

Рисунок 1 – Частицы диатомита в составе наполнителя

Диатомит (кизельгур, горная мука) —это пористые частицы, которые вводят для повышения газопроницаемости и впитываемости жидкой фазы. Средняя плотность диатомитов в сухом состоянии колеблется в пределах от 0.15 до 0.6 г/см 3 .

Также исследовалась краска HUTTENES-ALBERTUS (Германия). Краска на цирконовой основе, содержание наполнителей 65 %. После проведения промывки в краскебыли обнаружены частицы карбонатов кальция и магния рисунок 2, таблица 2.

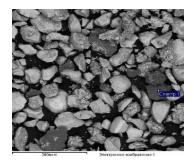


Рисунок 2 – Локализация точек исследования химического состава технологических добавок

Таблица 2 – Химический состав и назначение технологических добавок

		<u> </u>			
Спектр С		O	Mg	Ca	
Спектр 1	8,20	32,15	5,05	54,79	

Проведенные исследования нескольких красок ведущих производителей показали, что изготовители используют высоко термостойкие вещества: силикат циркония, алюмосиликаты, оксид алюминия. В состав термостойких наполнителей входят вспомогательные добавки, количество которых точно не указывается, но они обеспечивающие особые свойства красок и повышают качество получаемой продукции.

УДК 669.131.7

Исследование процесса получения «тяжёлой» лигатуры для сфероидизирующей обработки высокопрочного чугуна

Студенты гр. 10405115 Шевчук В.Ю., гр. 10401115 Иванов А.И., гр. 10405418 Данилова А.Д. Научные руководители – Слуцкий А.Г., Кулинич И.Л. Белорусский национальный технический университет, г. Минск

В практике литейного производства широко используется чугун с шаровидным графитом (ЧШГ), который характеризуется высоким свойствами и конкурирует с углеродистой сталью. Характеристики литых деталей из ЧШГ определяются химическим составом исход-

ного сплава, условиями формирования отливки и технологией сфероидизирующего модифицирования. В первую очередь, свойства ЧШГ зависят от микроструктуры чугуна и количества сфероидального графита.

В настоящее время в Республике Беларусь при производстве высокопрочного чугуна в основном используются «легкие» сферидизирующие модификаторы на основе ферросилиция типа ФСМг с различным содержанием магния. При этом от способа ввода и состава вводимой присадки зависит ее расход, эффективность и стабильность процесса модифицирования. По сравнению с чистым магнием, лигатуры позволяют минимизировать пироэффект, при ковшевой обработке жидкого чугуна, и существенно повысить коэффициент усвоения магния. Компоненты, входящие в составы таких лигатур, наряду со сфероидизацией графита за счет магния, оказывают влияние на процессы рафинирования, графитизации и легирования обрабатываемого сплава. В качестве наполнителей таких лигатур могут использоваться как сплавы железа и кремния, так и чистые металлы, такие как медь и никель.

Для получения более высоких марок ЧШГ в практике производства используются «тяжелые» магнийсодержащие лигатуры на основе меди и никелясоставы таких лигатур представлены в таблице 1.

Таблица 1– Составы магнийсодержащих лигатур для ЧШГ

N	Ларка	Содержание элементов,%					Области применения	
		Mg	Ca	P3M	Si	Остальное		
	ФСМг9	8,5–10,5	0,2-1	0,3–1	50-60			
ие	ФСМг7	6,8–8,8	0,2–1	0,3–1	45–55		ковшевая обработка	
Легкие	ФСМг5	4,5–6,5	0,2–1	0,3–1	45–55	Fe	внутриформенная и ковшевая обработка	
	ФСМг4	3,5–4,5	0,2–1	1–2	55–70		получение ЧВГ	
4)	1 01/11	13–16	2,0	0,7–0,85	26–33	Ni	получение ЧШГ	
Тяжелые		13 10	2,0	0,7 0,05	20 33	111	высоких марок	
AX(14-16	0,6	_	_	Cu	получение ЧШГ	
Τ							высоких марок	

Например, «тяжелая» магнийсодержащая лигатура на основе меди, полученная методом плавки отличается более высокой технологичностью, эффективно реагирует с жидким расплавом чугуна, образуя небольшое количество шлака.

