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ABSTRACT 

The present master thesis focuses on Tunnel monitoring and the utilization of 

monitoring data as a means of promoting safety and reducing risks in tunnel 

engineering through use of artificial intelligence systems. The improvement in 

methods of early detection of deterioration of the rock structure around a 

tunnel can prevent damage to infrastructure, injury to people or loss of life. 

Furthermore, monitoring deformation allows the increase of safety margins 

without giving any negative effects to structures on the job site.  

The S1 tunnel of the Egnatia Highway was excavated in the complex geological 

system of the Pantokrator Limestone with fractured and loose cataclastic 

gouge using the New Austrian Tunneling Method. Tunnel deformation was 

monitored using geotechnical and geodetic tunnel monitoring systems and 

the measured data have been used to establish an artificial neural network 

model to predict crown settlement. Finite Element Analyses have also been 

conducted. Results from both methods are compared with the field 

measurements, and the observations lead to promising conclusions on the use 

of Artificial Neural Networks in tunneling engineering. Emphasis is on the 

prediction of ground deformation due to tunneling using artificial neural 

networks, particularly crown settlements through the combination of field 

measurements, analytical relations in relation to the ground condition and 

tunneling method. 
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ΠΕΡΙΛΗΨΗ  

Η παρούσα διπλωματική εργασία επικεντρώνεται στην παρακολούθηση 

σηράγγων και στη αξιοποίηση δεδομένων παρακολούθησης ως μέσο 

προώθησης της ασφάλειας και μείωσης των κινδύνων στη μηχανική των 

σηράγγων μέσω της χρήσης συστημάτων τεχνητής νοημοσύνης. Η βελτίωση 

των μεθόδων έγκαιρης ανίχνευσης της υποβάθμισης της δομής του βράχου 

γύρω από μια σήραγγα μπορεί να αποτρέψει επιζήμιες φθορές, καταστροφή 

σε υποδομές, τραυματισμό ανθρώπων ή ακόμα και απώλεια ζωής. Επιπλέον, 

η παρακολούθηση των παραμορφώσεων σηράγγων θα επιτρέψει την αύξηση 

των περιθωρίων ασφαλείας χωρίς να υπάρξουν αρνητικές επιπτώσεις στις 

δομές του χώρου εργασίας. 

Η σήραγγα S1 της Εγνατίας οδού κατασκευάστηκε στο σύνθετο 

Ασβεστολιθικού γεωλογικό σύστημα του Παντοκράτορα σε 

κατακερματισμένη και χαλαρή κατακλαστική εδαφική δομή  με την 

εφαρμογή της Νέας αυστριακής Μέθοδος Εκσκαφής σηράγγων. Οι 

παραμορφώσεις της σήραγγας παρακολουθήθηκαν με χρήση γεωτεχνικά και 

γεωδαιτικά συστήματα παρακολούθησης σηράγγων, και τα δεδομένα που 

μετρήθηκαν έχουν χρησιμοποιηθεί  για την υλοποίηση  ενός μοντέλου 

Τεχνητού Νευρωνικού Δικτύου (ΤΝΔ) για την πρόβλεψη της παραμόρφωσης 

στη στέψη της σήραγγας. Επίσης, έχουν διεξαχθεί αναλύσεις με τη χρήση 

μοντέλων πεπερασμένων στοιχείων για την ίδια σήραγγά. Τα αποτελέσματα 

και από τις δύο μεθόδους συγκρίνονται με τις μετρήσεις πεδίου και οι 

παρατηρήσεις οδηγούν σε ελπιδοφόρα συμπεράσματα σχετικά με τη χρήση 

τεχνητών νευρωνικών δικτύων στη μηχανική των σηράγγων. Έμφαση δίνεται 

στην πρόβλεψη παραμορφώσεων εδάφους λόγω εκσκαφή μίας σήραγγας με 

τη χρήση Τεχνητών Νευρωνικών Δικτύων, ιδιαίτερα στη στέψη με   

συνδυασμό μετρήσεις πεδίου, αναλυτικών σχέσεων  συμπεριφοράς εδαφών 

και τη μέθοδο διάνοιξη της σήραγγας. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 TUNNELS: RISK AND MONITORING 

In recent years the need to reduce traffic congestion in cities and the urge to provide faster 

transport and communication between different cities has led to the construction of thousands 

of kilometers of underground metro, rail and highway tunnels. Although tunnel construction 

may cost higher than surface road and rail projects, it is more environmentally friendly and has 

no land requirements.  

The need to upgrade and further develop transportation infrastructure (high-speed railway, 

highway and urban transit lines) has led to the on-going construction of large-diameter, long 

tunnels under difficult conditions. Such conditions usually arise from a combination of adverse 

ground and groundwater regimes, very high overburden pressures or, in the case of urban 

tunnels, the existence of sensitive structures within the zone of influence of the tunnel 

(Kavvadas, 2003). In such cases, the safety of the tunnel structure, the working crew and the 

stability of the structures at the ground surface is of great importance and must be ensured 

during all the life cycle of the tunnel project. This is achieved through good design approaches, 

optimal construction practices and efficient feedback through reliable monitoring methods. 

 

 
Figure 1.1: Map of European international transport networks with hundreds of tunnels 

involved in their construction, (Source: The Trans-European Network for Transport (TEN-T). 
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Tunnel failure 

Despite the fact that many tunneling projects have been successful, many others have gone 

through extensive delays and cost hypes due to failures during construction. Tunnel 

construction failures are extraordinary events, which have severe impact on the construction 

process. They may cause high financial losses, severe delays or even human injuries or death 

(IMIA, 2006). The causes of most failures are related to unforeseen in-situ conditions and under 

estimation of water stresses (Seidenfuss, 2006). Furthermore, Spackova, (2012) notes that most 

frequently reported tunnel construction failures are the cave-in collapses, tunnel flooding, 

portal instability or excessive deformation of the tunnel tube and the overburden. The tunnel 

construction failures can cause damages on adjacent buildings and infrastructure and they are 

thus especially adverse in tunnels built in the cities. The control of tunnel failures risks is thus of 

crucial importance.  

 
Figure 1.2: A cave-in failure at the surface above the tunnel (Source: Spackova,2012). 

 
Figure 1.3: A cave-in failure in the Lærdal Road Tunnel on European Highway E 16, Norway, 15 

June 1999, (Source: Seidenfuss, 2006). 

This thesis emphasizes Tunnel monitoring and the use of monitoring data as a means of 

promoting safety and reducing risks in tunnel engineering through use of artificial intelligence 

systems. The improvement in methods of early detection of deterioration of the rock structure 
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around a tunnel can prevent damage to infrastructure, injury to people or loss of life. 

Furthermore, monitoring deformation will allow the increase of safety margins without giving 

any negative effects to structures on the job site. Additionally, continual monitoring of progress 

of construction work allows owners of the project or contractors to take proactive measures 

before any unpredictable disasters can occur.  

Computational Intelligence is one of the fastest growing sectors of information technology, 

especially in the section of artificial Intelligence and intelligent systems. The main branches of 

artificial intelligence include: 

 Neuro Networks 

 Fuzzy Logic 

 Generic Algorithms 

 Decision trees 

These systems use arithmetic models to solve many engineering, financial, marketing, biological 

and many other problems. Contrary, classical methods are based on logic and processes to solve 

problems. This makes intelligent systems approach more suitable for problems with empirical 

solutions, in which exact mathematical models cannot be built or are complicated. 

Neural networks are the most commonly applied intelligent system in solving geotechnical 

engineering problems. Bourmas, (2014) used a combination of Artificial neural networks and 

generic algorithms to assess the factor of safety of column and chamber mine, Tsekouas, (2004) 

used ANN to predict tunnel behavior using FEM analysis results, You, (2013) used ANN in back 

analysis with face mapping data to assess the optimal geotechnical parameters to be used in 

FEM analyses. All the above researches and many more have come up with encouraging 

conclusions that artificial neural networks be used reliably in solving geotechnical problems. 

 

1.2 SCOPE OF THE THESIS 

The scope of this master thesis is to establish an introduction to Artificial Network and to assess 

how they can be applied in deformation monitoring systems and specifically: 

 To develop a Multi-layered Perceptron neural network which can predict the 

deformation behavior (crown displacements) of a tunnel using monitoring data 

measurements as target data and input training data from parameters like the overload 

factor, the support class, the stress reduction factor, the rock mass category, the 

coefficient of lateral earth pressure and the overburden height. 

 To develop finite element models for sections along a tunnel with the purpose of 

simulating its behavior in the best way possible, basing on the descriptions by 

Georgiannou et.al., (2004) and the Lefas, (2001).  

 To compare and contrast the results obtained from both methods. 

 

1.3 STRUCTURE OF THE THESIS 

This thesis is comprised of two sections; the first section (chapter 2 –chapter 5) describes the 

theoretical components of the tools used in the thesis while the second section (chapter 6 and 

7) describes the practical part, the procedures, observations and conclusions. 
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Chapter two gives a literature review on tunnel monitoring, its importance and the different 

methods and specialized instrumentation used for tunnel deformation monitoring. 

Furthermore, a brief note is also made on the promotion of the exploitation of monitoring data 

from the current and the already completed tunnels, in the continuous design improvements. 

 

Chapter three is concerned with the description of another method of tunnel behavior analysis 

using numerical methods – the Finite Element Method (FEM): the theory and principles of the 

method are briefly explained and furthermore, the principles of operation of a FEM software 

PHASE 2 8.0 from ROCSCIENCE INC. are explained. 

 

In chapter four, the behavior of tunnels during excavation is analysed. Particularly, the methods 

of obtaining rock mechanical properties through field investigations and laboratory tests, 

classification methods like the GSI, Q and RMR but also by use of empirical relationships 

proposed by Panet, (1995); Kavvadas, (2012) etc. the convergence – confinement method of 

excavation design is also explained. 

 

Chapter Five the theory of neural network is introduced, the structure of a biological neuron and 

its mimic with the artificial neuron, and the principles of their operation is detailed. The basic 

parameters of artificial neural network training and learning are also explained. Furthermore, 

the procedure for construction of a Multi-Layer Perceptron neural network with 

backpropagation, its calibration rules, training and evaluation of results are described. 

 

Chapter Six is a case study on a highway twin tunnel with particularly special deformation 

behavior where the need for on-site special investigation and monitoring were paramount. It 

required special experience and cooperation of all construction entities to come together for a 

successful execution of the project. The geological characteristics of the tunnel are described, 

including the design rock classifications and support classification. 

Finite Element Models are developed for 117 sections along tunnel and deformation behavior 

is analyzed.  

A neural network model is established, its architecture defined, calibrated and trained using the 

technical geological parameters of the tunnel. Field measurements of crown displacements are 

used as target inputs. A prediction of the tunnel displacement for sections ahead of the tunnel 

face is made using the trained neural network. Thereafter, a comparison of the measured 

displacement, the FEM prediction and the neural network prediction is made. The observations 

and conclusions are quite interesting. 

 

Chapter Seven are the conclusions and suggestions for further study.   
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CHAPTER 2 

MONITORING AND DEFORMATION PREDICTION IN TUNNELS 

(LITERATURE REVIEW) 

 
2.0 INTRODUCTION  

During tunnel construction, there are many uncertainties, even when there is an excellent 
geological and geotechnical ground set up. These uncertainties and the simplifications made 
during design lead to a residual risk during construction. To achieve safe and economical 
construction in spite of the uncertainties, specific procedures, such as the observational 
approach within a geotechnical safety management plan have to be applied, (Schubert & Moritz, 
2014). In this chapter, the monitoring of ground deformation in tunnels and its purpose and 
importance are briefly described, and also a section about the use of monitoring data for 
prediction of ground behavior using modern approaches like Artificial Neural Networks and 
Generic Algorithms is included. 
 
2.1 DEFORMATION MONITORING IN TUNNELS 
In conventional tunneling, ‘geotechnical monitoring’ is of fundamental importance as an 

instrument of verifying the appropriateness of the operations specified in the design and for 

calibrating the intensity and sequence of those operations during construction. It is also 

important for recording tunnel behavior when it is in service, in order to check the condition of 

the tunnel over time, especially in relation to the rheological behavior of the rock mass and 

possible changes in the hydrological conditions (fault zones, walled sections, inflow, etc.) 

(Lunardi & Gatti, 2010). Monitoring systems are designed to systematically acquire information 

on the geological-geomechanical conditions of a tunnel face and its deformation response 

during excavation and when in service.  

According to Kavvadas, (2003), monitoring of ground deformations in tunneling is a principal 
means for selecting the appropriate excavation and support methods among those fore seen in 
the design, for ensuring safety during tunnel construction (including personnel safety inside the 

tunnel and safety of structures located at ground surface) and finally, for ensuring construction 
quality management according to ISO9000.  
 
Importance of deformation monitoring 

In NATM tunnels, the observation method is usually applied, this is a tunnel construction 
method where continuous review of the behavior and update of the design and adjustment 
of construction method during construction, based on actual conditions and observations, 
as required is practiced. In this practice, the system behavior, the system stability and 
system accuracy are combined as design principles. During tunnel excavation, ground 
deformations are monitored and the measured values in the immediately previous 
excavation steps are used for the selection of the appropriate typical section to be used in 
the next excavation step, by matching predicted and observed deformations. 
 
Ground deformation monitoring is extremely useful in tunneling projects (probably much more 

than in other geotechnical projects) for the following reasons:  
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 Facilitation of the observation method: Ground deformations are the principal means 
of assessing tunnel behavior, therefore, ground deformation measurements are 
commonly used in the anticipation of ground response (and thus in decisions related to 
the applicable excavation and support methods). 

 Back analysis for better parameters: Deformation monitoring simplifies the process of 
assessment of ground parameters through back analysis of already excavated tunnel 
sections. The measurements around a tunnel are used as a criterion for acceptance of 
the ground parameters by matching the observed and predicted deformations. 

 Risk planning and Safety:  Monitoring results are used in early warning systems during 
tunnel excavations, which promotes safety against incipient failures but also provides 
the ability for a timely intervention to save the structure but mostly to save the crew. 
The use of automated data collection methods can improve yet more on the speed and 
efficiency of risk mitigation systems in tunnel engineering. 

 Final lining design: Deformation monitoring also facilitates greatly in the design of the 
final lining of the tunnel. Lining design is governed by the loads exerted from the 
surrounding ground, which is obtained from stress and load measurements, but also 
clearly depicted in the deformation behavior of the tunnel during and after excavation. 

 Detection of surface movement: Ground monitoring is critically important in 
observation of ground surface settlement induced due to tunneling and as a control for 
mitigating excess movement of fragile structures near the tunnel.  

 Long term creep monitoring: Deformation monitoring can also be important in cases of 
excess creep development in a tunnel. Tunnel wall deformations can be used in assessing 
the condition of the rock mass around the tunnel and the evolution of the loads on the 
temporary support, although in some cases, conditions are so adverse that contingency 
measures do not succeed to avoid the eventual collapse, but the measurements can be 
used in redesigning the new approaches to re activate the tunnel. Fig. 2.1 shows 
monitoring data from a tunnel failure due to creep loads 100m behind the tunnel face.  
 

 
Figure 2.1: Monitoring of wall deformation (settlement) in a mountain tunnel, the tunnel 

eventually collapsed after six months with deformation >700mm (Source: Kavvadas, 2003).  
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In cases of extreme complex projects, normally due to difficult grounds, too large overburden 
where excess convergence is expected, or too shallow urban tunnels with sensitive utilities and 
buildings where excess settlement is expected, the use of deformation monitoring becomes 
much more important. Fig. 2.2 shows an illustration of a total station set up for 3D geodetic 
monitoring inside a tunnel.  

 
Figure 2.2: An illustration of a 3D tunnel monitoring system (Source: Lee, 2007). 
 
Ground deformation measurements applied in tunnel engineering 
The ground deformation methods applied during tunnel construction mainly depend on the 
nature of the tunnel in question. The methods applied in monitoring and design of urban/ 
shallow tunnels are different from those applied in mountainous deep tunnels. In mountain 
tunnels, the main objective of deformation measurements during construction is to ensure that 
ground pressures are adequately controlled, i.e., there exists an adequate margin of safety 
against collapse, including roof collapse, bottom heave, failure of the excavation face, yielding 
of the support system, etc.  
Mountain tunnels: the adequate control of ground pressures is the basic objective of the 
engineer during construction in a mountain tunnel. Provision of a balanced support system to 
the internal pressures ensures a safe and economical structure, well adopted to the 
heterogeneity of ground conditions. 
In mountain tunnels the ground deconfinement methods are applied before installation of 
supports and the final lining is installed later on after the stabilization of the tunnel creep 
deformations. Therefore, in this case the deformation monitoring measurements are;  

 Concentrated inside the tunnel 

 Emphasis is put on the accuracy of the convergence measurements 

 Minimum surface monitoring is required 

 High demand for efficient and timely measurement schedule 

 The degree of precision may not be excessive as compared to the case of urban tunnels. 
Urban tunnels: in urban tunnels, the main objective is limiting deformation at the ground surface 
above the tunnel and thus causing minimum possible movement and disturbance to the nearby 
utilities and buildings.  
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The construction and support and support methods applied in urban tunnels promote a stiff 
nature in the tunnel lining, so there is normally no convergence expected in the interior of the 
tunnel. Therefore, for deformation measurements in urban tunnels emphasis is put on close and 
precise measurements at the ground surface to ensure that neither there is uplift nor settlement 
above the tunnel. The characteristics of deformation measurements for urban tunnels include:  

 They require installation of monitoring devices long before excavation of a tunnel 
section. 

 Very high precision is required 

 Requires multi-system setting at different heights to capture any possible movement. 

 Also requires additional instrument set up around the tunnel environment and on other 
sensitive structures near the tunnel.  

 
Despite the above specifications related to the type of tunneling project, the ground 
deformation measurements are used in an integrated design-construction-performance system 
which encompasses all the stages of the project life cycle. Fig. 2.2 illustrates the importance of 
monitoring in the tunnel project life cycle.  

 During the design stage historical monitoring measurements obtained from historical 
tunnels projects with the same geological characteristics can be utilized as reference 
experience in addition to the geotechnical investigations. 

 During construction the measurements obtained are used in performance testing for 
adoption of the in-situ conditions on to the design, Fig. 2.2, ISO9000 loop. 

 In cases of discrepancies in the expected measurements during the construction stage, 
monitoring data is used in back analysis to obtain the optimum parameters or in cases 
of excess differences, measurements can be a base for the definition of new 
investigations, Fig. 2.2, large loop. 

 
2.3 INSTRUMENTATION FOR TUNNELS 
 Deformation monitoring in tunneling projects is performed with instruments installed or 
operated either from the ground surface or from within the tunnel. Instruments installed from 
within the tunnel are necessarily put in place as the tunnel advances and thus an appreciable 
portion of the actual ground deformation is not recorded, as it has occurred prior to the 
installation of the instrument. Typically, the majority of ground deformation takes place close 
to the tunnel face (from about one tunnel diameter ahead of the face up to about 1.5 diameters 
behind the face). Thus, monitoring instruments placed on the tunnel wall (e.g. optical reflector 
targets) or installed in the ground from the tunnel wall (e.g. borehole rod extensometers) should 
be installed as early as possible, (Kavvadas, 2003).  However, an exception to this unavoidable 
deficiency are ground deformations along the tunnel axis measured with sliding micrometers 
installed from the tunnel face, thus rendering extremely useful measurements for predictions 
of excavation conditions ahead of the tunnel face (these measurements are influenced mainly 
from the ground conditions ahead of the tunnel face and thus are useful in assessing tunnel 
behavior in the upcoming excavation stages). Fig. 2.3 shows the installation of a sliding 
micrometer. 
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Figure 2.2: Deformation monitoring as part of the integrated design-construction-performance 
monitoring sequence. The smallest loop is used to adapt construction to the in-situ conditions. 
The largest loops are used to modify the design (sub-surface model) or even to require additional 
geotechnical investigations (Source: Kavvadas, 2003).   
 
