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Summary

Clinical and experimental studies show that aging exacerbates

hypertension-induced cerebral microhemorrhages (CMHs), which

progressively impair neuronal function. There is growing evi-

dence that aging promotes insulin-like growth factor 1 (IGF-1)

deficiency, which compromises multiple aspects of cerebromi-

crovascular and brain health. To determine the role of IGF-1

deficiency in the pathogenesis of CMHs, we induced hyperten-

sion in mice with liver-specific knockdown of IGF-1 (Igf1f/f + TBG-

Cre-AAV8) and control mice by angiotensin II plus L-NAME

treatment. In IGF-1-deficient mice, the same level of hypertension

led to significantly earlier onset and increased incidence and

neurological consequences of CMHs, as compared to control

mice, as shown by neurological examination, gait analysis, and

histological assessment of CMHs in serial brain sections. Previous

studies showed that in aging, increased oxidative stress-

mediated matrix metalloprotease (MMP) activation importantly

contributes to the pathogenesis of CMHs. Thus, it is significant

that hypertension-induced cerebrovascular oxidative stress and

MMP activation were increased in IGF-1-deficient mice. We found

that IGF-1 deficiency impaired hypertension-induced adaptive

media hypertrophy and extracellular matrix remodeling, which

together with the increased MMP activation likely also con-

tributes to increased fragility of intracerebral arterioles. Collec-

tively, IGF-1 deficiency promotes the pathogenesis of CMHs,

mimicking the aging phenotype, which likely contribute to its

deleterious effect on cognitive function. Therapeutic strategies

that upregulate IGF-1 signaling in the cerebral vessels and/or

reduce microvascular oxidative stress, and MMP activation may

be useful for the prevention of CMHs, protecting cognitive

function in high-risk elderly patients.

Key words: arteriole; dementia; gait dysfunction; microb-

leed; oxidative stress.

Introduction

Recent advances in magnetic resonance imaging techniques (e.g., T2*

gradient recall echo and Susceptibility-Weighted Imaging MRI

sequences) have allowed the detection of previously undetectable small

intracerebral hemorrhages, termed cerebral microhemorrhages (CMHs),

in elderly patients. CMHs are typically regarded as small (<5 mm)

vascular lesions associated with rupture of small intracerebral vessels and

are considered of emerging importance as a contributing factor to the

progressive impairment of neuronal function in aging (Poels et al. 2012;

Akoudad et al. 2016). Clinical and experimental evidence confirm that

the presence of CMHs is associated with decreases in processing speed

and cognitive function (Poels et al. 2012; Akoudad et al. 2016), and

manifestation of gait disturbances (de Laat et al. 2011; Choi et al. 2012;

Toth et al. 2015b).

Epidemiological studies determined that aging and hypertension are

the main risk factors for the development of cerebral microhemorrhages

(CMHs) (Poels et al., 2011). Accordingly, the prevalence of CMHs

significantly increases with age, from ~6.5% in persons aged 45 to

50 years to ~35 to 50% or more in elderly patients (Poels et al., 2011). In

the Rotterdam Scan Study (Poels et al., 2011) in elderly patients,

hypertension was a particularly strong risk factor for CMHs with a hazard

ratio of 1.66. Other studies reached the same conclusion, reporting 56%

prevalence for CMHs in elderly hypertensive subjects (Kato et al., 2002).

Recent data from animal models extend the clinical findings, demonstrat-

ing that aging and hypertension synergistically interact to exacerbate the

development of CMHs (Toth et al., 2015b). Our current understanding,

based on experimental data, is that aging promotes the development of

CMHs by exacerbating hypertension-induced oxidative stress and redox-

sensitive activation of matrix metalloproteases (MMPs) compromising the

structural integrity of the cerebral microvasculature (Toth et al., 2015b).

Yet, the specific age-related mechanism(s) that underlie the increased

susceptibility of the aged cerebral vasculature to rupture remain elusive.

Work from our laboratories and others adds to the rapidly growing

body of knowledge regarding the crucial role of endocrine mechanisms

in age-related cerebromicrovascular pathology. Particularly, the dramatic

age-related decline in circulating levels of insulin-like growth factor 1

(IGF-1) has been implicated in microvascular aging and cognitive decline

(reviewed recently in Sonntag et al., 2013). IGF-1 is a pleiotropic growth

factor that possesses multifaceted vasoprotective effects. Epidemiolog-

ical evidence suggests that low IGF-1 levels increase the risk for

cerebromicrovascular diseases (Sonntag et al., 2013). Previous research

demonstrated that rodent models with decreases of circulating IGF-1

levels also exhibit aging-like vascular phenotypes including cerebromi-

crovascular autoregulatory dysfunction, manifestation of intracerebral
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hemorrhages, neurovascular uncoupling, increased vascular oxidative

stress, dysregulation of genes encoding the ECM, and impaired

functional adaptation of cerebral arteries to hypertension (Bailey-Downs

et al., 2012; Sonntag et al., 2013; Toth et al., 2014, 2015a; Tarantini

et al., 2016a,b). Despite these advances, the pathophysiological link

between age-related circulating IGF-1 deficiency and the development

of CMHs has never been studied.

This study was designed to test the hypothesis that circulating IGF-1

deficiency promotes the development of CMHs, by exacerbating

hypertension-induced vascular oxidative stress and MMP activation

and/or by impairing microvascular structural adaptation to hypertension.

