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ABSTRACT

The present master thesis focuses on Tunnel monitoring and the utilization of
monitoring data as a means of promoting safety and reducing risks in tunnel
engineering through use of artificial intelligence systems. The improvement in
methods of early detection of deterioration of the rock structure around a
tunnel can prevent damage to infrastructure, injury to people or loss of life.
Furthermore, monitoring deformation allows the increase of safety margins
without giving any negative effects to structures on the job site.

The S1 tunnel of the Egnatia Highway was excavated in the complex geological
system of the Pantokrator Limestone with fractured and loose cataclastic
gouge using the New Austrian Tunneling Method. Tunnel deformation was
monitored using geotechnical and geodetic tunnel monitoring systems and
the measured data have been used to establish an artificial neural network
model to predict crown settlement. Finite Element Analyses have also been
conducted. Results from both methods are compared with the field
measurements, and the observations lead to promising conclusions on the use
of Artificial Neural Networks in tunneling engineering. Emphasis is on the
prediction of ground deformation due to tunneling using artificial neural
networks, particularly crown settlements through the combination of field
measurements, analytical relations in relation to the ground condition and
tunneling method.



NEPINHWH

H mapovoa SUTAWMATIKY €pyacio EMIKEVIPWVETOL OTNV TopakoAouBbnon
onpayywv kot otn oaflomnoinon debouévwyv moapakoAoubnong w¢ HECO
npowbnong tng aodAAelnG Kal HElwoNg Twv KWWOUVWV OTn UNXOVLKA TWV
onNpPAYYWV HECW TNG XPONE CUCTNUATWY TEXVNTAGS vonuoouvne. H BeAtiwon
TwV HEBOdWV €ykatpng avixveuvong tng umoBaduioncg tng Soung Tou Bpaxou
yUpw amo pla onpayya pnopet va anotpeP el emiluteg pBopeg, kataotpodn
0€ UTIOSOUEG, TPAUHATIONO avBpwriwyv | akopa kot anmwAeta {wng. EmutAéoy,
n mapokoAouBnon Twv napapopdwoewv onpayywv Ba eTitpePeL tnv avénon
TwV TeplBwpiwv aodaleiag xwpic va umapéouv apvnTIKEG EMUITTWOELS OTLG
SOUEG TOU XWpPoU epyaociag.

H onpayya S1 1n¢ Eyvatiag odol KOTOOKELAOTNKE OTO OUVOETO
AcBeoTtoAlBlkOU  yewAoylkd  ocuoTtnuo  TOU Mavtokpdtopo Ot
KOTOKEPUOATIOUEVN KoL XOAOPr KATAKAOOTIKA €dadlky Sourp pE TNV
edapuoyn t™ng Neéag auvotplakng MéBodog Ekokadng onpayywv. O
TapaopPWOELS TNG orpayyag mapakoAouBndnkav pe Xprion YEWTEXVIKA Kol
YEWSALTIKA cuoThpata mopakoAoubnong onpayywy, kKat ta dedopéva mou
HETPNONKaV €xouv xpnolpomolnBel ywa tnv uAomoinon €vog HOVTEAOU
Texvntou NeupwvikoU Atktoou (TNA) yia tnv mpoBAedn tng mapapuoppwong
otn otePn tng onpayyog. Emiong, €xouv Sie€axOel avalloelg ue tn xpron
LOVTEAWV TIEMEPACUEVWY OTOLXELWV yla TNV (bla onpayyd. Ta anoteAéopata
Kot ano Tt duo peBodouc ocuykpivovtal PE TG HETPrOELS mediou Kot ot
napatnpnoel; odnyouv oe eATiLdopOPA CUUTIEPACHATA CXETLKA LE TN XPHOoN
TEXVNTWY VEUPWVIKWV SIKTUWV OTN KNXAVLKN Twv onpayywv. Epdaocn divetal
otnv nPoBAedn napapopdwoswv edadoug Aoyw ekokadn piag oripayyag Le
™ xpnon Texvntwv Neuvpwvikwv Alktuwy, Wlaitepa otn otedpn pe
ouvluaouO peTpoelg ediou, aVAAUTIKWY OXECEWV cuUnepLPopdgs edadwv
Kot tn pEBodo dLavolén tng onpayyag.
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CHAPTER 1
INTRODUCTION

1.1 TUNNELS: RISK AND MONITORING

In recent years the need to reduce traffic congestion in cities and the urge to provide faster
transport and communication between different cities has led to the construction of thousands
of kilometers of underground metro, rail and highway tunnels. Although tunnel construction
may cost higher than surface road and rail projects, it is more environmentally friendly and has
no land requirements.

The need to upgrade and further develop transportation infrastructure (high-speed railway,
highway and urban transit lines) has led to the on-going construction of large-diameter, long
tunnels under difficult conditions. Such conditions usually arise from a combination of adverse
ground and groundwater regimes, very high overburden pressures or, in the case of urban
tunnels, the existence of sensitive structures within the zone of influence of the tunnel
(Kavvadas, 2003). In such cases, the safety of the tunnel structure, the working crew and the
stability of the structures at the ground surface is of great importance and must be ensured
during all the life cycle of the tunnel project. This is achieved through good design approaches,
optimal construction practices and efficient feedback through reliable monitoring methods.

Figure 1.1: Map of European international transport networks with hundreds of tunnels
involved in their construction, (Source: The Trans-European Network for Transport (TEN-T).
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Tunnel failure

Despite the fact that many tunneling projects have been successful, many others have gone
through extensive delays and cost hypes due to failures during construction. Tunnel
construction failures are extraordinary events, which have severe impact on the construction
process. They may cause high financial losses, severe delays or even human injuries or death
(IMIA, 2006). The causes of most failures are related to unforeseen in-situ conditions and under
estimation of water stresses (Seidenfuss, 2006). Furthermore, Spackova, (2012) notes that most
frequently reported tunnel construction failures are the cave-in collapses, tunnel flooding,
portal instability or excessive deformation of the tunnel tube and the overburden. The tunnel
construction failures can cause damages on adjacent buildings and infrastructure and they are
thus especially adverse in tunnels built in the cities. The control of tunnel failures risks is thus of
crucial importance.

Figure 1.2: A cave-in failure at the surface above the tunnel (Source: Spackova,2012).

P

Y - PRy - VX - e
Figure 1.3: A cave-in failure in the Laerdal Road Tunnel on European Highway E 16, Norway, 15
June 1999, (Source: Seidenfuss, 2006).
This thesis emphasizes Tunnel monitoring and the use of monitoring data as a means of
promoting safety and reducing risks in tunnel engineering through use of artificial intelligence
systems. The improvement in methods of early detection of deterioration of the rock structure
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around a tunnel can prevent damage to infrastructure, injury to people or loss of life.
Furthermore, monitoring deformation will allow the increase of safety margins without giving
any negative effects to structures on the job site. Additionally, continual monitoring of progress
of construction work allows owners of the project or contractors to take proactive measures
before any unpredictable disasters can occur.

Computational Intelligence is one of the fastest growing sectors of information technology,
especially in the section of artificial Intelligence and intelligent systems. The main branches of
artificial intelligence include:

e Neuro Networks

Fuzzy Logic

e Generic Algorithms

e Decision trees
These systems use arithmetic models to solve many engineering, financial, marketing, biological
and many other problems. Contrary, classical methods are based on logic and processes to solve
problems. This makes intelligent systems approach more suitable for problems with empirical
solutions, in which exact mathematical models cannot be built or are complicated.
Neural networks are the most commonly applied intelligent system in solving geotechnical
engineering problems. Bourmas, (2014) used a combination of Artificial neural networks and
generic algorithms to assess the factor of safety of column and chamber mine, Tsekouas, (2004)
used ANN to predict tunnel behavior using FEM analysis results, You, (2013) used ANN in back
analysis with face mapping data to assess the optimal geotechnical parameters to be used in
FEM analyses. All the above researches and many more have come up with encouraging
conclusions that artificial neural networks be used reliably in solving geotechnical problems.

1.2 SCOPE OF THE THESIS
The scope of this master thesis is to establish an introduction to Artificial Network and to assess
how they can be applied in deformation monitoring systems and specifically:

e To develop a Multi-layered Perceptron neural network which can predict the
deformation behavior (crown displacements) of a tunnel using monitoring data
measurements as target data and input training data from parameters like the overload
factor, the support class, the stress reduction factor, the rock mass category, the
coefficient of lateral earth pressure and the overburden height.

e To develop finite element models for sections along a tunnel with the purpose of
simulating its behavior in the best way possible, basing on the descriptions by
Georgiannou et.al., (2004) and the Lefas, (2001).

e To compare and contrast the results obtained from both methods.

1.3 STRUCTURE OF THE THESIS

This thesis is comprised of two sections; the first section (chapter 2 —chapter 5) describes the
theoretical components of the tools used in the thesis while the second section (chapter 6 and
7) describes the practical part, the procedures, observations and conclusions.

14



Chapter two gives a literature review on tunnel monitoring, its importance and the different
methods and specialized instrumentation used for tunnel deformation monitoring.
Furthermore, a brief note is also made on the promotion of the exploitation of monitoring data
from the current and the already completed tunnels, in the continuous design improvements.

Chapter three is concerned with the description of another method of tunnel behavior analysis
using numerical methods — the Finite Element Method (FEM): the theory and principles of the
method are briefly explained and furthermore, the principles of operation of a FEM software
PHASE 2 8.0 from ROCSCIENCE INC. are explained.

In chapter four, the behavior of tunnels during excavation is analysed. Particularly, the methods
of obtaining rock mechanical properties through field investigations and laboratory tests,
classification methods like the GSI, Q and RMR but also by use of empirical relationships
proposed by Panet, (1995); Kavvadas, (2012) etc. the convergence — confinement method of
excavation design is also explained.

Chapter Five the theory of neural network is introduced, the structure of a biological neuron and
its mimic with the artificial neuron, and the principles of their operation is detailed. The basic
parameters of artificial neural network training and learning are also explained. Furthermore,
the procedure for construction of a Multi-Layer Perceptron neural network with
backpropagation, its calibration rules, training and evaluation of results are described.

Chapter Six is a case study on a highway twin tunnel with particularly special deformation
behavior where the need for on-site special investigation and monitoring were paramount. It
required special experience and cooperation of all construction entities to come together for a
successful execution of the project. The geological characteristics of the tunnel are described,
including the design rock classifications and support classification.

Finite Element Models are developed for 117 sections along tunnel and deformation behavior
is analyzed.

A neural network model is established, its architecture defined, calibrated and trained using the
technical geological parameters of the tunnel. Field measurements of crown displacements are
used as target inputs. A prediction of the tunnel displacement for sections ahead of the tunnel
face is made using the trained neural network. Thereafter, a comparison of the measured
displacement, the FEM prediction and the neural network prediction is made. The observations
and conclusions are quite interesting.

Chapter Seven are the conclusions and suggestions for further study.

15



CHAPTER 2
MONITORING AND DEFORMATION PREDICTION IN TUNNELS
(LITERATURE REVIEW)

2.0 INTRODUCTION

During tunnel construction, there are many uncertainties, even when there is an excellent
geological and geotechnical ground set up. These uncertainties and the simplifications made
during design lead to a residual risk during construction. To achieve safe and economical
construction in spite of the uncertainties, specific procedures, such as the observational
approach within a geotechnical safety management plan have to be applied, (Schubert & Moritz,
2014). In this chapter, the monitoring of ground deformation in tunnels and its purpose and
importance are briefly described, and also a section about the use of monitoring data for
prediction of ground behavior using modern approaches like Artificial Neural Networks and
Generic Algorithms is included.

2.1 DEFORMATION MONITORING IN TUNNELS

In conventional tunneling, ‘geotechnical monitoring’ is of fundamental importance as an
instrument of verifying the appropriateness of the operations specified in the design and for
calibrating the intensity and sequence of those operations during construction. It is also
important for recording tunnel behavior when it is in service, in order to check the condition of
the tunnel over time, especially in relation to the rheological behavior of the rock mass and
possible changes in the hydrological conditions (fault zones, walled sections, inflow, etc.)
(Lunardi & Gatti, 2010). Monitoring systems are designed to systematically acquire information
on the geological-geomechanical conditions of a tunnel face and its deformation response
during excavation and when in service.

According to Kavvadas, (2003), monitoring of ground deformations in tunneling is a principal
means for selecting the appropriate excavation and support methods among those fore seen in
the design, for ensuring safety during tunnel construction (including personnel safety inside the

tunnel and safety of structures located at ground surface) and finally, for ensuring construction
guality management according to 1ISO9000.

Importance of deformation monitoring

In NATM tunnels, the observation method is usually applied, this is a tunnel construction
method where continuous review of the behavior and update of the design and adjustment
of construction method during construction, based on actual conditions and observations,
as required is practiced. In this practice, the system behavior, the system stability and
system accuracy are combined as design principles. During tunnel excavation, ground
deformations are monitored and the measured values in the immediately previous
excavation steps are used for the selection of the appropriate typical section to be used in
the next excavation step, by matching predicted and observed deformations.

Ground deformation monitoring is extremely useful in tunneling projects (probably much more
than in other geotechnical projects) for the following reasons:
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e Facilitation of the observation method: Ground deformations are the principal means
of assessing tunnel behavior, therefore, ground deformation measurements are
commonly used in the anticipation of ground response (and thus in decisions related to
the applicable excavation and support methods).

e Back analysis for better parameters: Deformation monitoring simplifies the process of
assessment of ground parameters through back analysis of already excavated tunnel
sections. The measurements around a tunnel are used as a criterion for acceptance of
the ground parameters by matching the observed and predicted deformations.

e Risk planning and Safety: Monitoring results are used in early warning systems during
tunnel excavations, which promotes safety against incipient failures but also provides
the ability for a timely intervention to save the structure but mostly to save the crew.
The use of automated data collection methods can improve yet more on the speed and
efficiency of risk mitigation systems in tunnel engineering.

¢ Final lining design: Deformation monitoring also facilitates greatly in the design of the
final lining of the tunnel. Lining design is governed by the loads exerted from the
surrounding ground, which is obtained from stress and load measurements, but also
clearly depicted in the deformation behavior of the tunnel during and after excavation.

e Detection of surface movement: Ground monitoring is critically important in
observation of ground surface settlement induced due to tunneling and as a control for
mitigating excess movement of fragile structures near the tunnel.

e Long term creep monitoring: Deformation monitoring can also be important in cases of
excess creep development in a tunnel. Tunnel wall deformations can be used in assessing
the condition of the rock mass around the tunnel and the evolution of the loads on the
temporary support, although in some cases, conditions are so adverse that contingency
measures do not succeed to avoid the eventual collapse, but the measurements can be
used in redesigning the new approaches to re activate the tunnel. Fig. 2.1 shows
monitoring data from a tunnel failure due to creep loads 100m behind the tunnel face.
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Figure 2.1: Monitoring of wall deformation (settlement) in a mountain tunnel, the tunnel
eventually collapsed after six months with deformation >700mm (Source: Kavvadas, 2003).
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In cases of extreme complex projects, normally due to difficult grounds, too large overburden
where excess convergence is expected, or too shallow urban tunnels with sensitive utilities and
buildings where excess settlement is expected, the use of deformation monitoring becomes
much more important. Fig. 2.2 shows an illustration of a total station set up for 3D geodetic
monitoring inside a tunnel.
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Figure 2.2: An illustration of a 3D tunnel monitoring system (Source: Lee, 2007).

Ground deformation measurements applied in tunnel engineering
The ground deformation methods applied during tunnel construction mainly depend on the
nature of the tunnel in question. The methods applied in monitoring and design of urban/
shallow tunnels are different from those applied in mountainous deep tunnels. In mountain
tunnels, the main objective of deformation measurements during construction is to ensure that
ground pressures are adequately controlled, i.e., there exists an adequate margin of safety
against collapse, including roof collapse, bottom heave, failure of the excavation face, yielding
of the support system, etc.
Mountain tunnels: the adequate control of ground pressures is the basic objective of the
engineer during construction in a mountain tunnel. Provision of a balanced support system to
the internal pressures ensures a safe and economical structure, well adopted to the
heterogeneity of ground conditions.
In mountain tunnels the ground deconfinement methods are applied before installation of
supports and the final lining is installed later on after the stabilization of the tunnel creep
deformations. Therefore, in this case the deformation monitoring measurements are;

e Concentrated inside the tunnel

e Emphasis is put on the accuracy of the convergence measurements

e Minimum surface monitoring is required

e High demand for efficient and timely measurement schedule

e The degree of precision may not be excessive as compared to the case of urban tunnels.
Urban tunnels: in urban tunnels, the main objective is limiting deformation at the ground surface
above the tunnel and thus causing minimum possible movement and disturbance to the nearby
utilities and buildings.
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The construction and support and support methods applied in urban tunnels promote a stiff
nature in the tunnel lining, so there is normally no convergence expected in the interior of the
tunnel. Therefore, for deformation measurements in urban tunnels emphasis is put on close and
precise measurements at the ground surface to ensure that neither there is uplift nor settlement
above the tunnel. The characteristics of deformation measurements for urban tunnels include:
e They require installation of monitoring devices long before excavation of a tunnel
section.
e Very high precision is required
e Requires multi-system setting at different heights to capture any possible movement.
e Also requires additional instrument set up around the tunnel environment and on other
sensitive structures near the tunnel.

Despite the above specifications related to the type of tunneling project, the ground
deformation measurements are used in an integrated design-construction-performance system
which encompasses all the stages of the project life cycle. Fig. 2.2 illustrates the importance of
monitoring in the tunnel project life cycle.

e During the design stage historical monitoring measurements obtained from historical
tunnels projects with the same geological characteristics can be utilized as reference
experience in addition to the geotechnical investigations.

e During construction the measurements obtained are used in performance testing for
adoption of the in-situ conditions on to the design, Fig. 2.2, ISO9000 loop.

e In cases of discrepancies in the expected measurements during the construction stage,
monitoring data is used in back analysis to obtain the optimum parameters or in cases
of excess differences, measurements can be a base for the definition of new
investigations, Fig. 2.2, large loop.

2.3 INSTRUMENTATION FOR TUNNELS

Deformation monitoring in tunneling projects is performed with instruments installed or
operated either from the ground surface or from within the tunnel. Instruments installed from
within the tunnel are necessarily put in place as the tunnel advances and thus an appreciable
portion of the actual ground deformation is not recorded, as it has occurred prior to the
installation of the instrument. Typically, the majority of ground deformation takes place close
to the tunnel face (from about one tunnel diameter ahead of the face up to about 1.5 diameters
behind the face). Thus, monitoring instruments placed on the tunnel wall (e.g. optical reflector
targets) or installed in the ground from the tunnel wall (e.g. borehole rod extensometers) should
be installed as early as possible, (Kavvadas, 2003). However, an exception to this unavoidable
deficiency are ground deformations along the tunnel axis measured with sliding micrometers
installed from the tunnel face, thus rendering extremely useful measurements for predictions
of excavation conditions ahead of the tunnel face (these measurements are influenced mainly
from the ground conditions ahead of the tunnel face and thus are useful in assessing tunnel
behavior in the upcoming excavation stages). Fig. 2.3 shows the installation of a sliding
micrometer.
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Figure 2.2: Deformation monitoring as part of the integrated design-construction-performance
monitoring sequence. The smallest loop is used to adapt construction to the in-situ conditions.
The largest loops are used to modify the design (sub-surface model) or even to require additional
geotechnical investigations (Source: Kavvadas, 2003).

The major deformation monitoring measurements usually performed in tunnel engineering
include:

1. Measurements for wall convergence
This is done using various instruments which are either installed on the tunnel wall or drilled
and positioned inside the rock body.
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Tape extensometer: this is attached to the tunnel wall by use of hooks drilled in the wall
and a measuring system of tape extensometers across the diameter of the tunnel. It is an
easy and quick system with an accuracy of +/-0.2mm for lengths 10-15m, but has a
disadvantage that it can only measure convergence magnitude but not direction.

Figure 2.4: Digital tape extensometer and its installation in measuring tunnel convergence.