The major deformation monitoring measurements usually performed in tunnel engineering 
include: 

1. Measurements for wall convergence 
This is done using various instruments which are either installed on the tunnel wall or drilled 
and positioned inside the rock body.  
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Figure 2.3: Sliding micrometer set (right), installation system, measuring positions and 

measuring intervals, (Source: Konietzky, 2018). 

 

Tape extensometer: this is attached to the tunnel wall by use of hooks drilled in the wall 

and a measuring system of tape extensometers across the diameter of the tunnel. It is an 

easy and quick system with an accuracy of +/-0.2mm for lengths 10-15m, but has a 

disadvantage that it can only measure convergence magnitude but not direction. 

 

   
Figure 2.4: Digital tape extensometer and its installation in measuring tunnel convergence. 
 
3-Dimension geodetic surveying: This is done using electromagnetic distance measuring total 
stations and reflectors positioned at fixed locations along the length of the tunnel wall. As 
tunnels are usually long, the fixed (stable) reference positions are typically located outside the 
tunnel, often at distances exceeding one kilometer and usually out of sight from inside the 
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tunnel. Thus, measurements of the targets inside the tunnel are obtained by placing the total 
station at pre-defined rugged stations1 (bolted on the tunnel wall) and successively moving the 
instrument forward (towards the tunnel excavation face) while measuring the coordinates of 
the visible targets from each station. Geodetic measurements can give an accuracy of 2-3mm 
for distances up to 100m and 2.5mm for angles. The disadvantage is that their accuracy is 
affected by the air pollution inside the tunnel, there is delay in installation so some of the initial 
convergence is not measured. 
 
 

 
Figure 2.5: Schematic diagram illustrating the use of EDM total station in tunnel monitoring, 
(Source: Luo, 2017). 
 
The tunnel profile scanners (profilemeters): These are used for quick convergence 
measurements, but also for measuring the volume of shotcrete placed on the excavated rock 
surface. The tunnel profilemeter s are fully digitized photogrammetric measuring devices, 
consisting of digital cameras which can produce stereoscopic images of the tunnel surface. The 
position of the camera is determined by a total station and set of reflectors positioned at fixed 
locations. This system can provide 3D point cloud and coordinates of the tunnel wall with an 
accuracy of +/-5mm. although the accuracy is not so good, it gives the first picture as more 
precise measurements are done later, also, this system provides a lot more information visual 
and numerical. 
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Figure 2.6: Tunnel profilemeter (source: Ryu et.al. 2008; www.dibit.at). 
  

2. Measurement of deformations in the ground. 
These are measurements performed to monitor deformation of points which are located inside 
the ground, either around the tunnel or deep below the ground surface. They are mostly aimed 
at obtaining stress, strain or deformation trends near and around the tunnel area of influence. 
In this case special geotechnical measurements are installed through boreholes from the ground 
surface or from inside the tunnel. Usually, this is done before the tunnel face reaches the area 
of measurement. If the measurements are performed inside the tunnel, the instruments can be 
located through radially drilled boreholes in the wall or along the tunnel axis ahead of the 
excavation face. Most common instruments include: 
 
Inclinometers: These are used for measuring horizontal or vertical displacement of the ground. 
In case of horizontal displacement, they are installed vertically yet for vertical displacement, 
they are installed horizontally. They operate by measuring the displacement of the casing pre-
installed in a borehole.  The measuring range is up to about ± 30°. Accuracy is in the order of 0.2 
mm/m. Resolution is about 0.005 mm. It is mainly applied to:  

 detect shear planes which separate moving horizons  

 monitor settlement profiles when installed horizontally 

 check stability and compliance with design limits.  
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Figure 2.6: Inclinometer probe with measuring cable (above); Horizontal inclinometer in casing, 
(Source: Konietzky, 2018). 
 
Extensometers: Different types of extensometers are used for measuring the relative 
movement of two points in the ground. They can measure settlement at different levels below 
the ground and also the relative deformation of the area around a tunnel. The extensometer 
system is placed in a metal casing installed in a drilled borehole with the upper part (the head) 
fixed while the rest of the body has moving system depending on the type of extensometer. 
They have an accuracy in the order of 0.01mm (sufficient to calculate strains in the ground. 

 
Figure 2.7: Different types of borehole extensometers, (Eberhardt &Stead, 2011). 
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Sliding micrometers: these are used to measure linear displacement of points in a tunnel. They 
are also placed in metal casing equipped with metallic measuring marks at 1m intervals along 
the casing. The micrometer system contains a Linear Displacement Transducer inside the probe 
which measures the tension exerted between two points of the probe and transmits it to a 
digital readout unit. Sliding Micrometers (Li et al. 2013) deliver an accuracy of about ±0.002 
mm/m and the maximum measuring range is 25 mm/m. Common measuring intervals are 1 m. 
Advanced tools contain also a temperature sensor. 
 

 
Figure 2.7: Typical applications of the sliding micrometer in tunnels, (Konientzky, 2018) 
 

3. Measurement of deformation at the ground surface. 
These are mainly important in urban tunneling projects where damage to surface structure and 
utilities should be prevented. These measurements typically include settlement (and heave) of 
structures as well as tilting. The main instruments used in this type of deformation monitoring 
include: 
Precise geodetic levelling using total stations: this is the most common method for displacement 
monitoring at ground surface. An automated monitoring façade with a group of total stations 
and targets can be installed and real-time measurements transmitted to a digital center. 
Accuracy in a length of 100m is in the order of 0.1mm and 0.2mm/100m for angles.  
 

 
Figure 2.8: A network of geodetic control survey stations for surface monitoring, (Source: 
geosystembd.com)   
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Geotechnical measurements using electronic level gauges: these are electronic level pots filled 
with a liquid and installed at a number of locations which are then connected to a stable 
reference pot. Variations in the height of the level gauges is transformed into a signal and 
transmitted to a data logger. Accuracy is +/-0.3mm. 
Electrolytic tilt sensors: these are pressure bubble levels that are electronically sensed as a 
resistance bridge. The bridge circuit outputs a voltage proportional to the tilt of the sensor. 
These tilt sensors are attached on metallic beams which are mounted on the structural elements 
to be monitored. They are in sequence along the horizontal plane to measure differential 
settlement along walls or beams. An accuracy of 0.005mm/m can be attained. 
Other instruments include: crackmeters and tiltmeters. 
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CHAPTER 3 

FINITE ELEMENT METHODS 

 
3.0 INTRODUCTION 

Geotechnical problems involving complex structural geometry, loading conditions and initial 

conditions require comprehensive approaches in order to come to a reasonable and reliable 

solution. The finite element method has been widely used in solving many complex problems 

mechanical engineering, civil engineering and even in medicine. In this chapter a review of the 

basic concepts of the method is given, later, the procedures for the execution of a finite element 

analysis are explained. Also application using the commercial program PHASE 2 8.0 is analyzed.   
 
3.1 THE FINITE ELEMENT THEORY  

The finite element method (FEM) models use the entire domain of a complex mathematical 

problem and uses known physical principles to develop algebraic equations describing the 

approximate solutions.  

According to Hutton (2004), finite element analysis is a computational technique used to obtain 

approximate solutions of boundary value problems in engineering. Simply stated, a boundary 

value problem is a mathematical problem in which one or more dependent variables must 

satisfy a differential equation everywhere within a known domain of independent variables and 

satisfy specific conditions on the boundary of the domain which represents a physical structure. 

Where field variables are the dependent variables of interest governed by the differential 

equation and boundary conditions are the specified values of the field variables. 

Logan (1986) define finite element method as a numerical method of solving problems of 

engineering and mathematical physics such as structural analysis, heat transfer, fluid flow, mass 

transport and the like which involve complicated geometries, loading and material properties, 

approximate solutions based on numerical techniques and digital computation are most often 

obtained in engineering analyses of complex problems. Finite element analysis is a powerful 

technique for obtaining such approximate solutions with good accuracy. 

Considering a triangular element with 3 nodes, the values of the field variable computed at the 

nodes are used to approximate the values at non-nodal points (that is, in the element interior) 

by interpolation of the nodal values. For the three-node triangle example, the nodes are all 

exterior and, at any other point within the element, the field variable is described by the 

approximate relation 

 

                        (x, y) = N1(x, y)1 + N2(x, y)2 + N3(x, y)3    (2.1)  

where 

 1, 2, and 3 are the values of the field variable at the nodes 

 N1, N2, and N3 are the interpolation functions, also known as shape functions or blending 

functions.  
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In the Finite Element Approach (FEA), the nodal values of the field variable are treated as 

unknown constants that are to be determined. The interpolation functions are most often 

polynomial forms of the independent variables, derived to satisfy certain required conditions at 

the nodes. every element is connected at its exterior nodes to other elements. Thus, continuity 

of the field variable at the nodes is ensured. In fact, finite element formulations are such that 

continuity of the field variable across inter-element boundaries is also ensured. Figure 2.1 and 

Figure 2.2 show some typical two-dimensional and three- dimensional elements with corner 

elements and some with intermediate nodes along the edges.  

In engineering applications, the finite element method involves modeling the structure using 

small interconnected elements called finite elements. A displacement function is associated 

with each finite element and each element is linked directly or indirectly to every other element 

through common interfaces including nodes and boundary lines and /or surfaces. By using 

known stress/ strain properties of the material making up the structure, one can determine the 

behavior of a given node in terms of the properties of every other element in the structure 

(Logan 2011)  

 
Figure 3.1: Simple two dimensional elements with corner nodes and with intermediate nodes 

along the edges (Logan,2011). 

 
Figure 3.2: Simple three - dimensional elements with corner nodes higher order three – 

dimensional elements with and with intermediate nodes along the edges (Logan,2012). 

 
Model symmetry in FEA 
The symmetricity or asymmetricity of structures is an important factor in finite element 
modelling, it can be used to simplify the model size and complexity. It can also be instrumental 
in simplifying application of constraints to the model (Brinkgreve & Vermeer, 1998). The main 
types of symmetry used are: 

 Axial Symmetry (axisymmetric): The Axisymmetric option allows you to analyze a 3-

dimensional excavation which is rotationally symmetric about an axis. The input is 2-

dimensional, but because of the rotational symmetry, it is in fact analyzed a symmetric 

3-dimensional problem. A typical use of the Axisymmetric modeling option, is to analyze 
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the stress state around the end of a circular tunnel. The structure is considered as a solid-

of-revolution where a cross-section revolved about a single axis defines the entire 

geometry. In FEA it may be required that the model be created about a specific axis, for 

example, the Y-axis, and/or in a specific quadrant.  

 Plane Strain:  In this case it is assumed that the structure is of infinite length normal to 
the plane of the analysis section (e.g. pipe, excavation trench, tunnel). In most cases a 
Plane Strain analysis will be performed. In a Plane Strain analysis, the major and minor 
in-plane principal stresses (Sigma 1 and Sigma 3), the out-of-plane principal stress (Sigma 
Z) in-plane displacements and strains can be calculated. 

 Cyclic Symmetry: This is repetitive symmetry about a central axis. A feature is repeated 
at fixed angular intervals around the symmetry axis.  

 Reflective Symmetry: This is mirror-plane symmetry about one, two or even three of the 
planes of the X-Y-Z coordinate system. 

 
Boundary conditions  
A boundary condition is a load or constraint applied to the model to represent the effect of the 
external influences on the model. They represent the forces, pressures, gravitational fields, pins, 
rollers, ground symbols, etc. which one would use on a free body diagram when solving a static 
problem. The application of correct boundary conditions is a critical step in the modeling process 
(Wilcox, 2012). When applying boundary conditions, the following should be considered: 

 Static Equilibrium: Enough constraint should be provided to prevent rigid body motions 
(free translation or rotation) in a static model. 

 Excessive Constraints and Over-stiffening: Care should be taken to ensure that the 
model reflects as best as possible the real world conditions. They must also take into 
account coupled strain effects caused by conservation of volume, such as the radial 
contraction which accompanies an axial elongation of bars or beams. Excessive rigidity 
should be avoided because if elements which experience these type of effects are 
prevented from moving, the model can be over-stiffened, resulting in inaccurate results. 

  Symmetry Constraints: If there is a plane of symmetry, it can be assumed there will be 
no translation of the nodes in the direction normal to the plane of symmetry. Rotational 
degrees of freedom may also have to be considered to keep shell elements from pivoting,  

 Point Loads: Loads applied at a single point may cause unreasonably high local stress and 
deformation. Most real world loads are not applied to a single point, therefore attention 
should be given to how the actual load is applied to how possible it can be simulated as 
a distributed load, pressure, etc.  

Discretization, Meshing and Element Quality 
The discretization of the model boundaries forms the framework for the finite element mesh, 
and in some software it may be indicated by small crosses subdividing the boundary line 
segments. Each cross indicates the position of a finite element node on the boundary. After 
discretization, a mesh can then be generated.  
Mesh generation or element connectivity model, involves the joining of all neighboring elements 
by use of their nearest neighbor location. The elements can be 5-node, 6-node, 8-node, and 15-
node for two dimensional analysis and 10-node is normally used in three dimensional analyses. 
The element quality in a finite element mesh is a great factor for obtaining good quality results, 
therefore, it is generally desirable to avoid elements of high aspect ratio (i.e. 
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long "thin" elements). In general, such elements can influence analysis results, and lead to 
misleading and inaccurate results, which are dependent on the mesh. Figure 2.3 shows the 
variation of the coarseness of model mesh. 

 
Figure 3.3: levels of mesh coarseness and quality (seacadtech.com) 
 
In extreme cases, such elements may even be responsible for non-convergence of the 
finite element solution, and the analysis will be aborted. In order to help the user to determine 
the "quality" of a finite element mesh, some programs like PHASE 2 can automatically locate 
and highlight elements in a mesh, which are deemed to be of "poor" quality, according to user-
definable criteria. 
 
 
General procedure in FEM 

Preprocessing: this step is generally described as defining the model and includes defining the 

geometric domain of the problem which involves:  

 Defining the model domain/ extent where the rest of the structures are to be simulated. 

 Defining the structures type(s) to be used – piles, anchors, soil volumes, plates etc. 

 Defining the material properties of the elements porosity, permeability, stiffness. 

 Defining the geometric properties of the elements (length, area, and the like).  

 Defining the element connectivity model (mesh the model).  

 Defining the physical constraints (boundary conditions – constraints or supports so that 

the   model can remain in place. 

 Defining the loads internal and external loads that act on the model. 

Solution: During the solution phase, a finite element software assembles the governing 

algebraic equations in matrix form and computes the unknown values of the primary field 

variable(s). The computed values are then used by back substitution to compute additional, 

derived variables, such as reaction forces, element stresses, and heat flow, etc. 

Post-processing: Analysis and evaluation of the solution results is referred to as post-processing. 

The postprocessor software contains sophisticated routines used for sorting, printing, and 

plotting selected results from a finite element solution (Fig. 2.4). Examples of operations that 

can be accomplished include: Sort element stresses in order of magnitude; Check equilibrium; 

Calculate factors of safety; Plot deformed structural shape; Animate dynamic model behavior; 

Produce color-coded temperature plots. While solution data can be manipulated in many ways 
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in post-processing, the most important objective is to apply sound engineering judgment in 

determining whether the solution results are physically reasonable.  

Post processing also involves two important steps: (i) Verification and (ii) Refinement and 

Convergence. 

 Verification: This step includes checking element shape and quality, von Mises precision, 

and viewing unsmoothed vs. smoothed fringe plots. This applies mostly to highly 

commercial programs. 

 Refinement and Convergence: Many times several runs are needed to achieve reliable 

results, in this step definite methods are applied to mesh refinement and convergence 

so as to achieve an accurate solution. 

 

 
Figure 3.4 : Flowchart indicating the procedural steps of solving finite element analysis 

problems (Source: Hutton, 2004) 

 

3.3 FINITE ELEMENT PROGRAM PHASE 2 8.0 

In this work, the Finite Element software package PHASE 2 8.0 from Rocscience 

(www.rocscience.com) was employed. This is a 2D finite element program for calculating 

stresses and estimating support around underground excavations and other underground 

works. It is a two dimensional elasto-plastic finite element program for calculating stresses 

and displacements around underground openings, and can be used to solve a wide range of 

mining, geotechnical and civil engineering problems, involving: 

 Excavations in rock or soil 

http://www.rocscience.com/
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 Multi-stage excavations (up to 300 stages) 

 Elastic or plastic materials 

 Multiple materials 

 Bolt support 

 Liner support (shotcrete / concrete / piles / geosynthetics) 

 Constant or gravity field stress 

 Jointed rock / construction joints 

 Plane strain or axisymmetry 

 Groundwater (piezo lines, ru values or finite element seepage analysis) 

 Finite element slope stability 

 Probabilistic analysis 
The program consists of 3 program modules namely: MODEL, COMPUTE and INTERPRET 
(Fig. 2.5). These run as standalone programs but also interact with each other in such a way 
that COMPUTE and INTERPRET can both be started from within MODEL, COMPUTE must be 
run on a file before results can be analyzed with INTERPRET, and MODEL can be started 
from INTERPRET as illustrated in the schematic illustration below:  

 
Figure 3.5: interaction of the three independent program modules in PHASE 2 8.0 (Source: 
Rocscience). 
 
The Modelling module 
This is the pre-processing module (Fig. 2.6) used for entering and editing the following 
items: 

 model boundaries: The first step in any computer-aided design process is setting the 
drawing limits of the region so that the limits encompass the model geometry. Using the 
Limits option, the user is allowed to enter the X and Y coordinates of the lower left minimum 
X Y, and upper right (Maximum X Y) corners of the drawing region of the model to be 
simulated. 

 Support: for defining the support methods applied in the model e.g. anchors, beams, 
linings, and geogrids. 

 in-situ stresses: The initial stress status of the model due to gravity, existing forces and 
moments can also be defined in the model module. Two options are available for defining 
field stress in PHASE2, Constant stress or Gravity field stress. 
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 hydrostatic conditions: the groundwater conditions of the model, piezo metric lines, and 
also provides for the definition or even the importation of a ground pressure grid data in 
form of a .DXF file.  

 material properties: this provides an interface for defining the different material 
characteristics of the objects used in the model. 

 material boundaries: where the user can define regions with different material properties 

 Creating the finite element mesh: The process of creating the finite elements is achieved 
through discretization of the model and later meshing. In the mesh interface the user can 
define the coarseness and other parameters that improve the quality of the mesh and the 
finite elements as general. 

 
Figure 3.6: modelling module use interface in PHASE2 
 

The Compute module 
This is the calculation and analysis module of the program (Fig. 2.7), after compiling and 

modelling, the FEM model is saved as a .FEA file and it is now ready for 
analysis. The computation parameters like Number of Iterations, the 

Tolerance etc. are defined in the Project settings and cannot be altered 
during the computation process. After analysis, the results can be in 

stored by the module in various file types to enable the user access the 
results easily and in a more organized manner. The following file types 

are available: 
 . R:  These files are the main PHASE2 output files, containing all of the nodal stress and 
displacement data.  
.X:  These files contain bolt data, if bolts are being used for support.  
. U: These files contain strain data.  
.LOG: This is always created, which summarizes a few important analysis parameters 
(number of iterations, run time, etc.) for each stage. The .LOG file can be opened in the 
PHASE2 Interpreter, or it can be viewed with any ASCII text editor. 
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Figure 3.7: the computation module interface in PHASE 2. 
 
 The Interpret module:  
The primary means of data interpretation after a PHASE2 analysis, is the viewing of data 
contours directly on the model. The PHASE2 INTERPRET program allows the user to display 
contoured data from the finite element analysis, by selecting a data type from the drop-
down list in the toolbar. 
When Interpret is started from Model, the active file in Model will automatically be opened 
in Interpret. Furthermore, the user can return back to Model using the Model button in 
Interpret. This allows the user to switch back and forth between Model and Interpret, so 
that they can edit a model, re-compute and view new results. The Interpret module is 
enabled as soon as the finite element mesh is generated, however, the user must run 
‘compute on a file’ before he can look at the results in Interpret. It provides an interface for 
viewing deformations, stress, forces and moments on structural members that result from 
the analysis. The interpret module provides the user amongst all, the following capabilities: 

 Various forms of visualization forms for deformations – vertical displacement, 
horizontal displacement, total displacement, incremental and absolute 
displacements). Generally, the magnitude, orientation and displacement of the 
model /deformed mesh is viewed. 