To test our hypothesis, we used a novel mouse model of isolated

endocrine IGF-1 deficiency induced by adeno-associated viral knock-

down of IGF-1 specifically in the mouse liver using Cre-lox technology

(Igf1f/f + TBG-Cre-AAV8; Toth et al., 2014, 2015a; Tarantini et al.,

2016a,b). We induced hypertension in IGF-1-deficient mice and respec-

tive controls (by treatment with angiotensin II [Ang II] and the NO

synthesis inhibitor L-NAME) and compared the incidence, size, and

localization of CMHs. To elucidate the mechanisms contributing to the

changes in CMH incidence, hypertension-induced vascular ROS produc-

tion and MMP activation were assessed and hypertension-induced

microvascular remodeling and its molecular signature were quantified.

Results

Aging exacerbates hypertension-induced spontaneous CMHs

in mice

Mice receiving TBG-Cre-AAV8 had significantly lower serum IGF-1 levels

compared with control mice receiving TBG-eGFP-AAV8 (Fig. 1A).

Treatment with Ang II plus L-NAME resulted in comparable increases in

blood pressure both IGF-1-deficient mice and their age-matched controls

(Fig. 1B). We found that during the experimental period, 56% of control

mice showed clinically manifest signs of hypertension-induced intrac-

erebral hemorrhage, as assessed by neurological examination. In

contrast, 87% of IGF-1-deficient mice developed signs of hyperten-

sion-induced intracerebral hemorrhage (Fig. 1C), which occurred within

a similar time window (the maximum difference between the cumulative

distribution curves for time-to-event in the two groups, D, is as follows:

0.2063; P = 0.753). Histological analysis confirmed that all mice with

neurological signs developed multiple CMHs that were distributed widely

in the brain (Fig. 1D–G). When the cerebral vessels associated with the

CMHs were clearly distinguishable, their internal diameter was found to

be in the range of ~10–20 lm (Fig. 1H–K). We noticed that the

hemorrhages were often confined to and spread along the perivascular

spaces (Fig. 1H–K). No normotensive mice developed neurological signs

or histologically detectable CMHs (data not shown). In hypertensive IGF-

1-deficient mice, a higher count of CMHs was observed compared to

hypertensive mice with unaltered IGF-1 levels (Fig. 1L). As shown in

Fig. 1(M), IGF-1 deficiency predominantly increased the incidence of

CMHs located in the cortex, basal ganglia, brain stem, and white matter.

Analysis of the volume distribution of CMHs (Fig. 1N) suggests that IGF-1

deficiency significantly increases the incidence of the smallest hemor-

rhages, which originate from the distal portion of the microcirculation.

Increased incidence of CMHs is associated with early gait

dysfunction in IGF-1-deficient mice

As in humans CMHs are associated with gait dysfunction (Choi et al.,

2012), we analyzed mouse gait. We found that gait abnormalities

(including a significant decline in regularity index, speed, and stride

length; Fig. 2A–C, respectively) were significantly more severe in

hypertensive IGF-1-deficient mice as compared to hypertensive control

mice, suggesting that analysis of motor function status (e.g., deficit in

interlimb coordination, temporal asymmetry) can predict the severity of

CMH burden (Toth et al., 2015b). Hypertension-induced changes in base

of support did not correlate with IGF-1 status (Fig. 2D). Phase dispersion

tended to change more in hypertensive IGF-1-deficient mice as

compared to hypertensive controls, but the difference did not reach

statistical significance (Fig. 2E). Gait parameters in normotensive IGF-1-

deficient mice and age-matched control mice did not change signifi-

cantly during the experimental period (data not shown).

IGF-1 deficiency exacerbates hypertension-induced MMP

activation

Hypertension-induced activation of MMPs is thought to play a central

role in the pathogenesis of CMHs (Wakisaka et al., 2010a,b; Toth et al.,

2015b). To determine how interaction of IGF-1 deficiency and hyper-

tension affect vascular MMP activity, MMPsense 645 FAST substrate was

administered in vivo and vascular MMP activation was compared

between hypertensive IGF-1-deficient mice and hypertensive age-

matched controls by measuring MMPsense fluorescence in brain

homogenates. Figure 3(A) shows that the brains of hypertensive IGF-1-

deficient mice exhibit significantly greater MMP activity compared to

those of the normotensive counterparts. Mice with normal IGF-1 levels

did not show a significant hypertension-induced increase in MMP

activity. In control mice, MMP activity (indicated by the presence of the

fluorescent product of the MMPsense 645 FAST substrate) was barely

detectable by confocal microscopy and was not increased significantly by

hypertension. The representative image, shown in Fig. 3(B), illustrates

that in IGF-1-deficient mice, hypertension was associated with strong

MMPsense 645 FAST fluorescence (indicating MMP activation) localized

mainly to the media of small intracerebral arteries (identified by the

intraluminal FITC–dextran fluorescence). No significant MMP 645 FAST

fluorescence was observed in the brain parenchyma in any of the groups.

Collectively, these findings suggest that IGF-1 deficiency exacerbates

hypertension-induced vascular MMP activation.