3-Dimension geodetic surveying: This is done using electromagnetic distance measuring total
stations and reflectors positioned at fixed locations along the length of the tunnel wall. As
tunnels are usually long, the fixed (stable) reference positions are typically located outside the
tunnel, often at distances exceeding one kilometer and usually out of sight from inside the
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tunnel. Thus, measurements of the targets inside the tunnel are obtained by placing the total
station at pre-defined rugged stations1 (bolted on the tunnel wall) and successively moving the
instrument forward (towards the tunnel excavation face) while measuring the coordinates of
the visible targets from each station. Geodetic measurements can give an accuracy of 2-3mm
for distances up to 100m and 2.5mm for angles. The disadvantage is that their accuracy is
affected by the air pollution inside the tunnel, there is delay in installation so some of the initial
convergence is not measured.

Measuring point 3

Measuring point 2 Measuring point 4

Measuring point 5

Figure 2.5: Schematic diagram illustrating the use of EDM total station in tunnel monitoring,
(Source: Luo, 2017).

The tunnel profile scanners (profilemeters): These are used for quick convergence
measurements, but also for measuring the volume of shotcrete placed on the excavated rock
surface. The tunnel profilemeter s are fully digitized photogrammetric measuring devices,
consisting of digital cameras which can produce stereoscopic images of the tunnel surface. The
position of the camera is determined by a total station and set of reflectors positioned at fixed
locations. This system can provide 3D point cloud and coordinates of the tunnel wall with an
accuracy of +/-5mm. although the accuracy is not so good, it gives the first picture as more
precise measurements are done later, also, this system provides a lot more information visual
and numerical.
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Figure 2.6: Tunnel profilemeter (source: Ryu et.al. 2008; www.dibit.at).

2. Measurement of deformations in the ground.

These are measurements performed to monitor deformation of points which are located inside
the ground, either around the tunnel or deep below the ground surface. They are mostly aimed
at obtaining stress, strain or deformation trends near and around the tunnel area of influence.

In this case special geotechnical measurements are installed through boreholes from the ground
surface or from inside the tunnel. Usually, this is done before the tunnel face reaches the area
of measurement. If the measurements are performed inside the tunnel, the instruments can be
located through radially drilled boreholes in the wall or along the tunnel axis ahead of the
excavation face. Most common instruments include:

Inclinometers: These are used for measuring horizontal or vertical displacement of the ground.
In case of horizontal displacement, they are installed vertically yet for vertical displacement,
they are installed horizontally. They operate by measuring the displacement of the casing pre-
installed in a borehole. The measuring range is up to about + 30°. Accuracy is in the order of 0.2
mm/m. Resolution is about 0.005 mm. It is mainly applied to:

e detect shear planes which separate moving horizons

e monitor settlement profiles when installed horizontally

e check stability and compliance with design limits.
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Figure 2.6: Inclinometer probe with measuring cable (above); Horizontal inclinometer in casing,
(Source: Konietzky, 2018).

Extensometers: Different types of extensometers are used for measuring the relative
movement of two points in the ground. They can measure settlement at different levels below
the ground and also the relative deformation of the area around a tunnel. The extensometer
system is placed in a metal casing installed in a drilled borehole with the upper part (the head)
fixed while the rest of the body has moving system depending on the type of extensometer.
They have an accuracy in the order of 0.01mm (sufficient to calculate strains in the ground.
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Figure 2.7: Different types of borehole extensometers, (Eberhardt &Stead, 2011).
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Sliding micrometers: these are used to measure linear displacement of points in a tunnel. They
are also placed in metal casing equipped with metallic measuring marks at 1m intervals along
the casing. The micrometer system contains a Linear Displacement Transducer inside the probe
which measures the tension exerted between two points of the probe and transmits it to a
digital readout unit. Sliding Micrometers (Li et al. 2013) deliver an accuracy of about +0.002
mm/m and the maximum measuring range is 25 mm/m. Common measuring intervals are 1 m.
Advanced tools contain also a temperature sensor.

Figure 2.7: Typical applications of the sliding micrometer in tunnels, (Konientzky, 2018)

3. Measurement of deformation at the ground surface.

These are mainly important in urban tunneling projects where damage to surface structure and
utilities should be prevented. These measurements typically include settlement (and heave) of
structures as well as tilting. The main instruments used in this type of deformation monitoring
include:

Precise geodetic levelling using total stations: this is the most common method for displacement
monitoring at ground surface. An automated monitoring facade with a group of total stations
and targets can be installed and real-time measurements transmitted to a digital center.
Accuracy in a length of 100m is in the order of 0.1mm and 0.2mm/100m for angles.
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Figure 2.8: A network of geodetic control survey stations for surface monitoring, (Source:
geosystembd.com)
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Geotechnical measurements using electronic level gauges: these are electronic level pots filled
with a liquid and installed at a number of locations which are then connected to a stable
reference pot. Variations in the height of the level gauges is transformed into a signal and
transmitted to a data logger. Accuracy is +/-0.3mm.

Electrolytic tilt sensors: these are pressure bubble levels that are electronically sensed as a
resistance bridge. The bridge circuit outputs a voltage proportional to the tilt of the sensor.
These tilt sensors are attached on metallic beams which are mounted on the structural elements
to be monitored. They are in sequence along the horizontal plane to measure differential
settlement along walls or beams. An accuracy of 0.005mm/m can be attained.

Other instruments include: crackmeters and tiltmeters.
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CHAPTER 3
FINITE ELEMENT METHODS

3.0 INTRODUCTION

Geotechnical problems involving complex structural geometry, loading conditions and initial
conditions require comprehensive approaches in order to come to a reasonable and reliable
solution. The finite element method has been widely used in solving many complex problems
mechanical engineering, civil engineering and even in medicine. In this chapter a review of the
basic concepts of the method is given, later, the procedures for the execution of a finite element
analysis are explained. Also application using the commercial program PHASE 2 8.0 is analyzed.

3.1 THE FINITE ELEMENT THEORY

The finite element method (FEM) models use the entire domain of a complex mathematical
problem and uses known physical principles to develop algebraic equations describing the
approximate solutions.

According to Hutton (2004), finite element analysis is a computational technique used to obtain
approximate solutions of boundary value problems in engineering. Simply stated, a boundary
value problem is a mathematical problem in which one or more dependent variables must
satisfy a differential equation everywhere within a known domain of independent variables and
satisfy specific conditions on the boundary of the domain which represents a physical structure.
Where field variables are the dependent variables of interest governed by the differential
equation and boundary conditions are the specified values of the field variables.

Logan (1986) define finite element method as a numerical method of solving problems of
engineering and mathematical physics such as structural analysis, heat transfer, fluid flow, mass
transport and the like which involve complicated geometries, loading and material properties,
approximate solutions based on numerical techniques and digital computation are most often
obtained in engineering analyses of complex problems. Finite element analysis is a powerful
technique for obtaining such approximate solutions with good accuracy.

Considering a triangular element with 3 nodes, the values of the field variable computed at the
nodes are used to approximate the values at non-nodal points (that is, in the element interior)
by interpolation of the nodal values. For the three-node triangle example, the nodes are all
exterior and, at any other point within the element, the field variable is described by the
approximate relation

(x, y) = N1(x, y)1 + N2(x, y)2 + N3(x, y)3 (2.1)
where
1, 2, and 3 are the values of the field variable at the nodes
N1, N2, and N3 are the interpolation functions, also known as shape functions or blending
functions.
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In the Finite Element Approach (FEA), the nodal values of the field variable are treated as
unknown constants that are to be determined. The interpolation functions are most often
polynomial forms of the independent variables, derived to satisfy certain required conditions at
the nodes. every element is connected at its exterior nodes to other elements. Thus, continuity
of the field variable at the nodes is ensured. In fact, finite element formulations are such that
continuity of the field variable across inter-element boundaries is also ensured. Figure 2.1 and
Figure 2.2 show some typical two-dimensional and three- dimensional elements with corner
elements and some with intermediate nodes along the edges.

In engineering applications, the finite element method involves modeling the structure using
small interconnected elements called finite elements. A displacement function is associated
with each finite element and each element is linked directly or indirectly to every other element
through common interfaces including nodes and boundary lines and /or surfaces. By using
known stress/ strain properties of the material making up the structure, one can determine the
behavior of a given node in terms of the properties of every other element in the structure
(Logan 2011)

rafigilars Chiadrilaberals

Figure 3.1: Simple two dimensional elements with corner nodes and with intermediate nodes
along the edges (Logan,2011).
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Figure 3.2: Simple three - dimensional elements with corner nodes higher order three —
dimensional elements with and with intermediate nodes along the edges (Logan,2012).

Model symmetry in FEA

The symmetricity or asymmetricity of structures is an important factor in finite element
modelling, it can be used to simplify the model size and complexity. It can also be instrumental
in simplifying application of constraints to the model (Brinkgreve & Vermeer, 1998). The main
types of symmetry used are:

e Axial Symmetry (axisymmetric): The Axisymmetric option allows you to analyze a 3-
dimensional excavation which is rotationally symmetric about an axis. The input is 2-
dimensional, but because of the rotational symmetry, it is in fact analyzed a symmetric
3-dimensional problem. A typical use of the Axisymmetric modeling option, is to analyze
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the stress state around the end of a circular tunnel. The structure is considered as a solid-
of-revolution where a cross-section revolved about a single axis defines the entire
geometry. In FEA it may be required that the model be created about a specific axis, for
example, the Y-axis, and/or in a specific quadrant.

e Plane Strain: In this case it is assumed that the structure is of infinite length normal to
the plane of the analysis section (e.g. pipe, excavation trench, tunnel). In most cases a
Plane Strain analysis will be performed. In a Plane Strain analysis, the major and minor
in-plane principal stresses (Sigma 1 and Sigma 3), the out-of-plane principal stress (Sigma
Z) in-plane displacements and strains can be calculated.

e Cyclic Symmetry: This is repetitive symmetry about a central axis. A feature is repeated
at fixed angular intervals around the symmetry axis.

e Reflective Symmetry: This is mirror-plane symmetry about one, two or even three of the
planes of the X-Y-Z coordinate system.

Boundary conditions

A boundary condition is a load or constraint applied to the model to represent the effect of the
external influences on the model. They represent the forces, pressures, gravitational fields, pins,
rollers, ground symbols, etc. which one would use on a free body diagram when solving a static
problem. The application of correct boundary conditions is a critical step in the modeling process
(Wilcox, 2012). When applying boundary conditions, the following should be considered:

e Static Equilibrium: Enough constraint should be provided to prevent rigid body motions
(free translation or rotation) in a static model.

e Excessive Constraints and Over-stiffening: Care should be taken to ensure that the
model reflects as best as possible the real world conditions. They must also take into
account coupled strain effects caused by conservation of volume, such as the radial
contraction which accompanies an axial elongation of bars or beams. Excessive rigidity
should be avoided because if elements which experience these type of effects are
prevented from moving, the model can be over-stiffened, resulting in inaccurate results.

e Symmetry Constraints: If there is a plane of symmetry, it can be assumed there will be
no translation of the nodes in the direction normal to the plane of symmetry. Rotational
degrees of freedom may also have to be considered to keep shell elements from pivoting,

e Point Loads: Loads applied at a single point may cause unreasonably high local stress and
deformation. Most real world loads are not applied to a single point, therefore attention
should be given to how the actual load is applied to how possible it can be simulated as
a distributed load, pressure, etc.

Discretization, Meshing and Element Quality

The discretization of the model boundaries forms the framework for the finite element mesh,
and in some software it may be indicated by small crosses subdividing the boundary line
segments. Each cross indicates the position of a finite element node on the boundary. After
discretization, a mesh can then be generated.

Mesh generation or element connectivity model, involves the joining of all neighboring elements
by use of their nearest neighbor location. The elements can be 5-node, 6-node, 8-node, and 15-
node for two dimensional analysis and 10-node is normally used in three dimensional analyses.
The element quality in a finite element mesh is a great factor for obtaining good quality results,
therefore, it is generally desirable to avoid elements of high aspect ratio (i.e.
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long "thin" elements). In general, such elements can influence analysis results, and lead to
misleading and inaccurate results, which are dependent on the mesh. Figure 2.3 shows the
variation of the coarseness of model mesh.

(a) Coarse Mesh (b) 2 layers (c) Fine Mesh

Figure 3.3: levels of mesh coarseness and quality (seacadtech.com)

In extreme cases, such elements may even be responsible for non-convergence of the

finite element solution, and the analysis will be aborted. In order to help the user to determine
the "quality" of a finite element mesh, some programs like PHASE 2 can automatically locate
and highlight elements in a mesh, which are deemed to be of "poor" quality, according to user-
definable criteria.

General procedure in FEM
Preprocessing: this step is generally described as defining the model and includes defining the
geometric domain of the problem which involves:

e Defining the model domain/ extent where the rest of the structures are to be simulated.

e Defining the structures type(s) to be used — piles, anchors, soil volumes, plates etc.

e Defining the material properties of the elements porosity, permeability, stiffness.

e Defining the geometric properties of the elements (length, area, and the like).

e Defining the element connectivity model (mesh the model).

e Defining the physical constraints (boundary conditions — constraints or supports so that

the model can remain in place.

e Defining the loads internal and external loads that act on the model.
Solution: During the solution phase, a finite element software assembles the governing
algebraic equations in matrix form and computes the unknown values of the primary field
variable(s). The computed values are then used by back substitution to compute additional,
derived variables, such as reaction forces, element stresses, and heat flow, etc.
Post-processing: Analysis and evaluation of the solution results is referred to as post-processing.
The postprocessor software contains sophisticated routines used for sorting, printing, and
plotting selected results from a finite element solution (Fig. 2.4). Examples of operations that
can be accomplished include: Sort element stresses in order of magnitude; Check equilibrium;
Calculate factors of safety; Plot deformed structural shape; Animate dynamic model behavior;
Produce color-coded temperature plots. While solution data can be manipulated in many ways
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in post-processing, the most important objective is to apply sound engineering judgment in
determining whether the solution results are physically reasonable.

Post processing also involves two important steps: (i) Verification and (ii) Refinement and
Convergence.

e Verification: This step includes checking element shape and quality, von Mises precision,
and viewing unsmoothed vs. smoothed fringe plots. This applies mostly to highly
commercial programs.

e Refinement and Convergence: Many times several runs are needed to achieve reliable
results, in this step definite methods are applied to mesh refinement and convergence
so as to achieve an accurate solution.
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Figure 3.4 : Flowchart indicating the procedural steps of solving finite element analysis
problems (Source: Hutton, 2004)

3.3 FINITE ELEMENT PROGRAM PHASE 2 8.0

In this work, the Finite Element software package PHASE 2 8.0 from Rocscience
(www.rocscience.com) was employed. This is a 2D finite element program for calculating
stresses and estimating support around underground excavations and other underground
works. It is a two dimensional elasto-plastic finite element program for calculating stresses
and displacements around underground openings, and can be used to solve a wide range of
mining, geotechnical and civil engineering problems, involving:

e Excavations in rock or soil
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e Multi-stage excavations (up to 300 stages)

e Elastic or plastic materials

e Multiple materials

e Bolt support

e Liner support (shotcrete / concrete / piles / geosynthetics)

e Constant or gravity field stress

e Jointed rock / construction joints

e Plane strain or axisymmetry

e Groundwater (piezo lines, ru values or finite element seepage analysis)

e Finite element slope stability

e Probabilistic analysis
The program consists of 3 program modules namely: MODEL, COMPUTE and INTERPRET
(Fig. 2.5). These run as standalone programs but also interact with each other in such a way
that COMPUTE and INTERPRET can both be started from within MODEL, COMPUTE must be
run on a file before results can be analyzed with INTERPRET, and MODEL can be started
from INTERPRET as illustrated in the schematic illustration below:

Figure 3.5: interaction of the three independent program modules in PHASE 2 8.0 (Source:
Rocscience).

The Modelling module

This is the pre-processing module (Fig. 2.6) used for entering and editing the following
items:

model boundaries: The first step in any computer-aided design process is setting the
drawing limits of the region so that the limits encompass the model geometry. Using the
Limits option, the user is allowed to enter the X and Y coordinates of the lower left minimum
X Y, and upper right (Maximum X Y) corners of the drawing region of the model to be
simulated.

Support: for defining the support methods applied in the model e.g. anchors, beams,
linings, and geogrids.

in-situ stresses: The initial stress status of the model due to gravity, existing forces and
moments can also be defined in the model module. Two options are available for defining
field stress in PHASE2, Constant stress or Gravity field stress.
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hydrostatic conditions: the groundwater conditions of the model, piezo metric lines, and
also provides for the definition or even the importation of a ground pressure grid data in
form of a .DXF file.

material properties: this provides an interface for defining the different material
characteristics of the objects used in the model.

material boundaries: where the user can define regions with different material properties
Creating the finite element mesh: The process of creating the finite elements is achieved
through discretization of the model and later meshing. In the mesh interface the user can
define the coarseness and other parameters that improve the quality of the mesh and the
finite elements as general.
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Figure 3.6: modelling module use interface in PHASE2

The Compute module

This is the calculation and analysis module of the program (Fig. 2.7), after compiling and
modelling, the FEM model is saved as a .FEA file and it is now ready for
analysis. The computation parameters like Number of Iterations, the
Tolerance etc. are defined in the Project settings and cannot be altered
during the computation process. After analysis, the results can be in
stored by the module in various file types to enable the user access the
results easily and in a more organized manner. The following file types
are available:

. R: These files are the main PHASE2 output files, containing all of the nodal stress and
displacement data.

X: These files contain bolt data, if bolts are being used for support.

. U: These files contain strain data.

.LOG: This is always created, which summarizes a few important analysis parameters
(number of iterations, run time, etc.) for each stage. The .LOG file can be opened in the
PHASE?2 Interpreter, or it can be viewed with any ASCII text editor.
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Figure 3.7: the computation module interface in PHASE 2.

The Interpret module:
The primary means of data interpretation after a PHASE2 analysis, is the viewing of data
contours directly on the model. The PHASE2 INTERPRET program allows the user to display
contoured data from the finite element analysis, by selecting a data type from the drop-
down list in the toolbar.
When Interpret is started from Model, the active file in Model will automatically be opened
in Interpret. Furthermore, the user can return back to Model using the Model button in
Interpret. This allows the user to switch back and forth between Model and Interpret, so
that they can edit a model, re-compute and view new results. The Interpret module is
enabled as soon as the finite element mesh is generated, however, the user must run
‘compute on a file’ before he can look at the results in Interpret. It provides an interface for
viewing deformations, stress, forces and moments on structural members that result from
the analysis. The interpret module provides the user amongst all, the following capabilities:
e Various forms of visualization forms for deformations — vertical displacement,
horizontal displacement, total displacement, incremental and absolute
displacements). Generally, the magnitude, orientation and displacement of the
model /deformed mesh is viewed.
e Stresses - pore pressure, incremental stresses, ground water flow, vyielded
elements, major stresses o1, 03, 0; and von Mises stresses.
e Forces — Axial force, shear force and bending moments on linings, bolts and plate
elements.
e Plots for axial forces, shear forces, bending moments of the bolts, beams, linings
and geogrids.
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Query platform where he can search for the analysis results of a particular element
or group of elements.

Can view the stress trajectories showing the orientation of stresses ol and o2.
Also the user has the ability to export the results to other files like DXF, JPEG, TXT
and other files.

Flow of procedures in FEM analysis using PHASE 2

The basic procedure for a FEM analysis using the PHASE 2 program begins within the Model
module where the physical problem is simulated and meshed, then a computation is
executed in the Compute module, and finally the results are viewed and processed using
the Interpret module. This happens in the flow below:

Setting of the limits for the drawing region — this involves defining of the size of the
view window of the workspace using the view limits command (it's not the
boundary limit).

Model boundaries definition — this involves defining the external boundary and
later the excavation boundaries using the add boundary command.

Meshing — this involves the generation of the finite elements mesh using the mesh
commands. First the model boundaries must be discretized and after the mesh is
generated. Various capabilities are provided for the improvement of the quality of
the mesh.

Field stresses definition — this involves the definition of the magnitude and
orientation of the initial field stresses in the model.

External loading — here the loads that act on the model internally and externally
are defined.

