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HeptAngm

3xondg autAC TG SImAwUaTiXAC epyaoiog elvon o oyedlaouds evdg BIXTOOU aVOLYVOELONG Xl
EVTOTIOHOU oTolwvONmote avipdmivwy evepyelwy oe éva Bivteo. To 8ixtud pog otoyelel va
evroTioel ywpoypovixd uio avipednivn evépyeta tou exteheiton oe éva Bivieo napdyovtag axolouldieg
dlodldotatwy mAoctlwy, éva yia xdide xopé Bivteo, nepixdeloviac to dtouo mou extehel auth TNV
eVEQPYELXL X0 TAUTOHYPOVAL VAL TNV EVTOTICEL.

H avayvoplon xou o eviomioude avlpomvewy evepyeldy ot Bivieo elvan wa and tig peyahitepeg
npoxhfoelc oto medlo tng ‘Opaone Troloyiotwv. O mo npdogateg npoceyyioelc nepthopdvouy
Eva B{XTUO AVAYVOPLONG AVTIXEWEVKDY To omolo Tpotelvel BlodlaoTtata xouTdxio avd xupé, évay
akydprduo olvdeong v T Onuovpyior umodriguwy action tubes xou €vav Tagvounth yio TNV
tagvounct toug. Ildvew o' autd, ol meplocdtepeg and autéc T mpooeyyioele e€aydyouv TiC
XEOVIXES TATPOpOpiec and éva BixTuo To onolo exTd ontxr oY) oe eninedo mAwciov. H ewooywmyn
TV TPLOBLEIC TATWY CUVEMXTIXDV BIXTUWY Uog €xel Bondroel vo UmopolUE Vo UTOAOYIGOUUE TIC
Y WPOYPOVIXEC TANEOPORiES o Tol BIVIED Xall TAUTOYPOVIL VoL EEAYOUPE YWEOYPOVLXSL X opuX TNELE T,
H npocéyyion uoc mpoomadel va cuvdudoel to o@éhn Ttou va ypnoiwornolels dbtua aviyveuong
AVTIXELUEVRDY XU TELOOLAOTATES cUVEALEELS.

Yyeddloupe éva dixtuo Tou onolou 1 douy| Paciletan ot ¥Aaooixd dixtua eviomopo dpdong
xat to ovopdlouue ActionNet. To mpdto otouyelo elvar éva tpiodidotato ResNet34 to omolo
yenotponotelton yioo T e€aywy YWEOXEOVIXOVY YapaxTnetoTixwy xdde turfuatoc tou Bivieo mou
deyeTon wg eloodo. Eniong, oyedidloupe éva dixtuo yio va o ontolo mpoteivel unodhpieg axorouldieg
ané dlodidotarto thaiota Ye Bdor ywpoypovixnd yopoxtneto txd, to onolo ovopdlouue Tube Proposal
Network. Auté to dixtuo elvan wa enéxtaor tou Region Proposal Network nalpvovtac we eloodo
Ta e€aryOpeva yopoxtnptoTxd xar edyovtac k mpotewvdueves oxohoudies and Siodido Tota xouTid
nou mhavde va meptéyouv xdmota dpdorm.  EZetdlouye 2 mpooeyyloec yia tov xadoplopd TtV
TELoOAo TATWY TTPoXAdoplouévwY XxouUTL)Y, Ta ontola yenotwonolel to TPN. Emniéov, oyedidlouue
évay alyoprduo oOvdeong yio TN OUVOECY TWV TEOTEWOUEVKDY axohoLthdV xou dnulovpyio TV
unohpiwy action tubes. Télog, diepeuvolye apxetéc TeyVixéc Tadvounorg, cuuneptiaufovouévou
evoe tagvounti SVM, evéc Linear, evoc RNN xou evée MLP vy to oOvoha dedopéveorv JHMDB
xouw UCF101.

AéEeic xAeLdla

Avayvépior dpdone, Evtomiopde dpdone, Action Tubes, TPN, ActionNet
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Abstract

The purpose of this diploma thesis is the design of a network for recognizing and localising
human actions in videos. Our network aims to spatiotemporally localize an action within a video
producing sequences of 2D boxes, one per frame, which include the actor performing an action,
and simultaneously recognize this action.

Recognizing and Localizing actions in videos is one of the biggest challenges in the field of
Computer Vision. Most recent approaches include an object detection network, which proposes
bounding boxes at frame level, a linking method for creating candidate action tubes and a
classifier for classifying these action tubes. On top of that, most of these approaches extract
temporal information from a network which estimates optical flow and motion context at frame
level. The introduction of 3D Convolutional Networks has helped us estimate spatiotemporal
information from videos and simultaneously extract their spatiotemporal feature maps. Our
approach tries to combine the benefits from using object detection networks and 3D Convolutions.

We designed a network whose structure is based on standard action localization networks and
we name it ActionNet. Its first element is a 3D ResNet34 which is used for spatiotemporal feature
extraction for every video segment which is given as input. Also, we introduced a network for
proposing action tubes based on spatiotemporal features, called Tube Proposal Network. This
network is an expansion of Region Proposal Network and it gets as input the extracted features of
and outputs k-proposed sequences of 2D bounding boxes, which may contain a performed action.
We explored 2 approaches for defining 3D anchors, which TPN uses. On top of that, we designed
a connection algorithm for linking these proposed sequences and creating final candidate action
tubes. Finally, we explored several classification techniques including an SVM classifier and a
MLP for datasets JHMDB and UCF101.

Keywords

Action Localization, Action Recognition, Action Tubes, TPN, ActionNet,
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Euyapiotieg

Apywd Yo el va guyoptotiow tov xadnynts pou Iétpo Moapayxd, yio tny avddeon authc e
Simhopotinic epyaoiog. Tov euyoptotd Yo TNy eumotoohvy Tou pou €delle, tov ypdvo Tou diédeoe
xadde enlong xan Tic ouuBoulég tou xou Ty xadodriynon tou. Emlong Yo Hieha vo euydplothow
tov IIétpo Koltpa yia v dhoyn cuvepyasia mou elyoue xadde xou i cuYBouléc Tou pou mopelye
xai xodod1ynom Tou oe Bidpopa Vépata Tou TEoéxuPay XAt TNV Bidpxeta AUTAS TN SITAWUATIXNG.

Axopa Yo fdelo vo euyaplotiow Toug Gihoug wou yio OAeC TIC Yopés Tou Ue Borinoay xat Ue
othplav oe Ohe Tic pdoelc auThe TNe dtadixaotac. Hrov exel xdde popd mou ypeeialdtav xdnotoc va
oxoVGEL To TEOBANUA LoU xou Tig avnouyieg Lou xadog enlong o Vo LolpaoTOVUE ToV VIOUGLIoUS
“ou Yol x4t Tou dovhelE.

Télog G Hdeha var eLYAPLOTACHK LOLAUTEPA TNV OLXOYEVELXL OV YLOL TNV XATAVONOT| TOUG XUk TNV
anePLOPLOTY OTHELEN TOUG, OE ONAL AUTE ToL YEOVLOL TV OTIOUBMY Wwou. Xdpn oTnV OLXOYEVELX LoV
undpeoa va €ple otny Adva, vo 6ToUSACE XAl VoL EXTANROOW TOUG OTOYOUC LoV Xat Tat OVELRH
pou. Toug euyoploTd Yl TOV TEOTO oL YE PEYSAwoaY Xa Yo TNV oThelEY Toug 1 omola Bev fTay
©6vo owxovouxr ok oe 6houg Toug Toyelc, Yuatdlovtag UdAoTa ToV Yedvo Toug, TNy didideon Toug
%ot Oixé€g Toug ETLAOYEC.
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Kegdhawo 1

Eicoaywyn

Yuc pépec pog, M tepdoTion addnomn Tne unohoywo T oybos twv H/T upoc Pondd va
AVTIHETWTICOVUE TOAES BUOGXOAES XATAUO TACELS TTOL euavilovton oty xodnueptvoTntd pog. ool
TopElc TN EMOTAUNG XATAPEPAY VOL AVTIHETOTICOUY TEoBAAUNTA ToU VeWPoUVTA CTUAVTIXG TRV Ao
20 ypovia, xdvovtoc Ta ofpcpa aofuovta. Evag emoTHoVIXOS TOUENS TOU EMNEEACTNXE UEXETA
ebvan 0 topéog e ‘Opaore twv Troroyiotov (Computer Vision) xou mo cUYXEXpUEVA, dUTOS IOV
aoyoAelTon PE TO TREOBANUO TNG VoY VWRLoNE Xal eVToTiolo) avipdmivng dpdong ot Bivteo.

1.1  Ilepuypapn IpoBAruatog

H mpdxinomn tne avayvoplone xou eviomiopol avipwnivng dpdone oe Bivieo €yel 80o xbploug
otdyoue:

1. Tv autépatn avayvoplon xou TaEvounct omolacdhirote avipdmvne SpacTneldTnTag oTo
Bivteo.

2. Tov autéyato eviomoud autrhc Tne dpdong oto PBivteo

1.1.1  Avoayvoplon avdpnmivng dpacTneloTynTog

JyeTixa HE TO TPORBANUA TN avay VoeLong avilpdmivng dedong, éva Blvteo umopel vo anoteieiton
uovo amd éva dropo mou exterel pla dpdon. Qotdoo, autd elvan éva WBavxd cevdplo.  LTiC
TEPLOCOTEPES TEPLTTWOELS, Tol Bivieo mepléyouv TOMNG dToua, TOU eXTEAOUYV TOANUTAEC EVEQYELES
1 evbéyetan va uny dpouv xatdhou oe oplouéva Tuuata tou Bivieo. Etol, o otdyoc yog dev etvou
©6OvVOo Vo T VOUicoLUE Wi Bpdo, ahAd Vo AmOXORICOVUE T Ypovind GpLo x&e dpdong

1.1.2 Evtoniopdg avipinivng dpactnelotnTog

Hoapddhinia pe v oavayvopeon e avlpomivne dpdong, €va Ao mpdfAinua elvon  vo
npocdlopiooupe To ywewd bplor xdde Spdong.  LuvAdwg, autd onpaiver va xadoploouue Eéva
diodldotato mAdiclo oplodétnong yio xdde xapé Bivieo, to onolo mepiéyel tov Sphvta. Puowxd,
autd to xoutl oplodétnong uiveltan poll ye to dtoyo mou dpa.
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24 KE®AAAIO 1. EIZATQI'H

1.2 Egpopuoyvég

To medlo tng Avayvapeiong xan Evtomiouot Avipodmivng Apdong €yel morhég e@oppoyéc mou
nep auPdvouy avdhuor mepleyouévou pe Bdon to Bivieo, autouoatonoinuévn xatdtunon Bivieo,
CUC THUATO ACPAAELNG X0l ETULTHENONG, AAANAeTiBoooNe avipdTou UTOAOYLETY.

H tepdotio drodeopdtnra dedopévov (eldud twv PBivieo) dnuovpyel tny avdyxn vo Beedoiv
TEoTOL Yior Vo enw@eAntolue an’ autd. Ilepinou 2,5 dioexatoupdpla EXOVES UETAPORTWOVOVTOL OTT)
Bdor Sedopévewyv tou Facebook xdle urva, mepioodtepec and 34K dpec Bivieo oto YouTube
xon mepimou 5K exdvec xdlde hemtd.  Emmiéov, undeyouv meplmou 30 exotopudpia xduepeg
rapoxoholinong otig HITA, npdypo mou onuaiver mepinou 700 weeg Bivieo avd nuépa. ‘Ola autd
Tar OeBouévar TREMEL VoL YWELOTOUY G XoTNyoplec ovdAoYa UE TO TEPIEYOUEVO TOUC TOEOXELEVOU
vo. Ylvouv mo eUxoha mpog avalhtnon. H dwdwocia auth yiveton, cuvidng, yelpwvoxtxd and
évav yprotn mou cuvdéel To xdde Pivieo pe Aé€eic-xhedid ) etnéteg. dotéoo, oL meplocdTepoL
YXENOTEC OMOPEVYOUV VoL TO XEVOUYV, xou €Tol ToMAG Bivieo xatalfyouv ywelc mAnpogoplec. Auth
N xotdotaon dnuioveyel TNV avdyxn dnuovpyiag ahyoplduwmy Yiol auTOpATOTOMNUEYY, E0PECT] TOU
xatdAAniou Bivieo pe Bdomn To TEPLEYOUEVO TOU.

‘Eva dA\ho medlo epappoymy elvar n meplindm Bivieo. Autéc ol eopuoyéc ypnoiuonolodval
ocuvidwe oe tawvieg N adtAnTinée exdniwoeic. Ytig tawvieg, ol adydprduol avdivong Bivieo unopodv
var dnuovpyioouy éva wixpd Bivieo mou mepléyel OAec TIC oNuovTIXéG oTYpéS e Tawviag. Autd
unopel va emtevy Vel emhéyovtog Tuiuata Bivieo ota onola AapBdver yopa ot ONUAVTIXY EVERYEL,
omwe 1 Bologovio Tou xaxomolol e Tawviag. JTic adANTIXéS EXSNADOELS, oL epapuoYEs Teplindng
Bivteo mepthauBdvouy tn Snulovpyia autdpatwy Bivieo tpofBoirg, onwg m.y. éva Bivieo nou teptéyel
Oha Tt emTELYVEVTA YXOX O Evaty TOSOCQAULEIXS Ay VAL

Emmiéov, 1 avayvoplon tne avidpmnivng dpdone unopel vo avTixotao THoEL Toug oavitp®dTvoug
XEWRWOTEC oTa ouoThaTa emthpnong. Méypl thpa, to cuctiuata aopoieiag nepthaufdvouy éva
cUoTNUA TOMNATAGY Xdpuepwy Tou tar yepiletan évae dvipwroc-yewptotic, 0 omolog xpivel edv
éva dtopo evepyel ocuvndouéva B oyt. Ta cuotipata autdpatng TaEvounone evépyetag Unopoly
Vo evepyolv Omwg 0 Gvipwnog, xou auéows va xplvouv edv undpyel xdmolou eidoug meplepyn
CUUTEPLPOPE 1 avwpakior oTov dvipwo.

Televtofo adAd byt acnuavto, éva dhho medio e@appoyrc oyetiletor pe tnv ohAnieniSpaon
avidpwnouv-unoloyioth. Poumotixéc egapuoyéc Bondoldv touc niuawuévoug vo avtiyetwnilouvy
Tic xodnuepvég Toug avdyxeg. Emiong, ol e@apuoyéc mouyvididv mou yenowonotoly 1o Kinect
OnutovpyoLV véa emtineda eumelplog TaLy VB0 Ywpelg TNV avdyxn evog EAEYXTH QUGIXOU Ty VLBLOU.

1.3 IlpoxAnroesig xow Datasets

Trdpyouv didgpopol TimoL avipwnvey dpactnelotitwy. Avdloya ye Ty ToAuThoxdTnTd Toug,
Yewpolye 6T oL avlp®TIVES BEACTNELOTNTES TAEVOUOUVTOL O TECOERLS OLUPORETIXEC XATNYOplEC
enineda: yeipovopieg, evépyeleg, aAniemidedoelc xou dpactnetdTnTeg ouddac. Ou yeipovopuieg etvan
G TOLYELOOELS MIVACEL TOU OWUATOS £VOC ATOUOU Xou efval Tor aTtopxd otolyelor Tou TepLypdpouy
Vv ouctao i xivnon evog atouou. «To otpido tou Beaylovay xo «tng avidwong tou Todlovy
elvon xohd mapodelypoto yewpovouldy. O evépyeleg elvon Spao THELOTNTES EVOC ATOUOU TOU UTopoUy
Vo omOTEAOUVTOL amd TOARNATAEG YELPOVOUIEC TOU OQYAVWVOVTOL TPOCWELWVA, OTWS (TEPTATNULY,
CYAPETIOUOCY, «ypotdy. OL alhnhemdpdoeic etvon avilpdmiveg dpao TneldTnteg Tou nepthapdvouy
dvo f meplocdrepa dropo xou /Y avixeiyeva. Tio nopdderypa, «dVo dropa mou aywvilovtouy elvor
por oAAnAeniBpaon peta€d 800 avipdnwy xaL «<evog atéUou oL xAEBEL uio Bakitoa amd xdmolov
oy ebvan uior odAAnhenidpaot avipnnou-aviixelévou nou nepthaufdvel 800 avlp®droug xou Eva
avuxeipevo.  Télog, oL dpaoTnetdTnTeg ouddag elvon oL BpacTNELOTNTES MOV EXTEAOUVIOL omd
EVVOLOAOYIXEC OUddES Tou amoteholvTon and ToAhamAG tpdowna xou/H avtixeipeva. «Muat opdda
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avilp®dnwY Tou Xdvouv Topelay, «ULla OUEdA TOU EYEL GUVAVTNOTY Xl «BVO0 OUDEC TAheboUVY Elvol
TUTLXE TTOPODE(Y AT OUTEOV.

H peydhn mowaio avpdmivey Bpao TNRLOTATOY Xl EQAUPUOYOY dnplovpyel TOAES Tpoxhioelg
nou  meplhopfdvouy cucTAuaTo avoyveelone Tng dpdone. O onpavtixdtepec mpoxhnoelc
TEPLAUBAVOLY UEYTAES BLUXUUAVOELS TNS ERPAVIOTS TV aviIp®dTwY TOU BEoLY, AANXYEC GTNY OTTLXY
YOV TNC XAUEEOC, ATOXAEITELS, UN-AXoUTTES XIVAOELS Xduepas ¥AT. Emmiéov, éva ueydio mpdBAnua
elvan 6L uTdpyouV Thpa TOANEC xaTnYOopleg Dpdong mou onuaivel OTL 1 yewpoxivTy GUAAOYT TWV
delypdtwy exnaideuong elvon omayopeutny. Emlong, opiouéves @opéc, to Ae€IhoYI0 TEpLYpaphC TwV
dpdoewy dev elvar xahd xadopiopévo. ‘Omnwe delyvel to oyfua 33, 1 evépyela «Avolywy unopel va
nepthouBdvel ToANS ldn evepyel®Y, YU qUTO TEENEL TEOCEXTIXE VA ATOPACICOVUE TTOLd £VVOLA QUTAS
e npd&ne Yo AdBouye vddn.

Syhua 1.1: Topadetypota e Spdone «Avolywy

IMpoxeévou vor avTIUETWTOTOOV QUTEC Ol TEOXANCELS, €xouv dnuioupyndel Sidpopa chvola
Bedouévev Yoo avlp®miveg Bpdoelg, HE oxomd Vo avamtuyFoly LoyYLed CUCTAUNTA AVAY VRIS
e ovdpdmvng dpdone xon ahyoprdupor aviyveuone. To mpodta cvolo dedopévwy mepléhaufPoy
évay BpdvTa xAVoVTAS YEHOoT WA OTATIXAS XAUEPAS Tdve oe odoloyevy govta. Ilopdho mou autd
o 5OVoAoL BEBOPEVLY GUVEIGHEROY GTO VO OYESLICOVUE TOUC TEOTOUS oAYoplduous avoryvaieiong
Bpdone, dev Atav oe Béon vo avtuetonicouy anotekeouatixd Tic Tapandve TeoxAfoels. ‘Etot,
odnynixaue oTov Vo SNULoUEYHOOUPE GUVOAN BEBOUEVKY TIOU TEQLEYOLY TIHO o@LAEYSuEVa BivTeo,
6mwe o Joint-annotated Human Motion Database(JHMDB) (Jhuang et al. [2013) xou UCF-101
(Soomro, Zamir, and Shah[2012). Autd 1o dataset mepthopBdvouy pévo avdpmmives evépyeles, Ty
delteEN ONAAdY xoTNYOopia TOU AvaPERUNXKE TO TIPLY.

1.3.1 JHMDB Dataset

To clUvoro dedopévwy JHMDB (Jhuang et al. elvar éva TApeC oy OMAOUEVO GOVOAO
Bedouévmv yio ovlpwmives evépyetes xat avipdmiveg nélec. Anotehelton and 21 xatnyoples dpdoewy
xou 928 ¥\ mou e&dryovtan amd Ty Bdom dedouévey xivnone tou avdpdrou (HMDBS51) ( Kuehne
et al. 2011). Auté to clvoho dedouévev mepiéyer xoppéva Bivieo ue didpxeia petad 15 éwg 40
xapé. Kdde »hn oyohdleton yio xdde o€ YpnoulonolmdvTag glo SLoBLdoTaTr 0TdoT Xl TEPLEYEL
pévo 1 evépyeia. Ilpoxeyévou vo exToUdEUGOVUE TO HOVTEAO UOG YIO TOV EVTOTUOUO TV EVERYELMY,
TpOoTOTOOVPE NS dodidotatee Tolec oe dodidotata TANOL TOU TEPLEYOLY OAOXANEY T OTdoN
Tou dpwvta oe xdde xopé. Tmdpyouv dodéoiua 3 dapopeTixd ywelopota yior var exmoudeutel éva
povtélo, to omola mpoteivouv ol cuyypagelc. Emié€aue to mpdto mou mepiéyel 660 Bivieo oto
exmoudeUTIXG GET ot 268 ylo emxbpwaon.
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1.3.2 UCF-101 Dataset

To clvoro dedopévewy UCF-101 (Soomro, Zamir, and Shah [2012) nepiéyer 13320 Bivteo and
101 xatnyoplec Spdoewv. And autd, mapéyovton ywpeoypovixol oyolacuol yio 24 ¥\doelc xar 3194
Bivteo. Autd omuoiver 6tL oe xdde Piveo, umdpyel éva diodldotato optodetnuévo mhalolo mou
nepBdihel To dTouo mou Spa Yo xdde xapé 6To onolo AopfBdvel ywpeo uia Spdor. Ataywpeilouye to
oUVolo TwV Bedouévwy ot 2284 Bivieo yia exnoudeutind oet xou 910 yio oeT emxndpwone cOUPOVA
UE TO TPWTO TEOTEWOUEVO Blaywpeiold. o tar dedopéva exmaldeuong, undpyouv Bivieo uéyer 641
x0p€, VO yia Ta Bivieo emxdpwong o uéyiotog apldude xopé eivar 900. Kdde Bivteo, 1600 Yoo tnv
exnaidevon 660 xar yioo T emxdpwar, elvor un-xoppévo(untrimmed), evdd o€ TOARES TEPLITHOOELG
neplocbtepeC amd 1 evépyeleg mpaypatonolobvton Tautoyeova. AdBoue oyolaouoic and toug Singh
et al. |2017| enedn exelvouc mou pog mapetyav ol cuyypapeic teplelyay oplouévo hdd.

1.4 Motivation xou Xuvelcgpopeg

Ta tpéyovta emtebyyato ota dixtua avayvoplone aviixeévoy xou oto 3D Convolutional
Neural Networks yior avory vodpLom eVERYELDY LOC TROXTAEGAY VO TPOOTIH COUYE VoL Tl GUYBUACOLUE,
TEOXEWEVOU VA ETUTUYOUME T XUADTEPA AMOTEAEGUATO OTO TEOBANUO TOU EVTIOTIGHOD avip®mvng
dpdomne. Eiwodyouue wa véa dour duxtbou eunvevouévn and toug Hou, Chen, and Shah [2017], toug
Girdhar et al. |2018)ou toug Ren et al. 2017 xou tnv ulomoinon tng and toug Yang et al. 2017,

Ou ouvelogopéc poc eivon ou e€hc: 1) Anuovpyriooue éva véo framework yio tov evtomioud
EVEPYELDY, TO 0T0{0 enexTElVEL TOV XWX ou Exel vhotowdel To FasterR-CNN, 2) Anuouvpyfiooye
éva dixtuo Yo mpdtacy axolouhov BlodldcTatwy xouTidv ot Bivteo A Tta omola umopet
VoL TIEPLEYOUV [iot DPAOT], EXUETOAAEUOUEVOL ToL YWPOYEOVIXA YOQRUXTNELOTIXG TOU WS TOPEYOLY
T 3D Convolutions, 3) Snuovpyfooue €évay ahydprduo yio 0 GUVOEST TWV TEOTEWOUEVELY
axohouthodv Tpoxeévou vo e€dyouue utodipla action tubes xa 4) mpoonadfoaue vo Peolue
TOUC XOTOANANAOTEQOUC YBPTEC YUPOXTNELOTIXWY XU XAl TOV XUTdAANAO TaElvounty yla vo
Tpaypatomolficouye anodotixd classification.

1.5 Aopr tTng SIMAWUXTIXNAS

H vunéroinn SwtplPr opyoavoveton we e€ig. To xepdhato 2 napouvotdlel pio chvtoun emoxdnnom
e BBAoYpaplac OYETIXG PE TNV AVOYVOPELOT) XL TOV EVToToud avitpwrivng dpdone. To Kegdhaio
3 ewdyel 0 MPWTO Pooikd oTtoyelo Tou dixtvou pac, to Tube Proposal Network (TPN), éva
dixtuo mou npoteiver Tubes of Interest (Tols), to onoio eivon axorovdies dodido tatwy Thauciny,
mou elvan mdavd vo mepiéyouy uio exterecleioa evépyew. Emmiéov, mapovcidlovioan dheg TiC
TPOTEWVOUEVEG OO UG OPYLITEXTOVIXEC Ylat TNV entiteudr autol Tou otdyou. To xepdioto 4 npoteivel
ahyopriuouc Yoo T obvdeoT Twv tpotevopevwy Tols and xdde turua Bivteo xou nopovstdlova ot
emdboelc Twv ahyoplduwy. Xto Kepdhao 5 moapousidloupe dheg tic mpooeyyioeis tovounong
TOU YPMOWOTOLCOUE YO TOV OYEDIUOUS TNG UPYLTEXTOVIXNAC HOC X0 OPLOPEVO AMOTEAECHUATO
tagwounone. To Kepdhowo 6 yenowonoteiton yio ouunepdopata, neplindmn e ouuBoiic yag woll
pe miovES UEANOVTINES ETEXTAOELC.



Kegdhawo 2
>xeTxr] BiBAloypaplo

Ye auth Ty evoTnTa, Topouctdloupe OpLoUEVES amd TIC To cuvagelc uedddoug yia TV epyaocio
poC o GAAEC Tou pEAETAUNMOY Yl TOV oyYedloud auTthc g mpooéyylone. Ou pédodol autég
yoellovtaw oe dbo evétnrec Avayvdpion Apaotnpidtnrag xow Evtomonds Apaotnpidtnrag. To
TPAOTO PEPOC avapEpETOL OE XAaoIXES ueddoug Tadlvounomne dpdong mou etorydnoay Yéypet Tedopota
%ol To devTEPO Uépog, avtioTolya, oe Tpbdopateg UeVdBoUC EvTomoUol TG Bpdorg.

2.0.1 Avayvopion ApacTtnelotnIag

O npddtee mpooeyyioeis yia Ty xatdtaly e dpdone anotehovvtay and dVo Bruata o) apyixd
UTONOYIOUOC COVIETWY <YELPOTOINTWYY YAPaXTNPIOTIXMY antd oxatépyaota xopé Bivieo xou P)
exnofdeuoy) evog tadvounth pe Bdomn auTd Ta YapaxTnelo Tixd. AuTd Tal YapaXTNEIo TIXA YTopoly
var Slaywpelotovy oe 3 xatnyopiec: 1) mpooeyyioes ywpoypovixob Gyxou (space-time volume),
2) tpoyiéc (trajectories) xou 3) ywpoypovixd yopoxtnolotxd. o Tic pedddouc ywpoypovixod
6yxov, N tpocéyyion elvon 1 e€hc: Me Bdon o training Bivteo, 1o clo TN cUVERTEL €val HOVTENO
TELODAG TUTOU Y WPOYPOVOL, CUVEVHOVOVTAC dlodldoTotes exbvec (Sidotaon x-y) xotd Tn didpxela
Tou Ypdvou (Bdotoom t 1 z), Yy TRV avomopdotaon xdde Spdone. Otav 1o clotnua déyeto
éval Blvteo mou Bev €yel ETIXETA, XATAOHEVALEL ULOl TRLODIAC TATY YWEOYPOVIXT| OVATAUPAC TOON TOU
avtiotolyel o autd o PBivico. Autd 1 véo TELOBLAG TOTY) OVOTOEdc TUOT), OTY) CUVEYELN, CLYXpElveToL
ue xdde yovtéro 3D ywpoyedvou, cuyxelvovTac TNV OUOLGTNTA OTO CYHU XAl THY ELPAVIOT) UETAUED
aUTHOY TV 800 Ywpoypovix®y 6yxwy. To cbotnua egdyer v xotnyopia Tou dyvwotou Bivieo,
AVTIOTOLYOVTOS TNV PE auThAv e dpdone pe v udmidtepn ouodtnta.  Emmiéov, undpyouv
OLdpopeEC TOPUAAIYES TWV YWPEOYPOVIXMY avarapaoTdoewy. Avtl tng avanapdotaong space-time
volume, 1o cloTtnua urnopel vo avamaplotéd TN xdde Spdor WS TPOYLES OE YWEOYPOVIXES BLIC TAOELS
N} axdun TEPLOGOTERO, 1) EVEPYELN UTOREL VoL ovamopas Toel (¢ €val GUVOAO YORUXTNELC TIXWY TOU
e&dyovton amd Tov Ywpoypeovixd 6yxo B tic tpoytéc. Ol «xoupécy YWPOXPOVIXES UVATUPUO TAOELS
nepthopPBdvouy uedddouc cOYXEIONG TWY TEPIOYGY Teooxnviou evée atéuou (Bnh.  olhouéteq)
o6nwe twv Bobick and Davis 2001, cuyxplvovtag 6yxoug ce oyéon UE EMLPAVELL TOUG OTWS Ol
Shechtman and Irani 2005l H pédodoc twv Ke, Sukthankar, and Hebert 2007| yenowwonotet
oversegmented 6yxoug, autopdtwe unoloyiloviag éva cUvolo TUNUdTwY TeodldoTatou &yxou
XYT nou avtotoiel oe évav xwoluevo dvdpwno. Ov Rodriguez, Ahmed, and Shah [2008
TEOTEWVAY PIATEA YLOL VO ATOTUTIVOUY TOL YOROXTNELO TIXE TOU YWEOYEOVIX0) OYXO0U, TEOXEWEVOU VO
T Toupldouy mio adldmioTor ot anodotxd. And Ty dhhn tAcupd, ol tpooeyyioels ue Bdomn Ty TeoyLd
TEPLAUPBEVOUY TNV avamapdo Taon) hlog EVEPYELIS WS UVONO 13 xowvdv dtadpopucyv (Sheikh, Sheikh,
and Shah 2005) B ) yefon evéc cuvérou X YZT-Blo0Tdoemy XOWMY TROYLOY Tou hauBdvovTtol
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and xwvolpeves xduepee (Yilmaz and Shah [2005). Téhoc, Sidgpopec pédodol ypnotponoody Tomuxd
YOEUXTNELOTIXG oV EEAYOVTAL UTO YWEOYEOVIXOUE OYXOUC TELOV SLICTICEWY, OTWS 1) eEaymYN
TOTUXADY YOPAXTNPLO TGOV OE *EVE %apé Tou Biveo xou 1 évwon toug ypovixd (Chomat and Crowley
1999} Zelnik-Manor and Irani 2001} Blank et al. [2005)) n e€orywyy| apattdv y0poyeovixdy Tomxdy
onuelwv evdlagpépovtog and tewodidotatous dyxoug (Laptev and Lindeberg [2003; Dollar et al.
2005 Niebles, Wang, and Li [2006; Alper Yilmaz and Mubarak Shah 2005 Ryoo and Aggarwal
2006) O npooeyyioeic autéc xatéoTNOAY TNV ETAOYY TWV YAROXTNELOTIXOY ONUavTIX Tapdyovta
Yoo TNV amddooT) Tou Sixtvou. Autd cupfoiver eneldr] ol dlapopeTiné xatnyopies dpdoewy pmopel
vou Blapépouy Spopatixd and v dmodn e eu@avIcrc Toug Xt TV potiBwy xivnong. Eva dilo
TpOBANUa fitay OTL 0L TEPIoTOTEPES amd AUTES TIC TROCEYYIOELS XAVouV LTOVECELS, UTO TIC OTolEG TO
Bivteo Meinxe Aoyw TeoBANUdTwY OTWS TO YEUATO QOVTO, YOWLES Xduepag XAT. Mo avaoxonnon
TWV TEYVXWY, oV yernotporoolvtay péyel to 2011, napouoidleton an’ touc Aggarwal and Ryoo
20111

Ta mpbogata anoteréopota oc Padéc dpylTEXTOVIXES Xl EWOXE OTOV TOUEN TNG TASVOUNoNG
eovag €dwoe xlvntpo oToug gpeuvnTéc va exmoudevoouy dixtua CNN yio 1o mpoBinuo tng
avayvapetong Spdone. H npddytn onuoavtiny andnepa €yive and toug Karpathy et al. 2014 Xyediacov
™y apyttextovixr) toug Ue Bdon to xahltepo CNN otov Swywvioud ImageNet. EZepeuvoiv
Odpopeg uedodoug Yo TN CUVINEN TWY YWEOYEOVIXWY AELTOVEYLWY YPNOULOTOLOVTAS JLoOLEC TUTES
dladuxaolec xuplwg xot TElodLdoToTy CUVEMEY Wovo uéow opyhc olvinéne. Ot Simonyan and
Zisserman 2014 ypnowonoinoav 2 CNNs, éva yia ywpxés TANeogoplec xoL €va Yl ONTIXY oY
xo o ouvdLaoaY UE TN Yehor e xaduotepnuévne olvining. Aciyvouv 6t 1 e€aywyy| yweinol
nepleyopévou and to Blvieo xou mepleydUEVOL xvnong omd TNy omTixY) pon Umopel vo BeATIMoEL
onuavTixd Ty axelfBela Tng avayvoplong e dpdong. Ou Feichtenhofer, Pinz, and Zisserman 2016
EMEXTEWVAY OUTYH TNV TROGEYYLON PE TN YeNON TeONE cUVTNENS 6To TéAog Twv convolutional layers
avtl e xoduotepnuévne obvingng, 1 omolo hauPdvel yopa oto teleutalo eninedo tou dixtlou.
IIévew o auto, yenowonolnouy €va 8edTERO BIXTUO Ylal TO YEOVIXO TEPIEYOUEVO TO OTOlO GUVDIEOLY
HE To dAAo BixTuo e xphomn e xaduotepnuévne oivinéine. Emmiéov, oo Wang et al. 2016 o thpiay
v uédodog toug ot autrhv Tou TedTEvVa ot Simonyan and Zisserman [2014] Aoyoholvton pe to
TEOPBANUAL TNG EVEECTNS YPOVIXOU TEPLEYOUEVOL XAl EXTIULBEVOLY TO {XTUO TOUG, TOREYOVTAUC TOU Alyal
detypora. H mpooéyyion toug, v onola ovopacay Temporal Segment Network (TSN), Sroywpilet
10 Bivteo elo6dou ot K turuarta xou éva cbvtopo andonooya and xdde Tuiua eMAEYETOL Yiot AVAAVOY).
Yt ouvéxela, cUVBEOLY TO EEAYOUEVO YWROYEOVIXO TEQLEYOUEVO, TEUYUITOTOLOVTIS TEMXE TNV
npéBiedn Toug. 1o npdopata, o Zhang et al.[2016)xon ou Zhu et al. 2017 yenowonoinooy v two-
stream mpocéyyion, eniong. Ou Zhang et al. 2016 avtixatéotnoay Ty ontixy por ue éva didvuoua
xivnong mou unopel vo Angdel anevdeiog and ta cupmieopéva Bivieo ywele emnAéov uToAoyYloUd
xoL To Teo@odotolv oTo dixtuvo. Ou Zhu et al. 2017 exnaldeucay éva CNN yia tov unoloyioud
e ontxng pong, xoAdvTac to, MotionNet, xa yenowonoincov éva CNN we ypovixd stream
vl meofdilouvy T mAnpogopiec xivnone épyou ot xatnyopiec dpdoewv. Téhog yenowonoolv
v xaduotepnuévny oOvInén péow e wéone Tnc ue Bden ta oxop mEOBAEPNG TV YPOVIXMY
XL Ywei@y stream. Ao tny dhAn mhevpd, wo véo Tpocéyyion ewohydn and toug Girdhar and
Ramanan 2017 evowpatdvovtag Ydpteg npocoy s Ue oxond va BEATUOCOUY GNUAVTIXG TNV anddoao
e avary vaptong dpdong.