Однако существенным недостатком является необходимость измельчения лигатуры до нужной фракции перед ее применением в процессе получения высокопрочного чугуна. При этом образуются значительное количество отходов в виде мелкой фракции, что в целом снижает эффективность использования такой лигатуры.

Одним из путей решения данной проблемы является использование более эффективных лигатур, обеспечивающих максимальное усвоение магния при минимальном расходе присадки, а также снижение пылегазовых выбросов в процессе сфероидизирующей обработки жидкого чугуна.

Их использование позволяет не только сфероидизировать графит, но и получать перлитную дисперсную металлическую матрицу, обеспечивающую высокий уровень, прочностных и эксплуатационных свойств ЧШГ. Вместе с тем следует отметить, что в процессе кристаллизации такого чугуна, из-за высокого переохлождения в структуре возможно образование в значительных количествах цементитной фазы. Наличие такой структуры приводит к ухудшению механических и технологических свойств высокопрочного чугуна и прежде всего склонности к усадке. При этом резко ухудшается обрабатываемость отливок. С этой целью используется дополнительная технологическая операция – вторичное графитизирующее модифицирование.

Цель работы — повышение эффективности магнийсодержащих лигатур на основе меди для внепечной обработки высокопрочного чугуна.

С целью обеспечения максимального усвоения меди и магния, сокращения пылегазовых выбросов от его взаимодействия с жидким чугуном, экспериментально подобраны соотношения основных компонентов лигатуры. Преимуществом данной технологии являются невысокие энергозатраты на изготовление лигатуры в виде пластин и более высокая эффективность ее применения при получении высоких марок высокопрочного чугуна с шаровидным графитом.

В основу технологии положен способ, предусматривающий прокатку порошкообразной смеси меди и магния в пластины различной толщины. При этом в составе смесей могут использоваться активные элементы, играющие роль графитизирующей присадки.

Отличительной особенностью технологии от существующих аналогов является возможность формирования пластин лигатуры с использования специальной оболочки в виде тонкой медной трубки. Это позволяет существенно упростить процесс изготовления лигатуры и повысить эффективность ее растворения жидким чугуном при ковшевой обработке. На рисунке 1 представлены исходные попрошковые материалы меди (а) и магния (б) и общий вид опытного образца лигатуры после прокатки (в).

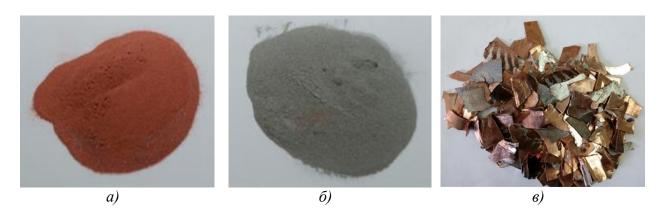


Рисунок 1 — Используемые материалы при получении лигатуры (в): a — порошок меди; δ — порошокмагния

Были выполнены исследования распределения меди и магния в образце лигатуры (рисунок 2 и 3).

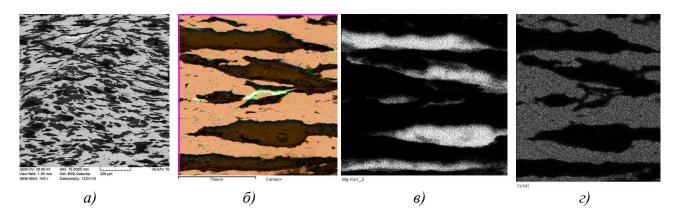


Рисунок 2 — Распределение меди и магния по площади в лигатуре: a — общий вид; δ — анализируемый участок; δ — магний; ϵ — медь

Анализ показал, что все структурные составляющие имеют продолговатую форму, при этом медь и магний сосредаточены в виде отдельных фаз.

