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Abstract: Cyclodextrins are widely used excipients, composed of glucopyranose units with a
cyclic structure. One of their most important properties, is that their inner cavity is hydrophobic,
while their surface is hydrophilic. This enables them for the complex formation with lipophilic
molecules. They have several applications in the pharmaceutical field like solubility enhancers or
the building blocks of larger drug delivery systems. On the other hand, they have numerous effects
on cells or biological barriers. In this review the most important properties of cyclodextrins
and cyclodextrin-based drug delivery systems are summarized with special focus on their
biological activity.
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1. Introduction

Cylodextrins are cyclic, non-reducing oligosaccharides composed of glucopyranose units [1].
The α-, β-, and γ-cyclodextrins are widely known, which contain 6, 7, and 8 units respectively. Recently
the smallest cyclodextrins were synthetized, containing 3 and 4 glucopyranose units [2], and on
the other hand big oligosaccharides with more, than 8 units are also known [1] and applied for
complexation [3] or as chiral selectors for enantiomeric pharmaceuticals [4]. Glucopyranose units form
a conical cylinder, which has a hydrophobic inner cavity and a hydrophilic outer surface. This structure
enables them to form inclusion complexes with hydrophobic molecules. In general, the complex
forming abilities of α-, β-, and γ-cyclodextrins are better, than the larger ones, thus these derivatives
are practically important [1]. Cyclodextrin rings can be chemically modified, linked with substituents
or other cyclodextrin rings and used to build up larger nanostructures. The type and application
of these nano-constructs is continuously increasing. Besides the drug complexation, cyclodextrins
can form complexes with natural, biological important molecules like phospholipids, cholesterol
or other lipophilic molecules. It causes various effects, especially at cellular level or on biological
barriers. On the other hand, cholesterol complexation properties of hydroxypropyl-β-cyclodextrin is
applied in the treatment of Niemann Pick Disease Type C (NPC) and was approved as an orphan drug.
This mini-review gives a summary on the basic complexation, drug delivery and biological properties
of cyclodextrins and the cyclodextrin-based nano-scale drug delivery systems.
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2. Cyclodextrin Complex Formation

Cyclodextrins are widely used excipients in pharmaceutical formulations and the interest in
cyclodextrin research and application is still significant. The most common application of cyclodextrins
is the solubility and bioavailability enhancement of poorly water-soluble drugs by complexation.
These drugs belong to the Class 2 (low solubility, high permeability) or Class 4 (low solubility,
low permeability) of the Biopharmaceutics Classification System (BCS) and by the application of
cyclodextrins both their solubility and permeability can be improved [5] (Figure 1). Nevertheless,
the possibilities for the improvement of the properties of Class 4 drugs by cyclodextrins is limited.

Sci. Pharm. 2019, 87, x FOR PEER REVIEW 2 of 20 

 

2. Cyclodextrin Complex Formation 

Cyclodextrins are widely used excipients in pharmaceutical formulations and the interest in 

cyclodextrin research and application is still significant. The most common application of 

cyclodextrins is the solubility and bioavailability enhancement of poorly water-soluble drugs by 

complexation. These drugs belong to the Class 2 (low solubility, high permeability) or Class 4 (low 

solubility, low permeability) of the Biopharmaceutics Classification System (BCS) and by the 

application of cyclodextrins both their solubility and permeability can be improved [5] (Figure 1). 

Nevertheless, the possibilities for the improvement of the properties of Class 4 drugs by cyclodextrins 

is limited.  

 

Figure 1. The relationship between the Biopharmaceutics Classification System and the effects of 

cyclodextrin complexation. 

Increasing the cyclodextrin concentration in a solution the concentration of dissolved drug is 

usually increasing, but exceptions can be found. These relationships can be described by the phase-

solubility diagrams (Figure 2), [6]. A-type phase-solubility curves show the increased drug solubility 

by increasing cyclodextrin concentration. AL-type diagrams indicate that the solubility of the guest 

molecule increases linearly with cyclodextrin concentrations. AP-type diagrams show positive 

deviation from linearity, suggesting the presence of higher-order complexes for cylodextrins. AN-type 

diagrams have negative deviation from linearity and may be explained by the self-association or 

aggregation of the cyclodextrins or their complexes, decreasing the solubility of the drug. In the case 

of B-type curves the formed complexes have limited solubility in the aqueous medium. BS-type 

profiles show the development of complexes with reduced aqueous solubility with the maximal 

solubility at the plateau. In the case of Bi-type profiles the formed complexes are insoluble in the 

applied solvent. The affinity of a drug for a certain cyclodextrin can be characterized by the stability 

constant (K) of the drug-cyclodextrin complex. In these descriptions the drug:cyclodextrin ratio is 

usually considered to be 1:1 or 1:2, but higher ratios can also exist. Nevertheless, higher-order 

complex aggregates may be formed and affect the solubility of the drug [7]. Self-association of 

lipophilic drugs molecules and drug-cyclodextrin complexes contributes to the non-inclusion 

complexation, which influences the shape and the interpretation of the curves. As a result, the 

stoichiometry of drug-cyclodextrin complexes cannot be determined in each cases from the phase-

solubility diagrams [8]. 