Oplopévee dhheg pédodol mepthduPovay éva dixtvo RNN ¥ LSTM vyio tnv ta€véunon o6mwe
xévouv ot Donahue et al. 2017, ou Joe Yue-Hei Ng et al. [2015|xou oo Ma et al. [2017. O Donahue
et al. [2017] avuyetwnilouv ) npdxhnon twv PeTofANTdY peyedody twv axohouhdy elcddou xau
eZ6dov, expetolieuopevol ta convolutional layers xou Tic peydhou edpouc ypovixés avadpopés
(recursions). IIpoteivouv éva Long-term Recurrent Convolutional Network (LRCN), to omnoio
elvon tavé va avtigetonioet g epyaoieg avayvodpione, Aeldvtac exdvag xou neptypaphc Bivieo. T
vau tagvourioet pio dedopévn axoroudio xopé, 1o LRCN Aopfdvel opynd we elcodo €va xopé, xat mo
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ouyxexpéva to xovdha RGB xou tnv omtixy) pon tou, xou npofiénel po etixéto. Metd and avto,
e€dyel v xhdon tou Bivieo uéow Tou PETOL GPOL TWV THAVOTATWY TV ETIXETWYV, EMAEYOVTOC
v mo mdavr xAdor. Ot Joe Yue-Hei Ng et al. |2015| mpchtar Siepeuvoiv dudpopeg mpooeyyioelc yia
yeovixh ouadonoinon (temporal pooling) twv yopaxtneloTixdy. Autéc ol teyvinéc nepthapBdvouy
Tov yelploud xope Bivieo Eeywplotd amd 2 apyttextovixég CNN: elte an’ 1o AlexNet elte an’ to
GoogleNet, xou anotehobvton and mewLun cLVTNEY, xaduoTepnUEVn cOVTNEN XL EVOS GUVBUACUOU
autwy. Emnkéov, mpotetvouv éva RNN mpoxeévou va e€etdoouy ta Bivieo xhn wg axoroutieg
evepyomoioewv CNN. To mpotewduevo LSTM AowBdver we eicodo v é€odo tou tehixot CNN
layer yio xdde ouveyduevo xapé xon petd and 5 LSTM layers xou yenowonowdvtoag €vay softmax
TagvounTh, teoteivel uio etiéta. o tnv ta€ivounon tou Bivieo, emioTpé@ouy tia eTIXETO UETE TO
tehevtaio Priua, epopudlouy max-pooling otic mpoPAédelc otny SidotacT Tou yedvou, adpoilouv
Tic TeoPBAéEl oTNY BLECTAOY TOL YPOVOL Yol EMLCTEEPOUY TO UEYIOTO 1) EValy YRouixd cUVBLICUO
e Bden twv teoPAédewy und évay tapdyovta g, o adpoilouy xat emo TeéPouy To YéyioTto. Edeilav
611 6heg oL mpooeyyioeis elvon 1% Suapopetinée pe TpoxatdAndn yio T xefon twv tpoPrédeny ye
Bden vy ™y vrootheEn e Wéag 6Tt to LSTM yiveton mpoodeutind mo evnuepwuévo. Téhog
oG Oyl Ayotepo onuavtixd, ol Ma et al. [2017] ypnowwonoinoav éva two-stream ConvNet yuo
eCaywyy yopaxtnploTixey xou eite éva LSTM 1 convolutional layer mdve amd toug ypovixde
AUTOGHEVACUEVOUS TUVOIXES YUPUXTNELOTIXWY YL TN CUVINEY YOELXMY X0l YEOVIXMY TANROPORLAOY.
Xenowornowly éva ResNet-101 yia v e€arywyr| yoptddv evepyonoinone 1600 yia xweixéc 660 xou
yio ypovixéc poéc. Xwpilouv to Bivteo oe Sudpopa tuRuata, 6twe éxavay oo Wang et al. 2016, xou
yenowlomolnoay évo eninedo temporal pooling yior Tnv e€oywyr| SLOXEXPUIEVOV YUPAUXTNELO TIXWYV.
Aol MBouv autd ta yapoxtnelotid, to LSTM e&dyel evowpatwyéveg duvatdtntes and dho ta

YT

Emuniéov, o Tran et al. 2015| Siepetvnoav ta 3D Convolutional dixtuo (Ji et al. 2013)) »ou
ewofyaryay 1o C3D ixtuo mou €xel 3D convolutional layers ue muprivec 3x3x3. Autd o dixtuo eivon
ot ¥€om VoL LOVTEAOTIOLAGEL TNV EUPAVLOT X0l TNV XIVNOT] TOUTOYPOVA YETOWLOTIOLWYTOS TELEOIAC TATES
ouvehi€elg xou pmopel va ypnowonowmdel we elaywyéas YopaxTneloTix®y.  Muvdudlovtac TNy
apytTEXTOVIXY BU0 pomv xou Tic Tplodldottes cuvelifels ol Carreira and Zisserman 2017 npdtewvay
70 dixtuo I3D. Ildvew o autd, ot dnuoveyol Tovi{ouv Ta TAEOVEXTHUOTO TNS HETOPORAS Hddnomg
yioo TNV gpyooia TG avaryvadpetone emavokouBdvovtog to dlodidoTata tpo-exnatdeuuéva Bden otny
3n duwdotaon. Ov Hara, Kataoka, and Satoh 2017 mpétewvav éva Sixtuo 3D ResNet yuwr tnv
avayvapion dpdone pe Bdon ta Residual dixtuo (ResNet)(He et al. 2016) xou Siepeuvolv tnv
an6doon twv dxtdwy ResNet ye 3D Convolutional muprvec. Amd tnv &AAn, ov Diba et al.
2017 Bdowoav v mpocéyyoh touc oto DenseNets (Huang et al. [2017) xou enéxtewvov Ty
apyttextovix) Tou DenseNet ypnowonolwdvtag tpiodidotota giitea xar pooling muprves avti yio
dlodidotatoug, ovoudlovtag autyh v tpocéyyion we DenseNet3D. EmunAéov, ewodyouv to Layer
yeovinic petdPaone (TTL), to onolo CUVEVMVEL YPOoVIXd YEPTES YUPOXTNELG TIXMY Tou e&dyovTon
o€ SLopopeTnd ypovixd Badn xon avtixatiotd to eninedo yetdBoaone tou DenseNet. ITapdAinia, ot
Diba et al. 2018 eworiyayav éva véo ypovixd layer to onolo povtelonotel yetaBAnTtolc ypovixolc
nuphivec ouvélEng. Teleutaior odAd e&ioou onpavtixol, o Tran et al. 2018] newpapotioTnxay ue
dudpopeg undroineg apyttextovinés Residual dutbou yenowonouwsvtag cuvduaouois 2D xow 3D
convolutional Layer. ¥xondg toug elvan vo del&ouv 611 1 2D ywpewxr) cuvélErn axolovdoluevn and
1D ypovixny cuvéNEn emtuyydver state-of-the-art anotedéoparta, ovopdloviag awtod Tou TUTOUL
70 layer we R(2 + 1)D. Ipbogata o Guo et al. 2018 npdtewvay évo framework mou unopel va
uddel va avoryvewpeilel wio mponyoupévee adéatn 3D xhdon Bpdong ue Alyo pévo mopadelyyarto
eEXUETAAAELOPEVO TNV €YYEVT Bopun Twv 3D Sedouévrv uéow pag yeapxne avanapdotaong. Axoua
O AETTOUERY) MAPOLGIUOT) TWV TEYVIXMY AVAY VMELoTE Bpdong Tou yenotponotiinxay uéyel o 2018
npaypatonofiinxe and toug Kong and Fu [2018|
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2.0.2 EvTomopos ApactneldotnIog

‘Onwe npoavagéednxe, o eviomouds dpdong uropel va dewpniel wg npoéxtact Tou TpoBAfjuatog
EVIOTUOPOU avTXeévmy. Avtl vo e€dyoupe dodidotata mhaiota oplodétnone oe uio pévo euxéva,
0 0tdY0¢ WV CUCTNUATWY evTomiolol dedong eivan va e€dyouv action tubes, ta omoio elvon
axohovdieg mhaclwy oplodétnong mou mepléyouy wa evépyela Tou exteréotnxe. ‘Etot, undpyouv
didpopec mpooeyyioelg, ouunepthaufovouévou cuVRTKE eVvog BIXTOOU ALY VEUTY] AVTIXEWUEVWY XAl
evog TogvounTy.

O Tpdteg mpooeYYIoEC aviyVELONE OVTIXEWMEVWY TEPLAAUPBovay TNV EMEXTACT) VOS ohyoplduou
npoTaoNg avixelwévey oe 3 daotdoelg.  Ou Tian, Sukthankar, and Shah [2013| enéxtewvay to
napopoppooye (deformable) yoviéha (Felzenszwalb et al. 2010) pe to va avrtwetonilouyv Tic
Bpdoels e Ywpoyeovixd wotiBa xai dnuoteynoay €va TUPUUOPPOCLUOL LOVTEAD Yia xdle Bpdon.
Ou Jain et al. 2014] ewofyayav v évvola twv tubelets, yvwotd xar wg oxohoudiee miouciwv
oplodétnomne xau Bdotoay tn uédods Toug ot emhextind arydprdpo avalAtnone (Uljlings et al. [2013)),
enextelvovtag ta superpixels oe supervoxels yio Ty mopaywyn xweoxeovixdy oyxnudtwy. A tny
&M, ot Oneata et al. 2014 enéxtevay pio Tuyatomomnuévn dladixacio cuyyWveuong superpixels mtou
XENOWOTOLOVYTAY YLoL TPOTACELC AVTIXEWEVWY, OIS apouctdotnxay arn’ toug Manen, Guillaumin,
and Gool 2013, Ot Yu and Yuan [2015] tpctor mpotelvouv mhaiota oplodétnong yia xde xapé ue
XENoT EVOC aviyVEUTH] avlp®dTou XL XIVNOTNG, EVE), OTN CUVEYEL, UE TN ETAOYY TV XOAITEPWY
OE OXOp XOUTLRYV, TEOTEWVAY EVaY ATANCTO GUVOETIXG ohyopLdUo PE TN BLaTUTWoN TNV epyociag
oLVdeEaNE W TEOBANUA UEyioTne xdAudng. O Gemert et al. 2015 mapdyouy ywpoypovixés npotdoelg
xatevdelay and Tic Tuxvée TpoyLEg, ol onoleg emlong ypnowonotdnxay yia tavéunon. O Chen
and Corso 2015 dnuloupyoly €val Ypd@nua Yweoyeovixic TeoyLds Xl eTAEYOLY TEoTAoELS Bpdoewy
nou Baoilovton uévo oTnv eoxeupévn xivnon tou e&dyeton amd to ypdgnua. Ot Soomro, Idrees, and
Shah [2015] duaywetlovv ta tufpata Bivieo oe supervoxels xat ypnotlonooly To TEPLEYOUEVO TOUC
¢ yweuxn oyéon uetald Twy supervoxels oe ayéon ue Ty Spdior Tou npooxnviou. Anuioupyolv éva
Yedpnua yio xéde Bivieo, dmou ta supervoxels oynuatilouv toug xduBoug xon oL xateuduvdueveg
dxpeg anexovilouy Tic ywpeixéc oyéoelc ueTall toug. Kotd tn Sidpxela TV S0XOY, XAVOUV Uid
BoAta oo nepBdhioy, 6mou xdde Briua xododrnyeitar and Tic oyéoelc teptBAANOVTOC xorTd TN BidpxeLa
e exmaidevong, pe anotéheoua war xatavopn mdavotnTog uiag dpdone yio 6Ao Tor supervoxels.
Ot Mettes, Gemert, and Snoek 2016| avtl yio Tonodétnon mhauciewy oe ol o xapé Twv PBlvteo,
oyohlocav onuela oe éva opad UTOGUVOAO Xopé Tou BIVIED Xou yenouylonoinoay TEOTAGES Tou
hofBdvovton péow evoe pétpou emxdhudne uetald twv mpotdoewy dpdong xa Twv onueiwv. Ot
Behl et al. |2017| aoyolobvtar ye TNV avlyVeuon xol TOV EVIOTIOUO EVERYEWDY OE TRAYHATIXG YEOVO
péow e Mne mpotdoewy Bpdong avd xopé xaL TNy TedTacy evog akyopliduou olvdeong mou elval
oe VE0T VoL XATUCKEVAOEL Xall Vol EVNUEPOVEL Tar action tubes avd xopé. Ilio mpdopata, oL Soomro
and Shah [2017] npoondincav va aoyorndolyv ye to mpdBinua tng aviyveuong xaL Tov eVIomioud
dpdone ywelc enlBredn. H npocéyyion toug nepierdufove apyixd tnv eaywyr| XoUTUXEQUATIOUEVHDY
supervoxel xou ot cuvéyela v avddeon evég Bdpouc oe xdde supervoxel. Me tnv e&aywyn
supervoxels, dnuovpyolvy éva Yedpnua xou oTr CUVEYEL YeNotLoTolly o dlaxpltixy clustering
TROGEYYLOT €TOL WOTE Vo exTtandedeTon €vae tadvounthc.

H ewoaywyh tou R-CNN (Girshick et al. [2014)) xatdgepe onpovtixés Behtidoes otny anddoon
TV OXTOWV EVIOTUOHOL avTXEWEVWY.  AUTH 1 OPYLTEXTOVIXY, TEWTOV, TEOTElvEl TepLoyéc
oV exdva mou elvon THAVEC Vol TEQIEYOUY XATOLO0 AVTIXEUEVO XaL OTY oLVEYELR, To ToEtvouel
yenowonowdvtoag éva SVM. Eunveuopévol and auth tnv apyitextovixy), ol Gkioxari and Malik
2015| oyedlacay éva dixtuo RCNN 2-stream yia va npoteivel mpotdoelg dpdoewy yio xdde xopé, éva
stream yuo To em{nedo XoEE Xl £V Yo TNV OTTXY POT|. 1 TN GUVEYELYL, TO GUVBEOLY YEYCLLOTIOLIVTIC
Tov ahyoprdpo olvdeong Viterbi. Ou Weinzaepfel, Harchaoui, and Schmid [2015|enexteivouv auts
TNV TEOCEYYLOT), EXTEADVTOC TEOTACELS 0TO eNNESO Xopé xaL YpnoylonolwvTag éva tracker yla
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GUVOEDT] TWV TPOTICEWY QUTWYV HECE TV YURAXTNELO TIXWY TNE YWEetXAS xou ontxhc pofic. Ernlong,
7N U€0086¢ Toug exTEAEl YPOVIXS EVTOTIOUS UECK TNG XENONE EVOC GUPOUEVOL TaEdupou TV amnd
o evTomopéva tubes.

H ewooywyn tou Faster RCNN (Ren et al. [2017) cuveiogepe nohd tn Bedtiwon e anbédoong
Twv OxxTOwy eviomopol dpdong. Ou Peng and Schmid 2016| xou Saha et al. [2016] ypnowonotodv
7o Faster R-CNN avt{ vz to RCNN vy npotdoeic oe eninedo xapé, yenowonowdvtac 1o RPN
v eixévee RGB xou ontixic pofc. Aol ABouv ywpwréc mpotdoelc xal mpotdoels xivnong, ol
Peng and Schmid 2016 tic ouyywvedouv xou omd xdde mpotewouevy ROI, moapdyouv 4 ROIs
Yl Vo eTXEVTPWUOUY OE CUYXEXPWEVO UEPOC TOU OWUATOE Tou Opodvta. Metd amd auto,
GUVDBEOLY TNV TEOTACY, YENOHIOTOLOVTOC Tov aAyopiduo Viterbi yia xdde xhdon xou extelodv
YXPOVIXO EVTOTUOUOS YENOULOTOLOVTAC VO CUPOUEVO TopdduEOo, Ue TONAATAES YPOVIXEC XAUOXES Xol
Braoxehiowd xdvoviac yerion woc petddou péyiotne unocustolyioc (maximum subarray method).
Ar’ v &\, ot Saha et al. [2016] exteloly, eniong, ta€vounon oe eninedo xapé. Metd an’ autd,
N wEBoddg toug exterel cUVTNEY ue Bdom €vay cuVBLUCUS TNG EUPAVIoNS Xou TNE xivnong ue Bdomn
Tic mpotdoelg xa TNy PBaduoroyio adinienixdiuvdme. Téhog, n yeovix tpocapuoyr) hauPdvel yodea
xenowonoldvtog duvapixd npoyeopuatiowd. Iopdiinia, oo Weinzaepfel, Martin, and Schmid 2016
yenowonowty to Faster RCNN yio v e€arywy avipdnivwy tubes and Bivteo nou ectidlouv oto
TEOBANU TOL AcVEVEHE ETOTTEUOUEVOU EVIOTUOHOL SpdoNE. LT GUVEYELL, YEYOWOTOUIVTAS TUXVES
Tpoytéc xou o multi-fold Multiple Instance Learning npocéyyion (Cinbis, Verbeek, and Schmid
2016) exmawdetouv éva tagvountr. Ou Mettes and Snoek 2017 eworjyayay wo pédodo yia zero-
shot evtomiopol dpdone. H mpocéyyion toug nepthopfdver tny Bodtuoréynor twv TEOTEWVOUEVKDY
action tubes clugwva pe tic IAMNAETBPAoES UETHEY TWV ATOUWY TOU JPOUV XUl OVTIXEWEVLV.
Xenowononoav to Faster-RCNN, oto mp®dto Brue, yio Ty aviyveuorn 1600 twv avipdnwy
TIOU BPOUY 6GO XL TWV OVTIXEWEVKY Xl UETE, YPNOWOTOIWVTUS Yweés oyxéoeic peto€d Toug,
cLVBEOLY Tal TPOTEWOUEVY TAiGI oToV d€ova Tou Ypovou Baclouevol otny zero-shot mdavotnta
NC ToEOVGOC TWV ATOUWY, CUVAPOY AVTIXEWWEVWY YOpw o’ QUTOUC XOl TIC UVUUEVOUEVES YWELXES
oyéoeic UETOED avTIXELEVRY Xat avipdmwy Tou dpouv. Emniéov ol He et al. 2018| npdtevay
7o Tube Proposal Network (TPN) yio tn dnpovpyio avegaptitou xAdone npotdoewy tubelet, o
omnoleg yenotwonotoLy to Faster R-CNN yio vo Adfouv SLodidoTatee TPOTACES TEQLOYWY Kol EVoY
akyderduo clvdeong Yo T olvdeon twy tubelets ye Tic tpotdoeic Twv nepoydy. 1o npdopota,
ot Girdhar et al. 2018 tpdtewvay pia uédodo yia evtomiopd dpdoewy oto ahvoro dedopéviv AVA
(Gu et al. |2018)) cuvdudlovtac tic apyttextovixéc twv I3D (Carreira and Zisserman 2017) xou
Faster RCNN. Xpnowonototv prnhox tou I3D yia tny Mn avonopdotaone Bivieo xow to RPN tou
Faster-RCNN ryio va mpoteivel mpotdoeic «avipdmouy Yo T0 Xevipixd mAalolo.

IMopdAAnha u” autd, ot Singh et al.|2017|xou Kalogeiton et al. [2017] oyedlocay o dixtua Toug ye
Bdomn to Single Shot Multibox Detector Liu et al. 2015). Ot Singh et al. [2017| Snuiotpynooy éva
XwEoYeovixd dixTuo mpayuatxol yedvou. I'a vo Aettoupyel To dixtuo Toug oe MpayHATXS YEOVO,
ol Singh et al. 2017| npdtewvay évav véo xou amodotixd ahyoplduo pe Ty mpoovixn miociwy o
tubes o€ xdde xopé, edv exoAITTOVTOL TEPLOGOTERO AT €V XUTWPAL, 1) EVolhaxTixd, teppatilouy
7o action tube edv yia k xopé dev tpootédnxe xavéva miaioto. Ou Kalogeiton et al. [2017] oyedlacay
éva dixtuo 800 podv, To omolo xdheoav ACT-detector, xou eworyoryay to xuPixd (cuboids) anchors.
Il K xopé, xan yio ta 8o dixtua, ov Kalogeiton et al. 2017 e€dyouv ywpwxd yopaxtneiotixd oe
eninedo xapé, otn ouvéyela, ta otoBdlouv. Téhog, pe T yerion Twv xuBxdy anchors, to dixtuo
eZdyet tubelets, pe tic avtiotoiyeg Baduoroyiee xoatdtagng xou otoyoue ToAvdpounong. o
oUvdeon twv tubelets, o Kalogeiton et al. 2017 cxohoudolv ta (Sl Brjuota ye toug Singh et al.
2017, eved yio ypovixd EVIOTIOUO, XENOLLOTOW0Y Uid TEoGEYYIoT| Yeovixic e€oudhuvorng.

IIio mpbdogota, to dixtuo YOLO (Redmon et al. [2016) éywve n éunveuon yia toug Hu et al.
2019| xou toug Zhang et al. 2016, Xtnv npocéyyion nou mpotddnxe and touc Hu et al. 2019, ol
évvoleg e e€€MEne xou to0 mococtol mEoddou ewoydnoay. Extdéc and tnv mpdtacn mhouciomv
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oplovétnone oe eninedo xopé, yenowwomnowly 10 YOLO pall pe évav ta&wvount RNN yia va
e€dyouv ypovixég mhnpogopleg Yo i mpotdoelc. Me Bdon autée Tic mhnpogoplee, dnuiovpyody
action tubes, ywpillovtag o oe xAdoeic. Optlopéves dhhec npooeyyioeic nepthopfdvouy extiunon
nolag, 6mwe auth twv Luvizon, Picard, and Tabia 2018 Ilpdtewvoy wio pédodo umoroyiouos
TWV BIOOLICTATWY Xl TELOOEoTUTWY TolMVY %o oTn cLVEYEL exTéAEcay TaglvounoT Spdoewy.
Xenowornolovy 1o Swpoployo Soft-argamax yio tnv extiunomn twv 2D xou 3D apdpdoewv, eneidn
1 cuvdptnor argmax dev etvor diaopiown. Xtn cuvéyela, yio T nopaxeipevee T6lec dnuovpyody
HLOL OUTELXOVLOT] EXOVOG [HE TO YEOVO ot Tic IV aplpdoelc we & — Y dEoveg, €Yoviag 2 Xovdia Yot
v 2D n6la xou 3 vy tyv 3D n6la. Xpnowonotovy Convolutional Layers yia va napdyouy ydpteg
YepuoTNnToC Bpdong oL 0TN GUVEYELN YeNoLoTowWwYToE max plus min pooling xau tTnv cuvdptnon
softmax extehobv to€voéunom dedone. O Zolfaghari et al. [2017) npdtevay ol apyttextoviny TpLdy
powv mou mepthopfdver 2D néla, ontxr) por) xou mAnpogopiec RGB. Autd ta streams evdvovian
péow tou povtélou tne ahuoidac Markov. EmmAiéov, ov Zhu, Vial, and Lu [2017| tpdtewvay o
APYLTEXTOVIXY UE TN YENOT EVOC Ypovixol convolutional Suxtdou moAwdpdunone, yia vo mdvouv
™y yaxponpddeoun eEGeTnom xo TANEOPopieg WETUE) YELTOVXOV %0pé o €Va YwEelx6 dixTuo
TaAVOEOUNONG, Yia TPOTICELS avd xapé. Xenolponololy uedddoug napaxorovinong xou duvaxosd
TROYEUUHATIONOU Yia T dnuovpyia tpotdoewy dpdong.

Ta meplocdTEpa Amd To TEOAVAPERUEVTA DiXTUN YENOWOTOO0Y avd Xapé YWEXES TPOTACELS XAl
eZdyouv TIc ypovixés Toug mAnpogoplec utoloyilovtag Ty omtx por. And tnv dAAn ou Saha,
Singh, and Cuzzolin 2017 oyedlacav wa apyttextoviny 1 onola nepthaufdvel Tpotdoel oe eninedo
TuAuatog Bivteo, to onolo onuaivel teplocdtepa and €var xopé Tawtdypova. Ou Saha, Singh, and
Cuzzolin [2017) mpétewvay uia 3D-RPN opyitextovixy mou elvar oe déom va dnuiovpyrioet xou v
TagVOUNOEL TELOOLACTATES TPOTAoEL; amoteholueves and 2 cuveyoueva xopé. Emlong, npdtewvay
évay ohyoprduo cUVBESNC, TPOTOTOWVTOS aUTOV Tou pdtewvay ol Saha et al. [2016L IIdve o autd,
ot Hou, Chen, and Shah 2017 oyedlacav wa apyttextovixy| Yo 0 dnuouvpyio mpotdoewy dpdorng
yio neplocbtepo and 2 xopé, xahdvtag to povtélo toug Tube CNN (T-CNN). Ltnv npocéyyioy
Toug, encéepyacio oto eninedo tou Pivieo onuaivel 6t oAdxAneo To Bivieo ywplleton xhin Bivieo
{Blou oprduol xopé xan pe ™ yeron tou C3D yia TNy edaywyy XopoXTNELOTIXGY, ETCTEEPOUV
YwpoYpoVIXéC Tpotdoelc. Metd vy AMdn twv npotdoewy, ot Hou, Chen, and Shah [2017] cuvdéouv
Tic tube mpotdoelg Toug Ye évay alybprduo otnetlduevoc otny miavoTnTa UapEne dedone xou TNy
emxdhudn uetol twv tubes. Téhog, n Aettovpyia Tagvounong houfdvel Yo yio To. GUVOIESEUEVYL
action tubes.



Kegdhawo 3

Tube Proposal Network

3.1 H apyitextovixy TOLU LOVTEAOL pog

e autd to xepdhono, aoyolovuacte xuping pe to Tube Proposal Network (TPN), éva ané to
Baowd otoryeio Tou povtéhou poc ActionNet. Ilpv Eexwviicoupe v neplypogpy| Tou, napouatdlouue
7 Sopn} 6hou tou povtéhou yoc. Ilpoteivouye éva Bixtuo moapdpoto pe auté twv Hou, Chen, and
Shah 2017, H apyitextovixy| pog anoteAelton and to axorovda Poacind ototyela:

o Eva tpwobidotato  ouvehixtuxé  poviéro (3D Convolutional Network), to omolo
yenowonolelton yia TNV e€ayOYN YOQUXTNOIOTIXDY.  LTNV VAOTONGY UoC YeNOLLOTOL00UE
éva dixtuo 3D ResNet34, tou omolou tov xd8uxa Aapfdvouue and touc Hara, Kataoka, and
Satoh [2018| xou Booileton otor ResNet CNNs yio ta&wvéunon exdvey (He et al. |2016).

e Eva TPN yio v eZaywyh vrodhguwy Tols (Baoilbyevor oty 8éa mou mapouatdlouv ol
Hou, Chen, and Shah [2017]).

o ‘Evav ta&vounth yio Ty eVpeot) e xhdone twv tpoTevépevwy action video tubes.
H Boowxn Swodixacia tou axoroudel to ActionNeteivou:

1. Aedopévou evdc Bivteo, 1o daywploovue oe tuhuota Bivieo. Autd ta tuipota Bivieo oe
OPLOUEVES TPOCEYYIOELS EMXUAUTTOVTAL YPOVIXE X0 GE GANES OYL.

2. T e tunipa Bivteo, yetd tnv extéheon e ahhayric UEYETOUS YWEOYPOVIXE, Te0POBOTOVUE
o xop€ tou oto ResNet3dywr va e€dyoupe toug ywpoypovixols ydetec tou. Autol ol
X8eTEC EVEPYOTOINONG, OTN CUVEYELY, TPoodoTouvTon oto TPN yio Ty npdtact axorouthy
mhaoiwy mou mbavéy mepiéyouv xdmola dpdon Ti¢ onoleg Yo ovopdoouuye Tubes of Interest
(Tols), 6mwe xdvouv xar ot Hou, Chen, and Shah 2017,

3. Metd tnv mpdtaon Tols yio xdde turua Bivieo, yenoionoldvioag évay alyopiduo civdeong,
to ActionNet Bploxet ta tehxd umoripia action tubes. Autd to action tubes divovtar w¢
eloodo ot évav TagvounTy yia Tov TPocdLloploprd TN XAdone Toue.

‘Eva dudypopua tou wovtéhou poc ActionNet epgaviletor otny ewxéva ;3.

33
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516 12112 (3.16,112,112) (3.16,112.112)

Yyfua 3.1: Network’s structure

3.2 Ewaywyn oto TPN

O x0proc oxonde tou TPN eivan v npoteivelt Tubes of Interest (TOIs). Autd ta tubes eivou
mdovd vou TEPLEYOUY Ual YVWOTH dpdon xou amotelolvTon and Uepixd dodidotata mhaiota (1 yio
xd9e xapé Bivteo). To TPN eivar eunvevouévo oné to RPN mou eworiydn and to FasterRCNN
(Ren et al. [2017)), adhd avl yior exéveg, 0 TPN yenowonoeiton oe Bivieo 6nwe xévouv xou ot
Hou, Chen, and Shah Ye mhien avtotolyia ye o RPN, 1 8oyt tou TPN elvon mopoéyota pe
autr) Tou RPN. H pévn dwagopd, sivan 611 10 TPN yenowonowel 3D Convolutional Layers xouw 3D
anchors avti v 2D.

Yyeddoape 2 xOpiec Sopée yio to TPN. Kdle npocéyyion éyel Slapopetind oplogd yio Tt
yenowomoloueva tplodldotato anchors. H unéhoinn Sour) tou TPN eivon xupiwe 1 (Suo ue oplopéveg
HxpéC Blopopéc 6To GTABLO TOu regression.
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3.3 Ilpostoiwpacia tpwv to TPN

3.3.1 H mpocTtolpacia TV BeSOUEVLY

Ipw ewooryel éva Bivieo oto ResNet xan oto TPN yia vo e€arydryoupe tor yopoxtnpeiotixd tou
xou mdavd Tols, awtéd o Bivieo npénel va npoeneplactel. H Swadinacio npoenegepyaocios etvan 1 (B
xau Yo Tl 6Vo mpooeyyioelg Tou TPN. H opyttextovinn pog AauBdver e gicodo uio axohouvdia and
otodepd aptiud xapé mou €youv otadepd TAdTOog xan Udoc. QoTtéc0, xdie Bivieo elvon mhavdy va
€xeL BlapopeTiny) avdhuon. Autd dnuiovpyel TNV avdyxn va aAldoupe To péyedog xdde xapé xou
nhauoiov mpwv eooydel oto ActionNet. ‘Onwe avagépdnxe oto TEoNYOVUEVO XEQPEAULO, TO TEMTO
otoyelo Tou dixtdou pag etvon éva 3D ResNet nou uhomouidnxe and toug Hara, Kataoka, and Satoh
Auté 1o dixtuo éxel oyediootel va déyeton Bivieo pe Swotdoeic (112, 112). Q¢ anotéheoua,
uetafBdihoupe to uéyedoc xde xapé and to Bivieo twv dataset oe (112, 112). T va Slotnprioouye
v avahoylo Slactdoewy, Tpootétouue undevixéc TWég elte aploTepd xou 8e€Ld, elte mave Xt Xdtw,
avéhoyo ue Tto ol SidoTaoT etvan peyokltepn. Xto oyfua 77 unopolue vo Bolue 1o dpyind xopé
%9 dS xou To Avadlaop@wEévo. Xe AN avtioTtotyio, ahhdlovue o To HEYEHOC TLWV TEAYUATIXWY
mhausiwv oplodétnone yia xdde xapé (To oyfuate 7?7 xaw ?? 1o anexovilouv).

() (d)

Syfua 3.2: Ta xapé ota (a), (b) anewxoviloviu oto mpaypatxd toue péyedoc eved ota (c), (d)
amexovilovton ta (Bl xoipé HETE TNV TEoETEPEYAOLd
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3.3.2 3D ResNet

Ipw and ) yeron tou Tube Proposal Network, e€dyouue ywpoypovixd yopaxtnelotixd and
70 Bivteo. T va yiver autd, e€dryouye o 3 Tpwta oTpdUoTe evog tpoextaudeugévou 3D ResNet34.
Auté 1o povtédo elvan mpoextoudevuévo oto Kinetics dataset (Kay et al. Yo Sudpxeta
delyparog {on ue 16 xopé xon péyedog delypatog (oo pe (112, 122).

Avuté 1o Bixtuo cuviiwg yenowonoteiton i Ty Tto€vouncn okoxAneou tou Bivieo, omdte
HEPWXE amd TOL OTROUITA Tou Ypnotwonololy temporal stride (oo ye 2. Euelg, dpwg, 9étouye 10
temporal stride {co pe 1 yiotl Sev Féhouye va ydoouue ypovixés TAneopoplec xotd Tn Sldpxela TNg
dradiacios. Etot, n é£0d0¢ Tou Tpitou oTEMUATOS Elvol Ve YEETNG XOPUXTNELOTIXMY UE DlUoTAoELS
(256, 16, 7, 7). Tpogodotolue autd Tov YdpTn yopaxtnewotixdy oto TPN, 1o onolo meptypdpetos
oTIc axOhoVVES EVOTNTEC.

3.4 To tpiodidoctata anchors wg 6-dim Stavbouato

3.4.1 Ilpwtn neprypap

Eexwvioaue va oyedidlouue to TPN eumvevouévol and tny douvkeld twv Hou, Chen, and
Shah ‘Etol, Yewpolye xdde anchor we éva tpiodbidotato mhaiclo to omolo yedgetar ©¢
(z1,91,t1, T2, Y2, t2) 6mOU Z1,y1,t1 elvon oL MAvew UnPOcTd aploTEPéS o Tdoel Tou x0Bou xou
T2, Y2, b2 €lvor ol xdtw miow Se€id, onwe palveton xau 0TV EXOVA 5.

(x,.y,t) (x,y,.t)

(xy..t)

(it ) (x,.y..t,)
Eyua 3.3: Topdderypa tou anchor (z1,y1,t1, T2, Y2, t2)

To »x0plo TAEOVEX TN QUTHE TNG TEOCEYYLONG €lvor OTL EXTOC amd TIC DLUC TACELS X-Y , 1) DLACTAOT
Tou ypedvou elvan yetaodiopevn. Q¢ anotéheopa, to npotevopeva Tols dev €youv xadopiouévn
yeovix didpxew.  Autd Do poac Bondfoer va acyolndolue pe To pr-xoppéve (untrimmed)
Bivteo, enedr) to mpotewvoueva Tols Yo pmopolv va e€atpécouv background xopé. Ia avtrv tny
TpocEyyior, Yenowonoolue n = 4K = 60 anchors yio xdde pixel otoug ydptec evepyonoinong
tou TPN. 'Eyoupe k anchors yio xdde Siopopetin| Sidpxeior anchor (5 xhipoxes tov 1, 2, 4, 8,
16, 3 aspect rations 1:1, 1:2, 2:1xa 4 didpxeiec 16, 12, 8 xou 4 xapé). Topgpwva pe touc Hou,
Chen, and Shah ta anchors tou dixtdou opllovton clppwva pe to mo cuvhopéve anchors
TOL GLVOROL dedoUEvmy. Autd, WoTdoO, dnuioupYel TNV avdyxn enavaoyediacpod Tou dxTiou yio
xd¥e oOVOAO Bedouévwy. TNV TPOCEYYIoH Uog, yenowonowlue to (Bl anchors xan yio to 8o
oUvoha BEBOPEVKV, eTELdY) VéNoupE TO BixTud pog va uny va Bacileton oto ghvolo Sedouévmy Tou
Tou mapéyeTal, oA va efvan oe Véom va yevixeloel Yo Sidpopa ahvolo dedopgvev. g Bidpxela
detypoatohndlag, emhégope 16 xopé avd turiue Bivieo, eneidy| 1 tpo-exmoudeuuevn exdoon ResNet
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Tou yenotdonoolue €yel extoudeutel yio Bivieo xhin ye auty 1) Sdpxeia. ‘Etot, 1 dour tou TPN
ebvou:

e 1 3D Convolutional Layer ye kernel size = 3, stride = 3 xa padding =1
o 1 classification layer mou eZdyel 2n scores yio to av umdpyel ¥y L dpdon yia n anchors.
e 1 regression layer nov €£dyel 6n dwotdoes (x1,y1,t1, T2, Y2, ta) Yo 0 anchorss.

H Bouy tou TPN nopouvoidletoar oty Ewédva 55. To anotéheopo tou TPN eivon ta k-xohbtepa

%0UTLd, Tor omolo efvan tor o mdovd vo Teptéyouy xdmola dpdon).
— —
— —

Figure 3.4: H Soyy tou TPN

3.4.2 Training

‘Onwe npoavagéptnxe, to TPN e€dyel cuboids w¢ 6-8idotata Swoviopota. o to Adyo auto,
TEOTIOTOLACUUE TAL TEOYUOTLXd TAdoLaL avd xopé oe mpaypatxd cuboids. Oswpolyue dedouévo 6T
70 dtopo mou Bpa, dev umopel va xwvndel ToAD oe 16 xapé, yi autd yenoiwonotolue téTolou eldoug
cuboids. ‘Onw¢ @alvetar 6to oyfua 33, autd o cuboids elvon TplodidoTorTa XOUTIA TOV TEPLAAUBEVOUY
OhoL ol TparyaTd Thalota, Tor omola etva SLapopETIXG. avE. XapE.

Yyua 3.5: To mporypotind cuboid €yel umhe ypwua oL To TEAYUATIXS avd Xopé TAALCLO EXEL YPWUAL
TPAoLVO

ot Swdixaoio training, yia xdde Bivieo, emiéyouue tuyaia €va pépoc tou, to omolo
€yel Odpxelor 16 xapé. Oswpolye éva anchor wg mpodto mhdvo, av 1 Baduoroyia emxdiudmg
TOU pe To mpayWotix6 tube efvan peyohlteen amd 0,7.  Awapopetixd, Jewpeltan we anchor
povTou. Xpenouwlomowolpe évay scoring layer yio va tavopnooupe owoTd autd to anchors xou
yenowonowovue tnv Cross Entropy Loss we ocuvdptnon xéotoue (loss function). "Eyoupe molhd
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anchors yio vo tpotelvouye pio 8pdion), ARG pixed apldud dpdoewv ot xdie Bivieo, étol emhéyouue
256 anchors cuvoAwd yio xde video. Opiloupe 6Tt 0 péyiotog aptdude tTwyv anchors mtpooxnviou
va efvon 25% amd toug 256 anchors xou tar unéhouna ebvon anchors gdvrou.

H owoty to€wvéunecr evog anchor dev elvon apxety vyl va npotelvouue cuboids. Etvou, enfong,
anopaitnto ta anchors vo emxohdTTOVTOL 66O TO BUVATOV TEPIGGOTEPO e Tal Tpayotixd cuboids.
Avtéc ebvon 0 Moyog Tou yenotponotolye éva eninedo makvdpounong. Auto to layer «xuwvely tov x0Bo
OTNY TEPLOY T TOL ToTEVETAL OTL lvan Lo Xovtd oTn dpdor. o cuvdpTNnon *xOGGTOUE TUAVDEOUNCTE
XeNolonoloVue v cuvdptnon xdéotoug smooth-L1 onwe nopovotdleton and toug Girshick et al.
2014, T va unohoyioouue Toug 6ToYOLE TOAVDEOUNCTE, Xenothotowlue TNy pytorch eqopuoyy
tou FasterRCNN (Yang et al. [2017) vy tnv mohvdpdunon tou TAociou xol TPOTOTOLOUKE TOV
%O emextelvovtag Tov Yo 3 dlactdoeic. ‘Etol éyoupe:

ty = (x — 24) /Wa, ty = Y —=Ya)/ha, t.=(2— 24a)/da,
ty = lOg(w/wa)7 th = lOQ(h/ha)a tg = lOg(d/da)7

ty = (" — 2a) /wa, ty = (V" = Ya)/hay L =(2"—24)/da,
t;fu = lOg(w*/wa)7 t;; = lOg(h*/ha)7 tfl = log(d*/da),

6moL T T, Y, Z, W, h, d UTOBEXVOOUV TIC GUVTETAYUEVES TOU XEVTEOU TOU TELOOLAGTATOU XOUTION
%9 enlong 1o mhdtog, To Uog xan TN Bidpxeld tou. O YeTABANTEG T, T, XU TF aQopOVY TO
TpoPBienduevo mhaiclo, To mhaioto tou anchor xou to TeaypaTxd Thaiolo aviicTorya (ouolwe Yo ¥,
z, w, h, d). Puowxd, unohoyiloupe TNV amdAela TaAvdpdunone uévo yio ta anchors mpooxnviou
xa Oyl AUTE TOU POVTOU, CUVETWS GTNY YElpoTepn Ya utohoyloouue 64 otéyoug yia xdde video.

I va suvodloouye, ot Sladixacia training, exnoudedouye 2 layers yio to TPN, to scoring xou
reggression. H ouvdptnon xéctoug mepihopufBdvet to training losses mou mpoximtouy an’ autd To
layers xou o tOmog e elvau:

L = ZLcls(plap;k) + prLreg(tl’t;k)

6mou:

o L elvan 1 Cross Entropy loss mou ypnowonolobue you va exnoudebooupe ta anchors, pe p;
elvan 1 mpoPBAenduevn xhdor, pi elvon 1 oyt xh&om xan pi, pi € {0,1}.