Material property definition — this involves allocation of material parameters,
constitutive models e.g. Mohr Coulomb and Hoek Brown methods, interface
properties, groundwater characteristics for the soil mass, bolts, and linings.
Simulation of the staged execution of the problem- this may be the deactivation or
activation of loads, excavation of part of a soil mass, activation of supports etc.
Computation — this is the execution of the analysis using the Compute module.
Visualization, Interpretation of results and refinement if needed.
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CHAPTER 4
ANALYSIS OF TUNNEL BEHAVIOR DURING EXCAVATION

4.0 INTRODUCTION

Underground works like tunnels, caverns or mines are constructed under a somehow
unknown environment because of the little information available during the design and
construction of the structures. In most cases a series of geological and geotechnical studies
are performed but may not fully clear the ambiguity. Specifically, for tunnels, their length
makes it even more difficult to obtain enough investigations. This chapter examines the
technics applied in utilization of the possible available information through empirical
gualitative and quantitative approaches. Also, the rock deformation behavior during the
excavation of a tunnel and the analytical relationships for the assessment of the induced
displacements is examined.

4.1 ROCK BEHAVIOR

The evaluation of strength parameters of rock masses is one of the most critical challenges
during tunnel design, excavation and support due to the fact that field laboratory tests are
performed on intact rock samples which is not representative of the rock mass that has
discontinuities and other weaknesses. In addition, the number of samples is too small to
fully represent the real condition of the rock. Therefore, the mechanical properties of the
rock mass are obtained using combinations of empirical and indirect approaches. The first
is by use of qualitative evaluations through the rock quality indices, and second by use of
guantitative methods through geotechnical parameters.

4.2 ROCK QUALITY INDICES.

Rock quality indices are used for the description of the natural condition and the strength
of a rock mass. They help in the classification of the rock basing on the nature of the
discontinuities, the hydrostatic conditions, and the influence of geostatic stresses. The
parameters used in the description of a rock mass include:

1. Mechanical strength

This is expressed as the Uniaxial Compressive Strength oc, of the rock. It is obtained from
laboratory tests on intact rock samples. The results obtained are influenced by the
structure and cementing of the crystals of the rock, the direction and nature of the
discontinuities. Mechanical strength can also be obtained basing on the degree of
weathering of the rock. the larger the ocithe stronger and tough the rock is. Table 4.1 shows
the rock strength classification according to ISRM (1981).
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Table 4.1: Rock classification basing on strength according to the ISRM (1981)

Strength oci (MPa) | Rock category Description
>250 Extremely strong Is not broken by geologic hammer
100 -250 Very strong Broken by geologic hammer after a
number of hits
50-100 Strong Brocken by only one hit with a
geologic hammer
25-50 Medium strong Is not scratched with a knife
5-25 Weak Scratched with a knife with difficulty
1-5 Very weak Easily scratched with a knife. Not
scratched with a finger nail
0.25-1 Extremely weak Scratched with a finger nail

2. The Rock Quality Designation, RQD

This is a quantitative evaluation of rock mass quality basing on the degree of fragmentation.
It is defined as a percentage of the total length of all intact pieces greater than 100mm for
a given length of a drilled core. The RQD is given by the relationship in Equation 3.1 and in
Fig. 4.1 the strength classes of a 1m long core are illustrated.

(Sum of lengtas > 10omm)

RQD = ) ———— -+ 100%
otal lengtn of sample (4.1)
RQD Fissure Class
>100mm >100mm =100mm =100mm >100mm
a ] 100 =5t
<100mm <100mm
a ) = B0 =5t
<100mm
(T ] = 90 = Stl
<100mm
a ) =0 = St -1V
* 1 m

Figure 4.1: Sample RQD classification for a 1m long rock core (Source : Bruland, 2000).

3. Discontinuities
According to the definition in ISRM, (1978), a discontinuity surface is any surface in the rock
mass, along which some elements of the rock are discontinuous. Discontinuities can be due
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to faults, joints, bedding or any other geological or physical activity and can be defined in
terms of characteristics such as:
a) the number of joint sets
b) the spacing and persistence of the joints
c) the stability condition of the joints which has an influence on the sliding resistance along
the joint plane and is expressed in terms of:

e Roughness — very rough, smooth up to slicken-sided

e The degree of alteration and the degree of weathering along the joints expressed in

terms of the thickness and quality of the of the joint filling materials.

4. Underground water flow
The presence of water in the excavation should be well documented because it has a big
effect on the cohesion, swelling characteristics and the cost of excavation of the rock. In
some cases, may also increase the lateral stresses on the excavation.

5. Rock classification
The classification of rocks into categories is very important during the design stage but also
during the construction stage of a tunnel. Empirical rock class indices have been developed
(Hoek et.al, 2000; Marinos, 2007) and are widely applied in the calculations for cutter
material in tunnel machinery, calculation of rock initial and final supports and excavation
methods. The three commonly applied classification methods are:
Rock Mass Rating, RMR (Bieniawski, 1979) - in this system six parameters are defined,
each taking a certain value, then the values in each parameter are grouped in various
ranges basing on the degree attained in that particular parameter according to field
investigations. The sum of the values obtained for the rock within the six parameters gives
the RMR index of that rock (Table 4.2). The six parameters and their ranges include:

Table 4.2: The six RMR parameters.

Parameter Range RMR range
R1 Uniaxial Compressive strength, oci 0.1<oci<250MPa 0-15
R2 Rock Quality Designation Index, RQD 3 <RQD < 100% 3-20
R3 Joint spacing Index 0.006 <space< 2m 5-20

R4 Joint  surface conditions (length, | Filling>5mm-very rough | 0-30
persistence, Separation, Smoothness, | without alteration
Infilling, weathering)

R5 Presence of ground water Full flow — No water atall | 0-15

R6 Direction of discontinuities in relation to | Favorable - unfavorable -12-0
the tunnel trajectory

The RMR index obtained from the summation of the parameters gives the classification of
the rock according to the Table 4.3.
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Table 4.3: RMR classification guide for excavation and support in rock tunnels for a 10m

width tunnel with drill and blast methods (source: Bieniawski,1989).

Rock
mass class

Excavation

Support
Rock bolts
(20 mm diam., fully Shotcrete Steel sets
bonded)

1. Very good rock

Full face:

Generally no support req

uired except for occasional spot bolting

heading;

Commence support after
each blast;

Commence support 10 m
from face

crown and walls with
wire mesh in crown

mm in sides

RMR: 81-100 3 m advance
2. Good rock Full face: Locally bolts in crown, 3 | 50 mm in crown | None
RMR: 61-80 1.0-1.5 m advance; m long, spaced 2.5 m where required
Complete support 20 m from | with occasional wire
face mesh
3. Fair rock Top heading and bench: Systematic bolts 4 m 50-100 mm in None
RMR: 41-60 1.5-3 m advance in top long, spaced 1.5-2 min | crown, and 30

4. Poor rock
RMR: 21-40

Top heading and bench:
1.0-1.5 m advance in top
heading;

Install support concurrently
with excavation - 10 m from
face

Systematic bolts 4-5 m
long, spaced 1-1.5 min
crown and walls with
wire mesh

100-150 mm in
crown and 100
mm in sides

Light ribs spaced
1.5 m where
required

5. Very poor rock
RMR < 21

Multiple drifts:

0.5-1.5 m advance in top
heading;

Install support concurrently
with excavation; shotcrete as
soon as possible after
blasting

Systematic bolts 5-6 m
long, spaced 1-1.5 min
crown and walls with
wire mesh. Bolt invert

150-200 mm in
crown, 150 mm
in sides, and 50
mm on face

Medium to heavy
ribs spaced 0.75 m
with steel lagging
and forepoling if
required. Close
invert

Geological strength Index, GSI (Hoek et al., 1998; Hoek et al., 2000) — The RMR is a
classification system applied mostly for relatively strong rocks, therefore Hoek et. al. (1998)
designed a system compatible with the RMR system for rocks with RMR index < 40.The GSI
and RMR values are equal for RMR >40 while below 40 the GSI gives a better distinction by
providing a gradual interpolation of the index values. The GSI system is based on the
combination of two basic parameters, namely:

e The rock mass structure, which characterizes the interlocking of the rock pieces
e Thediscontinuity conditions which characterize the degree of joint shear resistance.

The two parameters are jointly evaluated for a particular rock and a GSI value is given. A
standard GSI diagram is available for common rocks well as also special diagrams were
developed for various specially characterized rocks such as Flyschs. The standard GSI
diagram is shown in Fig. 4.2.
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Figure 4.2: GSI standard diagram for the characterization of blocky rock masses on the basis
of interlocking and joint conditions, (Hoek et.al. 1998).

The Q Index — Norwegian Geological Index

This is an empirical method developed for calculating the initial support requirements in
tunnels specifically excavated using mechanical methods —NATM (Barton et.al, 1974). It is
based on the rock quality, the joint condition parameters and the stress conditions during
construction. These factors are all combined in the following relationship:

=(RQD

where

RQD is the Rock Quality Designation index

)(I_T) (SJE’.TF) (4.2)

a

Jn is the index for number of joint sets
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Jris the degree of roughness of the joints
Ja is the coefficient of ground water influence

SRF is the Stress Reduction Factor - Weakness zones intersecting excavation, which may
cause loosening of rock mass when tunnel is excavated.

Tables for the values of the above parameters can be obtained from Barton et.al, 1974.
Using the values obtained from Equation (4.2) the classification of the rock is done basing
on the Table 4.4.

Table 4.4: Rock classification according to Q-System

Q class Description

>400 Q-la Exceptionally good
100-400 Q-lb Extremely good
40-100 Q-1 Very good

10-40 Q-llla Good

4-10 Q-Illb Fair

1-4 Q-1IVa Poor

0.1-1 Q-1IVb Very poor
0.01-0.1 Q-Va Extremely poor
<0.001 Q-Vb Exceptionally poor

4.3 EMPIRICAL RELATIONSHIPS
The empirical relationships are mainly used to derive the parameters which may more
precisely describe the rock behavior during and after excavation. The relationships utilize
the four mentioned indices RMR, Q and GSI together with physical and engineering
assumptions to build the parameters used in analyzing rock behavior. These parameters
are divided into three categories:

1. Initial condition parameters:

These describe the geostatic conditions (stresses, and loads) before the excavation of the
tunnel. These are usually due to the depth h, of the tunnel from the surface, the specific
gravity y, of the rock material, the presence of hydrostatic stresses uo, and lateral stresses.

Active stress oy’ = yh - U,
Active horizontal stress on’ = Ko(oy') (4.3)
where

Ko is the coefficient of lateral pressure, which depends on the rock mass decomposition
and fragmentation, presence of tectonic stresses, depth and slope.

e Deformation parameters

These include a) Modulus of Elasticity and b) Poisson Ratio.
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Modulus of Elasticity E, is obtained from the relationship

| i

~N100

G5I — 10
TR

E aLﬂg(

(4.4)
Where
Tei = Uniaxial Compressive Strength of the rock
GSI = geological strength index of the rock as per Hoek and Marinos (2000).

Poisson Ratio v, is a description of the internal inertial stability of the rock. It is the ratio of
transverse contraction strain to longitudinal extension strain in the direction of stretching
force, or a measure of the phenomenon in which a material tends to expand in directions
perpendicular to the direction of compression. Conversely, if the material is stretched
rather than compressed, it usually tends to contract in the directions transverse to the
direction of stretching. Most materials have Poisson's ratio values ranging between 0.0 and
0.5. A perfectly incompressible material deformed elastically at small strains would have a
Poisson's ratio of exactly 0.5.

e Strength parameters

The strength parameters of a rock mass are best defined using failure curves defined by
the failure criteria. A failure curve separates the 1 — o diagram in two regions, one region
below the curve is the where the stresses do not cause failure of the rock, whereas for any
o — T combination in the region above the curve causes failure. Fig. 4.3 shows the stable
and unstable regions of a 0 — T diagram.
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Figure 4.3: Stable, limit and unstable failure states on a Tt — o diagram.

>
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Mohr Coulomb failure criterion

The MC failure curve is a curve on the normal stress — shear stress (t —o) diagram which
describes the critical internal conditions for a wide range of horizontal pressures generating
a straight failure line. The linear equation which expresses the relationship for the principle
stresses 01 and o3 of an isotropic rock at the moment of failure is

0y =C+ Oatan@ orT=c+otaniip (4.5)
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Where

Angle 4 2

c= cohesion in MPa,
& = Friction angle,
ol = Major Stress and

03 = Minor stress

01 +03 01— 03 _
2 tT 7z TR 4

Shear stress, T =

0, - 0y

Normal stress,d = Cos

(4.7)

The Mohr coulomb criterion is used in many programs because of the fact that it has simple
and applicable mathematical presentation, it has a clear connection to the physical
expression of the rock strength parameters and geotechnical problems.

.

AN

o
O¢ " 5

a1 a

3 Amoxom
I SR

Figure 4.4: Failure curve for the Mohr Coulomb criterion (Nomikos, 2017).
Hoek- Brown Failure criterion

This is an empirical failure criterion (Nomikos, 2005 ) in which the linear increase of
maximum strength of an isotropic rock mass with the increase in the lateral pressure gives
a parabolic failure curve. The generalized Hoek-Brown failure criterion for jointed rock
masses is defined by:

[ird
F

o
0{ =03 +0g| Mpz=+S

ci
(4.8)
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where
o1 and o3 are the maximum and minimum effective principal stresses at failure,

The value of the Hoek-Brown constant m for the rock mass, my

EME —100
My = TMexp (T) (4.9)

m;-depends on the rock type and class

s and a are constants which depend upon the rock mass characteristics,

5= {RME — 10“)
- AP 9 (4.10)
_ s RME

T T 500 (4.11)

oc = the uniaxial compressive strength of the intact rock pieces.

For intact rock RMR > 25, s=0, and a = 0.5, therefore

0.5
!

]
ol =0+ 04| my—=+1
Ocj
(4.12)

The RMR index can be replaced with the GSI for RMR <40 since the GSI is more reliable in
that domain. Fig. 4.5 shows a plot of the Hoek- Brown failure criterion in the RoclLab
software from Rocsience. In this thesis the program is used in obtaining of the rock mass
parameters; cohesion, Modulus of Elasticity and the angle of friction.
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Figure 4.5: Hoek-Brown failure criterion for a weathered limestone, in the Roclab program
from RocScience.

4.4 ROCK DEFORMATION BEHAVIOR DURING EXCAVATION

After the brief explanation of the methods used to describe the initial rock conditions in
terms of its strength parameters and failure criteria, in this section the relationships used
in the description of the parameters which influence rock behavior during excavation are
examined.

During excavation in a relatively weak rock, the deformation of the rock mass starts about
one half a tunnel diameter ahead of the advancing face and reaches its maximum value
about one and one half diameters behind the face. At the face position about one third of
the total radial closure of the tunnel has already occurred and the tunnel face deforms
inwards (Hoek, 2000). Whether or not these deformations induce stability problems in the
tunnel depends upon the ratio of rock mass strength to the in situ stress level. This is
illustrated in Fig. 4.6.
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Direction of value at the tunnel face
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Radial displacement starts about one half a
tunnel diameter ahead of the advancing face

Figure 4.6: Pattern of deformation in the rock surrounding an advancing tunnel,
(Hoek,2000).

The convergence — confinement (C — C) method

This C - C method is based on a concept in which the ground structure interaction is
analyzed by an independent study of the behavior of the ground and the tunnel support
(Eisentein, 1991). The ground behavior is represented by a ground reaction curve whereas
the lining is represented by the support reaction curve. The former describes the ground
convergence in terms of the applied confining pressure while the latter relates the
confining pressure acting on the lining to its deformation. The solution for the ground
support interaction is then given by the intersection of these two curves as illustrated in
Fig. 4.6.

ELASTIC, YIELDING
GROUND | GROUND
—_—
N\
\
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\

'
'
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GROUND REACTION CURVE

-
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/ SUPPORT REACTION CURVE

DELAY U,

Figure 4.6: Convergence-Confinement method in shallow tunnels (Source:Eisenstein, 1991)

The reduction in the internal stress of the tunnel rock from the initial value po, to a lower
value p, can be used to simulate the time delay in the placement of the supports. This
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reduction in the internal stress which continues up to zero represents a gradual increase in
the stress reduction factor A, from A=0 for initial conditions to A=1 at maximum
confinement. The factor A, represents stress relaxation in the tunnel walls at different
excavation steps (Fig. 4.7).

A=1 P thereforep = p,1 -4
Po (4.13)

Figure 4.7: stress distribution around and along a tunnel (Source: Kavvadas, 2007).

With the gradual increase in A, the initial elastic behavior of the rock mass (assuming
isotropic conditions: oy = 6n = po) at a certain moment becomes plastic near the tunnel wall.
The factor A, at the start of plasticity is known as the critical reduction factor A and is due
to a critical stress pcr. The convergence — confinement curve reflects the rock with an
elastoplastic behavior where, after the critical stress pcr, it begins to behave plastically. In
the diagram b), different stages of plastic behavior are shown. In phases | and Il the rock
yields but the maximum displacement is reached before failure so it remains stable,
whereas in lll, the rock yields and at a certain stress p, the displacement tends to infinity
leading to plastic failure at point F (Fig. 4.8).
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Figure 4.8: a) convergence — confinement curve for a circular tunnel, b) convergence —
confinement curves of a rock mass during plastic behavior, (Source: Kavvadas, 2007).

For every position x, along the tunnel axis there is a displacement Ur on the x — Ur curve,
and for a particular value of Ur through the convergence — confinement curve there is a
pressure p, smaller than po, known as the equivalent internal pressure which causes the
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same convergence as that at a distance x, from the tunnel face. This is illustrated using the
Panet curve in the Fig. 4.9.
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Figure 4.9: Panet curve for the relationship between the distance x, along the axis of a
circular tunnel and the convergence at that position, (Source: Kavvadas, 2007).

The relationship between the displacement Ur of the tunnel wall and the distance x, from
the tunnel is very important because it allows for the evaluation of wall convergence and
consequent displacement before placement of supports which is used in determining the
required support pressure for the rock. Since confinement begins right in front of the
tunnel face, the placement of the initial supports must be done at a distance x, from the
excavation face. This should be such a position where the rock has released enough internal
stress so that it requires less support pressure, i.e. a balance between the confinement and
the support requirements. The determination of such a distance x, is based on calculations
of various indirect parameters that influence convergence and confinement of a tunnel.
The effect of placing supports to the c — c curve is shown in Fig. 4.10.
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Figure 4.10: Effect of installing supports in the tunnel illustrated on the convergence-
confinement curve, (Source: Kavvadas, 2007).

The ground reaction curve ADF represents the un-supported tunnel. AD shows the tunnel
behavior before placement of the supports, DEG represents the behavior when rock bolts
are installed and finally, when shotcrete is placed, IE represent the termination of the
ground reaction at a point of equilibrium E with a displacement Uge corresponding to an
equilibrium stress Pe.

The relationships used to calculate the input parameters for assessing the displacement of
a tunnel are illustrated below:

Calculation of the critical stress reduction factor Acr:

Peor 2 (Ns — 1)
Agp=1-—=1-
< Po (1+k) Ns / (4.14)
where
_ 2Po
The overload constant, N: =
Tem
1 + sin
The load slope, k = —‘P
1-sing
o . Tri GSI
Rock mass uniaxial compressive strength, 0., = Eexp (E)

When Ns <1, then A>1 therefore no plastic zone is created around the tunnel
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When Ns>1, then there is a certain value of A <A after which the rock will behave in a plastic
manner.

Therefore, when
e Ns<1 or N>1 but A=A, no plastic zone is created
e Ns>1and A>A. a plastic zone is created
e Ns>1 and A=A the plastic zone is only limited at the tunnel wall.

The displacement at the wall of is given by

ur = AR (EG)(R) (4.15)

Where

E
G=—
Shear Modulus 201 + )

R= radius of the tunnel

r=radius inside the rock mass

whenr =R, u=4R (E)

If a plastic zone is created and k¥ land ¢ #0,

At the plastic zone A = 1 and a radius of plastic zone created is given by

[(k —1)N. + E]If—

k+1 (4.16)

The displacement at any point in the plastic zone is given by

H+1
2

up ]"k 1)

. )

AN + ——

o k—1] (4.17)

T Ik—l[';l—

According to Panet (1995), for elastoplastic conditions,

1 r
A=1-075 I?]
1-3 (ﬁ] (4.17)

Whereas according to Chern et.al. (1998), irrespective of the value of the Ns the
displacement at any point x, along the tunnel axis

50



-1.7
A= [1 +exp {9-91%)] (4.18)

In the framework of this thesis, we are interested in the true reproduction of the initial
conditions, the excavation process, the support system, and the deformation behavior at a
number of sections inside a road tunnel in a deeply fragmented cataclastic limestone of
Northern Greece. This is aimed at predicting the displacement of the tunnel crown at every
section. The displacement data obtained is to be used as input data for training an artificial
neural network.