Even if the complex formation with cyclodextrins is mainly used for the solubility enhancement 

of poorly water-soluble drugs, this phenomenon takes place with natural lipophilic molecules if their 

size and molecular structure are suitable for the host–guest interaction. Interaction with natural 

molecules (e.g., cholesterol and lipid membrane components or vitamins) can be characterized by the 

phase-solubility diagrams and have also significant importance in biomedical research and 

application. 

Figure 1. The relationship between the Biopharmaceutics Classification System and the effects of
cyclodextrin complexation.

Increasing the cyclodextrin concentration in a solution the concentration of dissolved drug
is usually increasing, but exceptions can be found. These relationships can be described by the
phase-solubility diagrams (Figure 2), [6]. A-type phase-solubility curves show the increased drug
solubility by increasing cyclodextrin concentration. AL-type diagrams indicate that the solubility of the
guest molecule increases linearly with cyclodextrin concentrations. AP-type diagrams show positive
deviation from linearity, suggesting the presence of higher-order complexes for cylodextrins. AN-type
diagrams have negative deviation from linearity and may be explained by the self-association or
aggregation of the cyclodextrins or their complexes, decreasing the solubility of the drug. In the case of
B-type curves the formed complexes have limited solubility in the aqueous medium. BS-type profiles
show the development of complexes with reduced aqueous solubility with the maximal solubility at
the plateau. In the case of Bi-type profiles the formed complexes are insoluble in the applied solvent.
The affinity of a drug for a certain cyclodextrin can be characterized by the stability constant (K) of the
drug-cyclodextrin complex. In these descriptions the drug:cyclodextrin ratio is usually considered
to be 1:1 or 1:2, but higher ratios can also exist. Nevertheless, higher-order complex aggregates may
be formed and affect the solubility of the drug [7]. Self-association of lipophilic drugs molecules
and drug-cyclodextrin complexes contributes to the non-inclusion complexation, which influences
the shape and the interpretation of the curves. As a result, the stoichiometry of drug-cyclodextrin
complexes cannot be determined in each cases from the phase-solubility diagrams [8].

Even if the complex formation with cyclodextrins is mainly used for the solubility enhancement
of poorly water-soluble drugs, this phenomenon takes place with natural lipophilic molecules if their
size and molecular structure are suitable for the host–guest interaction. Interaction with natural
molecules (e.g., cholesterol and lipid membrane components or vitamins) can be characterized by the
phase-solubility diagrams and have also significant importance in biomedical research and application.
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3. Cyclodextrin-Based Nanostructures

3.1. Cyclodextrin Associates, Polypseudorotaxanes and Polyrotaxanes

Besides the association of lipophilic drug molecules and drug-cyclodextrin complexes,
the aggregation of cyclodextrin molecules is also a known phenomenon [9]. α-, β-, and γ-cyclodextrins
form aggregates in concentrated (mM) solutions and bind together by a network of hydrogen bonds
and by intermediate, bridging water molecules. These wormlike, self-assembled aggregates of
cyclodextrins might be called “poly-CD”. The optimal configuration for the neighboring cyclodextrin
rings is the “head-to-head/tail-to-tail” orientation [10]. Mixing of the concentrated aqueous solution of
α-cyclodextrin with the polymer polyethylene-glycol (PEG) [11] or β-cyclodextrin with poly(propylene
glycol) [12] causes the cooperative threading of the cyclodextrin molecules along a single polymeric
chain. These mixtures become turbid and a precipitate is formed, but the process is reversible.
The assembly is called polypseudorotaxane [10]. Pegylated molecules maintain their ability to form
polypseudorotaxane. Pegylated insulin forms polypseudorotaxanes with alpha- and gamma-CDs,
by inserting one or two PEG chains in the CD’s cavity respectively [13] and coumarin linked PEG chains
form polypseudorotaxanes with alpha-CDs arranging in supramolecular micelles [14]. If the two ends
of the polymer chain are linked to two bulky end groups and the cyclodextrin rings are prevented from
dethreading, the structure is called polyrotaxane [15]. It is a mechanically interlocked molecule, like a
molecular necklace, where no covalent bonds can be found between the cyclodextrin rings, but the
cyclodextrins remain on their axles. Several types of cyclodextrins and water soluble and insoluble
polymers were used for the formation of polyrotaxanes and different strategies were established for
their synthesis, which was extensively reviewed earlier [16]. Polyrotaxanes are widely used in the
formation of drug delivery systems. Both the CD ring and the polymer chain can be functionalized for
the improved efficiency or cellular internalization. Recently α-CD ring was modified with α-d-mannose
for the improved mannose receptor mediated endocytosis [17]. Folate-terminated polyrotaxanes were
developed by modifying PEG chains and target mitochondrium [18]. Polyrotaxane-based theranostics
were also fabricated with excellent anti-tumor performance [19]. Cationic cyclodextrin polyrotaxanes
can be also used for the cellular delivery of polynucleotides [20] and genes [21].

Besides the association and mechanical interlocking, chemical modification or polymerization of
cyclodextrin rings is the other possibility to build up cyclodextrin-based nanostructures. Cyclodextrins
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are also used for the formation of the variety of other nano-scale drug delivery systems like cyclodextrin
polymers and nanosponges.