 Stresses - pore pressure, incremental stresses, ground water flow, yielded 
elements, major stresses σ1, σ3, σz and von Mises stresses.  

 Forces – Axial force, shear force and bending moments on linings, bolts and plate 
elements. 

 Plots for axial forces, shear forces, bending moments of the bolts, beams, linings 
and geogrids. 
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 Query platform where he can search for the analysis results of a particular element 
or group of elements. 

 Can view the stress trajectories showing the orientation of stresses σ1 and σ2. 

  Also the user has the ability to export the results to other files like DXF, JPEG, TXT 
and other files. 
 

Flow of procedures in FEM analysis using PHASE 2 
The basic procedure for a FEM analysis using the PHASE 2 program begins within the Model 
module where the physical problem is simulated and meshed, then a computation is 
executed in the Compute module, and finally the results are viewed and processed using 
the Interpret module. This happens in the flow below: 

 Setting of the limits for the drawing region – this involves defining of the size of the 
view window of the workspace using the view limits command (it’s not the 
boundary limit). 

 Model boundaries definition – this involves defining the external boundary and 
later the excavation boundaries using the add boundary command. 

 Meshing – this involves the generation of the finite elements mesh using the mesh 
commands. First the model boundaries must be discretized and after the mesh is 
generated. Various capabilities are provided for the improvement of the quality of 
the mesh.  

 Field stresses definition – this involves the definition of the magnitude and 
orientation of the initial field stresses in the model. 

  External loading – here the loads that act on the model internally and externally 
are defined. 

 Material property definition – this involves allocation of material parameters, 
constitutive models e.g. Mohr Coulomb and Hoek Brown methods, interface 
properties, groundwater characteristics for the soil mass, bolts, and linings. 

 Simulation of the staged execution of the problem- this may be the deactivation or 
activation of loads, excavation of part of a soil mass, activation of supports etc.  

 Computation – this is the execution of the analysis using the Compute module. 

 Visualization, Interpretation of results and refinement if needed.  
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CHAPTER 4 

ANALYSIS OF TUNNEL BEHAVIOR DURING EXCAVATION 

4.0 INTRODUCTION 

Underground works like tunnels, caverns or mines are constructed under a somehow 

unknown environment because of the little information available during the design and 

construction of the structures. In most cases a series of geological and geotechnical studies 

are performed but may not fully clear the ambiguity. Specifically, for tunnels, their length 

makes it even more difficult to obtain enough investigations. This chapter examines the 

technics applied in utilization of the possible available information through empirical 

qualitative and quantitative approaches. Also, the rock deformation behavior during the 

excavation of a tunnel and the analytical relationships for the assessment of the induced 

displacements is examined. 

 

4.1 ROCK BEHAVIOR  

The evaluation of strength parameters of rock masses is one of the most critical challenges 

during tunnel design, excavation and support due to the fact that field laboratory tests are 

performed on intact rock samples which is not representative of the rock mass that has 

discontinuities and other weaknesses. In addition, the number of samples is too small to 

fully represent the real condition of the rock. Therefore, the mechanical properties of the 

rock mass are obtained using combinations of empirical and indirect approaches. The first 

is by use of qualitative evaluations through the rock quality indices, and second by use of 

quantitative methods through geotechnical parameters. 

4.2 ROCK QUALITY INDICES.  

Rock quality indices are used for the description of the natural condition and the strength 

of a rock mass. They help in the classification of the rock basing on the nature of the 

discontinuities, the hydrostatic conditions, and the influence of geostatic stresses. The 

parameters used in the description of a rock mass include: 

1. Mechanical strength 

This is expressed as the Uniaxial Compressive Strength σci, of the rock. It is obtained from 

laboratory tests on intact rock samples. The results obtained are influenced by the 

structure and cementing of the crystals of the rock, the direction and nature of the 

discontinuities. Mechanical strength can also be obtained basing on the degree of 

weathering of the rock. the larger the σci the stronger and tough the rock is. Table 4.1 shows 

the rock strength classification according to ISRM (1981).  
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Table 4.1: Rock classification basing on strength according to the ISRM (1981) 

Strength σci (MPa) Rock category Description  

>250 Extremely strong Is not broken by geologic hammer 

100 -250 Very strong Broken by geologic hammer after a 
number of hits 

50 – 100 Strong  Brocken by only one hit with a 
geologic hammer  

25 – 50 Medium strong Is not scratched with a knife 

5 – 25 Weak Scratched with a knife with difficulty 

1 – 5 Very weak Easily scratched with a knife. Not 
scratched with a finger nail 

0.25 - 1 Extremely weak  Scratched with a finger nail 

 

2. The Rock Quality Designation, RQD 

This is a quantitative evaluation of rock mass quality basing on the degree of fragmentation. 

It is defined as a percentage of the total length of all intact pieces greater than 100mm for 

a given length of a drilled core. The RQD is given by the relationship in Equation 3.1 and in 

Fig. 4.1 the strength classes of a 1m long core are illustrated. 

            (4.1) 

 

 

Figure 4.1: Sample RQD classification for a 1m long  rock core (Source : Bruland, 2000).  

3. Discontinuities  

According to the definition in ISRM, (1978), a discontinuity surface is any surface in the rock 

mass, along which some elements of the rock are discontinuous. Discontinuities can be due 
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to faults, joints, bedding or any other geological or physical activity and can be defined in 

terms of characteristics such as: 

 a) the number of joint sets 

 b) the spacing and persistence of the joints 

 c) the stability condition of the joints which has an influence on the sliding resistance along 

the joint plane and is expressed in terms of: 

 Roughness – very rough, smooth up to slicken-sided  

 The degree of alteration and the degree of weathering along the joints expressed in 

terms of the thickness and quality of the of the joint filling materials.  

4. Underground water flow 

The presence of water in the excavation should be well documented because it has a big 

effect on the cohesion, swelling characteristics and the cost of excavation of the rock. In 

some cases, may also increase the lateral stresses on the excavation. 

5. Rock classification 

The classification of rocks into categories is very important during the design stage but also 

during the construction stage of a tunnel. Empirical rock class indices have been developed 

(Hoek et.al, 2000; Marinos, 2007) and are widely applied in the calculations for cutter 

material in tunnel machinery, calculation of rock initial and final supports and excavation 

methods. The three commonly applied classification methods are: 

Rock Mass Rating, RMR (Bieniawski, 1979) - in this system six parameters are defined, 

each taking a certain value, then the values in each parameter are grouped in various 

ranges basing on the degree attained in that particular parameter according to field 

investigations.  The sum of the values obtained for the rock within the six parameters gives 

the RMR index of that rock (Table 4.2). The six parameters and their ranges include: 

Table 4.2: The six RMR parameters. 

 Parameter       Range RMR range 

R1 Uniaxial Compressive strength, σci 0.1<σci<250MPa 0 - 15 

R2 Rock Quality Designation Index, RQD 3 < RQD < 100% 3 -20 

R3 Joint spacing Index  0.006 <space< 2m 5 - 20 

R4 Joint surface conditions (length, 
persistence, Separation, Smoothness, 
Infilling, weathering) 

Filling>5mm–very rough 
without alteration 

0 - 30 

R5 Presence of ground water Full flow – No water at all 0 - 15 

R6 Direction of discontinuities in relation to 
the tunnel trajectory 

Favorable - unfavorable -12 - 0 

 

The RMR index obtained from the summation of the parameters gives the classification of 

the rock according to the Τable 4.3. 
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Table 4.3: RMR classification guide for excavation and support in rock tunnels for a 10m 

width tunnel with drill and blast methods (source: Bieniawski,1989). 

 

Geological strength Index, GSI (Hoek et al., 1998; Hoek et al., 2000) – The RMR  is a 

classification system applied mostly for relatively strong rocks, therefore Hoek et. al. (1998) 

designed a system compatible with the RMR system for rocks with RMR index < 40.The GSI 

and RMR values are equal for RMR >40 while below 40 the GSI gives a better distinction by 

providing a gradual interpolation of the index values. The GSI system is based on the 

combination of two basic parameters, namely: 

 The rock mass structure, which characterizes the interlocking of the rock pieces 

 The discontinuity conditions which characterize the degree of joint shear resistance. 

The two parameters are jointly evaluated for a particular rock and a GSI value is given. A 

standard GSI diagram is available for common rocks well as also special diagrams were 

developed for various specially characterized rocks such as Flyschs.  The standard GSI 

diagram is shown in Fig. 4.2. 
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Figure 4.2: GSI standard diagram for the characterization of blocky rock masses on the basis 

of interlocking and joint conditions, (Hoek et.al. 1998).   

The Q Index – Norwegian Geological Index  

This is an empirical method developed for calculating the initial support requirements in 

tunnels specifically excavated using mechanical methods –NATM (Barton et.al, 1974). It is 

based on the rock quality, the joint condition parameters and the stress conditions during 

construction. These factors are all combined in the following relationship: 

       (4.2) 

where 

RQD is the Rock Quality Designation index 

Jn is the index for number of joint sets 
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Jr is the degree of roughness of the joints 

Ja is the coefficient of ground water influence 

SRF is the Stress Reduction Factor - Weakness zones intersecting excavation, which may 

cause loosening of rock mass when tunnel is excavated.  

Tables for the values of the above parameters can be obtained from Barton et.al, 1974. 

Using the values obtained from Equation (4.2) the classification of the rock is done basing 

on the Table 4.4.  

Table 4.4: Rock classification according to Q-System 

Q class Description 

>400 Q – Ia Exceptionally good 

100 – 400 Q –Ib Extremely good 

40 – 100 Q – II Very good 

10 – 40 Q – IIIa Good  

4 – 10 Q – IIIb Fair  

1 – 4 Q – IVa Poor  

0.1 -1 Q – IVb Very poor  

0.01 – 0.1 Q – Va Extremely poor 

<0.001 Q - Vb Exceptionally poor 
 

4.3 EMPIRICAL RELATIONSHIPS  

The empirical relationships are mainly used to derive the parameters which may more 

precisely describe the rock behavior during and after excavation. The relationships utilize 

the four mentioned indices RMR, Q and GSI together with physical and engineering 

assumptions to build the parameters used in analyzing rock behavior. These parameters 

are divided into three categories: 

1.  Initial condition parameters: 

 These describe the geostatic conditions (stresses, and loads) before the excavation of the 

tunnel. These are usually due to the depth h, of the tunnel from the surface, the specific 

gravity γ, of the rock material, the presence of hydrostatic stresses uo, and lateral stresses. 

          Active stress σv’ = γh - uo  

Active horizontal stress σh’ = Ko(σv’)   (4.3) 

 where 

 Ko is the coefficient of lateral pressure, which depends on the rock mass decomposition 

and fragmentation, presence of tectonic stresses, depth and slope. 

 Deformation parameters  

These include a) Modulus of Elasticity and b) Poisson Ratio. 
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Modulus of Elasticity E, is obtained from the relationship 

         (4.4) 

Where  

           = Uniaxial Compressive Strength of the rock 

         GSI = geological strength index of the rock as per Hoek and Marinos (2000). 

Poisson Ratio ν, is a description of the internal inertial stability of the rock. It is the ratio of 

transverse contraction strain to longitudinal extension strain in the direction of stretching 

force, or a measure of the phenomenon in which a material tends to expand in directions 

perpendicular to the direction of compression. Conversely, if the material is stretched 

rather than compressed, it usually tends to contract in the directions transverse to the 

direction of stretching. Most materials have Poisson's ratio values ranging between 0.0 and 

0.5. A perfectly incompressible material deformed elastically at small strains would have a 

Poisson's ratio of exactly 0.5.  

 Strength parameters  

The strength parameters of a rock mass are best defined using failure curves defined by 

the failure criteria. A failure curve separates the τ – σ diagram in two regions, one region 

below the curve is the where the stresses do not cause failure of the rock, whereas for any 

σ – τ combination in the region above the curve causes failure. Fig. 4.3 shows the stable 

and unstable regions of a σ – τ diagram. 

 

Figure 4.3: Stable, limit and unstable failure states on a τ – σ diagram. 

Mohr Coulomb failure criterion 

The MC failure curve is a curve on the normal stress – shear stress (τ –σ) diagram which 

describes the critical internal conditions for a wide range of horizontal pressures generating 

a straight failure line. The linear equation which expresses the relationship for the principle 

stresses σ1 and σ3 of an isotropic rock at the moment of failure is  

  or φ      (4.5) 
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Where  

Angle  

 

c= cohesion in MPa,  

φ = Friction angle,  

σ1 = Major Stress and 

 σ3 = Minor stress 

  (4.6) 

 

                       (4.7) 

The Mohr coulomb criterion is used in many programs because of the fact that it has simple 

and applicable mathematical presentation, it has a clear connection to the physical 

expression of the rock strength parameters and geotechnical problems. 

 

 Figure 4.4: Failure curve for the Mohr Coulomb criterion (Nomikos, 2017).  

Hoek- Brown Failure criterion 

This is an empirical failure criterion (Nomikos, 2005 ) in which the linear increase of 

maximum strength of an isotropic rock mass with the increase in the lateral pressure gives 

a parabolic failure curve. The generalized Hoek-Brown failure criterion for jointed rock 

masses is defined by:                      

         (4.8) 
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where  

σ1 and σ3 are the maximum and minimum effective principal stresses at failure, 

The value of the Hoek-Brown constant m for the rock mass, mb  

          (4.9) 

mi = depends on the rock type and class 

s and a are constants which depend upon the rock mass characteristics,  

                          (4.10) 

 

                                  (4.11) 

σci  = the uniaxial compressive strength of the intact rock pieces. 

For intact rock RMR > 25, s=0, and a = 0.5, therefore 

     (4.12) 

The RMR index can be replaced with the GSI for RMR <40 since the GSI is more reliable in 

that domain. Fig. 4.5 shows a plot of the Hoek- Brown failure criterion in the RocLab 

software from Rocsience. In this thesis the program is used in obtaining of the rock mass 

parameters; cohesion, Modulus of Elasticity and the angle of friction.     
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Figure 4.5: Hoek-Brown failure criterion for a weathered limestone, in the Roclab program 

from RocScience. 

 

4.4 ROCK DEFORMATION BEHAVIOR DURING EXCAVATION 

After the brief explanation of the methods used to describe the initial rock conditions in 

terms of its strength parameters and failure criteria, in this section the relationships used 

in the description of the parameters which influence rock behavior during excavation are 

examined.  

During excavation in a relatively weak rock, the deformation of the rock mass starts about 

one half a tunnel diameter ahead of the advancing face and reaches its maximum value 

about one and one half diameters behind the face. At the face position about one third of 

the total radial closure of the tunnel has already occurred and the tunnel face deforms 

inwards (Hoek, 2000). Whether or not these deformations induce stability problems in the 

tunnel depends upon the ratio of rock mass strength to the in situ stress level. This is 

illustrated in Fig. 4.6. 
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Figure 4.6: Pattern of deformation in the rock surrounding an advancing tunnel, 

(Hoek,2000). 

The convergence – confinement (C – C) method 

This C - C method is based on a concept in which the ground structure interaction is 

analyzed by an independent study of the behavior of the ground and the tunnel support 

(Eisentein, 1991). The ground behavior is represented by a ground reaction curve whereas 

the lining is represented by the support reaction curve. The former describes the ground 

convergence in terms of the applied confining pressure while the latter relates the 

confining pressure acting on the lining to its deformation. The solution for the ground 

support interaction is then given by the intersection of these two curves as illustrated in 

Fig. 4.6. 

 

Figure 4.6: Convergence-Confinement method in shallow tunnels (Source:Eisenstein, 1991) 

The reduction in the internal stress of the tunnel rock from the initial value po, to a lower 

value p, can be used to simulate the time delay in the placement of the supports. This 
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reduction in the internal stress which continues up to zero represents a gradual increase in 

the stress reduction factor λ, from λ=0 for initial conditions to λ=1 at maximum 

confinement. The factor λ, represents stress relaxation in the tunnel walls at different 

excavation steps (Fig. 4.7). 

 (4.13) 

 

Figure 4.7: stress distribution around and along a tunnel (Source: Kavvadas, 2007). 

With the gradual increase in λ, the initial elastic behavior of the rock mass (assuming 

isotropic conditions: σv = σh = po) at a certain moment becomes plastic near the tunnel wall. 

The factor λ, at the start of plasticity is known as the critical reduction factor λcr and is due 

to a critical stress pcr. The convergence – confinement curve reflects the rock with an 

elastoplastic behavior where, after the critical stress pcr, it begins to behave plastically. In 

the diagram b), different stages of plastic behavior are shown. In phases I and II the rock 

yields but the maximum displacement is reached before failure so it remains stable, 

whereas in III, the rock yields and at a certain stress p, the displacement tends to infinity 

leading to plastic failure at point F (Fig. 4.8). 

 

Figure 4.8: a) convergence – confinement curve for a circular tunnel, b) convergence – 

confinement curves of a rock mass during plastic behavior, (Source: Kavvadas, 2007).  

For every position x, along the tunnel axis there is a displacement Ur on the x – Ur curve, 

and for a particular value of Ur through the convergence – confinement curve there is a 

pressure p, smaller than po, known as the equivalent internal pressure which causes the 
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same convergence as that at a distance x, from the tunnel face. This is illustrated using the 

Panet curve in the Fig. 4.9.  

 

Figure 4.9: Panet curve for the relationship between the distance x, along the axis of a 

circular tunnel and the convergence at that position, (Source: Kavvadas, 2007).  

The relationship between the displacement Ur of the tunnel wall and the distance x, from 

the tunnel is very important because it allows for the evaluation of wall convergence and 

consequent displacement before placement of supports which is used in determining the 

required support pressure for the rock. Since confinement begins right in front of the 

tunnel face, the placement of the initial supports must be done at a distance x, from the 

excavation face. This should be such a position where the rock has released enough internal 

stress so that it requires less support pressure, i.e. a balance between the confinement and 

the support requirements. The determination of such a distance x, is based on calculations 

of various indirect parameters that influence convergence and confinement of a tunnel. 

The effect of placing supports to the c – c curve is shown in Fig. 4.10. 
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Figure 4.10: Effect of installing supports in the tunnel illustrated on the convergence-

confinement curve, (Source: Kavvadas, 2007). 

The ground reaction curve ADF represents the un-supported tunnel. AD shows the tunnel 

behavior before placement of the supports, DEG represents the behavior when rock bolts 

are installed and finally, when shotcrete is placed, IE represent the termination of the 

ground reaction at a point of equilibrium E with a displacement URe corresponding to an 

equilibrium stress PE.  

The relationships used to calculate the input parameters for assessing the displacement of 

a tunnel are illustrated below: 

Calculation of the critical stress reduction factor λcr: 

 (4.14) 

where  

 

 

 

When Ns <1, then λcr>1 therefore no plastic zone is created around the tunnel  
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When Ns>1, then there is a certain value of λ <λcr after which the rock will behave in a plastic 

manner. 

Therefore, when  

 Ns<1 or N>1 but λ=λcr, no plastic zone is created 

 Ns>1 and λ>λcr a plastic zone is created 

 Ns>1 and λ=λcr the plastic zone is only limited at the tunnel wall. 

