
Journal of Physics: Conference Series

OPEN ACCESS

Silicene on Ag(111) : domains and local defects of
the observed superstructures
To cite this article: Haik Jamgotchian et al 2014 J. Phys.: Conf. Ser. 491 012001

 

View the article online for updates and enhancements.

Related content
Atomic structure of the
(

)R30° of silicene on Ag(111) surface
Hanna Enriquez, Abdelkader Kara,
Andrew J Mayne et al.

-

A comprehensive analysis of the (13 ×
13)R13.9° type II structure of silicene on
Ag(1 1 1)
H Jamgotchian, B Ealet, H Maradj et al.

-

A comprehensive study of the (23 ×
23)R30° structure of silicene on Ag(1 1 1)
H Jamgotchian, B Ealet, Y Colignon et al.

-

Recent citations
Firstprinciples studies of lithium adsorption
and diffusion on silicene with grain
boundaries
Xiao Wang et al

-

Interband  -like plasmon in silicene grown
on silver
A. Sindona et al

-

Spin and valley filter across line defect in
silicene
Sake Wang et al

-

This content was downloaded from IP address 193.6.136.39 on 28/04/2020 at 13:59

https://doi.org/10.1088/1742-6596/491/1/012001
http://iopscience.iop.org/article/10.1088/1742-6596/491/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/491/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/491/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/491/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/491/1/012004
http://iopscience.iop.org/article/10.1088/0953-8984/28/19/195002
http://iopscience.iop.org/article/10.1088/0953-8984/28/19/195002
http://iopscience.iop.org/article/10.1088/0953-8984/28/19/195002
http://iopscience.iop.org/article/10.1088/0953-8984/27/39/395002
http://iopscience.iop.org/article/10.1088/0953-8984/27/39/395002
http://dx.doi.org/10.1002/qua.25913
http://dx.doi.org/10.1002/qua.25913
http://dx.doi.org/10.1002/qua.25913
http://dx.doi.org/10.1103/PhysRevB.97.041401
http://dx.doi.org/10.1103/PhysRevB.97.041401
http://iopscience.iop.org/1882-0786/11/5/053004
http://iopscience.iop.org/1882-0786/11/5/053004
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssSsAkJjzf3W0Vv8pi-dp5Azc9klfNC5xRi5IhYNfNh9885_1bSMNDC0R17MSD2Cdh5LhpW7GQSAWfAAhIEdFLFXlLGI6g8BoGy_S9FB07iddZZ-mSztAm-8VFBLqfJUykSo1b-By_oiS2PUOfXm_nqzoTwuleALCTOyDh9AaFB9c8kctHmdidGpUri48z2jzuXfeR64wTFk32mkuLXSeS8l8v20Q2QW1PEZw8skrMWj2QBKnYJ&sig=Cg0ArKJSzJOoAqBJr9px&adurl=http://iopscience.org/books


Silicene on Ag(111) : domains and local defects of

the observed superstructures

Haik Jamgotchian1, Yann Colignon2, Bénédicte Ealet 1, Bence
Parditka2,3, Jean-Yves. Hoarau1, Christophe Girardeaux2, Bernard
Aufray1,a and Jean-Paul. Bibérian1
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Abstract. On Ag(111) substrate, the growth of a silicene layer (the equivalent of graphene
for silicon) gives rise to four main superstructures due to the epitaxy between the silicene
layer (honeycomb structure) and the Ag(111) substrate. Depending on both the substrate
temperature and the deposition rate, the following superstructures were observed: (4 × 4),
(
√

13 ×
√

13)R13.9◦ , (2
√

3 × 2
√

3)R30◦ and (
√

7 ×
√

7)R19.1◦. Each one corresponds to a
specific rotation of the silicene layer with respect to the silver substrate. In this paper we show
and discuss for each superstructure all the expected equivalent domains due to the symmetry
properties of both the silicene honeycomb structure and the trigonal silver surface. Finally, we
show, from STM images of the (2

√
3 × 2

√
3)R30◦ superstructure, the role played by periodic

local defects on the average direction of the superstructures.

1. Introduction
After the publication of three important papers showing a possible synthesis of silicene
(graphene-like silicon monolayers) on the silver substrates (Ag(100)[1] Ag(110)[2] and Ag(111)[3]
faces), many groups all around the world started to work on this system [4]. Recently
and especially on the Ag(111) face, the growth of silicene layers has been confirmed even
if, different atomic models were proposed [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. At least four
superstructures have been observed and/or predicted due to the epitaxy between the silicene
layer (honeycomb structure) and the Ag(111) substrate (trigonal structure). Depending on
the substrate temperature and the deposition rate, different superstructures are observed. A
(4x4) superstructure is obtained if the substrate temperature is maintained between 150 and
180◦C and with a relatively slow deposition rate (0.5 ML / h). A (2