3.2. Formation of Cyclodextrin Conjugates, Polymers, and Nanosponges

In addition to intermolecular forces, it is also possible to modify the cyclodextrins by functional
groups and build up larger structures by covalent bonds. The 2,3,6-hydroxyl groups of the cyclodextrin
ring are reactive and can be modified by the ways mentioned below. The hydroxyl groups show
different reactivity, the 2,6-OH is the most reactive [22]. The modification of the hydroxyl groups can
help the extensive usability of cyclodextrins in the pharmaceutical development. The basic methods for
the synthesis of modified cyclodextrins are deprotonation, dehydration and condensation. In the case
of deprotonation, the reaction of acidic hydroxyl group with a strong base produces an anion which
needs to the SN2-type polymerizations. The most common cross-linker, epichlorohydrin, also reacts
with the CD-ring by this mode. The dehydration method creates polyethers and polyesters. A typical
reaction of cyclodextrins happens with diol or diacid in sulphuric acid solution. The third type is the
condensation which means the reaction of cyclodextrins directly with a bi-functional linker such as
diisocyanate [23]. Depending on the linker, the reaction results many kinds of molecular structures,
the most typical ones are schematically shown on Figure 3. These are discussed in more detail in
later paragraphs.
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3.3. Mucoadhesive Drug Carriers

Grafted cyclodextrins can ensure improved mucoadhesion of the complex to the absorption areas.
This modification is useful in sublingual, gastroretentive, or vaginal applications. The best known
materials that have mucoadhesive properties are polyethylene-glycol, chitosan, alginate, or molecules
having thiol groups [24].

Thiolated cyclodextrins are the smallest mucoadhesive drug carriers, it can be formulated from
α–cyclodextrin, β-cyclodextrin, or γ-cyclodextrin [25]. Cysteamine conjugated β–cyclodextrin can
be a new promising excipient for oral drug delivery. It shows a significant buccal mucoadhesion,
and increases the solubility of a model drug, miconazole nitrate [26]. Another study used thiolated
α–cyclodextrin to reach prolonged ocular drug release. The encapsulated cetirizine reduced the
irritation of the rabbit ocular mucosa. Comparison of the complex solution with cetirizine solution
showed, that after 24 h the effects of cetirizine solution disappeared, but the complex was effective
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up to 72 h [27]. Thiolated cyclodextrin complexes can be used for the protection of vaginal mucosa
from viral infection [28]. The studies showed that the carrier is not cytotoxic on different cell cultures.
Prolonged residence time was further increased and the thiol group was protected by disulphide bond
formation using 2-mercaptonicotinic acid [29].

Cyclodextrins were also grafted to chitosan and alginate to increase the ability of mucoadhesion.
These structures are larger, than the thiolated cyclodextrins. Chitosan grafted with cyclodextrins has
less mucoadhesivity than chitosan alone, but still higher than cyclodextrins and these modifications are
suitable for prolonged drug release [30]. After the grafting and entrapping the drug, the complex showed
self-aggregation [31,32]. Eugenol was also formulated with β-cyclodextrin-grafted chitosan derivatives.
Eugenol complexed with β-cyclodextrin-grafted chitosan showed higher antimicrobial activity against
Candida albicans, Streptococcus oralis, and Streptococcus mutans, than the native β-cyclodextrin-grafted
chitosan [31]. Jun Wang et al. developed nanospheres with doxorubicin-hydrochloride and cyclodextrin
grafted chitosan. The nanoparticles showed a continuous drug release until 200 h, in the first 24 h 18%
of the drug released, and after, the release rate slowed down and reached 40% finally. These results
point out that drugs with good solubility can be formulated with chitosan to sustained drug delivery
in cancer therapeutics [33].

Alginate grafted cyclodextrins can be formulated to hydrogel, nano-, or microbeads. Hydrogels
which are prepared by CaCl2 is softer than the pure alginate, however it has mucoadhesive properties
and encapsulates insoluble drugs [34]. CaCl2 solution is used to formulate beads, Ca2+ ion makes ionic
bonds between two alginate polymer chains [35].

3.4. Responsive Cyclodextrins

Sensitive, smart drug delivery systems were developed, which change their properties responding
to thermo-, pH-, or photo-stimuli. The responsive functionalities are based on host–guest
interactions, additional responsive moieties, supramolecular interactions or a polymer [36]. As it was
described above, the first thermo-responsive cyclodextrin-based system was the α-cyclodextrin-PEG
polypseudorotaxane, which precipitates during its formation in aqueous solution, but the complexes
can be dissolved in water by heating [11]. The thermo-responsive cyclodextrin, which is conjugated
with a polymer, has a critical working temperature. Most of the cases, its solubility is altered by
temperature changing which is called lower or upper critical solution temperature [37]. On the other
hand, the temperature also influences the swelling ratio of the formed gel that is closely related to
the rate of dissolution and erosion. The most common polymers, which are used for the preparation
of thermo-responsive systems are N-isopropylacrylamide, acrylamide, acryl acid and poly(ethylene
glycol) [38–40].

The pH sensitive drug delivery systems can be useful to treat tumor diseases. The tumor
microenvironment has lower pH, than the blood or other tissues. The smart system is able to recognize
the changing of the pH and releases the active ingredient [41,42]. On the other hand, the pH of the
stomach is also less than the colon pH, so using pH sensitive polymer can help to avoid the harmful
effects of low pH [36,38]. The mechanism for cyclodextrins is that, the chargeable cyclodextrin molecule
entraps the active pharmaceutical ingredients (API) and the pH changes alters the surface charge.
That transformation is able to leak the drug from the cyclodextrin cavity [43].