The displacement at the wall of is given by  

                                          (4.15) 

Where  

Shear Modulus  

R= radius of the tunnel 

r= radius inside the rock mass 

when r = R,  

If  a plastic zone is created and k  

At the plastic zone λ = 1 and a radius of plastic zone created is given by 

                              (4.16) 

The displacement at any point in the plastic zone is given by 

    (4.17) 

 

According to Panet (1995), for elastoplastic conditions,  

                     (4.17) 

Whereas according to Chern et.al. (1998), irrespective of the value of the Ns the 

displacement at any point x, along the tunnel axis  
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                      (4.18) 

 

In the framework of this thesis, we are interested in the true reproduction of the initial 

conditions, the excavation process, the support system, and the deformation behavior at a 

number of sections inside a road tunnel in a deeply fragmented cataclastic limestone of 

Northern Greece. This is aimed at predicting the displacement of the tunnel crown at every 

section. The displacement data obtained is to be used as input data for training an artificial 

neural network.  

The main parameters which can be included as input data for the neural network must be 

those that influence displacement directly and these include: 

 The overload factor, Ns 

 The stress reduction factor, λ 

 The Modulus of elasticity, E 

 The overburden pressure, po 

 The rock mass classification (based on the geological classification,) 

 Support class (based on the support capacity of the system) 

 The coefficient of lateral pressure. 
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CHAPTER 5 
ARTIFICIAL NEURAL NETWORKS 
 

5.0 INTRODUCTION 

The brain consists of a large number (approximately 1011) of highly connected elements 

called neurons whereas the artificial neural networks are only remotely related to their 

biological counterparts. Neural networks and deep learning currently provide the best 

solutions to many problems in image recognition, speech recognition, and natural 

language processing but also their application in geotechnical engineering is growing 

rapidly. In this chapter, the characteristics of brain function that have inspired the 

development of artificial neural networks and the basic units of the artificial neuron are 

examined. Also, the architecture, the training and learning characteristics together with 

the training procedure are described.  

 

5.1 ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial Neural Networks are a software implementations of the neuronal structure of 

the human brain. Though the biology of a human brain is so complex, it has been proved 

that it contains neurons which are kind of like organic switches. These can change their 

output state depending on the strength of their electrical or chemical input. This neural 

network is a hugely interconnected network of neurons where the output of any given 

neuron may be the input of thousands of other neurons. Learning in the human brain 

occurs by repeatedly initiating certain neural connections over others and this reinforces 

those connections. This makes them more likely to produce a desired output given a 

specified input. This learning involves a feedback i.e. when a desired outcome occurs, 

the neural connections causing that outcome become strengthened.  

 

The biological neuron 

The human nervous system consists of billions of neurons of various types and lengths 

relevant to their location in the body (Schalkoff, 1997). The main functional units of a 

biological neuron are: the dendrites, cell body and axon (Fig. 5.1).  

The cell body has a nucleus that contains information about the heredity traits, and a 

plasma that holds the molecular equipment used for producing the material needed by 

the neuron.  

The dendrite is responsible for receiving information from other neurons through special 

connections called synapses and passes it over to the cell body. In the cell body, the 

information is transmitted to the nucleus where it is processed and transmitted to the 

neurons connected to the current one. 
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The axon, this branches into collaterals, receives signals from the cell body and carries 

them away through the synapses to the dendrites of the neighboring neurons. 

The amount of signal that passes through a receiving neuron depends on the intensity of 

the signal emanating from each feeding neurons, their synaptic strengths, and the 

threshold of the receiving neuron. The neurons can receive and transmit many signals 

simultaneously because of the many dendrites they have.  

 

Figure 5.1: Biological neuron (Jahnavi,2017) 

The artificial neuron 

The artificial neuron is built to mimic the biological neuron. It comprises of nodes, 

weights and a transfer function, where by the connection between the nodes represents 

the axon and dendrites, the connection weights represent the synapses and the 

threshold (activation function) approximates the activity in the soma. Fig. 5.2 shows the 

interaction from n, biological neurons and analogy to signal summing in an artificial 

neuron. 

 

Figure 5.2: Relationship between biological and artificial neurons, (Basheer et.al, 2001) 
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Artificial neural networks attempt to simplify and mimic this brain behavior, they can be 

trained to produce a desired output through repetitive input and output strengthening. 

Each neuron in a network is able to receive input signals, to process them and to send 

an output signal. The neuron is connected with at least one other neuron, and each 

connection is evaluated by a real number called a weight coefficient which reflects the 

degree of importance of the neuron in the neural network. An artificial processing 

neuron receives inputs as stimuli from the environment, combines them in a special way 

to form a `net’ input(ξ), passes over through a linear threshold gate, and transmits the 

signal (output, y) forward to another neuron or the environment (Basheer et.al, 2001).  

Structure of the neural network 

The activation function - this is the simulation of the biological neuron as 

aforementioned. It has a switch-on characteristic where by, in a network, once the input 

is greater than a certain value, the output should change state, i.e. from 1 to 0, or -1 to 

1, or 0 to > 0. This simulates the turning on of the biological neuron. The most common 

activation function is the Sigmoid function (Table 5.1).  

Table 5.1: Commonly used activation functions (Hagan et.al. 1996) 
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The node – This takes multiple weighted inputs, applies the activation function to the 

summation of the inputs and in doing so, generates an output. The output of the 

activation function is shown in Fig. 5.3 below. 

 

Figure 5.3: Structure of an ANN node (Hagan, 1996). 

A weighted input to the node above would be expressed as  

(5.1) 

Where  

b, is the bias element.  

The inclusion of the bias enhances the flexibility of the node. The bias assists in 

influencing the particular value of x, where we want the model to activate for a particular 

node. The variation in the value of b, results in the horizontal displacement along the x-

axis for a particular weight. In the programming context, a bias term simulates the if 

function e.g. if (x>z), then 1, else 0.  However, the variation in the value of the weight w, 

causes a change in the in the slope of the sigmoid function. This implies that there is a 

change in the model strength as a relationship between the input and the output 

variables (Fig. 5.4). 

  

Figure 5.4: Change of slope due to variation weight value in ANN node (Left). Horizontal 

displacement due to variation of the bias value in ANN (right) (source: Thomas, 2019). 
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5.2 THE LEARNING ALGORITHM 

This is the algorithm with which the neural network is trained for its future applications. 

The purpose of the learning algorithm is the tuning of the values which are to be taken 

by the weights and biases during the analysis. The principle of learning makes sure that 

during the training the weights gradually take the logical and suitable values. The gradual 

learning is also a mimic of human brain and learning. 

 

Examples of learning/training algorithms include: 

 

Backpropagation 

Here the output of the neural network is compared to a provided training value (target) 

and feasibly look at how changing the weights of the output layer would change the cost 

function (the derivative of the mean square error) of the sample. The output vector and 

its corresponding target vectors are used to train the NN until it can approximate a 

function, or associate input vectors with specific output vectors, or specify input vectors 

in an appropriate way defined by the user. The back propagation is a gradient descent 

algorithm in which the network weights are moved along the negative of the gradient of 

the performance function. In this method the error is shared to all the weights in the 

network allowing us to determine how much of the error is caused by any weight.  

 
Figure 5.5: The relationship between the feedforward direction and the 

backpropagation. 

 

Properly trained backpropagation networks tend to give reasonable answers when 

presented with inputs that they have never seen. Typically, a new input leads to an 

output similar to the correct output for input vectors used in training. 

 

However, backpropagation has a two main drawbacks as an algorithm: 

 It is slow in convergence 
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 It easily gets stuck in the minimum gradient 

The solutions used in the modified backpropagation algorithms to minimize these 

problems are: 

 Providing means of varying the learning rate  

 Application of a momentum (in form of a filter to smoothen the oscillation of the 

output) and scaling variables. 

 
The Newton’s method 
The Newton's method is a second order algorithm because it makes use of the Hessian 
matrix. The objective of this method is to find better training directions by sing the 
second derivatives of the loss function. This method will always find the minimum of a 
quadratic function in one step. This is because Newton’s method is designed to 
approximate a function as quadratic and then locate the stationary point of the quadratic 
approximation. If the original function is quadratic (with a strong minimum) it will be 
minimized in one step. If the function is not quadratic, then Newton’s method will not 
generally converge in one step. In fact, we cannot be sure that it will converge at all, 
since this will depend on the function and the initial guess. The trajectory of the method 
is illustrated in Fig. 5.6.  
 

Conjugate gradient 

As compared to the gradient descent and Newton’s method algorithms, the gradient 

descent is the simplest but slow, the Newton’s method is much faster but requires the 

calculation of the Hessian matrix and its inverse. The Conjugate method is something of 

a compromise; it does not require complex calculations and is fast. It has a clear 

quadratic convergence property, (Hagan,1991). It converges to a minimum of quadratic 

function in a finite number of iterations. 

 

 
Figure 5.6: Trajectory of the Newton’s Method, (Ragan, 1991) 
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The Levernberg-Marquardt Algorithm 

This is a variation of the Newton’s method designed for minimizing functions that are 

sums of squares of a nonlinear function. It has a basic feature that as the learning rate is 

increased, it approaches the gradient descent algorithm with small learning rate, while 

as the learning rate is decreased to zero, the algorithm becomes Gaussian-Newton 

algorithm. The algorithm begins with the learning rate set to a small value, say 0.001 and 

a multiplication factor θ>1. The function should decrease since small steps are taken 

towards the steepest descent. If it does not converge, then the learning rate is divided 

by θ for the next step so that the algorithm approaches the Gaussian – Newton algorithm 

which will provide a faster convergence. Therefore, the algorithm provides a faster 

compromise between the guaranteed convergence of the steepest descent and the 

speed of the Gaussian –Newton method. 

Other algorithms include: 

 Bayesian regulation Algorithm 

 The Gaussian – Newton Algorithm 

  

Key advantages of Artificial Neural Networks 

ANNs have some key advantages that make them most suitable for certain problems and 

situations: 

 The ability to learn and model non-linear and complex relationships, which is 

really important because in real-life, many of the relationships between inputs 

and outputs are non-linear as well as complex. 

 Ability to predict and generalize — After learning from the initial inputs and their 

relationships, it can infer unseen relationships on unseen data as well, thus 

making the model generalize and predict on unseen data. 

 Having fault tolerance - Corruption of one or more cells of ANN does not prevent 

it from generating output. This feature makes the networks fault tolerant. i.e. 

ANN do not impose any restrictions on the input variables.  

 Additionally, it has been shown that ANNs can model well problems with data 

which has high volatility and non-constant variance, given its ability to learn 

hidden relationships in the data without imposing any fixed relationships in the 

data. 

 Ability to work with incomplete knowledge:  After ANN training, the data may 

produce output even with incomplete information. The loss of performance here 

depends on the importance of the missing information.  

 Having a distributed memory: In order for ANN to be able to learn, it is necessary 

to determine the examples and to teach the network according to the desired 
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output by showing these examples to the network. The network's success is 

directly proportional to the selected instances, and if the event cannot be shown 

to the network in all its aspects, the network can produce false output.  

 Gradual corruption:  A network slows over time and undergoes relative 

degradation. The network problem does not corrode immediately. 

 Parallel processing capability:  Artificial neural networks have numerical 

strength that can perform more than one job at the same time.  

Disadvantages of Artificial Neural Networks (ANN) 

 Hardware dependence:  Artificial neural networks require processors with 

parallel processing power, in accordance with their structure. For this reason, the 

realization of the equipment is dependent.  

 Unexplained behavior of the network: This is the most important problem of 

ANN. When ANN produces a probing solution, it does not give a clue as to why 

and how. This reduces trust in the network.  

 Determination of proper network structure:  There is no specific rule for 

determining the structure of artificial neural networks. Appropriate network 

structure is achieved through experience and trial and error.  

 Difficulty of showing the problem to the network:  ANNs can work with 

numerical information. This means that problems have to be translated into 

numerical values before being introduced to ANN. The display mechanism to be 

determined here will directly influence the performance of the network, 

although this depends on the user ‘s ability and judgment.  

 The duration of the network is unknown: The network is reduced to a certain 

value of the error on the sample means that the training has been 

completed. This value does not give us optimum results.  

However, it should be noted that the disadvantages examined above may be solved soon 

due to the fast growing trend of artificial intelligence and ANN as a new branch in 

science. This means that artificial neural networks will increasingly become an 

indispensable part of our lives.  

 

5.3 NEURAL NETWORK ARCHITECTURE 

Single Layer Neural networks 

A single layer neural network is comprised of one input layer, one hidden layer and one 

output layer. The input layer contains neurons which receive input signals from an 

external environment while the output layer neurons receive and process signals from 

the hidden layer and then transmit it to the external environment. The hidden layer is 
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located between the two layers and works as an additional processor of the signals it 

receives. 

Multi-layer Perceptron (MLP) 

These are more complex networks that can generally perform larger analyses. The 

network contains more than one hidden layers and each has its own set of weight and 

bias vectors. In some cases, it can also be a group of single layer networks where the 

output of one is used as an input of the next.  

In the MLP neural network signal data from the input is fed to the first hidden layer, 

summed, processed and transmitted to the second hidden layer, summed, processed 

through the transfer function and transmitted until to the nth hidden layer. Finally, the 

output from the last hidden layer is fed to the output layer, summed, processed through 

the transfer function, usually a linear function, and then transmitted to the user’s 

environment. Fig. 5.7 illustrates the processes in a multi-layer perceptron. 

 

 
Figure 5.7 : Multi-layer perceptron, (Hagan, 1991) 

 

5.4 TYPES OF ARTIFICIAL NEURAL NETWORKS 

Feed Forward Neural Networks 

These are networks which do not have feedback. Feedback are weight connections 

which emanate from the output of a layer and end at an input of the same layer or 

another previous layer. In the feedforward network, input data from the input layer is 

fed in the hidden layer, processed and transmitted to the output layer where it is again 

processed and transmitted to the external environment as shown in Fig. 5.8. The 

feedforward network allows flow of signals only in one direction with no provisions for 
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loops, they do not have memory, so their output is always defined from the present input 

and weight vectors. Types of Feedforward network s include: 

 Perceptron  

 Adaline, Madaline  

 Backpropagation (ΒΡ)  

 Cauchy Machine (CM)  

 Adaptive Ηeuristic Critic (AHC) 

 Time Delay Neural Network (TDNN)  

 Associative Reward Penalty (ARP)  

 

 

Figure 5.8: Feedforward neural network. 

Feedback Neural networks 

This is a type of neural network which allows the addition of signals forward and 

backwards. There is a bidirectional flow of signals through the network by the use of 

loops, see Fig. 5.9. They are very dynamic networks but also can be complex. When a 

feedback network is run, it goes through a continuous variation until a point of rest is 

attained, it remains at that point until the input is changed. They perform many 

iterations each time a new input is fed so they can also be called recurrent networks. 

Between the input and output neurons a complex multidimensional transfer function is 
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created, the complexity of the function depends on the number of neurons. Types of 

feedback networks include:  

 Brain-State-in-a-Box (BSB)  

 Fuzzy Congitive Map (FCM)  

 Boltzmann Machine (ΒΜ)  

 Mean Field Annealing (ΜFA)  

 Recurrent Cascade Correlation (RCC)  

 Learning Vector Quantization (LVQ)  

 Backpropagation through time (ΒΡΤΤ)  

 Real-time recurrent learning (RTRL)   

 Learning Μatrix (LM)  

 Driver-Reinfοrcement Learning (DR)  

 Linear Associative Memory (LAM)  

 Optimal Linear Associative Memory (OLAM)  

 Sparse Distributed Associative Memory (SDM)  

 Fuzzy Associative Memory (FΑΜ)  

 Counterprogation (CPN)  
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Figure 5.9: Simply connected recurrent neural network and a fully connected neural 

network. 

5.5 NEURAL NETWORK TRAINING AND LEARNING 

Neural Network Learning  

The purpose of learning is to train the network to perform a given task. In Artificial Neural 

Networks learning means a procedure for iteratively modifying the weights and biases 

of the network until an acceptable output is obtained. There are three types of neural 

network learning, namely, supervised, un-supervised and graded learning. 

Supervised Learning 

In supervised learning the learning algorithm is provided with a set of examples (target 

set) which depicts the proper network behavior. That is to say, for the input data vector 

provided, a corresponding output vector is also provided. The learning rule is then used 

to adjust the weights and biases of the network in order to move the network outputs 

closer to the target. The weights are modified using an algorithm which tends to 

minimize the error to a defined acceptable level. 

 

Un-supervised Learning 

In this type of learning, the learning algorithm operates in such a way that the weights 

and biases are modified in response to network input only. The training algorithm 

modifies the weights and biases so as to produce the output vectors which will be 



 

 

64 

 

connected to the input training set. The output vectors cannot be influenced in any case 

before the training. Examples of unsupervised networks include the Self Organizing Map. 

 

Gradual Learning 

This is similar to the supervised learning except that instead of being provided with 

correct output for each network input, the algorithm is only given scores. The score is a 

measure of the network performance over a sequence of inputs. His method is not well 

developed yet and is not widely applied. 

 

Neural Network Training 

Training a neural network is an iterative procedure that begins by collecting data and 

preprocessing it to make training more efficient (Fig. 5.11). At this stage, the data also 

needs to be divided into training/validation/testing sets. After the data is selected, we 

need to choose the appropriate network type (multilayer, competitive, dynamic, etc.) 

and architecture (e.g., number of layers, number of neurons). Then we select a training 

algorithm that is appropriate for the network and the problem we are trying to solve. 

After the network is trained, we want to analyze the performance of the network. This 

analysis may lead us to discover problems with the data, the network architecture, or 

the training algorithm. The entire process is then iterated until the network performance 

is satisfactory.  

Training involves numerous processes which may be summed up into five sub-steps: 

 Pre-training 

 Data processing 

 Network architecture design 

 Network training 

 Post-training.  
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Figure 5.10: Flow chart of neural network training process, (Hagan, year). 

 

1. Pre-training activities 

Data selection: these are the activities performed on the data to improve its quality and 

fitness for training since it is known that a neural network is as good as the data used to 

train it. This may involve the following: 

 Making sure that the training data spans the full range of the input space for 

which it will be used, although neural networks have a special quality of 

generalization. i.e. can do interpolation, but not so good at extrapolation. 

 The data should accurately be sampled in order to be representative of the 

problem. 

 Data separation: this involves dividing the data into three sets, training set, 

validation set and testing set. This should be done randomly such that each set 

fully represents the whole data set. 

 Confirming the amount of data available is enough for the training problem, the 

required amount of data depends on the complexity of the underlying functions 

of the problem, complex problems require larger amounts of data. Also, the 

smoothness of the functions regulates data requirements, smoother functions 

require less data than noisy functions. 

 

2. Data Processing 



 

 

66 

 

This is aimed at performing a preliminary process of the data s as to make it easier for 

the neural network to extract the relevant information. This involves: 

 Normalization of the data: this is done so that data falls into a standard range, 

typically from -1 to1. This can be done using the relationship 

   (5.2) 

Where  

Pn the normalized data value in the nth set 

P= the data set value in the nth set 

Pmax and pmin the maximum and minimum values of the data vector. 

Generally, the data should be normalized for both the input and the output data 

sets. 

 Non-linear transformation – normally performed on the input variables which 

may have logarithmic or inverse relationship with the output. This is done as a 

means of simplifying the work of the network. 

 Feature extraction: in case of very large data and presence of redundant data, 

some features may be extracted to reduce the network input dimensions. 

 Missing data: in case there is limited data its not good to eliminate any data set 

for the reason that some information is missing, the following strategies to fill 

the missing data can be done: 

 Replace the missing element with the average value of the other elements. In 

case the missing element is from the target vector, then the performance index 

can be used so that errors associated with the missing values are not included. 

 Principal components: this is a general purpose feature extraction method. It 

transforms the original input vectors so that the components of the transformed 

vectors are uncorrelated. In addition, the components are ordered such that the 

first component has the greatest variance, and the second is next, etc. the first 

vectors can be kept and the vectors which are more correlated are eliminated to 

minimize the network size. 

3. Choice of network architecture 

This involves the structural composition but also the parametric composition of the 

network. 

Structural architecture 
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This is determined by the type of problem at hand, different approaches are applied for 

prediction, function fitting, clustering etc. Table 5.2 shows the commonly used network 

architectures, the number of hidden layers, and the transfer functions used. 

 

Table 5.2: Common network architectures. 