® L,cq clvon n ouvdptnon xéctoug smooth-L1, n onoia nolamhaoidleton ye p; mpoxeiuevou
vo. evepyomoteitan 6tay undpyelr Yetixd anchor (pf = 1) xa vo anevepyomoteiton yla To

background anchors (p} = 0).

3.4.3 Validation

H Swdixaoctio validation efvor xdmwe mapduolor ye tn Swobixacio tou training. Emiéyouue
tuyaio 16 xapé and éva Bivieo emxdpwong, e€etdloupe av UTdpEYEL TOVAAYLOTOV 1 TROTEWVOUEVO
cuboid nou emxordntel > 0,5 yio xdde mpaypatind cuboid xou nalpvoupe to recall score. I'io vo
AdBoupe xahéc mpotdoelg, Yetd T AP Twv classification scores xou twv regression targets amd
T0 avtiotoiya layers, ypnowonowtue tov akybéprduo Non-Maximum Suppresion(NMS). Eyouue
oploel 1o xatdil tou NMS (oo pe 0,7 xou xpotdye toug mpwtoug 150 x0Bouc ye TN peyohitepn
Barduoroyioa.
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3.4.4 Modified Intersection over Union(mIoU)

Koatd tn Sdpxeta tou training, éyoupe mohhd anchors. Ilpénel va to tadivouricouye we anchors
npooxnviou 1 anchors mapaoxnviov. To anchors mpooxnviou elvon exelva Tou mepLEyoLY Hdmola
evépyela xot, avtiotolyo, tou @évtou mou dev €youv. To IoU vy ta cuboids umohoy(ler to
10000 TO PeTagl TOU OYXOU TNG EMXAALYNG xaL Tou OYxou Twv évwone. Alucintixd, autd to
xpLthplo etvon xohd yia Ty o&lohéynor tou Boduod emxdiudne 2 cuboids, ahhd €yel éva yeydro
pelovEXTNUa: Oewpel 6Tl oL BLao TACELS X-Y €x0LY TNV (Blar onuacia Ue TN Ypovixy didotao, To onolo
dev emupodye. Ku autd STl mpwdytov, pag evdlapépet va elpacte axplBelc otn ypovixy dldo taom,
X0l OTY) GUVEYELX UTOROUKE Vo Blopldcouye Tov Topéa x-y. ¢ anotéheoua, oAALOVUE TOV TPOTO UE
Tov onolo utohoyiloupe 1o Intersection over Unionxotd tnv exnaidevorn. YTroloyiloupe Eeywplotd
70 IoU otic dwotdoec x-y (IoU-xy) xou oty t Sdotaon (IoU-t). Téloc, nolomiacidloupe autd
T dVo score yio var wdpoupe 1o Tehxd ToU. Tuvende o tinoc yia 2 cuboids (z1,y1,t1, T2, Y2, t2)
xon (2, y1, th, b, yh, th) ebvou:

ToU,, = Area of Overlap in x-y

Area of Union in x-y

ToU, — max(t,t]) — min(ta, th)

min(ty, t)) — max(ta, th)
IoU = IoUy, - IoUy

To napandve xprthiplo yag Bondd vo eElooppomooupe T EMRTWOEL Tou Ypeoévou oto ToU score.
T mopdderypa, ac eetdoovue 2 anchors: a = (22, 41, 1, 34, 70, 5) xou b = (20, 45, 2, 32, 72, 5).
Avutd ta 2 anchor ot dwotdoeic x-y €youv Baduoroyio IoU ico ye 0,61. AN Sev eivan axpiBdg
EMXUAVTTOUEVA OTNV BLEAGTACT TOU YpOVOL. XENOUWOTOIWVTAS TNV TpWTr Tpocéyylor éyoupe 0,5057
IoU Bodpohoyla eves n debtepn tpocéyyion pag divel 0,4889. "Etot, to 6e0tepo xpitnplo Yo anéppinte
autd to anchor, SLoTL UTdEYEL Wa Blapopd GTNY YPOoVIXT| SLdpXELa.

Tl va emPefondoovue v 16éa pog, exmoudevouue to TPN ypnowonowwvtag téco to IoU
xputhelo 600 xan o mloU yio Ty emixdhudn twv cuboids. Xto nivaxa ;3 propodue v Sobue tnv
anddoor oe wdde meplntwon xou yia T 800 clvoha dedouévewv, JHMDB xoa UCF-101. To recall
6plo Yoo auth TV mepinTtwon ebvar 0,5 xou xatd v Bidpxela Tou validation yenoiwomowolue To
xavovixd IoU yia vo xadopicouye av 2 cuboids emuxaddntovtan.

| Dataset | Criterion || Recall(0.5) ||

ToU 0.70525
JHMDB mloU 0.7052
IoU 0.4665
UCF mloU 0.4829

Table 3.1: Ta anoteréopota tou recall xou yio to 2 Ghvoha BEBOUEVLY YPNOULOTOLWVTAS TIG UETELXES
IoU xor mIoU

O nivaxog 33 wog delyver 6t To Tpononoinuévo-IoU pag Sivel ehappng xaAbTeET anddoor recall
u6vo oo clivoho dedopévewy UCF-101. Autéd elvar hoywd, enedy to cOvoro dedouévwy JHMDB
yenowlomolel xoupéva Bivieo, cuvenddg N ypovixr Sidpxela dev enneedlel mold. ‘Etol, and thea
xau 670 €€NC, xaTd TN didpxeta Tov training yenouyronowolye o mloU wg emixahunToUEVY TOATIXT
Barduoroyiog.
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3.4.5 BeAtiwwvovrtoac to TPN score

Metd v mewtn doxuuy), poag nede 1 wéa 6T ot éva Bivieo mou diapxel 16 xope, otnv didoTaon
Tou Ypedvou, Oha Ta £ldn TwWV evERYELWY Unopoly va Ywellovton ot axdroudec xotnyoples:

1. H evépyeio Eexwvd amd 10 n-0 mAaiolo xou ohoxhnpodveton Petd to 160 xapé tou Bivieo mou
€yel utoPindel oe Selypotohndla.

2. H evépyewa éxel 1o Eexwvnoet ey and 1o To xapé Tou Bivieo xou Teheldvel 0T0 1 TAAGLO.

3. H evépyeio €xer RON Eexwvioet Tty omd to Lo xopé tou Bivieo xan ohoxhnpveton Yetd o 160
xapé Bivieo.

4. H evépyeta Eexwvd xon teleltdvel oe autd to 16 xoapé tou Pivteo.

Emniéov, nopatneriooue 6Tl oL TEQIGOOTERES EVEQYELES, OTA CUVOAI BEBOUEVLV UaC, BLopxo0V
neplocdtepo and 16 xapé. ‘Etol, npdoue pye v Wéa v mpoovécoupe 1 scoring layer xou 1
reggression Layer nou o npotelver cuboids pe otodepr] Sidpxeia lon e tn Sidpxeta tou delypartos (16
xop€) xou Vo MBeL o TiC YwEES TANPOYOopieC TOL TaEdyoVTaL And TOUC YAPTES EVERYOTOINONC.
H véa dour) Tou TPN epgovileton otny exdva 35. Aol Afoule TiC TEOTACELS XoL OO Xou A Tol
dVo scoring layers, tic evidvoupe pe 1ocooTt6 1:1 yetalld twv cuboids mou eZoydrixay omd Ta Vo
uTod{xTuaL.

-

v

- —

Figure 3.6: H Soun tou TPN agol mpoctécaue 2 véa layers, émou k = 5n.

Ytéyoc uog elvol Vo «OUUTHECOUMEY TOUC YHPTEC TNG YEOVLXNC OO TAONG, TEOXEWEVOU Vol
mpotelvouue cuboids cluguwva uévo pe g ywewés mAnpogoplec. ‘Etol, Peixaue ye 2 teyvixég
YLl VO TTROLY HOLTOTIOLICOUUE X 4Tl TETOLO:
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1. Na yenowonoticoupe 3D Convolutional Layers pe péyedoc nupriva = (Sidpxeta delyporog, 1,
1), stride = 1 xou ywpic padding yio scoring xou regression. Autde o TupRvog «xoltdery pévo
TN YEOVIXY BLACTAON TWY YAPTOY EVEpYOTOiNone xat dev Vewpel xapia ywewt edptnon.

2. Na umoloyloouue Ti¢ péoeg TWES amd Tn YPOVixY OLHCTUOT XL OTr) OCUVEYELL Vo
xenowonowjooupe éva 2D Convolutional Layer yia scoring xou regression.

Ou Swdixaoieg training xon validation mapauévouv (Bieg.
TP €Y0VUE xOOTN and 2 cuoTHPATA Tou poteivouv cuboids. Ilapdhinha, xato TNV Sidpxelo Tou
validation, eyelc opyxd, evédvoupe o mpotewvouevo cuboids xou, otn cuvéyela, axoloudolue TNy
{BLo Sradixasia, 1 onola etvan var untoloyicoupe to recall. I to training loss, éyouue 2 Sapopetinég
Cross-entropy loss cuvopthioeic xau 2 dlaopeTtixd smooth-L1 losses. Etot, 1 anoieia exnaldevong,

Tpa, opiletan we:

H pévn peydirn diagopd etvon 6tu

L= Z Leis(pis i) + Z Las(pfived,is p;ized,i)+
1 K3

(3.1)

Z Pi Lyeg (i, 17) + Z Plized,ilmeg(tived,is tyived,i)
i i

oTou:

o L, eivan 1 Cross Entropy loss mou ypnowonololye yio va exnondebooupe ta anchors, ue p;
elvan 1 mpoPBhenduevn xhdon, p; etvon 1 mearyporTeh xAdom xan p;, pi € {0,1}

® Lyeq elvou 1 ouvdptnon x6ctoug smooth-L1, 1 omolo moAhamhacidleton ye p; mpoxeipevou
vo evepyomoteitan 6tay undpyel Yetixd anchor (pf =

background anchors (p} = 0).

1) xon va amevepyomolelton yior T

e p; elvon Tor anchors and Tt scoring xou regression layers pe yetoBAnTty| ypovixn Sidpxelo xan p;

ebvan 1 avtioToyn mpaypatix Toug xAdoT).

® Dyized,i Evan Tot anchors amd ta scoring xou regression layers ue otadepn ypovixr didpxela fom
pe 16 xop€ xan .4 Elvon N avtioToyn mporypatixy Tou xAdor.

Exnoudeboupe 10 dixtuo TPN yenoiwonowdvtoac xou Tic 800 teyvixés xou 1 anddoon Ttou recall

eupavileton otov mivoxa ;5.

| Dataset | Fix-time anchors | Type [ Recall(0.5) |

No - 0.7052

JHMDB Ves Kernel 0.6978
Mean 0.7463

No - 0.4829

UCF Yes Kernel 0.4716
Mean 0.4885

Table 3.2: To anoteAéoparta tou recall yetd tnyv mpoodrixn anchor pe otadepr| ypovixr Sudpxeia

‘Onwe unopovye vo BoUYe and To TEoNyoUUeve anoteAéopoTa, To véa layers ad&noay onuovted
v amodoon tou recall. Ilépa amd autod, o mivaxag 33 Selyvel 6Tt 1 AMdn Twy péowy TPeY and

xeovixy| Bidotaon pog divel o xahbtepa anoteléouata.
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3.4.6 IlpoocY7xr Regressor

To oamotéheopyo tou TPN elvon to a-udnidtepa Baduoroyixd anchors mou petonavridnxay
LUV UE TNy regression TpoBAedn Toug. Metd and auTd, TEENEL VoL UETATEEPOUUE TO TPOTEVOUEVAL
cuboids oe Tols. T va yiver autd, mpocétouye Evor UG TNUO TUAVEPOUNONC TOU TAlPVEL ©C
€lood0 TOUC XAPTES YUPUXTNELO IV TWV TELEOLIC TUTWY XOUTLIV Xl ETLC TREPEL Lot oaxolouvdio amd
BLodLdo Tao T XoLTLAL, Eva Yl xdde xapé. To wdvo medBinuoa elvon 6Tt 1 Tothvdpounom yeetdletal K¢
eloodo ydpteg yapaxtnploTixwy otadepol yeyédouc. Autéd to mpdBinua tvon BdN Avpévo and ta R-
CNNs mou yenowonototv ROI pooling o ROI align npoxeiévou va Adfouv ctadepol yeyédoug
x%etec evepyomoinone amd ROIs petoforhéuevou peyédouc. Xty mepintwon yog, enextelvouue
v Aettovpyion Rol Align, nou napouvoidleton and to MaskR-CNN(He et al. |2017)), xou eyelc to
ovopdloupe 3D ROI align.

3D Roi Align To 3D ROI align eivar pia tpononoinon tou ROI Align mou mapoucidotnxe
ané 1o MaskR-CNN. H x0piot Stapopd petolt) autodv twv dbo eivar 6t to MaskR-CNN, oo
RoiAlign, yenowwonolel Siypopuixr) napeuBory) yioo ™y e€aywyn twv yopaxtelotixdv twv ROIs
xat to dixde pac 3D ROI Align yenowponotel torypoppxn mopeuBory| yior tov (6io Aéyo. Kou ndit,
7 37 BidoTaoy ebvar ypdvog. Xuvenng, Exouue we elcobo Eva TN XopaXTNELo TIXGY Tou eEdyeTal
an6 to ResNet34 pe dwotdosic (64, 16, 28, 28) xou £vay Tévoopa TOU TEPLEYEL TO TROTEVOUEVYL
Tols. T xéde cuboid tou onoiov o ydptne evepyomnoinone éxetl péyedog ico pe (64, 16, 28, 28),
€y ouUe we €200 éval ydpTn YoapoxTneloTixdy ue uéyedog (64, 16, 7, 7).

Regression procedure

Sy apyn, Yy xde mpotewouevo Tol, €youpe toug avticTolyoug ydpTeC evepyomoinong
yenowonowdvtag 3D ROI align. Autd ta yopaxtnplotnd divovtow we elcodo oe évav Regressor.
Autée emotpégel 16 - 4 mpoBhendueve UETOBORES (s, Oy, 0w, 0n), 4 Yia xdde xapé, bmou dy, 0y
xardopilouv TIC CUVTETUYUEVES TOU XEVTEOU TWV TEOTAGEWY X0 Oy, O, TO TAGTOC Xt TO Udog Tou,
onwe oplleton and toug Girshick et al. 2014] Kpotdue pévo Tic mpofrendueves uetaBoréc, yia
Ta o€ mou >ty xon < to xou yio umohoina Yé€toupe Evar undevixd 2D xouti. Metd and auto,
Tpononolope x&le anchor, ypauuévo we évay x0Bo dnhady| yeoauuévo we (T1,y1,t1, T2, Yo, t2) O
o oxoroudior mhauoiwy 2D, dnwe:

(0,0,0,0, ey Ty, YTy » T 5 Yy -3 Ty Yis Ty ooy BTy YT Ty Y5 0,0, 0,0, .0,
omou:

o T} SiSTQ, YLO(T1 <t1+1,T2 < to xou Tl,TQ ez

— — ! !
® T, =21,Y = Y1,T; = T2,Y; = Y2.

Training T va exnoudebooupe tov Regressor pog, oxoloutolue to (B BAuota mou
oxohoVICOUE TEONYOLUEVWLE YLl TNV TieonyoUuevr dadixacio extaideuvong tou TPN. Autd onuaivel
ot emhéyouue tuyaio 16 Tols and autéc mou mpotelvovton amd To scoring layer tou TPN. Ar’
outd, 4 eivon o anchors mpooxnviou, to omolo onuaiver bt amotelodv T 25% TOU CUVOAXOD
apriuol Twv anchors 6mwe cuvéRn mponyoupévwe.  E&dyouue ta avtioTolya yopoxTneloTixd
Toug yenotornowdvtog 3D ROI Algin xou unohoyilovye toug 0ToY0UE TOUC, OTS XAVOE YIol TO
regression layer. Tpogodotolue T0 BixTUO HAC UE AUTE TO YOPOXTNELO TN XL CUYXEIVOUUE TOUC
TEOBAETOUEVOUC GTOYOUG HE TOUC OVOEVOUEVOUS.  Eavd mdAL, yenotwomowolue smooth-L1 loss
function yi ™ cuvdptnom xécTtoug, utoroyilovtag Ty uévo yia Tols mou elvon oTo TEOOUNAVIO.
‘Etol, mpooiétoupe pla GANY THpdUETEO 0TO QOpUoLAa anwAeLldS extaldeuone mou théov oplleto
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WC:

L= Z L (piap;‘k) + Z Lcls(pfimed,iap}ixedJ)‘i'
K 1

Z p? Lreg (ti7 t:) + Z p}imed,iLreg (tfiﬂiedvi’ t}iwed;i)—i_ (3-2)

% i

Z qureg (Ciy Cj)"‘
7

6mou ETOC ambd TIC TopopéTPous ToL xodoploTnxay TEonyoupévens, opiloupe ¢; we otdyoug
Tohvdpounone vy ta emtheypéva tubes gr. Autd to tubes eivon mou emhéyovtan Tuyola amd Ta
npotewoueva Tols xou g elvon o avtioToryol mporypotixd tubes, To omola elvon tar TAnoléctepa o
xdde g; tube. Kau mdhl yenoiponolotye 1o ¢ w¢ nopdyovia, eneldy) Yewpolye éva tube we pdvto
6tay Bev emxoAUTTETOL YE omotodNnoTe Tparypatixd tube meplocdtepo and 0,5.

Validation Xpnowonowlpe, Eavd, 1 yetpur recall yio va aiohoyrioouvue tnv anddoor tou
nahwvdpounth. Troloyilouye 3 emdodoeic recall:

Cuboid Recall, nou elvor 7 recall upetpixr yia Tt mpotewoueva Tplodldotato  cuboids.
Evdiagepduoacte yio autiv v enidoon yuotl, Hélouue va yddoupe méco xohég etvor ol
TPOTACELC HAC TPV TIC TPOTOTOLCOVUE OE CELPEC TANGIWY oplodéTnone.

Single frame Recall, n onoloe elvon n enidoon recall yia tic mpotewvduevee oxoroudieg
OLOBLAOC TATWY XOUTUDY O GYECT| UE TIC TROYUUTIXES.

Follow-up Single Frame Recall, nou elvou 1 anédoon tng avdxAnone uévo yio o TolodLdo Tota
cuboids mou Aoy v and 1o 6plo emxIALPNC YeTAED TWV TEOTEWOUEVKDY XUPWY Yol TWV
Tpaypotixedy x0Bwyv.  XenowonoloVye auTh TN PeTeux yio vo yvwpeilouye mdoo and Ta
TPOTEWVOUEVD TELOOLAC TOTa XOUTLE XATEANEXY Vo efvar xohég TPOTdoELC.

Apyirtextovixég yia tov Regressor

Yyedidooye 2 tpooeyyioeig yiot Ty vAomoinon tou Regressor. Autég anewoviovton otic Euxdveg
35 XOU 33, UE TNV TROTN TRooEyYLon va anoteAeiton and éva 3D Convolutional Layer oe avtideon ue
v deltepn npooéyylon mou €yel éva 2D Convolutional Layer.

H Suwdixaotio tou axoloudolv xou ol 80o Regressors neplypdpeton mopoxdte:

1. Apywxd e€dyouue Ta avtiotoyo feature maps yio xde Tol yenowwonowdvtac 3D Roi Align,
xan axohoVdwe Tor xavovixonowolpe. Metd, oty mpdtn TEocEyYioT Teogodotolue éva 3D
Convolutional Layer ye kernel {co pe 1, stride {co pe 1 xou yowplc padding. Etnv cuvéyela,
epopubélouvye wa pooling ddixacia oty didotaon Tou yeévou (elte avg eite max pooling).
A’ v 80, otny deltepn Tpooéyyiom, TemTa epopudlovye avg/max pooling pévo otny
BldoTaom Tou YEOVOL Xou aTNV cLVEYELX Tpoodotolue éva 2D Convolutional Layer ye kernel
= 1, stride = 1 xou ywplc padding.

2. Ko otic 800 mepintidoeilc hapfdvoupe o é€odo éva feature map pe diootdoes (64,7,7) to
onolo mepvdue dooyxd and 1 ypouuwd layer, 1 Relu Layer, 1 Dropout Layer, dAio éva
yeouuwod Layer, dhho éva ReLu layer xou éva tehxd ypouuixd layer. To teieutalo layer pog
divel we €€0d0 64 otdyou, dnhadn 4 - 16 petoavioelc.
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.

Figure 3.7: H Soun tou Regressor tng mpwng npocéyyiong

SHEE =
'
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Figure 3.8: H Sour| Tou Regressor tng deltepng npocéyyiong

Ot Ttivoxee 33 %ot 33 TEQLEYOLY TA ATOTEAEGUOTA YLOL TNV TEMTY xou delTeERN Tpocéyylon. Moy,
yioe TNV BelTERT) TEOGEYYLION EAEYENUE 3 DLUPOPETIXOUE YAPTES YORUXTNOLO TNV, EVE Xol OTIG 2
TEQITTWOELS TEWROUTIO THAXOPE YPNOLOTOWVTOS Xal TI¢ 2 Tpoavagpepdévteg pooling pedddoug yio ta
cUvola dedopévwy JHMDB xou UCF-101. Hoapatnpolue 61, pe Bdorn to napandve oamotehéouota,
hofBdvoupe oyetixd yaunAh recall anédoorn yia to dataset UCF-101 eved vy to JHMDB ta
anote éoparta eivor xdmwe xalvtepa. Ilo cuyxexpyéva, ue Bdon ty medtn Tpocéyylon hauBdvouue
tehxd recall onddoon {on pe 76-77% yio to JHMDB xon 46-50% yio to UCF-101. Me Bdon tnv
devtepn mpooéyyion, otny xoAitepn Tepintwon AauBdvouue 80% anddoon recall yio to JHMDB
eved v o UCF-101 nopopévoupe ota (Bla meplnou anoteréopata. Iapdhinha mapatneolue ot
yévoupe epinou 30-40% and tic xahéc cuboid npotdoeic oL 6TIC 2 TEPNTAOCELS, T0 0Tolo aroTtelE!
HeYdho TedBANUa xou Twy BV Tpoceyyioewy. ‘ON autd yag xdvouv vor Eavaoxe(pTolue Tov TpOTO
nou oyedidoape to TPN o pog 061 ynoe oto va oyedidooupe €va vEo HovTéNO.

3.5 Ta tpiodidotata anchors wg 4k dtavbouato

Ye auth v npocéyyion, opllovue toug 3D anchors we davdopata pe 4k ouvtetoypévee (k
= 16 xopé = didpxea delypatoc). 'Etol éva tumxd anchor yedgetu we (z1,y1, 21, Y1, T2, Y2, -..)
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Dataset | Pooling || Cuboid | Singl. Fr. Follow-up S.F.
avg 0.8545 0.7649 0.7183
JHMDB max 0.8396 0.7761 0.5783
UCF avg 0.5319 0.4694 0.5754
max 0.5190 0.5021 0.5972

Table 3.3: Ta anotehéoyato tou recall agol uetatpédoupe ta cuboids oe axoroudieg amd
BLodLAo TATA XOUTLAL

Dataset | Pooling | F. Map || Recall Recall SF Recall FSF
64 0.6828 0.5112 0.7610
mean 128 0.8694 0.7799 0.6756
256 0.8396 0.7687 0.7029
JHMDB 64 0.8582 0.7985 0.5914
max 128 0.8358 0.7724 0.8118
256 0.8657 0.8022 0.7996
64 0.5055 0.4286 0.5889
mean 128 0.5335 0.4894 0.5893
UCF 256 0.5304 0.4990 0.6012
64 0.5186 0.4990 0.5708
max 128 0.5260 0.4693 0.5513
256 0.5176 0.4878 0.6399

Table 3.4: To anotehéoyota tou recall dtav ypnouwlonotolue 3 dlagopetixd feature maps we eloodo
otov Regressor xou 2 pooling pe368oug

o6moV T1,y1, ), Yy ebvor oL cuvtetaypévee Yo 1o xapé, Ta,y2,Th,yh Yoo T0 20 xupé AT, OTKC
napovctdotnxe and toug Girdhar et al. 2018 H ewdva 35 aneixovilel éva tétolou tOnou anchor.

To x0plo mAOVEXTNUO AUTHC TNS TPooéyylone elvon 6t dev ypetdletar Vo UETOPEACOVUE Tol
3D anchors oe d1odi1doTaTor XOUTIA, YEYOVOS TOL TPOXAIAESE TOAAS TEOBAAHATA GTNY TEONYOUUEV
Tpocéyyiot. 261600, AUty 1 TEOCEYYLON €YEL Vel HEYAAO UELOVEXTNU, TO oTolo efval To YeEYOVEC
6T awtog 0 TOnoc anchor €yel otadepn ypovinr Sidpxeta. T'ia var avtietwnicouye auTtéd 0 TEOBANUA,
éyouue oploel anchors ye dioupopeTinéc ypovixég Oldpxeleg, ol omoieg etvon 16, 12, 8 xon 4 xopé.
Anchors pe Sudpxeior < didpxetar Tou delypatoc (16 xupé) unopolv va Ypaptody e Sldvuoua
o taong 4k pe undevinég ouvteTayHEVES OTa Xapé eXTOC Ypovixwy oplwv. o mopdderyua, €va
anchor ye 2 xapé Sudpxeia, Eexvivtog and to 20 xapé xou teppatilovtoc atov 30 pmopel vo ypopel
o< (0, 0,0, 0, 21,91, 2%, Y1, T2, Y2, Th, y5, 0, 0, 0, 0) v 1 Sidpxeta delypotog etvon 4 xopé.

Avuth n véa mpooéyylon pog 0dYynoe oto vo adidEoude v doun tou TPN. H véa tou Sopr
anewxovileton otny emdva 35. ‘Onwe urnopolue vo Solye, tpoctécoue scoring xou regression layers
yio xdde didpxeta. ‘Etot, to TPN axohoudel ta endueva Bripoata yio va mapdyel Tols.

1. Env apy1), TeopodoTolUE TOV YTy YopaxTneloTx®y, tou e&dyetar and to 3D ResNet34,
w¢ eloodo oe éva 3D Convolutional Layer pe péyedoc nupver = 1, stride = 1 xou ywpic
padding.

2. Ané 7o Convolutional Layer, éyoupe wc €080 éva ydptn evepyonoinong pe dactdoec (256,
16, 7, 7). T ) pelwon e yeovixic ddotaong, yenoiwwonowtue 4 pooling layers, éva yio
x&0e delypo didpxetac pe yeyedn nvphve (16, 1, 1), (12, 1, 1,), (8, 1, 1) ka1 (4, 1, 1) xou
stride = 1, v 0 didpxeta tou delypatog 16, 12, 8 xou 4 xopé avtictoiya. ‘Etot, éyouue
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Figure 3.9: 'Eva nopddetypa tou anchor (z1,y1, 21, v, T2, Y2, ...)

Ydptee evepyonoinong ue daotdoe (256, 1, 7, 7), (256, 5, 7, 7), (256, 9, 7, 7) ka1 (256, 13,
7, 7), otng omnoleg 1 deltepn didotoon elvan 0 aprdpds TeV THAVGY YEOVIXDY BLOXUUEVeEWY.
T nopddetypa, o ¥8pTN YopaxTnploTxmy W dotdoels (256,5,7,7), to onolo oyetileto
pe anchors pe dudpxeia 12 xapé, unopolue va €youpe 5 mdoavée mepintdoels, and 1o xupe 0
uéyet To xapé 11, and to xopé 1 uéypet o xope 12 ¥hm.

3. Eoavd, 6mwe xar oTtny meonyolUevr Tpocéyyior, yio xdde pixel tou ydptn evepyomoinong
avtiototyovue n = k = 15 anchors (5 xhipoxec and 1, 2, 4, 8, 16, xou 3 aspect ratios 1:1, 1:2,
2:1). Puowd, €youpe 4 dwapopeTinolc ydptec evepyomoinone, pe 1, 5, 9 xou 13 Sopopetinéc
TEPUITOOELS o 7 X 7 Swotdoeic oe xdde gpiktpo. Etol, cuvolnd €youpe 28 - 15 - 49 = 20580
dlapopetixd anchors. Avtiotouya, €youue 20580 drapopeTixoile otdyoug regression.

3.5.1 Training

H duwidixaoio training mapopével oyeddv 1) Bl 0w xon oTtnv nponyoluevn npocéyyion. ‘Etot,
xou O, epelc Tuyala emhéyouue éva Tuuo Bivieo xou Tor avtloToyyo mporypatxd tubes. ‘Opog,
YewpoLpe o anchors we mpooxHvio dtav €xouv emxdiudn peyolitepn ond 0,8 pe onotadhmote
mpoypatxd tube, eved Vewpolue anchors mopaoxnviou autd Twv omolwv 1N emxdiudr elvon
peyahbtepn mouv 0,1 xou wixpdtepn and 0,3. Aev acyohobyacte pe to Utéhoina anchors.

| Dataset | Pooling || Recall(0.5) Recall(0.4) Recall(0.3) |

mean 0.6866 0.7687 0.8582
JHMDB max 0.8134 0.8694 0.9216
UCF avg 0.5435 0.6326 0.7075
max 0.6418 0.7255 0.7898

Table 3.5: Ta arotehéopata Tou recall 6tav yenowonolobye TNy dedTepn TPOcEYYLON Yia Tot anchors

‘Onwg delyvel o mivoxag 33, elvon Tpogavée 6Tl €youpe xahltepeg embdoelg recall oe obyxplon
HE TNV TpoNYOUNEVY Tpocéyyioy. Emmiéov, unopolue vo dodue 6Tt to 3D max pooling onodide
xohOtepa ané to 3D avg pooling. H Swpopd petald twv 80o elvar mepinouv 10%, 1 omola efvan
OPXETA UEYAAY Yior VO Hog xdvel va emhé€oude To max pooling w¢ Aettoupyla oyadomonong mewv
amd TN Mdn Tev scores xou regression targets twv anchors.
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Figure 3.10: H dopn tou TPN cluguwva ye tnv véa mpocéyyion

3.5.2 IlpocY7xr Regressor

Axépo xan av, 1o TPN pac e€dyel xoutd oe eninedo xopé, mpénel va Pehtidoouye autég
T TeoPBAEdeic TEOXEWEVOLU VoL AAANAOETUIXUAUTITOVTOL PE TOL TROYUOTIXE XOUTIE 600 TO BUVITOV
xaAUTepa. ‘Etot, oe mhipn avtiototyio ue TV nponyoluevn teocéyyior, npocdéoaue évav Regressor
vt var tpoonadicouye va dpouue xokltepa anoteAéouato recall.

3D Roi align Xe auth v npocéyyion, yvwpeilovpe AdN Tic ywexés ouvietayuévec. ‘Etol,
umopoluEe va Ypnowonojoouye TN uédodo nou mpotelvetan and toug Girdhar et al. Arnotehel
enéxtoor tou RoiAlign ywellovtac to tube oe T’ diodidotarta x0ouTid. 3t cUVEYELR, YENOLLOTOLE TN
70 xhooixd RoiAlign yio var e€aydel wio neployn amd xdde uio and tar ypovixd slices atov ydetn
evepyomonong. Metd and autd, ta feature maps mouv npoéxudoay uécow tou RoiAlign cuvdéovton
TNV SLEoTAOY TOL YPGVOU, WOTE Vo TpoxUPeL YdpTNne yopoxtnelotixmy Ye daotdoes T x R X R,
omou R elvon 1 avdluon e€66ou tou RoiAlign, to omolo elvon 7 otnyv nepintwor| poc.

Exnoudeboupe tov Regressor pog yenotwonowwdvioae v (B loss function 6mwe o timog tng
TEONYOUUEVNE TPOCEYYIoNE ToU elvau:

L= ZLcls(piap;‘k) + ZP?Lreg(tiyt?) + quLreg(ciyc?)

Kou 6" authiv TNV mpocéyylon ¥enotlonololue 2 SLpopETIXES OPYITEXTOVIXES YLoL TNV LAoTolnom
tou Regressor. ()¢ mpdtn npocéyyion, yenotwonotovue éva 3D Convolutional Layer oxoloudoluevo
and 2 ypoupwd Layer. Avtiotouya, otny deltepn npocéyyion yenoylomootye éva 2D Convolution
Layer axolouvdolyevo, xat auto, and 2 yeauuxd Layer. H npdtn npocéyyion elvar optBog 1 (Biow ye
npwv. Qotdoo, 1 deltepn npocéyyion avtipetwnilel ta feature maps ooy va unv undpyoLY YPOVIXES
elapthoels uetol Toug. Aniadn:

1. Xty apyy, xenotuonolovue to 3D Roi Align vy va e€dyoupe ta feature maps Ko petd ta
xavovixonowolue. Eotw howmdv 6t poxintouv k ydpetec evepyonoifione ue dotdoeis (k,
256, 16, 7, 7)
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2. Xwplloupe ta vrodrigio Tols oe T 2D xoutid, omdTE 0L BLAGTAGELC TOU TEVOOEA TOU TEQLEYEL
g ouvteTaypévee Twv Tols yivovtow and (k, 4 - sampleduration) oe (k, sampleduration, 4).
AwpopoToloVue Tov tévoopa Hhote va Téeel Tic dtaotdoels (k - sampleduration, 4), 6mov ol
mpwteg k ouvteTaypéveg avagEépoviol 6TO TP®TO XdpE, ol endueves k 010 8eltepo ¥AT.

3. Avtiotoyo  Blapopomololue ot Toug  YdpTeEC evepyomoinone Omou  and  SLac TEoELS
(k,64, sampleduration,7,7)  xatolfyovue oe  ydptec ue  Odwotdoee  (k
sampleduration, 64,7,7). IINéov hoinév eneepyaldpaoTe TOU YEPTES YOPAXTNELOTIXDY OOV
va ebvan Biodidotatol. ‘Etol tpogodotolye 1o 2D Convolutional Layer xou oxohoudoluevo
and To dAha Bvo ypauuixd Layer.

4. To e€ayopeva targets, puoxd Yo eivon povo 4 doo dnhadr yio 1 xopé.

Dataset | Feat. Map || Recall(0.5) Recall(0.4) Recall(0.3)
64 0.7985 0.903 0.9552
JHMDB 128 0.7836 0.8881 0.944
UCF 64 0.5794 0.7206 0.8134
128 0.5622 0.7204 0.799

Table 3.6: H enlSoon tou recall 6tav yenotwomowolue éva 3D Convolutional Layer otnv
apyrtextovixy| Tou Regressor

Dataset | Feat. Map | Recall(0.5) Recall(0.4) Recall(0.3)
64 0.8358 0.9216 0.9739
JHMDB 128 0.8172 0.9142 0.9627
256 0.7724 0.8731 0.9328
64 0.6368 0.7346 0.7737
UCF 128 0.6363 0.7133 0.7822
256 0.6363 0.7295 0.7822

Table 3.7: H enidoorn tou recall 6tav yenowonolotue évo 2D Convolutional Layer avtt yio 3D
otnVv opyLtextovixr Tou Regressor

Me Bdomn toug mapoamdve mivoxeg ?7xan 77, n xohOtepr enidoon TEOXUTTEL Yol TOUG YEPTES
Yopoxtnelo Xy peyédoue (64,16,7,7). Autd 1o amotéheopa oy avouevouevo yuatl outol
oL ydptec evepyomnolnong Beloxovion <o XOVTE» OTA TEAYUATIXG YoeoXTNElo Td. Xuyxpivovtag
T 8o mpotewdueveg pedddoug mapatneolue OtL N BelTEEY, auTH dNAad mou yenowomoiel 2D
Convolutional Layer éyel to xohUtepa anoteléoparta. Av xou Bertidoope v anédoon tou TPN
aXOUO BEV EYOUUE XUTAPEREL VAL EYOVUE OYEDOV OE OAEC TIC TEQLNTWOELS XahéC Tpotdoelg Tols.

3.5.3 Meiwon tng didpxeiag Tou deiypatog

IMeoxewévou va teThyoudE XAADTEQO ATOTEAECUITA ATOPACIOUUE VAL UELCOVUE TNV OLAOXELA TOU
Oelyportog and o 16 xapé oe 8 xau 4 avtiotoyo. Ki autd vyl pe autdv tov tpémo da peiwdoldv,
TapdAANAa Ue Tov aptduds toug, oL dlaotdoelc twv anchors, dpo xoL oL SLUCTICES TWY GTOY WV
TAAVIEOUNONS Xl YEVIXA O optUdC TWY TOPUUETEWY TOU TEETEL VOl EXTAUBELTOLY antd To SUGTNUA.