The photo-responsive carriers contain photoreactive compounds for example azobenzene-poly-2-
(diisopropylamino) ethyl methacrylate-methoxypolyethylene glycols. This copolymer was inserted
into the host β-cyclodextrins. The azo group has a cis-trans reversibly isomerism, that are transformed
into one another by near-infrared light (NIR, 980 nm) and caused the reversible insertion into the
cyclodextrin ring [44].

Table 1. summarizes the latest investigations in this topic.
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Table 1. Latest results on stimuli-responsive cyclodextrin drug delivery systems.

Stimulus Conjugates/Guests Cyclodextrin Drug Effect Application Ref.

Temperature poly(ethylene glycol) (PEG) α-CD No active ingredient
was used Convert from gel to sol state.

Biomedical using as local chemotherapy
of cancers, excellent cytocompatibility,

controlled drug release.
[12]

Temperature bi-perylene monoimide permethyl-β-CD Tetraphenylporphine
(TPPS) LCST shows from 32 ◦C to 48.2 ◦C. Controlled drug release that is

depending on the temperature [45]

Temperature and pH N-isopropylacrylamide β-CD Naproxen sodium

Swollen ratio decreased with the
increase of temperature and

response to pH is depending on %
of the component

Hydrogels show biodegradability and
controlled drug release in stomach

condition; in intestinal condition the
release is faster because of the higher

pH.

[38]

Temperature and pH chitosan β-CD Etoposide (VP16)

thermo-sensitive hydrogen bonds
were between API and the β-CD

cavity that is damaged by
increasing temperature. Release of

the drug reached 90% at pH 4.5

The pH response is important to treat
cancer, because the tumors’

microenvironment is acidic, contrast
with the blood pH.

[46]

Temperature and pH N-isopropylacrylamide β-CD Doxorubicin (DOX)
The release of DOX was enhanced
by the increase of temperature and

decrease of pH

It is a supramolecular micelle for
anticancer therapy. Therapeutic index is

higher than free DOX.
[39]

pH L-phenylalanine functionalized graphene
oxide β-CD Doxorubicin (DOX)

Changing the pH from 7.2 to 5.4
resulted in triplicated drug release

of DOX.

Nanocarrier has excellent
biocompatibility, and is a pH-responsive
drug delivery system for cancer therapy

[47]

pH zinc oxide nanoparticles with functionalized
PEG surface β-CD Curcumin

pH stimulated release showed zero
order release of curcumin at tumor

pH

ZnO nanoparticles have higher
antibacterial activity on Staphylococcus

Aureus than free drug
[48]

pH chitosan β-CD
Methyl-orange (not

active pharmaceutical
ingredients (API))

Swelling behaviours were changed
by pH stimuli

It has sustained release properties,
which make it suitable for use in

medicine
[49]

pH and photo azobenzene-poly-2-(diisopropylamino) ethyl
methacrylate–methoxypolyethylene glycols β-CD doxorubicin (DOX) The low pH and NIR lead to

disassembling of nanoparticles.

It provides a new perspective on tumor
therapy, tumor targeting, and controlled

drug release.
[44]

pH adamantyl-terminated poly (ethylene glycol) β-cyclodextrin-containing
poly(β-amino ester) Curcumin

Micelle could unload the 70% of
drug at pH 5.5 and 30% of the drug

at 7.4 until 24 hours.

It is a supramolecular micelle drug
delivery system for cancer treatment. [50]

reduction, photo hyaluronic acid β-CD adamantane linked
camptothecin

Disulphide bond linkage is
reduction sensitive, that is led to

release the drug by NIR

A reduction-sensitive drug delivery was
developed with

photothermal-chemotherapy.
[51]
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3.5. Cyclodextrin Polymers

Cyclodextrin polymers offer significant opportunities to the application of cyclodextrins.
The structure increases the chance for interactions between the cyclodextrin cavity and guest drugs [52].
Depending on the reaction, and the substituents it is possible to create soluble or insoluble polymers.
The solubility decreases as the number of connected monomers increases, and this parameter depends on
the reactivity of the cross-linker agent, substituents, and the reaction time [23,53,54]. The most common
cross-linkers are epichlorhydrin and citric acid [52,55–57]. The water-insoluble cyclodextrins today
are used as a solid phase to remove pollution from solutions and used in analytical chemistry [58–61].
The oral usability of solid, water insoluble, cyclodextrin polymer as a microsize-controlled drug
delivery system is a promising tool for the formulation of controlled drug delivery systems. Intensive
investigations are needed to develop this field of cyclodextrin applications and utilize its possibilities.

