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Abstract
We investigate the coefficients of the polynomial
Smp(l) =r"+(m+7r)"+2m+7)" 4+ ({ = )m+7r)".

We prove that these can be given in terms of Stirling numbers of the first kind
and r-Whitney numbers of the second kind. Moreover, we prove a necessary and
sufficient condition for the integrity of these coefficients.
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1 Introduction

Let n be a positive integer, and let
Sp(l) =1"4+2" 4 -+ (L—1)"

be the power sum of the first £ — 1 positive integers. It is well known that
Sn(€) is strongly related to the Bernoulli polynomials B, (x) in the following
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where the polynomials B,,(x) are defined by the generating series
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and B,, = B,(0) is the nth Bernoulli number.

It is possible to find the explicit coefficients of £ in S, (¢) [9]:
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where Sy (n, k) and Sa(n, k) are the (signed) Stirling numbers of the first and
second kind, respectively.

Recently, Bazsé et al. [1] considered the more general power sum
Spe(l) =r"+(m+r)"+2m+7r)" +- (= 1)m+7)",

where m # 0,7 are coprime integers. Obviously, S7,(¢) = Sn(£). They, among
other things, proved that S}, .(¢) is a polynomial of £ with the explicit expr-

ession
n __m Y r
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In [12], using a different approach, Howard also obtained the above relation
via generating functions. Hirschhorn [11] and Chapman [8] deduced a lon-
ger expression which contains already just binomial coefficients and Bernoulli
numbers.

For some related diophantine results on S}, .(£) see [3,10,15,16,2] and the re-
ferences given there.

Our goal is to give the explicit form of the coefficients of the polynomial
Sy (£), thus generalizing (1). In this expression the Stirling numbers of the
first kind also will appear, but, in place of the Stirling numbers of the second
kind a more general class of numbers arises, the so-called r-Whitney numbers
introduced by the second author [13].

The r-Whitney numbers W, ,.(n, k) of the second kind are generalizations of
the usual Stirling numbers of the second kind with the exponential generating

function
n
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For algebraic, combinatoric and analytic properties of these numbers see [5,14]
and [6,7], respectively.

First, we prove the following.

Theorem 1 For all parameters £ > 1,n,m > 0,7 > 0 we have

n+1l n mkar n,k .
=0 k=0

Proof. The formula which connects the power sums and the r-Whitney num-
bers is the next one from [13]:

n
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Here 78 = x(x — 1) - -+ (x — k + 1) is the falling factorial. We can see that it is
enough to sum from z =0,1,...,¢ —1 to get back S}, .(£). Hence

n /—1
S0 = 3 M Wy (n,K) Y ot
k=0 z=0

The inner sum can be determined easily (see [9]):

gk—i—l
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The Kronecker delta will never appear, because if £ = 0 then the r-Whitney
number is zero (unless the trivial case n = 0, which we excluded). Therefore,
as an intermediate formula, we now have that

n £k+1

S (0) = 3 1 Wi (2, )
' P’ k+1

The falling factorial /£+L is a polynomial of ¢ with Stirling number coefficients:

k+1
€k+1 Z Sl + 1 Z

Substituting this to the formula above, we obtain:

n k k+1
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Since Sy(k + 1,1) is zero if i > k + 1, we can run the inner summation up to
n + 1 (this is taken when k& = n) to make the inner sum independent of k.



Altogether, we have that

n+1 n mka,r(n, k’)

Sty =N "¢ k+1,1).
m,r( ) ; kz::o k+1 Sl( + ’Z)
This is exactly the formula that we wanted to prove. a

Now we give some elementary consequences of the theorem. The proofs are
trivial.

Remark. The next properties of the polynomial S;, (¢) hold true for all
parameters £ > 1,n > 0,r,m > O:

(i) The constant term of S, (£) is 0,
(ii) The leading coefficient of S}, .(¢) is m"/(n + 1),
(iii) S, .(€) is a polynomial of £ of degree n + 1 unless m = 0; in this latter
case the degree is n.

The above statements also follow from (2).

2 The integer property of the coefficients in S}, (/)

The coefficients of the polynomial S7, . (¢) are not integer in the overwhelming
majority of the cases:

00 —1)
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S35(0) :§€(47 + 240 + 407),

511,0(4) =

etc.

However, we revealed that in special cases the polynomial S}, (¢) has integer
coefficients. Several parameters are in the next table.

m|r|n
21113
2133
21513
4133
4153




For example,
53,(0) = (26 1),
or
S54(0) =024 0)(20° + 40 + 3).
From the formula of Theorem 1 it can be seen that if
(k+1) | m" W, (n, k) (k=1,2,...,n),

then we get integer coefficients.

To find another condition which is necessary and sufficient for the integrity
of the coefficients in .S}, . (¢), we recall the following well known properties of
Bernoulli polynomials and Bernoulli numbers.
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By the denominator of a ratlonal number g we mean the smallest positive
integer d such that dq is an integer. We recall also the von Staudt theorem

A= ]I » (6)

(p—1)l2n
p prime

where A,, is the denominator of B,,. In particular, A,, is a square-free integer,
divisible by 6. For the proofs of (3)-(5) see e.g. the work of Brillhart [4].

Let 2 < j < n be an even number and put

f(n,j) :=lem ( A A
D= G (VO et G G
A
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Further, we define
,f(n,2), f(n,4),..., f(n,n)) if n is even,

lem (rad(n + 1), f(n,2), f(n,4),..., f(n,n—1)) if nis odd,
(8)

Fln) = {lcm (rad(n + 1)



Theorem 2 The polynomial S}, .(€) has integer coefficients if and only if

Proof. By relations (2), (3) and (4) we can rewrite S}, .(£) as follows:

5025 (b () - s ()
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We denote the common denominator of the coefficients of S}, .(¢) by Q. One
can see from (9) that the polynomial has integral coefficients if and only if m
is divisible by (). Thus we have to determine ().

By (12) we observe that neither m nor r occurs in ). Moreover, the only
algebraic expressions which may affect @) in (12) are on one hand n+ 1 and on
the other hand, the denominators of the Bernoulli numbers involved, which
are 2, \j(2 < j <mneven) by (5) and the von Staudt theorem.

It can easily be seen that n 4+ 1 | m” if rad(n + 1) | m. Indeed, supposing the
contrary, i.e., that rad(n + 1) | m and n + 1 { m™, it implies that there is a
prime factor p of n+41 such that p»! divides n+1. Hence 2"+ < pn*t! < n+41,
which is a contradiction.

Let 2 < j < n be an even index. It follows from (12) that the contribution of
A; to the common denominator () is precisely f(n,j) defined in (7). In other
words, if f(n,j) | m, then every term of (12) containing the factor B; has
integer coefficients.

In conclusion, we obtained that @ is the least common multiple of rad(n + 1)
and f(n,j) for all even j € [2,n], which number we denoted in (8) by F'(n).
The theorem is proved. U

Remark. An easy consequence of our Theorem 2 is that S, (¢) = ST (£) ¢ Z[x]
for any positive integer n.

Some small values of F'(n) are listed in the following table. These are results
of an easy computation in MAPLE.



1 2 6 | 42 | 11 6 16 | 510

2 6 7 6 12| 2730 || 17| 30

3 2 8 | 30 | 13| 210 | 18| 3990

41 30 9 10 || 14| 30 | 19| 210

5 6 10| 66 | 15| 6 20 | 2310
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