Exnoudetoupe 1o TPN ue xan yowplc Regressor mpoxewévou va Bpolue TV XatdAAnAn
apyrtextovixyy.  To anoteléopata ywelc Regressor nopovoidloviar otov mivaxa 33 eved T
anoteAéopata TNS dpyltextovixrc ue Regressor otov mivaxa ;3.
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Dataset | Sample dur || Recall(0.5) Recall(0.4) Recall(0.3)
16 0.8134 0.8694 0.9216
JHMDB 8 0.9515 0.9888 1.0000
4 0.8843 0.9627 0.9888
16 0.6418 0.7255 0.7898
UCF 8 0.7942 0.8877 0.9324
4 0.7879 0.8924 0.9462

Table 3.8: H enidoor tou recall 6tav pewdcoupe v didpxeia delypotog o 4 xou 8 xapé avtiotolya

yio xdde Tuiuo Tou Bivteo

Dataset | Sample dur | Type | Recall(0.5) Recall(0.4) Recall(0.3)
N 2D 0.8078 0.8870 0.9419
UCF 3D 0.8193 0.8930 0.9487
4 2D 0.7785 0.8914 0.9457
3D 0.7449 0.8605 0.9362
3 2D 0.9366 0.9851 0.9925
3D 0.8918 0.9776 0.9963
JHDMBD 4 2D 0.9552 0.9963 1.0000
3D 0.9142 0.9701 0.9888

Table 3.9: Ta anoteréopata tou recall otav yenoiponootue Regressor xar Yétovpe tnv didpxeta
Belypartog {on ye 4 1 8 xopé yia xdde tunpa Biveo

To mpwto cuunépacua Tou TEOXVONTEL amd TOUg TUVOXES 33 o 33 efvon OTL HVTLC UELdVoVTog
Vv Sudpxela Tou delypatog neTuyalvoupe xohUTepa anoteréopata. Ilapdhinha, ue Bdon Tov mivano
35 xou Oedopévwy Twy Tponyolpevewy anoterecudtwy (Ilivoxes 35 xou 53) yivetow Eexddopo 6Tl
npoaéyyior nou mepthopfdvel éva 2D Convolutional Layer unepéyetl autric pue to 3D Convolutional
Layer. ¥ ot agopd tar cUvola dedouévwy mapatneolue OTL 1 Tpocéyyior Ue didpxeta delypatog 8
XOPE LUTEREYEL OYEDOV OE OAEC TIC MEPIMTAOOELS. LUVETME, Yol To EMOUEVA Xe@diona Yol TEoTUdToN
VoL YeNoLLoTOoLETOL QUTH.
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Kegdhawo 4

AAyoprduog cbOvoeong Twv action
tubes

Y10 mponyoluevo xe@dhowo meptypdope pedddouc yia v mopaywyr umodreusy Tols,
dedouévou evég uixpol Tufuatog Bivieo mou duapxel 8 # 16 xapé. Qotdoo, ta mpaypatnd Blvteo
xaL ol mpaypatixég avipdmives evépyeleg, o eEwtepnéc ouVIXES, Blapxoly mdvw and 16 xopé
Tic meplocotepeg popéc. To tpéyovta dixtua dev elvan oe Yéom va encéepyacToby €val OhOXANEO
Bivteo ye v pla, mpoxewévou va mpoteivouv umodrigia Tols, Aéyw mpolinudtwv uviunc ot
unoloyloTixfc evépyetag. Ilohhéc mpooeyyloelg yia eviomioud Spdong Advouv autd To TEOBANUAL,
dedopévou evog Bivteo, eite mpotelvovtag unodrgieg teployéc oe eninedo xapé xau, oTN CUVEYELD,
ocuvdéovtag TIC UE oxomo TN dnwovpyin utodnpuwy action tubes, elte Blaywpllwvtac to PBivieo
oe Tufuata, mpotelivovtag axohouvdieg and dlodldoTta mhaiolo TIC omoleg OTNY GUVEYELN GUVBEOLY
yioo var Snoupyfioouy action proposals. Kou ol 800 npoavagepleioeg npooeyyloeic xahotody Ty
XUTAAANAY emAoYH TS peVoBoU GUVIESNE ONUAVTIXG TOEdYOVTA Ylol TNV anddoor, Tou dixTthou.
Auté oupPaiver eneldn, tapdho mou oto eninedo xopé 1) oo eninedo TuApaToc Bivieo oL mpotdoels
unopel va elvor TOAD XUAES, AV 0 TPOTEWVOUEVOS AhYOpLI0g GUVOEGTTC BEV AELTOVPYEL Xahd, Ot TEALXES
npotdoel action tubes dev Yo elvon amotekeopatixée, ondte to tehxd Hoviélo dev Va elvon oe Yéan
vo emtOyeL LPNAY anddoor) Tavéunong. Me dAho Adya, av o akydprduoc cOvdeong dev dnuloupyel
Tpotdoel; dpdong e peydho recall xou xohf anédoon MABO, o tadvountic tou poviéhou dev Yo
elvon oe Véom var exteréoel TNV xatdhhnhn talvéunor, eneldr miovaeg Yo tou €youv dodel action
tubes ywplc xavéva Tepleyouevo. Xe autd T0 XEPIAAO, TaPOUGLALoUUE 3 BlUPOPETIXES TIROGEYY(oELS
TOU YENOWOTOOUVTAL Yo TN oUVBEDT Twv Tpotewduevwy Tolg mou mapdyovtaw andé to TPN tou
TEONYOUUEVOL XEPAAAOU.

4.1 Tlpwtn mpooEyylon: CLUVOLACWUOS ETLXAALDNG o
TdavoTnTUS Spdong

O odydpluog pog epnvéeton and Ny npoceyyion twv Hou, Chen, and Shah 2017, n omola

unohoyilel dheg Ti¢ miavég oxohoudiee twv Tols. I var Beet ta xahbtepa urodnela action tubes,

yenotpornotel wa Baduoroyio mou pog Aéel méco mdavd o axoroudia tou Tolg elvon va mepiéyet
wa evépyeta. Auth 1 Badpohoylo etvan évag cuVBUNCHOS 2 HETEXWDV:

IIWavotnTa dpdorns i Apactixdtnta(Actioness), mou eivon n miovdtnta evée Tol va
nepLéyeL Yt dpdiom. Autd to oxop mapdyeton and o scoring layers tou TPN.

o1
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Yxop emxdAivdne wetall twv Tols, 1o onolo etvor 1o IoU twv tekevtalwy mhacinv tou
needtou Tol xan Twv mpdhTwy TAaciny tou dedtepou Tols.

H napandve moltiny| Baduordynong unopel vo neptypagpel and tov axdéiovdo TOTo:

1 & 1
E ctioness +m 1

i=1

I xéde mdoavd cuvduaoud Tols, vnoloyilouye To oxop TOL WS GUlVETAUL OTNHV ELXOVA 35.

v (o]
= =
Q Q
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¥ Tubel, ;nd Tubel,
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[Tt Tmm e >
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~: 208 =
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S1 = Tube}, - Tube}, - Tubel, =1.8/3 + 1.2/2
§3 = Tube}, - Tube?, - Tube}; =2.0/3 +0.7/2
§5 = Tube?, > Tube}, > Tubel; =1.9/3 + 0.9/2
§7 = Tube?, - Tube?, > Tube}; =2.1/3 +1.2/2

Figure 4.1:
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Z Overlap; j+1
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0.7
$2 = Tube}, - Tube}, - Tube?; =2.1/3 +0.7/2
S4 = Tube}, —» Tube?, > Tube?; =2.3/3 +1.0/2
56 = Tube?, > Tube}, > Tube?; = 2.2/3 + 0.4/2
58 = Tube?, » Tube?, > Tube’; = 2.4/3 +1.5/2

‘Eva mopdderyyo unoloylouod Twv score cUvdeong yior 3 tuyaio Tols, omewg

napovoldotnxe and toug Hou, Chen, and Shah [2017

H noapamdve mpocéyylon, dpwe, ypeetdleton UepBOMXSG TOAD UvAun yiol TNV TEAYHOTOTOMoN
OOV AUTWV TWV UTOAOYLOU®Y, £TaL €val TedBANUe uvAung epgoviCetar. O Adyog elvon mwg Yo xdde
véo Bivteo xlur, euelc npotelvouye k Tols (16 xotd v Bidpxela tne exmofdevong xou 150 xatd v
dudpxeta Tou validation. Q¢ anotéheopa, yio éva wixpd Bivieo ywplopévo oe 10 pépn, yeetdleton va
unohoylooupe Toudytotov 15010 oxop xatd TV Bidpxeto g emxdpwone. Autéd odnyel To cloTHuY
pog va ypetdleton unepBolxd TOhD YEAVO YLoL VO TO TPOLYUOTOTTOLOEL.

INo va avtigetonicovye autd to mEOBANUA, ONULoLEYOUUE €vay ATANCTO aAYOELIUO Yo Vo
Bpolue ta umodrpua action tubes. O ahyopripog autde, yio xdde véo turue PBivieo, xpotd
To tubes pe Boduolroyla vhnidtepn omd €va xatdehl xon dayedger to undrowna.  ‘Etol, dev
yeewdletar va unoloyloouue ouvduaopolg Ye TOAD younhé oxop.  Lpddope x@Bxa yio tov
unohoyloud twv Baduoroydv twv tubes ot yhwooo CUDA, 1 onola €yel w¢ Suvatdtnto tny
TapdANAY ene€epyacion Tou (Blou xMBXA YENOHLOTOLOVTIS dlopopeTnd dedouéva. O alyderduog
HOIS TEQLYPAPETOL TAUPAXAT:

1. Ipdtov, apyxonotolue xevéc Aoteg yio Tor TeAixd tubes, v didpxela toug, Tic Boduoloyieg
Toug, oL evepYd tubes, T didpxetd Toug, To ddpoloua TwY ox0p ETXEAUPNS X dpaoTIXSTNTAC
TOug OTaV:

o H Aota pe o tehixd tubes nepiéyel 6ha o tubes mou elvon mdavdTEPO Vo TEPLEYOLY
wo evépyeta xan 1) Mota Boduoroyiag toug mepiéyel tig avtiotolyeg Poduoroyieg toug.
Avagepopaote o xdlde tube and tov deixtn Tou, o omolog oyetileton pe éva Tévoopa,
otov onolo cwoope 6ha to Tols nou npoteivovtan and to TPN yia xdde turua Bivieo.
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o H Aota evepywv tubes nepiéyer oha o tubes mou Yo cuvduactodv e to véa Tols.
H Aiota ddpoione twv emxoluntdpevwy oxop xou 1 Alota ddpolong dpacuxdTnTog
nepéyouy ta avticTolyo atpolopato Toug, TEOXEWEVOU Vo AMOPEDYETOL O UTOAOYLOWOG
Toug Yo x&de Ppdyo.

Eriong, oplCoupe apyixd 1o 6plo clvdeong (oo ue 0,5.

. T to mpto tuhApa Bivieo, tpocdétoupe dha ta Tols 600 otar evepyd tubes 600 xou ota

tehxd tubes. O Baduoroyiec toug elvan udvo 1 duer) toug dpactixdtnta eeldy) dev LTdpEy oLV
tubes yio Tov uTohoyiloud Tne Yeta€h Toug emxauntouevne Baduoroyiag. ‘Etot, étol opilouue
70 dpoloua emxdiudng ico pe 0.

INo x&de endpevo Bivteo, petd v Afdn tov npotewvdpevwy Tols, mpodto unoloyilouue 10
oxop emxdAudng toug pe xde evepyod tube. Metd, adedloupe Ty Mota ye to evepyd tubes,
e TNy Bidpxeta Toug, To ddpolopa emxdiudng xou to ddpoloua miavothtey dpdone. T xdde
véo tube mou éyel Boduoroyla uPniotepn and 1o xouTdPhl clvdeong tpoc¥étovpe 660 GTA
telxd action tubes 660 xou ota evepyd, oTic avtioTolyeg Aloteg xan awEdvouue TN Bidpxeld
TOuC.

Edv o aptiude twv evepydv tubes elvar yeyolltepog and éva xatdtato 6plo, opiloupe 1o
6plo oUVdeag (oo ue ) Badporoyio Tou 1000u xahbtepou tube. IIépav autol, evnueptdvouue
Ny TeA) Mota tev tubes, agaipdvtog dha ta tubes mou €youv oxop yauniétepo and 10
XATOPAL oOVOEDTC.

Metd and autd, mpocdétouue ota evepyd tubes, ta npotewvoueva Tols an’ to tpéyov Tunua,
pall pe ta oxop dpacTxdTNTAG oTNY AoTta pe ta odpolopata BEUoTIXOTNTAUC Ko UNOEVIXES
TIéC ot avtioTolyeg Véoelc otny Mota pe T oxop emxdAvng.

EnovehauBdvouue ta mponyoluevo 3 Briuato uéypt va unv éyel pelvel xavéva tunua Bivieo.

Télog, OMWC AVUPEQUUE TEONYOUUEVWS, €YOUUE WLl AMoTa Tou TEPIEYEL Tol EVPETRELOL TWV
anodnxevuévewy tubes. ‘Etol, 1o Tpomomowolue yia va €youue Tta aviioTtolyo BlodLdc To
mhaloa. 2otd00, 2 Swdoywd Tols dev €youv, ndvta, ta (Bl Biodldotar TAdiol oTa XopE
nou emixaAUmtovton. [ mopdderypa, to Tols and to mpoto tuAua Bivieo Eextvolv and 1o
lo xapé éwg t0 160 xopé. Edv éyoupe Pripa Bivieo (oo ye 8, autd ta Tols emixaidmtovion
yeovixd e to Tols amd o dedtepo Turua Bivieo ota xapé 8-16. Xe autd to mhaiola, 010
Tehxd action tube, emAéyouue TNV meployy) mou Tepléyel xou Tar 800 Thaiola oplodETnong
Tou cupPorilovia we min(zy, x}), min(yy, i), maz(za, x4), maz(ya, y4)) yio to dlodido tota
mhaiow (21, Y1, T2, y2) xou (21, Y1, T2, Y2).

4.1.1 JHMDB Dataset

Eexuwvovtag, Yo aoyohndolue apyixd povo pe to JHMDB dataset mpoxewwévou va xadoplooupe

v molTixy) mou oxxohoudolue yia va utohoyicouvue To oxop emxdiudne. Ki awtd yiotl o Bivieo
TIOL TEPLEYEL AUTO TO GUVOAO BEBOUEVLY elval o WxEd ot BLdpxeta xaL Ay6Tepa 6ToV aptiud, omdte
Yo unopéoouye va Bydhoupe cupnepdopata o yeryopo an’ to vo e€etdloue xan to 800 chvoha
BeBOUEVLV TAUTOYPOVAL.
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Aidpxeia Seliypatog o pwe 16 xapé Zexwdye opllovtac we didpxeta delypatog lon ue
16 xopé avd Bivieo xhn. Aol mpayuatonoiooue xdmota npdTa nelpduato Ye Priwa Bivteo (oo ue
8 uon 12 xopé, ota onola dev elyaue xohéc emdooelg ot recall, anoguociooye vo e€etdoouvye TNy
nepintwon tou Buatog Bivieo (oo pe 14, 15 xou 16 ta omola napovoidlovtar otov mivoxa 3. Iot
xdie Brapopetind Brpa Bivieo €xouue xau SLPopeTixéS TEpLNTOOELS 0TI onoleg e&eTdlouye To oX0p
emxdhudne. Ltig mepntdoeic 6mou €youye Tdve and 1 xapé, hauBdvouue kg oxop emxdiudng TNy
HEOT TN TWV 0X0p ETUXSAUPNE TV avTIOTOLY WY XA, X TOV TVAXA §3 AVUPEPOUACTE UE TO EVIOVO
Yewua oo xope, ylo ta onola e€etdloupe TN emxdALdY Toug.

overlap thresh

combination 05 04 03
0,1,...,13{14,15}
{14,15},16,...,28,29 || 0.3731 0.5336 0.6493
0,1,...,13,{14,}15,
{14,}15,...,28,29 0.3694 0.5299 0.6455
0,1,...,14,{15}
14,{15,}16,...,28,29 || 0.3731 0.5187 0.6381
0,1,...,14, {15}
{15},16,...,30 0.3918 0.5187 0.6381
0,1,...,14,{15}
{16},17,...,31 0.4067 0.7313 0.8731

Table 4.1: Anoteréopata recall yio Bruota Bivieo = 14, 15 xou 16

IMopatnpotye 6Tt €youpe v xoklteprn enidoor recall vy By Bivieo (oo pe 16 xopé dtav
oLYxplvoupe Yweixd TNV emxdhudn Tou tekeutaiou mAalciou pe TNV emxdALY TOU TEWTOL.

Adpxeia Selypatog lon pe 8 Oéhoviag va emPefoucdoovpe 6Tt Exoude Tl XOADTERL
anoteléopata 6tav €youue Pripa Bivieo (oo pe v Sidpxela Tou Belypoatog, eEetdoaue Xou TNV
nepintwon va éyoupe Sidpxeta delyuatog lon pe 8. To anoteréopota nopouctdlovial oTov mivaxd 53
xon mepthaPBdvel Tic TepLtTwoelc 6mou €youue Brua Bivieo (oo pe 6, 7 xou 8 xopé.

. overlap thresh
combination 05 0.4 03
0,1,2,3,4,5{6,7}
{6,7},8,9,10,11,12,13 0.3134 0.7015 0.8619
0,1,2,3,4,5,{6,}7
{6,}7,8,9,10,11,12,13 0.3209 0.6679 0.847
0,1,2,3,4,5,6,{7}
6,{7}8,9,10,11,12,13 0.3172 0.6567 0.8507
0,1,2,3,4,5,6{7}
{7,}8,9,10,11,12,13,14 || 0.5597 0.7687 0.903
0,1,2,3,4,5,6{7}
{8}9,10,11,12,13,14,15 || 0.653 0.8396 0.9179

Table 4.2: Anotehéopora recall yio Briyata Bivieo = 6, 7 xou 8
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Me Bdon xou o amoteléopota Tou Tivaxo 33 elvor Théov Eexddapo 6TL meTuyodvouue xahbTER
anoteléoparta dtay VéETouue To Brpa Bivieo (oo ue Ty Sidpxela Tou SelyUaTog Xou TO GX0p ETUGAUYNG
unohoyiletar and to mAaiolo Tou Teheutalov xupé Tou TpKTou Tol pe to Thalolo Tou TEWTO XoEE
Tou deltepou Tol.

4.1.2 UCF-101 Dataset

e nponyolueva Briyota, tpoonadiooue va Bpolue TNV xUAVTERT TOMTIXY ETXAAUYPNG YLt TOV
ahyoptduo pog oto cUvolo dedouévev JHMDB. Metd and autd, elvon xoupds Vol EQUOUOCOUUE
Tov aAydprduo pag oto abvoro dedopévewy UCF-101 yenoiwonouwdvtog tnv xaibtepn Poduoloyixn
noht) emxdAudne. Kdvoue xdnoleg Tponomooelc GTov xmOXa, Yo VoL XeNOLOTO00UE AyOTERT
uviun, xou Uetaxiviooue To TEploodtepd pépr tou xwdo oe GPU. Autd cuvéfn pe tn yeron
tévoopwy avtl yia Aoteg pe Baduoroyiec eved ol teplocdtepec mpdEels elvan, amd T xaL 6To €N,
npdEelc mvdnwy. IIdve o autd, to teleutaio Bra Tou ahyderduou, 1 omolo elvar 1 Tpomonoinom
and deixteg o mpaypatixée axohovdiec and mhaiow, elvar ypopuévo théov oe CUDA xduxa €tot
hopPBdvel yopa xou auth ot GPU. "Etot, thpa uropolue vo avgricoupe tov aprdud twv Tols mou
emotpépovron and to TPN, tov péyloto aprdud twv evepymv tubes mpv and tnv evnuépwon tou
oplou xat Tov péyloTo apldud TeEN®Y tubes.

Ta mpoTo Telpduata Tou dievepyrooue oyetilovtay Ue Tov opidud tewv TeAixwy action tubes,
o omola To 8ixTUO Uog mpoTelvel, TopdAANAL YE ToV aptdud Twv tpotevduevewy Tols and to TPN.
IMepapotilopacte yioo unodéoels, otic onolec to TPN npoteiver 30, 100 xou 150 Tols, to telhxd
dixtud pac mpotetver 500, 2000 xon 4000 unodrpia action tubes yio Bidpxelor delyportog (co ue 8
xan 16 xapé. To Sidpxeta delypotog (oo ye 8 emotpépoupe 100 Tols enedr, 6tav npoonodtcaue
va emioteédoupe 150 Tols, AayPdvouue OutOfMemory opdhpo. O mivaxag ;5 delyvel Tic anoddoelC
TV Ywpoypovixwy recall xar MABO, autdv twv npoceyyloewy. O nivoxag ;5 delyvel tnv anddoon
v yeovxov recall xou MABO. EvBiagepdyacte yia ) ypovix andédoon, encidr to UCF-101
anotekelton and atpydpiota Bivieo, oe avtideon ue o JHMDB nou €yel uévo teluaplopéva Biveo.
‘Etot, %éhoupe va yvwpilouye 660 xohd to dixtud yoc elvar oe Véor vo mpotelvel action tubes mou
OO TOVTOL e To TparyoTixd action tubes ndve and éva «peydhoy dpto. o ypovind evtomioud,
dev yenowonowlue ta 0,5, 0,4 xou 0,3 wg emxaAUTTOUEVO Opto, aAASE avT auToL, YeNolLoTolVUEe
T 0,9, 0,8 xou 0,7, eneldy) etvon TOAD onuovTind To dixtud pog vo etvon oe Yéan vo npotelvel action
tubes mou meplEyouy Ui evépyela, ToUAdLoTOV amd ypovixic amddews. Ta vo unohoyicoupe T
Yeovuh emxdiuld, yenowomoolue to IoU yio piar pévo Sidotao.

. TPN | Final
combination tubes | tubes 0.5 0.4 0.3 MABO
500 0.2829 0.4395 0.5817 | 0.3501
30 2000 || 0.3567 0.4996 0.6289 | 0.3815
0,1,....,6,{7,} 4000 || 0.3749 0.5316 0.6487 | 0.3934
{8,}9,...,14,15 500 0.2966  0.451  0.5947 | 0.356
100 2000 || 0.3757 0.5163 0.6471 | 0.3902
4000 || 0.3977 0.5506 0.6624 | 0.4029
500 0.362 0.5042 0.6243 | 0.3866
30 2000 0.416 0.5468 0.6631 | 0.4108
4000 || 0.4281 0.5589 0.6779 | 0.4182
500 0.3589 0.4981 0.6198 | 0.3845
150 2000 || 0.4129 0.5392 0.6563 | 0.4085

0,1,...,14,{15,}
{16,}17,18,....23
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| \ [ 4000 [ 0.4266 0.5521 0.6722 [ 0.4162 |

Table 4.3: To anoteréopata tou recall yia to clvoro dedopévwy UCF-101

. TPN | Final overlap thresh
combination tubes | tubes 0.9 0.8 0.7 MABO
500 0.4464 0.581 0.6844 | 0.7787
30 2000 0.635 0.7665 0.8403 | 0.8693
0,1,...,6,{7,} 4000 || 0.7034 0.8228 0.8875 | 0.8973
{8,}9,...,15 500 0.454 0.5924 0.692 0.783
100 2000 0.651 0.7696 0.8441 | 0.8734
4000 || 0.7209 0.8312 0.8913 | 0.9026
500 0.6844 0.8327 0.9027 | 0.8992
30 2000 || 0.7475 0.8684 0.9217 | 0.9175
%11673,}’1471’1{;5’}23 4000 || 0.7567 0.8745 0.9255 | 0.9211
D 500 0.7498 0.8707 0.9171 | 0.9125
150 2000 || 0.8243 0.911 0.9392 | 0.9342
4000 || 0.8403 0.9179 0.9437 | 0.9389

Table 4.4: To aroteréopata Tou Ypovixol recall yia to cbvoro dedopévwy UCF-101

‘Onwe Qalveton xaL amd TOUC TVOXES 53 Xou 33, Yia Oldpxelo detyuotog (on ye 8 Aaufdvouue tny
xahOtepn enidoon 6tay emoteéget To TPN, 100 Tols xou suvoiixd to ActionNet, 4000 action tubes,
eved Y Oudpxeta detyportog fom pe 16 xapé, otav emotpépet o TPN, 30 Tols xou to ActionNet 4000
action tubes.

ITpotewouevn Tpononoinon Tou alyoelduou

YNy mponyoUPEV TEOCEYYION, TO XATOPAL GOVIECTC avaveveTol o awEdveton xdde popd Tou
o0 aprdude and «evepydy tubes Eemepvolv éva ouyxexpuévo apldud. Qotdoo, napatneriooue 6Tt Ue
TGV TOV TPOTO TO GUOTNUA pag aduvatel vo Tpotelvel action tubes ta onola Eexwvolv petd and
oplopéva xapé. Ku autd yiotl péypet tdte T0 natidphl cuvdeang €xel aviniel T6c0 mou BeV EMLTEETEL
va dnuoveyndoly véa action tubes . T Tov Aéyo autd tpomonolioaue tov aAyoprduo uoc €tol
OOTE VO YNV AVAVEWVETOL TO XoTPM cUvdeone. IlopdAAnha, mpootéooaue tov ahyoprduo NMS
Tpoxeévou va anoppintel action tubes mou emixoAlnTOVTOL OPXETA PE XAmOl RO TPOTEWVOUEVDL
action tubes. Ou mivoxeg 33 xou 33 TEQLAAUBEVOUV TA YWEOYPOVIXE XAl YEOVIXA AMOTENECUATOL Yiol
7o recall xou 10 MABO, eve nelpapanilopacte ye xatodehl cOvdeong tou NMS ico pe 0.7, 0.9 xou
yowelc xotdéhou NMS.

NMS |[PreNMS overlap thresh

thresh{tubes 0.5 0.4 0.3 MABO

combination
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0,1,..6,{7,} - 0.3779 0.5316 0.6471 0.393082961
{78’}9, ’ 15’ 0.7 20000 0.3483 0.5194 0.6471 0.3783524086
M 0.9 0.416 0.5605 0.6722 0.4074053106
- 0.438 0.5635 0.6829 0.4231788
?’116}’1;1’{15?;} 0.7 20000 0.4525 0.5848 0.7034 0.429747438
A 0.9 0.3802 0.5133 0.6068(0.3862278851848662

Table 4.5: Anoteléopota yia T0 Ywpoypovixod recall; yia to olvoho dedopévewy UCFE-101

S NMS |PreNMS overlap thresh
combination threshl tubes 0.9 08 o7 MABO
0,1,...6,{7,} - - 0.7087 0.8281 0.8913 0.899210587
{8,39,...15 0.7 90000 0.6586 0.854 0.9278 0.903373468
T 0.9 0.8137 0.8973 0.9361 0.9333068498
0,1,...,14,{15,} - 0.8327 0.9156 0.9399 0.940143272
{16,}17,....23 0.7 90000 0.8646 0.9369 0.9567 0.946701832
0.9 0.6183 0.7696 0.83880.8628507037919737

Table 4.6: Anotehéopota ylo 0 ywpoypeovixo recall, yio to obvoro dedouévwy UCF-101

Suyxplvovtae Tic emddoelc Twv recall xaw MABO mou nopovotdlovto otov Hivaxag 35 poll ye autée
tou Ilivaxa 33, cupnepaivoupe mwe yio didpxetla delypoatog on ue 8, 1 véa tpomonoinon odnyel oe
XEWROTERA AMOTEAEGUATO OTAY TO XATWOPAL cUVOEOTG elvan 0,7 odAAd xahbTepa Yo xatw@AL (oo pe 0,9.
AT v &Y, v didpxela delyportoc fon pe 16, mopatnpolue Twe €YouUe XahOTEPX OATOTEAECUOTA
yio xatw@hl oOvdeong tou NMS ahyoplduou (oo e 0,7.

4.2  Ael\Tepr TEOCEYYLON

‘Onwe eldaue o TeoNYoLUEVKS, 0 akydpriuog pag dev €xel mdpa okl xahég recall emdooelc.
‘Etot, dnwovpyrioope évav dhho akyderduo o omolog Boaocileton oe autdv mou npdtewvay ot Hu et al.
2019, Autdc o alybprduog elodyel dVo véec petpnég olppwva ue toug Hu et al. 2019,

IIpb0dog mnou meplypdpel TNV mMOavOTNTA YOS CLYXEXPWEVNS Bpdone va extelelton oo Tol.
ITpoo¥éTovye auTéV TOV TOEdYOVTA ETELDY) TopATNENOUUE OTL 1) SPAUCTIXOTNTA Vol AVEXTIXN
oe Peudde Yetnd. H mpdodog eivon évar punyaviouds enavaBaduordynong yio xdlde xatnyoplo
(6mwe avopépovton ot Hu x.4. [2019)

Puduég mpoddou  mou oplletan we 1 avahoylo tpoddou xotd Ty onola xdite xotnyopia dpdong
€xet mparypatonolnVel.

‘Etol, xdde action tube mepiypdpeton we¢ éva svoro Tols

a0

k k k k
T= {tf )‘tg ): (tE )’S’E )’ i )}i:1:n(k),k:1:K
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6Tou TO tl(k) TEPLEYEL TIC YwEOYPOVIXEC TANpogoplec Twv Tol |, to sgk) TO OX0P GLYOURLAS TOU %ol

T0 rgk) Tov pulud TEO6IOoL.

Ye outh Ty mpocéyyion, xdde xhdon avipetomileton EEYmELOTE, CUVETWS Ylot TNV UTOAOLTY
evotnta culnTdue yio TNV Tapaywy” action tubes pévo yio pio ¥Ador. I T obvdeon 2 Tols, yia
éva Bivteo ye N tpruata Bivieo, eqapudélovar ta oxdhoudo Briwatas:

1. Tw o npdhto twhua Bivieo (k = 1), npoetowdloupe évay mivaxa pe ta M xahbtepa Tols, to
ornola Yo Yewpolvion we evepyd tubes(AT). Avtiotorya, npoctodlovpe évav nivaxa ye M
puduolg mpoddou xou M Baduoloyieg eumiotooivrg.

2. T k = 2:N, extehotpe to Bripota (o) - (8):

(«) Troloyiloupe tic emxahbbec uetalld AT xa Tols®).
(B) Tuvdéoupe dha ta tubes mou txavomololy to axdhouta xprthptos
i. overlapscore(atl(.k)7 tg»k)) >0,at € AT®) t € Tols(®)
i, r(at) < r() 4 rtM) - rlati(k) < A
(v) T 6hor T véar tubes evnuepdvouue 10 ox0p EPTIOTOCOVAS Xou Tov pUIUS TPoddou ©e
e&ng:
To véo oxop eumiotoclvng etvar 1 wéor Poduoroyior Ohwv Tewv cuvdedepévewy Tols:

k

1 n
s = =3 s
n=0

O véog Bodude mpoddou eivan o uPmhotepog Podude npoddou:

r(at D = maz(r(ati™),r(t{)
(8) Awtnpolpe ta M-xahbtepa action tubes we evepyd tubes nou npoopilovton TeEAxOS YLot
Tagvounon.

Avuth 1 tpocéyyion €xel To Theovéxtnua OTL BeV ypeldleTon Vo EXTEAEGOUPE Eavd TNy TaEvounom,
enedn yvopllouue HON Ty xatnyopla tou xdde telxol action tube. I va emixuptoouue ta
ATOTEAEGUATE Yoc, TWea, Utohoyilouye Ty entldoon tou recall udvo yio ta tubes mou €youv v (Bia
xhdon e to mparypatixd tube. Kou méh dewpolue éva mpaypatind tube 6t etvon Getind av undpyet
TouldyloTov éva tube mou emxONOTTETOL UE TO TRPAYUATIX TEPIGGOTERO amd €va TPOXAYOPIoUEVO
6plo.

combination overlap thresh
sample dur step 0.5 0.4 0.3
8 6 0.3284 0.5 0.6082
8 7 0.209 0.459 0.6119
8 8 0.3060 0.5672 0.6866
16 8 0.194 0.4366 0.7164
16 12 0.3358 0.5336 0.7537
16 16 0.2649 0.4664 0.709

Table 4.7: To anoteAéopato tou recall yio Tnv dcitepr npocéyyion ue didpxeia derypotorndplog =
8, 16 xou o avtioTtorya Briwarta Bivieo
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Yopgpova pe tov Iivaxa 53, éxouvpe Béhtiotn anddoorn dtav opileton Sidpxeta delyporog ion pe
16 xou Brpa Bivteo (oo pe 12. Tuyxpivovtog auth Ty anddooT Pe TNV Te®TN TE0GEYYLoY), TO0O YL
TN Bidpxeta Tou delyuatog o e 8 xou 16 xapé, mopatneolue 6Tl 1 dedtepn TPOCEYYLoN UTOAE(TETON
oe olYXELOT YE TNV TEOT.

4.3 Teltn npocéyyion (wévo yia to JHMDB)

‘Onwe avagépetar oty tpKdTn npocéyylon, ol Hou, Chen, and Shah [2017] unohoyilouv dheg
Tic mavée axoloudilec twv Tols mpoxewévou va Peouv Tic xahbtepes unodfipies. Lxe@Trixaue
Eovd auTh TNV TEOCEYYIOT XU CUUTERAVOUE OTL Yol UTOPOVCHUE VAL TNV VAOTIOLGOUUE UOVO Yol TO
olvoho dedopévev JHMDB edv pewdoovye tov apidud twv npotewvouyevwy Tols, mou mopdyovtou
ané TPN, ané 150 o 30 yio xdie Bivteo xhim. Expetahhevdpacte 10 yeyovog 6t ta Bivieo tou
ouvohou dedouévwy JHMDB etvar xopuéva, ondte dev ypetdleton va xottdEoupe yia action tubes
nou Eextvolv amd to debtepo Bivieo ¥Aim, yeyovog mou pog o®lel oAy uviun. Ko nédve om
6N, TPOTIOTOLACUUE TOV XWOWME Yo UE OXOTO Vo EIVAL TILO AMOTEAECUATIXGS OTO Véua TG UvAung
YedpovTag xdmota Yépn ot YAwooa npoypappatiopod CUDA, e€owovoudviag mohd enelepyaotixt
oy, enlone.

‘Etot, yetd tov unoloylopd GAwvV Twv THovedy GUVBLAGHOY EEXVOVTIG and To TeKTo Bivieo
YT KO XOTOATYOVTaS 0TO TEheuTaio, xpatdue uévo ta k-xakdtepa action tubes (k = 500).
Teéyouye melpdparta ue didpxeta Tou delyuatog iomn e 8 xou 16 xopé xau tponomnolobye to Briua Bivieo
xade gopd. I'o tn Bidpxela Tou delypatog = 8, emotpépoupe wovo 15 Tols xan yia to delypo =
16, emotpégpouye 30 eneldy), av enotpédoupe Teplocdtepo, AauPdvouue o@dipa «OutOfMemorysy.
Ytov axéhoudo mivaxo ;5 mapovotdlovton ta anotehéopota Tou recall.

combination overlap thresh
sample dur step 0.5 0.4 0.3
8 6 0.7873 0.8657 0.9366
8 7 0.7836  0.8731 0.9366
8 8 0.7910 0.8806 0.9515
16 8 0.7873 0.8843 0.9291
16 12 0.7948 0.8881 0.9403
16 16 0.7985 0.8918 0.9515

Table 4.8: To anotehéopata tou recall yio v tpitn npocéyyion ue Sidpxeta derypatondiog = 8,
16 xou tor avtiotouya Brigota Bivieo

Ané tov napamdve mivoxa, teatov, EavaemiBeBadvouye 6tt, dtay To Brine Bivteo eivou (oo ye Ty
dudipxelar detyportog malpvouue ta xoAUTtepa anoteléouata recall. Ilapatneolue ot dtav 1) Sidpxeia
Tou delypartog loolton e 16 xopé, n anédoaor tou recall elvan ehapeng xahdTepn an’ dtav loolTon Ue
8. Qotéoo, 1 yenon 16 xoapé avd Bivieo xhm auédvel T ¥pHon TNS UVAUNG, UXOUA XOU oV UELIVEL
Tov aptiud twv Tunpdtwy Bivteo, efutiag g avdyxng enelepyasiag yeyolitepwy Bivieo, yauptov
evepyonoinone xAn. ‘Eto, yia 10 6tdd0 g tadvounone Yo TEROUATIOTOUUE YENOLULOTOL)OVTIG
xuplwg delypa didpxelog (0o ue 8 xope.
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Kegdhawo 5

ditaolo Ta&ivounong

Yt mponyolueva 2 XEQPUAMN TUPOUCLACOUE TNV Oladixaclol ToU YENOULOTOWUUE YLol Vol
dnwovpyoouue urodripla action tubes, ta omola Tdavdde vor TEpIEOUY XATOLL TIEOY UATOTOLOVUEVT]
dpdon 1 unopel xan oyt T nepilocdtepeg Popéc Ta mpoTevdueva action tubes avrixouv oto @évTo,
xa YU ouTo, Omwe avapépinxe xoL oTov TeoNYoVUEVO XEQIANLO, elval onpavTixd vo emhéEouue Evay
xoaAd alybprduo mou mpoteivel xahéc oxohoudieg and mhalolo. 20T600, elval dExETd oMUAVTIXG
vo emhéZouue o Tov xatdAAnio to&vounth o omofog Va eivon oe Véom pe peydhn axplBela vo
npoPhéder av éva unodriplo action tube avixel oe wa Yvwoth xatnyoplor and dpdoelc ¥ avixel
670 @bévto. Ki autd yiotl unopel va mopdyoude xohéc mpotdoelg yior utodrigleg dpdoels, ahhd av o
tagvountic Hog dev Aettoupyel 0To €maxpo, To GG TNUO Hoc TdAL ol amoTUY YAVEL VoL avary Voploel
TEAYUATOTOLOVUEVES DpdoELC.

H cwot emhoyy evdg tadivount| elvon gl EYGAN amd@acy TOU XUAOUUICTE VA THPOUUE.
Qo1600, autoc o taévountrc Ya deydel oplouévouc ydptec evepyonoinone toug omoloug Vo xhndel
vou ToEVoUNoEL. DUVETADC, eXTOC and TNV xahY emhoyn tadivounty, e€loou onuavtixy etvor 1 xohn
emhoy ) yopoxtneto Txdy. Téhog, ueydro pdho mallet xou 1 dradacio exnaidevong Tou Ta&vountn
Tpoxelévou va efvar o Vo va YeVixeel xan xotaotdoelc overfitting va amogedyovton.

Ye autd 1o xe@dhato mopouctdlouye Bldpopec Uedodouc mou yenoldonoliooue oL omoleg
nephopPBdvouy évo Tpopuind tavounts, éva Recursive Neural Network (RNN), éva Support
Vector Machine (SVM) xou évo Multilayer Perceptron (MLP). Enione, mewpopatiléuocte
YENOLUOTOLOVTOS YAPTES YapaxTNELo TiXwY Tov e&fydnoay yuéow tou 3D RoiAlign yenoiponoudvtog
nopdAAnio avg ¥ max pooling.  Teheuvtalo ahhd eiloou onpovtid eivor o yeEYOVOS OTL
npoonadiooue vo Bpolue to xaAUTEPO T0G00TH PeTal action tubes mpooxmviou xou @éVTO hAdL
X0l TOV GUVOAXS aptdud Toug mou elvan amapaftnTo xaTd TNV Bldpxela TNS EXTALBEVCTC TEOXELUEVOU
o tagvounthc vo Aettoupyel amodotixd.

H 6hn duaduocior tagivounong anoteheiton and to axdrouda Brporo:

1. Awywetllovye to Pivieo oe wxpd Plvteo xhim xa tpogodotolue to dixtvo TPN e
autd to Blvteo xhin xou mafpvouue w¢ oamotéheopo k-npotewvoueva Tols xon o avtioTolya
YOEUXTNELO XA Toug Yiar xdde xhin Bivieo.

2. Yuvdéoupe ta mpotewodueva Tols yio vo mdpouyue action tubes mou umopel vo mepéyouy o
eVépyELL.

3. T x&de vrodhgpio action tube, n omola elvon wa axoroudio Tov Tols, tpopodotolue ToUG
X8eTNe evepyomolnone Tou otov TaEvounTy Yo TaEvouno.
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I to otddlo g Tavdpnong nelpopatilopacte povo pe to olvolo dedopévey JHMDB. Autd
ouuPoivel eTEd xOTAPEROPE VO ETUTUYOLUE XA amddoo recall uévo yio to Bivieo tou JHMDB
avtideta ye to UCF-101. T'o 1o obOvoho dedopévwy UCF-101, xatopddoaue vo dnulovpyioouvue
xoAéc mpoTdoeic action tubes oe Aydtepo and poée mepintioelc. Etol, o clotnud poc dev Yo
elvon oe Véomn vo exteléoel xahd byl Aoyw Tou TaEvounty Tou emAéae, ahhd AMdyw Tne EMAedng
AANDY TEOTACEWY.