Problem  Layers  Transfer function 
hidden layers 

Transfer function 
output layer 

Fitting / 
approximation 

MLP network with 1 
up to 2 layers.   
Radial basis  

Tansig 
 
Gaussian- 
Newton 

Linear  

Pattern 
recognition  

MLP network with 1 
up to 2 layers 
Radial basis 
 

Tansig  
 
Gaussian-Newton 

Sigmoid 
 
 

Clustering  Self-Organizing Map  
 

  

Prediction  Dynamic NN with 1 to 
2 layers, NARX, TDNN 

tansig linear 

 

Selection of network specifics: This includes the selection of basic network parameters. 

This is done based on certain factors. 

 The number of neurons in the output always is equal to the number of target 

vectors. 

 The number of neurons in the hidden layers is determined by the complexity 

of the problem, the number of elements in the input vector and the amount 

of data sets available, though a try and error method is applied when 

choosing the optimum number. It should be noted that too many neurons 

result into over fitting of the data. 

 The size of the input vector is based on the training data. Though sometimes 

might need to replacement of missing data or extraction of redundant or 

irrelevant elements. An optimum number of input elements assist in reducing 

the amount of computation and preventing of over fitting. 

4.  Training of the network 

This involves: 

Weight and bias initialization: for normalized data, the initial conditions are usually 

set to fall in a range -0.5 to 0.5.  
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Choice of training algorithm: Algorithm selection is done basing on the speed and 

the memory requirements of the analysis. Also some algorithms have been found to 

be more suitable for certain jobs. For example, the gradient based algorithms are 

generally suitable for multi-Layer Perceptron networks, while the Levernberg –

Marquardt is applied when fast convergence is required. The conjugate gradient 

algorithm is normally used in pattern recognition.  

Stopping criteria: This defines some criteria at which it can decide when the training 

should stop. This is done by specifying certain parameters which when one is fulfilled, 

the training stops. These may include: 

 Specifying a minimum error limit 

 Specifying a maximum number of iterations 

 Setting a minimum performance index – usually very near to zero <10E-6. 

 Setting a minimum performance index reduction, if it becomes very small the 

training stops. 

NOTE: For a network to be able to generalize, it should have fewer parameters than 

there are data points in the training set. In neural networks, as in all modeling problems, 

we want to use the simplest network that can adequately represent the training set. It is 

advised not to use a bigger network when a smaller network will work (a concept often 

referred to as Ockham’s Razor). An alternative to using the simplest network is to stop 

the training before the network over fits. 

5. Post training activities:  

Post training is done to determine whether the training was successful. The techniques 

used in this activity vary depending on the application examined. Post training 

requirements for fitting problems may differ from those of clustering. The basic 

performance parameters calculated during training are the Mean Square Error (MSE) 

and the Summed Square Error (SSE) which are used in all problems. Other performance 

indices are mentioned below. 

 Mean square error works well for function approximation problems, in which the target 

values are continuous. However, in pattern recognition problems, where the targets take 

on discrete values, other performance indices might be more appropriate. 

Fitting problems 

Regression Plot: this is plotted between the trained network outputs and the 

corresponding targets works well for fitting problems. If the regression is not perfect, the 

outlier points are examined so as to correct the training data. If R2 is near to 1 it means, 
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there is a good correlation of the target data and the output. Fig. 5.12 shows the 

regression plot of the output and training data. 

 The histogram of the errors plot: the y-axis represents the number of errors that falls 

in each internal on the x-axis. Large error values should be balanced around zero and low 

values should be realized for bigger error intervals for a training to be satisfactory. Fig. 

5.13 shows a histogram where the error is balanced.  

 

Figure 5.11: Regression plot of the ANN output and the target data. 

 

Figure 5.12: Histogram of network errors. 
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  Pattern recognition 

 Confusion matrix / misclassification matrix 

 Receiver Operating Characteristics (ROC) 

Clustering  

 Quantization errors 

 Topographic Error 

 Distortion Measure 

Prediction  

 Auto Correlation Function 

 Cross – Correlation Function 

It should be noted that neural network training is an iterative process. Therefore, even 

after the training algorithm has converged, post-training analysis may suggest that the 

network be modified and retrained. In addition, several training runs should be made for 

each potential network to ensure that a global minimum has been reached. (Hagan, 

1991). 

 

Table 5.3: Results for the selection of the best Learning algorithm of the ANN. 

ALGORITHM 
TRANSFER 
FUNCTION 

% 
TRAINING 

NUMBER OF 
NEURONS MSE 

REGRESSION 
R     

TRAINING 

Levenberg-
Marquardt 
(trainlm) 

tansig 70 

6 27,051 0,973 

7 26,58 0,959 

5 28,106 0,957 

Scaled Conjugate 
Gradient 

6 71,412 0,895 

7 93,135 0,332 

5 84,128 0,849 

Bayessian 
Regulation 

Backpropagation 

6 25,58 0,962 

7 21,75 0,969 

5 22,873 0,963 
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CHAPTER 6 
CASE STUDY: PREDICTION OF TUNNEL DISPLACEMENT USING 
FINITE ELEMENT METHODS AND NEURAL NETWORKS 
 
6. 0 INTRODUCTION 
In this case study, two approaches for prediction of tunnel displacement are examined, 
based on the data collected during the construction of the S1 road tunnel in Eastern 
Greece. The tunnel was characterized by uniquely difficult underground conditions and 
large tunnel displacements. A short description of the tunnel technical-geological 
characteristics is made, along with the construction design that was followed and the 
resulting displacements that were observed. The next section describes the use of Finite 
Element Methods to simulate and reproduce the tunnel behavior and finally an Artificial 
Neural Network model is built and consequently trained. The purpose of the network is 
to verify whether ANN can be used to reliably predict tunnel displacement as a means of 
facilitating the use of the observation method in tunnel engineering.   
 
6.1 THE S1 TWIN TUNNELS 
The S2 tunnel is among the tunnels of Egnatia Highway and is found between the villages 
of Kristallopigi and Psilorahis in Hpeiro, 35km East of Igoumenitsa. During the 
construction of the S1 tunnel, uniquely difficult geological formations were encountered. 
It was a Pantokrator limestone rock mass of cataclastic type with high flow 
characteristics, heavily weathered and broken with interchanges from fully fragmented 
rock to complete gravel and clay materials (Egnatia odos, 2001).  
 

 
 
Figure 6.1: Location of the S1 tunnels of the Egnatia Highway, (Source: Google Earth). 
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During the construction of the tunnel, it was discovered that the deformation behavior 
designed basing on the in-situ stress conditions and test drills was different from the one 
encountered. This implied that the analytical methods used in the design gave 
conservative support solution because it didn’t allow for the flow behavior of the 
material. Therefore, the observation method had to be emphasized, and it was proved 
that the basic solution for safe tunnel excavation was an aversive approach, to first of all 
hold and retain the loose material and later to provide the support system as per the 
analyses. 
Such a geological setting with frequent interchanges in the technical-geological 
formation calls for good coordination and organization between the contractors and the 
engineers. This also calls for a strong and organized tunnel monitoring system to provide 
accurate and real-time measurements so as to facilitate the decision making process as 
per the observation method of tunnel construction, (Lefas et.al. 2001). 
  
Geological conditions and geotechnical parameters 
The tunnels pass through a Mesozoic sedimentary sequence consisting of Triassic to 
Jurassic limestone, namely the Pandokrator limestone, which overlies a thin sedimentary 
clay sequence and gypsum. On top of these, Quaternary scree deposit formations can be 
found. Figs 6.2 and 6.3 show the geological sections of twin tunnels. The rock mass 
classes along the bores of tunnels, the displacement profiles and support measures are 
also included in the figures. 
The main geological formation of the area, the Pandokrator limestone, is subdivided into 
four geotechnical units (rock mass classes A, B, C and D) based on the block size and the 
structure of the rock mass. The subdivision of limestone into four distinctive units was 
used in order to describe a rather continuous sequence between the two end categories: 
the fractured limestone and the carbonate gouge. This wide range of fractured limestone 
is the result of primary sedimentary conditions (disturbed conditions during deposition) 
overprinted by strong tectonic deformation (thrusting and faulting), resulting in the 
completely crushed sand-sized rocks: cataclasite to gouge (Georgiannou et.al.2005). A 
description of these four rock mass classes is given below: 
 

A. Fractured limestone 
Thickly bedded, with three or more discontinuity sets, minor weathering of 
discontinuity planes, good interlocking of blocks and block size of 10 cm. 
 
B.  Heavily fractured (sugar cube) limestone 
Massive, with three or more closely spaced discontinuity sets, minor weathering of 
discontinuity planes, poor interlocking of blocks, and block size of 5–10 cm. 
 
C.  Cataclastic limestone 
Massive, with three or more closely spaced discontinuity sets, frequently 
interlayered with sandy gravel, friable with cataclastic (heavily broken) structure and 
block size of 5 cm. 
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D.  Carbonate cataclasite to gouge 
Sandy gravel (cataclasite) to sandy silt (gouge), moderately cemented to loose, with 
irregular insertions of cataclastic limestone, with heavily broken structure and no 
block size. 

  
Figure 6.2: Geology, support measures and primary lining displacements of tunnel S2: 
right bore (Georgiannou et.al. 2001). 

 
Figure 6.3: Geology, support measures and primary lining displacements of tunnel S1: 
right bore (Georgiannou et.al. 2001). 
 
However, for the purposes of this thesis, the rock mass classes that resulted into 
recognizable deformation are modeled. Three finite element models are developed to 
represent the three rock-mass classes that were specifically encountered during the 
construction of the tunnels as described below: 
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1. MODEL A represents rock mass class B, heavily fractured limestone with three or 
more closely spaced discontinuity sets, minor weathering of discontinuity planes, 
poor interlocking of blocks, and block size 5–10 cm. 
 

2. MODEL B represents rock mass class C, cataclastic limestone, massive, with three 
or more closely spaced discontinuity sets, frequently interlayered with sandy 
gravel, friable with cataclastic (heavily broken) structure and block size 5 cm. 
 

3. MODEL C represents rock mass class D, Carbonate cataclasite to gouge: sandy 
gravel (cataclasite) to sandy silt (gouge), moderately cemented to loose, with 
irregular insertions of cataclastic limestone, with heavily broken structure and no 
block size. 

6.3 FINITE ELEMENT MODELS WITH PHASE 2 8.0 
As it is presented above, three FEM models are developed to represent the three rock 
mass classes that were met during the construction of the tunnel. The weakest and most 
fragile class D and class C were excavated in two phases, heading and benching, with six 
phases was used to simulate the excavation.  The material properties, the excavation 
and support stages are defined for the respective FEM models. For MODEL A (rock mass 
class B - heavily fractured limestone), three phases are applied while for MODEL B, (rock 
mass class C- cataclastic limestone) and MODEL C (rock mass class D - Carbonate 
cataclasite to gouge), six excavation phases are applied.it should be noted that in class B 
more stiff was excavated full face with three phases. The excavation phases are 
presented in Tables 6.1, 6.2, 6.3 
 
Table 6.1: Excavation phases for Model A 

PHASE NAME DESCRIPTION 

1 GEOSTATIC Simulation of the initial conditions of 
The model. 

2 DECONFINEMENT  Excavation of the top heading and  
Allowing for the de-confinement of the 
tunnel boundaries. 

3 SUPPORT Activation of bolts on the sides of the 
benching and the concrete lining. 

 
Table 6.2: excavation phases for Model B 

PHASE NAME DESCRIPTION 

1 GEOSTATIC Simulation of the initial conditions of 
The model. 

2 DECONFINEMENT  Excavation of the top heading and  
Allowing for the de-confinement of the 
tunnel boundaries. 

3 SUPPORT Activation of the bolts, the concrete  
lining and the invert above the benching 
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4 DECONFINEMENT Excavation of the benching and allowing for the de-
confinement of the tunnel 
 boundary. 

5 SUPPORT Activation of bolts on the sides of the 
benching and the concrete lining. 

 
Table 6.3: excavation phases for Model C 

PHASE NAME DESCRIPTION 

1 GEOSTATIC Simulation of the initial conditions of 
The model. 

2 FOREPOLLING Activation of the stiffened zone  
Above the tunnel crown. (forepolling) 

3 DECONFINEMENT  Excavation of the top heading and  
Allowing for the de-confinement of the 
tunnel boundaries. 

4 SUPPORT Activation of the bolts, the concrete  
lining and the invert above the benching 

5 DECONFINEMENT Excavation of the benching and allowing for the 
de-confinement of the tunnel 
 boundary. 

6 SUPPORT Activation of bolts on the sides of the 
benching and the concrete lining. 

 
The plain strain analysis type is used since the tunnel has an infinite length while the 
Gaussian eliminator was used as the solver type because of the simplicity of the model. 
The extent of the model boundaries was defined according to ?????? the boundary 
should be far enough from the excavation so that the stresses caused by excavating are 
not influenced by the model boundaries.  In tunnels a distance of at least 2.5 times the 
diameter of the tunnel from every side is recommended. This means that for 13m 
diameter tunnel the best model size is given by: 
 
Model width = 2.5D*2 +D = (2.5 * 13) *2 + 13 = 78m 
Therefore, a model of 80m width and 60m depth is adopted since it is not influenced by 
the boundary extent. 
 
Meshing is done with medium size elements in the model, while the mesh density is 
upgraded within a rectangular window 10m x10m around the tunnel.  
The model displacement is defined by setting the upper surface free, restricting x-
direction on the vertical boundaries, and restricting y-direction movement to the bottom 
surface. The bottom right and left vertices of the model are restrained in the x and y 
directions. Fig. 6.4 shows the meshed model used in the project together with the 
boundary restraints  
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Figure 6.4: Mesh and boundary restraints used in model simulation. 
 
Simulation of the tunnel overburden  
The tunnel overburden height varies between 20m to 90m along a total length of tunnel, 
400m + 780m = 1080m long without the portal lengths, which means that if 
measurements are taken at 10m intervals, a total of 108 model analyses are required. 
Therefore, to model the tunnel overburden load due to the ground above the model, the 
following technique was used. All the three models are set to be at a depth of 20 m and 
the remaining overburden load is simulated in form of a uniformly distributed load (Fig. 
6.5).  
The tunnel additional overburden P, is given by the expression: 

                    (6.1) 
where 
 γ = specific gravity  
 Ko = the lateral earth pressure 
 h = the height of the model top surface above the tunnel and  
H = height of the ground surface above tunnel for a particular section along the tunnel. 
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Figure 6.5: simulation of the excess overburden height as a distributed load above the 
20m depth of the tunnel. 
 
Material properties                                                 
The material properties assigned to the rocks for the three models are shown in Table 
6.4. 
 
Table 6.4: Rock and lining material properties  

MATERIAL TYPE  
ROCK CLASS 

A 
ROCK 

CLASS B 
ROCK 

CLASS C 
FORE 

POLLING 
SHOTCRETE 

/HEB 
HEADING 
INVERT 

BENCHING 
INVERT 

GSI 30 20 13 13       

AXIAL 
STRENGTH 
σci(Mpa) 40 35 35 35       

ROCK QUALITY 
CONSTANT mi 10 10 10 10       

ROCK MASS 
COMP. 

STRENGTH σcm 
(Mpa) 2,594 1,165 0,999 0,999       

FRICTION 
ANGLE φ (ο) 26 23 20 20       

COHESION c 
(MPa) 1,15 0,65 0,65 0,65       

MOD. OF 
ELASTICITY Em 

(MPa) 2000 1052 703 1247 300000 300000 300000 

SPECIFIC 
GRAVITY        γ 

(Mpa) 0,026 0,026 0,026 0,026 0,025 0,025 0,025 
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POISSON RATIO              
ν 0,35 0,35 0,3 0,3 0,2 0,2 0,2 

Initial Element 
Loading type gravity gravity gravity gravity       

FAILURE 
CRITERIO 

Hoek  
Brown 

Hoek 
Brown 

Hoek 
Brown 

Hoek 
Brown       

PARAMETER mb  0.821   0,5743 0,5743       

PARAMETER s  0,0004   0,000138 0,000138       

PARAMETER a 0,522   0,5437 0,5437       

MATERIAL TYPE  Plastic Plastic Plastic Plastic Elastic Elastic Elastic 

ELASTIC TYPE Isotropic Isotropic Isotropic Isotropic       

THICKNESS  d, 
(m)       1.12 0,25 0,2 0,25 

 
 
Support measures 
The temporary support measures applied to the tunnel were based on the rock mass 
quality. The variety of geological conditions has a profound influence on the behavior of 
each tunnel, resulting in a wide variety of primary support measures being required. In 
the project design a set of seven support classes was developed for the main length and 
two for the entry portals. The main support classes are A, B, C, D and the intermediate 
classes for the extremes before transfer to the next class A/B, B/C, C/D and D’, D’’ were 
designed for low overburden sections at the entrance and exit portals of the tunnels.  
For the purposes of this thesis, three main categories B, C, and D are applied to the rock 
mass classes A, B, and C respectively as described below:  

1. Support category B (geological conditions: rock mass class A and B) includes  

 fibre-reinforced shotcrete,  

 steel ribs HEB 120 and rock bolts length 5m, 1.5m out- of plane spacing  

 the excavation took place in 1.5 m advance steps (top heading and benching) 

 excavation by drill and blast. 
2. The support category C (geological conditions rock mass classes B and C) include:  

 additional support to the tunnel crown against raveling and simple collapses 
using spiles  

 fibre-reinforced shotcrete  

 steel ribs and rock bolts 

 the excavation took place in 1.0 m advance steps (top heading) 

 excavation by mechanical means. 
3. The heaviest support category D (geological conditions: cataclastic rock mass 

class D, loose screes, sedimentary sequence) include:  

 forepoles 12 m long fully grouted 114 mm diameter steel tubes, installed at 
the periphery of the crown to form a protection umbrella. 

 sealing of excavation face 

  temporary invert at the top heading and bolting  
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 fibre-reinforced shotcrete 

 steel ribs HEB 160 and rock bolts  

 the excavation took place in 1.0 m advance steps (top heading) 

 excavation by mechanical means. 

The spiles and forepoles are used as a protection umbrella to the crown from raveling 

and simple collapses but also as structural support to the face of the tunnel. In PHASE 2, 

this is simulated as a stiffer zone relative to the rock mass, thickness 0.8 up to 1.2m above 

the crown (obtained as an approximation of the thickness due to the 10o slope of the 

12m long forepoles).  

Table 6.5: Primary support categories and their composition. 

PRIMARY SUPPORT MEASURES 

SUPPORT 
CATEGORY 

EXCAVATION 

LINING 
THICKNESS 

STEEL 
RIBS 

ROCK 
BOLTS 

SPILES / 
FOREFOLES 

TEMPORA
RY INVERT METHOD 

ADVANCE 
(m) 

A 
Mechanical 

means 
1.5 0.20 

HEB 
120   

1.5mx1.5m 
200KN 

30mm dia. 
6m long 

spiles 
No 

B 
Mechanical 

means 
1.0 0.25 

HEB 
140 

1.5mx1.0m 
300KN 

51mm dia. 
6m long 

spiles 
Yes 

C 
Mechanical 

means 
1.0 0.25 

HEB 
161 

1.0mx1.0m 
300KN 

114mm dia. 
12m long 
Forepoles 

Yes 

 

Calculation of the forepolling zone stiffness is done by assuming composite material 

properties between the steel poles, the lean concrete filling/grouting and the sectional 

area of the rock. 

The tunnel geometry is designed in AutoCAD, including the stiffened zone above the 

tunnel crown. The forepoles are drilled at an angle about 10o, so the zone rises 1.2m 

above the crown and total area of the zone is 29.93m2 with a single line of poles number 

N= 60 in the cross section.  

Table 6.6 : Bolt properties 

BOLT PROPERTIES 

BOLT TYPE Fully bonded 

DIAMETER (mm) 40 

ELASTIC MODULUS (Mpa) 200000 

TENSILE CAPACITY 0,1 

RESIDUAL TENSILE CAPACITY (MN) 0,01 

PRETENSIONING FORCE (MN) 300 /200 
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Figure 6.6: Typical liner properties interface for the liner with HEB 120 in the model A. 

