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Abstract: In this paper, a class of queueing models with impatient customers is considered. It deals
with the probability characteristics of an individual customer in a non-stationary Markovian queue
with impatient customers, the stationary analogue of which was studied previously as a successful
approximation of a more general non-Markov model. A new mathematical model of the process is
considered that describes the behavior of an individual requirement in the queue of requirements.
This can be applied both in the stationary and non-stationary cases. Based on the proposed model,
a methodology has been developed for calculating the system characteristics both in the case of
the existence of a stationary solution and in the case of the existence of a periodic solution for the
corresponding forward Kolmogorov system. Some numerical examples are provided to illustrate the
effect of input parameters on the probability characteristics of the system.

Keywords: queueing models; non-stationary Markovian queueing model; approximation; impatient
customers; probability characteristics

1. Introduction

Recently, there has been an increasing interest in studying queueing systems when all the parameters
are varying in time; see, for instance, [1]. This is due to the fact that these types of systems are more
realistic and the periodic behavior of our daily live in different fields can be treated as well. Some of
the examples are call centers, healthcare facilities, arrival and departure clearance for aircraft at airports,
security checkpoints, automatic teller machines, multi-car dispatch of police and many others; see for
instance [2–4] and references therein.

Additionally, queueing models with impatient customers are the subject of research for many papers
since they have many applications in telecommunication networks, inventory systems, and impatient
telephone switchboard customers; see, for instance, [2–12] and the references in these articles. In the
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Markovian case, the queue-length process in such systems is a birth–death process, and, in homogeneous
situation for a detailed discussion, can be found in [5]. In early studies, the models were studied in such
a way that customer impatience was taken into account by a corresponding reduction in arrival rates,
see [6,9–11,13]. On the other hand, in the last few decades, the property of impatience of customers was
treated by the help of increasing ‘death’ rates. Namely, in these models, it is assumed that the customers
not only can depart after service (with certain intensities) but also leave the system without service (with
corresponding intensities); see, for instance, [3,4].

From a mathematical point of view, both classes of models are described by (inhomogeneous)
birth–death processes. Moreover, in the case of a finite number of waiting rooms, the number of states of
the process is finite. Therefore, its main properties can be investigated by methods described in details in
the paper [14]. If the state space of the queue-length process is countable, one can apply our combined
approach which includes bounding on the rate of convergence to the limiting characteristics estimating
the error bounds for approximations by truncations, and finally obtaining the perturbation bounds in the
case of approximately known intensities. This approach was firstly developed in [15–18] and described in
detail in [19,20].

We would like to draw the attention of the reader to the fact that there are interesting works devoted
to a qualitative study of the forward Kolmogorov system for an inhomogeneous continuous-time Markov
chains on finite state space; see, for example, [21,22]. Unfortunately, the authors of these studies are
apparently not familiar with our earlier papers on this topic, see [16,17,23–25].

This article deals with the study of characteristics of an individual customer in a non-stationary queue
with impatient customers. The stationary analogue was studied in [3,4] as a successful approximation of a
more general non-Markov model which was denoted as an M(n)/M(n)/s/K + M(n) queue.

From a practical point of view, these types of systems can be utilized, for example, in collected
water volume dependent releases from dams, speed of traffic on highway depending on the traffic
density, and the organization of transmission rates depending on the buffer content in packet-switched
telecommunication networks, etc. Note that in the paper all considered processes are assumed to be
Markovian ones.

The paper is organized as follows: The model is described and formulated in Section 2. In Section 3 the
probability characteristics of the model are presented. In Section 4, an algorithm is proposed to illustrate
the steps for computing the probability characteristics. Finally, some numerical examples are discussed in
Section 5.

2. Description of the Model

In this paper, we deal with Markovian queueing models with impatient customers assuming that
the arrival process is Poisson with intensity function λ(t). The system has s independent servers with
the same service rates µ(t). When a customer arrives and finds a free server, the service immediately
starts; otherwise, it goes to the end of the queue. The service discipline is FIFO (First-In-First-Out queue
discipline, also known as First-Come-First-Served). The maximal number of customers in the whole
system is denoted by n. Customers staying in the queue are supposed to be impatient; that is, any of the
waiting customers can leave the queue with intensity c(t). The corresponding homogeneous models with
impatient customers have been studied in [2–12].