5.1 JHDMB dataset
5.1.1 Ta&wopntéc Linear, SVM xow RNN

Training o vo exmoudeloouye tov TaVoOUNTH KOG, TEETEL VO EXTEAECOUME TOL TTPOTYOUMEVA
Bruota, v xdde Bivteo. Qotéoo, xdlde Bivieo €xel dlapopeTtind aptdud xopé xou xotohauSdvel
ueYdhn nocotnta wviung oty GPU. T vo avtigetwnicovye auth v xatdotaon xou €xovtag 4
dlardéoipec GPU, Sivouue w¢ eloodo éva Bivieo avd GPU. 'Etol unopolyue va yelpiotolue 4 Bivieo
TauTtoyeova. Autd onualvel 6TL éva xhaooixd training malpvel ndpo TOAD yedvo yia pokc 1 emoyy.
H A\bon pe tnv onola Xpdape, elvar va npolnoloyicouye ToUC YEETES YOPOXTNELOTIXWY TOCO YLo
action tubes npooxnviou 660 xaL POHVTOL XU GTN GUVEYELL VAL TROPODOTHCOUUE AUTOUC TOUS YAPTES
OTOV TAEWVOUNTY KOG YLOL VoL TOV EXToudevooude. Auth 1 Abon tepthauBdver tar oxohoudo Briwartat:

1. Apywd, €€dyoude TOUC YAPTES YOPUXTNELOTIXOY and To mporyuatxd action tubes. Axdpa
e€dyouye ta yopoxtneloTixd amd action tubes @déviou T omola eivon SimAdoio oTov oprdud
andé autd tou @évtou. EmiéEaue avth v avoroyie petald tou oprduold twv deTtixdv
xoL dpVNTXXV action tubes eunveuouévolr and toug Yang et al. 2017, twv omolwv 7
pédodoc yenowponotel 10c0c16 25% PeTalD TLV TEPLOY OV EVBLUPEPOVTOC TPOCKNVIOL XaL TV
CUVOMXOV TEPLOY DY, xat cUVORixd emthéyel 128 tétolec meployée. Avtiotouwyo, emAéyouue
éval AMyo peYOAUTEPO TOCOGTSO EMEWY| €y0oupe Uévo éva mpaypotixd action tube oe xde
Bivteo. 'Etot, vy xdde Bivieo AauBdvouue 3 action tubes ocuvolixd, 1 mpooxnviou xau
2 @oévtou. Ocewpolpe wg background action tubes exelvo mou to oxop emxdiudng Toug
pe onowdnnote action tube etvou peyailtepo and 0,1 aAdd pixpdtepo amd 0,3. Puowd,
TPOXEWEVOL Vo e€dyoupe autd To action tubes, yenowonowolue éva npoexnaudeuyévo TPN,
yia vo pog mpoteivel Tols yio xdde turua Bivteo xan Tov TpoTevdueVo alybpiduo cUVOESTC Yo
va. ouvdéoouue autd ta Tols. Tehxdde, yio xdde action tube hayPdvouue toug avtiotolyoug
¥dptec evepyomoinong yenowonowwvtag 3D RoiAlign.

2. Aol e€dyoupe autd tar yopoxTtneloTixd, extoudetouue toug tavountés pac. O Tpappixde
to€wvounthic yeewdletan éva otadepd péyedoc €680V, CUVETDC YEMOWOTOVUE Lo
ouvdptnon pooling oty ddotaon Tou aplduol Twv Bivteo. 'Etol, apyixd €youpe éva
YopTn Yopaxtnelo Ty peyédoug (3, 512, 16) xou petd hopfdvoupe we €€odo évav ydpTn
YopoxTNelo Ty peyédoug (512, 16). IewpapanildUocTe YeNOULOTOOVTAS HUQOTECH MAX Kol
avg pooling 6nwe gaiveton otov Ilivaxa 35. o Tov tavounth RNN dev yeelalouacte xouio
pooling dtadixacta eved yia Tov ta€vounty SVM nelpapoatilopoacte Eovd YenolLoTolmVTIS Xl
¢ 800 AQUTEC CLVAPTACELS TOL AMOTEAEGUATY TOU oTolou @aivovtar otov Ilivaxa 3.

Validation To otdbio emxlpwone mepthaufBdvel ) yerorn t600 mpoexmadeupévou TPN bco
xan Tou todwvounty. ‘Etol, yio xdde Bivieo houBdvoupe oxop To€vounong yia T TEOTEWVOUEVA
action tubes. Ou mepioodtepec npooeyyioeic ouvilwe Jewpolv €va xatdehl ¢ 6,11 apopd To
oxop eumoToolvng mdvw and To omolo Yewpolv éva action tube we mpooxvio. Qotdoo, eueic
dev YpnotwonoloVue xavéva TETolo xatdehl. Avtidétng, enedr] yvwpeilovue étt to JHMDB éyel
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xoupéva Bivteo pe wovo 1 exterolpevn dpdon avd Bivieo, amhd Yewpolye to xahltepo action tube
¢ TPOS TO OX0p Yia TEOBAEdT.

mAP
0.5 0.4 0.3
mean 14.18 19.81 20.02
max 13.67 16.46 17.02
RNN - 11.3  14.14 14.84

Classifier | Pooling

Linear

Table 5.1: Ta npdta anoteAéopota tne Tavounong yio tov Iooppind ta€ivounts xaw tov RNN .

Dimensions Poolin mAP precision
before ‘ after g 0.5 0.4 0.3
(k,64,8,7,7) (1,64,8,7,7) mean 3.16 4.2 4.4
(k,64,8,7,7) (1,64,8,7,7) max 1.11 2.35 2.71

(k,256,8,7,7) | (1,256,8,7,7) | mean 1141 11.73 11.73
(k,256,8,7,7) | (1,256,8,7,7) max 22.07 24.4 25.77

Table 5.2: H enldoorn tng apyltextovixnc Yog i 2 SlapopeTnols YAPTES YAUPUXTNOLOTIXOY Yot 2
pooling pedddoucg

5.1.2 Temporal pooling

Metd ) Mdn TV TedTov anoTeAecudtny, e@opuoloUUE ULo CUVAPTNOT) XEOVIXAC ouadoToinong
(temporal pooling ) eunvevouévrn and to Hou, Chen, and Shah |2017. Xpewalbpoacte éva otadepd
péyedoc ewwbddou yioo tov todwvount SVM. Qotdoo, 1o ypovxd stride twv action tube pog
nowxihhel amd 2 €ng 5, apol éva Bivieo pe 15 xopé amotehelton and 2 ocuveyodueveg Tols eved
éva Bivieo pe 40 xopé anoteheitoan and 5. 'Etol ypnowomoolye w¢ otadepr| ypovixr Sidotaom
{oov pe 2. Q¢ hertovpyio pooling yenoipwonootue 3D max pooling, yio xdde ¢plhtpo Tou ydptn
Yoeaxtnelo Ty Eeywplotd. o tapddelypa, yio éva action tube ye 4 cuveyoueveg Tols, éyouue
(4,256,8,7,7) wc péyedoc Tou ydptn yopaxtnplo Tixdv. Aloywelooupe to feature map oe 2 ouddec
YONOWOTOLOVTAG TNV CLVAETNOT linspace Xl ovVUBLLOLPOVOUUE TO YEETN YOQUXTNELOTIXDY CE
(256,k,8,7,7) 6mou k elvan to péyedoc tne xde opddac. Agod xdvouue yefon 3D max pooling,
Yo TépouPE EVa YT YAPOXTNELOTIXWY oo Tdoewy (256,8,7,7), axohodwe TOUC EVOVOUPE ol
tehxd hopPdvoupe ydptes peyédoue (2,256,8,7,7). Xe auth Ty tepintwon dev nepapatilopoote
UE YGpTES YopaxTEo TGOV peyEdoug (64, 8, 7, 7) eneldn ue Bdon ta napandve anoteréopata, dev
Yo €youpe xahUtepn enidoon an’ avtoie e péyedog (256,8,7,7). To anoteréopota napoucidlovion
oTov mivora 33, émou mepthauBdveTon N xoAbTeEN TEONYOUUEVT UéV0doC 1) ontola yernoulomolel max
pooling avti yix temporal pooling.
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Dimensions T Pooli mAP precision
before after erp roolng 0.5 0.4 0.3
k,256,8,7,7 | 1,256,8,7,7 - 22.07 244 2577
k,256,8,7,7 | 2,256,8,7,7 Yes 24.97 26.91 29.11

Table 5.3: To anoteréopata tou mAP étav yenowonotolye using temporal pooling

5.2 IlpocInxn nepiocotepwy groundtruth tubes

Ta mponyolueva anoteréopato TpoHAday amd TNy EXTUBEVOT TWY TUEVOUNTOY YENCULOTOLOVTAS
uévo 1 action tube mpooxnviou xau 2 gévtou. Lxeqptixope OTL Vo EMPENE VO MELPOUATIOTOVUE UE
Tov apliud twv action tubes npooxnviouv xadie eniong xon TRV avaroyio uetal twv action tubes
npooxnviou xat QovTou, eneldn otig mponyoluevee tpooeyyioelg Aettovpyfoaue Arydxt avdaipeTa.
‘Etol, emAéyoupe vo exnaldelcOVUE TOUG TPONYOUUEVOUC TOEVOUNTES UAC YeNotdoToldvTas 2, 4
xon 8 action tubes mpooxnviou ye avohoylo 2:3, 1:2, 1:3 xou 1:4 peta€d Tou oprtuod Twv tubes
TPOGXNVIOU X0l TOU GUVOALXOU dptdol Touc.

IMedrov, exmoudeoupe to RNN to€vounts] yprnollonoidvTae YEpTeES YUpaxTNELOTIXGY e
dlaotdoel (256,8,7,7). O embddoeic toug pe Bdon v yetpin mAP nogovoidlovton otov mivaxa
35 Yoo T0 Oplo emxdAvdng loo ue 0,5, 0,4 xou 0,3.

mAP

F. map FG tubes | Total tubes 05 04 03
1 3 11.3  14.14 14.84

3 1.96 5.07 7.27

9 4 3 5.03 5.77

(k,256,8,7,7) 6 1.34 3.89 4.49
8 0.77 1.51 2.72

6 13.23 21.74 254

4 8 20.73  28.25  29.50

12 16.55 24.35 25.22

16 20.11 25,50 27.62

12 13.82  19.93 22.80

3 16 15.47 23.08 24.19

24 15.88 23.44 24.48

32 12.66 23.50 25.61

Table 5.4: To aroteréopata tou RNN

Y0ugwva pe tov Thvoxa 33, TeMToV, unopolue vo dolue 6Tt 1 alénor tou apliuol twv action
tubes mpooxnviou and 1 éwg 2 odnyel otn andtoun uelwon tng enidoong tou mAP. ANAG, otav
Bétoupe Ta action tubes mpooxnviou (oo ye 4 éyouvue xolltepa anoteréopata. Ildve o auto,
€youvpe TNV xahltepn enldoon 6tav N avaroyio elvon fon e 1:2 ¥ 1:4. Téhog, otav opllouue tov
aprdud twv tubes npooxnviov (oo ue 8, n anddoon Beltidvetar ENAPENOS 0 GUYXELOT UE TIC apYLXES
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emovég (1 action tube npooxnviouv xon 3 GUVOAXE), ahhd 1 XATACTAOT AUTH BEV VoL UG PECELC Tl
XOADTEPA AMOTEAECUOTAL.

Y1 ouvvéyela, elvol xoupoC VO TELQUUATIC TOVUE YENOWOTOIMVTAS TN Yeouuxy togvouno.
Xenowornowolpe Eavd Tic Bec vroYéoeis 6mme xdvope xou v Ty ta&véunon pe RNN. ‘Onewe
Tpoavagépdnxe, ypewlopacte yo uédodo opadonoinone (pooling) mew and to Prua ta&véunone.
Yougwve pe Tov mhvoxa 33, 1 WéYodog tou avg pooling €yel w¢ amotéheopa xoAlTeR enidoon
toumAP oné to max pooling , ondte ypnowonololue avg pooling yia Ohec Tig axdlouvdeg
nepintwoeic. To anoteléopata nepthaufdvovton otov mivaxa ;3.

mAP
F. map FG tubes | Total tubes 05 04 03

1 3 14.18 19.81 20.02

3 12.68 13.38 15.14

9 4 11.5 14.95 16.22

(k,256,8,7,7) 6 10.74 13.36 15.18
8 8.00 9.83 11.17

6 15 17.55  19.39

4 8 17.04 20.12 22.07

12 17.57 19.9 21.88

16 14.24 17.24 17.95

12 17.91 22,51 24.62

3 16 16.76  20.34 22.72

24 17.61 19.12 24.48

32 14.45 18.07 19.14

Table 5.5: H enlSoon tou Ipappixod tavountn

IMpoto an ” dha, UETE TNV €EETAOT) TWV ATOTEAECUETWY TOU TOROVCLICTNXAY GTOUS BUO TIVOXES 33
xau 33, ebvon cagéc 6t 6tay opillouye Tov aprdud Twv action tubes tpooxnviou (Go pe 2, xou Yo Tig dVo
TEPLTTAOCELS, EYOUHE YEWPOTERO AMOTEAECUOTO o’ TO dpyixd. AuTd pdhhov ogelheton 6TO YEYOVOS
oL au€dvouye entiong Tov aptdpd Twv action tubes @ovTou Yo tepittwoelg 6tay 1 avohoyio etvon 1:2,
1:3 f) 1:4 pe anotéleopa ol talvounté va Yewpolv To TEPLOCOTEPY TROTEWVOUEVD action tubes 6tu
elvon povtou. And tnv dhAn mheupd, 6tay €youue oploel avaroyia fon pe 2:3, avtl vo Yewproouv ta
neplocdTEpe TpoTEWVOUEVa action tubes, we pdvTou, To TAEVOUOUY WG WA GUYXEXPWEVT XaThyoplo
dpdong, mou onualvel 6Tl xatalyoue oe xotdotaon overfitting. Etol, av xo motebouye 6T dev
Yo TEETEL VoL EPELVACOVKE Yiol TEPLTTWOELS Ue 2 action tubes mou avixouv oto mpooxvio, Ya
exmoudevoovpe tov SVM ta€ivounth pac yenotponowdvtog 2 action tubes mpooxmviou xou dho ta
npoavapepdévta tocootd eneldy) Féhoupe va elpaote BéBatot yia v undleot pog. And tny iy
TAeupd, mopatneolue 6TL N xenon 4 1 8 action tubes poag odnyel oe xaAltepa anotehéopata and
T0 T apyd amoteréoparta. Ol xahltepes emdooels €pyovton dtav 1 avahoylo HeTaEd Ty aptdudy
Twv action tubes mpooxnviou xou cuvolxwy elvon 1:3 xou yia Tic dVo mepintdoeg.  Ilopdhinia,
€yovue xoAd amoteAéopota yior Tig avohoyieg 2:3 xou 1:2, xon Aopfdvoupe tnv yewpdtepn enidoon
otav yenotponoolpe avohoyla 1:4. Autd npoxaheltar pdhhov amd 1o yeydho aprdud action tubes
(po6vToL oE oyéan e Tov apldud Twv action tubes mpooxmviou.

Onwe  mpoavagépinue, exmadedoupe Tov  talvounth SVM  ypnowonodvioe TG
npoavagepeioeg nepintwoel O emdooelc talvéunone ue yenon e uétpnone mAP eugavilovton
otov mhvoxa 33. .
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F. map |FG tubes|Total tubes 05 HBAZP 03
1 3 24.97 26.91 29.11

3 13.87 18.74 21.29

9 4 14.21 19.67 21.75

6 12.88 18.62 21.59

(2,256,8,7.7) 8 12.66 18.7 21.97
6 25.04 26.91 27.82

4 8 24.34 25.67 26.34

12 23.47 25.31 25.9

16 21.94 23.55 24.23

12 24.83 27.13 27.46

N 16 23.97 26.38 26.94

24 24.17 26.24 26.76

32 24.17 26.24 26.76

Table 5.6: Ta anoteAéopota Tou tagivountsh SVM.

Ta anoteAéopata wog delyvouv xdmoa evilagpépovta yeyovota. Ilpdtov, emPBeBaidvouv tny
unéleot| pog 6t To dixtuo elvan aBUvaTov vo exmoudeutel ue pévo 2 action tubes mpooxnviou.
Enlong, napatnpolue 6t €youpe oyeddy to (Dot amoTEAECUATO UE TO AMOTEAEGUATOL TIOU TROEXLYPOLY
yior TN XeHoY TNS TOALTLXC Tou Hévo éva action tube mpooxnviov, 3 cuvoAixd xou Ypovixé pooling,
yeyovde to omolo elvar Myo nopdéevo. Autd elvon pdhhov eneldr| xatd T Sidpxeia Tou UTOAOYLOUOD
e xAipoxag, oTto oTddlo exmaldeuong, dev €youpe T600 xohd Belypa Bivieo oMW xEvaUe XATA TN
didpxeio Tng mpoavagepdeicag nepintwong. AMG Yewpolue 6TL elvor XaAUTERO Vo GUVEYICOUUE TIC
doxwég yenowonowdvtag 4 1) 8 action tubes mpooxnviou. Teleutalo AN Oyt AydTERO ONUAVTIXNG,
elvon copéc 6Tl €youue T0 xahbTepo amoTéleopa dTay £YOUUE Uiot T0600To 2:3 petall tou aprduold
Twv action tubes mpooxnviou xou Twv cuvolxwv. Emlong, elvon npotiudtepo va €youue 4 action
tubes mpooxnviouv avtl yio 8. Autd cupfaiver pdihov enedr) éxouv dolel ndpa TOANG dedopéva
exmaldevone ye To SVM va umepdeletan, xaL ETOL VO AOTUY Y AVEL VoL AELTOURYHOEL ATOTEAECUATIXAL.

5.3 To&wounthc MultiLayer Perceptron (MLP)

Ye mponyolueveg eVOTNTES YpNoonoloaue xAaootxols Talvountés 6mwe tov Loopuixd, évay
RNN xou évav SVM. Tekevtalot odld e&ioou onuovtixot, wa Sy evpéwe xotnyopio To&vountody
ebvan ot Multilayer Perceptron (MLP). Eyedidlouvye évay tadvounti MLP énwe goivetar oto oyfua
35 vl dudpxeta delypartog fon ue 8. H Aettoupyla Tou meprypdpeton xatwmtépw:

o Xty apy, uetd o 3D Roi Align xou yio Sidipxetor tou Selypotog ion pe 8 xopé, Aopfdvouye éva
YSpTn evepyornoinone peyédoug (k, 256, 8,7, 7) émou k elvon o aptdude twv ouvdedepévov Tolc.
Eunveuouévol and mponyolueveg evotnteg, extelolue temporal pooling oxoloudolduevo and
max pooling otnv didotaoy g didpxelac tou delypatoc. ‘Etol, €youue tdhpa €vay ydptn
YOPOXTNELO TGV e Baotdoels (oeg pe (2, 256, 7, 7), tic onoleg avadiapoppdvouye ot (256,
2, 7, 7) o tpogodotolpe ot layers mou e&fjydnoav and to teheutaio otddlo Tou ResNet34.
Avutd ta otddua tepthauBdvouy 3 Residual Layers ye stride (oo ye 2 oe dhec tic 3 daotdoelg
xa opripd e€660ou plAteny (oou pe 512.
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Figure 5.1: H doun tou ta€wvounth MLP

e Metd to Residual Layers, xdvoupe avg pooling yia tic Swotdoec z-y. Etol, éyoupe wg
e£6d0, ydptec evepyonoinone pe péyedoc duotdoewy (oo pe (512,). Téloc, tpopodotolue
QTOUC TOUG YopOXTNELOTIXOUE YdpTeES Ot éva Ypauwxd layer mpoxewévou va e€dyouue tnv
xAdom tou unodriplou action tube, yetd v epapuoy e Aertovpyiog Soft-Max.

5.3.1 KAaoowxd training

‘Onwe npoavapéptnxe mponyourévns, o XM extaldeuone anaitel TNV exTéAecT) VOC UOVO
Bivteo avd GPU, enedr ta Bivieo €youv diagopetiny didpxeia to xodéva. i mpomnyoldueveg
npoceyyloele, pac fede 1 W€o TOL TEOUTOAOYIOUOU TWV YAUPUXTNEOTIXG Twv action tubes tou
Bivteo xou ot ocuvéyewr exmawdedovue uoévo tov tofvountr.  2otéco, Y autd To PBriud,
EXTUBEVCOPE TOV TOEVOUNTY HAC HE TOV XAAoXO TEOTO Yo Vo AdPBouye anotehéopota Tagvounorg.
Puowd, yenowonooaue éva npoexnawdeuvuévo TPN, tou omolou ta layers noywooue yior vo unv
exnoudeutolv. Ilpoonadroaue va eepeuvicoupe SopopeTinés avahoyies petald tou apliuol twv
action tubes mpooxnviou xar Tou cuvokxol oprlpol Twv action tubes avd Bivieo. Ou mpwteg 3
npocopolhoelc TepthauBdvouy otaldepd opriud cuvolxwy action tubes xou uetafAnTy avoroyio
peto€l Tou apripod Twyv action tubes mpooxnviou xou @éviou. Apyicaue yenowomdvTac Yovo
action tubes mpooxmviou, to omolo onuatvel tL 32 and to 32 action tubes etvon ntpooxnviou, puetd ta
Wod and To Tpotevoueva action tubes, Sniadn 16 and 32 xou téhog Aydtepo amd To HLoL, SNAAdH
14 ané ta 32. Metd and autd, nelpapatillOUacTE YENOLHOTOWOVTIS évay oToepd aptdud action
tubes mpooxnviou xou yetafAnTod aptiuod cuvolixdy action tubes, o omolog elvon 16, 24 xou 32.
To anoteréopata 1wV EMBOCEWY Topouctdlovial Tov Tivoxd ;3.

mAP
FG tubes | Total tubes 05 04 03
32 1.28 1.73 1.87
16 32 3.98 4.38 4.38
14 0.40 0.40 0.40
16 9.41 12.59 14.61
8 24 12.32  15.53 18.57
32 7.16  10.92 13.00

Table 5.7: H mAP enidoon tou ta€wounti MLP yio thy xhacouxn Swbixacia exnaideuong



68 KE®PAAAIO 5. ¥TAAIO TAZINOMHYHY

Ta anoteléopata detyvouv 6Tl oL Tpdteg 3 mpooeyyioelg Hog divouv TohD doy MU atoTEAECUATA.
Yuyxplvovtag teg pe tic undioltoug 3, Rpdoue e o cuunépoaopa 6Tt yeetalouaote to Tohd 8 action
tubes npooxnviou, axdun xar 6tav o Aéyog petall tou aprluol action tubes tou mpooxmviou xou
Tou povToL elvon UTép Tou Bedtepou. IIibavdtata, ndeo ToAAd action tubes mpooxmviou xdvouy tny
apyrteEXToVIXY pag va éplel oe xatdotaon overfitting xou cuvendg vo etvan avixovn va yevixelet.

5.3.2 EZaywy? YoApaxTneloTixwmy

‘Onwe avapépinxe mponyouuévwg, exnadedooye tov tavount) MLP yenowonowbdviag npo-
UTIOAOYLOUEVOUG YPTES YopoXTNeloTixmy. Autol ol ydptec mepthopfdvouy téoo action tubes mou
elvon 6T0 TPOGUHVIO bG0 KoL 6To PHVTo. Me Bdom Ta cuuTEpdoUATa TOL TEOEXLYAY OTA TEOTYOVUEVAL
uéen, Yo exnandedoouue Tov MLP uévo yia aprdud action tubes npooxnviou (oo ye 4 xou 8. Emniéov
Oa exmoudevoouye Tov TaWoUNTA Hag Yo 3 dlapopeTiné avahoyieg, ol onoleg elvon 1:1, 1:2 »an 1:3.
O nivaxog 53 delyvel autée Tic meptnTdoect xodoe xou Tig avtiototyes emddoelc Tov mAP, xatd
Bidpxelol Tou Brpatog EmxdpWoNg.

mAP
FG tubes | Total tubes 05 0.4 03
6 4,37 8,54 10,12
4 8 5.89 9.54 13.61
12 9.51 12.8 14.6
16 6.80 13.17 14.67
12 8,62 12,32 14,74
3 16 8.49  13.94 15.09
24 6.72 12.17 15.30
32 13.27 17.64 18.97

Table 5.8: Ta anoteréoyata Tou MAP yia tov ta€vount) MLP exnoudelovtag Tov yenollonounviog
pre-extracted features

YUY xplvovTag Tol AMOTEAEGUATO OO TOUG TUVAXES 53 Xl 33, efvan capég dTL yeetalduacte 8 tubes
npooxnviou yia vo Aettoupyel xahd o tagwountic MLP. Qotéc0, dev eivon mohd copéc mowa and
TiC 800 TEOTEWOUEVES EXTADELTIXES Dladxaciee efvan xaAUTERY), 0ANE av TEEMEL Vol amo@acioouue
plo uédodo, Yo emré€oupe ™ ypron mpolnoloylouévwy yopaxtnelotixdy. H mpocéyyion auth
xatopldvel va emitiyel ta xohdtepa anoteAéopata, xat EWBXd 6tav éyouue 8 tubes mpooxmviou xau
32 ouvohxd. Enlong, cuyxplvovtag tig uedddoug ue 4 1| 8 Jetind action tubes, eivon capéc dti Yo
TEOTWOUCOHE VO YENOWOTOWUUE 8 Yewxd. £2oT600, dev eivan capég mota avaroyio elvon xahdTepn,
eneldy), €xovpe xahlTepa anoteréouato otay €youue 8 action tubes xou avoroylo 1:4 eved €youue
xahUTepa amoteréopata otay 1) avohoyia ebvon 1:3 ue 4 action tubes.



Kegdhawo 6

Enihoyoc - MeAhovTixEg
ENEXTACELC

6.1 EmniAoyoc

e auth T Satelr) e€epeuvrioope To TEOBANUA TNG VLY VOPLOTE X0l TOU EVTOTLOROV avip®dTivng
dpdomne oe Bivteo. Lyedidooyue éva dixtuo Boaociopévo oty tpoceyyior twv Hou, Nev xou Xnon 2017
oe cuvbuaoub ue optopéva atolyela and toug Girdhar et al. 2018, Ren et al. |2017, Girshick |2015|
Hu et al. 2019 xou Hara, Kataoka, and Satoh 2018/

Fedipope pior pytorch vionoinon modpvovtog xddixa uévo and to Yang et al. 2017, Emmiéoy,
Yedpope Tov dnd pog XWX YENOLHOTOLOVTOS Hepés Aettovpyiee e Yhwooas CUDA mou éyouv
oyedotel and gude (6nwe voloylopdc twv Badpoloydv cbdvdeorne, tpotornoinon tubes xAt).

Ipoonadfoope vo oyedidoouvye to TPN, éva dixtuo mou e&dyer Tols, axohouvdieg mhouciwv
Onhady), mou miavd vo meplEyouy xdmolo dpdon oe Bedopévo TuRUa Tou PBIVTEo, EUTVEUCUEVO
ané 1o RPN tou Faster R-CNN. To oyedidooye Yenolonowvtas Yevixeuuéva anchors xou oyt
ouyxexpluéva yia xdde alvolro dedopévev. Tlpootodolue dnAady vo YeEVIXEOGOLUE TNV TROGEYYLOT
o yio Sudpopo cUvola dedouévwy, avtideta ue TNy tpocéyylon mou npotelveta and toug Girdhar
et al. [2018, otnv omola yenoiwwomowivToL To To cuyvd euavilopeva anchors yia xdde cOvolo
BeBOUEVOV.

Emnnpootétwe, oyedidooue évay agelr ahyopltduo cOVEOTS Yia T GUVOEST] TWV TPOTEWVOUEVHY
Tols pe Bdon autdév mou mpotdidnxe on’ touc Girdhar et al. 2018,  Xwnmv npocéyyion yoc,
XENOWoToloLPE TNV (Bl ToAtTixY) Paduohdynorg, 1 omolo efvar €vag cuVBUAOUOS TwY PorduohoyLndy
e miavotnrog UnapEng dpdomg xou Tou oxop emxdiudne. H xOpla Swopopd etvar 6Tt anogebyouue
vo urtohoyilouue mdavols GUVBLAGHOVE, XENOWOTOLOVTIS €val 6plo eEVNuépwong, Tou Uropel va
avavewvetan. Enione, Soxiudoope xt dAhov évay olydprdpo cOvdeone eunveuopévog o’ toug Hu %.d.
2019, Qotdoo, N epapuoyn pog dev tay 1660 xoAT) 660 1 TEONYOUUE, GUVETKS OV eEEPELVICUUE
OAEC TIC BUVATOTNTES TOU.

Téhog, Biepeuvioope apxeTolg TaElVoUNTES Yo TO GTAdI0 Tagvounong tou dixtvou. Autol etvau:
évav RNN, éva Dpapuxd to€wounty), évav SVM xou évav tadivounty MLP. Xenowonojoaue
wo epapuoyy) an’ 1o Pact P'NN yio tov ta€ivounts) SVM, 1 onola mepiehdyuBove tny Siaducosio
exnofdevone Péow oxhnewv apvnuxwyv. Efetdoope pepixée texvinée exmaldevong yio Béltiotn
anédoor tadvounone xat 2 exnadeutixéc tpooeyyioels yio tov towvounti MLP, tnv xhaocouxh xou
ulo ToL YpnoionololUe TEOEEayOUEVAL YoPUXTNELETLXEL.
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6.2 MeAAOVTIXEC ENEXTACELS

Trdpyouv morkd mepridpia Behtiwong yio To dixTud pog, tpoxeyévou va emteuyVel teheutaiog
teyvoloyiog anoteréopota. Ot oNUOVTIXOTEPES TEPLYPAPOVTOL GTIC ENOUEVES TAUPAYEAPOUS.

BeAtiwon twv npotdoewy tou TPN  Tionowjoaue 2 dixtua yia Ty npdtacT) axohouthv
and mhodoto o éva tuua Bivieo. IletOyoaue nepinou 63% Badporoyia recall yio ) didpxela Tov
delyparoc {on pe 16 xopé xou mepimou 80% recall yio t Sudpxeio Tou delypotog ion pe 8. Auvtd
TaL ox0p OelyVouy OTL UTdPYEL dPXETOC Y WEOog Yo BeATiwon edd yio Ty meplntwor ye delypa 16
xapé. Iapdho mou €xouv Siepeuvniel TOMES dPYITEXTOVIXEC BIXTUMVY Ylal TOAVIEOUNGT), [lat XOAN
Wéa Go ray vou Boxwpdoouye dhha Bixtua, tor omola Bev elvon amapaitnTo eunveucuévn and dixtua
EVTOTUOHOU AVTIXELWEVRY TS xdvope euelc. EmnAéoyv, mpoodétovtog évay nopdyovta A otov Tno
Tou training loss Yot Aoy pior xohn 18€a xan Yo Blepeuvoloe oo elvo 1) XAAUTERT) TROCEYYLOT| AUTOU.
'Etot, n andiewa exmaldevong Yo unopoloes va oplotel wq:

L= ZLcls(piap:) + A1 Zp;(Lreg(tht:) + Ao Zq;Lreg(Ciy c;k) (6]_)

Emnhéov, do Atav wo xohh 8éa va ypnowonotfioouue v pédodo tou SSD (Liu et al. [2015)
nou mpotelvel Rols avtl yio to RPN, yia va cuyxpivoupe to amotéheopa. Téhog, Yo unopolooye
VO TELOPTIOTOUPE Ypenolponowdvias ta dixtua Feature Pyramid (Lin et al. 2017), to onola Yo
unopovoay va enextadolyv ot 3 BUCTACELS WG EVa GARO BIXTUO EEAYWYHS YUPUXTNPIOTIXAOVY 1) XATOLO
d\ho €idoc 3D ResNet.

AXN\ay") Tou aAyopidpmouv ocOvdeomg Xe auth T Owtedh, wo GAAN TedxAnon mou
avietwriooye Htav 1 obvdeon Ttwv mnpotewvduyevwy Tols vyl v mpdtacrn action tubes.
Thonowooye €vay TOAD agelr] ahydprdpo, mou dev Yitav oe Béon vo umopel vor Jog 8OOl TOAD XoAEC
TpoTdoeic Topd Tic oAhayés mou mpoonodiooue va xdvoupe. YAomowooue €vav dhio alydprduo
oUvdeone mou Atay Booiouévog otny extiunomn g yeovixic mpdodo evég action tube xou tnv
oalAnheniBpaon tou Ue dhho.  Av xau dev poc €dwoe xan mOMD xoAéC mPOTdoElS, TUOTEVOUUE OTL
npénel vo e€epeLVACOLUE TIC BuVITOTNTES aWTo Tou ahyoplduou. Ki autd eneidr elvon oe Véomn va
expeTOAMEVETAL TNV TPbodO TN evépYelag, TNV onola dev elye o mponyoluevog ahyodpLiuoc.

EZepebvnoyn dAAwv  texvixov  tadwounone L 1o otddio  todwounorng,
TelpoaTlo TAXOE xUplwe Tave ot évav tavounti SVM yua to olUvolo dedopéveov JHMDB
xou 0ev acyorndixaue xadolou ue to olvoro dedopévewy UCF-101. O mpidtog yog otodyog elvan
va efpacte oe Géon va e€dyouue xohd amoteAéopata TOEVOUNONG YLt TO GUVONO OeSOUEVKYV
UCF-101. Ilioteboupe 6T Go TEEMEL Vo SLEEEUVACOUUE TOUS YUETEC YOEOXTNELOTIXWY TOU
UCF-101 xou tevinéc mou epapuélovial 6TOUG YIPTES YUPUXTNPIO TIXWY TELY omd TNV Tadvouno.
Emnnmiéov, da punopoloope vo doxtddooupe dhhes texvixée tadivounone 6mwe Random Forests 7
VO TELRAUOTIOTOVUE Tieplocdtepo ue tov tagvopnt) RNN yio to olvolo dedopévwv UCF-101.
Téhog, wa GAAT Saduacior Tadvounong do Aoy wior xohh e, 6mwg 1 eEoywyr| TEEOTH OAWY TwWV
mdavoyv action tubes xou, oty cuvéyela, 1 yeron GAAY SIXTOWY Ylo eEAYWYY| YUEAXTNELO TIXWY
Tpoxelwévou vo tafivouricouue to action tubes.



Chapter 7

Introduction

Nowadays, the enormous increase of computing power helps us deal with a lot of difficult
situations appeared in our daily life. A lot of areas of science have managed to tackle with
problems, which were consided non trivial 20 years ago. One of these areas is Computer Vision
and an important problem is human action recognition and localization.

7.1 Problem statement

The area of human action recognition and localization has 2 main goals:
1. Automatically detect and classify any human activity, which appears in a video.

2. Automatically locate in the video, where the previous actions are performed.

7.1.1 Human Action Recognition

Considering human action recognition, a video may be consisted of only one person doing
something. However, this is an ideal situation. In most cases, the videos contain multiple people,
who perform multiple actions or may not act at all in some video segments. So, our goal is not
only to classify an action, but to determine the temporal boundaries of each action in the video.

7.1.2 Human Action Localization

Alongside with Human Action Recognition, another problem is to present spatial boundaries
of each action. Usually, this means presenting a 2D bounding box for each video frame, which
contains the actor. Of course, this bounding box moves alongside with the actor.

7.2 Applications

The field of Human Action Recognition and Localization has a lot of applications which
include content based video analysis, automated video segmentation, security and surveillance
systems, human-computer interaction.

The huge availability of data (especially of videos) creates the necessity to find ways to take
advantage of them. About 2.5 billion images are uploaded in the Facebook database every month,
alongside with more than 34K hours of video in YouTube and about 5K images every minute.
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On top of that, there are about 30 million surveillance cameras in the US, which means about
700K video hours per day. All those data are needed to be separated into categories according
to their content in order to be able to be searched more easily. This process takes place by hand,
by a user who attaches keywords or tags to each video. However, most users avoid doing that, so
many videos end up without any tagging information. This situation creates the need to create
algorithms for automated indexing based on the content of the video.

Another application is video summary. This area takes place usually in movies or sports
events. Regarding movies, video analysis algorithms can create a small video containing all the
important moments of the movie. This can be achieved by choosing video segments which an
important action takes place such as killing the villain of the movie. In sports events, video
summary applications include creating highlight videos automatically, like a video containing all
achieved goals in a football match.

On top of that, human action recognition can replace human operators in surveillance systems.
Until now, security systems include a system of multiple cameras handled by a human operator,
who judges if a person is acting normally or not. Automatic action classification systems can act
like humans, and immediately judge if there is any human behavioral anomaly.

Last but not least, another field of application is related to human-computer interaction.
Robotic applications help elderly people deal with their daily needs. Also, gaming applications
using Kinect create new kinds of gaming experience without the need of a physical game
controller.

7.3 Challenges and Datasets

There are various types of human activities. Depending on their complexity, we conceptually
categorize human activities into four different levels: gestures, actions, interactions, and group
activities. Gestures are elementary movements of a person’s body part, and are the atomic
components describing the meaningful motion of a person. “Stretching an arm” and “raising a
leg” are good examples of gestures. Actions are single person activities that may be composed
of multiple gestures organized temporally, such as “walking”, “waving”, and “punching”.
Interactions are human activities that involve two or more persons and/or objects. For example,
“two persons fighting” is an interaction between two humans and “a person stealing a suitcase
from another” is a human-object interaction involving two humans and one object. Finally, group
activities are the activities performed by conceptual groups composed of multiple persons and/or
objects. “A group of persons marching”, “a group having a meeting”, and “two groups fighting”
are typical examples of them. The wide variety of human activities and applications creates a lot
of challenges which involve action recognition systems. The most important challenges include
large variations in the appearance of the actors, camera viewpoint changes, occlusions, non-rigid
camera motions etc. On top of that, a big problem is that there are too many action classes
which means that manual collection of training sample is prohibitive. Also, sometimes, action
vocabulary is not well defined. As figure 7?7 shows, “Open” action can include a lot of kinds of
actions, so we must carefully choose which granularity of the action we will consider.

In order to deal with those challenges, several standard action datasets have been created in
order to develop robust human action recognition systems and detection algorithms. The first
datasets included 1 actor performing, using a static camera over homogeneous backgrounds. Even
though those datasets helped us design the first action recognition algorithms, they were not able
to deal with the above challenges. This lead us to design datasets containing more ambiguous
videos, such as Joint-annotated Human Motion Database(JHMDB) (Kuehne et al. 2011) and
UCF-101 (Soomro, Zamir, and Shah [2012). These datasets contain only human actions, the
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Figure 7.1: Examples of “Open” action

second category presented above.