Results of previous experimental studies by our laboratories (Toth

et al., 2015b), and by others (Wakisaka et al., 2010a,b), identify

oxidative stress as a critical factor contributing to hypertension-induced

MMP activation and pathogenesis of CMHs and demonstrate that high

intraluminal pressure per se (via increased wall tension-dependent

cellular stretch) is a key stimulus for increased vascular production of ROS

(Ungvari et al., 2003; Springo et al., 2015; Toth et al., 2015b) that lead

to MMP activation. To elucidate the likely mechanism contributing to the

exacerbation of hypertension-induced MMP activation in IGF-1 defi-

ciency, we compared pressure-induced production of O��
2 in cerebral

arteries isolated from IGF-1-deficient mice and their respective age-

matched controls using the redox-sensitive dye dihydroethidium (DHE).

We found that nuclear DHE fluorescence was significantly stronger in

arteries of IGF-1-deficient mice that were exposed to high pressure as

compared to vessels of control mice exposed to the same pressure or

vessels of the same IGF-1-deficient animals that were exposed to

60 mmHg (Fig. 3E,F). The findings that IGF-1 deficiency exacerbates

high-pressure increases in O��
2 generation in the cerebral arteries are

significant as high-pressure-induced vascular MMP activation can be

inhibited by antioxidant treatments (Toth et al., 2015b).

We also detected and analyzed the mRNA expression of MMPs

and the tissue inhibitor of metalloproteinases (TIMPs; Fig. 3G–J).
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Fig. 1 IGF-1 deficiency exacerbates hypertension (HT)-induced CMHs in mice. (A) Adeno-associated viral knockdown of hepatic Ifg1 (Igf1f/f + TBG-Cre-AAV8) significantly

decreases the levels of circulating IGF-1 compared to control animals. Data are mean � SEM. *P = 0.001 vs. control (t-test). (B) Treatment with angiotensin II plus L-NAME

elicited similar increases in systolic blood pressure in control and IGF-1-deficient mice. *P < 0.05 vs. control normotensive (one-way ANOVA, Tukey’s post hoc test). (C)

Cumulative incidence curves for neurological signs of hypertension-induced intracerebral hemorrhage in control (n = 24) and IGF-1-deficient mice (n = 31). In IGF-1-

deficient mice, there was a significant increase in CMH incidence compared to control mice (log-rank test; Mantel-Cox). (D–G) Representative images of CMHs stained by

diaminobenzidine in the cortex, brain stem, white matter, and cerebellum of hypertensive IGF-1-deficient mice. (H–K) Black arrows point to cerebral intraparenchymal

arterioles in close proximity to the hemorrhages. Hemorrhages were often confined to and spread along the perivascular spaces (arrowheads). Note in (K) the spread of the

hemorrhage to the daughter branches of an arteriole along the perivascular spaces. (L): Total number of hypertension-induced CMHs throughout the entire brain of control

and IGF-1-deficient mice. Data are mean � SEM. *P < 0.05 (t-test). (M) The pie charts illustrate the similar distribution of CMHs by location in both experimental groups. (N)

The cumulative frequency distribution of CMHs by volume significantly shifts to the left in IGF-1-deficient mice compared to control, indicating that IGF-1 deficiency

specifically increases the number of smaller bleeds. The maximum difference between the cumulative distributions was calculated using the two-sample Kolmogorov–
Smirnov test (D: 0.5202; P < 0.0001).
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We found that the expression of Mmp2, Mmp3 but not Mmp9

increased significantly in the brains of hypertensive IGF-1-deficient

mice when compared to their normotensive counterpart. The

expression of Timp1, Timp2, and Timp3 consistently increased in

response to hypertension in all experimental groups, except Timp2

mRNA expression did not reach significance in hypertensive IGF-1-

deficient animals when compared to their normotensive counter-

part.

Fig. 2 Increased incidence of CMHs is associated with gait dysfunction in hypertensive IGF-1-deficient mice. Regularity index (A), body speed (B), stride length (C), and base

of support (front paws; D) in control mice and IGF-1-deficient mice under baseline conditions and after induction of CMHs. (E) Circular scatter plot showing the distribution

of interlimb coupling values (phase dispersion) in control mice and IGF-1-deficient mice under baseline conditions and after induction of CMHs (note that the circular plot

shows a smaller phase dispersion scatter in the inner circle [before hypertension] as compared to the phase dispersion scatter in the outer circle [assessed after hypertension]).

Right panels shows average deviation of phase dispersion (calculated between the right hind paw [RH] and left hind paw [LH]) from the expected value (50%) under baseline

conditions and after induction of CMHs. Data are mean � SEM.*P < 0.05 vs. control baseline, &P < 0.05 vs. IGF-1-deficient baseline, #P < 0.05 control vs. IGF-1 deficient

(one-way ANOVA, Tukey’s post hoc test) HT: hypertension.

Fig. 3 IGF-1 deficiency exacerbates hypertension-induced MMP activation. (A) Hypertension-induced MMP activation, assessed using the MMPsense 645 FAST fluorescent

method, in control and IGF-1-deficient mice (n = 6 in each group; see Experimental procedures). MMPsense 645 FAST becomes fluorescent upon cleavage by activated

MMPs. Data are mean � SEM. *P < 0.05 vs. control, #P < 0.05 vs. control HT, &P < 0.05 vs. IGF-1 deficient. (B) Representative confocal image of the longitudinal section of

a cerebral intraparenchymal arteriole from a hypertensive IGF-1-deficient mouse injected with the MMPsense 645 FAST substrate (scale bar: 25 lm). Note, the strong red

fluorescence in the vascular wall indicating increased MMP activity. Intraluminal FITC–dextran is shown for orientation purposes. L (lumen), M (media). (C): Representative

compressed Z stacks of confocal images of MCAs showing stronger MMPsense 645 FAST fluorescence (red) in high-pressure-exposed MCAs isolated from IGF-1-deficient

mice as compared to MCAs isolated from control mice, indicating increased MMP activation. MCAs were pressurized at 60 and 160 mmHg for 6 h. (original magnification:

209, scale bar: 100 lm). Bar graphs (D) are summary data. Data are means � SEM (n = 6 in each group) *P < 0.05 vs. control (60 mmHg), #P < 0.05 vs. IGF-1 deficient

(160 mmHg); &P < 0.05 vs. IGF-1 deficient (60 mmHg). (E) IGF-1 deficiency exacerbates hypertension-induced oxidative stress. Representative confocal images showing

stronger DHE fluorescence (pseudocolored white) indicating increased O��
2 production in high-pressure-exposed MCAs isolated from aged mice as compared to MCAs

isolated from young mice. MCAs were pressurized at 60 and 160 mmHg for 6 h. (original magnification: 209, scale bar: 50 lm). Bar graphs (F) are summary data. Data are

means � SEM (n = 6 in each group). *P < 0.05 vs. control, #P < 0.05 vs. control HT, &P < 0.05 vs. IGF-1 deficient. G–J show hypertension-induced changes in mRNA

expression of MMP-2, -3, and -9 as well as Timp-1, -2, and -3 in the cerebral arteries. Data are mean � SEM (n = 6 in each group). *P < 0.05 vs. control, &P < 0.05 vs. IGF-1

deficient. Differences between different groups were established using a one-way ANOVA followed by Tukey’s post hoc tests.
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IGF-1 deficiency impairs structural adaptation of cerebral

arterioles to hypertension

Media hypertrophy and extracellular matrix remodeling are adaptive

processes that reduce tensile stress, protecting the integrity of the

vascular wall in hypertension. We found that penetrating arterioles of

control mice exhibited structural adaptation to high pressure (mani-

fested as a significant increase in wall-to-lumen ratios; Fig. 4A), which

was associated with upregulated vascular expression of alpha smooth

muscle actin and components of the ECM (Fig. 4B,C). In contrast,

histological and molecular signs of protective structural adaptation of

cerebral vessels were not evident in hypertensive IGF-1-deficient mice

(Fig. 4A–C).

IGF-1 deficiency exacerbates hypertension-induced

profragility shift in vascular gene expression signature

Expression of genes related to the pathogenesis of CMHs was

determined by qPCR; 67 genes analyzed (Table S1) were manually

annotated as being provascular fragility and antifragility, and this data

were converted into a binary vector (1 for profragility genes and �1 for

antifragility genes). qPCR data were normalized using quantile normal-

ization, and then, for each sample, the binary fragility vector was

compared to negative normalized Ct values using Spearman’s rank

correlation coefficient (Spearman’s q) as reported (Tarantini et al.,

2016b). This ‘vascular fragility signature’, therefore, measures the

combined expression levels of positive and negative regulators of

vascular fragility: a higher value indicates higher expression of

profragility genes and lower expression of antifragility genes. We found

that IGF-1 deficiency exacerbates hypertension-induced profragility shift

in vascular gene expression signature (Fig. 4D).

Discussion

This is the first study to demonstrate that the effects of IGF-1 deficiency

phenocopies important aspects of age-related CMHs (Toth et al.,

2015b). Similar to the aging phenotype, in IGF-1 deficiency, the same

level of hypertension leads to significantly increased incidence of CMHs.

In human patients, hypertension also almost exclusively increases CMHs

at an old age (Romero et al., 2014). We found that similar to aging, IGF-

1 deficiency predominantly increases the incidence of small cerebral

hemorrhages in a cortical/subcortical location, suggesting that they both

render the same small cerebral vessels significantly more vulnerable to

high-pressure-induced rupture.

Circulating IGF-1 levels significantly decline with age (reviewed in

Sonntag et al., 2013). Our findings underscore the likely pathogenic role

of age-related IGF-1 deficiency in increased CMHs in elderly patients.

Indeed, there are many similarities between CMHs observed in IGF-1-

deficient mice and hypertensive elderly human patients, including the

relative size of the bleedings, the clinical symptoms, and the progressive

nature of the pathological process (Lee et al., 2011).

Clinical studies show that CMHs are an important mechanism for

cognitive impairment (Seo et al., 2007), and their increased prevalence

and incidence in aging are consistent with the documented age-related

exacerbation of hypertension-induced cognitive decline in humans and

laboratory animals. CMHs have also been shown to be associated with

gait dysfunction both in humans (Choi et al., 2012) and experimental

animals. Importantly, we also revealed that increased incidence of CMHs

leads to progressive gait abnormalities in IGF-1-deficient mice mimicking

the phenotype observed in hypertensive aged mice (Toth et al., 2015b).

Gait is a complex motor behavior which involves several brain regions

that coordinate to produce locomotion. Of the aforementioned studies,

the view emerges that gait abnormalities are sensitive indicators of

CMHs as lesions affecting any brain region important for gait coordi-

nation (e.g., multiple cortical areas, basal ganglia, cerebellum, and white

matter) will elicit quantifiable symptoms. The causal link between CMHs

and gait abnormalities is clinically potentially significant as gait impair-

ments are a major risk factor for falls in the elderly. Further, increasing

clinical evidence shows that gait and cognition are interrelated in older

adults (Montero-Odasso et al., 2012).