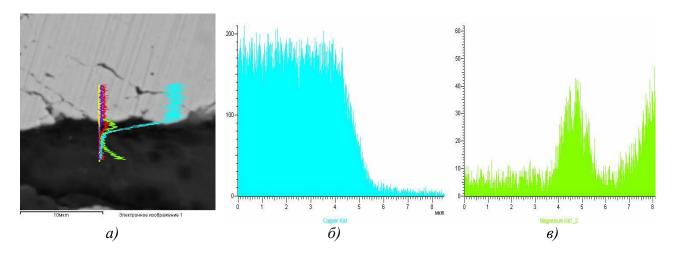
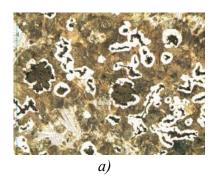


Рисунок 3 — Распределение в лигатуре на границе фаз (магний-медь) (а): δ — меди; θ — магния

Анализ межфазной границы показывает отсутствие взаимодействия между медью и магнием, хотя и отмечается незначительная диффузия атомов меди в магний.

На следующем этапе работы были проведены лабораторные испытания лигатуры при получении ЧШГ. Плавка чугуна осуществлялась на высокоскоростной индукционной установке (рисунок 4).


Рисунок 4 — Установка индукционного нагрева УИН-30-8-50

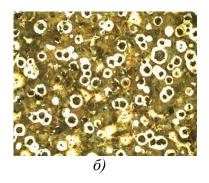

В качестве основных шихтовых материалов использовали рафинированный доменный передельный чугун, стальной лом, что обеспечило получение в исходном расплаве минимальной концентрации серы. Для сфероидизирующей обработки чугуна применяли три варианта добавки лигатуры в виде пластин толщиной 2 мм 0,5 %, 1,0 %, 1,5 %. Расчетное количество лигатуры вводили в ковш перед выпуском жидкого чугуна. После завершения обработки жидкий чугун разливали по литейным формам. Из полученных заготовок изготавливались образцы для изучения химического состава, механических свойств и микроструктуры (таблица 2 и русунок 5).

Таблица 2 – Влияние величины добавки лигатуры на химический состав и механические свойства ЧШГ

Вариант		Химический состав, %				Твер-	Предел	
модифици- рования	С	Si	P	S	Cu	Mg	дость, НВ	прочности, ов, МПа
Лигатура	3,53	2,14	0,038	0,018	0,38	0,011	229	416
(Cu-Mg) 0,5 %								
Лигатура	3,49	2,25	0,038	0,025	0,78	0,015	235	610
(Cu-Mg) 1,0 %								
Лигатура	3,55	2,35	0,038	0,0021	1,32	0,022	255	510
(Cu-Mg) 1,5 %								

Установлено, что при обработке чугуна лигатурой в количестве 0,5 % процесс сфероидизации полностью не произошел. В микроструктуре наряду с шаровидным графитом образовалось до 50 % вермикулярного графита (рисунок 5 а). При этом механические свойства чугуна соответствовали ВЧ40.

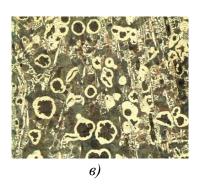


Рисунок 5 — Влияние величины добавки лигатуры на микроструктурв ВЧ: a — лигатура (Cu-Mg) 0,5 %; δ — лигатура (Cu-Mg) 1,0 %; ϵ — лигатура(Cu-Mg) 1,5 %

Добавка лигатуры в количестве 1,5 % позволило получить чугун марки ВЧ 50, при этом в структуре наряду с перлитом образовалась цементитная фаза, вызванная эффектом перемодифицирования. При этом твердость чугуна оказась высокой и составила 255 НВ.

Наиболее оптимальной оказалась добавка лигатуры в количестве 1 %, позволившая получить перлитную металлическую матрицу, в которой графит приобрел исключительно шаровидную форму. При этом механические свойства соответствуют ВЧ60.

Таким образом, использование лигатуры на основе меди и магния в виде пластин за счет эффективного растворения позволяет при минимальном расходе получать высокую марку ЧШГ.