7.3.1 JHMDB Dataset

The JHMDB dataset (Jhuang et al. is a fully annotated dataset for human actions and
human poses. It is consisted of 21 action categories and 928 clips extracted from Human Motion
Database (HMDB51)(Kuehne et al. 2011). This dataset contains trimmed videos with duration
between 15 to 40 frames. Each clip is annotated for each frame using a 2D pose and contains
only 1 action. In order to train our model for action localization, we modify 2D poses into 2D
boxes containing the whole pose in each frame. There are available 3 different splits for training
data, proposed by the authors. We chose the first split which contains 660 videos for training
set and 268 for validation .

7.3.2 UCF-101 Dataset

The UCF-101 dataset (Soomro, Zamir, and Shah[2012) contains 13320 videos from 101 action
categories. From those, for 24 classes and 3194 video spatiotemporal annotations are included.
This means that there is a 2D bounding box surrounding the actor for each frame in which an
action is taking place. We separate dataset’s videos into 2284 videos for training set and 910
for validation test according to the first proposed training split. For training data, there are
videos up to 641 frames, and for validation data, max number of frames is 900. Each video,
both training and validation, is untrimmed, including sometimes more than 1 actions taking
place simultaneously. We took annotations from Singh et al. because those proposed by
the authors contain some mistakes.

7.4 Motivation and Contributions

The current achievements in Object Recognition Networks and in 3D Convolution Networks
for Action Recognition have triggered us to try to combine them in order to achieve state-of-the-
art results for action localization. We introduce a new network structure inspired by Hou, Chen,

and Shah 2017, Girdhar et al. [2018/Ren et al. 2017 and for implementation by Yang et al. [2017

Our contributions are the following:

1. We create a new framework for action localization extending the code taken from
FasterRCNN implementation. Based on the structure proposed by Hou, Chen, and Shah
2017, we modified it, using a 3D Resnet34 instead of C3D, which previous approach used.
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2. Furthermore, we proposed our own TPN Network, a Network for proposing candidate
action tubes given a small video segment. Following the approach Hou, Chen, and Shah
2017 proposed, we firstly implement an architecture which uses cuboids as anchors, which
then, using a regressor, it becomes a sequence of bounding boxes, likely to contain an action.
We experiment with two candidate regressor’s architecture and proposed and implement a
3D RoiAlign which uses trilinear interpolation for extracting each proposed action tube’s
activation maps. Inspired by Girdhar et al. 2018, we proposed and implement a TPN
which uses predefined sequences of bounding boxes as 3D anchors. We proposed anchors
that last equal to and less than video segment’s duration in order our architecture to be
able to perform temporal localization. We explore two different regressors’ architectures for
better spatial precision using activation maps extracted from 2D RoiAlign, treating each
frame separately.

3. Inspired by linking algorithm proposed by Hou, Chen, and Shah [2017, we introduce our
own linking algorithm, which uses a combination of actioness and overlap scores in order
to decide if 2 proposed action tubes would connect or not and some updatable lists.
Our approach includes gathering all candidate action tubes whose score is bigger than
a threshold, and use them as active action tubes for new possible connections. When the
number of gathered active action tubes is bigger than a threshold, we keep the k-best
scoring action tubes and remove the rest. We implement this algorithm using, also, CUDA
code in order to calculate connection score faster. We proposed 3 versions of this algorithm:

(a) An approach which uses an updatable scoring threshold, in order not to calculate
unnecessary connection scores

(b) An approach which doesn’t use an updatable scoring threshold, but it just updates
“active” action tubes more frequently.

(¢) An approach which, also, uses NMS or softmax-NMS algorithms for getting wider
action tube proposals.

Also, we implement, from scratch, another connection algorithm proposed by Hu et al.
2019 and extending it in order to work for Tols instead of frames, which they proposed.
We modified our TPN structure in order to calculate progression and progress rate scores
in order to calculate connection scores and generate candidate action tubes.

4. We experiment using several classifier in order to find the most suitable. We considered 2
feature maps extracted using 3D RoiAlign and proposed action tubes, without any other
modification. Also, we explore the different ratios and number of groundtruth foreground
tubes that should be used during training stage. Finally, we tried to perform only temporal
localization using temporal information generated from proposed action tubes.

7.5 Thesis structure

The rest of Thesis is organized as follows. Chapter 2 provides a general introduction to
Machine Learning techniques currently used. After that, we present the basic elements of object
recognition systems and alongside with loss functions and evaluation metrics that we used. Also,
Chapter 2 presents a brief overview of literature on human action recognition and localization.
Chapter 3 introduces the first basic element of our network, Tube Proposal Network (TPN), a
network which proposes Tubes of Interest (Tols), which are sequences of bounding boxes, which
are likely to contain a performed action. Furthermore, it contains all the proposed architectures
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for achieving this. Chapter 4 proposes algorithms for linking the proposed TOIs from every video
segment and proposal performance is presented. In Chapter 5, we present all the classification
approaches, which we used for designing our architecture and some classification results. Chapter
6 is used for conclusions, summary of our contribution alongside with possible future work.
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Chapter 8

Background

8.1 Machine Learning

8.1.1 Introduction

Machine Learning (ML) is a field which is raised out of Artificial Intelligence (AI). Applying
Al, we wanted to build better and intelligent machines. But except for mere tasks such as
finding the shortest path between point A and B, we were unable to program more complex and
constantly evolving challenges. There was a realization that the only way to be able to achieve
this task was to let machines learn from themselves. This sounds similar to a child learning from
its self. So machine learning was developed as a new capability for computers. And now machine
learning is present in so many segments of technology, that we don’t even realize it while using
it.

Finding patterns in data on planet earth is possible only for human brains. Data being very
massive and time taken to compute them made Machine Learning take action, in order to help
people exploit them in minimum time.

There are three kinds of Machine Learning Algorithms :

1. Supervised Learning
2. Unsupervised Learning

3. Reinforcement Learning

Supervised Learning

The majority of practical machine learning uses supervised learning. In supervised learning,
the system tries to learn from the previous examples that are given. Speaking mathematically,
supervised learning is where you have both input variables (z) and output variables (Y) and can
use an algorithm to derive the mapping function from the input to the output. The mapping
function is expressed as Y = f(x).

As shown in Figure 7?7, we have initially taken some data and marked them as ‘Spam’ or ‘Not
Spam’. This labeled data is used by the training supervised model, in order to train the model.
Once it is trained, we can test our model by testing it with some new mails and checking if the
model is able to predict the right output.

Supervised learning problems can be further divided into two parts, namely classification,
and regression.

7
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Figure 8.1: Example of supervised Learning

Classification : A classification problem is when the output variable is a category or a group,
such as “black” or “white” or “spam” and “no spam”.

Regression : A regression problem is when the output variable is a real value, such as
“Rupees” or “height.”

Some Supervised learning algorithms include:
e Decision trees
e Support-vector machine
e Naive Bayes classifier
e k-nearest neighbors

e linear regression

Unsupervised Learning

In unsupervised learning, the algorithms are left to themselves to discover interesting
structures in the data. Mathematically, unsupervised learning is when you only have input
data (X) and no corresponding output variables. This is called unsupervised learning because
unlike supervised learning above, there are no given correct answers and the machine itself finds
the answers. In Figure 7?7, we have given some characters to our model which are ‘Ducks’

"i*i\\“\ 4‘/‘, h ‘w\‘;\a\<14,\‘g\
A & ¥ {
£ Jgﬁg £ 48 <

| 2N = Unsupervised
&

‘ 1, Learning

Figure 8.2: Example of unsupervised Learning

and ‘Not Ducks’. In our training data, we don’t provide any label to the corresponding data.
The unsupervised model is able to separate both the characters by looking at the type of data
and models the underlying structure or distribution in the data in order to learn more about
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it. Unsupervised learning problems can be further divided into association and clustering
problems.

Association : An association rule learning problem is where you want to discover rules that
describe large portions of your data, such as “people that buy X also tend to buy Y”.

Clustering : A clustering problem is where you want to discover the inherent groupings in the
data, such as grouping customers by purchasing behavior.

Reinforcement Learning

A computer program will interact with a dynamic environment in which it must perform a
particular goal (such as playing a game with an opponent or driving a car). The program is
provided feedback in terms of rewards and punishments as it navigates its problem space. Using
this algorithm, the machine is trained to make specific decisions. It works this way: the machine
is exposed to an environment where it continuously trains itself using trial and error method. In

{ Environment ?? Agent
v ®

(24 T : o Observe

Select action
using policy

© Action!

Get reward
or penalty

Update policy
(learning step)

Iterate until an
o optimal policy is
found

Figure 8.3: Example of Reinforcement Learning

Figure 77, we can see that the agent is given 2 options i.e. a path with water or a path with fire.
A reinforcement algorithm works on reward a system i.e. if the agent uses the fire path then
the rewards are subtracted and agent tries to learn that it should avoid the fire path. If it had
chosen the water path or the safe path then some points would have been added to the reward
points, the agent then would try to learn which path is safe and which path isn’t.

8.1.2 Neural Networks

Neural Networks are a class of models within the general machine learning literature.
Neural networks are a specific set of algorithms that have revolutionized the field of machine
learning. They are inspired by biological neural networks and the current so called deep neural
networks have proven to work quite very well. Neural Networks are themselves general function
approximations, that is why they can be applied to literally almost any machine learning problem
where the problem is about learning a complex mapping from the input to the output space.

8.1.3 A single Neuron

The basic unit of computation in a neural network is the neuron, often called a node or unit.
It receives input from some other nodes, or from an external source and computes an output.
In purely mathematical terms, a neuron in the machine learning world is a placeholder for a
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mathematical function, and its only job is to provide an output by applying the function on the
inputs provided. Each input has an associated weight (w), which is assigned on the basis of its
relative importance to other inputs. The node applies a function f (defined below) to the weighted
sum of its inputs as shown in Figure ??. The network takes numerical inputs X7 and X2 and

1
b\
wl
Xl —— Y
A'
X2

Output of neuron = Y= f(wl. X1+ w2.X2+b)
Figure 8.4: An example of a single Neuron

has weights w! and w2 associated with those inputs. Additionally, there is another input 1 with
weight b (called Bias) associated with it. The main function of Bias is to provide every node
with a trainable constant value (in addition to the normal inputs that the node receives). The
output Y from the neuron is computed as shown in the Figure ?7. The function f is non-linear
and is called Activation Function. The purpose of the activation function is to introduce
non-linearity into the output of a neuron. This is important because most real world data are
non linear and we want neurons to learn these non-linear representations.

Activation Functions

Every activation function (or non-linearity) takes a single number and performs a certain
fixed mathematical operation on it. There are several activation functions:

Sigmoid : takes a real-valued input and squashes it to range between 0 and 1. Its formula is:

1

o)==

It is easy to understand and apply but it has major reasons which have made it fall out of
popularity:

e Vanishing gradient problem

e Its output isn’t zero centered. It makes the gradient updates go too far in different
directions.

e Sigmoids saturate and kill gradients.

e Sigmoids have slow convergence.

Tanh : takes a real-valued input and squashes it to the range [-1, 1]. Its formula is:

tanh(x) = 20(2z) — 1
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Now it’s output is zero centered because its range in between -1 to 1. Hence optimization
is easier in this method and in practice it is always preferred over Sigmoid function . But
still it suffers from Vanishing gradient problem.

Re-LU : Re-LU stands for Rectified Linear Unit. It takes a real-valued input and thresholds
it at zero (replaces negative values with zero). So its formula is:

f(x) = maxz(0,x)

It has become very popular in the past couple of years. It was recently proved that it had
6 times improvement in convergence from Tanh function. Seeing the mathematical form
of this function we can see that it is very simple and efficient . A lot of times in Machine
learning and computer science we notice that most simple and consistent techniques and
methods are only preferred and are best. Hence it avoids and rectifies vanishing gradient
problem . Almost all deep learning Models use ReLu nowadays.

Figure ?? show each of the above activation functions.

Sigmoid tanh RelU

Figure 8.5: Plots of Activation functions

Feed-forward Neural Network

Till now we have covered neuron and activation functions which together are used for the
basic building blocks of any neural network. The feedforward neural network was the first and
simplest type of artificial neural network devised. It contains multiple neurons (nodes) arranged
in layers. A layer is nothing but a collection of neurons which takes in an input and provides an
output. Inputs to each of these neurons are processed through the activation functions assigned
to the neurons. Nodes from adjacent layers have connections or edges between them. All these
connections have weights associated with them. An example of a feedforward neural network is
shown in Figure ?7. A feedforward neural network can consist of three types of nodes:

Input Nodes The Input nodes provide information from the outside world to the network
and are together referred to as the “Input Layer”. No computation is performed in any of
the Input nodes — they just pass on the information to the hidden nodes.

Hidden Nodes The Hidden nodes have no direct connection with the outside world (hence
the name “hidden”). They perform computations and transfer information from the input
nodes to the output nodes. A collection of hidden nodes forms a “Hidden Layer”. While
a feedforward network will only have a single input layer and a single output layer, it can
have zero or multiple Hidden Layers.
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Figure 8.6: An example of a Feedforward Neural Network

Output Nodes The Output nodes are collectively referred to as the “Output Layer” and are
responsible for computations and transferring information from the network to the outside
world.

In a feedforward network, the information moves in only one direction — forward — from the
input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or
loops in the network (this property of feed forward networks is different from Recurrent Neural
Networks in which the connections between the nodes form a cycle). Another important point to
note here is that each of the hidden layers can have a different activation function, for instance,
hidden layerl may use a sigmoid function and hidden layer2 may use a ReLU, followed by a
Tanh in hidden layer3 all in the same neural network. Choice of the activation function to be
used again depends on the problem in question and the type of data being used.

8.1.4 2D Convolutional Neural Network

A Convolutional Neural Network (ConvNet/CNN) is one of the variants of neural networks
used heavily in the field of Computer Vision. It derives its name from the type of hidden layers
it consists of. The hidden layers of a CNN typically consist of convolutional layers, pooling
layers, fully connected layers, and normalization layers. Here it simply means that instead
of using the normal activation functions defined above, convolution and pooling functions are
used as activation functions. It can take in an input image, assigning importance (learning
weights and biases) to various aspects/objects in the image and be able to differentiate one from
the other. The pre-processing required in a ConvNet is much lower as compared to the other
classification algorithms. While in primitive method filters are hand-engineered, with enough
training, ConvNets have the ability to learn these filters/characteristics.

The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons
in the Human Brain and was inspired by the structure of the Visual Cortex. However, most
ConvNets consist mainly in 2 parts:

e Feature extractor :
This part of the network takes as input the image and extract features that are meaningful
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for its classification. It amplifies aspects of the input that are important for discrimination
and suppresses irrelevant variations. Usually, the feature extractor consists of several layers.
For instance, an image could be seen as an array of pixel values. The first layer often learns
a representation that represent the presence or absence of edges at particular orientations
and locations in the image. The second layer typically detects motifs by spotting particular
arrangements of edges, regardless of small variations in the edge positions. Finally, the third
may assemble motifs into larger combinations that correspond to paths of familiar objects,
and subsequent layers would detect objects as combinations of these parts.

e Classifier
This part of the network takes as input the previously computed features and uses them
to predict the correct label.

\ s reatre psrcalurm_ -

\

[
\ input  feature maps feature maps
32x32 B x 18 14x 14

feature extraction classification

Figure 8.7: Typical structure of a ConvNet

Convolutional Layers In order to extract such features, ConvNets use 2D convolution
operations. These operations take place in convolutional layers. Convolutional layers consist
of a set of learnable filters. Every filter is small spatially (along width and height), but extends
through the full depth of input. During forward pass, we slide (more precisely, convolve) each
filter across the width and height of the input volume and compute dot products between the
entries of the filter and the input at any position (as Figure ?? shows). The objective of
the Convolution Operation is to extract the high-level features such as edges, from the input
image. ConvNets need not be limited to only one Convolutional Layer. Conventionally, the
first ConvLayer is responsible for capturing the Low-Level features such as edges, color, gradient
orientation, etc. With added layers, the architecture adapts to the High-Level features as well,
giving us a network which has the wholesome understanding of images in the dataset, similar to
how we would.

Pooling Layers Pooling Layers are also referred as downsampling layers and are used to reduce
the spatial dimensions, but not depth, on a convolution neural network. The intuitive reasoning
behind this layer is that once we know that a specific feature is in the original input volume (there
will be a high activation value), its exact location is not as important as its relative location to
the other features. The main advantages of pooling layer are:

e We gain computation performance since the amount of parameters is reduce.
e Less parameters also means we deal with overfitting situations.

The pooling operation is specified, rather than learned. Two common functions used in the
pooling operation are:
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Figure 8.8: Convolution with kernel of 3, stride of 2 and padding of 1

Average Pooling Calculate the average value for each patch on the feature map.

Maximum Pooling (or Max Pooling) Calculate the maximum value for each patch of the
feature map.
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Figure 8.9: Example of Max pooling operation with a 2x2 filter and stride of 2

8.1.5 3D Convolutional Neural Network

Traditionally, ConvNets target RGB images (3 channels). The goal of 3D CNN is to take as
input a video and extract features from it. When ConvNets extract the graphical characteristics
of a single image and put them in a vector (a low-level representation), 3D ConvNets extract
the graphical characteristics of a set of images. 3D CNNs take in to account a temporal
dimension (the order of the images in the video). From a set of images, 3D CNNs find a
low-level representation of a set of images, and this representation is useful to find the right
label of the video (a given action is performed). In order to extract such features, 3D ConvNets
use 3D convolution operations, whose kernel shape for a 3D Convolution is specified along 3
dimensions. When thinking about the convolution operation in terms of a kernel sliding across a
multidimensional input array, for a 3D Convolution, the kernel slides in 3 directions Their output
shape is a 3 dimensional volume space such as cube or cuboid.

Also, such 3D relationship is important for some applications, such as in 3D segmentations /
reconstructions of biomedical imagining, e.g. CT and MRI where objects such as blood vessels
meander around in the 3D space.
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Figure 8.10: 3D Convolution operation

8.2 Object Detection

Within the field of Deep Learning, the sub-discipline called “Object Detection” involves
processes such as identifying the objects through a picture, video or a webcamera feed. The
challenge of detecting all objects existing in image in counterpart of action localization in videos
and a lot of object detection techniques are used in action localization architectures, so it is worth
presenting it. Object Detection methods are used almost everywhere these days. The use cases
are endless such as Tracking objects, Video surveillance, Pedestrian detection etc. An object
detection model is trained to detect the presence and location of multiple classes of objects. For
example, a model might be trained with images that contain various pieces of fruit, along with
a label that specifies the class of fruit they represent (e.g. an apple, a banana, or a strawberry),
and data specifying where each object appears in the image.

The main process followed by most of CNN for Object Detection is:

1. Firstly, we do feature extraction using as backbone network, the first Convolutional Layers
of a known pre-trained CNN such as AlexNet, VGG, ResNet etc.

2. Then, we propose regions of interest (ROI) in the image. These regions contain possibly
an object, which we are looking for.

3. Finally, we classify each proposed ROI.

8.2.1 Region Proposal Network

From the 3 above steps, the 2nd step is considered to be very important. That is because, in
this step, we should choose regions of the image, which will be classified. Poor choice of ROIs
means that the CNN will pass by some object that are located in the image, because, they were
not be proposed to be classified.

The first Object-Detection CNNs use several algorithms for proposing ROIs. For example, R-
CNN(Girshick et al. [2014), and Fast R-CNN(Girshick used Selective Search Algorithm for
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extracting ROIs. One of novelties introduced by the Faster R-CNN(Ren et al. [2017)) is Region
Proposal Network (RPN). Its function is to propose ROIs and its structure is shown in ?7.
As we can see, RPN is consisted of:

e 1 2D Convolutional Layer
e 1 score layer
e 1 regression layer

Before describing RPN’s function, we introduce another basic element of RPN which is its
anchors. Anchors are predefined boxes used for extracting ROIs. In figure ?7 is depicted an
example of some anchors
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Figure 8.12: Anchors for pixel (320,320) of an image (600,300)

For each feature map’s pixel corresponds k (k=9) anchors (3 different scales and 3 different
ratios 1:1, 1:2, 2:1).
So, RPN’s procedure is:

1. RPN gets as input feature maps extracted from the backbone CNN.

2. Then it performs 2D convolution over this input and passes the output to its scoring layer
and regression layer.
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3. Scoring layer produces confidence score of existing an object in each anchor’s area. On the
other hand, regression layer outputs 4k displacements, 4 for each anchor. Finally, we keep
as output only the n-best scoring anchors.

8.2.2 Roi Align

The biggest problem facing Object Detection Networks is the need for fixed input size.
Classification networks require a fixed input size, which is easy for image classification because
it is handled by resizing the input image. However, in object recognition architectures, each
proposal has a different size and shape. This creates the need for converting all proposals to a
fixed shape. At Fast-RCNN(Girshick and Faster-RCNN(Ren et al. methods, this
operation happens by applying Roi Pooling. However, this wrapping is digitalized because the
cell boundaries of the target feature map are forced to realign with the boundary of the input
feature maps as shown in Figure 7?7 (the top left diagram). As a result, each target cells may
not be in the same size (Figure 77?).
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Figure 8.13: Roi Pooling and Roi Align examples

On the other hand, Mask-RCNN (He et al. introduced Roi Align operation. Roi Align
avoids digitalizing the boundary of the cells as shown in Figure 7?7, and achieves to make every
target cell to have the same size according to Figure 77. In order to calculate feature maps values,
Roi Align uses bi-linear interpolation as shown in Figure ?7. This means that we calculate the
value of the desired bins according to their neighbors’.

8.2.3 Non-maximum suppression (NMS) algorithm

Another problem that object detection networks face is that neighbor bounding boxes have
similar scores to some extent. Most object detection systems employ a sliding window or a
Region Proposal Network for proposing areas in the image that is likely to contain an object.
These techniques, which return several areas in the images, achieve high recall performance.
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Figure 8.14: Example of bi-linear interpolation for calculation Roi Align’s final feature map

However, in these approaches, more that 1 proposal may be related with only one ground-
truth object coordinates. This situation creates the need for choosing the best proposals,
because, alternatively, hundreds of unnecessary proposals will be classified. For that reason,
Non-Maximum Suppression (NMS) algorithm was proposed for filtering these proposals base
on some criteria. NMS gets as input a list of proposal bounding boxes B, their corresponding
confidence score S and an overlap threshold N and return as output a list of the final filtered
proposals D. NMS algorithm’s steps are:

1. Initialize an empty list D. Select the proposal with the highest confidence score, remove it
from B and add it to D.

2. Calculate the overlap score between this proposal and all the other proposals. For all the
proposals that their overlap score is bigger than N, remove from B.

3. From the remaining proposals, picked again the one with the highest score and remove it
from B.

4. Repeat steps 2 and 3 until no more proposals are left in list B.

The aforementioned algorithm shows that the whole process depends mostly on a single
threshold value. So that makes the selection of threshold a crucial factor for the performance
of the model. In some situations, bad choice of the threshold may make the network to remove
bounding boxes with good confidence score, if there are side by side. Figure 7?7 shows a situation
like this, where red and blue boxes will be removed because of the presence of the black box.

Soft NMS

A simple and efficient way to deal the aforementioned situation is to use Soft-NMS algorithm,
which is presented by Bodla et al. [2017. Soft-NMS algorithm is based on the idea of reducing
confidence score of the proposals proportional to their overlap score, instead of completely
removing them. The score calculation follows the formula

Si, overlapscore(M,b;) < Ny
S; =
3i(1 — overlapscore(M,b;)), overlapscore(M,b;) > N
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Figure 8.15: Example of a situation where NMS algorithm will remove good proposals

where s; is the score of proposal i, b; is the box coordinates of proposal i, M is the coordinates
of the box with the maximum confidence and Ny is the overlap threshold. Let’s, again, consider
as input a list of proposal bounding-boxes B, their corresponding confidence score S and as
output a list of proposals D. Soft-NMS algorithm includes the following steps:

1. Select the proposal with the highest confidence score, remove it from B and add it to D.

2. Calculate the overlap score between this proposal and all the other proposals. For all
the proposals that their overlap score is bigger than N, recalculate their confidence score
according to previous formula.

3. From the remaining proposals, picked again the one with the highest score and remove it
from B.

4. Repeat steps 2 and 3 until no more proposals are left in list B.

8.3 Losses and Metrics

In order to train our model and check its performance, we use some known Loss functions
and Metrics used in Object Detection systems.

8.3.1 Losses

For training our network, we use Cross Entropy Loss for classification layers and smooth
L1-loss for bounding box regression in each frame and their diagram is show at Figure ?7?.
Cross Entropy Loss

Cross-entropy loss, or log loss, measures the performance of a classification model whose
output is a probability value between 0 and 1.
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Entropy is the measure of uncertainty associated with a given distribution ¢(y) and its formula
is:

H=-Y pilogp,
i=1

Intuitively, entropy tells us how “surprised” we are when some event E happened. When we are
sure about an event E to happened (pg = 1) we have 0 entropy (we are not surprised) and vise
versa.

On top of that, let’s assume that we have 2 distributions, one known (our network’s
distribution) p(y) and one unknown (the actual data’s distribution) ¢(y). Cross-entropy tells
us how accurate is our known distribution in predicting the unknown distribution’s results.
Respectively, Cross-entropy measures how accurate is our model in predicting the test data. Its
formula is:

Hy(q) = = _ alye) - log(p(ye))

c=1

Smooth L1-loss

Smooth L1-loss can be interpreted as a combination of L1-loss and L2-loss. It behaves as
L1-loss when the absolute value of the argument is high, and it behaves like L2-loss when the
absolute value of the argument is close to zero. It is usually used for doing box regression on
some object detection systems like Fast-RCNN(Girshick [2015), Faster-RCNN(Ren et al. 2017)
and it is less sensitive to outliers according according to Girshick 2015l As shown in Girshick
2015, its formula is:

smoothr(x) =

0.5z ifz <1
|x] — 0.5 otherwise

It is similar to Huber loss whose formula is:

1
§a2 for |a] <6
Ls(z) =
1
0(la| — =9), otherwise
2

if we set 0 parameter equal 1.

Smooth Ll-loss combines the advantages of L1-loss (steady gradients for large values of )
and L2-loss (less oscillations during updates when z is small). Figure ?? shows a comparison
between L1-norm, L2-norm and smooth-L1 .

8.3.2 Metrics

Evaluating our machine learning algorithm is an essential part of any project. The way we
choose our metrics influences how the performance of machine learning algorithms is measured
and compared. They influence how to weight the importance of different characteristics in the
results and finally, the ultimate choice of classification algorithm. Most of the times we use
classification accuracy to measure the performance of our model, however it is not enough to
truly judge our model.

At first, we introduce some basic evaluation metrics in order, then, to present those we use
for our assessment.
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Figure 8.16: (??) and (?7?) show the behavior of cross-entropy loss and smooth-L1 respectively.

Intersection over Union

The first and most important metric that we use is Intersection over Union (IoU). IoU
measures the overlap between 2 boundaries. It is usually used in Object Recognition Networks
in order to define how good a predicted bounding box overlap with the actual bounding box as
shown in Figure ??. We predefine an IoU threshold (say 0.5) in classifying whether the prediction
is a true positive or a false positive.

loU: 0.4034 lal: 0.7330 lolU: 0.9264

Poor Good Excellent

Figure 8.17: Example of IoU scoring policy

Intersection over Union is defined as:

area of overlap
IoU = ———
area of union

In Figure ?7, spatial IoU between 2 bounding boxes, (x1,y1,22,y2) and (x3,ys3,Z4,ys), 18
presented, which means IoU metric is implemented for x-y dimensions. Area of overlap and
area of union can be defined as:

Area of overlap = [|(min(zz2,r4) — maz (w1, x3), min(yz,ys) — maz(y1,ys3))|l

Area of union = [|(max(ze, z4) — min(z1, x3), maz(ya, ya) — min(y1, ys))||

On top of that, we can implement IoU for 1 dimension and for 3 dimensions.
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1D TIoU We can name 1D IoU as temporal overlap. Let’s consider 2 temporal segments (1, t2)
and (t3,t4), between which we want to estimate their overlap score. Their IoU can be described
as:

Length of overlap = ||(min(te,ts) — maz(ty,t3))||

Length of union = ||(max(t2,ts) — min(ti,ts))]|
3D IoU 3-dimensional Intersection over Union which can, also, be named as spatiotemporal
IoU, can be defined by 2 ways:

3D boxes are cuboids In this case, 3D boxes can be written as (z,y, z, 2,3/, z’). So, the IoU
overlap between 2 boxes, (x1,y1, 21, T2, Y2, 22) and (x3,ys, 23, T4, Y4, 24), is defined as:

Volume of overlap = [|(min(z2, x4) — max(z1, x3),
min(ya, y4) — maz(y1,ys), min(za, z4) — max(z1, 23))||
Volume of union = ||(max(ze, x4) — min(zy, z3),

max(yz,ya) — min(y1, ys), max(zz, z4) — min(z1, 23)

x-y are continuous and z discrete In this case 3D boxes is defined as a sequence of 2D boxes
(z,y,2’,y"). For this definition, z-dimension is discrete, and IoU can be defined with 2 ways,
which both result in the same overlapping score. Let’s consider 2 sequences of boxes, with
temporal limits (t1,t2) and (t3,t4). We calculate their IoU following one of the following
methods:

1. ToU is the product between temporal-IoU and the average spatial-IoU between 2D
boxes in the overlapping temporal area and it is described as:

K>

S IoU(X{, X3)

1=K,

1

IOU = IOU((tl,tQ), (t3,t4)) . m

where
o K1 =min(ta,1y)
o Ky =max(ty,ts)
° X{ = (wi,yi,xé,yé) and Xé = (xg,yé,xi,yi)
2. ToU is the average spatial-ToU if we consider 2D boxes as (0,0,0,0) if ¢ € [tstare, ¢ finish)

and it is written as:
max(ta,ts)

IoU = - > IoU(X{, X3

i:min(t1 7153)

o K = max(ta,ty) — min(ty,ts)
o X1 = (21,y1,%2,92) if i € [t1,t2] or (0,0,0,0) if i & [t1,15]
o Xy = (v3,y3,24,y4) if i € [t3,14] or (0,0,0,0) if i & [t3,14]

From above implementations, we are involved mostly with temporal and spatiotemporal IoU.
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Precision & Recall

In order to describe precision and recall metrics, we will use an example. Let’s consider a
group of people in which, some of them are sick and the others are not. We use a network which,
given some data as input, is able to predict if a person is sick or not.

Precision measures how accurate are our model’s predictions, i.e. the percentage of
predictions that are correct. In our case, how accurate is our model when it predicts
that a person is sick.

Recall measures how well we found all the sick people. In our case, how many of the actual
sick people we managed to find.

Their definitions are:

Precision = L
TP+ FP
TP
ll= ———
Reca TP+ FN

where

e TP = True positive, which means that we predict a person to be sick and he is actually
sick.

e TN = True negative, we predict that a person isn’t sick and he isn’t.
e FP = False positive, we predict a person to be sick but he isn’t actually.
e FIN = False negative, we predict a person not to be sick but he actually is.

From these 2 metrics we use recall metric in order to evaluate our networks performance,
and more specifically, its performance on finding good action tube proposals. We consider a
groundtruth action as true positive when there is at least 1 proposed action tube that its IoU
overlap score is bigger that a predefined threshold. If there is no such action tube, then we
consider this groundtruth action tube as false negative.

mAP

Precision and recall are single-value metrics based on the whole list of predictions. By looking
their formulas, we can see that there is a trade-off between precision and recall performance. This
trade-off can be adjusted by the softmax threshold, used in model’s final layer. In order to have
high precision performance, we need to decrease the number of FP. But this will lead to decrease
recall performance and vice-versa.

As a result, these metrics fail to determine if a model is performing well in object detection
tasks as well as action detection tasks. For that reason, we use mean Average Precision (mAP)
metric, which for videos is named video-AP as introduced by Gkioxari and Malik [2015]

AP (Average precision) Before defining mAP metric, we will define Average Precision metric
(AP). AP is a popular metric in measuring the accuracy of object detectors like Faster R-CNN,
SSD, etc. Average precision computes the average precision value for recall value over 0 to 1.
As mentioned before, during classification stage, our prediction results in True positive (TP),
False positive (FP), True Negative (TN) or False Negative (FN). For object recognition and
action localization networks, we don’t care about TN. We consider a prediction as True positive
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when our prediction (a bounding box for object detection network or a sequence of bounding
boxes in action localization networks) overlaps with the groundtruth bounding box/action tube
over a predefined threshold, and our predicted class is the same as groundtruth’s. In addition,
we consider a False Negative when either no detection overlaps with the groundtruth bounding
box/action tube or our prediction’s class label was incorrect. We consider a prediction as False
positive, when more that one predictions overlap with the groundtruth. In this situation, we
consider the prediction with the biggest confidence score as TP and the rest as FP.

For a class, we need to calculate, firstly, its precision and recall scores in order to calculate
its AP score. We sort our predictions according to their confidence score and for each new
prediction we calculate precision and recall values. An example, for a class containing 4 TP and
8 predictions is shown at Table ??7. Precision and recall are calculated according to the number
of elements that are above in the order. So, for rank #3, precision is calculated as the proportion
of TP = 2/3 = 0.67 and recall as the proportion of TP out of all the possible TP = 2/4 = 0.5.

Rank | Prediction | Precision | Recall

1 Correct 1.0 0.25
2 Correct 1.0 0.5

3 False 0.67 0.5

4 False 0.5 0.5

5 False 0.4 0.5

6 Correct 0.5 0.75
7 False 0.42 0.75
8 Correct 0.5 1

Table 8.1: Ordered by confidence predictions and their precision and recall values
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Figure 8.18: Precision/Recall curve

We plot Precision against Recall and their curve is shown in Figure ??. The general definition
for Average Precision(AP) is finding the area under the precision-recall curve and its formula is:

AP = /Olp(r)dr
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Precision and Recall values € [0, 1], so AP € [0,1], too. This integral can be replaced with a
finite, as we have a finite number of predictions. So its formula is:

AP = zn: P(k)Ar(k)

k=1

where P(k) is the precision until prediction k¥ and Ar is the change in recall from k — 1 to k.

Interpolated Precision As we can see at Figure 7?7, P-R curve has a zigzag pattern as it goes
down with false predictions, and goes up with correct. So, before calculation AP, we need to
smooth out this zigzag pattern using Interpolated precision, as introduced in Everingham et al.
2010. Interpolated precision is calculated at each recall level r by taking the maximum precision
measured for that r and it is defined as:

Pinterp(r) = max p(7)
>
where p(7) is the measured precision at recall 7. Graphically, at each recall level, we replace
each precision value with the maximum precision value to the right of that recall level. At Figure
77, both P-R curves are shown. The previous P-R curve has blue color and the interpolated has
red color.
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Figure 8.19: Both P-R curves. Interpolated P-R curve has red col-our.

In order to calculate AP, we sample the curve at all unique recalls values, whenever the
maximum precision drops. On top of that, we define mean Average Precision (mAP) as the
mean of the AP for each class. So, AP and mAP are defined as:

AP = Z(TTL+1 - Tn)pinterp(rn—i-l)

pinte’r‘p(rn+1) - F>gna)§)(i)p(f)
ZTn+1

1 N
AP = =S AP
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Mean Average Best Overlap - MABO

In order to evaluate the quality of our proposals, both during TPN and connecting tube
stages, recall metric isn’t enough. That’s because recall metric tells us only for how many actual
objects/action tubes, there was at least 1 proposal that satisfied the detection criterion. However,
it doesn’t tells us how close these proposals are to the actual objects/action tubes. In order to
quantify this performance, Mean Average Best Overlap (MABO) was introduced by Winschel,
Lienhart, and Eggert 2016l The importance of MABO can be clarified if we consider figure ?7.
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Figure 8.20: Recall versus MABO example

As we can see, recall performance is almost perfect, but, MABO performance, which tells us
where most proposal overlap scores are gathered, is just fine and not perfect.

In order to define MABO, we need first to define Average Best Overlap. Let ¢ € C' denote
a class ¢ from the set of all classes C' and G¢ the set of ground truth annotations of this class
in all images; let L be the set of all generated object proposals for all images. Average Best
Overlap is defined as the average value of the maximum overlap score of L with each groundtruth
annotation g € G¢ (in our situation, we use intersection over union). The Mean Average Best
Overlap (MABO) is defined as the average value of all class ABO values :

1 1
MABO = — — 1 l
ceC geGe
In our situation, which we care only for the quality of our proposals, we consider only 1 class,
foreground class. As a result, MABQO’s performance identifies with ABO’s.