In the papers [6,9–11,13], impatience of customers was taken into account by the help of arrival
intensities. From a mathematical point of view, the queue-length process of the model was described
by a birth–death process. In this paper, we consider a similar model, but, instead of reducing the birth
intensities, we increase the death intensities. This approach was applied, for example, in [4,5].
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In [5], the authors dealt with the corresponding homogeneous model (i.e., for the situation of constant
rates) and proved that the queue-length process X(t) is a birth–death process with state-dependent
intensities. The behavior of an individual customer in the queue is described by a pure death process. As a
rule, the authors studied different stationary characteristics of the system.

In this paper, we consider the same model in a non-stationary situation and study a number of
important characteristics for the respective queue-length process. We note that the considered queue-length
processes are also Markovian ones (certainly, inhomogeneous in time).

Let us start with the notations.
Let pji(s, t) = Pr(X(t) = i|X(s) = j), 0 ≤ i, j ≤ n, 0 ≤ s ≤ t and denote by pi(t) the corresponding

state probabilities for X(t), pi(t) = Pr(X(t) = i), 0 ≤ i ≤ n.
Suppose the following events may happen in (t, t + h] :

• exactly one customer enters into the system with probability λ(t)h + o(h),
• no new customers enter into the system with probability 1− λ(t)h + o(h),
• more than one customer enters into the system with probability o(h),
• exactly one customer is served with probability µ(t)h + o(h),
• an impatient customer leaves the queue with probability c(t)h + o(h),
• and all these events are supposed be independent of each other.

Here, o(h) is the well-known notation; that is, o(h)/h tends to zero as h→ 0.
Hence, the following transitions are possible for the interval (t, t + h], if X(t) = i:

• X(t + h) = i + 1 with probability λ(t)h + o(h) if 0 ≤ i < n, due to the appearance of a customer in
the system,

• X(t + h) = i − 1 with probability ri(t)h + o(h), where ri(t) = µ(t)min(i, s) + c(t)max(0, i − s), if
0 < i ≤ n, due to the fact that one customer was serviced or left the system,

• X(t + h) = i with probability 1− λ(t)h− ri(t)h + o(h) if 0 ≤ i < n,
• X(t + h) = n with probability 1− ri(t)h + o(h) if i = n,
• other transitions have probabilities o(h).

Therefore, {X(t)|t ≥ 0} is a birth–death process with birth and death intensities λi = λ and ri where

ri(t) =

{
iµ(t) i ≤ s

sµ(t) + (i− s)c(t) n ≥ i > s
(1)

The graph of possible transitions of the process can be drawn as

0 1 2 3 4

r5r4r3r2r1

λλλλλ

Denote by p (t) = (p0 (t) , p1 (t) , . . . , pn (t))
T the vector of state probabilities at the moment t.

Consider the forward Kolmogorov system of equations in the form

d(p(t))
dt

= A(t)p(t). (2)

Hence, our aim is to study this system and compute all the corresponding characteristics of the
process X(t).
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For solving this problem, we apply the approach considered for instance in [14]. Namely, using the
property ∑n

k=0 pk = 1, we put p0 = 1−∑n
k=1 pk. After this, we obtain the reduced forward Kolmogorov

system Equation (2) in the form
dz
dt

= B (t) z + f (t) , t ≥ 0,

where f (t) = (λ(t), 0, . . . , 0)T , z (t) = (p1(t), . . . , pn(t))
T , and bij(t) = aij(t)− ai0(t). The next step is the

study on the rate of convergence for this system which is based on the logarithmic norm of the operator
function and the corresponding transformation of the system d(x(t))

dt = B(t)x(t); the detailed considerations
can be seen in our previous papers. Finally, if the intensity functions are constant or periodic in t, we get
the bound on the rate of convergence in the form

‖p∗(t)− p∗∗(t)‖ ≤ Ke−γt,

for some positive K and γ, where p∗(t) and p∗∗(t) are two solutions of system Equation (2) with the
corresponding initial conditions p∗(0) and p∗∗(0). This bound implies ordinary or weak ergodicity of
X(t) in the homogeneous and inhomogeneous situation, respectively. Moreover, in the case of 1-periodic
intensities, such bounds give us the possibility of practical computing of the limiting characteristics,
see Sections 4 and 5.

