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Abstract

We investigate the coefficients of the polynomial

Sn
m,r(`) = rn + (m + r)n + (2m + r)n + · · ·+ ((`− 1)m + r)n.

We prove that these can be given in terms of Stirling numbers of the first kind
and r-Whitney numbers of the second kind. Moreover, we prove a necessary and
sufficient condition for the integrity of these coefficients.
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1 Introduction

Let n be a positive integer, and let

Sn(`) = 1n + 2n + · · ·+ (`− 1)n

be the power sum of the first ` − 1 positive integers. It is well known that
Sn(`) is strongly related to the Bernoulli polynomials Bn(x) in the following
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way

Sn(`) =
1

n+ 1
(Bn+1(`)−Bn+1).

where the polynomials Bn(x) are defined by the generating series

tetx

et − 1
=
∞∑
k=0

Bk(x)
tk

k!

and Bn = Bn(0) is the nth Bernoulli number.

It is possible to find the explicit coefficients of ` in Sn(`) [9]:

Sn(`) =
n+1∑
i=0

`i
(

n∑
k=0

S2(n, k)S1(k + 1, i)
1

k + 1

)
, (1)

where S1(n, k) and S2(n, k) are the (signed) Stirling numbers of the first and
second kind, respectively.

Recently, Bazsó et al. [1] considered the more general power sum

Sn
m,r(`) = rn + (m+ r)n + (2m+ r)n + · · ·+ ((`− 1)m+ r)n,

where m 6= 0, r are coprime integers. Obviously, Sn
1,0(`) = Sn(`). They, among

other things, proved that Sn
m,r(`) is a polynomial of ` with the explicit expr-

ession

Sn
m,r(`) =

mn

n+ 1

(
Bn+1

(
`+

r

m

)
−Bn+1

(
r

m

))
. (2)

In [12], using a different approach, Howard also obtained the above relation
via generating functions. Hirschhorn [11] and Chapman [8] deduced a lon-
ger expression which contains already just binomial coefficients and Bernoulli
numbers.

For some related diophantine results on Sn
m,r(`) see [3,10,15,16,2] and the re-

ferences given there.

Our goal is to give the explicit form of the coefficients of the polynomial
Sn
m,r(`), thus generalizing (1). In this expression the Stirling numbers of the

first kind also will appear, but, in place of the Stirling numbers of the second
kind a more general class of numbers arises, the so-called r-Whitney numbers
introduced by the second author [13].

The r-Whitney numbers Wm,r(n, k) of the second kind are generalizations of
the usual Stirling numbers of the second kind with the exponential generating
function

∞∑
n=k

Wm,r(n, k)
zn

n!
=
erz

k!

(
emz − 1

m

)k

.
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For algebraic, combinatoric and analytic properties of these numbers see [5,14]
and [6,7], respectively.

First, we prove the following.

Theorem 1 For all parameters ` > 1, n,m > 0, r ≥ 0 we have

Sn
m,r(`) =

n+1∑
i=0

`i
(

n∑
k=0

mkWm,r(n, k)

k + 1
S1(k + 1, i)

)
.

Proof. The formula which connects the power sums and the r-Whitney num-
bers is the next one from [13]:

(mx+ r)n =
n∑

k=0

mkWm,r(n, k)xk.

Here xk = x(x− 1) · · · (x− k+ 1) is the falling factorial. We can see that it is
enough to sum from x = 0, 1, . . . , `− 1 to get back Sn

m,r(`). Hence

Sn
m,r(`) =

n∑
k=0

mkWm,r(n, k)
`−1∑
x=0

xk.

The inner sum can be determined easily (see [9]):

`−1∑
x=0

xk =
`k+1

k + 1
+ δk,0.

The Kronecker delta will never appear, because if k = 0 then the r-Whitney
number is zero (unless the trivial case n = 0, which we excluded). Therefore,
as an intermediate formula, we now have that

Sn
m,r(`) =

n∑
k=0

mkWm,r(n, k)
`k+1

k + 1
.

The falling factorial `k+1 is a polynomial of ` with Stirling number coefficients:

`k+1 =
k+1∑
i=0

S1(k + 1, i)`i.

Substituting this to the formula above, we obtain:

Sn
m,r(`) =

n∑
k=0

mkWm,r(n, k)

k + 1

k+1∑
i=0

S1(k + 1, i)`i.

Since S1(k + 1, i) is zero if i > k + 1, we can run the inner summation up to
n + 1 (this is taken when k = n) to make the inner sum independent of k.
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Altogether, we have that

Sn
m,r(`) =

n+1∑
i=0

`i
n∑

k=0

mkWm,r(n, k)

k + 1
S1(k + 1, i).

This is exactly the formula that we wanted to prove. 2

Now we give some elementary consequences of the theorem. The proofs are
trivial.

Remark. The next properties of the polynomial Sn
m,r(`) hold true for all

parameters ` > 1, n > 0, r,m ≥ 0:

(i) The constant term of Sn
m,r(`) is 0,

(ii) The leading coefficient of Sn
m,r(`) is mn/(n+ 1),

(iii) Sn
m,r(`) is a polynomial of ` of degree n + 1 unless m = 0; in this latter

case the degree is n.