The main parameters which can be included as input data for the neural network must be
those that influence displacement directly and these include:

e The overload factor, Ns

e The stress reduction factor, A

e The Modulus of elasticity, E

e The overburden pressure, po

e The rock mass classification (based on the geological classification,)
e Support class (based on the support capacity of the system)

e The coefficient of lateral pressure.
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CHAPTER 5
ARTIFICIAL NEURAL NETWORKS

5.0 INTRODUCTION

The brain consists of a large number (approximately 10%?) of highly connected elements
called neurons whereas the artificial neural networks are only remotely related to their
biological counterparts. Neural networks and deep learning currently provide the best
solutions to many problems in image recognition, speech recognition, and natural
language processing but also their application in geotechnical engineering is growing
rapidly. In this chapter, the characteristics of brain function that have inspired the
development of artificial neural networks and the basic units of the artificial neuron are
examined. Also, the architecture, the training and learning characteristics together with
the training procedure are described.

5.1 ARTIFICIAL NEURAL NETWORKS (ANN)

Artificial Neural Networks are a software implementations of the neuronal structure of
the human brain. Though the biology of a human brain is so complex, it has been proved
that it contains neurons which are kind of like organic switches. These can change their
output state depending on the strength of their electrical or chemical input. This neural
network is a hugely interconnected network of neurons where the output of any given
neuron may be the input of thousands of other neurons. Learning in the human brain
occurs by repeatedly initiating certain neural connections over others and this reinforces
those connections. This makes them more likely to produce a desired output given a
specified input. This learning involves a feedback i.e. when a desired outcome occurs,
the neural connections causing that outcome become strengthened.

The biological neuron

The human nervous system consists of billions of neurons of various types and lengths
relevant to their location in the body (Schalkoff, 1997). The main functional units of a
biological neuron are: the dendrites, cell body and axon (Fig. 5.1).

The cell body has a nucleus that contains information about the heredity traits, and a
plasma that holds the molecular equipment used for producing the material needed by
the neuron.

The dendrite is responsible for receiving information from other neurons through special
connections called synapses and passes it over to the cell body. In the cell body, the
information is transmitted to the nucleus where it is processed and transmitted to the
neurons connected to the current one.
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The axon, this branches into collaterals, receives signals from the cell body and carries
them away through the synapses to the dendrites of the neighboring neurons.

The amount of signal that passes through a receiving neuron depends on the intensity of
the signal emanating from each feeding neurons, their synaptic strengths, and the
threshold of the receiving neuron. The neurons can receive and transmit many signals
simultaneously because of the many dendrites they have.

neuron cell body
synapse

\y_~o
asi of 7 nucleus
previous axon

neuron

/ neuron cell body
N

synapse

uxon dendrites of
tips ~ mext neuron

electrical
signal

dendrites

Figure 5.1: Biological neuron (Jahnavi,2017)

The artificial neuron

The artificial neuron is built to mimic the biological neuron. It comprises of nodes,
weights and a transfer function, where by the connection between the nodes represents
the axon and dendrites, the connection weights represent the synapses and the
threshold (activation function) approximates the activity in the soma. Fig. 5.2 shows the
interaction from n, biological neurons and analogy to signal summing in an artificial

neuron.

)
|

& &
‘ \ The Perceptron
Thieshold —

Figure 5.2: Relationship between biological and artificial neurons, (Basheer et.al, 2001)
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Artificial neural networks attempt to simplify and mimic this brain behavior, they can be
trained to produce a desired output through repetitive input and output strengthening.
Each neuron in a network is able to receive input signals, to process them and to send
an output signal. The neuron is connected with at least one other neuron, and each
connection is evaluated by a real number called a weight coefficient which reflects the
degree of importance of the neuron in the neural network. An artificial processing
neuron receives inputs as stimuli from the environment, combines them in a special way
to form a "net’ input(£), passes over through a linear threshold gate, and transmits the
signal (output, y) forward to another neuron or the environment (Basheer et.al, 2001).

Structure of the neural network

The activation function - this is the simulation of the biological neuron as
aforementioned. It has a switch-on characteristic where by, in a network, once the input
is greater than a certain value, the output should change state, i.e. from 1 to 0, or -1 to
1, or 0 to > 0. This simulates the turning on of the biological neuron. The most common
activation function is the Sigmoid function (Table 5.1).

Table 5.1: Commonly used activation functions (Hagan et.al. 1996)

. MATLAB
Name Input/Output Relation Icon Function
1=0 n=<0
Hard Limit ‘ [T | nardlim
a=1 nz0
1=-1 n<0
Symmetrical Hard Limit t . hardlims
y a=+1 nz0
Linear a=n purelin
a=0 n<0
Saturating Linear a=n 0<n=l satlin
a=1 n>1
. . = -1 <1
Symmetric Saturating . " ) .
Linear a=n -lz=n=l satlins
a=1 n=>1
1
Log-Sigmoid a= /] | logsi
¢-Sig — gsig
Hyperbolic Tangent -’ . .
Sigmoid a= o tansig
a = n=0
Positive Linear . oslin
a=n 0=n P
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The node — This takes multiple weighted inputs, applies the activation function to the
summation of the inputs and in doing so, generates an output. The output of the
activation function is shown in Fig. 5.3 below.

1 INPUTS 2. Input processing
(Signals received by (Signals are processed
the dendrites of the inside cell body)

neuron) N
X1 /

4. Output signal
5  received by dendrites

\1\‘ )\ 3.0utput processing
\ and transmissions

(Processed Input

w2 converteq toan of the next nuron
X2 m— output and
transmitted through
Axon
/ Output =1/ (1+e*)
X3

Figure 5.3: Structure of an ANN node (Hagan, 1996).
A weighted input to the node above would be expressed as
XaWy + %Wy + Wy + b = Jl1.-|,r,.EJ'[3'5]'(5.1)

Where

b, is the bias element.

The inclusion of the bias enhances the flexibility of the node. The bias assists in
influencing the particular value of x, where we want the model to activate for a particular
node. The variation in the value of b, results in the horizontal displacement along the x-
axis for a particular weight. In the programming context, a bias term simulates the if
function e.g. if (x>z), then 1, else 0. However, the variation in the value of the weight w,
causes a change in the in the slope of the sigmoid function. This implies that there is a
change in the model strength as a relationship between the input and the output

variables (Fig. 5.4).
Wl = =00 / [
|| — b=80 /

.2 | 02} j
0.0 . 0.0

-8 -6 -4 -2 0 2 4 6 8 =g =8, -4 =2 0 2 3 6 8

— w=05
— w=1.0
— w=20

h_w(x)
h_wbi(x)

x

Figure 5.4: Change of slope due to variation weight value in ANN node (Left). Horizontal
displacement due to variation of the bias value in ANN (right) (source: Thomas, 2019).
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5.2 THE LEARNING ALGORITHM

This is the algorithm with which the neural network is trained for its future applications.
The purpose of the learning algorithm is the tuning of the values which are to be taken
by the weights and biases during the analysis. The principle of learning makes sure that
during the training the weights gradually take the logical and suitable values. The gradual
learning is also @ mimic of human brain and learning.

Examples of learning/training algorithms include:

Backpropagation

Here the output of the neural network is compared to a provided training value (target)
and feasibly look at how changing the weights of the output layer would change the cost
function (the derivative of the mean square error) of the sample. The output vector and
its corresponding target vectors are used to train the NN until it can approximate a
function, or associate input vectors with specific output vectors, or specify input vectors
in an appropriate way defined by the user. The back propagation is a gradient descent
algorithm in which the network weights are moved along the negative of the gradient of
the performance function. In this method the error is shared to all the weights in the
network allowing us to determine how much of the error is caused by any weight.

M —ro M
AN A A 2 _ 50,0
- "\\‘\‘/ ’,j/ R q &= v,
p— \ /\.// o~ \ ~~
P i Vo N P \ P \
(. VYN 2\ ( >m‘2’
/ N\ \
“ X2 r——“——*\\ /,/\)/ A /}\\\\\-—.\» N h1(3) \ 1N
Nl y S i - \
) ¢ e > /;—> hw,b(x) W(zl
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\ / /
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0 values propagate in this direction

Layer 1 Layer2 Layer3

Figure 5.5: The relationship between the feedforward direction and the
backpropagation.

Properly trained backpropagation networks tend to give reasonable answers when
presented with inputs that they have never seen. Typically, a new input leads to an

output similar to the correct output for input vectors used in training.

However, backpropagation has a two main drawbacks as an algorithm:
e |tisslow in convergence
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e |t easily gets stuck in the minimum gradient
The solutions used in the modified backpropagation algorithms to minimize these
problems are:
e Providing means of varying the learning rate
e Application of a momentum (in form of a filter to smoothen the oscillation of the
output) and scaling variables.

The Newton’s method

The Newton's method is a second order algorithm because it makes use of the Hessian
matrix. The objective of this method is to find better training directions by sing the
second derivatives of the loss function. This method will always find the minimum of a
guadratic function in one step. This is because Newton’s method is designed to
approximate a function as quadratic and then locate the stationary point of the quadratic
approximation. If the original function is quadratic (with a strong minimum) it will be
minimized in one step. If the function is not quadratic, then Newton’s method will not
generally converge in one step. In fact, we cannot be sure that it will converge at all,
since this will depend on the function and the initial guess. The trajectory of the method
is illustrated in Fig. 5.6.

Conjugate gradient

As compared to the gradient descent and Newton’s method algorithms, the gradient
descent is the simplest but slow, the Newton’s method is much faster but requires the
calculation of the Hessian matrix and its inverse. The Conjugate method is something of
a compromise; it does not require complex calculations and is fast. It has a clear
guadratic convergence property, (Hagan,1991). It converges to a minimum of quadratic
function in a finite number of iterations.

45 0 0s 1

Figure 5.6: Trajectory of the Newton’s Method, (Ragan, 1991)
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The Levernberg-Marquardt Algorithm
This is a variation of the Newton’s method designed for minimizing functions that are
sums of squares of a nonlinear function. It has a basic feature that as the learning rate is
increased, it approaches the gradient descent algorithm with small learning rate, while
as the learning rate is decreased to zero, the algorithm becomes Gaussian-Newton
algorithm. The algorithm begins with the learning rate set to a small value, say 0.001 and
a multiplication factor 6>1. The function should decrease since small steps are taken
towards the steepest descent. If it does not converge, then the learning rate is divided
by O for the next step so that the algorithm approaches the Gaussian — Newton algorithm
which will provide a faster convergence. Therefore, the algorithm provides a faster
compromise between the guaranteed convergence of the steepest descent and the
speed of the Gaussian —Newton method.
Other algorithms include:

e Bayesian regulation Algorithm

e The Gaussian — Newton Algorithm

[ ]
Key advantages of Artificial Neural Networks
ANNs have some key advantages that make them most suitable for certain problems and
situations:

e The ability to learn and model non-linear and complex relationships, which is

really important because in real-life, many of the relationships between inputs
and outputs are non-linear as well as complex.

e Ability to predict and generalize — After learning from the initial inputs and their
relationships, it can infer unseen relationships on unseen data as well, thus
making the model generalize and predict on unseen data.

¢ Having fault tolerance - Corruption of one or more cells of ANN does not prevent
it from generating output. This feature makes the networks fault tolerant. i.e.
ANN do not impose any restrictions on the input variables.

e Additionally, it has been shown that ANNs can model well problems with data
which has high volatility and non-constant variance, given its ability to learn
hidden relationships in the data without imposing any fixed relationships in the
data.

e Ability to work with incomplete knowledge: After ANN training, the data may
produce output even with incomplete information. The loss of performance here
depends on the importance of the missing information.

e Having a distributed memory: In order for ANN to be able to learn, it is necessary
to determine the examples and to teach the network according to the desired
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output by showing these examples to the network. The network's success is
directly proportional to the selected instances, and if the event cannot be shown
to the network in all its aspects, the network can produce false output.

Gradual corruption: A network slows over time and undergoes relative
degradation. The network problem does not corrode immediately.

Parallel processing capability: Artificial neural networks have numerical
strength that can perform more than one job at the same time.

Disadvantages of Artificial Neural Networks (ANN)

Hardware dependence: Artificial neural networks require processors with
parallel processing power, in accordance with their structure. For this reason, the
realization of the equipment is dependent.
Unexplained behavior of the network: This is the most important problem of
ANN. When ANN produces a probing solution, it does not give a clue as to why
and how. This reduces trust in the network.

Determination of proper network structure: There is no specific rule for
determining the structure of artificial neural networks. Appropriate network
structure is achieved through experience and trial and error.

Difficulty of showing the problem to the network: ANNs can work with
numerical information. This means that problems have to be translated into
numerical values before being introduced to ANN. The display mechanism to be
determined here will directly influence the performance of the network,
although this depends on the user ‘s ability and judgment.

The duration of the network is unknown: The network is reduced to a certain
value of the error on the sample means that the training has been
completed. This value does not give us optimum results.

However, it should be noted that the disadvantages examined above may be solved soon
due to the fast growing trend of artificial intelligence and ANN as a new branch in
science. This means that artificial neural networks will increasingly become an
indispensable part of our lives.

5.3 NEURAL NETWORK ARCHITECTURE

Single Layer Neural networks

A single layer neural network is comprised of one input layer, one hidden layer and one
output layer. The input layer contains neurons which receive input signals from an
external environment while the output layer neurons receive and process signals from
the hidden layer and then transmit it to the external environment. The hidden layer is
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located between the two layers and works as an additional processor of the signals it
receives.

Multi-layer Perceptron (MLP)

These are more complex networks that can generally perform larger analyses. The
network contains more than one hidden layers and each has its own set of weight and
bias vectors. In some cases, it can also be a group of single layer networks where the
output of one is used as an input of the next.

In the MLP neural network signal data from the input is fed to the first hidden layer,
summed, processed and transmitted to the second hidden layer, summed, processed
through the transfer function and transmitted until to the nt™ hidden layer. Finally, the
output from the last hidden layer is fed to the output layer, summed, processed through
the transfer function, usually a linear function, and then transmitted to the user’s
environment. Fig. 5.7 illustrates the processes in a multi-layer perceptron.

Inputs First Layer Second Layer Third Layer
N A r 3 4 3
Wi ny — a Wi nh — a1 Wi % ah
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1 1 1
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2! X 2>
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1 1 1
mig! - alg! 122 — a‘g? i3 ag?
D o —1 2>/ — 2>
w it 5! WisT 5
lblsl lb!sl ibBSS
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al=f1(Wip+hl) a?=f2(Wal+h?) a3 =f3(W3a2+h3)

a3 = £3 (W3 2 (W2f 1 (Wip+h1)+h2)+b3)
Figure 5.7 : Multi-layer perceptron, (Hagan, 1991)

5.4 TYPES OF ARTIFICIAL NEURAL NETWORKS

Feed Forward Neural Networks

These are networks which do not have feedback. Feedback are weight connections
which emanate from the output of a layer and end at an input of the same layer or
another previous layer. In the feedforward network, input data from the input layer is
fed in the hidden layer, processed and transmitted to the output layer where it is again
processed and transmitted to the external environment as shown in Fig. 5.8. The
feedforward network allows flow of signals only in one direction with no provisions for
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loops, they do not have memory, so their output is always defined from the present input
and weight vectors. Types of Feedforward network s include:
e Perceptron

Adaline, Madaline

e Backpropagation (BP)

e Cauchy Machine (CM)

e Adaptive Heuristic Critic (AHC)

e Time Delay Neural Network (TDNN)

e Associative Reward Penalty (ARP)

Input Layer

Hidden Layer

Output Layer

Figure 5.8: Feedforward neural network.
Feedback Neural networks

This is a type of neural network which allows the addition of signals forward and
backwards. There is a bidirectional flow of signals through the network by the use of
loops, see Fig. 5.9. They are very dynamic networks but also can be complex. When a
feedback network is run, it goes through a continuous variation until a point of rest is
attained, it remains at that point until the input is changed. They perform many
iterations each time a new input is fed so they can also be called recurrent networks.
Between the input and output neurons a complex multidimensional transfer function is
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created, the complexity of the function depends on the number of neurons. Types of
feedback networks include:

Brain-State-in-a-Box (BSB)

Fuzzy Congitive Map (FCM)

Boltzmann Machine (BM)

Mean Field Annealing (MFA)

Recurrent Cascade Correlation (RCC)
Learning Vector Quantization (LVQ)
Backpropagation through time (BPTT)
Real-time recurrent learning (RTRL)
Learning Matrix (LM)

Driver-Reinforcement Learning (DR)

Linear Associative Memory (LAM)

Optimal Linear Associative Memory (OLAM)
Sparse Distributed Associative Memory (SDM)
Fuzzy Associative Memory (FAM)

Counterprogation (CPN)
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Figure 5.9: Simply connected recurrent neural network and a fully connected neural
network.

5.5 NEURAL NETWORK TRAINING AND LEARNING

Neural Network Learning

The purpose of learning is to train the network to perform a given task. In Artificial Neural
Networks learning means a procedure for iteratively modifying the weights and biases
of the network until an acceptable output is obtained. There are three types of neural
network learning, namely, supervised, un-supervised and graded learning.

Supervised Learning

In supervised learning the learning algorithm is provided with a set of examples (target
set) which depicts the proper network behavior. That is to say, for the input data vector
provided, a corresponding output vector is also provided. The learning rule is then used
to adjust the weights and biases of the network in order to move the network outputs
closer to the target. The weights are modified using an algorithm which tends to
minimize the error to a defined acceptable level.

Un-supervised Learning

In this type of learning, the learning algorithm operates in such a way that the weights
and biases are modified in response to network input only. The training algorithm
modifies the weights and biases so as to produce the output vectors which will be
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connected to the input training set. The output vectors cannot be influenced in any case
before the training. Examples of unsupervised networks include the Self Organizing Map.

Gradual Learning

This is similar to the supervised learning except that instead of being provided with
correct output for each network input, the algorithm is only given scores. The score is a
measure of the network performance over a sequence of inputs. His method is not well
developed yet and is not widely applied.

Neural Network Training

Training a neural network is an iterative procedure that begins by collecting data and
preprocessing it to make training more efficient (Fig. 5.11). At this stage, the data also
needs to be divided into training/validation/testing sets. After the data is selected, we
need to choose the appropriate network type (multilayer, competitive, dynamic, etc.)
and architecture (e.g., number of layers, number of neurons). Then we select a training
algorithm that is appropriate for the network and the problem we are trying to solve.
After the network is trained, we want to analyze the performance of the network. This
analysis may lead us to discover problems with the data, the network architecture, or
the training algorithm. The entire process is then iterated until the network performance
is satisfactory.

Training involves numerous processes which may be summed up into five sub-steps:

e Pre-training

e Data processing

e Network architecture design
e Network training

e Post-training.
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Initialize Weights
g & g
Train Network

Analyze Network
Performance

Figure 5.10: Flow chart of neural network training process, (Hagan, year).

1.

Pre-training activities

Data selection: these are the activities performed on the data to improve its quality and
fitness for training since it is known that a neural network is as good as the data used to
train it. This may involve the following:

Making sure that the training data spans the full range of the input space for
which it will be used, although neural networks have a special quality of
generalization. i.e. can do interpolation, but not so good at extrapolation.

The data should accurately be sampled in order to be representative of the
problem.

Data separation: this involves dividing the data into three sets, training set,
validation set and testing set. This should be done randomly such that each set
fully represents the whole data set.

Confirming the amount of data available is enough for the training problem, the
required amount of data depends on the complexity of the underlying functions
of the problem, complex problems require larger amounts of data. Also, the
smoothness of the functions regulates data requirements, smoother functions
require less data than noisy functions.

Data Processing
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This is aimed at performing a preliminary process of the data s as to make it easier for
the neural network to extract the relevant information. This involves:

3.

Normalization of the data: this is done so that data falls into a standard range,
typically from -1 tol. This can be done using the relationship

ph = _ ———1
{pmm_ — pmin } (5.2)

Where

P" the normalized data value in the n® set

P=the data set value in the n" set

P™ and p™" the maximum and minimum values of the data vector.

Generally, the data should be normalized for both the input and the output data
sets.

Non-linear transformation — normally performed on the input variables which
may have logarithmic or inverse relationship with the output. This is done as a
means of simplifying the work of the network.