3. The Process Associating with an Individual Customer

Let us start with describing the behavior of an individual customer.
After arrival at moment t0, a customer may

(1) receives service immediately,
(2) stand at the end of the queue.

If at the moment of arrival of the tagged customer, there are no waiting rooms in the system and the
customer is lost.

Consider the process associated with this customer by Z(t). Let Z(t) = i if the customer is in the
queue at i-th position, Z(t) = 0 if the customer left for service, and Z(t) = 0′ if the customer left the queue.

Then, for small positive h, the following transitions are possible in the interval (t, t + h) given
Z(t) = i ≥ 1:

• Z(t + h) = i− 1 with probability sµ(t)h + (i− 1)c(t)h + o(h) when service or departure from the
queue happens for the tagged customer,

• Z(t + h) = i with probability 1− sµ(t)h− ic(t)h + o(h) when there is no changing in the queue,
• Z(t + h) = 0′ with probability c(t)h + o(h) if the tagged customer left the queue,
• o(h) for all other transitions.

Hence, Z(t) is a pure death process with two absorbing states 0 and 0′, respectively.
The graph of possible transitions of this process has the following form:

0 1 2 3 4 n-s

0’

· · ·sµ(t) + 3c(t)sµ(t) + 2c(t)sµ(t) + c(t)sµ

c(t)c(t)c(t
)

c(
t)

c(t)
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Thus, to describe the probabilities of the states of the process Z(t), we have the following system:

d(q
0′
)

dt
d(q0)

dt
d(q1)

dt
d(q2)

dt

· · ·
d(qn−s)

dt


=



0 0 c c c · · · c

0 0 sµ 0 0 · · · 0

0 0 −c− sµ sµ + c 0 · · · 0

0 0 0 −2c− sµ sµ + 2c · · · 0

· · ·
0 0 0 0 0 · · · −sµ− (n− s)c





q0′

q0

q1

q2

· · ·
qn−s


(3)

where all the intensities are the functions of t. Here, the initial conditions are:

q0′ (t0) = 0

q0(t0) = 0

q1(t0) = ps(t0)

q2(t0) = ps+1(t0)

· · ·
qn−s(t0) = pn−1(t0)

(4)

Denote by D the event associated with the arrival of the tagged customer at the moment t0.
The probability that an arrival is blocked and lost is P(Loss|D) = pn(t0).
Let W be the waiting time in the queue for a customer who enters the system at moment t0.
The probability that an arriving customer who enters into the system does not wait at all before its

service starts is exactly

P(W = 0|D) =
1

1− P(Loss|D)

s−1

∑
k=0

pk(t0).

If D holds, then q0′ (t) is the probability that the customer leaves from the queue in the interval [t0, t).
Denote by A the event associated with the departure of the tagged customer from the queue:

P(A|D) = Q0′ = lim
t→∞

q0′ (t).

Then, the conditional distribution function is

P(W < t− t0|AD) =


q

0′
(t)

Q
0′

t ≥ t0

0 t < t0.

The mean conditional waiting time given that the customer eventually abandons is

E(t0, p(t0)|A) = lim
t→∞

∫ t

t0

u− t0

Q0′

d(q0′ )

du
du.

Under the assumption D, the probability that a customer who enters the queue completes service in
[t0, t) is q0(t).

The probability K that an arrival who enters the queue eventually completes service is
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P(K|D) = Q0 = lim
t→∞

q0(t).

Hence, we obtain the corresponding conditional distribution function:

P(W < t− t0|KD) =

{ q0(t)
Q0

t ≥ t0

0 t < t0

The mean conditional waiting time given that the customer eventually completes service from
queue is

E(t0, p(t0)|K) = lim
t→∞

∫ t

t0

u− t0

Q0

d(q0)

du
du.

The probability that a new arrival who enters the system completes service in [t0, t) is

q(t) = P(W = 0|D) + (1− P(W = 0|D)− P(Loss|D))q0(t).