The IGF-1-dependent mechanisms responsible for increased suscep-

tibility of the cerebral circulation to hypertension-induced injury are likely

multifaceted. Previous studies suggest a central role for age-related

exacerbation of hypertension-induced cerebrovascular ROS production

and redox-sensitive activation of MMPs in the pathogenesis of CMHs

(Toth et al., 2015b), which degrade components of the basal lamina and

extracellular matrix, weakening the vascular wall. Our findings suggest

that IGF-1 deficiency itself can exacerbate hypertension-induced cere-

brovascular MMP activation, mimicking the aging phenotype, which

likely importantly contribute to the increased fragility of cerebral arteries.

While IGF-1 deficiency does not appear to be associated with marked

changes in MMP expression, it was found to exacerbate hypertension-

induced oxidative stress in cerebral arteries, presenting redox-sensitive

MMP activation (Wakisaka et al., 2010a) as a potential mechanism

responsible for the observed phenotype. This concept is supported by

recent findings showing that age-related exacerbation of hypertension-

induced MMP activation can be abolished by antioxidative treatments

(Toth et al., 2015b). Increased hypertension-induced oxidative stress in

aged arteries has been attributed to upregulation of NOX oxidases,

increased mitochondrial ROS generation, and impaired Nrf2-dependent

antioxidant defense mechanisms (Ungvari et al., 2011a,b; Springo et al.,

2015; Toth et al., 2015b). There is evidence that inhibition of ROS

synthesis by these sources can prevent development of CMHs in aging

(Toth et al., 2015b). The existing evidence suggest that circulating IGF-1

deficiency affects the same redox pathways as aging (Csiszar et al.,

2008; Bailey-Downs et al., 2012). Thus, future studies are warranted to

determine the effects of inhibitors of NOX oxidases and mitochondria-

derived ROS production on the genesis of CMHs in IGF-1 deficiency as

well. We posit that development of CMHs in the elderly and in IGF-1-

deficient patients may also be exacerbated by deficiency of NO due to its

increased breakdown by elevated levels of ROS (Toth et al., 2015a). NO

deficiency likely amplifies the effect of angiotensin II and significantly

increases the stiffness of the conduit arteries, impairing Windkessel

function, increasing pulse pressure, and promoting penetration of the

pressure wave into the cerebral microcirculation (Tarumi et al., 2014).

The mechanisms by which IGF-1 deficiency promote CMHs likely also

involve impaired structural and functional adaptation of the cerebral

circulation to hypertension. Several lines of evidence support this

concept. During hypertension, healthy cerebral arterioles undergo

structural remodeling including hypertrophy of the media (Baumbach

& Heistad, 1989), which reduce circumferential stress, preventing

mechanical damage to the vascular wall. Our findings suggest that

IGF-1 deficiency perturbs arteriolar remodeling processes by impairing

hypertension-induced adaptive media hypertrophy and extracellular

matrix remodeling. It is likely that the resulting increases in circumfer-

ential stress are causally linked to the increased susceptibility to CMHs.

High-pressure/increased wall stress itself appears to be the main stimulus

for increased vascular MMP activation, as well as ROS production

associated with IGF-1 deficiency and aging (Toth et al., 2015b). Thus, it

is likely that penetration of increased arterial pressure to the vulnerable
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Fig. 4 IGF-1 deficiency impairs hypertension-induced hypertrophy and structural remodeling in cerebral vessels. (A) Representative confocal micrographs from normotensive

(NT) and hypertensive (HT) fixed brains. Hypertension induces hypertrophy of penetrating arterioles in control mice, whereas this adaptive response is impaired in IGF-1-

deficient mice (green fluorescence: immunostaining for alpha smooth muscle actin). Bar graphs are summary data for calculated wall-to-lumen ratios. qPCR data showing

mRNA expression of alpha smooth muscle actin and collagens in branches of the middle cerebral arteries isolated from normotensive and hypertensive control and IGF-1-

deficient mice are shown in panels B and C, respectively. Data are mean � SEM (n = 4–6 in each group), *P < 0.05 vs. control, #P < 0.05 vs. control HT. (D) IGF-1 deficiency

exacerbates hypertension-induced profragility shift in vascular gene expression signature. Expression of 67 genes related to the pathogenesis of CMHs was determined by

qPCR, and vascular fragility signatures (Spearman’s q) were calculated as described in the Results. A higher ‘fragility signature’ indicates higher expression of profragility

genes and lower expression of antifragility regulators. (E) Proposed scheme depicting the mechanisms by which age-related IGF-1 deficiency may exacerbate hypertension-

induced microvascular damage, promoting CMHs. Differences between different groups were established using a one-way ANOVA followed by Tukey’s post hoc tests.
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distal portion of the cerebral microcirculation is a critical factor in the

development of CMHs. In support of this concept, previous studies

demonstrated that aging results in autoregulatory dysfunction both in

human patients and experimental animals (Toth et al., 2015b), likely

contributing the pathogenesis of CMHs. In that regard, it is significant

that IGF-1 deficiency is also associated with cerebral autoregulatory

dysfunction and impaired myogenic adaptation of the cerebral resistance

arteries to high pressure (Toth et al., 2014), which likely allows sudden

increases in blood pressure to inflict damage to the thin-walled cerebral

microvessels.