Feature extraction: in case of very large data and presence of redundant data,
some features may be extracted to reduce the network input dimensions.

Missing data: in case there is limited data its not good to eliminate any data set
for the reason that some information is missing, the following strategies to fill
the missing data can be done:

Replace the missing element with the average value of the other elements. In
case the missing element is from the target vector, then the performance index
can be used so that errors associated with the missing values are not included.

Principal components: this is a general purpose feature extraction method. It
transforms the original input vectors so that the components of the transformed
vectors are uncorrelated. In addition, the components are ordered such that the
first component has the greatest variance, and the second is next, etc. the first
vectors can be kept and the vectors which are more correlated are eliminated to
minimize the network size.

Choice of network architecture

This involves the structural composition but also the parametric composition of the
network.
Structural architecture
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This is determined by the type of problem at hand, different approaches are applied for
prediction, function fitting, clustering etc. Table 5.2 shows the commonly used network
architectures, the number of hidden layers, and the transfer functions used.

Table 5.2: Common network architectures.

Problem Layers Transfer function | Transfer function
hidden layers output layer
Fitting MLP network with 1 | Tansig Linear
approximation up to 2 layers.
Radial basis Gaussian-
Newton
Pattern MLP network with 1 | Tansig Sigmoid
recognition up to 2 layers
Radial basis Gaussian-Newton
Clustering Self-Organizing Map
Prediction Dynamic NN with 1 to | tansig linear
2 layers, NARX, TDNN

Selection of network specifics: This includes the selection of basic network parameters.
This is done based on certain factors.
e The number of neurons in the output always is equal to the number of target
vectors.

e The number of neurons in the hidden layers is determined by the complexity
of the problem, the number of elements in the input vector and the amount
of data sets available, though a try and error method is applied when
choosing the optimum number. It should be noted that too many neurons
result into over fitting of the data.

e The size of the input vector is based on the training data. Though sometimes
might need to replacement of missing data or extraction of redundant or
irrelevant elements. An optimum number of input elements assist in reducing
the amount of computation and preventing of over fitting.

4. Training of the network
This involves:

Weight and bias initialization: for normalized data, the initial conditions are usually
set to fall in a range -0.5 to 0.5.
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Choice of training algorithm: Algorithm selection is done basing on the speed and
the memory requirements of the analysis. Also some algorithms have been found to
be more suitable for certain jobs. For example, the gradient based algorithms are
generally suitable for multi-Layer Perceptron networks, while the Levernberg —
Marquardt is applied when fast convergence is required. The conjugate gradient
algorithm is normally used in pattern recognition.

Stopping criteria: This defines some criteria at which it can decide when the training
should stop. This is done by specifying certain parameters which when one is fulfilled,
the training stops. These may include:

e Specifying @ minimum error limit
e Specifying a maximum number of iterations
e Setting a minimum performance index — usually very near to zero <10E-6.

e Setting a minimum performance index reduction, if it becomes very small the
training stops.

NOTE: For a network to be able to generalize, it should have fewer parameters than
there are data points in the training set. In neural networks, as in all modeling problems,
we want to use the simplest network that can adequately represent the training set. It is
advised not to use a bigger network when a smaller network will work (a concept often
referred to as Ockham’s Razor). An alternative to using the simplest network is to stop
the training before the network over fits.

5. Post training activities:

Post training is done to determine whether the training was successful. The techniques
used in this activity vary depending on the application examined. Post training
requirements for fitting problems may differ from those of clustering. The basic
performance parameters calculated during training are the Mean Square Error (MSE)
and the Summed Square Error (SSE) which are used in all problems. Other performance
indices are mentioned below.

Mean square error works well for function approximation problems, in which the target
values are continuous. However, in pattern recognition problems, where the targets take
on discrete values, other performance indices might be more appropriate.

Fitting problems

Regression Plot: this is plotted between the trained network outputs and the
corresponding targets works well for fitting problems. If the regression is not perfect, the
outlier points are examined so as to correct the training data. If R2 is near to 1 it means,
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there is a good correlation of the target data and the output. Fig. 5.12 shows the
regression plot of the output and training data.

The histogram of the errors plot: the y-axis represents the number of errors that falls
in each internal on the x-axis. Large error values should be balanced around zero and low
values should be realized for bigger error intervals for a training to be satisfactory. Fig.
5.13 shows a histogram where the error is balanced.
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Figure 5.11: Regression plot of the ANN output and the target data.
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Figure 5.12: Histogram of network errors.
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Pattern recognition
e Confusion matrix / misclassification matrix
e Receiver Operating Characteristics (ROC)

Clustering
e Quantization errors
e Topographic Error

e Distortion Measure

Prediction
e Auto Correlation Function
e Cross — Correlation Function

It should be noted that neural network training is an iterative process. Therefore, even
after the training algorithm has converged, post-training analysis may suggest that the
network be modified and retrained. In addition, several training runs should be made for
each potential network to ensure that a global minimum has been reached. (Hagan,

1991).

Table 5.3: Results for the selection of the best Learning algorithm of the ANN.

REGRESSION
TRANSFER % NUMBER OF R

ALGORITHM FUNCTION TRAINING NEURONS MSE TRAINING
Levenberg- 6 27,051 0,973
Marquardt 7 26,58 0,959
(trainim) 5 28,106 0,957
) 6 71,412 0,895
Scalzdrac doizjnutgate tansig 70 7 93,135 0,332
5 84,128 0,849
Bayessian 6 25,58 0,962
Regulation 7 21,75 0,969
Backpropagation 5 22,873 0,963
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CHAPTER 6
CASE STUDY: PREDICTION OF TUNNEL DISPLACEMENT USING
FINITE ELEMENT METHODS AND NEURAL NETWORKS

6. 0 INTRODUCTION

In this case study, two approaches for prediction of tunnel displacement are examined,
based on the data collected during the construction of the S1 road tunnel in Eastern
Greece. The tunnel was characterized by uniquely difficult underground conditions and
large tunnel displacements. A short description of the tunnel technical-geological
characteristics is made, along with the construction design that was followed and the
resulting displacements that were observed. The next section describes the use of Finite
Element Methods to simulate and reproduce the tunnel behavior and finally an Artificial
Neural Network model is built and consequently trained. The purpose of the network is
to verify whether ANN can be used to reliably predict tunnel displacement as a means of
facilitating the use of the observation method in tunnel engineering.

6.1 THE S1 TWIN TUNNELS

The S2 tunnel is among the tunnels of Egnatia Highway and is found between the villages
of Kristallopigi and Psilorahis in Hpeiro, 35km East of Igoumenitsa. During the
construction of the S1 tunnel, uniquely difficult geological formations were encountered.
It was a Pantokrator limestone rock mass of cataclastic type with high flow
characteristics, heavily weathered and broken with interchanges from fully fragmented
rock to complete gravel and clay materials (Egnatia odos, 2001).

Figure 6.1: Location of the S1 tunnels of the Egnatia Highway, (Source: Google Earth).
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During the construction of the tunnel, it was discovered that the deformation behavior
designed basing on the in-situ stress conditions and test drills was different from the one
encountered. This implied that the analytical methods used in the design gave
conservative support solution because it didn’t allow for the flow behavior of the
material. Therefore, the observation method had to be emphasized, and it was proved
that the basic solution for safe tunnel excavation was an aversive approach, to first of all
hold and retain the loose material and later to provide the support system as per the
analyses.

Such a geological setting with frequent interchanges in the technical-geological
formation calls for good coordination and organization between the contractors and the
engineers. This also calls for a strong and organized tunnel monitoring system to provide
accurate and real-time measurements so as to facilitate the decision making process as
per the observation method of tunnel construction, (Lefas et.al. 2001).

Geological conditions and geotechnical parameters

The tunnels pass through a Mesozoic sedimentary sequence consisting of Triassic to
Jurassic limestone, namely the Pandokrator limestone, which overlies a thin sedimentary
clay sequence and gypsum. On top of these, Quaternary scree deposit formations can be
found. Figs 6.2 and 6.3 show the geological sections of twin tunnels. The rock mass
classes along the bores of tunnels, the displacement profiles and support measures are
also included in the figures.

The main geological formation of the area, the Pandokrator limestone, is subdivided into
four geotechnical units (rock mass classes A, B, Cand D) based on the block size and the
structure of the rock mass. The subdivision of limestone into four distinctive units was
used in order to describe a rather continuous sequence between the two end categories:
the fractured limestone and the carbonate gouge. This wide range of fractured limestone
is the result of primary sedimentary conditions (disturbed conditions during deposition)
overprinted by strong tectonic deformation (thrusting and faulting), resulting in the
completely crushed sand-sized rocks: cataclasite to gouge (Georgiannou et.al.2005). A
description of these four rock mass classes is given below:

A. Fractured limestone
Thickly bedded, with three or more discontinuity sets, minor weathering of
discontinuity planes, good interlocking of blocks and block size of 10 cm.

B. Heavily fractured (sugar cube) limestone
Massive, with three or more closely spaced discontinuity sets, minor weathering of
discontinuity planes, poor interlocking of blocks, and block size of 5-10 cm.

C. Cataclastic limestone

Massive, with three or more closely spaced discontinuity sets, frequently
interlayered with sandy gravel, friable with cataclastic (heavily broken) structure and
block size of 5 cm.
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D. Carbonate cataclasite to gouge
Sandy gravel (cataclasite) to sandy silt (gouge), moderately cemented to loose, with
irregular insertions of cataclastic limestone, with heavily broken structure and no
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Figure 6.2: Geology, support measures and primary lining displacements of tunnel S2:
right bore (Georgiannou et.al. 2001).
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Figure 6.3: Geology, support measures and primary lining displacements of tunnel S1:
right bore (Georgiannou et.al. 2001).

However, for the purposes of this thesis, the rock mass classes that resulted into
recognizable deformation are modeled. Three finite element models are developed to
represent the three rock-mass classes that were specifically encountered during the
construction of the tunnels as described below:
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1. MODEL A represents rock mass class B, heavily fractured limestone with three or
more closely spaced discontinuity sets, minor weathering of discontinuity planes,
poor interlocking of blocks, and block size 5-10 cm.

2. MODEL B represents rock mass class C, cataclastic limestone, massive, with three
or more closely spaced discontinuity sets, frequently interlayered with sandy

gravel, friable with cataclastic (heavily broken) structure and block size 5 cm.

3. MODEL C represents rock mass class D, Carbonate cataclasite to gouge: sandy
gravel (cataclasite) to sandy silt (gouge), moderately cemented to loose, with
irregular insertions of cataclastic limestone, with heavily broken structure and no
block size.

6.3 FINITE ELEMENT MODELS WITH PHASE 2 8.0
As it is presented above, three FEM models are developed to represent the three rock
mass classes that were met during the construction of the tunnel. The weakest and most
fragile class D and class C were excavated in two phases, heading and benching, with six
phases was used to simulate the excavation. The material properties, the excavation
and support stages are defined for the respective FEM models. For MODEL A (rock mass
class B - heavily fractured limestone), three phases are applied while for MODEL B, (rock
mass class C- cataclastic limestone) and MODEL C (rock mass class D - Carbonate
cataclasite to gouge), six excavation phases are applied.it should be noted that in class B
more stiff was excavated full face with three phases. The excavation phases are

presented in Tables 6.1, 6.2, 6.3

Table 6.1: Excavation phases for Model A

PHASE | NAME DESCRIPTION

1 GEOSTATIC Simulation of the initial conditions of
The model.

2 DECONFINEMENT Excavation of the top heading and
Allowing for the de-confinement of the
tunnel boundaries.

3 SUPPORT Activation of bolts on the sides of the

benching and the concrete lining.

Table 6.2: excavation phases for Model B

PHASE | NAME DESCRIPTION

1 GEOSTATIC Simulation of the initial conditions of
The model.

2 DECONFINEMENT Excavation of the top heading and
Allowing for the de-confinement of the
tunnel boundaries.

3 SUPPORT Activation of the bolts, the concrete

lining and the invert above the benching
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4 DECONFINEMENT Excavation of the benching and allowing for the
confinement of the tunnel

boundary.

5 SUPPORT Activation of bolts on the sides of the
benching and the concrete lining.

Table 6.3: excavation phases for Model C

PHASE | NAME DESCRIPTION

1 GEOSTATIC Simulation of the initial conditions of
The model.

2 FOREPOLLING Activation of the stiffened zone
Above the tunnel crown. (forepolling)

3 DECONFINEMENT Excavation of the top heading and

Allowing for the de-confinement of the
tunnel boundaries.

4 SUPPORT Activation of the bolts, the concrete
lining and the invert above the benching

5 DECONFINEMENT Excavation of the benching and allowing for the
de-confinement of the tunnel
boundary.

6 SUPPORT Activation of bolts on the sides of the

benching and the concrete lining.

The plain strain analysis type is used since the tunnel has an infinite length while the
Gaussian eliminator was used as the solver type because of the simplicity of the model.

should be far enough from the excavation so that the stresses caused by excavating are
not influenced by the model boundaries. In tunnels a distance of at least 2.5 times the
diameter of the tunnel from every side is recommended. This means that for 13m
diameter tunnel the best model size is given by:

Model width =2.5D*2 +D = (2.5 * 13) *2 + 13 =78m
Therefore, a model of 80m width and 60m depth is adopted since it is not influenced by
the boundary extent.

Meshing is done with medium size elements in the model, while the mesh density is
upgraded within a rectangular window 10m x10m around the tunnel.

The model displacement is defined by setting the upper surface free, restricting x-
direction on the vertical boundaries, and restricting y-direction movement to the bottom
surface. The bottom right and left vertices of the model are restrained in the x and y
directions. Fig. 6.4 shows the meshed model used in the project together with the
boundary restraints
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Figure 6.4: Mesh and boundary restraints used in model simulation.

Simulation of the tunnel overburden
The tunnel overburden height varies between 20m to 90m along a total length of tunnel,
400m + 780m = 1080m long without the portal lengths, which means that if
measurements are taken at 10m intervals, a total of 108 model analyses are required.
Therefore, to model the tunnel overburden load due to the ground above the model, the
following technique was used. All the three models are set to be at a depth of 20 m and
the remaining overburden load is simulated in form of a uniformly distributed load (Fig.
6.5).
The tunnel additional overburden P, is given by the expression:

P= 1*}»{1 + Ko¥H — k)

2 (6.1)

where
y = specific gravity
Ko = the lateral earth pressure
h = the height of the model top surface above the tunnel and
H = height of the ground surface above tunnel for a particular section along the tunnel.
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Figure 6.5: simulation of the excess overburden height as a distributed load above the
20m depth of the tunnel.

Material properties
The material properties assigned to the rocks for the three models are shown in Table

6

A.

Table 6.4: Rock and lining material properties

ROCK CLASS | ROCK ROCK FORE | SHOTCRETE | HEADING | BENCHING
MATERIAL TYPE A CLASSB | CLASSC | POLLING /HEB INVERT | INVERT
GSI 30 20 13 13
AXIAL
STRENGTH
oci(Mpa) 40 35 35 35
ROCK QUALITY
CONSTANT mi 10 10 10 10
ROCK MASS
COMP.
STRENGTH Gem
(Mpa) 2,594 1,165 0,999 0,999
FRICTION
ANGLE ¢ (°) 26 23 20 20
COHESION ¢
(MPa) 1,15 0,65 0,65 0,65
MOD. OF
ELASTICITY Em
(MPa) 2000 1052 703 1247 300000 300000 | 300000
SPECIFIC
GRAVITY vy
(Mpa) 0,026 0,026 0,026 0,026 0,025 0,025 0,025
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POISSON RATIO
v 0,35 0,35 0,3 0,3 0,2 0,2 0,2
Initial Element
Loading type gravity gravity gravity gravity
FAILURE Hoek Hoek Hoek Hoek
CRITERIO Brown Brown Brown Brown
PARAMETER mb 0.821 0,5743 0,5743
PARAMETER s 0,0004 0,000138 | 0,000138
PARAMETER a 0,522 0,5437 0,5437
MATERIAL TYPE Plastic Plastic Plastic Plastic Elastic Elastic Elastic
ELASTIC TYPE Isotropic Isotropic | Isotropic | Isotropic
THICKNESS d,
(m) 1.12 0,25 0,2 0,25

Support measures
The temporary support measures applied to the tunnel were based on the rock mass
quality. The variety of geological conditions has a profound influence on the behavior of
each tunnel, resulting in a wide variety of primary support measures being required. In
the project design a set of seven support classes was developed for the main length and
two for the entry portals. The main support classes are A, B, C, D and the intermediate
classes for the extremes before transfer to the next class A/B, B/C, C/D and D’, D" were
designed for low overburden sections at the entrance and exit portals of the tunnels.
For the purposes of this thesis, three main categories B, C, and D are applied to the rock
mass classes A, B, and C respectively as described below:
1. Support category B (geological conditions: rock mass class A and B) includes
e fibre-reinforced shotcrete,
steel ribs HEB 120 and rock bolts length 5m, 1.5m out- of plane spacing
the excavation took place in 1.5 m advance steps (top heading and benching)
e excavation by drill and blast.
2. The support category C (geological conditions rock mass classes B and C) include:
e additional support to the tunnel crown against raveling and simple collapses
using spiles
e fibre-reinforced shotcrete
e steel ribs and rock bolts
e the excavation took place in 1.0 m advance steps (top heading)
e excavation by mechanical means.
3. The heaviest support category D (geological conditions: cataclastic rock mass
class D, loose screes, sedimentary sequence) include:
e forepoles 12 m long fully grouted 114 mm diameter steel tubes, installed at
the periphery of the crown to form a protection umbrella.
e sealing of excavation face
e temporary invert at the top heading and bolting
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e fibre-reinforced shotcrete
e steel ribs HEB 160 and rock bolts

e the excavation took place in 1.0 m advance steps (top heading)

e excavation by mechanical means.
The spiles and forepoles are used as a protection umbrella to the crown from raveling
and simple collapses but also as structural support to the face of the tunnel. In PHASE 2,
this is simulated as a stiffer zone relative to the rock mass, thickness 0.8 upto 1.2m above
the crown (obtained as an approximation of the thickness due to the 10° slope of the
12m long forepoles).

Table 6.5: Primary support categories and their composition.

PRIMARY SUPPORT MEASURES
EXCAVATION
SUPPORT ADVANCE LINING STEEL ROCK SPILES / TEMPORA
CATEGORY | METHOD (m) THICKNESS | RIBS BOLTS FOREFOLES RY INVERT
30mm dia.
Mechanical HEB | 1.5mx1.5m
A means 1.5 0.20 120 200KN 6m ‘Iong No
spiles
51mm dia.
Mechanical HEB | 1.5mx1.0m
B means 1.0 0.25 140 300KN 6m ‘Iong Yes
spiles
c Mechanical 1.0 0.25 HEB | 1.0mx1.0m 11421::;:'3' Yes
means ' ' 161 | 300KN &
Forepoles

Calculation of the forepolling zone stiffness is done by assuming composite material
properties between the steel poles, the lean concrete filling/grouting and the sectional

area of the rock.

The tunnel geometry is designed in AutoCAD, including the stiffened zone above the
tunnel crown. The forepoles are drilled at an angle about 10°, so the zone rises 1.2m
above the crown and total area of the zone is 29.93m? with a single line of poles number
N= 60 in the cross section.
Table 6.6 : Bolt properties

BOLT PROPERTIES

BOLT TYPE Fully bonded
DIAMETER (mm) 40

ELASTIC MODULUS (Mpa) 200000
TENSILE CAPACITY 0,1
RESIDUAL TENSILE CAPACITY (MN) | 0,01
PRETENSIONING FORCE (MN) 300 /200
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Figure 6.6: Typical liner properties interface for the liner with HEB 120 in the model A.

The stiffness of the zone is obtained by calculating the composite normal stiffness EApipe,
of the steel section filled with grout and after calculating the Elasticity modulus of the
stiffened zone from the composite Normal Stiffness of the rock and the forepolling pipes
EArock and EApipe respectively, the relationship used is as shown below.