Denote by S the event that the service of the tagged customer completes

P(S|D) = Q = P(W = 0|D) + (1− P(W = 0|D)− P(Loss|D))P(K|D).

Then, we have:

P(W ≤ t− t0|SD) =

{ q(t)
Q t ≥ t0

0 t < t0.

The mean conditional waiting time given that the tagged customer eventually completes service is

E(t0, p(t0)|S) = lim
t→∞

∫ t

t0

u− t0

Q
d(q)
du

du.

The waiting time distribution of the tagged customer regardless of whether he abandons or is served is

P(W ≤ t− t0|D) =


P(W = 0|D) + (1− P(W = 0|D)−

P(Loss|D))(q0′ (t) + q0(t)) + P(Loss|D), t ≥ t0

0, t < t0

.

Removing the first and second equation from Equation (3), we can obtain the following estimate for
the probability that the tagged customer remains in the queue as follows:

n−s

∑
i=1

qi(t) ≤
(

n−s

∑
i=1

qi(t0)

)
exp

(
−
∫ t

t0

c(s)ds
)

.

4. Algorithm for Computing the Probability Characteristics

In this section, we summarize the procedure to obtain the probability characteristics with impatient
behavior as follows:

1. On the one hand, if the considered Markov chain is homogeneous, one can find the corresponding
stationary distribution as the constant solution of system Equation (2). On the other hand, if the process is
inhomogeneous and the respective intensities are 1-periodic, then we find the limiting 1-periodic regime
by the following way; see details in [14,19] and a brief description in Section 2. First, we obtain the
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upper bounds for the rate of convergence of the limit mode provided that we start a certain time, say t∗.
The probability characteristics of the process X(t) do not depend on the initial conditions (up to a given
discrepancy). Then, we solve the forward Kolmogorov system with the simplest initial condition X(0) = 0
in the interval [t∗, t∗ + 1]. As a result, we obtain all the basic limiting probability characteristics.

2. Consider the ways for obtaining the solutions to system Equation (3). The first approach consists
of solving the last equation (with number n− s)—then, the equation with number n− s− 1 and so on.
Here, one can use the system of symbolic computation (‘Computer algebra system’). Alternatively, one
can apply numerical methods for solving the Cauchy problem for system Equation (3).

3. After finding the solution of Equation (3), we can see that

d(q0′ )

dt
= c(t) (q1(t) + · · ·+ qn−s(t)) , (5)

d(q0)

dt
= sµ(t)q1(t), (6)

and therefore we can get formulas without derivatives for instance

E(t0, p(t0)|A) = lim
t→∞

∫ t

t0

u− t0

Q0′

d(q0′ )

du
du = lim

t→∞

∫ t

t0

u− t0

Q0′
c(u)

n−s

∑
i=1

qi(u)du,

and

E(t0, p(t0)|K) = lim
t→∞

∫ t

t0

u− t0

Q0

d(q0)

du
du = lim

t→∞

∫ t

t0

u− t0

Q0
sµ(u)q1(u)du.

Regarding initial conditions, the process X(t) initially affects the average characteristics. However,
due to the weak ergodicity of X(t) at large values of time, the initial conditions cease to have an effect.
On the other hand, the initial conditions of the process Z(t) have a significant effect on the result. These
initial conditions Z(t) can be taken arbitrarily (for example, to analyze the average time of a requirement
that falls at a certain place in the queue) or taking into account the behavior of X(t) (for example, to obtain
the average time for a periodic or stationary mode).

5. Numerical Illustrations

In this section, we show several numerical examples to compute the main characteristics for a potential
customer in different specific situations.

Note that, unlike other works, here it is shown how to obtain characteristics for requirements arising
at a certain place in the queue.

Moreover, our examples show the behavior of the main characteristics of the process associating with
an individual customer under different intensities and different initial conditions.

The first situation is devoted to a homogeneous model (i.e., with constant intensities) and a
corresponding stationary distribution as an initial one. Our results in this situation coincide with those
obtained earlier in the papers [3,4].