The above statements also follow from (2).

2 The integer property of the coefficients in Sn
m,r(`)

The coefficients of the polynomial Sn
m,r(`) are not integer in the overwhelming

majority of the cases:

S1
1,0(`) =

`(`− 1)

2
,

S2
2,5(`) =

1

3
`(47 + 24`+ 4`2),

etc.

However, we revealed that in special cases the polynomial Sn
m,r(`) has integer

coefficients. Several parameters are in the next table.

m r n

2 1 3

2 3 3

2 5 3

4 3 3

4 5 3
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For example,
S3
2,1(`) = `2(2`2 − 1),

or
S3
2,3(`) = `(2 + `)(2`2 + 4`+ 3).

From the formula of Theorem 1 it can be seen that if

(k + 1) | mkWm,r(n, k) (k = 1, 2, . . . , n),

then we get integer coefficients.

To find another condition which is necessary and sufficient for the integrity
of the coefficients in Sn

m,r(`), we recall the following well known properties of
Bernoulli polynomials and Bernoulli numbers.

Bn(x+ y) =
n∑

k=0

(
n

k

)
Bk(x)yn−k =

n∑
k=0

(
n

k

)
Bk(y)xn−k; (3)

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k; (4)

B3 = B5 = B7 = . . . = 0. (5)

By the denominator of a rational number q we mean the smallest positive
integer d such that dq is an integer. We recall also the von Staudt theorem

Λ2n =
∏

(p−1)|2n
p prime

p, (6)

where Λn is the denominator of Bn. In particular, Λn is a square-free integer,
divisible by 6. For the proofs of (3)-(5) see e.g. the work of Brillhart [4].

Let 2 ≤ j ≤ n be an even number and put

f(n, j) := lcm

 Λj

gcd
(
Λj,

(
n+1
j

)(
j
j

)) , Λj

gcd
(
Λj,

(
n+1
j+1

)(
j+1
j

)) , . . . ,
Λj

gcd
(
Λj,

(
n+1
n

)(
n
j

))
 . (7)

Further, we define

F (n) :=

lcm (rad(n+ 1), f(n, 2), f(n, 4), . . . , f(n, n)) if n is even,

lcm (rad(n+ 1), f(n, 2), f(n, 4), . . . , f(n, n− 1)) if n is odd,

(8)
where

rad(n) =
∏
p|n

p prime

p.
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Theorem 2 The polynomial Sn
m,r(`) has integer coefficients if and only if

F (n) | m.

Proof. By relations (2), (3) and (4) we can rewrite Sn
m,r(`) as follows:

Sn
m,r(`) =

mn

n+ 1

(
Bn+1

(
`+

r

m

)
−Bn+1

(
r

m

))
= (9)

=
mn

n+ 1

((
n+1∑
k=0

(
n+ 1

k

)
Bk

(
r

m

)
`n+1−k

)
−Bn+1

(
r

m

))
= (10)

=
mn

n+ 1

n∑
k=0

(
n+ 1

k

)
Bk

(
r

m

)
`n+1−k = (11)

=
mn

n+ 1

n∑
k=0

(
n+ 1

k

) k∑
j=0

(
k

j

)
Bj ·

(
r

m

)k−j
 `n+1−k (12)

We denote the common denominator of the coefficients of Sn
m,r(`) by Q. One

can see from (9) that the polynomial has integral coefficients if and only if m
is divisible by Q. Thus we have to determine Q.

By (12) we observe that neither m nor r occurs in Q. Moreover, the only
algebraic expressions which may affect Q in (12) are on one hand n+1 and on
the other hand, the denominators of the Bernoulli numbers involved, which
are 2,Λj(2 ≤ j ≤ n even) by (5) and the von Staudt theorem.

It can easily be seen that n+ 1 | mn if rad(n+ 1) | m. Indeed, supposing the
contrary, i.e., that rad(n + 1) | m and n + 1 - mn, it implies that there is a
prime factor p of n+1 such that pn+1 divides n+1. Hence 2n+1 ≤ pn+1 ≤ n+1,
which is a contradiction.

Let 2 ≤ j ≤ n be an even index. It follows from (12) that the contribution of
Λj to the common denominator Q is precisely f(n, j) defined in (7). In other
words, if f(n, j) | m, then every term of (12) containing the factor Bj has
integer coefficients.

In conclusion, we obtained that Q is the least common multiple of rad(n+ 1)
and f(n, j) for all even j ∈ [2, n], which number we denoted in (8) by F (n).
The theorem is proved. 2

Remark. An easy consequence of our Theorem 2 is that Sn(`) = Sn
1,0(`) /∈ Z[x]

for any positive integer n.

Some small values of F (n) are listed in the following table. These are results
of an easy computation in MAPLE.
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n F (n) n F (n) n F (n) n F (n)

1 2 6 42 11 6 16 510

2 6 7 6 12 2730 17 30

3 2 8 30 13 210 18 3990

4 30 9 10 14 30 19 210

5 6 10 66 15 6 20 2310
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