ErockArock T+ EI:EEpfpgApfpg I =N
Atotal (6.2)

Efﬂrepa!!iﬂg =

where

E.. _ Esrgs'fﬂsrgs'!"'Egraurﬂgmur
bipe —

f‘lpz‘pe

Epipe-= (210*10° kPa*0.000729 m2 +20*103 kPa*0.010207 m?)/ 0.010936 m?
=14.017 *106 kPa, = 14017MPa
Eforepoliing = (703 MPa *29,93 m?2 +(14017 MPa*0,010936 m?) *60)/ 29.93
=1247MPa

Definition of data sets for analysis

By use of the Fig. 6.2 and 6.3, the rock mass class, the tunnel depth, the support class
and consequent displacement for sections along the tunnels every 10m are extracted.
This is achieved by importing the figures in AutoCAD and drawing perpendicular lines
along the 1170m tunnel length. Then, through scaling, the tunnel data is extracted. In
this case 117 data sets are obtained, well distributed among the aforementioned model
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classes. Calculations for the input data for every data set is done using the relations
explained Chapter 5. The calculation is performed in an Excel spreadsheet and is
presented in Appendix A.

OVER MOD. STRESS CROWN
KILOMETRIC |BurDEN| son |suppor| ©OF | COHES! REDUC. |DoT LAC
DISTANCE | HEIGHT | cLAss |TcLass |EEASTICH ONic ¢ Aer | acTor, | EMENT

m) TYE | (Mpa) A FEM

(Mpa) (mm]
29:200 | 21000 | ¢ C 1052 | 065 23 150 | 035 | 350
20:210 | 27725 | C C 1052 | 065 23 124 | 035 | 101
29:220 | 35450 | B B 2000 | 115 26 1,05 03 | 0192
209:230 | 43,175 | B B 2000 | 1,15 26 134 03 48
20:240 | 48900 | D ) 703 | 048 20 073 | 035 | 191
29:250 | 49625 | D D 703 | 048 20 073 | 035 | 193
294260 | 52,350 | C C 703 0,65 23 084 | 0,35 15
20:770 | 52075 | C C 703 0,65 23 088 | 0,35 140
20:280 | 52800 | D ) 703 | o048 20 071 | 035 | 211
20:200 | 53525 | D 5] 703 | 048 20 070 | 035 | 213
29:300 | 57250 | D ) 703 | 048 20 068 | 035 | 236
20:310 | 60,975 | D 5] 703 | 048 20 066 | 035 | 255
20:320 | 61,700 | D ) 703 | o048 20 065 | 035 | 259
29:330 | 62425 | D 5] 703 | 048 20 065 | 035 | 262
20:380 | 62,150 | D ) 703 | o048 20 065 | 035 | 259
29:350 | 63875 | D 5] 703 | 048 20 068 | 035 | 272
20:360 | 66,600 | D D 703 | 048 20 063 | 035 | 288
29:370 | 67,325 | C C 1050 | 065 23 074 | 035 213
20:380 | 66,050 | B B 2000 | 1,15 26 1,03 03 0,45

The respective material and support details are assigned to a finite element analysis
model using the program PHASE 2 8.0 for the 108 sections according to the model
elements they belong and then a computation is performed. The displacement at the
crown of the tunnel is recorded. The obtained displacement and the input data is used
for training an artificial neural network as will be explained in the following chapters.

6.4 FINITE ELEMENT DISPLACEMENT RESULTS

Using the PHASE 2 8.0 program, a total of 117 analyses are performed for the 117
sections of the tunnel. A FEM model from the three models aforementioned is assigned
in conformation to the respective technical-geological conditions of each particular
section along the tunnel. For the results, the tunnel displacement at the crown is
recorded for every model. Fig. 6.7 up to 6.10 show the finite element model stages for
every model and the results of the analyses. Also, a plot of the variation of the
displacement along the tunnel is presented in Fig. 6.11 while in Appendix A, the whole
data set is shown.
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Figure 6.7: Initial loading conditions for Mc;del C.
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Figure 6.8: Crown displacement at the heaviest section for Model C.
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Figure 6.10: Bending moment distribution and principle stress o1 around the tunnel for
the heaviest section along the axis.
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The displacement results obtained from Finite Element Analysis are compared with the
displacement measurements which was obtained during construction of the tunnel as
shown in Fig. 6.11. From this figure it can be seen that there isn’t a clear agreement
between the two plots and differences of up to 25mm are observed at some sections.
The discrepancy can be due to the human factors during construction but mostly due to
the conservative assumptions made in the models. The comparison of the FEM
displacement results with the field measurement results shown above, indicates a
discrepancy of up to 25mm between the values which can be attributed to:
e The fact that the ground properties are not accurately simulated in the finite
element model.
There might be a difference in the distance x, from the tunnel face applied in the
model from the actual distance where the measurement was actually taken
leading to a smaller displacement.
e The presence of weaker zones (e.g. faults or transfer zones) which are not
depicted in the model.

Tunnel Di5p|acement —8&— Field measurements

—@— FEM prediction
60

50

=
o

w
o

Crown Displacement
= N
(=) o

o

=
o

-20
Distance along Tunnel Axis

Figure 6.11: Comparison of the field measured displacements and the FEM
displacements.
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6.5 THE NEURAL NETWORK MODEL

Brief introduction

Tunnel construction proceeds in sequences of cyclic actions. It is of primary importance
to have reasonable estimate of tunnel deformation (crown settlement, convergence,
and foot settlement, etc.) before, during and after completion of the tunnel. The earlier
a final displacement of certain location is known, the better because safety measures
could be taken in advance, (Lee & Akutagawa, 2009). Practical difficulties still exist for
tunnel engineers having to consider complex geology and unpredictability in material
behaviors, leading frequently to mismatch between numerical prediction and field
measurement results.

In the observational method of tunneling, geology and geo-mechanical properties of the
rocks are monitored, tunnel face observation for rock mass condition recorded, as well
as the presence of underground water checked by using the available monitoring
systems, and the data is for on-site decisions. Basing on the data and experiences,
lessons learned from a given cross section or a tunnel is usually utilized for excavation of
upcoming cross sections or another tunnel in similar ground condition. However, the
modernization of the monitoring systems has made available large quantity of data and
in most cases in real time, this calls for more sophiscated tools to improve and utilize the
measured information of various kinds and organize it systematically so as to develop
digitally evaluated tunnel performances.

The application of Artificial Neural Network (ANN) modelling (Hecht-Nielsen 1987;
Kartam, 1997) over the years has proved to be excellent mapping tools in variety of
geotechnical engineering applications. In this thesis, an Artificial Neural Network
approach for predicting crown displacement of a tunnel at final stage by the use of
indirect parameters from Peck, (1969); Kavvadas, (2007) such as the overburden factor
Ns, and the stress reduction factor A, as inputs and field measured displacement as target
data is performed.

The measured displacement for the excavation of the tunnel is obtained by scaling from
the displacement graph presented in an article about the monitoring systems during the
excavation of the S1 tunnel by Georgiannou et.al (2007). The scaling of the tunnel
displacement behavior, the rock mass class, the support class and overburden height is
performed per 10m steps along the twin tunnels. Neglecting the length covered by the
entrance and exit portals, the total length covered is 1170 m giving 117 measured sets.
The results of the procedure are shown in Appendix A.

For the construction of the neural network model, the data obtained from the article by
Georgiannou et. al. (2007) as aforementioned was used as input data for the neural
network model.
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6.6 CONSTRUCTION OF THE ARTIFICIAL NEURAL NETWORK

A neural network model is established in the neural network tool incorporated in the
MATLAB software from MathWorks Inc., (2012). The procedures followed to build the
model are explained below.

Step 1: Data establishment

The basic output of the neural network is the crown displacement, therefore the output
layer has only one vector.

The input layer is comprised of seven parameters which were obtained through the
tunnel displacement analysis approach based on the convergence — confinement curves
as explained in Chapter 4.

Basically as far as NATM tunnels are concerned, the factors that affect tunnel
deformation behavior can be grouped into four major categories, namely:

e Tunnel geometry — this may include the nature, shape and depth of the tunnel
from the ground surface. Deep tunnels tend to have more convergence than the
shallow ones. The slope of the ground surface has also been found to have an
effect on the tunnel behavior in case of shallow tunnels.

e Ground conditions — the geological and geotechnical composition of a tunnel is
the major factor affecting tunnel deformation. Lean and weak soils, swelling
rocks, and fractured rocks converge more than the strong and compact rocks.

e Excavation conditions — the excavation method applied, full face or multi-phase
excavation, and the allowance for confinement, all these affect the behavior of
the tunnel.

e Support conditions — these may include the use of rock bolts to hold loose rock
masses and to minimize displacement. The combination of support systems and
the distance from the face where they are positioned are also major factors in
tunnel deformation.

Table 6.7: Factor and parameters that affect tunnel deformation.

Deformation factor Tunnel parameters
Tunnel geometry Depth, Diameter, Shape
Ground conditions Cohesion

GSI,E,v,oci

Lateral earth pressures
Excavation conditions Excavation step

Number of sequences

Face pressure (TBM)

Support conditions Use of forepoles and /or spiles,
Lining, bolts,

Steel frames
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For the purposes of this thesis, the factors mentioned above were presented through

various

1.

6.
7.

parameters, namely:

The overload factor Ns which represents the load overburden po and the uniaxial

compressive strength of the rock mass.
2po

Ocm

The overload constant, N, = (6.3)

The modulus of elasticity E, - this represents the stiffness and plastic behavior of
the rock mass

The stress reduction factor A, - this is the measure of the influence of the distance
of the placement supports on a tunnel of radius R. (case where no plasticity
occurs around the tunnel during excavation.

2
A=1-0.75 l;l (6.4)

1-3(3)

The support classification as a rating of the pressure exerted by the support
system on the tunnel walls to counter deformation.

The rock classification as an in-field classification for conditions as seen and
judged by the engineer

The overburden load burden Po

The coefficient of lateral pressure Ko around the tunnel environment

Therefore, with seven input parameters for the 117 data sets obtained as previously said,
the total number of data elements available for the neural network is 819 elements and
117 target elements.

Step 2:

Data processing

It is essential that the data used for training and testing represent the same population
in nature. In this step the data obtained for network is normalized using the relationship

below

Where,

X—Xmin
Xnew =~ _ (6.5)
Xmax—Xmin

Xx= current value in the element

Xmax and Xmin = the minimum and maximum values in the element set
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Step 3: Selection of the Neural Network model architecture

The network architecture comprises of the number of hidden layers, the number of
neurons in each layer, the learning algorithm and the transfer functions. Due to the
limited size of the training data, a single hidden layer network with backpropagation is
chosen.

The selection of the optimum number of neurons is performed by relating the amount
of data with the number of unknowns in the network. In case it is bigger than the input
data sets then the network does not give a binding result.

Table 6.8: Simple calculation for the number of unknowns in an artificial neral network
U, = p*n + output +bias

Input Hidden layer | Bias, | Output | Total Free

neurons,p | neurons, n b neuron, | unknown, | elements
o U

7 5 1 1 37 71

7 6 1 1 44 64

7 7 1 1 51 57

7 8 1 1 58 50

7 9 1 1 65 65

7 10 1 1 72 36

7 11 1 1 79 29

7 12 1 1 86 22

7 14 1 1 100 8

It happens that, the optimum number of unknowns lies between 5 up to 8 and a
procedure is to be followed later to select the best number.

Various parametric studies are conducted in order to describe the best architectural
parameters.

Selection of suitable activation function and learning algorithm: for number of neurons
5,6, and 7 with varying percentage of training, validation and testing data 33 =9 analyses
are performed using three different algorithms; the Lavenberg — Marquart algorithm,
the Scaled Conjugate Backpropagation and the Bayesian Regulation. A total of 18 runs
are performed with the Logarithmic Sigmoid (logsig) and 18 runs for the Tangent Sigmoid
(tansig) transfer functions.

The neural network models are created using the Matlab nnstart Tool as described
below.

Importing data into Matlab: The first step is to import the data sets into Matlab using

the import data commands; Matlab allows the importation of data in various file types
e.g. excel, text, binary. A set of 10 random data sets is separated from the 117 data sets
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and is kept in another file to be used as testing data. Therefore, three data files are
imported; the InputData.txt, TargetData.txt and TestData.txt with 108, 108, and 10 sets
respectively. Care should be taken that the number of target sets is equal to the number
of input sets.

Using the Neural Network Start Tools, nnstart: The prediction/function fitting function
is chosen and the imported data is allocated to the input and target prompts as shown
in Fig. 6.13.

Definition of the percentages of the training sets: the data is divided into three sets; the
training set, the validation set and the testing set.

4} Select Data

\’ ‘What inputs and targets define your fitting problem?

Get Data from Workspace Summary

Input data to present to the network. Inputs 'FinaliniputData’ is a 108x7 matrix, representing static data: 108
B Inputs: FinaliniputData B samples of 7 elements.

Target data defining desired network output. Targets 'FinalTargetData' is a 108x1 matrix, representing static data: 108

[c] Targets: FinalTargetData ~ samples of 1 element.

Samples are: (@] [“'] Matrix columns (@) [E] Matrix rows

Figure 6.12: Neural network fitting tool data prompts.

The training sets are data elements which are presented for training the network and
the data is used to correct the errors while learning, the validation set elements are used
for measuring generalization and to halt training when generalization seizes to improve
and finally the test set elements are used as an independent check on the quality of
training process and training results. Normally the training percentage is always bigger
than 50% and the remainder equally share for the validation and testing sets. In this
study percentages of 60%, 70% and 80% are examined for the definition of the optimum
percentage for the neural network model.

Network training analyses for definition of training parameters: The nnstart tool uses
the tangent sigmoid (tansig) transfer function. The training algorithms included in the
tool are; the Levernberg — Marquart LM), the Bayesian Regulation and the Scaled
Conjugate Gradient algorithms. They have standard learning parameters in the nnstart
tool which the user cannot change, so they are used as is. The parameters used in the
LM algorithm are shown in Figure 6.14.
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Training eccurs according to trainlm training parameters, shown here with their default values:

net.trainParam.epochs lead Maximum number of epochs to frain
net.trainParam. goal a Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1=-7 Minimum performance gradient
net.trainParam.mu @.881 Initial mu

net.trainParam.mu_dec a.1 mu decrease factor
net.trainParam.mu_inc 18 mu increase factor
net.trainParam.mu_max 1219 Maximum mu
net.trainParam.show 25 Epochs between displays (NaM for no displays)
net.trainParam. showCommandLine false Generate command-line output
net.trainParam. showlindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Figure 6.13: Standard parameters in the command for the Lavenberg-Marquart
algorithm (trainim).

To define the best training algorithm, a set of 18 neural network models is defined with
number of neurons ranging from 5 to 7 neurons and a tangent sigmoid transfer function.
The training is executed for three training algorithms for 5,6 and 7 neurons and with
60%, 70% and 80% training data elements. The result for the 70% training has the lowest
error values and best regression fit, while the Bayesian Regulation algorithm gives a
better performance. Therefore, the Bayesian Regulation algorithm is selected for the
network.

This optimal artificial neural network model, after the analyses mentioned above (with
the adjust number of neurons, learning rate and momentum), is determined by
evaluating one or more error indices, such as the sum of squared error (SSE), the root
mean square error (RMSE) and coefficient of regression (R?) with testing after learning.
In this case the MSE and R? are applied.

According to the results, the best performance combination is registered from the
Bayesian Regulation algorithm with 70% training data and 7 hidden layer neurons. Table
6.9 shows the best performance in each algorithm and Table 6.10 shows all
performances for the 70% training distribution.

Table 6.9: Neural network training results with 70% training distribution for selection of
best algorithm.

NUMBER OF
TRANSFER HIDDEN NUMBER OF REGRESSION
ALGORITHM FUNCTION % TRAINING LAYERS NEURONS MSE TRAINING
Levenberg-Marquardt (trainlm) 60 1 5 26,037 0,967
Scaled Conjugate Gradient tansig 80 1 7 59,05 0,899
Bayessian Regulation Backpropagation 70 1 7 21,75 0,969
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Table 6.10: Neural network training results with 70% training distribution for selection of
best algorithm.

ALGORITHM TRANSFER % NUMBER MSE  REGRESSION
FUNCTION TRAINING OF R
NEURONS TRAINING
Levenberg-Marquardt tansig 70 6 27,051 0,973
(trainlm) 7 26,58 0,959
5 28,106 0,957
Scaled Conjugate 6 71,412 0,895
Gradient 7 93,135 0,332
5 84,128 0,849
Bayessian Regulation 6 25,58 0,962
7 21,75 0,969
5 22,873 0,963

Selection of number of validation checks for the network: to select the number of
validation checks, eight analyses for 0,10,100 and 1000 validation checks are performed
with 1000 epochs and the results show that the best number of validation checks is
observed to be 1000 as illustrated in Table 6.11.

Table 6.11: Results for selection of best number of validation checks.

validation learning rate MSE R2_TRAINING R2_TESTING
checks mu mu_inc mu_dec mu_max
0 0,005 0,01 10 1,00E+10 33,88 0,953 0,988
10 31,992 0,954 0,95
100 32,77 0,933 0,976
1000 13,72 0,958 0,988
0 0,005 0,01 10 1,00E+20 27,15 0,96
10 54,804 0,945 0,952
100 30,893 0,939 0,954
1000 17,179 0,958 0,962

Selection of the best number of neurons: The best number of neurons highly depends
on the amount of data available for training, as illustrated above. Analyses are performed
with the Bayesian Regulation algorithm for 5 up to 14 neurons in the hidden layer for
training percentages of 60%, 70%, 80% and 90%. A total of 36 runs are performed and
the results are presented in diagrams below.
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Figure6.14: Training efficiency, Regression results for selecting best number of neurons

in the network.

MEAN SQUARE ERROR

5 ] 7 B g 10 11 12 13 14

Mo of neurons 260 m70 mED w90

Peage Training

Figure 6.15: Training efficiency, MSE results for selecting best number of neurons.

From the results shown in Figures 6.14 and 6.15, it can be seen that the best results, i.e.
lowest MSE and highest regression are obtained with 7 neurons for 60% and 70% training
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data. Also another clearer comparison is done for 60% and 70% and shows that the
model with 70% training data is more efficient. See Figures 6.17 and 6.18.

VARIATION REGRESSION WITH No OF NEURONS
0,98

0,975

0,97

=
[¥a)
(=]
tn

0,95 —a—60%

Regression R2

—a— 70%
0,955

0,95

0,945
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15

Mo of neurons

Figure 6.16: Selection of training %ages based on the set with highest regression.
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Figure 6.17: Selection of training %ages based on lowest mean square error.

Selection of the basic learning specifications: This is also called calibration of the
network. It includes performing analyses to define optimum learning parameters that
will result into the best training model. Learning rates ranging from 0.005, 0.001, 0.05,
0.01, and 0.1 are examined with various momentum increment levels of 0.1, 0.2, 0,3, 0.4
and 0.5. This is done for 1x10%2° maximum performance rate with 0 validation checks (20
analyses) and with 1000 validation checks (20 analyses) as shown in Table 6.12.
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Table 6.12: ANN architecture and Learning parameters evaluation

ANN ANALYSIS 1000 VALIDATION CHECKS
No OF HIDDEN LAYERS 1
No OF NEURONS 7
MAX PERFORMANCE RATE 1E+20
No OF OUTPUT LAYERS 1

LEARNING RATE /MOMENTUM 0,005/0,1 0,005/0,2 0,005/0.3 0,005/0,4 0,005/0,5
0,001/0,1 0,001/0,2 0,001/0.4 0,001/0,4 0,001/0,5
0,05/0,1 0,05/0,2 0,05/0.5 0,05/0,4 0,01/0,5
0,01/0,1 0,01/0,2 0,01/0.6 0,01/0,4 0,01/0,5
0,1/0.1 0,1/0,2 0,1/0,3 0,1/0,4 0,1/0,5

This process is performed using another Artificial Neural Network Training Tool (nntool)
in Matlab. This tool is the major neural network tool in Matlab, and it has features like:

Simulate: this is where the trained network is used to perform the prediction.

Weight re-initialization: this allows the user to keep the same initial weights or to apply
the probabilistic method where new initial weights are used for every run. Also provision
for editing the weights or biases is available.

After the analysis, the network learning rate combination which produces the highest
regression and lowest Mean Square Error is selected to be the best model for training
the neural network. The results of the calibration process are presented in Figures 6.19
to 6.22.

According to Figures 6.19, 6.20, 6.21 and 6.22, the learning parameter combination with
the highest regression and lowest MSE selected has learning rate 0.1 and momentum
0.4.