Nanosponge (NS) is a type of insoluble cyclodextrin polymer that has highly cross-linked 3D
network structure. Its size is around 200–300 nm [62]. NS offers possibility to increase the solubility of
insoluble drugs, the permeability of the drugs and controlled drug release (Figure 4).
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Taking into account their properties, cyclodextrin NS can be generally classified into four
generations [63] (Figure 5). First generation NSs are prepared by the cross linking of cyclodextrin
rings by suitable cross-linker. After synthesis drugs are loaded into NSs during a complexation
step. Second NSs are functionalized and have specific properties such as fluorescence or electric
charge. Functionalization can be done before synthesis of NS (pre-cross-linking functionalization of
cyclodextrins), during the cross-linking step adding the functionalizing agent or after synthesis
(post-cross-linking functionalization of NS). Finally, the complexation of drugs is performed.
Third generation NSs are stimuli-sensitive systems and have responsive properties to external
changes such as the chemical environment. Fourth generation NSs are prepared by molecular
imprinting method.
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3.6. Amphiphilic Cyclodextrins

A special group of cyclodextrin derivatives are the amphiphilic cyclodextrins. In these derivatives
hydrophobic (aliphatic) chains are grafted on the primary and/or secondary face of the cyclopdetxrin
rings. These cyclodextrins can self-assemble into water soluble aggregates, like micelles and
nanoparticles or insert in lipid membranes [82]. With these amphiphilic cyclodextrins cell targeting can
be improved. There are two groups of these cyclodextrins. One of is the polysubstituted amphiphilic
cyclodextrins which were obtained by the substitution of the primary or secondary hydroxyl groups.
According to the position of the substitution groups we can distinguish some sub-groups, such as
medusa-like, skirt-shaped, and bouquet-like (Figure 6). The medusa-like cyclodextrins were synthetized
by the persubstitution of the primary side with sulfo-, thio-, alkyl-, amido-, or amino chains. This type
can form a stable Langmuir–Blodgett layer. The skirt- shaped type were modified on the secondary
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hydroxyl groups with alkyl chains via an ester group. Bouquet-like amphiphilic cyclodextrins contain
hydrocarbon chains on both sides, thus increasing their hydrophobicity. These derivatives can also
contain a poly(oxyethylene) or a polymethylene chain on each side of the cavity. Another family of
polysubstituted cyclodextrins contains hydrophobic alkyl chains on one side and hydrophilic chains
on the other side [83]. These derivatives can form bilayer vesicles, thus the hydrophilic chains at the
surface increase their colloidal stability and potentially decreasing their adverse immune response.
The other group of the amphiphilic cyclodextrins is the monosubstituted amphiphilic cyclodextrins.
These excipients obtained by appending a single hydrophobic anchor. The aim of this derivatization is
the improvement of cell targeting. This group also has some sub-groups. The “Lollipop” is obtained by
grafting an alkyl chain on the primary side. The “Cup and Ball” derivative contain a bulky Boc-amino
protective group at the end of the alkyl chain. This cyclodextrin is much more water-soluble than the
“Lollipop” cyclodextrin. In the case of the lipid-like amphiphilic cyclodextrins the hydrophobicity was
increased with a lipid-like anchor such as cholesteryl or phospholipidyl group (Table 2) [82,83].

Table 2. Types of amphiphilic cyclodextrins with substituents.

Type of Amphiphilic
Cylodextrin Subtype Substituents

Polysubstituted
Medusa-like Sulfo-, thio-alkyl-, amido- or, amino chains on the primary side

Skirt shaped Modified on the secondary hydroxyl groups with alkyl chains
via an ester group

Bouquet-like Hydrocarbon chains on boths side, or poly(oxyethylene) and
polymethylene chains

Monosubstituted
Lollipop One alkyl chain on the primary side

Cup and Ball Contain a bulky Boc-amino protective group at the end of the
alkyl chain

Lipid-like Cholesteryl, phospholipidyl or dilauryl moiety

Based on the charging of the amphiphilic cyclodextrins we can distinguish two types. The cationic
cyclodextrins can be obtained by the modification of the oligomer (oligo(ethylene glycol) side chains with
amino groups [84]. The anionic cyclodextrins contain carboxyl or sulphate groups [85]. Amphiphilic
cyclodextrins can form self-assembled nanoparticles. This property can improve the cell targeting,
the tumoral penetration, the drug release profiles and cytotoxicity. Ghera et al. made stable aqueous
suspension of nanoparticles by using nanoprecipitation without a surface-active agent. Amphiphilic
cyclodextrins were dissolved in a polar solvent, like acetone or ethanol and the solution was poured
into water and stirred at 400 rpm. The solvent was evaporated under reduced pressure. They stored
the suspensions of nanospheres at + 4 ◦C and found that the suspensions were stable over at least
9 month [86]. Amphiphilic cyclodextrins were used for the formation of drug delivery systems of
wide range of drug molecules or biomolecules. Amphiphilic α-cyclodextrins were used to form
self-assembled supramolecular nanoparticles and improved the cytotoxicity of a CK2 inhibitor [87].
Amphiphilic cyclodextrins were also studied as non-viral vectors for gene or nucleic-acid delivery,
especially polycationic derivatives are suitable to interact with the anionic nature of nucleic acids [82].
Nevertheless modified PEGylated amphiphilic cyclodextrins [88] were used for siRNA delivery and
galactosylated amphiphilic cyclodextrins were tested for targeted gene delivery to hepatocytes [89].
PEGylated cyclodextrin-based nanoparticle, tagged with central nervous system (CNS)-targeting
peptide derived from the rabies virus glycoprotein was tested as potential carrier of siRNA, targeting
brain cancer [78]. Active targeting can be also achieved by folate-decorated amphiphilic cyclodextrins,
which enhanced the cellular uptake of nanoassemblies into tumor cells overexpressing α-folate
receptors [90].
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To understand the drug delivery properties of cyclodextrin-based nanoparticles, the diverse
interactions of cyclodextrins and cyclodextrin nanoparticles with cell membranes and biological
barriers should be discussed.