The second situation is devoted to the same model and arbitrary initial conditions. Finally,
we consider the specific inhomogeneous model with 1-periodic intensities and two different
initial conditions for ‘almost limiting 1-periodic’ regime. Note that we use GNU Octave for all
numerical examples.
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Example 1. Stationary queueing models with corresponding intensities λ = 102, µ = 1, s = 100, c = 1.
Then, n = 200 and ri = iµ = i. Note that, in a stationary (homogeneous in time) situation, the limiting
characteristics do not depend on t0. Hence, we will denote such expressions E(t0, p(t0)|A) by E(W|A) and so on.

(i) Stationary distribution as initial one. One can find it using forward Kolmogorov system Equation (2) and
equation Ap∗ = 0.

Here, we deal with p∗ and put t0 = 0. Hence, P(Loss) ≈ 0, P(W = 0) ≈ 0.40828.
Then, one can compute q0(t) and q0′ (t) from Equation (3). Ergodicity of the process implies closeness of q0(t),

q0′ (t) and Q0(t), Q0′ (t), respectively, for sufficiently large t. Therefore, we have P(A) = Q0′ ≈ q0′ (5) ≈ 0.049918,
Q0 ≈ q0(5) ≈ 0.541801; see the corresponding plots in Figure 1.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. Example 1 (i). Time is marked on the horizontal axis, and the probabilities q0(t) (green) and
q0′ (t) (blue) are marked on the vertical axis.

Now, we can calculate average conditional waiting times, namely

E(W|A) = lim
t→∞

∫ t

t0

u− t0

Q0′

d(q0′ )

du
du ≈

∫ 5

0

u
Q0′

d(q0′ )

du
du ≈ 0.066611,

E(W|K) = lim
t→∞

∫ t

t0

u− t0

Q0

d(q0)

du
du ≈

∫ 5

0

u
Q0

d(q0)

du
du ≈ 0.085997,

and

E(W|S) = lim
t→∞

∫ t

t0

u− t0

P(S)
d(q)
du

du ≈
∫ 5

0

u
P(S)

d(q)
du

du ≈ 0.049042.

The corresponding plots (conditional cdf) are shown in Figures 2 and 3.
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-0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Figure 2. Example 1 (i). Function P(W ≤ t|A) is marked on the vertical axis, and time is marked on the
horizontal axis.

-0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Figure 3. Example 1 (i). Function P(W ≤ t|K) is marked on the vertical axis, and time is marked on the
horizontal axis.

One can also find the respective conditional probabilities, namely

P(W ≤ 0.1|A) =
q0′ (0.1)

Q0′
≈ 0.76707,

P(W ≤ 0.1|K) = q0(0.1)
Q0

≈ 0.64691,
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P(W ≤ 0.1|S) ≈ 0.79867,

P(W ≤ 0.2|A) =
q0′ (0.2)

Q0′
≈ 0.97016,

P(W ≤ 0.2|K) = q0(0.2)
Q0

≈ 0.93760,

P(W ≤ 0.2|S) ≈ 0.96443.

(ii) The same model with an arbitrary initial condition of the queue.
Let there be 149 customers in the system at the initial moment t0 including 100 that are under service and

49 are in the queue, and a new customer arrives into the system (hence, immediately after this moment, there are
150 customers in the system).

Note that, in this way, we get the characteristics for the customers that occupy the 50th place in the queue.
The respective functions q0(t) and q0′ (t) are computed as the corresponding coordinates of the solution of

Equation (3) their plots and connection between them are shown in Figure 4.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4. Example 1 (ii). Time is marked on the horizontal axis, and the probabilities q0(t) (green) and
q0′ (t) (blue) are marked on the vertical axis.

We have P(A) = Q0′ ≈ q0′ (5) ≈ 0.33333 and Q0 ≈ q0(5) ≈ 0.541801 and the following corresponding
probability characteristics:
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E(W|A) = lim
t→∞

∫ t

t0

u− t0

Q0′

d(q0′ )

du
du ≈

∫ 5

0

u
Q0′

d(q0′ )

du
du ≈ 0.19239,

E(W|K) = lim
t→∞

∫ t

t0

u− t0

Q0

d(q0)

du
du ≈

∫ 5

0

u
Q0

d(q0)

du
du ≈ 0.40380,

E(W|S) = lim
t→∞

∫ t

t0

u− t0

P(S)
d(q)
du

du ≈
∫ 5

0

u
P(S)

d(q)
du

du ≈ 0.40380,

P(W ≤ 0.1|A) =
q0′ (0.1)