95



0,98

0,96

0,94

REGRESSION

0,92

0,9

REGRESSION VALUES FOR VALIDATION CHECKS =0

m 0,005 m0,001 m0,01 m0,1

0,01

0,1 0,2 0,3 0,4 0,5
MOMENTUM

LEARNING RATE

Figure 6.18: Regression from network calibration results 1000 validation checks.
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Figure 6.19: Mean Square Error from network calibration results 0 validation checks.
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Figure 6.20: Mean Square Error from network calibration results 1000 validation checks.
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Figure 6.21: Regression values from network calibration results for 1000 validation
checks.
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Consequently, the final model selected to be used for the prediction of tunnel crown
displacement has the following parameters:

Table 6.13: Final training and calibration parameters adopted for neural network.

NETWORK FUNCTION PARAMETER
TRANSFER FUNCTION TANSIG
TRAINING ALGORITHM BAYESIAN REGULATION
LEARNING ALGORITHM LEARNGDM

(gradient descent with
momentum function)

VALIDATION CHECKS 1000
No OF HIDDEN LAYERS 1
No OF INPUT ELEMENTS
No OF NEURONS 7
LEARNING RATE/ MOMENTUM 0.1 /0.4
MAX PERFORMANCE RATE 1E+20
No OF OUTPUT LAYERS 1

6.7 TRAINING AND RESULTS OF THE NEURAL NETWORK MODEL

Using the above training and learning parameters, the neural network is trained with 108
data sets of 7 elements. Fig. 6.23 shows the structure of the neural network structure in
Matlab.

Hidden Layer OQutput Layer

Input l

Figure 6.22: Structure of the neural network in Matlab.
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Consequently, the training and the testing results of the analyses comply very well with

the measured results which categorically proves that the artificial neural networks can
be trained and used for prediction of tunnel displacements. The neural network
prediction has a testing regression of 97.3% and MSE of 24,7 as presented in Table 6.14
The correlation of the testing data with the measured data shown in Figures 6.24 and
6.25 shows the output reached after the training. The results from training the predictive
model conform well with the target and therefore it can be confirmed that artificial
neural networks can be successfully used for prediction of tunnel behavior. Training and
testing results are plotted in Figures 6.24, 6.25, and 6.26.

The Root Mean Squared Error for the prediction can be calculated from

RMSE = \/%Z?’:l(Target — Prediction)? (6.5)

Where N is the number of test sets.

Table 6.14: Performance results of the final artificial neural network.

R2 R2 R2 MSE MSE MSE
TRAINING | VALIDATION | TESTING | TRAINING | VALIDATION | TESTING
90,4% 96% 97.3% 24,7 30,68 34,67

Table 6.15: Root Mean Square Error of the training data in mm.

RMSE TRAINING RMSE VALIDATION | RMSE TESTING
5mm 5.5mm 9mm

99



Output ~= 0.78*Target + 4
= Now & [=
Q Q o o [=} =} Q

=]

60

50

40

30

20

10

Output ~=0.89*Target + 2.9

Training: R=0.90428

T Data
Fit
¥Y=T

Target

Test: R=0.97271

Z Data
Fit
¥=T
g o]

¢}

o]

]
0 20 40

Target

Output ~=0.88*Target + 1.9

Output ~=0.82*Target + 3.4

40

30

i}
=]

o
(=4

=]

Validation: R=0.95972

o

20 40 60
Target

All: R=0.93152

Target

Figure 6.23: Regression results from the neural network tool in Matlab.
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DISPLACEMENT RESULT AFTER ANN MODEL TRAINING
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Figure 6.25: Learning result of the ANN model.

Testing the prediction ability of the ANN model

The neural network model is established for the prediction of crown displacement at a
position x(m) behind the tunnel face. If during construction, based on previous
geotechnical investigations, the engineers can gather enriched information on the
geological and geotechnical characteristics of the tunnel environment, then by
calculating and establishing the seven parameters used in training the artificial neural
network, a good prediction of the displacement field can be obtained.

In the previous section, a multi-layered perceptron of one hidden layer is trained using
backpropagation learning algorithm Bayesian Regulation and tangent sigmoid transfer
function. It is trained with 108 training sets of 7 elements and 108 target sets and the
learning results are satisfactory.

After network learning, a data set of 10 samples of 7 elements which was not used during
training is applied to the model to test the prediction capacity of the network.

The regression plots of the predicted data and the measured data give a satisfactory
compliance with R2 = 0.87. The results of the test are presented in Figures 6.27 and 6.28.

101



MEASURED DISPLACEMENT
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Figure 6.26: Correlation of measured and predicted displacement.

The predicted crown displacements are plotted together with the measured
displacements. It is clearly observed that although the fitting is not 100%, the model can
give representative prediction which can be used in the decision making process during
tunnel excavation.
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Figure 6.27: ANN predicted crown displacements.
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6.8 COMPARISON OF THE TUNNEL DISPLACEMENT RESULTS

The empirical analyses based on the formulations proposed by Panet, (1995) have been
used for the calculation and evaluation of tunnel displacement and deformation
behavior for a long time; and have always given a good base for the observational
method of tunnel excavation.

On the other hand, the FEM analyses have also been very instrumental in the design and
construction of tunnels because they provide the ability to simulate the probable
conditions and ground stress environment so as to reproduce the displacement field and
the soil behavior during excavation. The FEM approach has also a weakness in that the
parameters used in the models are not fully representative of the complex nonlinear
behavior of the tunnel environment. Therefore, many times the predicted values differ
from the actual displacement as is measured during excavation.

Artificial neural networks learn from the ‘example’ data presented to them and use this
data to adjust their weights and biases in an attempt to capture the relationship between
the model input and the corresponding outputs (Lee & Akutagawa, 2008).

In this study, some of the input parameters used for training the neural network are
obtained using analytical relationships in order to combine the empirical deformation
relationships with the values obtained from measurements. This data is used as training
data, as crown displacement obtained from field measurements is used as the target
data. A neural network is trained, and the results are compared with displacement
results obtained from FEM models simulated for sections along the tunnel as explained
in Section 6.2.

According to the results, the measured displacement and the FEM predicted
displacements present a reasonable discrepancy which may be due to the difference
between the assumed geotechnical parameters and the real geotechnical parameters as
aforementioned. Also the human factor related to the workmanship and the different
real time conditions, which may affect the deformation behavior, cannot be simulated
by the model.

The plot of the regression coefficient (Fig. 6.29) between the measured displacements
and the FEM displacements indicates that the regression R? is only 10%. This is an
indication that there is very little correlation between what the FEM model predicts and
from what actually happens most especially in case of complex ground conditions like
the ones experienced in the S1 tunnels of the Egnatia Highway. To obtained a closer
approximation between the measured and the FEM results, the parameters used in the
FEM model need to be obtained by back analysis of the measured results using neural
networks or generic algorithms (Yang et.al. 2010).
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Meanwhile, the plot of the regression between the measured displacement and the
predicted values from the ANN (Fig. 6.30) gives a value of 87% which is quite good. This
is due to the fact that the ANN model is trained using target values from field
measurements. But also it is proof that the model can perfectly learn the tunnel behavior
from the input data. This is also observed from the plot of the error between the target
data and the output data of the neural network.

A plot of the displacement diagrams from the three models is presented in Fig. 6.31 and
it is observed that the ANN and the field measurements have a closer agreement than
the FEM results. It can be observed in Fig. 6.32 that the error is small with a few sections
where it exceeds 10mm.
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Figure 6.28: Correlation between FEM and measured displacements.
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Figure 6.29: Correlation between the trained ANN and measured displacements.
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Figure  6.30: Comparison between crown displacements from  survey
measurements(brown), FEM analyses (grey), and ANN learning (blue).
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Figure 6.31: Error range between the target output data and the output of the neural
network training.

Therefore, as a preliminary investigation of the effectiveness of the ANN approach to
predict tunnel deformation in cases where there is availability of training data, either
from the already excavated length of the tunnel or from another tunnel which has the
same technical-geological characteristics, it has been proved that the artificial neural
networks can perfectly learn and predict with high accuracy and confidence.

6.8 SENSITIVITY ANALYSIS OF THE ARTIFITIAL NEURAL NETWORK

The development of a deterministic or stochastic model which is based on little or
missing data characterized by large error approaches, can lead to predictions which do
not relate with the empirical evaluation or specialized knowledge (Johnson & Winchern,
2007).

One of the basic weaknesses of the data used in the model is that it is obtained at random
and the behavior of the tunnel is not linear. Therefore, the sensitivity of the neural
network model should be examined/ checked to see the effects of input data variations
on the training results.

In the sensitivity checks, the interrelationship and the influence of the data elements are
analyzed so as to identify the elements which have the highest influence on the results.
A statistical analysis is performed to evaluate the correlation between the data input
elements by plotting the regression scatters. The regression is recorded as shown in Fig.
6.33; it is observed that the elements Rock class, Support class, Elastic modulus E, and
the coefficient of lateral pressure Ko are related with regressions of 38% up to 84% while
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the stress reduction factor A, the overburden, and Ns have lower regression of 0.3% up
to 48% as shown in Table 6.16.

Table 6.16: Correlation values between the seven data input elements.

REGRESSION ( %) ROCK | SUPPORT
CLASS | CLASS E Ko Ns | OVERBURDEN | A

ROCK CLASS 1 52% 384 | 476| 31,1 0,3 17
SUPPORT CLASS 52 1 64 55,5 41 1,8 2
E 38,4 64 1 84 44 1 0,8
Ko 47,6 55,5 84 1 48 0 0,1
Ns 31,1 41 44 48 1 31 3
OVERBURDEN 0,3 1,8 1 0 31 1 4
A 17 2 0,8 0,1 3 1

The correlation analysis can help when there is a need to reduce the number of variables.
The variables with high R? coefficient are statistically dependent, therefore, an element
statistically dependent on the rest can be eliminated to reduce the number of unknowns
in the network solution hence improving accuracy. In this case, the dependency of the
elements is minimal therefore all the data sets may have a fundamental contribution to
the accuracy of the neural network.

To perform the checks, the data in one of the 7 input parameters is reduced to zero, to
assume the absence of that information without reducing the total number of input
parameters. i.e. if the input for elements x=0, inside the neuron, when multiplied by the
weight, w, the element is zeroed, hence does not contribute to the summed weights in
the neuron.

Seven parametric analyses are performed by retraining the neural network, each analysis
with one of the input element values zeroed. The performance results of the analyses
are summarized in Table6.17.

It is observed from the results that the performance (MSE) of the neural network reduces
drastically from 24,7 to 173, 63.2, 56.1 when the data in the support class, Ko, and Ns
respectively is excluded and reduced to zero, while A, Rock class and E, tend not to
heavily affect the network performance. However, the regression (training) of the target
data with the trained data from the Rock class, Ko, Support class and A are minimally
affected while for the elastic modulus E, Ns and Overburden it reduces drastically.
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Table 6.17: Performance results from the sensitivity analysis of neural network.

ROCK | SUPPORT OVER ANN

CLASS CLASS E | Ko | Ns | BURDEN | A
Reesting (%) 92,7 90,6 | 47| 93| 39,7 72,5 | 81,3 | 973
MSE 29,2 173 | 28,4 | 63,2 | 56,1 463 | 27| 247
RMSE(mm) 5,5 131 52| 79| 75 68| 51| 49

The plots of the training results from each sensitivity analysis and the errors between
the results obtained from the full input data set and those from the sensitivity analyses
are also presented in Fig. 6.34,
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Figure 6.33: Comparison of training results for sensitivity due to reduction to zero of

input data.
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Figure 6.34: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data where one of the
elements is reduced to zero.
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Figure 6.35: Comparison of training results for sensitivity due to reduction to zero of input
data from stress reduction factor A.

109
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Figure 6.36: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data of element A =0.
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Figure 6.37: Comparison of training results for sensitivity due to reduction to zero of input
data from the element stress reduction factor A.
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Figure 6.38: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data of element Ko =0.
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Figure 6.39: Comparison of training results for sensitivity due to reduction to zero of input
data from the element overload factor Ns.
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Figure 6.40: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data of element Ns =0.
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Figure6.41: Comparison of training results for sensitivity due to reduction to zero of input
data from the element Elastic Modulus E.
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COMPARISON OF ERROR BETWEEN ANN AND ANN
WITH E=0
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Figure6.42: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data of element Elastic
Modulus E =0.
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Figure 6.43: Comparison of training results for sensitivity due to reduction to zero of input
data from the support class.
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COMPARISON OF PERFOMANCE ERROR BETWEEN
ANN AND ANN WITH SUPPORT CLASS=0
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Figure 6.44: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data of element

Support class =0.
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Figure 6.45: Comparison of training results for sensitivity due to reduction to zero of input

data from Rock class.
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COMPARISON OF PERFORMANCE ERROR
BETWEEN ANN AND ANN WITH ROCK CLASS=0
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Figure6.46: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data of element Rock class
=0.
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Figure 6.47: Comparison of training results for sensitivity due to reduction to zero of input
data from Overburden.
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COMPARISON OF PERFORMANCE ERROR
BETWEEN ANN AND ANN WITH OVERBURDEN=0
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Figure 6.48: Comparison of displacement errors between the neural network trained with
all the input training data and the network trained with input data of element
Overburden=0.

To perform a sensitivity-check on the proposed artificial neural network for predicting
tunnel crown deformation, seven input parameters are applied in the proposed model.
During the analysis one parameter is selected and its value is reduced to zero to
represent absence of that data without reducing the neural network architecture.

From the results presented in the above diagrams, it can be concluded that:

e The variables selected to be used in the training of this neural network have got
an influence on the training and performance results obtained because there
are discrepancies between network results and the sensitivity test results in all
the parameters.

e The correlation plots and the regression shows that there is an interdependency
between the input data parameters which would call for elimination of those
parameters with high dependency. But in this case the dependency is not high
enough to justify the elimination of any parameter.

6.9 CONCLUSIONS FROM THE CASE STUDY

In this thesis, the excavation of a road tunnel S1 of the Egnatia Highway is studied. The
S1 twin tunnel the technical-geological conditions encountered during construction were
quite complex. The tunnel is located in a weak fragmented and mostly decomposed
cataclastic Limestone, with abrupt but also continuous variation of the rock
characteristics along the tunnel. This resulted into large tunnel deformations which were
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not predicted by the finite element analyses. Therefore, these conditions called for very
close supervision, systematic monitoring schemes and good Engineer- Contractor
corporation.

An approach of using Artificial Neural Networks as a means of utilizing the data base
obtained from monitoring and field measurements, to be used for prediction of tunnel
displacement during excavation is proposed. Depending on the amount of data and the
position along the tunnel where it is extracted, neural networks can accurately predict
the behavior of a tunnel or reproduce its existing conditions and behavior.

Finite element models are established basing on the descriptions from the bibliography
of the S1 tunnel. According to Georgiannou et.al, (2007), five rock classifications and five
initial support systems were used in the tunnel but for the purposes of this study, three
rock classifications and support classes are applied to create three FEM models. The
models are analyzed in accordance with the overburden height and the characteristics
of each section are scaled off from the technical-geological diagrams presented in the
paper. The deformations from the FEM analyses are recorded and stored. The measured
displacement obtained during the actual excavation is also recorded.

The measured displacements and the FEM predicted displacementdiffer substantially,
indicating the complexity of the encountered ground conditions as referred in the text.
Although numerical simulation with FEM has grown to be an indispensable design and
analysis tool in tunnel engineering, it is also true that when urgent judgment about
tunnel safety is needed on site, the method used herein should be able to produce
wanted results with minimum time with no delay (Lee and Akutagawa, 2009).

The introduction of ANN can help to provide a very quick way to interpret field
measurement results, predict final displacement and make judgment on tunnel safety at
the final stage, during construction.

In this Thesis a multi-layer perceptron backpropagation neural network is established
and calibrated with an architecture of a single hidden layer with 7 neurons, sigmoid
transfer function, Bayesian Regulation learning algorithm, learning rate 0.1 and
momentum increment 0.4.

The network is trained using the Matlab Neural Network Tool. It has seven input
parameters with 108 sample sets, while 10 sets are reserved for prediction testing. The
target data is the measured crown displacement of each respective section along the
tunnel.

During the process of creating, running and obtaining the results from the neural
network analysis the following are concluded:

e To obtain the correct architectural parameters for the neural network a number
of analyses must be performed by applying all possible combinations of

117



parameters, algorithms and transfer functions so as to find that optimum
combination which can produce the best prediction or any other scope for which
the network is being built.

e The amount of input data used for training should be large enough to cover the
number of unknowns in the Hessian matrix created during the calculations inside
the network. Data less than 1.5 times the unknowns may not give reliable results.

e Every neural network is special on its own, therefore, there are no standard rules
for setting the architecture apart from the numerous parametric tests.

e The performance of the neural networks is influenced fully by the training data
system adopted, that’s to say, the amount of data allocated for training,
validation, and testing. The training percentage should be allocated the biggest
portion. However, for cases where a very large amount of data is available, this
may not be crucial.

e The number of hidden layers in the network setup greatly affects the network
performance since it dictates the number of unknowns created during
calculation.

e The multi-layer perceptron backpropagation network used for the prediction of
tunnel crown displacement, has sigmoid transfer function and Bayesian
Regulation learning algorithm, the architecture is 7-7-1, learning rate 0.1 and
momentum increment 0.4. The network is trained with 108 input training sets
and 10 test sets. The regression R? between the target (measured) displacement
and the predicted displacement is 87%, the Mean Squared Error of 24.7 and the
Root Mean Squared Error 4.9mm. This is good for a quick prediction.

Consequently, the artificial neural network model created gave a truly reliable result
leading to the conclusion that artificial neural networks can be used as a quick tool to
predict tunnel behavior as a means of ensuring tunnel safety, real time data analysis and
minimization of tunnel failure risks.
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CHAPTER 7
CONCLUSIONS

In the present thesis a highway tunnel in the mountainous area of Ipeiros in Eastern
Greece is selected as an object of study. The 12m high and 13m wide twin tunnel with
an overburden varying between 10m — 90m, passes through a range of geological
formations from thickly bedded fractured limestone block size >10cm to sandy gravel
then loose carbonate cataclasite gouge. According to Georgiannou et.al. (2004), during
construction, to counter the complex technical-geological conditions of the tunnel, a
detailed monitoring system was established to provide in detail a reliable deformation
data base for tunnel support decisions and general safety. A brief explanation is given on
the importance of deformation monitoring and the modern methods applied in tunnel
engineering whereas the previous works on use of tunneling data for prediction using
artificial Neural Networks (ANN) is also included.

An ANN for prediction of crown displacement is established using the monitoring data
and analytical parameters obtained from the technical geological characteristics of the
tunnel. A series of parametric studies is performed and the optimal training model of the
ANN is determined. Furthermore, additional parametric analyses are performed on the
model to confirm its stability.

The results from the ANN prediction are compared with the results obtained from finite
element analyses of the same tunnel. Consequently, the following are concluded:

I.  The introduction of ANN can help to provide a very quick way to interpret field
measurement results, predict final displacement and make judgment on tunnel
safety at final stage, during construction.

1. Every neural network is special on its own, therefore, there are no standard rules
for setting the architecture apart from the numerous parametric tests.

Ill.  Monitoring data can be utilized in the tunnel for prediction of deformations in
sections ahead of the face using data obtained from the already excavated
sections, whereas in case of deformation of sections after excavation also the
face data is included to reinforce the data.

IV.  The combination of ground conditions, support conditions, overburden height,
stiffness modulus and analytical parameters like the overload factor Ns, and the
stress reduction factor A, provides good and representative ANN training
parameters for deformation prediction in tunnels.

V. Itis fully conceived that tunnel behavior can be modelled precisely using Finite
Element Analysis, however, in some complex situations there is need for extra
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VI.

on-site interpretation and reinforcement of data utilization skills to confront such
in-situ conditions.