4. Cyclodextrins, Biological Barriers and the Significance of Lipid and Cholesterol Complexation

Because of their well-known properties, cyclodextrins have several indirect and direct effects on
biological barriers. The intestinal barrier and blood–brain barrier are widely investigated, but cell
membrane should be also mentioned as the elemental component of the biological barriers. As we
discussed above these molecules can form complexes with lipophilic drugs, hereby improving
their water solubility and carrying them to the barrier surface. Firstly, guest molecule can be
transported through the unstirred water layer (UWL) of the intestinal barrier as a complex (with proper
stability constant). UWL can be 100 µm thick, and it is absorbed to the surface of viscous mucus
membranes [91–93]. There is a limitation in case of hydrophilic cyclodextrins: transportation is only
possible when resistance of UWL on donor side is equal or higher than the resistance of membrane
barrier [93,94]. Ren et al. confirmed with in silico simulations that β-cyclodextrins (and assemblies
with β-cyclodextrins) confronting with large energy barriers to penetrate biological membranes [95].
So β-cyclodextrins can improve water solubility of lipophilic drugs by complexation and enhance
bioavailability of the guest molecule by transporting it directly to the barrier membrane, where the
complex dissociates, and the free drug can be absorbed [96]. This process supposes not too strong
binding force between the cyclodextrin and the complexed drug (otherwise complex dissociation cannot
take place) [92] and the presence of not more cyclodextrin molecules than necessary for solubilization,
because excess amount of cyclodextrin decreases bioavailability of the complexed drug [93].

Based on the host–guest interaction, cyclodextrins can form complexes with natural hydrophobic
molecules. α-cyclodextrins form complexes with phospholipids, while for β-cyclodextrins membrane
cholesterol is an excellent cellular target. Cholesterol is a key component of the cell membrane,
representing ca. 30% of total lipids [97]. Due to their affinity for these biomolecules, α-cyclodextrins
extract phospholipids from the membrane [98,99] and β-cyclodextrins induce the release of cellular
cholesterol [100], thus cyclodextrins have direct effects on cells and biological barriers. Monnaert et al.
found that extent of lipid solubilization from brain endothelial cells depends on the cyclodextrin
ring size: β>>γ>α-cyclodextrin for cholesterol, α>>γ>β-cyclodextrin for phosphatidylcholine and
α>β>>γ-cyclodextrin for sphingomyelin [101]. Cyclodextrin-cell membrane interactions have several
dose-dependent effects, but structure–activity relationships were also revealed, which depend on both
the type of cyclodextrins and the substituents of the cyclodextrin ring. Both α- and β-cyclodextrins
can cause dose-dependent hemolysis [98,99,102] and cytotoxicity [103], but the substituents have
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great impact on these effects. We showed, that there is a correlation between the cytotoxic effect,
hemolytic activity and the cholesterol complexation properties of β-CD derivatives [103]. Cytotoxicity
of methylated-β-CDs was the highest on intestinal Caco-2 cells, while ionic derivatives proved to be less
toxic than methylated derivatives. Substitution with hydroxypropyl groups also drastically decreased
cytotoxicity. Similar structure–activity relationship was revealed in the case of α-cyclodextrins [104].
β-cyclodextrin-cell membrane interaction decreases the cholesterol content of the membranes, causing
the altered function of the cell membrane and can disrupt the barrier function of cell layers. 10 mM
methyl-beta-cyclodextrin lowered cell cholesterol levels by 40%, increased the transepithelial electric
resistance (TEER) and paracellular permeability of dextrans through Caco-2 cell layers [105]. It was
found, that cholesterol extraction caused the destabilization of tight-junction protein complexes, which
are localized in lipid rafts. On the other hand, cholesterol extraction can decrease the function of efflux
transporters, which have important role in the complex intestinal barrier systems. Several members of
ABC transporters (ATP-binding cassette transporters) can be found in the intestinal membrane. These
transporters decrease the absorption of their drug substrates by pumping them back to the intestinal
lumen [106]. The effect of cholesterol and the membrane microenvironment on the ABC transporter
P-glycoprotein (Pgp) function was widely studied. There is a complex interplay between Pgp and the
membrane microenvironment, cholesterol-rich microdomains may modulate its function [107] and
conformation [108] and cholesterol depletion can inhibit its function [109]. Dimethyl-β-cyclodextrin
enhanced both the oral bioavailability of tacrolimus in rats and its permeability on Caco-2 cells by
Pgp inhibition [110]. Randomly methylated β-cyclodextrin derivatives can enhance taxol permeability
through human intestinal epithelial Caco-2 cell monolayer without Pgp inhibition as we showed
earlier [111] and another mechanism, the endocytosis can be one of the mechanism, which can
contribute the enhanced cellular uptake of paclitaxel [112].