√
3× 2

√
3)R30◦ is obtained

with a substrate temperature above 280◦C and with a higher deposition rate (5 ML/h). In
between these two experimental growth conditions, a mixture of these two superstructures plus
a (
√

13 ×
√

13)R13.9◦ superstructure is obtained. As expected, the (4 × 4) superstructure
is due to the perfect match between four silver inter-atomic distances (1,156 nm), and three
silicon hexagons (1,152 nm), both structures oriented with the same [110] directions. We have
previously shown that starting from the (4 × 4) superstructure, a rotation α of the silicene
layer relatively to the silver substrate gives rise successively to a first (

√
13 ×

√
13)R13.9◦
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Figure 1. a) STM image of a mixture of superstructures. (V = −1.1V , I = 1.2nA) b)
Corresponding LEED pattern showing: (

√
13 ×

√
13)R13.9◦ , domain A, (2

√
3 × 2

√
3)R30◦,

domain B and (4× 4) domain C .

(α = 5.2◦), a (2
√

3 × 2
√

3)R30◦ (α = 10.9◦), a (
√

7 ×
√

7)R19.1◦ (α = 19.1◦), and finally a
second (

√
13×

√
13)R13.9◦ (α = 27◦) structure [6]. In this paper we show and discuss for each

superstructure all the expected equivalent domains due to the symmetry properties of both the
silicene honeycomb structure and the trigonal silver surface. Finally, we show from STM images
of the (2

√
3× 2

√
3)R30◦ superstructure, the role played by periodic local defects on the average

direction of the superstructures.

2. The five main superstructures and their associated domains.
From a general point of view, the LEED pattern of a given superstructure, with respect to the
substrate, reveals two important information: the first one is the over-periodicity (i.e. a length)
and the second one is the orientation of the superstructure (i.e. a direction). As a consequence,
when different superstructures are present simultaneously on the same surface, both information
(periodicity and direction) are used in order to identify the different superstructures observed
by Scanning Tunneling Microscopy (STM) [15]. When the silicene were grown on Ag(111) then
we generally observed by STM and LEED the coexistence of different superstructures which are
difficult to identify (see Figure 1 (a)). Since the silver sample is always in the same orientation
before and after the silicene growth, we used the information extracted from LEED (direction
and periodicity) to identify each superstructure. This is how we had shown [6], and later
confirmed [11] that morphologies of the silicene layer reflects the position of each silicon atom
with respect to the silver ones: in other words when a silicon atom is situated on top of a silver
atom, it appears always higher than those located in threefold sites or in bridge positions, as
shown schematically in figure 2. All the STM images, which are presented in this paper, have
been obtained after the same experimental protocol explained in detail in [6].

3. The single domain (4× 4) superstructure.
This superstructure is obtained thanks to the perfect match amongst four nearest neighbour
silver distances (1.156nm) and three hexagonal cells of the (111) surface of silicon (1.152nm).
Due to the superposition of both axes of symmetry between the silver and the silicene planes
(α = 0◦), there is only one domain. As shown in figure 3, the ball model starting with hexagons
of silicon atoms around a silver atom explains the STM image: the silicon atoms located close
to the top position of silver atoms correspond to the intense spots of the STM image. DFT
calculations have confirmed the first model, showing that the density of states is located around
the silicon atoms [8].
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Figure 2. Ball models of adsorption sites
of silicon on silver used to interpret all the
STM images. 1) six silicon atoms close to top
positions around a silver atom. 2) six silicon
atoms close to three fold positions around a
silver atom. 3) One silicon atom on top position
and three silicon atoms in bridge positions. 4)
One silicon atom in a three-fold site and three
silicon atoms close to top positions. 5) Mirror
image of 4)

Figure 3. Ball models of the
(4 × 4) superstructure and the
corresponding STM image.

4. The two (
√

13×
√

13)R13.9◦ superstructures and four domains
The LEED pattern of the (

√
13 ×

√
13)R13.9◦ shows two directions for the superstructure

corresponding to two angles: α = 5.2◦, and α = 27◦ as shown in figure 1 b. The corresponding
STM image on figure 4 shows the two different (

√
13×

√
13)R13.9◦ structures .

For: α = 5.2◦, the superstructure not being on a silver axis of symmetry, there are two
mirror domains rotated: +13.9◦ and −13.9◦ with respect to the Ag[110] direction. For the sake
of simplicity, only one orientation: +13.9◦ is discussed. The ball model and the corresponding
STM image are shown in figure 5 a. Here again, the intense spots of the STM image correspond
to silicon atoms located on top of silver atoms.

For: α = 27◦, the superstructure corresponds to a mirror structure with respect to the Si[110]
direction. For this structure there are also two domains rotated: +13.9◦ and −13.9◦ with respect
to the Ag[110] direction. The ball model for +13.9◦ and the corresponding STM image are shown
in figure 5 b. Here there is no silicon atom on top of silver atoms. Instead, we observe intense
areas corresponding to groups of silicon atoms.