Consequently, the artificial neural network model created gave a truly reliable
result leading to the conclusion that; Artificial Neural Networks can be used as a
quick tool to predict tunnel behavior as a means of ensuring tunnel safety, real
time data analysis and minimization of tunnel failure risks.
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APPENDIX A
EXCEL SPREADSHEETS FOR SCALE-OFF MEASUREMENTS FROM THE S1 TUNNEL

KILOMETR | OVER SOIL SUPPOR | MOD. OF | COHESION | ¢ Acr STRESS CROWN
IC BURDE | CLAS | TCLASS | ELASTICI ,¢ (Mpa) REDUC. DISPLACE
DISTANCE N S TY E FACTOR,A | MENT
HEIGHT (Mpa) (mm)
(m)
29+200 21,00 C C 1052,04 0,65 23 1,498493 0,35 0
29+210 27,73 C C 1052,04 0,65 23 1,236938 0,35 0
29+220 35,45 B B 2000 1,15 26 1,048837 0,3 0
29+230 43,18 B B 2000 1,15 26 1,344224 0,3 5
29+240 48,90 D D 703 0,48 20 0,733675 0,35 5
29+250 49,63 D D 703,13 0,48 20 0,729067 0,35 4
29+260 52,35 C C 703,13 0,65 23 0,835453 | 0,35 10
29+270 52,08 C C 703,13 0,65 23 0,838723 0,35 5
29+280 52,80 D D 703,03 0,48 20 0,705545 0,35 14
29+290 53,53 D D 703,03 0,48 20 0,699618 | 0,35 17
29+300 57,25 D D 703,03 0,48 20 0,677724 0,35 17
29+310 60,98 D D 703,13 0,48 20 0,656843 | 0,35 18
29+320 61,70 D D 703,13 0,48 20 0,652388 0,35 17
29+330 62,43 D D 703,13 0,48 20 0,649487 | 0,35 18
29+340 62,15 D D 703,13 0,48 20 0,650931 | 0,35 18
29+350 63,88 D D 703,13 0,48 20 0,642468 0,35 17
29+360 66,60 D D 703,13 0,48 20 0,629348 | 0,35 11
29+370 67,33 C C 1050 0,65 23 0,736907 0,35 14
29+380 66,05 B B 2000 1,15 26 1,029559 | 0,3 10
29+390 65,78 B B 2000 1,15 26 1,035849 0,3 8
29+400 64,50 B B 2000 1,15 26 1,048837 0,3 8
29+410 65,23 B B 2000 1,15 26 1,042273 | 0,3 9
29+420 66,95 B B 2000 1,15 26 1,023401 0,3 6
29+430 59,68 B B 2000 1,15 26 1,099111 | 0,3 6
29+440 56,40 B B 2000 1,15 26 1,13174 0,3 6
29+450 56,13 D D 703 0,48 20 0,682942 | 0,35 8
29+460 48,85 D D 703 0,48 20 0,733675 | 0,35 22
29+470 46,58 D D 703 0,48 20 0,753258 0,35 40
29+480 43,30 D D 703 0,48 20 0,783617 0,35 48
29+490 41,03 D D 703 0,48 20 0,808673 0,35 57
29+500 38,75 D D 703 0,48 20 0,836742 | 0,35 50
29+510 37,48 D D 703 0,48 20 0,84049 0,35 59
29+520 36,20 D D 703 0,48 20 0,872649 0,35 79
29+530 35,93 D D 703 0,48 20 0,876963 | 0,35 56
29+540 34,65 D D 703 0,48 20 0,894944 0,35 59

124




29+550 33,38 D D 703 0,48 20 0,914177 0,35 69
29+560 32,10 D D 703 0,48 20 0,940184 0,35 56
29+570 29,83 D D 703 0,48 20 0,987098 0,35 55
29+580 26,55 D D 703 0,48 20 1,065075 0,35 69
29+590 24,28 D D 703 0,48 20 1,065075 0,35 45
29+600 21,00 D D 703 0,48 20 1,255881 0,35 29
30+310 26,00 D D 703 0,65 19 0,973398 0,345241 13
30+320 28,00 D D 703 0,65 19 0,927125 0,345241 12
30+330 30,00 D D 703 0,65 19 0,887021 0,345241 12
30+340 33,00 D D 703 0,65 19 0,83598 0,345241 17
30+350 36,00 D D 703 0,65 19 0,793445 0,345241 22
30+360 37,00 D D 703 0,65 19 0,7808 0,345241 25
30+370 40,00 D D 703 0,65 19 0,746658 0,345241 43
30+380 43,00 D D 703 0,65 19 0,717279 0,345241 13
30+390 44,00 D D 703 0,65 19 0,708377 0,345241 12
30+400 43,00 D D 703 0,65 19 0,717279 0,345241 11
30+410 41,00 D D 703 0,65 19 0,736387 0,345241 19
30+420 46,00 D D 703 0,65 19 0,691733 0,345241 37
30+430 49,00 D D 703 0,65 19 0,669315 0,345241 25
30+440 51,00 D D 703 0,65 19 0,655834 0,345241 14
30+450 54,00 D D 703 0,65 19 0,637486 0,345241 13
30+460 57,00 D D 703 0,65 19 0,62107 0,345241 17
30+470 58,00 D D 703 0,65 19 0,615975 0,345241 16
30+480 63,00 D D 703 0,65 19 0,592927 0,345241 10
30+490 68,00 D D 703 0,65 19 0,573268 0,345241 6
30+500 69,00 D D 703 0,65 19 0,569678 0,345241 5
30+510 67,00 D D 703 0,65 19 0,576965 0,345241 5
30+520 74,00 D D 703 0,65 19 0,553184 0,345241 7
30+530 75,00 D D 703 0,65 19 0,550149 0,345241 9
30+540 76,00 D D 703 0,65 19 0,547194 0,345241 4
30+550 79,00 D D 703 0,65 19 0,538778 0,345241 2
30+560 79,00 D D 703 0,65 19 0,538778 0,345241 1
30+570 75,00 D D 703 0,65 19 0,550149 0,345241 1
30+580 74,00 C D 1050 0,83 22 0,72356 0,345241 1
30+590 78,00 C D 1050 0,83 22 0,705665 0,345241 1
30+600 80,00 C D 1050 0,83 22 0,697388 0,345241 1
30+610 82,00 D C 703 0,65 19 0,530978 0,345241 4
30+620 82,00 B B 2000 1,103 23 0,909704 0,345241 6
30+630 81,00 B B 2000 1,103 23 0,916111 0,364509 5
30+640 81,00 B A 2000 1,103 23 0,916111 0,364509 2
30+650 81,00 B A 2000 1,103 23 0,916111 0,364509 3
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304660 81,00 B A 2000 1,103 23 0,916111 0,364509 3
30+670 81,00 B A 2000 1,103 23 0,916111 0,364509 2
30+680 82,00 B A 2000 1,103 23 0,909704 0,364509 1
304690 85,00 B A 2000 1,103 23 0,891387 0,364509 1
30+700 78,00 B A 2000 1,103 23 0,936318 0,364509 2
30+710 75,00 B A 2000 1,103 23 0,958141 0,364509 1
30+720 66,00 B A 2000 1,103 23 1,035515 0,364509 2
30+730 64,00 B A 2000 1,103 23 1,055665 0,364509 3
30+740 57,00 B A 2000 1,103 23 1,137323 0,364509 4
30+750 56,00 B A 2000 1,103 23 1,150655 0,364509 3
30+760 56,00 B A 2000 1,103 23 1,150655 0,364509 4
30+770 53,00 B A 2000 1,103 23 1,19367 0,364509 3
30+780 49,00 B B 2000 0,968 22 1,266076 0,364509 2
30+790 49,00 B B 2000 0,968 22 1,266076 0,364509 1
30+800 53,00 B B 2000 0,968 22 1,198796 0,364509 3
304810 47,00 B B 2000 0,968 22 1,304011 0,364509 7
30+820 46,00 C D 1050 0,83 22 0,935966 0,345241 8
304830 46,00 C D 1050 0,83 22 0,935966 0,345241 3
30+840 41,00 B B 2000 0,968 22 1,440022 0,364509 1
304850 50,00 B B 2000 0,968 22 1,248247 0,364509 1
30+860 59,00 B B 2000 0,968 22 1,11498 0,364509 7
30+870 66,00 B B 2000 0,968 22 1,036455 0,364509 10
30+880 68,00 D D 703 0,65 19 0,614551 0,345241 30
30+890 69,00 D D 703 0,65 19 0,610363 0,345241 35
30+900 69,00 D D 703 0,65 19 0,610363 0,345241 45
304910 69,00 D D 703 0,65 19 0,610363 0,345241 50
304920 66,00 D D 703 0,65 19 0,623308 0,345241 50
304930 66,00 D D 703 0,65 19 0,623308 0,345241 35
304940 64,00 D D 703 0,65 19 0,632613 0,345241 30
304950 60,00 D D 703 0,65 19 0,653082 0,345241 32
304960 59,00 D D 703 0,65 19 0,658633 0,345241 20
304970 60,00 D D 703 0,65 19 0,653082 0,345241 20
30+980 54,00 D D 703 0,65 19 0,689473 0,345241 18
304990 52,00 D D 703 0,65 19 0,703469 0,345241 17
30+000 49,00 D D 703 0,65 19 0,726606 0,345241 10
31+010 48,00 D D 703 0,65 19 0,734961 0,345241 12
31+020 44,00 D D 703 0,65 19 0,772178 0,345241 22
31+030 41,00 D D 703 0,65 19 0,804857 0,345241 25
31+040 40,00 D D 703 0,65 19 0,816839 0,345241 21
31+050 39,00 D D 703 0,65 19 0,829436 0,345241 20
31+060 40,00 D D 703 0,65 19 0,816839 0,345241 18
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APPENDIX B
EXCEL SPREADSHEETS FOR THE INPUT DATA USED FOR TRAINING THE ARTICIAL NEURAL

NETWORK.
NORMALIZED | NORMALIZED | NORMALI | NORMALIZED | NORMALIZED | NORMALI | NORM DEFORM DEFORMAT
ROCK CLASS SUPPORT ZEDE Ko Ns ZED ALIZED | ATION ION (FIELD
CLASS overburd | A (ANALYSI | MEASURE
en ko S) MENT)
1 0,25 0,75 0,32 1,00 0,22 0,00 0,83 19,50 13,00
2 0,25 0,75 0,32 1,00 0,25 0,04 0,83 20,20 12,00
3 0,25 0,75 0,32 1,00 0,28 0,07 0,83 20,40 12,00
4 0,25 0,75 0,32 1,00 0,32 0,13 0,83 20,80 17,00
5 0,25 0,75 0,32 1,00 0,36 0,18 0,83 21,20 22,00
6 0,25 0,75 0,32 1,00 0,38 0,20 0,83 21,30 25,00
7 0,25 0,75 0,32 1,00 0,42 0,25 0,83 21,80 43,00
8 0,25 0,75 0,32 1,00 0,47 0,30 0,83 21,90 13,00
9 0,25 0,75 0,32 1,00 0,47 0,30 0,83 21,90 11,00
10 0,25 0,75 0,32 1,00 0,44 0,27 0,83 21,60 19,00
11 0,25 0,75 0,32 1,00 0,51 0,36 0,83 22,50 37,00
12 0,25 0,75 0,32 1,00 0,56 0,41 0,83 23,50 25,00
13 0,25 0,75 0,32 1,00 0,59 0,45 0,83 23,60 14,00
14 0,25 0,75 0,32 1,00 0,63 0,50 0,83 24,20 13,00
15 0,25 0,75 0,32 1,00 0,67 0,55 0,83 24,30 17,00
16 0,25 0,75 0,32 1,00 0,69 0,57 0,83 25,00 16,00
17 0,25 0,75 0,32 1,00 0,76 0,66 0,83 25,40 10,00
18 0,25 0,75 0,32 1,00 0,84 0,75 0,83 26,50 6,00
19 0,25 0,75 0,32 1,00 0,85 0,77 0,83 26,30 5,00
20 0,25 0,75 0,32 1,00 0,82 0,73 0,83 26,40 5,00
21 0,25 0,75 0,32 1,00 0,93 0,86 0,83 26,90 7,00
22 0,25 0,75 0,32 1,00 0,94 0,88 0,83 27,30 9,00
23 0,25 0,75 0,32 1,00 0,96 0,89 0,83 27,50 4,00
24 0,25 0,75 0,32 1,00 1,00 0,95 0,83 28,10 2,00
25 0,25 0,75 0,32 1,00 1,00 0,95 0,83 27,70 1,00
26 0,25 0,75 0,32 1,00 0,94 0,88 0,83 27,30 1,00
27 0,50 0,75 0,61 0,80 0,60 0,76 1,00 14,00 1,00
28 0,50 0,75 0,61 0,80 0,65 0,83 1,00 17,60 1,00
29 0,50 0,75 0,61 0,80 0,67 0,86 1,00 18,20 1,00
30 0,25 0,50 0,32 1,00 0,87 1,00 0,83 20,20 4,00
31 0,75 0,25 1,00 0,80 0,41 0,90 0,83 0,07 6,00
32 0,75 0,25 1,00 0,80 0,40 0,88 1,00 0,07 5,00
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33 0,75 0,00 1,00 0,30 0,09 0,38 1,00 0,07 2,00
34 0,75 0,00 1,00 0,30 0,09 0,38 1,00 0,07 3,00
35 0,75 0,00 1,00 0,30 0,09 0,38 1,00 0,07 3,00
36 0,75 0,00 1,00 0,30 0,09 0,38 1,00 0,07 2,00
37 0,75 0,00 1,00 0,30 0,09 0,90 1,00 0,07 1,00
38 0,75 0,00 1,00 0,30 0,10 0,95 1,00 0,07 1,00
39 0,75 0,00 1,00 0,30 0,08 0,83 1,00 0,07 2,00
40 0,75 0,00 1,00 0,30 0,07 0,78 1,00 0,07 1,00
41 0,75 0,00 1,00 0,30 0,04 0,63 1,00 0,06 2,00
42 0,75 0,00 1,00 0,30 0,01 0,48 1,00 0,04 4,00
43 0,75 0,00 1,00 0,30 0,01 0,46 1,00 0,03 3,00
a4 0,75 0,00 1,00 0,30 0,01 0,46 1,00 0,02 4,00
45 0,75 0,00 1,00 0,30 0,00 0,41 1,00 0,01 3,00
46 0,75 0,25 0,68 0,30 0,09 0,35 1,00 0,00 2,00
47 0,75 0,25 0,68 0,30 0,09 0,35 1,00 0,00 1,00
48 0,75 0,25 0,68 0,30 0,11 0,41 1,00 0,00 3,00
49 0,75 0,25 0,68 0,30 0,08 0,32 1,00 0,00 7,00
50 0,50 0,75 0,61 0,30 0,24 0,30 0,83 15,00 8,00
51 0,50 0,75 0,61 0,30 0,24 0,30 0,83 15,00 3,00
52 0,75 0,25 0,68 0,30 0,05 0,22 1,00 0,00 1,00
53 0,75 0,25 0,68 0,30 0,10 0,36 1,00 0,00 1,00
54 0,75 0,25 0,68 0,30 0,18 0,63 1,00 0,00 10,00
55 0,25 0,75 0,32 1,00 0,69 0,75 0,83 26,50 30,00
56 0,25 0,75 0,32 1,00 0,71 0,77 0,83 26,40 35,00
57 0,25 0,75 0,32 1,00 0,71 0,77 0,83 26,40 45,00
58 0,25 0,75 0,32 1,00 0,71 0,77 0,83 26,40 50,00
59 0,25 0,75 0,32 1,00 0,67 0,71 0,83 26,10 50,00
60 0,25 0,75 0,32 1,00 0,67 0,71 0,83 26,10 35,00
61 0,25 0,75 0,32 1,00 0,64 0,68 0,83 25,90 30,00
62 0,25 0,75 0,32 1,00 0,59 0,61 0,83 25,10 32,00
63 0,25 0,75 0,32 1,00 0,58 0,59 0,83 24,60 20,00
64 0,25 0,75 0,32 1,00 0,52 0,50 0,83 24,00 18,00
65 0,25 0,75 0,32 1,00 0,49 0,46 0,83 23,40 17,00
66 0,25 0,75 0,32 1,00 0,45 0,41 0,83 23,30 10,00
67 0,25 0,75 0,32 1,00 0,44 0,39 0,83 23,20 12,00
68 0,25 0,75 0,32 1,00 0,39 0,32 0,83 22,50 22,00
69 0,25 0,75 0,32 1,00 0,35 0,27 0,83 22,00 25,00
70 0,25 0,75 0,32 1,00 0,34 0,25 0,83 21,60 21,00
71 0,25 0,75 0,32 1,00 0,34 0,25 0,83 21,60 18,00
72 0,50 0,50 0,44 0,30 0,00 0,02 0,87 3,50 0,00
73 0,50 0,50 0,44 0,30 0,10 0,16 0,87 10,10 0,00
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74 0,75 0,25 1,00 0,30 0,21 0,33 0,44 0,19 0,00
75 0,75 0,25 1,00 0,30 0,04 0,00 0,44 4,30 5,00
76 0,25 0,50 0,24 1,00 0,65 0,61 0,87 19,10 5,00
77 0,25 0,50 0,24 1,00 0,66 0,62 0,87 19,30 4,00
78 0,50 0,50 0,24 1,00 0,47 0,67 0,87 14,90 5,00
79 0,25 0,50 0,24 1,00 0,72 0,69 0,87 21,10 14,00
80 0,25 0,50 0,24 1,00 0,45 0,40 0,87 13,80 50,00
81 0,25 0,50 0,24 1,00 0,44 0,39 0,87 13,40 59,00
82 0,25 0,50 0,24 1,00 0,40 0,34 0,87 12,10 79,00
83 0,25 0,50 0,24 1,00 0,39 0,34 0,87 12,00 56,00
84 0,25 0,50 0,24 1,00 0,37 0,31 0,87 11,40 59,00
85 0,25 0,50 0,24 1,00 0,34 0,28 0,87 10,90 69,00
86 0,25 0,50 0,24 1,00 0,32 0,25 0,87 9,99 56,00
87 0,50 0,50 0,24 1,00 0,27 0,21 0,87 8,80 55,00
88 0,75 0,50 0,24 1,00 0,21 0,14 0,87 7,39 69,00
89 0,75 0,50 0,24 1,00 0,10 0,02 0,87 4,44 29,00
90 0,75 0,50 0,24 1,00 0,74 0,71 0,87 21,30 17,00
91 0,75 0,50 0,24 1,00 0,81 0,79 0,87 23,60 17,00
92 0,75 0,50 0,24 1,00 0,39 0,36 0,87 25,50 18,00
93 0,75 0,50 0,24 1,00 0,90 0,87 0,87 25,90 17,00
% 0,25 0,50 0,24 1,00 0,91 0,39 0,87 26,20 18,00
95 0,25 0,50 0,24 1,00 0,91 0,38 0,87 25,90 18,00
9% 0,25 0,50 0,24 1,00 0,94 0,93 0,87 27,20 17,00
97 0,25 0,50 0,24 1,00 1,00 0,98 0,87 28,80 11,00
98 0,25 0,50 0,44 1,00 0,70 1,00 0,87 21,30 14,00
99 0,25 0,25 1,00 0,30 0,23 0,44 0,44 0,45 10,00
100 | 0,25 0,25 1,00 0,30 0,22 0,44 0,44 0,45 8,00
101 | 0,25 0,25 1,00 0,30 0,21 0,42 0,44 1,39 8,00
102 | 0,25 0,25 1,00 0,30 0,22 0,43 0,44 2,23 9,00
103 | 0,25 0,25 1,00 0,30 0,24 0,46 0,44 2,35 6,00
104 | 0,25 0,25 1,00 0,30 0,17 0,78 0,44 0,54 6,00
105 | 0,25 0,50 0,24 1,00 0,79 0,76 0,87 22,90 8,00
106 | 0,25 0,50 0,24 1,00 0,65 0,61 0,87 19,20 22,00
107 | 0,25 0,50 0,24 1,00 0,60 0,56 0,87 17,80 40,00
108 | 0,25 0,50 0,24 1,00 0,54 0,49 0,87 16,30 48,00
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TEST DATA

1 0,50 0,50 0,24 1,00 0,47 0,68 0,87 15
2 0,25 0,75 0,32 1,00 0,33 0,23 0,83 21
3 0,25 0,50 0,24 1,00 0,49 0,44 0,87 16
4 0,75 0,00 1,00 0,80 0,03 0,60 1,00 0
5 0,75 0,25 0,68 0,80 0,14 0,51 1,00 0
6 0,25 0,75 0,32 1,00 0,48 0,32 0,83 22
7 0,75 0,50 0,24 1,00 0,21 0,14 0,87 6
8 0,25 0,75 0,32 1,00 0,59 0,61 0,83 25
9 0,25 0,25 1,00 0,80 0,15 0,72 0,44 0
10 0,25 0,50 0,24 1,00 0,39 0,34 0,87 12
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