  

The stiffness of the zone is obtained by calculating the composite normal stiffness EApipe, 

of the steel section filled with grout and after calculating the Elasticity modulus of the 

stiffened zone from the composite Normal Stiffness of the rock and the forepolling pipes 

EArock and EApipe respectively, the relationship used is as shown below. 

 

     (6.2) 

where 

 
 

Epipe = (210*106 kPa*0.000729 m2 +20*103 kPa*0.010207 m2)/ 0.010936 m2 

           = 14.017 *106 kPa, = 14017MPa 

Eforepolling = (703 MPa *29,93 m2 +(14017 MPa*0,010936 m2) *60)/ 29.93 

                    = 1247MPa 

 

Definition of data sets for analysis 

By use of the Fig. 6.2 and 6.3, the rock mass class, the tunnel depth, the support class 

and consequent displacement for sections along the tunnels every 10m are extracted. 

This is achieved by importing the figures in AutoCAD and drawing perpendicular lines 

along the 1170m tunnel length. Then, through scaling, the tunnel data is extracted. In 

this case 117 data sets are obtained, well distributed among the aforementioned model 
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classes. Calculations for the input data for every data set is done using the relations 

explained Chapter 5. The calculation is performed in an Excel spreadsheet and is 

presented in Appendix A.  
 

 
 

 

 

The respective material and support details are assigned to a finite element analysis 

model using the program PHASE 2 8.0 for the 108 sections according to the model 

elements they belong and then a computation is performed. The displacement at the 

crown of the tunnel is recorded. The obtained displacement and the input data is used 

for training an artificial neural network as will be explained in the follοwing chapters. 

 

6.4 FINITE ELEMENT DISPLACEMENT RESULTS 

Using the PHASE 2 8.0 program, a total of 117 analyses are performed for the 117 

sections of the tunnel.  A FEM model from the three models aforementioned is assigned 

in conformation to the respective technical-geological conditions of each particular 

section along the tunnel. For the results, the tunnel displacement at the crown is 

recorded for every model. Fig. 6.7 up to 6.10 show the finite element model stages for 

every model and the results of the analyses. Also, a plot of the variation of the 

displacement along the tunnel is presented in Fig. 6.11 while in Appendix A, the whole 

data set is shown.  
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Figure 6.7: Initial loading conditions for Model C. 

  

 

      
Figure 6.8: Crown displacement at the heaviest section for Model C. 
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Figure 6.9: Mean stress around the tunnel section with the yielded elements and yielded 

bolts. 

 

 
Figure 6.10: Bending moment distribution and principle stress σ1 around the tunnel for 
the heaviest section along the axis. 
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The displacement results obtained from Finite Element Analysis are compared with the 

displacement measurements which was obtained during construction of the tunnel as 

shown in Fig. 6.11. From this figure it can be seen that there isn’t a clear agreement 

between the two plots and differences of up to 25mm are observed at some sections. 

The discrepancy can be due to the human factors during construction but mostly due to 

the conservative assumptions made in the models. The comparison of the FEM 

displacement results with the field measurement results shown above, indicates a 

discrepancy of up to 25mm between the values which can be attributed to: 

 The fact that the ground properties are not accurately simulated in the finite 

element model. 

  There might be a difference in the distance x, from the tunnel face applied in the 

model from the actual distance where the measurement was actually taken 

leading to a smaller displacement.  

 The presence of weaker zones (e.g. faults or transfer zones) which are not 

depicted in the model. 

 

 

 

 
 
Figure 6.11: Comparison of the field measured displacements and the FEM 
displacements. 
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6.5 THE NEURAL NETWORK MODEL 
Brief introduction 

Tunnel construction proceeds in sequences of cyclic actions. It is of primary importance 

to have reasonable estimate of tunnel deformation (crown settlement, convergence, 

and foot settlement, etc.) before, during and after completion of the tunnel. The earlier 

a final displacement of certain location is known, the better because safety measures 

could be taken in advance, (Lee & Akutagawa, 2009).  Practical difficulties still exist for 

tunnel engineers having to consider complex geology and unpredictability in material 

behaviors, leading frequently to mismatch between numerical prediction and field 

measurement results. 

 In the observational method of tunneling, geology and geo-mechanical properties of the 

rocks are monitored, tunnel face observation for rock mass condition recorded, as well 

as the presence of underground water checked by using the available monitoring 

systems, and the data is for on-site decisions. Basing on the data and experiences, 

lessons learned from a given cross section or a tunnel is usually utilized for excavation of 

upcoming cross sections or another tunnel in similar ground condition. However, the 

modernization of the monitoring systems has made available large quantity of data and 

in most cases in real time, this calls for more sophiscated tools to improve and utilize the 

measured information of various kinds and organize it systematically so as to develop 

digitally evaluated tunnel performances.  

The application of Artificial Neural Network (ANN) modelling (Hecht-Nielsen 1987; 

Kartam, 1997) over the years has proved to be excellent mapping tools in variety of 

geotechnical engineering applications. In this thesis, an Artificial Neural Network 

approach for predicting crown displacement of a tunnel at final stage by the use of 

indirect parameters from Peck, (1969); Kavvadas, (2007) such as the overburden factor 

Ns, and the stress reduction factor λ, as inputs and field measured displacement as target 

data is performed. 

The measured displacement for the excavation of the tunnel is obtained by scaling from 

the displacement graph presented in an article about the monitoring systems during the 

excavation of the S1 tunnel by Georgiannou et.al (2007). The scaling of the tunnel 

displacement behavior, the rock mass class, the support class and overburden height is 

performed per 10m steps along the twin tunnels. Neglecting the length covered by the 

entrance and exit portals, the total length covered is 1170 m giving 117 measured sets. 

The results of the procedure are shown in Appendix A.  

For the construction of the neural network model, the data obtained from the article by 

Georgiannou et. al. (2007) as aforementioned was used as input data for the neural 

network model. 
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6.6 CONSTRUCTION OF THE ARTIFICIAL NEURAL NETWORK 

A neural network model is established in the neural network tool incorporated in the 

MATLAB software from MathWorks Inc., (2012). The procedures followed to build the 

model are explained below. 

Step 1: Data establishment 

The basic output of the neural network is the crown displacement, therefore the output 

layer has only one vector. 

The input layer is comprised of seven parameters which were obtained through the 

tunnel displacement analysis approach based on the convergence – confinement curves 

as explained in Chapter 4. 

Basically as far as NATM tunnels are concerned, the factors that affect tunnel 

deformation behavior can be grouped into four major categories, namely: 

 Tunnel geometry – this may include the nature, shape and depth of the tunnel 

from the ground surface. Deep tunnels tend to have more convergence than the 

shallow ones. The slope of the ground surface has also been found to have an 

effect on the tunnel behavior in case of shallow tunnels. 

 Ground conditions – the geological and geotechnical composition of a tunnel is 

the major factor affecting tunnel deformation. Lean and weak soils, swelling 

rocks, and fractured rocks converge more than the strong and compact rocks. 

 Excavation conditions – the excavation method applied, full face or multi-phase 

excavation, and the allowance for confinement, all these affect the behavior of 

the tunnel. 

 Support conditions – these may include the use of rock bolts to hold loose rock 

masses and to minimize displacement. The combination of support systems and 

the distance from the face where they are positioned are also major factors in 

tunnel deformation. 

Table 6.7: Factor and parameters that affect tunnel deformation. 

Deformation factor Tunnel parameters 

Tunnel geometry Depth, Diameter, Shape  

Ground conditions Cohesion 
GSI,E,ν,σci 
Lateral earth pressures 

Excavation conditions Excavation step 
Number of sequences 
Face pressure (TBM) 

Support conditions Use of forepoles and /or spiles, 
Lining, bolts,  
Steel frames 
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For the purposes of this thesis, the factors mentioned above were presented through 

various parameters, namely: 

1. The overload factor Ns which represents the load overburden po and the uniaxial 

compressive strength of the rock mass. 

𝑇ℎ𝑒 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑁𝑠 =  
2𝑝𝑜

𝜎𝑐𝑚
                        (6.3) 

 

2. The modulus of elasticity E, - this represents the stiffness and plastic behavior of 

the rock mass 

3. The stress reduction factor λ, - this is the measure of the influence of the distance 

of the placement supports on a tunnel of radius R. (case where no plasticity 

occurs around the tunnel during excavation.  

𝜆 = 1 − 0.75 [
1

1−
3

4
(

𝑥

𝑅
)
]

2

                          (6.4) 

 

4. The support classification as a rating of the pressure exerted by the support 

system on the tunnel walls to counter deformation. 

5. The rock classification as an in-field classification for conditions as seen and 

judged by the engineer  

6. The overburden load burden Po 

7. The coefficient of lateral pressure Ko around the tunnel environment 

Therefore, with seven input parameters for the 117 data sets obtained as previously said, 

the total number of data elements available for the neural network is 819 elements and 

117 target elements.  

Step 2: Data processing 

It is essential that the data used for training and testing represent the same population 

in nature. In this step the data obtained for network is normalized using the relationship 

below  

𝑥𝑛𝑒𝑤 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                     (6.5) 

Where,  

x= current value in the element 

xmax and xmin = the minimum and maximum values in the element set 
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Step 3: Selection of the Neural Network model architecture 

The network architecture comprises of the number of hidden layers, the number of 

neurons in each layer, the learning algorithm and the transfer functions. Due to the 

limited size of the training data, a single hidden layer network with backpropagation is 

chosen.  

The selection of the optimum number of neurons is performed by relating the amount 

of data with the number of unknowns in the network. In case it is bigger than the input 

data sets then the network does not give a binding result.  

 

Table 6.8: Simple calculation for the number of unknowns in an artificial neral network            

U, = p*n + output +bias  

Input 
neurons,p 

Hidden layer 
neurons, n 

Bias, 
b 

Output 
neuron, 
o 

Total 
unknown, 
U  

Free 
elements 

7 5 1 1 37 71 

7 6 1 1 44 64 

7 7 1 1 51 57 

7 8 1 1 58 50 

7 9 1 1 65 65 

7 10 1 1 72 36 

7 11 1 1 79 29 

7 12 1 1 86 22 

7 14 1 1 100 8 
 

It happens that, the optimum number of unknowns lies between 5 up to 8 and a 

procedure is to be followed later to select the best number. 

Various parametric studies are conducted in order to describe the best architectural 

parameters. 

 

Selection of suitable activation function and learning algorithm: for number of neurons 

5,6, and 7 with varying percentage of training, validation and testing data 33 =9 analyses 

are performed using three different algorithms; the Lavenberg – Marquart algorithm, 

the Scaled Conjugate Backpropagation and the Bayesian Regulation. A total of 18 runs 

are performed with the Logarithmic Sigmoid (logsig) and 18 runs for the Tangent Sigmoid 

(tansig) transfer functions.  

The neural network models are created using the Matlab nnstart Tool as described 

below. 

 

Importing data into Matlab: The first step is to import the data sets into Matlab using 

the import data commands; Matlab allows the importation of data in various file types 

e.g. excel, text, binary. A set of 10 random data sets is separated from the 117 data sets 
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and is kept in another file to be used as testing data. Therefore, three data files are 

imported; the InputData.txt, TargetData.txt and TestData.txt with 108, 108, and 10 sets 

respectively. Care should be taken that the number of target sets is equal to the number 

of input sets. 

Using the Neural Network Start Tools, nnstart: The prediction/function fitting function 

is chosen and the imported data is allocated to the input and target prompts as shown 

in Fig. 6.13. 

Definition of the percentages of the training sets: the data is divided into three sets; the 

training set, the validation set and the testing set. 

 

Figure 6.12: Neural network fitting tool data prompts. 

The training sets are data elements which are presented for training the network and 

the data is used to correct the errors while learning, the validation set elements are used 

for measuring generalization and to halt training when generalization seizes to improve 

and finally the test set elements are used as an independent check on the quality of 

training process and training results. Normally the training percentage is always bigger 

than 50% and the remainder equally share for the validation and testing sets. In this 

study percentages of 60%, 70% and 80% are examined for the definition of the optimum 

percentage for the neural network model.  

Network training analyses for definition of training parameters: The nnstart tool uses 

the tangent sigmoid (tansig) transfer function. The training algorithms included in the 

tool are; the Levernberg – Marquart LM), the Bayesian Regulation and the Scaled 

Conjugate Gradient algorithms. They have standard learning parameters in the nnstart 

tool which the user cannot change, so they are used as is. The parameters used in the 

LM algorithm are shown in Figure 6.14.  
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Figure 6.13: Standard parameters in the command for the Lavenberg-Marquart 

algorithm (trainlm). 

To define the best training algorithm, a set of 18 neural network models is defined with 

number of neurons ranging from 5 to 7 neurons and a tangent sigmoid transfer function. 

The training is executed for three training algorithms for 5,6 and 7 neurons and with 

60%, 70% and 80% training data elements. The result for the 70% training has the lowest 

error values and best regression fit, while the Bayesian Regulation algorithm gives a 

better performance. Therefore, the Bayesian Regulation algorithm is selected for the 

network. 

This optimal artificial neural network model, after the analyses mentioned above (with 

the adjust number of neurons, learning rate and momentum), is determined by 

evaluating one or more error indices, such as the sum of squared error (SSE), the root 

mean square error (RMSE) and coefficient of regression (R2) with testing after learning. 

In this case the MSE and R2 are applied. 

According to the results, the best performance combination is registered from the 

Bayesian Regulation algorithm with 70% training data and 7 hidden layer neurons. Table 

6.9 shows the best performance in each algorithm and Table 6.10 shows all 

performances for the 70% training distribution. 

Table 6.9: Neural network training results with 70% training distribution for selection of 

best algorithm. 

 

 

ALGORITHM

TRANSFER 

FUNCTION % TRAINING

NUMBER OF 

HIDDEN  

LAYERS

NUMBER OF 

NEURONS MSE

REGRESSION     

TRAINING

Levenberg-Marquardt (trainlm) 60 1 5 26,037 0,967

Scaled Conjugate Gradient 80 1 7 59,05 0,899

Bayessian Regulation Backpropagation 70 1 7 21,75 0,969

tansig
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Table 6.10: Neural network training results with 70% training distribution for selection of 

best algorithm. 

ALGORITHM TRANSFER 
FUNCTION 

% 
TRAINING 

NUMBER 
OF 

NEURONS 

MSE REGRESSION 
R     

TRAINING 

Levenberg-Marquardt 
(trainlm) 

tansig 70 6 27,051 0,973 

7 26,58 0,959 

5 28,106 0,957 

Scaled Conjugate 
Gradient 

6 71,412 0,895 

7 93,135 0,332 

5 84,128 0,849 

Bayessian Regulation  6 25,58 0,962 

7 21,75 0,969 

5 22,873 0,963 
 

Selection of number of validation checks for the network: to select the number of 

validation checks, eight analyses for 0,10,100 and 1000 validation checks are performed 

with 1000 epochs and the results show that the best number of validation checks is 

observed to be 1000 as illustrated in Table 6.11.  

Table 6.11: Results for selection of best number of validation checks. 

validation 
checks 

learning rate MSE R2_TRAINING R2_TESTING 

mu mu_inc mu_dec mu_max    

0 0,005 0,01 10 1,00E+10 33,88 0,953 0,988 

10 31,992 0,954 0,95 

100 32,77 0,933 0,976 

1000 13,72 0,958 0,988 

0 0,005 0,01 10 1,00E+20 27,15 0,96   

10 54,804 0,945 0,952 

100 30,893 0,939 0,954 

1000 17,179 0,958 0,962 

 

Selection of the best number of neurons: The best number of neurons highly depends 

on the amount of data available for training, as illustrated above. Analyses are performed 

with the Bayesian Regulation algorithm for 5 up to 14 neurons in the hidden layer for 

training percentages of 60%, 70%, 80% and 90%. A total of 36 runs are performed and 

the results are presented in diagrams below. 
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Figure6.14: Training efficiency, Regression results for selecting best number of neurons 

in the network. 

 

Figure 6.15: Training efficiency, MSE results for selecting best number of neurons. 

From the results shown in Figures 6.14 and 6.15, it can be seen that the best results, i.e. 

lowest MSE and highest regression are obtained with 7 neurons for 60% and 70% training 
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data. Also another clearer comparison is done for 60% and 70% and shows that the 

model with 70% training data is more efficient. See Figures 6.17 and 6.18. 

 

 

Figure 6.16: Selection of training %ages based on the set with highest regression. 

 

 

Figure 6.17: Selection of training %ages based on lowest mean square error. 

Selection of the basic learning specifications: This is also called calibration of the 

network. It includes performing analyses to define optimum learning parameters that 

will result into the best training model. Learning rates ranging from 0.005, 0.001, 0.05, 

0.01, and 0.1 are examined with various momentum increment levels of 0.1, 0.2, 0,3, 0.4 

and 0.5. This is done for 1x1020 maximum performance rate with 0 validation checks (20 

analyses) and with 1000 validation checks (20 analyses) as shown in Table 6.12. 
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Table 6.12: ANN architecture and Learning parameters evaluation 

ANN ANALYSIS 1000 VALIDATION CHECKS 

No OF HIDDEN LAYERS 1 

No OF NEURONS 7 

MAX PERFORMANCE RATE 1E+20 

No OF OUTPUT LAYERS 1 

LEARNING RATE /MOMENTUM 0,005/0,1 0,005/0,2 0,005/0.3 0,005/0,4 0,005/0,5 

0,001/0,1 0,001/0,2 0,001/0.4 0,001/0,4 0,001/0,5 

0,05/0,1 0,05/0,2 0,05/0.5 0,05/0,4 0,01/0,5 

0,01/0,1 0,01/0,2 0,01/0.6 0,01/0,4 0,01/0,5 

0,1/0.1 0,1/0,2 0,1/0,3 0,1/0,4 0,1/0,5 

 

This process is performed using another Artificial Neural Network Training Tool (nntool) 

in Matlab. This tool is the major neural network tool in Matlab, and it has features like: 

Simulate: this is where the trained network is used to perform the prediction. 

Weight re-initialization: this allows the user to keep the same initial weights or to apply 

the probabilistic method where new initial weights are used for every run. Also provision 

for editing the weights or biases is available. 

After the analysis, the network learning rate combination which produces the highest 

regression and lowest Mean Square Error is selected to be the best model for training 

the neural network. The results of the calibration process are presented in Figures 6.19 

to 6.22.   

According to Figures 6.19, 6.20, 6.21 and 6.22, the learning parameter combination with 

the highest regression and lowest MSE selected has learning rate 0.1 and momentum 

0.4.  
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Figure 6.18: Regression from network calibration results 1000 validation checks. 

 

Figure 6.19: Mean Square Error from network calibration results 0 validation checks. 
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Figure 6.20: Mean Square Error from network calibration results 1000 validation checks. 

 

 

Figure 6.21: Regression values from network calibration results for 1000 validation 

checks. 
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Consequently, the final model selected to be used for the prediction of tunnel crown 

displacement has the following parameters: 

 Table 6.13: Final training and calibration parameters adopted for neural network. 

NETWORK FUNCTION PARAMETER 

TRANSFER FUNCTION TANSIG 

TRAINING ALGORITHM BAYESIAN REGULATION 

LEARNING ALGORITHM LEARNGDM 
(gradient descent with 
momentum function) 

VALIDATION CHECKS 1000  

No OF HIDDEN LAYERS 1 

No OF INPUT ELEMENTS 7 

No OF NEURONS 7 

LEARNING RATE/ MOMENTUM 0.1 /0.4 

MAX PERFORMANCE RATE 1E+20 

No OF OUTPUT LAYERS 1 

 

6.7 TRAINING AND RESULTS OF THE NEURAL NETWORK MODEL 

Using the above training and learning parameters, the neural network is trained with 108 

data sets of 7 elements. Fig. 6.23 shows the structure of the neural network structure in 

Matlab.  