In conclusion, our results add to the growing evidence that circulating

IGF-1 exerts complex cerebromicrovascular protective effects and that

cerebromicrovascular dysfunction associated with age-related IGF-1

deficiency compromises multiple aspects of brain health (Sonntag et al.,

2013). The findings that IGF-1 deficiency promotes the pathogenesis of

CMHs by exacerbating hypertension-induced cerebrovascular oxidative

stress and MMP activation and leading to structural and functional (Toth

et al., 2014) maladaptation to hypertension (Fig. 4E) have important

clinical relevance for the pathogenesis of vascular cognitive impairment

and gait abnormalities in elderly hypertensive patients. Our findings,

taken together with the results of earlier studies (reviewed in Sonntag

et al., 2013), point to potential benefits of interventions preventing age-

related decline in circulating IGF-1 levels and promoting microvascular

health for prevention of CMHs and cognitive decline in the elderly.

Although treatment with recombinant IGF-1 in the elderly is currently

not recommended due to a potentially increased risk for cancer, other

treatment options that increase vascular IGF-1 signaling, attenuate

vascular ROS production, and/or reduce MMP activation could be

considered for cerebromicrovascular protection in older individuals at risk

for CMHs.

Experimental procedures

All procedures were approved by and followed the guidelines of the

Institutional Animal Care and Use Committee of the University of

Oklahoma HSC and are reported in accordance with the ARRIVE

guidelines.

Induction of adult-onset IGF-1 deficiency in mice

Male mice homozygous for a floxed exon 4 of the Igf1 gene (Igf1f/f; in a

C57BL/6 background) were purchased from Jackson Laboratories (Bar

Harbor, ME, USA). These mice have the entirety of exon 4 of the Igf1

gene flanked by loxP sites, which allows for genomic excision of this

exon when exposed to Cre recombinase. Transcripts of the altered Igf1

gene yield a protein upon translation that fails to bind the IGF receptor.

Adult-onset circulating IGF-1 deficiency was induced in Igf1f/f mice by

adeno-associated virus (AAV8)-mediated expression of Cre recombinase

in the liver at 4 months of age, as reported (Toth et al., 2014). The AAV8

vector was purchased from the University of Pennsylvania Viral Vector

Core (Penn Vector Core, Philadelphia, PA, USA; http://www.med.upe

nn.edu/gtp/vectorcore). Although AAV8 is effective at transducing

multiple tissues, the use of thyroxine-binding globulin (TBG) promoter

allows for the restriction of expression to hepatocytes. At 4 months of

age, Igf1f/f mice were randomly assigned to two groups and were

administered approximately 1.3 9 1010 viral particles of AAV8-TBG-Cre

or AAV8-TBG-eGFP via retro-orbital injection, as described. Circulating

IGF-1 is produced in the liver. As circulating IGF-1 levels during

adolescence play a critical role in development of many organs,

including the cardiovascular system, this mouse model was developed

to be able to selectively study the consequences of adult-onset

circulating IGF-1 deficiency (Toth et al., 2014). Animals were housed

in the Rodent Barrier Facility at OUHSC under specific pathogen-free

barrier conditions, on a 12-h light/12-h dark cycle, with access to

standard rodent chow (Purina Mills, Richmond, IN, USA) and water

ad libitum.

Measurement of serum IGF-1 levels

Submandibular venous blood was collected into microcentrifuge tubes

using a sterile lancet (Medipoint, Mineola, NY, USA) according to the

manufacturer’s instructions. Whole blood was centrifuged at 2500 g for

20 min at 4 °C to collect serum, which was then stored at �80 °C. IGF-

1 concentration in the serum samples was measured by ELISA (R&D

Systems, Minneapolis, MN, USA) as reported (Toth et al., 2014). An IGF-

1 control sample, with aliquots stored at �80 °C, was included on each

plate. Serum IGF-1 levels are reported in ng mL�1.

Induction of spontaneous CMHs

To study the effects of IGF-1 deficiency on spontaneous, hypertension-

induced CMHs, we used a previously well-characterized mouse model

(Toth et al., 2015b). Briefly, in 10-month-old male IGF-1-deficient mice

(Igf1f/f + TBG-Cre-AAV, n = 60) and respective age-matched control

mice (Igf1f/f + TBG-eGFP-AAV8, n = 60), hypertension was induced by a

combination treatment with x-nitro-L-arginine-methyl ether (L-NAME,

100 mg kg�1 day�1, in drinking water) and administration of angioten-

sin II (Ang II; s.c. via osmotic mini-pumps [Alzet Model 2006,

0.15 lL h�1, 42 days; Durect Co, Cupertino, CA, USA]). Pumps were

filled either with saline or solutions of angiotensin II (Sigma Chemical Co.,

St. Louis, MO, USA) that delivered (subcutaneously) 1 lg min�1 kg�1 of

angiotensin II for 28 days, thus generating four experimental groups: (1)

Igf1f/f + TBG-Cre-AAV8 + Ang II, (2) Igf1f/f + TBG-Cre-AAV8 + vehicle,

(3) Igf1f/f + TBG-eGFP-AAV8 + Ang II, and (4) Igf1f/f + TBG-eGFP-

AAV8 + vehicle. Pumps were placed into the subcutaneous space of

ketamine/xylazine anesthetized mice through a small incision in the

interscapular area that was closed with surgical sutures using aseptic

techniques. All incision sites healed rapidly without the need for

additional medication. As aging is associated with increased activity of

the vascular renin–angiotensin system and Ang II-dependent hyperten-

sion is common among older individuals, Ang II-dependent hypertension

is a clinically highly relevant model to study aging-related cerebrovascular

alterations (Toth et al., 2013).

