting traces are shown in Fig. 2, Panel B.

Fully automated glycan sequencing.  The fully automated approach shown in Fig. 3, Panel A, on the 
other hand, required only one reaction vial, but consecutive capillary mediated delivery of the individual exo-
glycosidases. Small amounts of enzymes (5.0 µL) were placed in the nano vials in the outlet buffer trays of the 
capillary electrophoresis unit. After the initial CE-LIF analysis of the APTS labeled N-glycan pool of Enbrel 
(Control trace in Fig. 3, panel B), the separation capillary was used as an injection device to deliver the corre-
sponding enzymes required for the consecutive digestion reactions (1.0 µL from each that were achieved by using 
80 psi for 0.5 min in a 30 cm total length capillary with 50 µm ID). The incubation times used in this instance 
were 12, 28 and 28 minutes after Sialidase A, β-galactosidase and β-N-Acetyl-hexosaminidase addition. The reac-
tion mixture was automatically injected and analyzed by CE-LIF after each incubation step. During this fully 
automated process, the sample compartment temperature was first set to 40 °C for the sialidase treatment. After 
16 minutes, the temperature was increased to 60 °C using a 12 minute ramp time to accommodate the reactions 
of the other two enzymes and kept at that temperature until the end of the entire sequencing process (dotted line 
in Fig. 3A). This fully automated approach required 128 min total processing time because of the consecutive 
digestions steps. Figure 3, panel B shows the individual sequencing separation traces of the APTS labeled Enbrel 
glycan pool during the fully automated process injected at 28, 72 and 116 minutes from the reaction vial, prior 
to the pressure mediated delivery of the next exoglycosidases trough the separation capillary in reverse direction 
mode to initialize the individual sugar residue release reactions. Please note that in this instance the 30 °C separa-
tion temperature resulted in better resolution for the Enbrel glycans32, so all GU values and shifts were calculated 
accordingly (Table 1).

Discussion
This is the first paper describing, rapid semi- and fully-automated exoglycosidase digestion based carbohydrate 
sequencing utilizing the temperature control feature of the sample storage compartment of a capillary elec-
trophoresis instrument. The actual temperatures of the reaction mixtures were closely monitored during the 
sequencing process using a wireless thermometer. By optimizing the reaction parameters (temperature, enzyme 

Figure 1.  Reaction time and temperature optimization of the β-galactosidase digestion step on desialylated 
IgG N-glycans. Elapsed reaction times and the corresponding reaction temperatures are shown above the 
corresponding traces. Separation conditions: 20 cm effective length (30 cm total length, 50 µm ID) bare fused 
silica capillary; LIF detection (ex: 488 nm/em: 520 nm); 25 °C separation temperature; 30 kV (0.17 min ramp 
time) separation voltage in reversed polarity mode (1000 V/cm); Injection: 3.0 psi/5.0 min water −>3 kV/3.0 sec 
sample −>1.0 kV/1.0 sec bracketing standard.
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Figure 2.  Gantt chart of the semi-automated method (Panel A) and the resulting electropherograms (Panel 
B) of the exoglycosidase array based digestion approach for IgG N-glycan sequencing. Ⓢ Time point of sample 
injection; Ⓘ incubation time. Separation conditions were the same as in Fig. 1.

Figure 3.  Gantt chart of the fully automated method (Panel A) and the resulting electropherograms (Panel B) 
of the consecutive exoglycosidase digestion steps based sequencing of APTS labeled Enbrel N-glycans. Ⓢ Time 
point of sample injection, Ⓘ incubation time, and Ⓔ time points of exoglycosidase enzyme addition. The dotted 
line depicts the temperature profile of the sample compartment during the exoglycosidase digestion process. 
Separation conditions were the same as in Fig. 1, except temperature was set to 30 °C.
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concentration, incubation time), complete digestion of the individual sugar residues and CE analysis of the result-
ing product profiles were achieved in 60 minutes using the semi-automated and in a little over 2 hours by the fully 
automated glycan sequencing approaches. In contrast, using conventional methods to accomplish this task may 
take up to four days. Furthermore, the actual digestion and separation temperatures were decoupled resulting in 
no requirement of special buffer systems and processing the enzymatic reactions within the separation capillary, 
accommodating high-resolution glycan analysis.

Methods
Chemicals and Reagents.  Water (HPLC grade), acetonitrile (HPLC grade), 1 M NaBH3CN (in THF) and 
human immunoglobulin G (IgG) were from Sigma Aldrich (St. Louis, MO, USA). Enbrel (etanercept) was kindly 
provided by the Semmelweis University, Budapest, Hungary. Peptide N-glycosidase F (PNGase F) enzyme 
(200 mU) and the specific exoglycosidases of Sialidase A (α(2 → 3,6,8,9)R; ), β-galactosidase (Jack Bean; 
β(1 → 3,4,6)R; ) and β-N-Acetyl-hexosaminidase (Jack Bean; β(1 → 2,3,4,6)R; ) were from ProZyme 
(Hayward, CA, USA).

Capillary Electrophoresis.  Capillary electrophoresis measurements with laser induced fluorescence detec-
tion (CE-LIF) were performed on a PA800 Plus Pharmaceutical Analysis System (SCIEX, Brea, CA). Separations 
were accomplished in a 50 µm ID, 20 cm effective length (30 cm total length) bare fused silica (BFS) capillary. 
All CE separations were performed either at 25 °C or 30 °C by applying 30 kV (0.17 min ramp time) in reversed 
polarity mode (cathode at the injection side, anode at the detection side) resulting in 1000 V/cm electric field 
strength. A three stage sample injection was applied to accommodate field amplified sample introduction: (1) 
water at 5.0 psi for 5.0 sec; (2) sample at 3.0 kV for 3.0 sec; and (3) bracketing standard (DP2 and DP15) at 1.0 kV 
for 1.0 sec. Data acquisition and analysis was done using 32Karat software package (version 10.1, SCIEX).

Sample preparation and exoglycosidase digestion.  Immunoglobulin G1 (100 µg) and Enbrel 
(etanercept) (100 µg) were used for the experiments employing the Fast Glycan Labeling and Analysis Kit 
(SCIEX) for protein denaturation, enzymatic glycan release (using PNGase F, 2.5 mU), fluorophore labeling 
(8-aminopyrene-1,3,6-trisulfonate, APTS) and excess dye removal by magnetic beads. The sequencing (exoglyco-
sidase digestion) reactions were accomplished in the sample storage compartment of the PA 800 Plus instrument. 
The temperature of the compartment was adjusted according to the individual enzyme reaction requirement 
between 40 °C and 60 °C. An external wireless temperature sensor (±0.5 °C) was utilized to precisely follow the 
temperature of the sequencing reaction mixtures. Exoglycosidase digestions were performed by the addition 
of 1.0 µL of sialidase (5.0 mU), 1.0 µL of β-galactosidase (25 mU) and 1.0 µL of β-N-Acetyl-hexosaminidase 
(25 mU) to 50 µL of glycan sample containing reaction mixture (released from 100 µg glycoprotein), consecutively 
(full-automation) of in a premixed array (semi-automation).
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