8.4 Related work

In this section, we present some of the most relevant methods to our work and others studied
for designing this approach. These methods are divided into two sections: action recognition and
action localization. The first part refers to classic action classification methods introduced until
recently and the second part, respectively, to recent action localization methods.
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8.4.1 Action Recognition

First approaches for action classification consisted of two steps a) compute complex
handcrafted features from raw video frames, such as SIFT, HOG, ORB features and b) train a
classifier based on those features. These features can be separated into 3 categories: 1) space-time
volume approaches, 2) trajectories and 3) space-time features. For space-time volume methods
the approach is as follows: based on the training videos, the system contracts a 3D space-time
model, by concatenating 2D images (x-y dimension) along time (t or z dimension), in order to
represent each action. When the system is given an unlabeled video, it constructs a 3D space-
time volume corresponding to this video. This new 3D volume, then, is compared with each
activity model to measure the similarity in shape and appearance between these two volumes.
The system extracts the class label of the unknown video by corresponding to the action with
the highest similarity. Furthermore, there are several variations of space-time representations.
Instead of volume representation, the system may represent the action as trajectories in space-
time dimensions or even more, the action can be represented as a set of features extracted
from the volume or the trajectories. Pure space-time volume representations include methods
of comparing foreground regions of a person (i.e. silhouettes) like Bobick and Davis 2001 did,
comparing volumes in terms of their patches like Shechtman and Irani 2005 Ke, Sukthankar,
and Hebert [2007 introduced a method which uses oversegmented volumes and automatically
calculating a set of 3-D XYT volume segments that corresponds to a moving human. Rodriguez,
Ahmed, and Shah [2008] proposed filters for capturing the volume’s characteristics, in order to
match them more reliably and efficiently. From the other hand, trajectory-based approaches
include representing an action as a set of 13 joint trajectories (Sheikh, Sheikh, and Shah 2005)
or using a set of XYZT-dimensions joint trajectories obtained from moving cameras (Yilmaz
and Shah [2005)). Finally, several methods use local features extracted from 3-dimensional space-
time volumes, like extracting local features at every frame and concatenate them temporally
(Chomat and Crowley [1999; Zelnik-Manor and Irani [2001; Blank et al. [2005) or extracting
sparse spatiotemporal local interest points from 3D volumes (Laptev and Lindeberg|2003; Dollar
et al. |2005; Niebles, Wang, and Li [2006; Alper Yilmaz and Mubarak Shah [2005; Ryoo and
Aggarwal [2006) These approaches made the choice of features a significant factor for network’s
performance. That’s because different action classes may appear dramatically different in terms
of their appearance and motion patterns. Another problem was that most of those approaches
make assumptions about the circumstances under which the video was taken due to problems
such as cluttered background, camera viewpoint variations etc. A review of the techniques, used
until 2011, is presented in Aggarwal and Ryoo |2011]

Recent results in deep architectures and especially in image -classification motivated
researchers to train CNN networks for the task of action recognition. The first significant
attempt was made by Karpathy et al. 2014 They designed their architecture based on the
best-scoring CNN in the ImageNet competition. They explored several methods for the fusion
of spatiotemporal features using 2D operations mostly and 3D convolution only in slow fusion.
Simonyan and Zisserman [2014] used 2 CNNs, one for spatial information and one for optical
flow and combined them using late fusion. They showed that extracting spatial context from
videos and motion context from optical flow can improve significantly action recognition accuracy.
Feichtenhofer, Pinz, and Zisserman 2016 extended this approach by using early fusion at the
end of convolutional layers, instead of late fusion which takes places at the last layer of the
network. On top that, they used a second network for temporal context which they fuse with
the other network using late fusion. Furthermore, Wang et al. |2016| based their method on the
one proposed by Simonyan and Zisserman [2014] too. They deal with the problem of capturing
long-range temporal context and training their network given limited training samples. Their
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approach, which they named Temporal Segment Network (TSN), separates the input video in
K segments and a short snippet from each segment is chosen for analysis. Then they fuse the
extracted spatiotemporal context, making, eventually, their prediction. Most recently, Zhang
et al. |2016| and Zhu et al. 2017 used two-stream approach, too. Zhang et al. |2016| replaced
optical flow with motion vector which can be obtained directly from compressed videos without
extra calculation and feeding it to the network . Zhu et al. |2017| trained a CNN for calculating
optical flow, calling it MotionNet and used a CNN as temporal stream for projecting motion
information to action labels. Finally, they use late fusion through the weighted averaging of the
prediction scores of the temporal and spatial streams. On the other hand, a novel approach
was introduced by Girdhar and Ramanan 2017 incorporating attention maps to give significant
improvement in action recognition performance.

Some other methods included a RNN or LSTM network for classification like Donahue et al.
2017, Joe Yue-Hei Ng et al. 2015 and Ma et al. 2017, Donahue et al. |2017| addressed the
challenge of variable lengths of input and output sequences, exploiting convolutional layers and
long-range temporal recursions. They proposed a Long-term Recurrent Convolutional Network
(LRCN) which is capable of dealing with the tasks of action recognition, image caption and
video description. In order to classify a given sequence of frames, LRCN firstly gets as input
a frame, and in particular its RGB channels and optical flow, and predicts a class label. After
that, it extracts video class by averaging label probabilities, choosing the most probable class.
Joe Yue-Hei Ng et al. |2015| firstly explored several approaches for temporal feature pooling.
These techniques include handling video frames individually by 2 CNN architectures: either
AlexNet or GoogleNet, and are consisted of early fusion, late fusion and a combination of them.
Furthermore, they proposed a recurrent neural Network architecture in order to consider video
clips as a sequence of CNN activations. Proposed LSTM takes as input the output of the final
CNN layer at each consecutive video frame and after five stacked LSTM layers using a Softmax
classifier, it generates a class label. For video classification, they return a label after last time step,
max-pool the predictions over time, sum predictions over time and return the max or linearly
weight the predictions over time by a factor g, sum them and return the max. They showed that
all approaches are 1% different with a bias for using weighting predictions for supporting the
idea that LSTM becomes progressively more informed. Last but not least, Ma et al. |2017| used
a two-stream ConvNet for feature extraction and either an LSTM or convolutional layers over
temporally-constructed feature matrices, for fusing spatial and temporal information. They use
a ResNet-101 for extracting feature maps for both spatial and temporal streams. They divided
video frames into several segments like Wang et al. 2016| did, and used a temporal pooling layer
to extract distinguished features. Taken these features, LSTM extracts embedded features from
all segments.

Additionally, Tran et al. [2015| explored 3D Convolutional Networks (Ji et al. |2013) and
introduced C3D network, which has 3D convolutional layers with kernels 3 x 3 x 3. This network
is able to model appearance and motion context simultaneously using 3D convolutions and it can
be used as a feature extractor, too. Combining Two-stream architecture and 3D Convolutions,
Carreira and Zisserman [2017| proposed 13D network. On top of that, the authors emphasized in
the advantages of transfer learning for the task of action recognition by repeating 2D pre-trained
weights in the 3rd dimension. Hara, Kataoka, and Satoh [2017] proposed a 3D ResNet Network
for action recognition based on Residual Networks (ResNet) (He et al. 2016) and explored the
effectiveness of ResNet with 3D Convolutional kernels. On the other hand, Diba et al.|2017 based
their approach on DenseNets (Huang et al. [2017)) and extended DenseNet architecture by using
3D filters and pooling kernels instead of 2D, naming this approach as DenseNet3D. Futhermore,
they introduced Temporal Transition Layer (TTL), which concatenates temporal feature maps
extracted at different temporal depth ranges and replaces DenseNet’s transition layer. On top of
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that, Diba et al.[2018|introduced a new temporal layer that models variable temporal Convolution
kernel depths. Last but not least, Tran et al. |2018| experimented with several residual network
architectures using combinations of 2D and 3D convolutional layers. Their purpose was to show
that a 2D spatial convolution followed by a 1D temporal convolution achieves state-of-the-art
classification performance, naming this type of convolution layer as R(2+41)D. Recently Guo
et al.|2018| proposed a framework which can learn to recognize a previous unseen 3D action class
with only a few examples by exploiting the inherent structure of 3D data through a graphical
representation. A more detailed presentation for Action Recognition techniques used until 2018
is presented by Kong and Fu [2018|

8.4.2 Action Localization

As mentioned before, Action Localization can be seen as an extension of the object detection
problem. Instead of outputting 2D bounding boxes in a single image, the goal of action
localization systems is to output action tubes which are sequences of bounding boxes that contain
an performed action. So, there are several approaches usually including an object-detector
network and a classifier.

The first object detection approaches included extending a object proposal algorithm into
3-dimensions. Tian, Sukthankar, and Shah 2013|extended deformable part models (Felzenszwalb
et al. 2010) by treating actions as spatiotemporal patterns and generated a deformable part
model for each action. Jain et al. [2014] introduced the concept of tubelets, aka sequences of
bounding boxes and based their method on the selective search algorithm (Uijlings et al. 2013]),
extending super-pixels to super-voxels for producing spatiotemporal shapes. On the other hand,
Oneata et al. |2014] extended a randomized superpixel merging procedure which was used for
object proposals as presented by Manen, Guillaumin, and Gool 2013. Yu and Yuan [2015| first
proposed bounding boxes for each frame using a human and motion detector and then by picking
the best-scoring bounding boxes, they proposed a greedy linking algorithm, formulating, finally,
linking task as a maximum set coverage problem. Gemert et al. [2015 generated spatiotemporal
proposals directly from dense trajectories, which also used for classification. Chen and Corso
2015| created a spatiotemporal trajectory graph and selected action proposals based only on
intentional movement extracted from the graph. Soomro, Idrees, and Shah [2015| separated the
video segments into supervoxels and used their context as a spatial relation between supervoxels
relative to foreground action. They created a graph for each video, where supervoxels form
the nodes and directed edges capture the spatial relations between them. During testing, they
performed a context walk where each step is guided by the context relations learned during
training, resulting in a probability distribution of an action over all the supervoxels. Mettes,
Gemert, and Snoek 2016}, instead of annotating boxes in all frames, annotated points on a sparse
subset of video frames, and used proposals obtained by an overlap measure between action
proposals and points. Behl et al. |2017| dealt with on-line action detection and localization by
getting per-frame action proposal and proposing a linking algorithm which is able to construct
and update action tubes at each frame. Most recently, Soomro and Shah [2017| tried to deal
with the problem of unsupervised action detection and localization. Their approach included
extracting supervoxel segmentation and then assigning a weight to each supervoxel. Using
extracted supervoxels, they created a graph and then using a discriminate clustering approach a
classifier is trained.

The introduction of R-CNN (Girshick et al. 2014) achieved significant improvement in the
performance of Object Detection Networks. This architecture, firstly, proposes regions in the
image which are likely to contain an object and then it classifies them using an SVM classifier.
Inspired by this architecture, Gkioxari and Malik [2015| designed a 2-stream RCNN network
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in order to generate action proposals for each frame, one stream for frame level and one for
optical flow. Then they connected them using the Viterbi connection algorithm. Weinzaepfel,
Harchaoui, and Schmid [2015| extended this approach, by performing frame-level proposals and
using a tracker for connecting those proposals using both spatial and optical flow features. Also,
their method performs temporal localization using a sliding window over the tracked tubes.

The introduction of Faster RCNN (Ren et al. |2017)) contributed a lot to the improvement of
the performance of Action Localization Networks. Peng and Schmid 2016/ and Saha et al. [2016
used Faster R-CNN instead of RCNN for frame-level proposals, using RPN for both RGB and
optical flow images. After getting spatial and motion proposals, Peng and Schmid 2016 fused
them and, from each proposed ROI, generated 4 ROIs in order to focus on specific body parts
of the actor. After that, they connected the proposal using Viterbi algorithm for each class and
performed temporal localization by using a sliding window, with multiple temporal scales and
stride using a maximum subarray method. From the other hand, Saha et al. 2016 performed,
too, frame-level classification. After that, their method performs fusion based on a combination
between the actioness scores of the appearance and motion based proposals and their overlap
score. Finally, temporal localization takes place using dynamic programming. Additionally,
Weinzaepfel, Martin, and Schmid [2016| used Faster RCNN for extracting human tubes from
videos focusing on weakly-supervised action localization problem. Then, using dense trajectories
and a multi-fold Multiple Instance Learning approach (Cinbis, Verbeek, and Schmid [2016]) they
trained a classifier. Mettes and Snoek 2017|introduced a method for zero-shot action localization.
Their approach includes scoring proposed action tubes according to the interactions between
actors and local objects. They used Faster-RCNN, in the first step, for detecting both actors
and objects and then using spatial relations between them, they link the proposed boxes over time
based on zero-shot likelihood from the presence of actors, relevant objects around the actors and
the expected spatial relations between objects and actors. Furthermore, He et al.|2018| proposed
the Tube Proposal Network (TPN) for generating generic class-independent tubelet proposals,
which uses Faster-RCNN for getting 2D region proposals and a linking algorithm for linking
tubelets with these region proposals. Most recently, Girdhar et al. 2018| proposed a method for
action Localization on the AVA dataset (Gu et al.[2018) combining I3D (Carreira and Zisserman
2017) and Faster-RCNN architectures. They use I3D blocks for getting video representation and
Fast-RCNN’s RPN for generation “person” proposals for the center frame.

On top of that, Singh et al. 2017 and Kalogeiton et al. 2017| designed their networks based
on the Single Shot Multibox Detector Liu et al. |2015). Singh et al. 2017| created an real-
time spatiotemporal network. In order their network to execute real-time, Singh et al. |2017
proposed a novel and efficient algorithm by adding boxes in tubes in every frame if they overlap
over a threshold, or alternatively, terminate the action tube if for k-frames no box was added.
Kalogeiton et al. |2017| designed a two-stream network, which they called ACT-detector, and
introduced anchor cuboids. For K frames, for both networks, Kalogeiton et al. 2017| extracted
spatial features in frame-level, then they stacked these features. Finally, using cuboid anchors, the
network extracts tubelets, with their corresponding classification scores and regression targets.
For linking the tubelets, Kalogeiton et al. [2017| followed about the same steps as Singh et al.
2017 did. For temporal localization, they used a temporal smoothing approach.

Most recently, YOLO Network (Redmon et al. |2016) became the inspiration for Hu et al.
2019/ and Zhang et al. 2016, In the approach proposed by Hu et al. 2019, concepts of progression
and progress rate were introduced. Except from proposing bounding boxes in frame level,
they used YOLO together with a RNN classifier for extracting temporal information for the
proposals. Based on this information, they created action tubes, separated into classes. Some
other approaches include pose estimation like Luvizon, Picard, and Tabia[2018|do. They proposed
a method for calculating 2D and 3D poses and then they performed action classification. They
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used the diffferentiable Soft-argamax function for estimating 2D and 3D joints, because argmax
function is not differentiable. Then, for T adjacent poses, they created an image representation
with time and INV; joints as  — y dimensions and having 2 channels for 2D poses and 3 channels
for 3D poses. They used Convolutional Layers in order to produce action heats and then using
max plus min pooling and a Softmax activation, they performed action classification. Zolfaghari
et al. 2017 proposed a three-stream architecture which includes 2D pose, optical flow and RGB
information. These streams are integrated sequentially via a Markov chain model. In addition,
Zhu, Vial, and Lu [2017] proposed an architecture using a temporal convolutional regression
network, for capturing the long-term dependency and contexts among adjacent frames, and a
spatial regression network, getting per-frame proposals. They use tracking methods and dynamic
programming for generating action proposals.

Most of aforementioned networks use per-frame spatial proposals and extract their temporal
infomation by calculating optical flow. On the other hand, Saha, Singh, and Cuzzolin 2017 and
Hou, Chen, and Shah 2017| designed an architecture which includes proposals in video segment
level, which means handling more that 1 frames simultaneously. Saha, Singh, and Cuzzolin
2017| proposed a 3D-RPN which is able to generate and classify 3D region proposals consisted
of two successive frames. Also, they proposed a linking algorithm, modifying the one proposed
by Saha et al. 2016. On top of that, Hou, Chen, and Shah [2017| designed an architecture for
generating action proposals for more than 2 frames, which they called Tube CNN (T-CNN). In
their approach, video segment level means that the whole video is separated into equal length
video clips, and using a C3D for extracting features, it returns spatiotemporal proposals. After
getting proposals, Hou, Chen, and Shah 2017|linked the tube proposals by an algorithm based
on tubes’ actioness score and overlap. Finally, classification operation is performed for the linked
video proposals.
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Chapter 9

Tube Proposal Network

9.1 Our implementation’s architecture

In this chapter, we get involved with Tube Proposal Network(TPN), one of the basic elements
of ActionNet. Before describing it, we present the whole structure of our model. We propose
a network similar to Hou, Chen, and Shah 2017, Our architecture is consisted of the following
basic elements:

e One 3D Convolutional Network, which is used for feature extraction. In our implementation
we use a 3D Resnet34 network whose implementation is taken from Hara, Kataoka, and
Satoh 2018 and it is based on ResNet CNNs for Image Classification (He et al. 2016).

e A Tube Proposal Network for proposing Tols (based on the idea presented in Hou, Chen,
and Shah 2017]).

e A classifier for classifying proposed action video tubes.
The basic procedure ActionNet follows is:

1. Given a video, we separate it into video segments. These video segments in some cases
overlap temporally and in some others don’t.

2. For each video segment, after performing spatiotemporal resizing, we feed its frames into
ResNet34 in order to perform feature extraction. These activation maps are, then, fed into
TPN for proposing sequences of bounding boxes. We name these sequences as Tubes of
Interest (Tols), like Hou, Chen, and Shah [2017| did because they are likely to contain a
person performing an action.

3. After getting proposed Tols for each video segment, using a linking algorithm, ActionNet
finds final candidate action tubes. These action tubes are given as input to a classifier in
order to get their action class.

A diagram of ActionNet is shown at Figure 77.

9.2 Introduction to TPN

The main purpose of Tube Proposal Network (TPN) is to propose Tube of Interest(Tols).
These tubes are likely to contain an known action and are consisted of some 2D boxes (1 for
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516 112117 (3.16,112,112) (3.16,112112)

Figure 9.1: The structure of the whole network

each frame). TPN is inspired from RPN introduced by FasterRCNN (Ren et al. [2017)), but
instead of images, TPN is used for videos as performed by Hou, Chen, and Shah In full
correspondence with RPN, the structure of TPN is similar to RPN. The only difference, is that
TPN uses 3D Convolutional Layers and 3D anchors instead of 2D.

We designed 2 main structures for TPN. Each approach has a different definition of the used
3D anchors. The rest structure of the TPN is mainly the same with some little differences in the
regression layer.

9.3 Preparation before TPN

9.3.1 Preparing data

Before getting a video as input to extract its features and Tols, this video has to be
preprocessed. Preprocess procedure is the same for both approaches of TPN. Our architecture
gets as input a sequence of frames which has a fixed width, height and duration. However, each
video has a different resolution. This creates the need to resize each frame before feeding it to
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the architecture. As mentioned in the previous section, the first element of our network is a
3D ResNet taken from Hara, Kataoka, and Satoh This network is designed to get images
with dimensions (112,112). As a result, we resize each frame from datasets’ videos into (112,112)
frames. In order to keep aspect ratio the same as the original, we pad each frame either left and
right, either above and bellow depending which dimension is bigger. In figures 7?7 and 77?7, we
can see the original frame and the resized and padded one. In full correspondence, we resize the
groundtruth bounding boxes for each frame (figures 7?7 and ?? show that).

() (d)

Figure 9.2: At (a), (b) frame is its original size and at (c), (d) same frame after preprocessing
part

9.3.2 3D ResNet

Before using the Tube Proposal Network, we extract spatiotemporal features of the video.
In order to do so, we extract the 3 first Layers of a pretrained 3D ResNet34. This Network
is pretrained in Kinetics dataset (Kay et al. for sample duration equal to 16 frames and
sample size equal to (112, 122).

This network normally is used for classifying the whole video, so some of its layers use
temporal stride equal to 2. We set their temporal stride equal to 1 because we don’t want to
miss any temporal information during the process. So, the output of the third layer is a feature
map with dimensions (256,16,7,7). We feed this feature map to TPN, which is described in the
following sections.
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9.4 3D anchors as 6-dim vector

9.4.1 First Description

We started designing our TPN inspired by Hou, Chen, and Shah 2017. We consider each
anchor as a 3D bounding box written as (z1,y1,t1, T2, Y2, t2) where x1,y1, ¢, are the upper front
left coordinates of the cuboid and xs,ys, 2 are the lower back right as shown in figure ?7.

.yt (x,y,t)

(xy.t,)

(x.y..t)

0yat) 0,Y,4,)
Figure 9.3: An example of the anchor (x1,y1,t1, 2, Y2, t2)

The main advantage of this approach is that, except from x-y dims, the dimension of time is
mutable. As a result, the proposed Tols have no fixed time duration. This will help us deal with
untrimmed videos, because proposed Tols would exclude background frames. For this approach,
we use n = 4k = 60 anchors for each pixel in the feature map of TPN. We have k anchors for
each anchor duration( 5 scales of 1, 2, 4, 8, 16, 3 aspect ratios of 1:1, 1:2, 2:1 and 4 durations
of 16,12,8,4 frames). In Hou, Chen, and Shah network’s anchors are defined according to
the dataset’s most common anchors. This, however, creates the need to redesign the network for
each dataset. In our approach, we use the same anchors for both datasets, because we want our
network not to be dataset-specific but to be able to generalize for several datasets. Regarding
the sample duration, we chose 16 frames per video segment because our pre-trained ResNet is
trained for video clips with that duration. So the structure of TPN is:

e 1 3D Convolutional Layer with kernel size = 3, stride = 3 and padding = 1
e 1 classification layer outputs 2n scores, whether there is an action or not for n anchors.
e 1 regression layer outputs 6n coordinates (x1,y1,t1,x2,y2,t2) for n anchors.

The structure of TPN is shown in figure ??. The output of TPN is the k-best-scoring cuboids,
which are most likely to contain an action.

9.4.2 Training

As mentioned before, TPN extracts Tols as 6-dim vectors. For that reason, we modify out
groundtruth Rols to groundtruth Tubes. We take for granted that the actor cannot move a lot
during 16 frames, so that’s why we use this kind of tubes. As shown in figure 77, these tubes
are 3D boxes which include all the groundtruth rois, which are different for each frame.

For training procedure, for each video, we randomly select a part of it which has duration 16
frames. We consider an anchor as foreground if its overlap score with a groundtruth cuboid is
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Figure 9.4: Structure of TPN

Figure 9.5: Groundtruth tube is colored with blue and groundtruth rois with color green

bigger than 0.5. Otherwise, it is considered as background anchor. We use scoring layer in order
to correctly classify those anchors and we use Cross Entropy Loss as loss function. We have a lot
of anchors for proposing an action, but a small number of per-video actions, so we choose 256
anchors in total for each batch. We set the maximum number of foreground anchors to be 25%
of the 256 anchors and the rest are the background.

Classifying correctly an anchor isn’t enough for proposing an action tube. It is, also, necessary
the anchors to overlap as much as possible with the groundtruth action tubes. That’s the reason
we use a regression layer. This layer “moves” the anchor closer to the area that it is believed that
is closer to the action. For regression loss we use smooth-L1 loss as proposed from Girshick et al.
In order to calculate the regression targets, we use pytorch FasterRCNN implementation
(Yang et al. for bounding box regression and we modified the code in order to extend it
for 3 dimensions. So we calculate targets according to:

ty = (m - xa)/wav ty = (y - ya)/hm t, = (Z - za)/dav
ty = log(w/wy), tr, =log(h/hq), ta =log(d/d,),

ty = (7" — 74)/wa, t; =" —va)/ha, ;= (2"~ 24)/da,
ty, =log(w*/wa),  t;, =log(h*/ha),  t;=log(d*/da),

where z, y, z, w, h, d denote the 3D box’s center coordinates and its width, height and duration.
Variables =, z,, and z* denote the predicted box, anchor box, and groundthruth box respectively
(likewise for y, 2z, w, h, d). Of course, we calculate the regression loss only for the foreground
anchors and not for the background, so, at the most we will calculate 64 targets for each batch.

To sum up training procedure, we train 2 layers for our TPN, scoring and regression layers.
The training loss includes the training losses obtained by these layers and its formula is:

L= ZLcls<pzap;k) + Zp:LTEQ(t“t:()
i %
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where:

e L. is the Cross Entropy loss we use for classifying the anchors, with p; is the predicted
label, p¥ is the groundtruth class and p;, p} € {0,1}

® L,.q4 is the smooth-L1 loss function, which is multiplied with p; in order to be set active
only when there is a positive anchor (p; = 1) and to be deactivated for background anchors

(p; =0).

9.4.3 Validation

Validation procedure is a bit similar to training procedure. We randomly select 16 frames
from a validation video and we examine if there is at least 1 proposed Tol which overlaps >
0.5 with each groundtruth action tube and we get recall score. In order to get good proposals,
after getting classification scores and target predictions from the corresponding layers, we use
Non-Maximum Suppression (NMS) algorithm. We set NMS threshold equal to 0.7, and we keep
the first 150 cuboids with the biggest score.

9.4.4 Modified Intersection over Union(mIoU)

During training, we get numerous anchors. We have to classify them as foreground anchors or
background anchors. Foreground anchors are those which contain some action, and, respectively,
background don’t. As presented before, IoU for cuboids calculates the ratio between the volume
of overlap and volume of union. Intuitively, this criterion is good for evaluating 2 tubes if they
overlap, but it has one big drawback: it considers x-y dimensions to have the same importance
with time dimension, which we do not desire. That’s because firstly we care to be accurate in
time dimension, and then we can fix x-y domain’s proposals. As a result, we change the way we
calculate the Intersection Over Union during training. We calculate separately the IoU in x-y
domain (IoU-xy) and in t-domain (IoU-t). Finally, we multiply them in order to get the final
IoU. So the formula for 2 tubes (21, y1,t1, 22, Yo, t2) and (z}, y1,t), x5, yh, th) is:

Area of Overlap in x-y

IoUy, = —
Oy Area of Union in x-y

max(t1,t)) — min(ta, th)

ToU; = —
YT min(ty, 1) — max(ts, th)

IoU = IoUyy - IoU;

The above criterion help us balance the impact of time domain in IoU. For example, let us
consider 2 anchors: a = (22, 41, 1, 34, 70, 5) and b = (20, 45, 2, 32, 72, 5). These 2 anchors in
x-y domain have IoU score equal to 0.61. But they are not exactly overlapped in time dimension.
Using the first approach we get 0.5057 IoU score and using the second approach we get 0.4889.
So, the second criterion would reject this anchor, because there is a difference in time duration.

In order to verify our idea, we train TPN using both IoU and mloU criterion for tube-
overlapping. At Table ??7 we can see the performance in each case for both datasets, JHMDB
and UCF-101. The recall threshold for this case is 0.5 and during validation, we use regular IoU
for defining if 2 cuboids overlap.

Table ?? shows that modified-IoU give us slightly better recall performance only in UCF-
101 dataset. That’s reasonable, because JHMDB dataset uses trimmed videos so time duration
doesn’t affect a lot. So, from now own, during training we use mloU as overlapping scoring
policy.
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| Dataset | Criterion || Recall(0.5) |

IoU 0.70525
JHMDB mloU 0.7052
IoU 0.4665
UCF mloU 0.4829

Table 9.1: Recall results for both datasets using IoU and mIoU metrics

9.4.5 Improving TPN score

After first tests, we noticed that in a video lasting 16 frames, in time domain, all kinds of
actions can be separated into the following categories:

1. The action starts in the n-th frame and finishes after the 16th frame of the sampled video.
2. The action has already begun before the 1st frame of the video and ends in the n-th frame.

3. The action has already begun before the 1st frame of the video and finishes after the 16th
video frame.

4. The action starts and ends in that 16 frames of the video.

On top of that, we noticed that most of actions, in our datasets, last more that 16 frames. So,
we came with the idea to add 1 scoring layer and 1 regression layer which will propose cuboids
with fixed duration equal to the sample duration (16 frames) and they will take into account the
spatial information produced by activation maps. The new structure of TPN is shown in figure
?7?7. After getting proposals from both scores, we concat them with ratio 1:1 between cuboids
extracted from those 2 subnetworks.

Our goal is to “compress” feature maps in the temporal dimension in order to propose cuboids
based only on the spatial information. So, we came with 2 techniques for doing such thing:

1. Use 3D Convolutional Layers with kernel size = (sample duration, 1,1), stride =1 and no
padding for scoring and regression. This kernel “looks” only in the temporal dimension of
the activation maps and doesn’t consider any spatial dependencies.

2. Get the average values from temporal dimension and then use a 2D Convolutional Layer
for scoring and regression.

Training and Validation procedures remain the same. The only big difference is that now
we have losses obtained from 2 different systems which propose cuboids. On top of that, during
validation, we, at first, concate proposed Tols and, then, we follow the same procedure, which is
calculating recall performance. For training loss, we have 2 different cross-entropy losses and 2
different smooth-L1 losses, each for every layer correspondingly. So training loss is, now, defined
as :

L= Z Lcls(php;‘k) + Z Lcls (pfia:ed,iap}ia;ed7i)+

(9.1)
E p; Lreg(tiv ti) + E pfixed,iL”‘EQ (tfized,iv tfixed,i)
i i

?

where:
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Figure 9.6: TPN structure after adding 2 new layers, where k = 5n.

e [ is the Cross Entropy loss we use for classifying the anchors, with p; is the predicted
label, p} is the groundtruth class and p;, p; € {0,1}

® L,cq is the smooth-L1 loss function, which multiply it with p} in order to set active only
when we have a positive anchor (pf = 1) and to be deactivated for background anchors

(p; =0).

e p; are the anchors from scoring and regression layers with mutable time duration and p;
are their corresponding groundtruth label.

® Dfized: are the anchors from scoring and regression layers with fixed time duration = 16
frames and p};,.,; are their corresponding groundtruth label.

We train our TPN Network using both techniques and their recall performance is shown in
Table 77.

| Dataset | Fix-time anchors | Type | Recall(0.5) ||

No - 0.7052

JHMDB Yes Kernel 0.6978
Mean 0.7463

No - 0.4829

UCF Yes Kernel 0.4716
Mean 0.4885

Table 9.2: Recall results after adding fixed time duration anchors
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As we can see from the previous results, the new layers increased recall performance
significantly. On top of that, Table 7?7 shows that getting the average values from the time
dimension gives us the best results.

9.4.6 Adding regressor

The output of TPN is the a-highest scoring anchors moved according to their regression
prediction. After that, we have to turn the proposed anchors into Tols. In order to do so, we
add a regressor system which gets as input cuboids’ feature maps and returns a sequence of 2D
boxes, one per every frame. The only problem is that the regressor needs as input feature maps
with fixed size . This problem is already solved by R-CNNs which use roi pooling and roi align in
order to get fixed size feature maps from ROIs with changing sizes. In our situation, we extend
roi align operation, presented by Mask R-CNN(He et al. |2017)), and we call it 3D Roi Align.

3D Roi Align 3D Roi align is a modification of roi align presented by Mask R-CNN . The
main difference between those two is that Mask R-CNN’s Roi Align uses bi-linear interpolation
for extracting ROI’s features and ours 3D Roi Align uses trilinear interpolation for the same
reason. Again, the 3rd dimension is time. So, we have as input a feature map extracted from
ResNet34 with dimensions (64,16,28,28) and a tensor containing the proposed Tols. For each
cuboid whose activation map has size equal to (64,16,28,28), we get as output a feature map
with size (64, 16, 7, 7).

Regression procedure

At first, for each proposed Tol, we get its corresponding activation maps using 3D Roi Align.
These features are given as input to a regressor. This regressor returns 16 - 4 predicted transforms
(0z,0y, 0w, 0n), 4 for each frame, where d,,d, specify the coordinates of proposal’s center and
0w, Op its width and height, as specified in Girshick et al. 2014, We keep only the predicted
translations, for the frames that are > t; and < to and for the other frames, we set a zero-ed
2D box. After that, we modify each anchor from a cuboid written like (z1,y1,t1, Z2,y2,t2) to a
sequence of 2D boxes, like:

(0,0,0,0, «ces Ty, YTy s Ty s Yy 5 05 Ty Yis Ty oy TTy5 YT Ty Yy 0,0, 0, 0,00,
where:

o TN <i<To, forTy <t1+ 1,15 <ty and Ty, T € Z

— _ ! /!
® I =21,Y = Y1,T; = T2,Y; = Y2.

Training In order to train our Regressor, we follow about the same steps followed previously
for previous TPN’s training procedure. This means that we randomly pick 16 Tols from those
proposed by TPN’s scoring layer. From those 16 tubes, 4 are foreground tubes, which means
25% of the total number of the tubes as happened previously. We extract their corresponding
features using 3D Roi Align and calculate their targets like we did for regression layer. We feed
Regressor Network with these features and compare the predicted targets with the expected.
Again, we use smooth-L1 loss for loss function, calculated only for foreground Tols. So, we add
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another parameter in training loss formula which is now defined as:
L= Z Lcls(piapr) + Z Ly (pfia:ed,ia p;ixed7i)+
i i
Z szTeg (ti? t:) + Z p}iwed,iL’f'eg (tfized,i7 t;ized,i)—i_ (92)

i i
Z q;'kLreg(cia c;k)"‘

where except the previously defined parameters, we set ¢; as the regression targets for picked
tubes ¢;. These tubes are the ones randomly selected from the proposed Tols and ¢; are their
corresponding groundtruth action tubes, which are the closest to each g; tube. Again, we use
g} as a factor because we consider a tube as background when it doesn’t overlap with any
groundtruth action tube more that 0.5 .

First regression Network

The architecture of reggression network is shown in Figure 77, and it is described below:

NENe
- . I

Figure 9.7: Structure of Regressor

1. Regressor is consisted, at first, of a 3D convolutional layer with kernel = 1, stride = 1 and
no padding. This layer gets as input Tol’s normalized activation map extracted from 3D
Roi Align.

2. After that, we calculate the average value in time domain, so from a feature map with
dimensions (64,16,7,7), we get as output a feature map (64,7,7).

3. These feature maps are given as input to a Linear layer, followed by a Relu Layer, a Dropout
Layer, another Linear Layer and Relu Layer and a final Linear.

We use Recall metric In order to assess the performance of regressor. We calculate 3 recall
performances:

Cuboid Recall, which is the recall performance for proposed cuboids. We interested in this
metric because, we want to know how good are our proposals before modifying them into
sequences of boxes.
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Single frame Recall, which is the recall performance for the proposed Tol against the
groundtruth tubes.

Follow-up Single Frame Recall, which is the recall performance for only the cuboids that
were over the overlap threshold between proposed cuboids and groundtruth cuboids. We
use this metric in order to know how many of our proposed cuboids end up in being good
proposals.

Dataset | Pooling || Cuboid | Singl. Fr. | Follow-up S.F.
avg 0.8545 0.7649 0.7183
JHMDB max 0.8396 0.7761 0.5783
UCF avg 0.5319 0.4694 0.5754
max 0.5190 0.5021 0.5972

Table 9.3: Recall results after converting cuboids into sequences of frames

As the above results show, we get lower recall performance in frame-level. On top of that,
when we translate a cuboid into a sequence of boxes, we miss 20-40% of our proposals. This
means that we don’t modify good enough our cuboids, although we get only 10% decrease.
Probably, we get such score from cuboids, that even though, didn’t overlap well (according to
overlap threshold), achieve to become a good proposal in frame-level and in temporal level.

9.4.7 Changing Regressor - from 3D to 2d

After getting first recall results, we experiment using another architecture for the regressor
network, in order to solve the modification problem, introduced in the previous section. Instead
of having a 3D Convolutional Layer, we will use a 2D Convolutional Layer in order to treat the
whole time dimension as one during convolution operation. So, as shown in Figure ??, the 27¢
Regression Network is about the same with first one, with 2 big differences:

1. We performing a pooling operation at the feature maps extracted by the 3D Roi Align
operation, after we are normalized.

2. Instead of a 3D Convolutional Layer, we have a 2D Convolutional Layer with kernel size
= 1, stride = 1 and no padding.

On top of that, we tried to determine which feature map is the most suitable for getting best-
scoring recall performance. This feature map will be given as input to the Roi Algin operation.
At Table 77, we can see the recall performance for different feature maps and different pooling
methods.

As we noticed from the above results, again, our system has difficulty in translating cuboids
into 2D sequence of ROIs. So, that makes us rethink the way we designed our TPN.

9.5 3D anchors as 4k-dim vector

In this approach, we set 3D anchors as a vector with 4k coordinates (k = 16 frames = sample
duration). So a typical anchor is written as (x1,y1,x, ¥}, T2,y2,...) where x1,y1,x},y] are the
coordinates for the 1st frame, o, yo, x5, y4 are the coordinates for the 2nd frame etc, as presented
in Girdhar et al. 2018, In figure ?? we can see an example of this type of anchor.
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Figure 9.8: Structure of Regressor

Dataset | Pooling | F. Map || Recall Recall SR Recall SRF
64 0.6828 0.5112 0.7610
mean 128 0.8694 0.7799 0.6756
256 0.8396 0.7687 0.7029
JHMDB 64 0.8582 0.7985 0.5914
max 128 0.8358 0.7724 0.8118
256 0.8657 0.8022 0.7996
64 0.5055 0.4286 0.5889
mean 128 0.5335 0.4894 0.5893
UCF 256 0.5304 0.4990 0.6012
64 0.5186 0.4990 0.5708
max 128 0.5260 0.4693 0.5513
256 0.5176 0.4878 0.6399

Table 9.4: Recall performance using 3 different feature maps as Regressor’s input and 2 pooling
methods

The main advantage of this approach is that we don’t need to translate the 3D anchors
into 2D boxes, which caused many problems at the previous approach. However, it has a big
drawback, which is the fact that this type of anchors has a fixed time duration. In order to
deal with this problem, we set anchors with different time durations, which are 16, 12, 8 and 4.
Anchors with duration < sample duration (16 frames) can be written as a 4k-dim vector with
zeroed coordinates in the frames bigger that the time duration. For example, an anchor with 2
frames duration, starting from the 2nd frame and ending at the 3rd can be written as (0, 0, 0,
0, 21,91, 21, Y}, T2, Y2, 25, ¥, 0, 0, 0, 0) if the sample duration is 4 frames.

This new approach led us to change the structure of TPN. The new one is presented in figure
?7?. As we can see, we added scoring and regression layers for each duration. So, TPN follows
the upcoming steps in order to propose Tols:

1. At first, we get the feature map, extracted by 3D ResNet34, as input to a 3D Convolutional
Layer with kernel size = 1, stride = 1 and no padding.

2. From the Convolutional Layer, we get as output an activation map with dimensions
(256,16,7,7). For reducing time dimension, we use 4 pooling layer, one for each sample
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Figure 9.9: An example of the anchor (z1,y1, 2}, y], T2, Y2, ...)

duration with kernel sizes (16,1,1), (12,1,1,), (8,1,1) and (4,1,1) and stride = 1, for
sample durations 16, 12, 8 and 4 respectively. So, we get activation maps with dimensions
(256,1,7,7), (256,5,7,7), (256,9,7,7) and (256,13,7,7), in which the second dimension is
the number of possible time variations. For example, in (256,5,7,7) feature map, which is
related with anchors with duration 12 frames, we can have 5 possible cases: from frame 0
to frame 11, frame 1 to frame 12 etc.

3. Again, like in previous approach, for each pixel of the activate map we correspond n =
k = 15 anchors (5 scale of 1, 2, 4, 8, 16, 3 aspect rations of 1:1, 1:2, 2:1). Of course, we
have 4 different activate maps, with 1, 5, 9 and 13 different cases and a 7 x 7 shape in each
filter. So, in total we have 28 - 15 - 49 = 20580 different anchors. Respectively, we have
20580 different regression targets.

9.5.1 Training

Training procedure stays almost the same like previous approach’s. So, again, we randomly
choose a video segment and its corresponding groundtruth action tubes. But in this training
procedure, we consider anchors as foreground when they overlap more than 0.7 with any
groundtruth tube, alongside with background anchors whose overlap is bigger that 0.1 and smaller
than 0.3. We are not concerned about the rest of the anchors.

| Dataset | Pooling || Recall(0.5) Recall(0.4) Recall(0.3) ||

mean 0.6866 0.7687 0.8582
JHMDB max 0.8134 0.8694 0.9216
UCF avg 0.5435 0.6326 0.7075
max 0.6418 0.7255 0.7898

Table 9.5: Recall results using 2nd approach for anchors

As Table 77 shows, it is obvious that we get better recall performances compared to previous’
approach. Additionally, we can see that 3D max pooling performs better than 3D avg pooling.
The difference between max pooling and avg pooling is about 10%, which is big enough to make
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Figure 9.10: The structure of TPN according to new approach

us choose max pooling operation as pooling method before getting anchors’ scores and regression
targets.