In the recent years complexation of cholesterol by cyclodextrins is also utilized in the treatment
of a rare cholesterol storage disorder, Niemann Pick Disease Type C (NPC). In this disease the
normal intracellular cholesterol trafficking is inhibited because of the mutation of NPC1 or NPC2
genes resulting the unesterified cholesterol accumulation in lysosomes/late endosomes. The disease
has broad clinical spectrum ranging from a neonatal fatal disorder to an adult-onset chronic
neurodegenerative disease with cholesterol accumulation in brain, liver and spleen [113]. Interestingly
hydroxypropyl-β-cyclodextrin (HPBCD) was found to be effective in vitro in NPC mutant cells [114]
and endocytosis of the cyclodextrins was found to be responsible for cellular cholesterol reduction [115].
The effectiveness of subcutaneous (sc) or intraperitoneal (ip) administration of HPBCD was proved
in Npc1−/− and Npc2−/− mice, it reduced intraneuronal storage, and significantly increased the
lifespan of the animals. The beneficial effects of HPBCD on CNS neurons in NPC1 mouse model
was shown, however the mechanism by which these effects were facilitated was unknown [116].
It is known, that HPBCD permeability is very low on the blood–brain barrier and does not
accumulates in the brain [117]. However, HPBCD interact with the endothelium of the cerebral
vasculature and may help the clearance of cholesterol from the CNS [118]. This example clearly
shows the complexity of cyclodextrin’s effect on biological barriers in pathological conditions related
to cholesterol dyshomeostasis. Earlier studies showed, that i.v. administration of HPBCD is safe
and well tolerated [119,120] and recently HPBCD was approved as an orphan drug for the treatment
of NPC. Intrathecal HPBCD was subjected to clinical trial to reduce cholesterol accumulation and
slow the disease progression with an acceptable safety profile [121]. HPBCD slowed the disease
progression, but an expected adverse event, ototoxicity and hearing loss was recorded in all patients.
No other drug-related serious adverse events were observed [121]. New cyclodextrin derivatives
like 6-O-α-Maltosyl-β-Cyclodextrin [122] or polyrotaxane-based delivery systems [123] are also
developed to improve the efficacy of the treatment. Not just hydroxypropyl-β-cyclodextrin but also
hydroxypropyl-γ-cyclodextrin can be efficient in case of cholesterol accumulation defect. Latter has
no ability to complex cholesterol, that is why there should be another mechanism to explain this
phenomenon. It was supposed that cyclodextrins can induce cellular signaling routes to facilitate
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intracellular cholesterol trafficking [124,125]. To achieve the above-mentioned effects, HPBCD molecule
must enter the cells. Due to its hydrophilic character, big molecular mass, the low octanol/water
partition coefficient and the number of hydrogen bond donors and acceptors it is not able to permeate
the cell membrane by passive diffusion [93]. The only possibility to enter the cells is the endocytosis.
To understand the cellular internalization of cyclodextrins a brief summary of endocytic pathways
is required.

Endocytosis of Cyclodextrins

Endocytosis is one of the most important capability of a cell. It controls the composition of plasma
membrane and supports the communication between the cell and its environment. Many endocytic
pathways can be differentiated in mammalian cells according to their dependencies on lipids and
proteins [126].

Phagocytosis and pinocytosis can be differentiated by the content of the vesicle. Primarily
professional phagocytes (macrophages, neutrophiles, monocytes, and dendritic cells) can take up larger
(opsonized) particles by phagocytosis, while pinocytosis (when cells internalize fluid) can be found in
all kinds of mammalian cell. The most recent classification of pinocytic pathways is the following:
Clathrin dependent endocytosis, caveolae dependent endocytosis, micropinocytosis, and clathrin and
caveolae independent endocytosis.

The diameter of phagosomes and macropinosomes is around 0.2–10 micrometers, in other cases
vesicles are smaller [127]. After moving into the cytosol, vesicles fuse with lysosomes in case of
phagocytosis, macropinocytosis and clathrin dependent endocytosis [128,129].

One of the most understood and studied pathway is clathrin dependent endocytosis. In case
of clathrin dependent endocytosis, the cargo is adsorbed by plasma membrane proteins and a
clathrin coated pit is formed, then the pit changes to a clathrin coated vesicle. On the surface of
many mammalian cells (mainly on smooth muscle, type I pneumocytes, fibroblasts, adipocytes and
endothelial cells) nonclathrin-coated plasma membrane buds (known as caveolae) can be observed.
These are flask-shaped invaginations with a diameter of 60–80 nm. Macropinosomes can be formed
usually from highly ruffled regions of the plasma membrane. In this case extracellular fluid is
internalized, and larger membrane area is involved than in case of clathrin-or caveolae dependent
endocytosis. Macropinocytosis is a nonselective form of endocytosis and a cholesterol dependent
process [126].