 

Figure 6.22: Structure of the neural network in Matlab. 
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 Consequently, the training and the testing results of the analyses comply very well with 

the measured results which categorically proves that the artificial neural networks can 

be trained and used for prediction of tunnel displacements. The neural network 

prediction has a testing regression of 97.3% and MSE of 24,7 as presented in Table 6.14 

The correlation of the testing data with the measured data shown in Figures 6.24 and 

6.25 shows the output reached after the training. The results from training the predictive 

model conform well with the target and therefore it can be confirmed that artificial 

neural networks can be successfully used for prediction of tunnel behavior. Training and 

testing results are plotted in Figures 6.24, 6.25, and 6.26.  

The Root Mean Squared Error for the prediction can be calculated from 

RMSE = √
1

𝑁
∑ (𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)2𝑁

𝑖=1                      (6.5) 

Where N is the number of test sets. 

Table 6.14: Performance results of the final artificial neural network. 

R2 
TRAINING 

R2 
VALIDATION 

R2 
TESTING 

MSE 
TRAINING 

MSE 
VALIDATION 

MSE 
TESTING 

90,4% 96% 97.3% 24,7 30,68 34,67 

 

Table 6.15: Root Mean Square Error of the training data in mm. 

RMSE TRAINING  RMSE VALIDATION RMSE TESTING 

5mm 5.5mm 9mm 
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Figure 6.23: Regression results from the neural network tool in Matlab. 

 

Figure 6.24: Training parameters reached during model training. 



 

 

101 

 

 

Figure 6.25: Learning result of the ANN model.  

Testing the prediction ability of the ANN model 

The neural network model is established for the prediction of crown displacement at a 

position x(m) behind the tunnel face. If during construction, based on previous 

geotechnical investigations, the engineers can gather enriched information on the 

geological and geotechnical characteristics of the tunnel environment, then by 

calculating and establishing the seven parameters used in training the artificial neural 

network, a good prediction of the displacement field can be obtained.  

In the previous section, a multi-layered perceptron of one hidden layer is trained using 

backpropagation learning algorithm Bayesian Regulation and tangent sigmoid transfer 

function. It is trained with 108 training sets of 7 elements and 108 target sets and the 

learning results are satisfactory.  

After network learning, a data set of 10 samples of 7 elements which was not used during  

training is applied to the model to test the prediction capacity of the network.   

The regression plots of the predicted data and the measured data give a satisfactory 

compliance with R2 = 0.87. The results of the test are presented in Figures 6.27 and 6.28. 
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Figure 6.26: Correlation of measured and predicted displacement. 

The predicted crown displacements are plotted together with the measured 

displacements. It is clearly observed that although the fitting is not 100%, the model can 

give representative prediction which can be used in the decision making process during 

tunnel excavation. 

 

Figure 6.27: ANN predicted crown displacements. 
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6.8 COMPARISON OF THE TUNNEL DISPLACEMENT RESULTS 

The empirical analyses based on the formulations proposed by  Panet, (1995) have been 

used for the calculation and evaluation of tunnel displacement and deformation 

behavior for a long time; and have always given a good base for the observational 

method of tunnel excavation.  

On the other hand, the FEM analyses have also been very instrumental in the design and 

construction of tunnels because they provide the ability to simulate the probable 

conditions and ground stress environment so as to reproduce the displacement field and 

the soil behavior during excavation. The FEM approach has also a weakness in that the 

parameters used in the models are not fully representative of the complex nonlinear 

behavior of the tunnel environment. Therefore, many times the predicted values differ 

from the actual displacement as is measured during excavation. 

 Artificial neural networks learn from the ΄example’ data presented to them and use this 

data to adjust their weights and biases in an attempt to capture the relationship between 

the model input and the corresponding outputs (Lee & Akutagawa, 2008). 

 In this study, some of the input parameters used for training the neural network are 

obtained using analytical relationships in order to combine the empirical deformation 

relationships with the values obtained from measurements. This data is used as training 

data, as crown displacement obtained from field measurements is used as the target 

data. A neural network is trained, and the results are compared with displacement 

results obtained from FEM models simulated for sections along the tunnel as explained 

in Section 6.2.  

According to the results, the measured displacement and the FEM predicted 

displacements present a reasonable discrepancy which may be due to the difference 

between the assumed geotechnical parameters and the real geotechnical parameters as 

aforementioned. Also the human factor related to the workmanship and the different 

real time conditions, which may affect the deformation behavior, cannot be simulated 

by the model. 

The plot of the regression coefficient (Fig. 6.29) between the measured displacements 

and the FEM displacements indicates that the regression R2 is only 10%. This is an 

indication that there is very little correlation between what the FEM model predicts and 

from what actually happens most especially in case of complex ground conditions like 

the ones experienced in the S1 tunnels of the Egnatia Highway. To obtained a closer 

approximation between the measured and the FEM results, the parameters used in the 

FEM model need to be obtained by back analysis of the measured results using neural 

networks or generic algorithms (Yang et.al. 2010). 
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Meanwhile, the plot of the regression between the measured displacement and the 

predicted values from the ANN (Fig. 6.30) gives a value of 87% which is quite good. This 

is due to the fact that the ANN model is trained using target values from field 

measurements. But also it is proof that the model can perfectly learn the tunnel behavior 

from the input data. This is also observed from the plot of the error between the target 

data and the output data of the neural network.  

A plot of the displacement diagrams from the three models is presented in Fig. 6.31 and 

it is observed that the ANN and the field measurements have a closer agreement than 

the FEM results. It can be observed in Fig. 6.32 that the error is small with a few sections 

where it exceeds 10mm. 

 

Figure 6.28: Correlation between FEM and measured displacements. 
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Figure 6.29: Correlation between the trained ANN and measured displacements. 

 

 

Figure 6.30: Comparison between crown displacements from survey 

measurements(brown), FEM analyses (grey), and ANN learning (blue).  
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Figure 6.31: Error range between the target output data and the output of the neural 

network training.  

Therefore, as a preliminary investigation of the effectiveness of the ANN approach to 

predict tunnel deformation in cases where there is availability of training data, either 

from the already excavated length of the tunnel or from another tunnel which has the 

same technical-geological characteristics, it has been proved that the artificial neural 

networks can perfectly learn and predict with high accuracy and confidence. 

 

6.8 SENSITIVITY ANALYSIS OF THE ARTIFITIAL NEURAL NETWORK 

The development of a deterministic or stochastic model which is based on little or 

missing data characterized by large error approaches, can lead to predictions which do 

not relate with the empirical evaluation or specialized knowledge (Johnson & Winchern, 

2007). 

One of the basic weaknesses of the data used in the model is that it is obtained at random 

and the behavior of the tunnel is not linear. Therefore, the sensitivity of the neural 

network model should be examined/ checked to see the effects of input data variations 

on the training results.  

In the sensitivity checks, the interrelationship and the influence of the data elements are 

analyzed so as to identify the elements which have the highest influence on the results. 

A statistical analysis is performed to evaluate the correlation between the data input 

elements by plotting the regression scatters. The regression is recorded as shown in Fig. 

6.33; it is observed that the elements Rock class, Support class, Elastic modulus E, and 

the coefficient of lateral pressure Ko are related with regressions of 38% up to 84% while 
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the stress reduction factor λ, the overburden, and Ns have lower regression of 0.3% up 

to 48% as shown in Table 6.16. 

Table 6.16: Correlation values between the seven data input elements. 

REGRESSION ( %) ROCK 
CLASS 

SUPPORT 
CLASS E Ko Ns OVERBURDEN λ 

ROCK CLASS 1 52% 38,4 47,6 31,1 0,3 17 

SUPPORT CLASS 52 1 64 55,5 41 1,8 2 

E 38,4 64 1 84 44 1 0,8 

Ko 47,6 55,5 84 1 48 0 0,1 

Ns 31,1 41 44 48 1 31 3 

OVERBURDEN 0,3 1,8 1 0 31 1 4 

λ 17 2 0,8 0,1 3 4 1 

 

The correlation analysis can help when there is a need to reduce the number of variables. 

The variables with high R2 coefficient are statistically dependent, therefore, an element 

statistically dependent on the rest can be eliminated to reduce the number of unknowns 

in the network solution hence improving accuracy. In this case, the dependency of the 

elements is minimal therefore all the data sets may have a fundamental contribution to 

the accuracy of the neural network.  

To perform the checks, the data in one of the 7 input parameters is reduced to zero, to 

assume the absence of that information without reducing the total number of input 

parameters. i.e. if the input for elements x=0, inside the neuron, when multiplied by the 

weight, w, the element is zeroed, hence does not contribute to the summed weights in 

the neuron.  

Seven parametric analyses are performed by retraining the neural network, each analysis 

with one of the input element values zeroed. The performance results of the analyses 

are summarized in Table6.17.  

It is observed from the results that the performance (MSE) of the neural network reduces 

drastically from 24,7 to 173, 63.2, 56.1 when the data in the support class, Ko, and Ns 

respectively is excluded and reduced to zero, while λ, Rock class and E, tend not to 

heavily affect the network performance. However, the regression (training) of the target 

data with the trained data from the Rock class, Ko, Support class and λ are minimally 

affected while for the elastic modulus E, Ns and Overburden it reduces drastically.  
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Table 6.17: Performance results from the sensitivity analysis of neural network. 

  
ROCK 
CLASS 

SUPPORT 
CLASS E Ko Ns 

OVER 
BURDEN λ 

ANN 

Rtesting (%) 92,7 90,6 47 93 39,7 72,5 81,3 97,3 

MSE 29,2 173 28,4 63,2 56,1 46,3 27 24,7 

RMSE(mm) 5,5 13,1 5,2 7,9 7,5 6,8 5,1 4,9 

 

The plots of the training results from each sensitivity analysis and the errors between 

the results obtained from the full input data set and those from the sensitivity analyses 

are also presented in Fig. 6.34, 

Figure 6.33: Comparison of training results for sensitivity due to reduction to zero of 

input data. 
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Figure 6.34: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data where one of the 

elements is reduced to zero. 

 

 

Figure 6.35: Comparison of training results for sensitivity due to reduction to zero of input 

data from stress reduction factor λ. 
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Figure 6.36: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data of element λ =0. 

 

 

 

Figure 6.37: Comparison of training results for sensitivity due to reduction to zero of input 

data from the element stress reduction factor λ. 
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Figure 6.38: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data of element Ko =0. 

 

 

 

Figure 6.39: Comparison of training results for sensitivity due to reduction to zero of input 

data from the element overload factor Ns. 
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Figure 6.40: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data of element Ns =0. 

 

 

 

Figure6.41: Comparison of training results for sensitivity due to reduction to zero of input 

data from the element Elastic Modulus E. 
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Figure6.42: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data of element Elastic 

Modulus E =0. 

 

 

Figure 6.43: Comparison of training results for sensitivity due to reduction to zero of input 

data from the support class. 
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Figure 6.44: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data of element                             

Support class =0. 

 

 

Figure 6.45: Comparison of training results for sensitivity due to reduction to zero of input 

data from Rock class. 
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Figure6.46: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data of element Rock class 

=0. 

 

 

 

Figure 6.47: Comparison of training results for sensitivity due to reduction to zero of input 

data from Overburden. 
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Figure 6.48: Comparison of displacement errors between the neural network trained with 

all the input training data and the network trained with input data of element 

Overburden=0. 

To perform a sensitivity-check on the proposed artificial neural network for predicting 

tunnel crown deformation, seven input parameters are applied in the proposed model. 

During the analysis one parameter is selected and its value is reduced to zero to 

represent absence of that data without reducing the neural network architecture.  

From the results presented in the above diagrams, it can be concluded that: 

 The variables selected to be used in the training of this neural network have got 

an influence on the training and performance results obtained because there 

are discrepancies between network results and the sensitivity test results in all 

the parameters. 

 The correlation plots and the regression shows that there is an interdependency 

between the input data parameters which would call for elimination of those 

parameters with high dependency. But in this case the dependency is not high 

enough to justify the elimination of any parameter. 

 

6.9 CONCLUSIONS FROM THE CASE STUDY 

In this thesis, the excavation of a road tunnel S1 of the Egnatia Highway is studied. The 

S1 twin tunnel the technical-geological conditions encountered during construction were 

quite complex. The tunnel is located in a weak fragmented and mostly decomposed 

cataclastic Limestone, with abrupt but also continuous variation of the rock 

characteristics along the tunnel. This resulted into large tunnel deformations which were 
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not predicted by the finite element analyses. Therefore, these conditions called for very 

close supervision, systematic monitoring schemes and good Engineer- Contractor 

corporation. 

An approach of using Artificial Neural Networks as a means of utilizing the data base 

obtained from monitoring and field measurements, to be used for prediction of tunnel 

displacement during excavation is proposed. Depending on the amount of data and the 

position along the tunnel where it is extracted, neural networks can accurately predict 

the behavior of a tunnel or reproduce its existing conditions and behavior.  

Finite element models are established basing on the descriptions from the bibliography 

of the S1 tunnel. According to Georgiannou et.al, (2007), five rock classifications and five 

initial support systems were used in the tunnel but for the purposes of this study, three 

rock classifications and support classes are applied to create three FEM models. The 

models are analyzed in accordance with the overburden height and the characteristics 

of each section are scaled off from the technical-geological diagrams presented in the 

paper. The deformations from the FEM analyses are recorded and stored. The measured 

displacement obtained during the actual excavation is also recorded.  

The measured displacements and the FEM predicted displacementdiffer substantially, 

indicating the complexity of the encountered ground conditions as referred in the text. 

Although numerical simulation with FEM has grown to be an indispensable design and 

analysis tool in tunnel engineering, it is also true that when urgent judgment about 

tunnel safety is needed on site, the method used herein  should be able to produce 

wanted results with minimum time with no delay (Lee and Akutagawa, 2009). 

The introduction of ANN can help to provide a very quick way to interpret field 

measurement results, predict final displacement and make judgment on tunnel safety at 

the final stage, during construction. 

In this Thesis a multi-layer perceptron backpropagation neural network is established 

and calibrated with an architecture of a single hidden layer with 7 neurons, sigmoid 

transfer function, Bayesian Regulation learning algorithm, learning rate 0.1 and 

momentum increment 0.4.   

The network is trained using the Matlab Neural Network Tool. It has seven input 

parameters with 108 sample sets, while 10 sets are reserved for prediction testing. The 

target data is the measured crown displacement of each respective section along the 

tunnel. 

During the process of creating, running and obtaining the results from the neural 

network analysis the following are concluded:  

 To obtain the correct architectural parameters for the neural network a number 

of analyses must be performed by applying all possible combinations of 
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parameters, algorithms and transfer functions so as to find that optimum 

combination which can produce the best prediction or any other scope for which 

the network is being built. 

 The amount of input data used for training should be large enough to cover the 

number of unknowns in the Hessian matrix created during the calculations inside 

the network. Data less than 1.5 times the unknowns may not give reliable results. 

 Every neural network is special on its own, therefore, there are no standard rules 

for setting the architecture apart from the numerous parametric tests. 

 The performance of the neural networks is influenced fully by the training data 

system adopted, that’s to say, the amount of data allocated for training, 

validation, and testing. The training percentage should be allocated the biggest 

portion. However, for cases where a very large amount of data is available, this 

may not be crucial. 

 The number of hidden layers in the network setup greatly affects the network 

performance since it dictates the number of unknowns created during 

calculation. 

 The multi-layer perceptron backpropagation network  used for the prediction of 

tunnel crown displacement, has sigmoid transfer function and Bayesian 

Regulation learning algorithm, the architecture is 7-7-1, learning rate 0.1 and 

momentum increment 0.4. The network is trained with 108 input training sets 

and 10 test sets. The regression R2 between the target (measured) displacement 

and the predicted displacement is 87%, the Mean Squared Error of 24.7 and the 

Root Mean Squared Error  4.9mm. This is good for a quick prediction. 

Consequently, the artificial neural network model created gave a truly reliable result 

leading to the conclusion that artificial neural networks can be used as a quick tool to 

predict tunnel behavior as a means of ensuring tunnel safety, real time data analysis and 

minimization of tunnel failure risks.  
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CHAPTER 7 

CONCLUSIONS 

In the present thesis a highway tunnel in the mountainous area of Ipeiros in Eastern 

Greece is selected as an object of study. The 12m high and 13m wide twin tunnel with 

an overburden varying between 10m – 90m, passes through a range of geological 

formations from thickly bedded fractured limestone block size >10cm to sandy gravel 

then loose carbonate cataclasite gouge. According to Georgiannou et.al. (2004), during 

construction, to counter the complex technical–geological conditions of the tunnel, a 

detailed monitoring system was established to provide in detail a reliable deformation 

data base for tunnel support decisions and general safety. A brief explanation is given on 

the importance of deformation monitoring and the modern methods applied in tunnel 

engineering whereas the previous works on use of tunneling data for prediction using 

artificial Neural Networks (ANN) is also included. 

An ANN for prediction of crown displacement is established using the monitoring data 

and analytical parameters obtained from the technical geological characteristics of the 

tunnel. A series of parametric studies is performed and the optimal training model of the 

ANN is determined. Furthermore, additional parametric analyses are performed on the 

model to confirm its stability. 

The results from the ANN prediction are compared with the results obtained from finite 

element analyses of the same tunnel. Consequently, the following are concluded: 

I. The introduction of ANN can help to provide a very quick way to interpret field 

measurement results, predict final displacement and make judgment on tunnel 

safety at final stage, during construction. 

II. Every neural network is special on its own, therefore, there are no standard rules 

for setting the architecture apart from the numerous parametric tests. 

III. Monitoring data can be utilized in the tunnel for prediction of deformations in 

sections ahead of the face using data obtained from the already excavated 

sections, whereas in case of deformation of sections after excavation also the 

face data is included to reinforce the data. 

IV. The combination of ground conditions, support conditions, overburden height, 

stiffness modulus and analytical parameters like the overload factor Ns, and the 

stress reduction factor λ, provides good and representative ANN training 

parameters for deformation prediction in tunnels. 

V. It is fully conceived that tunnel behavior can be modelled precisely using Finite 

Element Analysis, however, in some complex situations there is need for extra 
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on-site interpretation and reinforcement of data utilization skills to confront such 

in-situ conditions. 