Q0′
≈ 0.28551,

P(W ≤ 0.1|K) = q0(0.1)
Q0

≈ 0,

P(W ≤ 0.1|S) ≈ 0,

P(W ≤ 0.3|A) =
q0′ (0.1)

Q0′
≈ 0.77673,

P(W ≤ 0.3|K) = q0(0.1)
Q0

≈ 0.026108,

P(W ≤ 0.3|S) ≈ 0.026108,

P(W ≤ 0.5|A) =
q0′ (0.1)

Q0′
≈ 0.99674,

P(W ≤ 0.5|K) = q0(0.1)
Q0

≈ 0.94551,

P(W ≤ 0.5|S) ≈ 0.94551.

Example 2. Non-stationary queueing model with corresponding intensities λ(t) = 102 + 80 sin(2π t), µ = 1,
s = 100, c(t) = 2 + cos(2π t).

1. At first, we compute the limiting periodic solution of the system (2) using the previously developed methods;
see [14,19]. For these purposes, it is sufficient to find a solution to this system with the initial condition p(0) = e0

in the interval [0, 16]. Hence, in the interval [15, 16], we have reasonably accurate approximation of the limiting
1-periodic regime.

2. Let the time of the arrival of a customer t0 vary from 15 to 16. Consider the corresponding
queueing characteristics.

2.1. Put now t0 = 15 and compute the corresponding solution of system (3) in the interval [15, 20], where we
take the solution of system Equation (2) at the moment t0 = 15 as an initial condition.

The corresponding characteristics are shown in Figures 5 and 6.
P(A) = 0.0079420, P(K) = 0.073122.



Mathematics 2020, 8, 594 12 of 15

15 16 17 18 19 20
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Figure 5. Example 2 (t0 = 15). Functions q0(t) (green) and q0′ (t) (blue).

15 15.05 15.1 15.15 15.2 15.25
0

0.02

0.04

0.06

0.08

Figure 6. Example 2 (t0 = 15). Functions q0(t) (green) and q0′ (t) (blue).

3. Put now t0 = 15.1 and compute the corresponding solution of system Equation (3) in the interval [15.1, 20.1]
where we take the solution of system Equation (2) at the moment t0 = 15.1 as an initial condition.

The corresponding characteristics are shown in Figure 7 and for t0 = 15.1 we have P(A) = 0.019595,
P(K) = 0.16204.



Mathematics 2020, 8, 594 13 of 15

15.1 15.15 15.2 15.25 15.3 15.35
0

0.05

0.1

0.15

0.2

Figure 7. Example 2 (t0 = 15.1). Functions q0(t) (green) and q0′ (t) (blue).

Similar to the initial condition, we can take the solution of system Equation (2) at any time moment from the
interval [15, 16]. The corresponding mathematical expectations E(t0, p(t0)|A), E(t0, p(t0)|K), E(t0, p(t0)|S) for
different t0 are shown in Figure 8.

15 15.2 15.4 15.6 15.8 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 8. Example 2. E(t0, p(t0)|A) (blue) , E(t0, p(t0)|K) (green), E(t0, p(t0)|S) (red).

6. Conclusions

The present paper dealt with non-stationary Markov models of queuing systems with impatient
customers. It was shown that the calculation of a number of probabilistic characteristics for such models
can be performed by methods used to study the transient properties of birth–death processes. A new
mathematical model of the process was considered that describes the behavior of an individual requirement
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in the requirements queue. This model can be applied both in the stationary and non-stationary cases.
Based on the proposed model, a methodology was developed for calculating the probability characteristics
of the system both in the case of the existence of a stationary solution and in the case of the existence of
a periodic solution for the corresponding forward Kolmogorov system. Several sample examples were
presented showing the effectiveness of the proposed methodology. The results obtained are applicable to
the study of specific queuing systems, information, and telecommunication systems. In further works,
we would like to generalize the results obtained here to different directions: one of the possibilities is
weakening the assumptions on the behavior of the processes.
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