In the last few years greater interest focused on the possibility of endocytosis of cyclodextrins
(and their complexes). Importance of this mechanism could be negligible in case of small, lipophilic
molecules, which penetrates easily and quickly through the barrier membrane. On the other hand,
the invagination of the plasma membrane and the formation of endocytic vesicles can increase the
available membrane surface for cyclodextrin complex–membrane interaction. As it is a dynamic process,
its impact on drug absorption through the gastrointestinal tract should be considered. For bigger
molecules, such as peptides or oligonucleotides, endocytosis can be an important route to overcome cell
membrane. Endocytosis of fluorescently labelled β-cyclodextrin derivatives was confirmed in different
cell types. Fluorescein-, and rhodamine-labelled random methyl-beta-cyclodextrin, fluorescein-labelled
hydroxypropyl-beta cyclodextrin and soluble beta-cyclodextrin polymer were tested on human
intestinal epithelial Caco-2 cells [112,130]. Fluorescein-labelled methyl-beta-cyclodextrin was tested
on HeLa cells [131], methyl-beta-cyclodextrin-dextran–AlexaFluor546 polymer was studied on NPC
mutant human fibroblasts [115], while mono-4-(N-6-deoxy-6-amino-β-cyclodextrin)-7-nitrobenzofuran
was examined on HepG2 and SK-MEL-24 cells [132]. On Caco-2 cells macropynocytosis, while on
HeLa cells clathrin-dependent endocytosis was found to be responsible for the endocytosis of
fluorescein-labelled methyl-beta-cyclodextrin. It may seem contradictory, but in different cell types
different mechanisms can function or several mechanisms may work to varying degrees. There are
no experimental results available about the effect of the fluorophore type or structure–activity
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relationships on the endocytosis, but it seems, that it takes place with different fluorophores and
cyclodextrin derivatives.

The endocytosis of functionalized cyclodextrins should be distinguished from the above-mentioned
non-specific processes. In this cases, folate-appended methyl-β-cyclodextrin [133] or mannose-modified
α-cyclodextrin based polyrotaxanes [17] can be mentioned as examples for receptor-mediated
endocytosis through the interaction with folate and mannose receptors respectively.

Recently an interesting effect of cell membrane cholesterol extraction by methyl-β-cyclodextrins
was revealed, which can support the role of endocytosis in drug absorption. Cell membranes are
dynamic, fluid structures, having curvature and the membrane lipid bilayers have an asymmetric
distribution of lipids between the cytosolic and exofacial leaflets. Anionic phospholipids are primarily
situated in the cytosolic leaflet, which may cause the electrostatic repulsion between anionic headgroups
inducing membrane curvature. Curvature generation of the membrane depends on its lipid composition
and protein-mediated mechanisms. The large amount of membrane cholesterol and its spontaneous
flip-flop movement between membrane leaflets is considered to balance the electrostatic repulsion and
the resulting membrane curvature. However, membrane cholesterol extraction causes the great increase
in the negative surface charge density on the inner membrane leaflet, promoting the generation of
spontaneous positive curvature and rapid membrane internalization [134]. In this sense cyclodextrins
can be considered as nonspecific membrane internalization inducers on biological barriers by cholesterol
extraction, causing the internalization of the fluid in its proximity, which may contribute to the drug
absorption. However, it should be also noted, that decreasing membrane cholesterol with cyclodextrins
at high concentrations, results decreased endocytic processes [135,136] and enhanced exocytosis [137].
The above mentioned cyclodextrin-cell membrane interactions are quite complex and depend on the
cyclodextrin type, concentration and the cell types. The effects of cyclodextrins on biological barriers
and cell membranes are summarized in Figure 7.
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5. Conclusions

In summary cyclodextrins are extraordinary molecules, which have several effects on cell
membranes and biological barriers, but these effects can be originated in their host–guest interactions
with drugs or biomolecules. According to the available data the following mechanisms can be
responsible for their drug absorption enhancement on barriers:

• The improvement of water solubility of lipophilic drugs;
• increased permeation of lipophilic molecules through the unstirred water layer (UWL);
• permeabilization of cell membrane by removing cholesterol, which leads to further consequences

such as:
• Changes in the function of tight junctions by destabilizing the tight junction proteins localized in

lipid rafts, causing increased paracellular permeability and
• inhibition the function of efflux pumps;
• endocytosis of free cyclodextrins; and
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• endocytosis of cyclodextrin-drug complexes.

Among the above-mentioned mechanisms, the solubility and permeability enhancements could be
the two major mechanisms for the improvement of drug absorption. According to the Biopharmaceutics
Classification System (BCS) solubility and intestinal permeability are two major factors, which govern
the rate and extent of drug absorption. Cyclodextrins can be suitable excipients mainly for the
improvement of solubility of Class 2 drugs (with low solubility–high permeability) and for the
improvement of solubility and intestinal permeability of Class 4 drugs (low solubility–low permeability).
On the other hand, effects related to the cell membrane–cyclodextrin interactions cannot be neglected.
Destabilization of the tight junction proteins can alter the permeability not just the intestinal, but other
barriers and the simultaneous inhibition of the efflux transporters can contribute to the enhanced drug
penetration. However, the permeability enhancement on biological barriers could be harmful and
cause irreversible damages. The route of endocytosis could be an alternative solution for permeability
enhancement. Even if the capacity of endocytosis is limited, it is a continuous and dynamic process on
biological barriers, by which the contact surface of cyclodextrin complexes or drug delivery systems
and biological membranes could be increased. Developing new cyclodextrin carriers, targeting the
endocytic pathway and late endosomes/lysosomes, may help to improve drug penetration through
biological barriers. As we discussed cyclodextrins have complex effects on biological barriers which
may act simultaneously contributing to the drug absorption and distribution.
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