VI. Consequently, the artificial neural network model created gave a truly reliable 

result leading to the conclusion that; Artificial Neural Networks can be used as a 

quick tool to predict tunnel behavior as a means of ensuring tunnel safety, real 

time data analysis and minimization of tunnel failure risks.  
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APPENDIX A 
EXCEL SPREADSHEETS FOR SCALE-OFF MEASUREMENTS FROM THE S1 TUNNEL  

KILOMETR
IC 
DISTANCE 

OVER 
BURDE
N 
HEIGHT 
(m) 

SOIL 
CLAS
S  

SUPPOR
T CLASS 

MOD. OF 
ELASTICI
TY E 
(Mpa) 

COHESION
,c (Mpa) 

φ λcr STRESS 
REDUC. 
FACTOR, λ 

CROWN 
DISPLACE
MENT 
(mm)  

29+200 21,00 C C 1052,04 0,65 23 1,498493 0,35 0 

29+210 27,73 C C 1052,04 0,65 23 1,236938 0,35 0 

29+220 35,45 B B 2000 1,15 26 1,048837 0,3 0 

29+230 43,18 B B 2000 1,15 26 1,344224 0,3 5 

29+240 48,90 D D 703 0,48 20 0,733675 0,35 5 

29+250 49,63 D D 703,13 0,48 20 0,729067 0,35 4 

29+260 52,35 C C 703,13 0,65 23 0,835453 0,35 10 

29+270 52,08 C C 703,13 0,65 23 0,838723 0,35 5 

29+280 52,80 D D 703,03 0,48 20 0,705545 0,35 14 

29+290 53,53 D D 703,03 0,48 20 0,699618 0,35 17 

29+300 57,25 D D 703,03 0,48 20 0,677724 0,35 17 

29+310 60,98 D D 703,13 0,48 20 0,656843 0,35 18 

29+320 61,70 D D 703,13 0,48 20 0,652388 0,35 17 

29+330 62,43 D D 703,13 0,48 20 0,649487 0,35 18 

29+340 62,15 D D 703,13 0,48 20 0,650931 0,35 18 

29+350 63,88 D D 703,13 0,48 20 0,642468 0,35 17 

29+360 66,60 D D 703,13 0,48 20 0,629348 0,35 11 

29+370 67,33 C C 1050 0,65 23 0,736907 0,35 14 

29+380 66,05 B B 2000 1,15 26 1,029559 0,3 10 

29+390 65,78 B B 2000 1,15 26 1,035849 0,3 8 

29+400 64,50 B B 2000 1,15 26 1,048837 0,3 8 

29+410 65,23 B B 2000 1,15 26 1,042273 0,3 9 

29+420 66,95 B B 2000 1,15 26 1,023401 0,3 6 

29+430 59,68 B B 2000 1,15 26 1,099111 0,3 6 

29+440 56,40 B B 2000 1,15 26 1,13174 0,3 6 

29+450 56,13 D D 703 0,48 20 0,682942 0,35 8 

29+460 48,85 D D 703 0,48 20 0,733675 0,35 22 

29+470 46,58 D D 703 0,48 20 0,753258 0,35 40 

29+480 43,30 D D 703 0,48 20 0,783617 0,35 48 

29+490 41,03 D D 703 0,48 20 0,808673 0,35 57 

29+500 38,75 D D 703 0,48 20 0,836742 0,35 50 

29+510 37,48 D D 703 0,48 20 0,84049 0,35 59 

29+520 36,20 D D 703 0,48 20 0,872649 0,35 79 

29+530 35,93 D D 703 0,48 20 0,876963 0,35 56 

29+540 34,65 D D 703 0,48 20 0,894944 0,35 59 
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29+550 33,38 D D 703 0,48 20 0,914177 0,35 69 

29+560 32,10 D D 703 0,48 20 0,940184 0,35 56 

29+570 29,83 D D 703 0,48 20 0,987098 0,35 55 

29+580 26,55 D D 703 0,48 20 1,065075 0,35 69 

29+590 24,28 D D 703 0,48 20 1,065075 0,35 45 

29+600 21,00 D D 703 0,48 20 1,255881 0,35 29 

30+310 26,00 D D 703 0,65 19 0,973398 0,345241 13 

30+320 28,00 D D 703 0,65 19 0,927125 0,345241 12 

30+330 30,00 D D 703 0,65 19 0,887021 0,345241 12 

30+340 33,00 D D 703 0,65 19 0,83598 0,345241 17 

30+350 36,00 D D 703 0,65 19 0,793445 0,345241 22 

30+360 37,00 D D 703 0,65 19 0,7808 0,345241 25 

30+370 40,00 D D 703 0,65 19 0,746658 0,345241 43 

30+380 43,00 D D 703 0,65 19 0,717279 0,345241 13 

30+390 44,00 D D 703 0,65 19 0,708377 0,345241 12 

30+400 43,00 D D 703 0,65 19 0,717279 0,345241 11 

30+410 41,00 D D 703 0,65 19 0,736387 0,345241 19 

30+420 46,00 D D 703 0,65 19 0,691733 0,345241 37 

30+430 49,00 D D 703 0,65 19 0,669315 0,345241 25 

30+440 51,00 D D 703 0,65 19 0,655834 0,345241 14 

30+450 54,00 D D 703 0,65 19 0,637486 0,345241 13 

30+460 57,00 D D 703 0,65 19 0,62107 0,345241 17 

30+470 58,00 D D 703 0,65 19 0,615975 0,345241 16 

30+480 63,00 D D 703 0,65 19 0,592927 0,345241 10 

30+490 68,00 D D 703 0,65 19 0,573268 0,345241 6 

30+500 69,00 D D 703 0,65 19 0,569678 0,345241 5 

30+510 67,00 D D 703 0,65 19 0,576965 0,345241 5 

30+520 74,00 D D 703 0,65 19 0,553184 0,345241 7 

30+530 75,00 D D 703 0,65 19 0,550149 0,345241 9 

30+540 76,00 D D 703 0,65 19 0,547194 0,345241 4 

30+550 79,00 D D 703 0,65 19 0,538778 0,345241 2 

30+560 79,00 D D 703 0,65 19 0,538778 0,345241 1 

30+570 75,00 D D 703 0,65 19 0,550149 0,345241 1 

30+580 74,00 C D 1050 0,83 22 0,72356 0,345241 1 

30+590 78,00 C D 1050 0,83 22 0,705665 0,345241 1 

30+600 80,00 C D 1050 0,83 22 0,697388 0,345241 1 

30+610 82,00 D C 703 0,65 19 0,530978 0,345241 4 

30+620 82,00 B B 2000 1,103 23 0,909704 0,345241 6 

30+630 81,00 B B 2000 1,103 23 0,916111 0,364509 5 

30+640 81,00 B A 2000 1,103 23 0,916111 0,364509 2 

30+650 81,00 B A 2000 1,103 23 0,916111 0,364509 3 
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30+660 81,00 B A 2000 1,103 23 0,916111 0,364509 3 

30+670 81,00 B A 2000 1,103 23 0,916111 0,364509 2 

30+680 82,00 B A 2000 1,103 23 0,909704 0,364509 1 

30+690 85,00 B A 2000 1,103 23 0,891387 0,364509 1 

30+700 78,00 B A 2000 1,103 23 0,936318 0,364509 2 

30+710 75,00 B A 2000 1,103 23 0,958141 0,364509 1 

30+720 66,00 B A 2000 1,103 23 1,035515 0,364509 2 

30+730 64,00 B A 2000 1,103 23 1,055665 0,364509 3 

30+740 57,00 B A 2000 1,103 23 1,137323 0,364509 4 

30+750 56,00 B A 2000 1,103 23 1,150655 0,364509 3 

30+760 56,00 B A 2000 1,103 23 1,150655 0,364509 4 

30+770 53,00 B A 2000 1,103 23 1,19367 0,364509 3 

30+780 49,00 B B 2000 0,968 22 1,266076 0,364509 2 

30+790 49,00 B B 2000 0,968 22 1,266076 0,364509 1 

30+800 53,00 B B 2000 0,968 22 1,198796 0,364509 3 

30+810 47,00 B B 2000 0,968 22 1,304011 0,364509 7 

30+820 46,00 C D 1050 0,83 22 0,935966 0,345241 8 

30+830 46,00 C D 1050 0,83 22 0,935966 0,345241 3 

30+840 41,00 B B 2000 0,968 22 1,440022 0,364509 1 

30+850 50,00 B B 2000 0,968 22 1,248247 0,364509 1 

30+860 59,00 B B 2000 0,968 22 1,11498 0,364509 7 

30+870 66,00 B B 2000 0,968 22 1,036455 0,364509 10 

30+880 68,00 D D 703 0,65 19 0,614551 0,345241 30 

30+890 69,00 D D 703 0,65 19 0,610363 0,345241 35 

30+900 69,00 D D 703 0,65 19 0,610363 0,345241 45 

30+910 69,00 D D 703 0,65 19 0,610363 0,345241 50 

30+920 66,00 D D 703 0,65 19 0,623308 0,345241 50 

30+930 66,00 D D 703 0,65 19 0,623308 0,345241 35 

30+940 64,00 D D 703 0,65 19 0,632613 0,345241 30 

30+950 60,00 D D 703 0,65 19 0,653082 0,345241 32 

30+960 59,00 D D 703 0,65 19 0,658633 0,345241 20 

30+970 60,00 D D 703 0,65 19 0,653082 0,345241 20 

30+980 54,00 D D 703 0,65 19 0,689473 0,345241 18 

30+990 52,00 D D 703 0,65 19 0,703469 0,345241 17 

30+000 49,00 D D 703 0,65 19 0,726606 0,345241 10 

31+010 48,00 D D 703 0,65 19 0,734961 0,345241 12 

31+020 44,00 D D 703 0,65 19 0,772178 0,345241 22 

31+030 41,00 D D 703 0,65 19 0,804857 0,345241 25 

31+040 40,00 D D 703 0,65 19 0,816839 0,345241 21 

31+050 39,00 D D 703 0,65 19 0,829436 0,345241 20 

31+060 40,00 D D 703 0,65 19 0,816839 0,345241 18 
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APPENDIX B 
EXCEL SPREADSHEETS FOR THE INPUT DATA USED FOR TRAINING THE ARTICIAL NEURAL 
NETWORK.  

 NORMALIZED 
ROCK CLASS 

NORMALIZED 
SUPPORT 
CLASS 

NORMALI
ZED E  

NORMALIZED 
Ko 

NORMALIZED 
Ns 

NORMALI
ZED 
overburd
en ko 

NORM
ALIZED 
λ 

DEFORM
ATION 
(ANALYSI
S) 

DEFORMAT
ION (FIELD 
MEASURE
MENT)  

          

1 0,25 0,75 0,32 1,00 0,22 0,00 0,83 19,50 13,00 

2 0,25 0,75 0,32 1,00 0,25 0,04 0,83 20,20 12,00 

3 0,25 0,75 0,32 1,00 0,28 0,07 0,83 20,40 12,00 

4 0,25 0,75 0,32 1,00 0,32 0,13 0,83 20,80 17,00 

5 0,25 0,75 0,32 1,00 0,36 0,18 0,83 21,20 22,00 

6 0,25 0,75 0,32 1,00 0,38 0,20 0,83 21,30 25,00 

7 0,25 0,75 0,32 1,00 0,42 0,25 0,83 21,80 43,00 

8 0,25 0,75 0,32 1,00 0,47 0,30 0,83 21,90 13,00 

9 0,25 0,75 0,32 1,00 0,47 0,30 0,83 21,90 11,00 

10 0,25 0,75 0,32 1,00 0,44 0,27 0,83 21,60 19,00 

11 0,25 0,75 0,32 1,00 0,51 0,36 0,83 22,50 37,00 

12 0,25 0,75 0,32 1,00 0,56 0,41 0,83 23,50 25,00 

13 0,25 0,75 0,32 1,00 0,59 0,45 0,83 23,60 14,00 

14 0,25 0,75 0,32 1,00 0,63 0,50 0,83 24,20 13,00 

15 0,25 0,75 0,32 1,00 0,67 0,55 0,83 24,30 17,00 

16 0,25 0,75 0,32 1,00 0,69 0,57 0,83 25,00 16,00 

17 0,25 0,75 0,32 1,00 0,76 0,66 0,83 25,40 10,00 

18 0,25 0,75 0,32 1,00 0,84 0,75 0,83 26,50 6,00 

19 0,25 0,75 0,32 1,00 0,85 0,77 0,83 26,30 5,00 

20 0,25 0,75 0,32 1,00 0,82 0,73 0,83 26,40 5,00 

21 0,25 0,75 0,32 1,00 0,93 0,86 0,83 26,90 7,00 

22 0,25 0,75 0,32 1,00 0,94 0,88 0,83 27,30 9,00 

23 0,25 0,75 0,32 1,00 0,96 0,89 0,83 27,50 4,00 

24 0,25 0,75 0,32 1,00 1,00 0,95 0,83 28,10 2,00 

25 0,25 0,75 0,32 1,00 1,00 0,95 0,83 27,70 1,00 

26 0,25 0,75 0,32 1,00 0,94 0,88 0,83 27,30 1,00 

27 0,50 0,75 0,61 0,80 0,60 0,76 1,00 14,00 1,00 

28 0,50 0,75 0,61 0,80 0,65 0,83 1,00 17,60 1,00 

29 0,50 0,75 0,61 0,80 0,67 0,86 1,00 18,20 1,00 

30 0,25 0,50 0,32 1,00 0,87 1,00 0,83 20,20 4,00 

31 0,75 0,25 1,00 0,80 0,41 0,90 0,83 0,07 6,00 

32 0,75 0,25 1,00 0,80 0,40 0,88 1,00 0,07 5,00 
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33 0,75 0,00 1,00 0,80 0,09 0,88 1,00 0,07 2,00 

34 0,75 0,00 1,00 0,80 0,09 0,88 1,00 0,07 3,00 

35 0,75 0,00 1,00 0,80 0,09 0,88 1,00 0,07 3,00 

36 0,75 0,00 1,00 0,80 0,09 0,88 1,00 0,07 2,00 

37 0,75 0,00 1,00 0,80 0,09 0,90 1,00 0,07 1,00 

38 0,75 0,00 1,00 0,80 0,10 0,95 1,00 0,07 1,00 

39 0,75 0,00 1,00 0,80 0,08 0,83 1,00 0,07 2,00 

40 0,75 0,00 1,00 0,80 0,07 0,78 1,00 0,07 1,00 

41 0,75 0,00 1,00 0,80 0,04 0,63 1,00 0,06 2,00 

42 0,75 0,00 1,00 0,80 0,01 0,48 1,00 0,04 4,00 

43 0,75 0,00 1,00 0,80 0,01 0,46 1,00 0,03 3,00 

44 0,75 0,00 1,00 0,80 0,01 0,46 1,00 0,02 4,00 

45 0,75 0,00 1,00 0,80 0,00 0,41 1,00 0,01 3,00 

46 0,75 0,25 0,68 0,80 0,09 0,35 1,00 0,00 2,00 

47 0,75 0,25 0,68 0,80 0,09 0,35 1,00 0,00 1,00 

48 0,75 0,25 0,68 0,80 0,11 0,41 1,00 0,00 3,00 

49 0,75 0,25 0,68 0,80 0,08 0,32 1,00 0,00 7,00 

50 0,50 0,75 0,61 0,80 0,24 0,30 0,83 15,00 8,00 

51 0,50 0,75 0,61 0,80 0,24 0,30 0,83 15,00 3,00 

52 0,75 0,25 0,68 0,80 0,05 0,22 1,00 0,00 1,00 

53 0,75 0,25 0,68 0,80 0,10 0,36 1,00 0,00 1,00 

54 0,75 0,25 0,68 0,80 0,18 0,63 1,00 0,00 10,00 

55 0,25 0,75 0,32 1,00 0,69 0,75 0,83 26,50 30,00 

56 0,25 0,75 0,32 1,00 0,71 0,77 0,83 26,40 35,00 

57 0,25 0,75 0,32 1,00 0,71 0,77 0,83 26,40 45,00 

58 0,25 0,75 0,32 1,00 0,71 0,77 0,83 26,40 50,00 

59 0,25 0,75 0,32 1,00 0,67 0,71 0,83 26,10 50,00 

60 0,25 0,75 0,32 1,00 0,67 0,71 0,83 26,10 35,00 

61 0,25 0,75 0,32 1,00 0,64 0,68 0,83 25,90 30,00 

62 0,25 0,75 0,32 1,00 0,59 0,61 0,83 25,10 32,00 

63 0,25 0,75 0,32 1,00 0,58 0,59 0,83 24,60 20,00 

64 0,25 0,75 0,32 1,00 0,52 0,50 0,83 24,00 18,00 

65 0,25 0,75 0,32 1,00 0,49 0,46 0,83 23,40 17,00 

66 0,25 0,75 0,32 1,00 0,45 0,41 0,83 23,30 10,00 

67 0,25 0,75 0,32 1,00 0,44 0,39 0,83 23,20 12,00 

68 0,25 0,75 0,32 1,00 0,39 0,32 0,83 22,50 22,00 

69 0,25 0,75 0,32 1,00 0,35 0,27 0,83 22,00 25,00 

70 0,25 0,75 0,32 1,00 0,34 0,25 0,83 21,60 21,00 

71 0,25 0,75 0,32 1,00 0,34 0,25 0,83 21,60 18,00 

72 0,50 0,50 0,44 0,80 0,00 0,02 0,87 3,50 0,00 

73 0,50 0,50 0,44 0,80 0,10 0,16 0,87 10,10 0,00 
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74 0,75 0,25 1,00 0,80 0,21 0,33 0,44 0,19 0,00 

75 0,75 0,25 1,00 0,80 0,04 0,00 0,44 4,80 5,00 

76 0,25 0,50 0,24 1,00 0,65 0,61 0,87 19,10 5,00 

77 0,25 0,50 0,24 1,00 0,66 0,62 0,87 19,30 4,00 

78 0,50 0,50 0,24 1,00 0,47 0,67 0,87 14,90 5,00 

79 0,25 0,50 0,24 1,00 0,72 0,69 0,87 21,10 14,00 

80 0,25 0,50 0,24 1,00 0,45 0,40 0,87 13,80 50,00 

81 0,25 0,50 0,24 1,00 0,44 0,39 0,87 13,40 59,00 

82 0,25 0,50 0,24 1,00 0,40 0,34 0,87 12,10 79,00 

83 0,25 0,50 0,24 1,00 0,39 0,34 0,87 12,00 56,00 

84 0,25 0,50 0,24 1,00 0,37 0,31 0,87 11,40 59,00 

85 0,25 0,50 0,24 1,00 0,34 0,28 0,87 10,90 69,00 

86 0,25 0,50 0,24 1,00 0,32 0,25 0,87 9,99 56,00 

87 0,50 0,50 0,24 1,00 0,27 0,21 0,87 8,80 55,00 

88 0,75 0,50 0,24 1,00 0,21 0,14 0,87 7,39 69,00 

89 0,75 0,50 0,24 1,00 0,10 0,02 0,87 4,44 29,00 

90 0,75 0,50 0,24 1,00 0,74 0,71 0,87 21,30 17,00 

91 0,75 0,50 0,24 1,00 0,81 0,79 0,87 23,60 17,00 

92 0,75 0,50 0,24 1,00 0,89 0,86 0,87 25,50 18,00 

93 0,75 0,50 0,24 1,00 0,90 0,87 0,87 25,90 17,00 

94 0,25 0,50 0,24 1,00 0,91 0,89 0,87 26,20 18,00 

95 0,25 0,50 0,24 1,00 0,91 0,88 0,87 25,90 18,00 

96 0,25 0,50 0,24 1,00 0,94 0,93 0,87 27,20 17,00 

97 0,25 0,50 0,24 1,00 1,00 0,98 0,87 28,80 11,00 

98 0,25 0,50 0,44 1,00 0,70 1,00 0,87 21,30 14,00 

99 0,25 0,25 1,00 0,80 0,23 0,44 0,44 0,45 10,00 

100 0,25 0,25 1,00 0,80 0,22 0,44 0,44 0,45 8,00 

101 0,25 0,25 1,00 0,80 0,21 0,42 0,44 1,39 8,00 

102 0,25 0,25 1,00 0,80 0,22 0,43 0,44 2,23 9,00 

103 0,25 0,25 1,00 0,80 0,24 0,46 0,44 2,35 6,00 

104 0,25 0,25 1,00 0,80 0,17 0,78 0,44 0,54 6,00 

105 0,25 0,50 0,24 1,00 0,79 0,76 0,87 22,90 8,00 

106 0,25 0,50 0,24 1,00 0,65 0,61 0,87 19,20 22,00 

107 0,25 0,50 0,24 1,00 0,60 0,56 0,87 17,80 40,00 

108 0,25 0,50 0,24 1,00 0,54 0,49 0,87 16,30 48,00 
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TEST DATA 
1 0,50 0,50 0,24 1,00 0,47 0,68 0,87 15 

2 0,25 0,75 0,32 1,00 0,33 0,23 0,83 21 

3 0,25 0,50 0,24 1,00 0,49 0,44 0,87 16 

4 0,75 0,00 1,00 0,80 0,03 0,60 1,00 0 

5 0,75 0,25 0,68 0,80 0,14 0,51 1,00 0 

6 0,25 0,75 0,32 1,00 0,48 0,32 0,83 22 

7 0,75 0,50 0,24 1,00 0,21 0,14 0,87 6 

8 0,25 0,75 0,32 1,00 0,59 0,61 0,83 25 

9 0,25 0,25 1,00 0,80 0,15 0,72 0,44 0 

10 0,25 0,50 0,24 1,00 0,39 0,34 0,87 12 

 
 
 