Blood pressure of the animals was recorded before the treatment and

every second day during the treatment period using a tail-cuff blood

pressure apparatus (CODA NonInvasive Blood Pressure System; Kent

Scientific Co., Torrington, CT, USA), as described (Toth et al., 2015b).

Each experimental group was closely monitored and mice were killed

upon the occurrence of neurological signs of intracerebral hemorrhages.

For cross-sectional studies (including histology, MMP activation, molec-

ular studies), a second cohort of animals was sacrificed on day 10

postinduction of hypertension.

Standardized neurological examination of mice

To assess the occurrence of clinically manifest hemorrhages daily,

neurological examination was performed as reported (Toth et al.,

2015b), by assessing each animal’s spontaneous activity, symmetry in

the movement of the four limbs, forelimb outstretching, climbing ability,

body proprioception, response to vibrissae touch, and gait coordination.
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Each examined animal was provided with a daily score calculated by the

summation of all individual test scores. When a consistent decline in the

neurological score was observed or on day 28 of the study, mice were

euthanized by CO2 asphyxiation.

Analysis of gait function

To assess gait function and the spatial and temporal aspects of interlimb

coordination, the animals were tested using the CatWalk System (Noldus

Information Technology Inc., Leesburg, VA, USA), as reported (Toth

et al., 2015b). Briefly, animals were trained to cross the walkway and

then, in a dark room, had five consecutive volunteer runs on the day

before and on each day after induction of hypertension. CMH-related

changes in speed, base of support, interpaw phase dispersion/phase lag,

stride length, and regularity index were assessed. The regularity index

(%) is a fractional measure of interpaw coordination, which expresses

the number of normal step sequence patterns relative to the total

number of paw placements. Its value in healthy animals is ~100%. Phase

dispersion is a measure of the temporal relationship between placement

of two hind paws within a step cycle.

Histological analysis of intracerebral hemorrhages

Mice were euthanized and transcardially perfused with ice-cold hep-

arinized PBS for 5 min and subsequently decapitated as reported (Toth

et al., 2015b). Then, the brains were isolated and fixed in 10% formalin

at room temperature for one day. The next day, the brains were placed

in fresh 10% formalin (at 4 °C, for 2 days), then in 70% ethanol (at

4 °C, for 2 days), followed by embedding in paraffin. The brains were

serially sectioned at 8 lm thickness, yielding approximately 1500

sections per brain. The first two sections of every five section were

stained with hematoxylin to reveal the brain structure and diaminoben-

zidine (DAB) to highlight the presence of hemorrhages. DAB turns into

dark brown when it undergoes a reaction with peroxidases present in

red blood cells, therefore allowing precise detection of extravasated

blood cells in the parenchyma of the brain. All stained sections were

screened by a reader blinded to the treatment groups, and images were

acquired in the evidence of a positive DAB reaction. Digital images were

analyzed with IMAGEJ software (NIH) to identify the location and quantify

the number and size of hemorrhages. The volumetric reconstruction of

hemorrhages was estimated according to the following formula as

described (Toth et al., 2015b).

CMH volume ðmm3Þ ¼
Xi

n¼1

½3� (CMH area)i � (slice thickness)i �:

Assessment of hypertension-induced MMP activation in the

cerebral vessels in situ

Mice from each experimental group were temporarily anesthetized with

ketamine/xylazine and injected retro-orbitally with a 100 lL dose of

40 nmol L�1 MMPsense 645 FAST substrate (PerkinElmer Inc., Boston,

MA, USA; 3 lmol L�1; at 37 °C, for 6 h, in the dark), as reported (Toth

et al., 2015b). This substrate is normally optically inert. Once it is

cleaved, its subunits become excitable at 649 nm and emit a red signal

that can be measured as an indicator of activity of MMP 2, 3, 7, 9, 12,

and 13. After 12 h of circulation of the substrate, animals were

transcardially perfused with ice-cold PBS containing 1 9 heparin and

FITC–dextran (to highlight the vascular lumen). Then, the mice were

decapitated and the brains were removed and cut in half. From the left

hemisphere, the frontal cortex containing the photoactive substrate was

isolated and homogenized. To quantify MMP activity, the background-

corrected fluorescence (Ex: 649 nm, Em: 666 nm) was measured

spectrophotofluorometrically using a microplate reader and normalized

to tissue weight, as described (Toth et al., 2015b). The right hemisphere

was embedded in OCT (optimum cutting temperature) media and

cryosectioned, and confocal images of brain areas containing cross

sections of penetrating small arteries were captured as described (Toth

et al., 2015b).

Detection of high-pressure-induced activation of MMPs in

isolated cerebral arteries

In separate experiments, pressure-induced MMP activity was measured

in cannulated segments of the middle cerebral arteries, as described

(Toth et al., 2015b). In brief, two segments of the middle cerebral

arteries were isolated from the brains of mice from control and IGF-1-

deficient mice. The vessels were mounted onto two glass micropipettes

in an organ chamber in oxygenated (21% O2, 5% CO2, 75% N2) Krebs’

buffer (composed of [in mmol L�1]: 110.0 NaCl, 5.0 KCl, 2.5 CaCl2, 1.0

MgSO4, 1.0 KH2PO4, 5.5 glucose, and 24.0 NaHCO3, pH ~7.4; at 37 °C)

and pressurized to 10 mmHg. Inflow and outflow pressures were

controlled and measured by a pressure servo-control system (Living

Systems Instrumentation, Burlington, VE, USA). Vessels from the same

animals were pressurized to 60 or 160 mmHg (to recapitulate in vitro the

hemodynamic environment present in the vascular system during

normotension and hypertension, respectively) in the presence of

MMPsense 645 FAST substrate for 8 h. After the incubation period,

the vessels were thoroughly rinsed, placed on a glass slide, and imaged

with a Leica SP2 upright confocal microscope. The detected fluorescence

intensity emitted at 666 nm was measured, corrected for the back-

ground, and normalized to vessel surface area using the METAMORPH

software (Molecular Devices LLC, Sunnyvale, CA, USA).