Finally, there is a total of four domains for this superstructure. This is a unique case where
the same superstructure (

√
13×

√
13)R13.9◦ has two different atomic compositions in the unit

cell. The LEED pattern corresponding to each one of these structures shows the same position
of the diffraction spots, but with very different intensities (Figure 1 b). The intense spots of
each of these superstructures correspond to the silicene unit cell: distance and angle between
two silicon hexagons [15].
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Figure 4. STM image showing a mixture of the two different (
√

13×
√

13)R13.9◦ superstructures
(V = −1.4V , I = 800pA). Domains A and B correspond to the same superstructures (α = 5.2◦

and α = −5.2◦respectively). Domain C is the other type of superstructure (α = 27◦). All
domains are separated by grain boundaries.

Figure 5. Ball model of the two different (
√

13×
√

13)R13.9◦ superstructures with (a) α = 5.2◦

and (b) α = 27◦

5. The two domains (2
√

3× 2
√

3)R30◦ superstructure
This superstructure is obtained when the silicene layer is rotated by an angle, α = 10.9◦, with
respect of the silver substrate ( Figure 6 ). The direction of the (2

√
3×2

√
3)R30◦superstructure

is on a silver symmetry axis, so we expect only two domains due to the mirror structure with
respect to the Si[110] direction as it is shown on the figure 6. The two domains exist on the Ag
surface but cannot be separated by STM since they form the same protrusions structure as it is
shown on the ball model of figure 6.

6. The two domains of the (
√

7×
√

7)R19.1◦ superstructure.
This superstructure was predicted [6] based on the good match between the silicene layer and
the silver lattice. This superstructure has been later observed by Chiappe et al. [11]. The STM
morphology shows big protrusions forming a trigonal network with the periodicity of 0.76 nm
rotated 19.1◦ with respect to the Ag[110] direction. This superstructure not being on a silver
axis of symmetry, two domains rotated 19.1◦ and −19.1◦ are expected. As shown on figure 7,
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Figure 6. The two models of the (2
√

3×2
√

3)R30◦ superstructure: a) α = +10.9◦ b) α = −10.9◦

Figure 7. Ball model
of the (

√
7×
√

7)R19.1◦

superstructure

a model similar to the (
√

13 ×
√

13)R13.9◦ superstructure with 6 silicon atoms around a silver
atom is proposed. For this model also, three first silicon atoms are also situated close to the top
of silver atoms giving rise to the big protrusion observed by STM [11].

7. Effects of local defects
As shown on the filled states STM images on figure 8, the direction of the (2

√
3 × 2

√
3)R30◦

superstructure is not exactly at an angle of 30◦. This observation is explained by regular periodic
defects formed around a perfect domain as it is highlighted on the figure 8, giving rise to the
observed average slight rotation shift, in this case about 4◦. The value of the rotation shift can
change depending on the size of the (2

√
3 × 2

√
3)R30◦ domains: the larger the domains, the

smaller the angle shifts. In addition, this analysis could also explain the Moiré pattern observed
by Feng et al. [5].

Interestingly figure 9 shows two domains of (2
√

3 × 2
√

3)R30◦ with defects both close to
30◦ one rotationally shifted positively, and the other negatively, separated by a grain boundary.
Each domain corresponds to a rotation of the silicene layer, α = +10.9◦ and α = −10.9◦. The
approximate 7◦ disorientation highlighted in figure 9 corresponds to approximately two times
3.5◦ : i.e. 3.5◦ for α = +10.9◦ and −3.5◦ for α = −10.9◦. When alpha is +10.9◦ the local defects
deform the structure towards the (

√
13 ×

√
13)R13.9◦structure with the silicene layer rotated

by +5.2◦. Similarly when alpha is −10.9◦ the local defects deform the structure towards the
(
√

13×
√

13)R13.9◦ structure with the silicene layer rotated by −5.2◦.
In this case local defects permits to distinguish the two different (2

√
3×2

√
3)R30◦ structures

that are undistinguishable by STM as shown on the ball models of figure 6.
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Figure 8. STM image of the (2
√

3 × 2
√

3)R30◦ superstructure showing the rotation shift of
the average orientation resulting from local defects between perfect domains. Highlighted the
domains and the defects. (V = −1.7V, I = 1.1nA)

Figure 9. STM image show-
ing two (2

√
3× 2

√
3)R30◦ do-

mains with local defects giv-
ing rise to a grain boundary
(V = −2.0V , I = 900pA)

8. Conclusion
In this paper we have shown each one of the five superstructures of silicene on silver (111): the
(4x4), the two different (

√
13×
√

13)R13.9◦ , the (2
√

3×2
√

3)R30◦ and the (
√

7×
√

7)R19.1◦, We
explained the LEED and STM observations by ball models. In the case of the (2

√
3×2

√
3)R30◦

superstructure, we show that local defects located around perfect (2
√

3×2
√

3)R30◦ areas justify
the average orientation shift observed in the (2

√
3× 2

√
3)R30◦.
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