Detection of high-pressure-induced production of ROS in

isolated cerebral arteries

In separate experiments, pressure-induced ROS production was mea-

sured in cannulated segments of the middle cerebral arteries, as

described (Springo et al., 2015; Toth et al., 2015b). In brief, the arteries

from each control and IGF-1-deficient mice were pressurized to 60 or

160 mmHg for 4 h. To characterize high-pressure-induced vascular ROS

production, at the end of the incubation period, the vessels were loaded

with the redox-sensitive dye DHE (Invitrogen, Carlsbad, CA, USA;

3 9 10�6 mol L�1; for 30 min). After loading, the chamber was washed

out five times with warm Krebs buffer, and the vessels were allowed to

equilibrate for another 20 min. After the experimental period, confocal

images of the wall of the pressurized vessels were captured using a Leica

SP2 confocal laser scanning microscope (Leica Microsystems GmbH,

Wetzlar, Germany). Average nuclear DHE fluorescence intensities were

assessed using the METAMORPH software (Molecular Devices LLC, Sunny-

vale, CA, USA), and values for each animal in each group were averaged.

Assessment of hypertension-induced hypertrophy of

penetrating arterioles

To determine the effect of IGF-1 deficiency on adaptive hypertension-

induced hypertrophy of the arteriolar wall, on day 10 postinduction of

hypertension, brains were perfusion-fixed (4% ice-cold paraformalde-

hyde; at 100 mmHg). Then, frozen OCT-embedded sagittal sections
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(35 lm) were cut and stored free-floating in cryoprotectant solution

(25% glycerol, 25% ethylene glycol, 25% of 0.1 M phosphate buffer,

and 25% water) at �20 °C. Sections were rinsed with Tris-buffered

saline (TBS), permeabilized with TBS with 0.05% Tween-20. Antigen

retrieval was achieved using 10 mM citrate buffer (10 mM sodium citrate

and 0.05% Tween 20, pH 6.0) at 90 °C for 20 min followed by 1%

sodium borohydride in PBS at room temperature for 30 min. After

blocking with 5% BSA and 1% fish gelatin in TBS at room temperature

for 2 h, sections were immunostained using rabbit anti-alpha smooth

muscle actin (ab5694 1:200; Abcam, Cambridge, MA, USA) primary

antibody for 24 h at 4 °C. Sections were washed for 10 min in TBS

(three times), incubated in Alexa Fluor 488 goat anti-rabbit secondary

antibody (A11070, 1:200; Life Technologies) for 1 h at room temper-

ature, washed for 10 min (three times) in TBST, transferred to slides, and

coverslipped. Confocal images of penetrating arterioles were obtained

using Leica SP2 MP confocal laser scanning microscope. Wall-to-lumen

ratios were calculated using the Metamorph software, and values for

each animal were averaged.

Determination of expression changes in CMH-related genes

by quantitative real-time RT–PCR

To predict gene targets associated with vascular fragility and CMHs,

we used the IRIDESCENT (Wren & Garner, 2004) text mining package,

as described (Toth et al., 2015a,b). Using this method, important

genes relevant for the pathogenesis of CMHs and structural integrity

of the vasculature were identified (Table S1). The mRNA expression of

these genes in cerebral arteries isolated on day 10 post-induction of

hypertension was analyzed by a quantitative real-time RT–PCR

technique using a Strategen MX3000 platform, as previously reported

(Toth et al., 2015b). In brief, total RNA was isolated with a Mini RNA

Isolation Kit (Zymo Research, Orange, CA, USA) and was reverse-

transcribed using Superscript III RT (Invitrogen). Amplification efficien-

cies were determined using a dilution series of a standard vascular

sample. Quantification was performed using the efficiency-corrected

DDCq method. The relative quantities of the reference genes Hprt,

Ywhaz, B2m, Gapdh, Actb, and S18 were determined, and a

normalization factor was calculated based on the geometric mean

for internal normalization. Fidelity of the PCR was determined by

melting temperature analysis and visualization of the product on a 2%

agarose gel.

Statistical analysis

An a priori power analysis was performed to ensure 80% or greater

power for the primary outcome measures, considering the findings of

previous studies (Toth et al., 2015b). Cumulative incidence of signs of

hemorrhage was evaluated using a Kaplan–Meier test, and the difference

among groups was analyzed by log-rank test (Mantel-Cox). Differences

between different groups were established using a one-way ANOVA

followed by Tukey’s post hoc tests. P < 0.05 was considered significant.

Data are expressed as mean � SEM. Statistical analyses were conducted

using PRISM 5 software (GraphPad, La Jolla, CA, USA).
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Table S1 List of important genes relevant for the structural integrity of the

vasculature and potentially the pathogenesis of CMHs whose vascular

expression was analyzed by qPCR.
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