9.5.2 Adding regressor

Even though, our TPN outputs frame-level boxes, we need to improve these predictions in
order to overlap with the groundtruth boxes as well as possible. So, in full correspondence with
the previous approach, we added an regressor for trying to get better recall results.

3D Roi align In this approach, we know already the 2D coordinates. So, we can use the
method proposed from Girdhar et al. They extend RoiAlign operator by splitting the
tube into 7" 2D boxes. Then, they use classic RoiAlign to extract a region from each one of the
temporal slices in the feature map. After that, they concatenate the region in time domain so
they get a T' X R x R feature map, where R is the output resolution of RoiAlign, which is 7 in
our situation.

As a first approach, we use a 3D convolutional layer, followed by 2 linear layers. Our regressor
follows the following steps:

1. At first, we use 3D RoiAlign in order to extract the feature maps of the proposed action
tubes. We normalize them, and give them as input to the 3D convolutional layer.

2. The output of the 3D Convolutional Layer is fed into 2 Linear layers with ReLu function
between them and finally we get sampleduration - 4 regression targets. We keep only the
proposed targets, in which there is a corresponding 2D box.

We train our regressor using the same loss function as previous approach’s formula which is:

L= ZLcls(php:) + Zp:Lreg(tiy t:() + Zq;Lreg(cia C:)
i % %
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We want again to find the best matching feature maps, so we train our regressor for
feature maps (64,8,7,7) and (128,8,7,7). We didn’t experiment using (256,8,7,7) feature map
because we got OutOfMemory error during training, despite several modifications we did in the
implementation code.

Dataset | Feat. Map | Recall(0.5) Recall(0.4) Recall(0.3)
64 0.7985 0.903 0.9552
JHMDB 128 0.7836 0.8881 0.944
UCF 64 0.5794 0.7206 0.8134
128 0.5622 0.7204 0.799

Table 9.6: Recall performance when using a 3D Convolutional Layer in Regressor’s architecture

According to Table 77, we got the best results when we use (64,16, 7,7) feature map. This is
the expected result, because these feature maps are closer to the actual pixels of the actor, than
(128,16, 7,7) feature maps, in which because of 3 x 3 x 3 kernels, which combine spatiotemporal
information from neighbour pixels. However, as we can see, we got worst recall performance
than when we didn’t use any regressor if we compare the results from Tables 77 and ?77.

9.5.3 From 3D to 2D

Following the steps we used before, we design an architecture that uses instead of a 3D
Convolutional Layer, a 2D. Unlike we did before, in this case, we don’t use any pooling operation
before feeding the first 2D Convolutional Layer. On the contrary, we manipulate our feature maps
like not being spatiotemporal but, only spatial. So, our steps are:

1. At first, we use, again, 3D RoiAlign in order to extract the feature maps of the
proposed action tubes and normalize them. Let us consider a feature map extracted from
ResNet, which has dimensions (64, sampleduration,7,7) and after applying RoiAlign and
normalization, we get a (k, 64, sampleduration,7,7) feature map, where k is the number
of proposed action tubes for this video segment.

2. We slice the proposed action tubes into T 2D boxes, so the dimensions of the Tensor,
which contains the coordinates of action tubes, from (k,4 - sampleduration) become
(k, sampleduration,4). We reshape the Tensor into (k - sampleduration,4), in which,
first k coordinates refer to the first frame, the second k coordinates refer to the second
frame and so on.

3. Respectively, we reshape extracted feature maps from (k, 64, sampleduration,7,7) to (k -
sampleduration,64,7,7). So, now we deal with 2D feature maps, for which as we said
before, we consider that contain only spatial information. So, we use 3 Linear Layers in
order to get 4 regression targets. We keep only those we have a corresponding bounding
box.

Again, we experiment using 64, 128 and 256 feature maps (in this case, there is no memory
problem). The results of our experiments are shown in Table 77.

As we can see, we get improved recall performance up 3% for JHMDB dataset and about the
same performance for UCF-101 dataset. Again, we get best performance if we choose (64,16, 7,7)
feature maps.
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Dataset | Feat. Map || Recall(0.5) Recall(0.4) Recall(0.3)
64 0.8358 0.9216 0.9739
JHMDB 128 0.8172 0.9142 0.9627
256 0.7724 0.8731 0.9328
64 0.6368 0.7346 0.7737
UCF 128 0.6363 0.7133 0.7822
256 0.6363 0.7295 0.7822

Table 9.7: Recall performance when using a 2D Convolutional Layer instead of 3D in Regressor’s
model

9.5.4 Changing sample duration

After trying all the previous versions, we noticed that we get about the same recall
performances with some small improvements. So, we thought that we could try to reduce the
sample duration. This idea is based on the fact that reducing sample duration, means that
anchor dimensions will reduce, so the number of candidate anchors. That’s because, now we
have a smaller number of cases, so smaller number of parameters alongside with a small number
of dimensions for regression targets. We train our TPN for sample duration = 8 or 4 frames.
We use, of course, TPN’s second architecture, because as shown before, we get better recall
performance.

Without Regressor

At first, we train TPN, again without regressor. We do so, in order to compare recall
performance for all sample durations, without using any regressor. The results are shown in
Table ?7. For all cases, we use max pooling before scoring and regression layers, and we didn’t
experiment at all with avg pooling. Of course, for sample duration = 16, we used the calculated
one in Table ?77.

Dataset | Sample dur || Recall(0.5) Recall(0.4) Recall(0.3)
16 0.8134 0.8694 0.9216
JHMDB 8 0.9515 0.9888 1.0000
4 0.8843 0.9627 0.9888
16 0.6418 0.7255 0.7898
UCF 8 0.7942 0.8877 0.9324
4 0.7879 0.8924 0.9462

Table 9.8: Recall results when reducing sample duration to 4 and 8 frames per video segment

According to Table 77, we notice that we get best performance for sample duration = 8 for
both datasets. For dataset JHMDB, sample duration equal to 8 gets far better results from
the other approaches, followed by approach with sample duration = 4. For UCF-101 dataset,
although sample duration equal to 8 gives us best performances, sample duration equal to 4 gives
us about the same. The difference between those 2 duration is less that 1%.

With Regressor

Following the idea of reducing the sample duration for getting better recall performance, we
trained TPN with a regressor. We trained for both approaches, which means both 3D and 2D
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Convolutional Layer approaches were trained. Recall performances are presented in Table ?7.

Dataset | Sample dur | Type | Recall(0.5) Recall(0.4) Recall(0.3)
3 2D 0.8078 0.8870 0.9419
UCF 3D 0.8193 0.8930 0.9487
4 2D 0.7785 0.8914 0.9457
3D 0.7449 0.8605 0.9362
3 2D 0.9366 0.9851 0.9925
3D 0.8918 0.9776 0.9963
JHDMBD 4 2D 0.9552 0.9963 1.0000
3D 0.9142 0.9701 0.9888

Table 9.9: Recall results when a regressor and sample duration equal to 4 or 8 frames per video
segment

According to 77, it is clear that using a 2D Convolutional Layer as presented above results
in better recall performance that using a 3D. Furthermore, we notice that the addition of a
regressor causes both improvements and deteriorations in recall performances. For dataset UCF-
101, approach with sample duration = 8 improves recall performance by about 1-2%, but for
sample duration = 4 it reduces it by 1-3%. On the other hand, for dataset JHMDB, now, sample
duration = 4 gets better results by adding a regressor and sample duration = 8 gets worse. So,
after considering both results from Tables 7?7 and ?7?, we think that the best approach is using
sample duration equal to 8, with the addition of a regressor, which uses a 2D Convolutional
Layer. We know that this approach gets worse performance at JHMDB but it gives us the best
results in UCF-101. But, since JHMDB’s results are high enough, we are most interested in
improving UCF-101’s results. That’s the reason, we will use the aforementioned approach in the
rest chapters.

9.6 General comments

In the previous section, we presented 2 different approaches for proposing sequences of
bounding boxes which are likely to include an actor performing an action. After considering
both approaches, we deduce that the second approach results in better proposals according to
their recall performance. In Figure 7?7, 3 different generated Tols are presented.

Our goal is the bounding boxes to overlap with the actor precisely. According to Figure 7?7,
all of three proposed actions tubes presented in Figures 7?7, 7?7 and ?? overlap with the actor to
some degree. However, by looking, it is clear that Tol, presented in Figure 7?7, doesn’t overlap
very well like those appearing at Figures 7?7 and ??7. Intuitively, comparing proposals from 77?7
and 7?7, we think that 77 overlaps better than 77.

However, as shown in Figures 77 and 77, the second Tol overlaps better with the groundtruth.
It is clear that even though the first proposal overlaps very well with the upper body of the actor,
it fails to capture the left leg, which may be a crucial factor for determining the class of the action.
The Tol shown in Figure 7?7 manages to capture most of the actor’s body, excluding only the
head, which usually doesn’t move a lot during an action. Although, judging intuitively, we would
choose the first Tol, in reality, the second one is more preferable.
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Figure 9.11: Visualization of Tois including grouthtruth action tubes, too



Chapter 10

Connecting Tubes

10.1 Introduction

In the previous chapter, we described methods for generating candidate action tubes given a
small video segment lasting 8 or 16 frames. However, actual videos and actual human actions,
in the wild, last more than 16 frames most of the times. Current networks are unable to process
a whole video at once, in order to generate action tubes due to memory and computing power
issues. As mentioned in chapter 2, a lot action localization approaches deal with this situation
given a video, either by proposing candidate areas in the frame-level and then connecting them in
order to generate action tube proposal either, separating the video into video segments, proposing
sequences of bounding boxes for each video segment and then linking them in order to generate
action proposals. Both aforementioned techniques make the suitable choice of linking method
an important factor for the performance of the network. That’s because, even though frame-
level or video segment-level proposals might be very good, if the proposed connection algorithm
doesn’t work well, final action tube proposals won’t be efficient, so the final model will never be
able to achieve high classification performance. In other words, if connecting algorithm doesn’t
generate action proposals with great recall and MABO performance, the model’s classifier won’t
be able to perform suitable classification, because probably it would be given action tubes without
any context. In this chapter, we present 3 different approaches used for linking proposed Tols
generated from TPN in the previous chapter.

10.2 First approach: combine overlap and actioness

Our algorithm is inspired by Hou, Chen, and Shah [2017, which calculates all possible
sequences of Tols. In order to find the best candidate action tubes, it uses a score, which
tells us how likely a sequence of Tols is to contain an action. This score is a combination of 2
metrics:

Actioness, which is the Tol’s possibility to contain an action. This score is produced by
TPN’s scoring layers.

Tols’ overlapping, which is the IoU of the last bounding boxes of the first Tol and the first
frames of the second Tol.

121
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The above scoring policy can be described by the following formula:

1 m 1 m—1
S = p- Zz:; Actioness; + p— ; Overlapj, j+1

For every possible combination of Tols we calculate their score as shown in figure 77.
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§3 = Tube}, - Tube?, - Tube}; =2.0/3 +0.7/2 S4 = Tube}, —» Tube?, - Tube%;, =2.3/3 +1.0/2
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§7 = Tube?, - Tube?, > Tube}; =2.1/3+1.2/2 S8 = Tube?, - Tube?, - Tube’; = 2.4/3 +1.5/2

Figure 10.1: An example of calculating connection score for 3 random Tols taken from Hou,

Chen, and Shah 2017

The above approach, however, needs too much memory for all needed calculations, so a
memory usage problem is appeared. The reason is, for every new video segment, we propose k
Tols (16 during training and 150 during validation). As a result, for a small video separated
into 10 segments, we need to calculate 150'° scores during validation stage. This causes our
system to overload and it takes too much time to process just one video.

In order to deal with this problem, we create a greedy algorithm in order to find the candidates
tubes. Intuitively, this algorithm after getting a new video segment, keeps tubes with a score
higher than a threshold, and deletes the rest. So, we don’t need to calculate combinations with
a very low score. We wrote code for calculating tubes’ scores in CUDA language, which has the
ability to parallel process the same code using different data. Our algorithm is described below:

1. Firstly, initialize empty lists for the final tubes, final tubes’ duration, their scores, active
tubes, their corresponding duration, active tubes’ overlapping sum and actioness sum
where:

e Final tubes list contains all tubes which are the most likely to contain an action, and
their score list contains their corresponding scores. We refer to each tube by its index,
which is related a tensor, in which we saved all the Tols proposed from TPN for each
video segment.

e Active tubes list contains all tubes that will be matched with the new Tols. Their
overlapping sum list and actioness sum list contain their sums in order to avoid
calculating then for each loop.

Also, we initialize connection threshold equal to 0.5 .
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2. For the first video segment, we add all the Tols to both active tubes and final tubes. Their
scores are only their actioness because there are no tubes for calculating their overlapping
score. So, we set their overlaping sum equal to 0.

3. For each next video, after getting the proposed Tols, firstly we calculate their overlapping
score with each active tube. Then, we empty active tubes, active tubes’ duration,
overlapping sum and actioness score lists. For each new tube that has a score higher
than the connection threshold, we add both to final tubes and to active tubes and their
corresponding lists, and we increase their duration.

4. If the number of active tubes is higher than a threshold, we set connection threshold equal
to the score of the 100th higher score. On top of that, we update the final tubes list,
removing all tubes that have score lower than the threshold.

5. After that, we add in active tubes, the current video segment’s proposed Tols, alongside
with their actioness scores in the actioness sum list and zero values in corresponding
positions in the overlaps sum list (such as in the 1st step).

6. We repeat the previous 3 steps until there is no video segment left.

7. Finally, as we mentioned before, we have a list which contains the indexes of the
saved tubes. So, we modify them in order to have the corresponding bounding boxes.
However, 2 succeeding Tols do not, always, have exactly the same bounding boxes in
the frames that overlap. For example, Tols from the 1°¢ video segment start from
frame 1 to frame 16. If we have video step equal to 8, these Tols overlap temporally
with the Tols from the succeeding video segment in frames 8-16. In those frames, in
final tube, we choose the area that contains both bounding boxes which is denoted as
(min(z1, 2,), min(yr, o), maz(zs, 2), maz(ys, yj)) for bounding boxes (21,41, 23, 2) and

(21,91, 25, Y2)-

10.2.1 JHMDB Dataset

In order to validate our algorithm, we firstly experiment in JHMDB dataset’s videos in order
to define the best overlapping policy and the video overlapping step. Again, we use recall as
evaluation metric. A groundtruth action tube is considered to be found, as well as positive, if
there is at least 1 video tube which overlaps with it over a predefined threshold, otherwise it is
considered not found. These thresholds are again 0.5, 0.4 and 0.3. We set TPN to return 30
Tols per video segment. We chose to update threshold when active tubes are more than 500 and
to keep the first 100 tubes as active. We did so, because, a big part of the code is performing in
the CPU. That’s because, we use lists, which are very easy to handle for adding and removing
elements. So, if we use bigger update limits, it takes much more time to process them.

Sample duration equal to 16 frames At first, we use as sample duration = 16 frames and
video step = 8. As overlapping frames we count frames (8...15) so we have overlapping scores
from #8 frames, which we calculate their average value. Also, we use only #4 frames with
combinations (8...11), (10...13) and (12...15) and #2 frames with combinations (8,9), (10,11),
(12,13), and (14,15). The results are shown in Table ?? (in bold are the frames with which we
calculate the overlap score).
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combination 05 overlag Ihresh 0.3
0,1,...,{8,...,15}
{8,9,...,15},16,...,23 0.3172 0.4142 0.6418
0,1,...,{8,...,11,}...,14,15
{8,...,11},12,...,22,23 0.3172 0.4142 0.6381
0,1,...,{10,...,13,}14,15,
8,9,{10,...,13},14,...,22,23 || 0.3209 0.4179 0.6418
0,1,....{12,...,15,}
8,9,..,{12,...,15},16,...,23, || 0.3284 0.4216 0.6381
0,1,....,{8,...,11,},...,14,15,
{8,9,...,11,}12,...,2223 0.3172 0.4142 0.6381
0,1,...,{10,...,13,}14,15,
{10,...,13},14,...,22,23 0.3209 0.4179 0.6418
0,1,..,{12,...,15}
8,9,...,{12,...,15},16,... 0.3284 0.4216 0.6381
0,1,...,{8,9,},10,...,14,15,
{8,9,}10,11,...,22,23 0.3134 0.4104 0.6381
0,1,...,{10,11,},12,...,14,15,
8,9,{10,11,}12,...,22,23 0.3209 0.4216 0.6418
0,1,...,{12,13,},14,15,
8,9,...,{12,13,}14,...,22,23 || 0.3246 0.4179 0.6418
0,1,...,13,{14,15,}
8,9,...,{14,15,}16,...,22,23 || 0.3321 0.4216 0.6306

Table 10.1: Recall results for step = 8

As we can from the above table, generally we get very bad performance and we got the best
performance when we calculate the overlap between only 2 frames (either 14,15 or 12,18). So,
we thought that we should increase the video step because, probably, the connection algorithm
is too strict into big movement variations during the video. As a result, we set video step = 12
which means that we have only 4 frames overlap. In this case, for #4 frames, we only have the
combination (12...15), for #2 frames we have (12,13), (13,14) and (14,15) as shown in Table

77.

combination 05 overla(;; 4thresh 03
0,1,..,11.{12,...,15}
{12,13,...,15},16,...,26,27 || 0.3769 0.4627 0.6828
0,1,...,{12,13,},14,15,
{12,13,}14,15,...,26,27 0.3694 0.4627 0.6903
0,1,...,12{13,14,},15,
12,{13,14,}15,...,26,27 0.3843 0.4627 0.6828
0,1,...,12,13{14,15,}
12,13,{14,15,}16,...,26,27 || 0.3694 0.459 0.6828
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Table 10.2: Recall results for step = 12

As we can see, recall performance is increased so that means that our assumption was correct.
So again, we increase video step into 14, 15 and 16 frames and recall score is shown in Table 7?7

. overlap thresh
combination 05 0.4 03
0,1,...,13{14,15}
{14,15},16,...,28,29 || 0.3731 0.5336 0.6493
0,1,...,13,{14,}15,
{14,}15,...,28,29 0.3694 0.5299 0.6455
0,1,...,14,{15}
14,{15,}16,...,28,29 || 0.3731 0.5187 0.6381
0,1,...,14,{15}
{15},16,...,30 0.3918 0.5187 0.6381
0,1,...,14 {15}
{16},17,...,31 0.4067 0.7313 0.8731

Table 10.3: Recall results for steps = 14, 15 and 16

The results show that we get the best recall performance when we have no overlapping steps
and video step = 16 = sample duration. We try to improve more our results, using smaller
duration because, as we saw from TPN recall performance, we get better results when we have
sample duration = 8 or 4.

Sample duration equal to 8 We wanted to confirm that we get the best results, when we
have no overlapping frames and step = sample duration. So Table ?? shows recall performance
for sample duration = 8 and video step = 4 and Table 7?7 for video steps = 6, 7 and 8.

combination 05 overla(}i 4thresh 0.3

0,1,2,3,13{4,5,6,7}

{4,5,6,7},8,9,10,11 || 0.2015 0.3582 0.5858
0,1,2,3,{4,5,}6,7

{4,5,}6,7,8,9,10,11 || 0.1978 0.3582 0.5933
0,1,2,3,4{5,6,}7

4,{5,6,}7,8,9,10,11 || 0.1978 0.3507 0.5821
0,1,2,3,4,5{6,7}

4,5{6,7,}8,9,10,11 0.194 0.3433 0.585

Table 10.4: Recall results for step = 4
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. overlap thresh
combination 05 04 03
0,1,2,3,4,5{6,7}
{6,7},8,9,10,11,12,13 0.3134 0.7015 0.8619
0,1,2,3,4,5,{6,}7
{6,}7,8,9,10,11,12,13 0.3209 0.6679 0.847
0,1,2,3,4,5,6,{7}
6,{7}8,9,10,11,12,13 0.3172 0.6567 0.8507
0,1,2,3,4,5,6{7}
{7,}8,9,10,11,12,13,14 || 0.5597 0.7687 0.903
0,1,2,3,4,5,6{7}
{8}9,10,11,12,13,14,15 || 0.653 0.8396 0.9179

Table 10.5: Recall results for steps = 6, 7 and 8

According to Tables 7?7 and 77, it is clearly shown that, we achieve the best results, for
step = sampleduration and overlapping scores is calculated between the last box of the current
tubes and the first box of next tubes.

10.2.2 UCF-101 dataset

In previous steps, we tried to find the best overlap policy for our algorithm in JHMDB dataset.
After that, it’s time to apply our algorithm in UCF-101 dataset using the best scoring overlap
policy. We did some modifications in the code, in order to use less memory and we moved most
parts of the code to the GPU. This happened by using tensors instead of lists for scores while
most operations are, from now on, matrix operations. On top that, the last step of the algorithm,
which is the modification from indices to actual action tubes is written, now, in CUDA code so
it takes place in the GPU, too. So, we are now able to increase the number of Tols returned by
TPN, the max number of active tubes before updating threshold and the max number of final
tubes.

The first experiments we performed were related to the number of the final tubes, our network
proposes alongside with TPN’s proposed tubes’ number. We experiment for cases, in which TPN
proposes 30, 100 and 150 Tols, our final network proposes 500, 2000 and 4000 candidate action
tubes for sample durations equal to 8 and 16 frames. For the sample duration equal to 8 we
return 100 Tols because, when we tried to return 150 proposed Tols, we got OutOfMemory
error. Table 7?7 show the spatiotemporal recall and MABO performance of those approaches.
Furthermore, Table 7?7 show their temporal recall and MABO performance. We are interested
in temporal performance, because UCF-101 consists of untrimmed videos, unlike JHMDB which
has only trimmed videos. So, we want to know how well our network is able to propose action
tubes that overlap temporally with the groundtruth action tubes over a “big” threshold. For
temporal localization, we don’t use 0.5, 0.4 and 0.3 overlapping threshold, but instead, we use
0.9, 0.8 and 0.7, because it is very important our network to be able to propose tubes that contain
an action, at least from the temporal perspective. In order to calculate the temporal overlap, we
use IoU for 1 dimension as described before.
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. TPN | Final overlap thresh

combination tubes | tubes 0.5 0.4 0.3 MABO
500 0.2829 0.4395 0.5817 | 0.3501

30 2000 || 0.3567 0.4996 0.6289 | 0.3815

0,1,...,6,{7,} 4000 || 0.3749 0.5316 0.6487 | 0.3934
{8,}9,...,14,15 500 0.2966 0.451 0.5947 | 0.356
100 2000 || 0.3757 0.5163 0.6471 | 0.3902

4000 || 0.3977 0.5506 0.6624 | 0.4029

500 0.362 0.5042 0.6243 | 0.3866

30 2000 0.416 0.5468 0.6631 | 0.4108

%11(’3,}%;1’1{;5’}23 4000 | 0.4281 0.5589 0.6779 | 0.4182
B 500 0.3589 0.4981 0.6198 | 0.3845

150 2000 || 0.4129 0.5392 0.6563 | 0.4085

4000 || 0.4266 0.5521 0.6722 | 0.4162

Table 10.6: Recall results for UCF-101 dataset
. TPN | Final overlap thresh

combination tubes | tubes 0.9 0.8 0.7 MABO
500 0.4464 0.581 0.6844 | 0.7787

30 2000 0.635 0.7665 0.8403 | 0.8693

0,1,....,6,{7,} 4000 || 0.7034 0.8228 0.8875 | 0.8973
{8,}9,...,15 500 0.454 0.5924 0.692 0.783
100 2000 0.651 0.7696 0.8441 | 0.8734

4000 || 0.7209 0.8312 0.8913 | 0.9026

500 0.6844 0.8327 0.9027 | 0.8992

30 2000 || 0.7475 0.8684 0.9217 | 0.9175

%11(75,}’i£71’1{6315,}23 4000 || 0.7567 0.8745 0.9255 | 0.9211
B 500 0.7498 0.8707 0.9171 | 0.9125

150 2000 || 0.8243 0.911 0.9392 | 0.9342

4000 || 0.8403 0.9179 0.9437 | 0.9389

Table 10.7: Temporal Recall results for UCF-101 dataset

According to Table 7?7, we achieve better recall and MABO performance when we set sample
duration equal to 16. In all cases, recall performance of simulations with sample duration equal
to 16 outweight the corresponding with 8, with the difference varying from 2% to 8%. In addition,
we get best recall and MABO performance when our system proposes 4000 tubes. As we can see,
the ratio of good proposals increases about 5%-7% when we change number of proposed tubes
from 500 to 2000. This ratio increases more when we double returned action tubes, from 2000
to 4000. However, this increase is only about 1%-2%, which make us rethink if this increase is
worth to be performed. That’s because, this modification increases memory usage, because of
4000 proposed action tubes, instead of 2000. Finally, Table ?? shows that, for sample duration
= &, changing the number of Tols produced by TPN, slightly helps our network to achieve better
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results. This contribution is measured about 1%-2%. On the contrary, when we set sample
duration equal to 16, it slightly reduces network’s performance. Taking all the aforementioned
results into account, we think that the most suitable choices for connection approaches are, for
the sample duration equal to 8, the one in which TPN returns 100 Tols and our network proposes
4000 action tubes, and for the sample duration equal to 16, the one in which, TPN returns 30
Tols and the network 4000 action tubes.

Additionally, Table ?? shows some interesting facts, too. At first, it confirms that increasing
the number of proposed action tubes, from 500 to 4000, increases recall and MABO performance.
Also, we get better results when network has 16 frames as sample duration, too. However, unlike
Table 77, Table 7?7 shows that when we increase TPN’s number of proposed Tols, it increases
performances for both sample durations. For sample duration equal to 8, this increase results in
improving recall performances by 2% and MABO performance by 1% like spatiotemporal recall
and MABO. For the sample duration equal to 16, recall performance is increasing by about 8%
and MABO by 1%-2%.

Taking both tables into consideration, we think that the best approach is TPN returning 30
proposed Tols, network returning 4000 proposed action tubes and sample duration equals with
16. We didn’t choose TPN returning 150 proposed Tols because, based on MABO performances,
they different only by 1%, difference which is insignificant.

Adding NMS algorithm

Previous section describes the performances of network’s proposals for variations in the
number of TPN’s returned Tols, number of returned proposed action tubes and sample duration.
For each situation, we choose the k-best scoring action tubes, without taking into account any
relation between these action tubes, like their spatiotemporal overlap. So, like TPN’s approach,
we thought that we should apply nms algorithm before choosing k-best scoring tubes, in order to
further improve spatiotemporal and temporal, recall and MABO performance. We experiment
using again two sample durations, 16 and 8 frames per video segment, number or TPN’s returning
tubes equal to 30 and the number of final picked action tubes equal to 4000. NMS algorithm
uses a threshold in order to choose if 2 action tubes overlap enough. We experiment setting
this threshold equal to 0.7 and 0.8 and the results are shown in Table ?? for Spatiotemporal
performance and at Table ?? for temporal performance.

. NMS |PreNMS overlap thresh
combination |1 ltubes | 0.5 0.4 03 | MABO

0,1,...6,{7,} 0.7 0.346 0.5202 0.657 [0.3824685269
{8,}9,....15 0.8 | 20000 [0.3643 0.5392 0.6578(0.3904727407
B 0.9 0.397 0.5574 0.6677(0.4031543642
0,1,..,14,{15,} 0.7 0.3939 0.5559 0.6882| 0.404689056
{’16’}’177“. 923 0.8 | 20000 [0.4259 0.5764 0.6981| 0.419487652
B 0.9 0.4494 0.5856 0.7019/0.4302611039

Table 10.8: Spatiotemporal Recall results for UCF-101 dataset
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. NMS |PreNMS overlap thresh
combination thresh|tubes 0.9 0.8 0.7 MABO

01,67} 0.7 0.6281 0.8251 0.9027]0.8885141223
{8,39,..,15 0.8 | 20000 |0.7369 0.8616 0.9148|0.9106069806
B 0.9 0.7787 0.8753 0.9209(0.9212593589
0.1,...,14,{15,} 0.7 0.7452 0.8920 0.9361| 0.920331595
{16,}17....23 0.8 | 20000 |0.8160 0.9278 0.9506| 0.93612757
B 0.9 0.854 0.9346 0.9529(0.9434986107

Table 10.9: Temporal Recall results for UCF-101 dataset

Comparing Table ?? with Table 7?7, we notice that NMS algorithm improves recall and MABO
performance when NMS threshold is equal to 0.9. When we set it equal to 0.7 or 0.8, we get
worse results. This happens, probably, because nms algorithm removes some good proposals.
Comparing these results with results presented at Tables 7?7 and 7?7 it becomes clear that using
NMS algorithm is very useful. That’s because, even though we get the same number of proposed
action tubes, these tubes are not very close spatiotemporally, so this makes proposed action
tubes more likely to contain actual foreground action tubes.

Stop updating threshold

In previous approaches, scoring threshold was updated each time our algorithm gathered a
significant number of “active” tubes in order not to add action tubes with score below this score.
However, after serious consideration, we came to the conclusion that sometimes, the updated
threshold leads to not detecting action tubes that start after some frames. That’s because, until
then, linking threshold may be too big that won’t let new action tubes to be created. So, we
came with the modification of not updating linking threshold, but just filtering proposed tubes,
by keeping k-best scoring each time their number is bigger that the a specific number. The rest
algorithm remains the same. Tables 7?7 and 7?7 show spatiotemporal and temporal recall and
MABO performance respectively. We experiment for cases in which either we don’t use the NMS
algorithm at all, either we set overlap threshold equal to 0.7 and 0.9 as shown below.

.. NMS |PreNMS overlap thresh
combination | Htubes | 0.5 0.4 0.3 MABO
0,1,....6,{7,} - 0.3779 0.5316 0.6471 0.393082961
{8,}9,....15 0.7 20000 0.3483 0.5194 0.6471 0.3783524086
B 0.9 0.416 0.5605 0.6722 0.4074053106
- 0.438 0.5635 0.6829 0.4231788
({)’116’}71;1’{153’,} 0.7 20000 0.4525 0.5848 0.7034 0.429747438
B 0.9 0.3802 0.5133 0.6068]0.3862278851848662

Table 10.10: Spatiotemporal Recall results for UCF-101 dataset
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o NMS |PreNMS overlap thresh

combination thresh|tubes 0.9 0.8 0.7 MABO
0,1,....6.{7,} - - 0.7087 0.8281 0.8913 0.899210587
{78’}9, ’ 15 0.7 920000 0.6586 0.854 0.9278 0.903373468

M 0.9 0.8137 0.8973 0.9361 0.9333068498
0,1,...14,{15,} - 0.8327 0.9156 0.9399 0.940143272
{16,317.....23 0.7 20000 0.8646 0.9369 0.9567 0.946701832

e 0.9 0.6183 0.7696 0.8388]0.8628507037919737

Table 10.11: Temporal Recall results for UCF-101 dataset

Comparing recall and MABO performances shown at Table ?? with those included in Tables
7?7 and 77, we deduce that for the sample duration equal to 8, stopping updating linking threshold
results in worse performance when we set nms threshold equal to 0.7, but it achieves the best
performances when setting NMS threshold equal to 0.9 . Furthermore, for sample duration
equal to 16, we get, now, best performance when we set nms threshold equal to 0.7 and worse
performance for nms threshold equal to 0.9 .

Soft-nms instead of nms

After widely experiment using NMS algorithm, we thought that we should try to use Soft-
NMS algorithm, introduced by Bodla et al. |[2017 and described in chapter 2. We implement our
own soft-nms algorithm modifying it in order to calculate spatiotemporal overlapping scores, and
not just spatial, like the one implemented by Bodla et al. 2017, As mentioned before, instead of
removing action tubes, Soft-NMS algorithm just reduces their score for those which overlap over
a predefined threshol. We experiment for the sample duration equal to 8 and thresholds equal
to 0.7 and 0.9, because, our implementation ran out of memory for sample duration equal to 16.
Recall and MABO performance are presented in Tables 7?7 and 7?7

. NMS |PreNMS overlap thresh
combination threshitubes 0.9 0.8 0.7 MABO
0,1,....6,{7,} 0.7 90000 0.3916 0.5384 0.6464| 0.3964639
{8,}9,...,15 0.9 0.4023 0.5430 0.6502{0.398845313

Table 10.12: Spatiotemporal Recall results for UCF-101 dataset using Soft-NMS

. NMS |PreNMS overlap thresh
combination | chltubes | 0.9 0.8 07 | MABO
0.L,..6{7,} 07 | yo000 107521 0.8586  0.9110[0.915746097
{8,}9,...,15 0.9 0.7741 0.8768 0.9255[0.922677864

Table 10.13: Temporal Recall results for UCF-101 dataset using SoftNMS
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Taking results at Tables 7?7 and 77 into consideration, alongside with those at Tables 7?7 and
77 for sample duration equal to 8, we notice that using softNMS results in slightly better results.
This happens when we set overlapping threshold equal to 0.9, otherwise, for overlapping threshold
0.7, we get worst performance. Despite the fact that softnms results in better recall and MABO
performance, our implementation is very slow, which means that for a 201-frame video, soft NMS
part lasts about 32 seconds on the contrary with standard NMS algorithm without updating
linking threshold, in which this part last only 2 seconds. So, we choose to use the standard NMS
algorithm without updating liking threshold as an algorithm for removing overlapping action
tubes.

10.3 Second approach: use progression and progress rate

As we saw before, our first connecting algorithm doesn’t have very good recall results. So, we
created another algorithm which is based on the one proposed by Hu et al.|2019. This algorithm
introduces two new metrics according to Hu et al. |2019:

Progression, which describes the probability of a specific action being performed in the Tol.
We add this factor because we have noticed that actioness is tolerant to false positives.
Progression is mainly a rescoring mechanism for each class (as mentioned in Hu et al.
2019)

Progress rate, which is defined as the progress proportion that each action class has been
performed.

So, each action tube is described as a set of Tols

k k k k k
T= {tg )‘tg ) = (tE )’S’E )’Tt( ))}izl:'rz(k),k:l:K

(k)

i

(k)

)

where t;’ contains Tol’s spatiotemporal information, s;"’ its confidence score and rgk) its progress
rate.

In this approach, each class is handled separately, so for the rest section, we discuss action
tube generation for one class only. In order to link 2 Tols, for a video with N video segments,

the following steps are applied:

1. For the first video segment (k = 1), initialize an array with the M best scoring Tols, which
will be considered as active action tubes ( AT ). Correspondingly, initialize an array with
M progress rates and M confidence scores.

2. For k = 2:N, execute (a) to (c) steps:
(a) Calculate overlaps between AT®*) and Tols*).
(b) Connect all tubes which satisfy the following criteria:
i overlapscore(atgk), tg»k)) >0,at € AT® t € Tols)
i, r(at) < r(t) or r(tM) — r(ati(k)) < A

(c¢) For all new tubes update confidence score and progress rate as follows:
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The new confidence score is the average score of all connected Tols:

k
1
k+ n

n=0

New progress rate is the highest progress rate:
r(atF+H) = max(r(atgk)), r(tg-k)))

(d) Keep M best scoring action tubes as active tubes and keep K best scoring action tubes
for classification.

This approach has the advantage that we don’t need to perform classification again because
we already know the class of each final tube. In order to validate our results, now, we calculate
the recall only from the tubes which have the same class as the groundtruth tube. Again, we
considered a groundtruth tube as positive if there is at least one proposed tube that overlaps
with it over the predefined threshold

combination overlap thresh
sample dur  step 0.5 0.4 0.3
8 6 0.3284 0.5 0.6082
8 7 0.209 0.459 0.6119
8 8 0.3060 0.5672 0.6866
16 8 0.194 0.4366 0.7164
16 12 0.3358 0.5336 0.7537
16 16 0.2649 0.4664 0.709

Table 10.14: Recall results for second approach with step = 8, 16 and their corresponding steps

According to Table 77, we get the best performance when we set sample duration equal to
16 and overlap step equal to 12. Comparing this performance with the first approach, for both
sample durations equal to 8 and 16, we notice that second approach falls short comparing to the
first one.

10.4 Third approach : wuse naive algorithm - only for
JHMDB

As mention in the first approach, Hou, Chen, and Shah[2017|calculate all possible sequences of
Tols in order to the find the best candidates. We rethought about this approach and we concluded
that it could be implemented for JHMDB dataset if we reduce the number of proposed Tols,
produced by TPN; to 30 for each video clip. We exploited the fact that JHMDB dataset’s videos
are trimmed, so we do not need to look for action tubes starting in the second video clip which
saves us a lot of memory. On top of that, we modified our code in order to be more memory
efficient writing some parts using CUDA programming language, saving a lot of processing power,
too.
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So, after computing all possible combinations starting of the first video clip and ending in
the last video clip, we keep only the k-best scoring tubes (k = 500) . We run experiments
which have sample duration equal to 8 and 16 frames and we modify the video step each time.
For sample duration = 8, we return only 15 Tols and for sample duration = 16, we return 30
because, if we return more, we get “out of memory error”. In the following table, we can see the
recall results.

combination overlap thresh
sample dur  step 0.5 0.4 0.3
8 6 0.7873 0.8657 0.9366
8 7 0.7836 0.8731 0.9366
8 8 0.7910 0.8806 0.9515
16 8 0.7873 0.8843 0.9291
16 12 0.7948 0.8881 0.9403
16 16 0.7985 0.8918 0.9515

Table 10.15: Recall results for third approach with step = 8, 16 and their corresponding steps

From the above table, firstly, we confirm that when video step is equal to the sample duration
gives us the best recall results. Also, we notice that when sample duration is equal to 16 frames
recall gets slightly better that when sample duration is equal to 8. However, using 16 frames
per video segment sample increases the memory usage even though it reduces the number of
video segments, because of the need to process bigger videos, bigger feature maps etc. So for the
classification stage we will experiment using mostly sample duration equal with 8 frames.

10.5 General comments

Figure 7?7 shows the example presented in chapter 3, after linking first video segment’s first
Tol with a Tol proposed for the second video segment. For this case, we used the third proposed
method, including calculating all possible combinations. As shown in the Figure, our algorithm
manages to track the actor performing the action efficiently enough. This means that even
though the actor moves during the video, our approach manages not to loose contact with him.
On top of that, it clear that the silhouette of the actor changes, and so does the area of proposed
action tubes. The only problem which appears is that proposed action tubes sometimes exceeds
the area of the actual video. In order to deal with this problem, we set bounding boxes not to
exceed these areas by keeping the limits of the original picture. So, from now on, no bounding
box will overlap with padding area.
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Figure 10.2: Example of connected tubes



Chapter 11

Classification stage

11.1 Introduction

In previous 2 chapters, we introduced the procedure we used to create candidate action tubes,
which probably contain some action or may not. Most of the times, the proposed action tubes
belong to the background, and for that reason, as mentioned and in the previous chapter, it is
important to choose a good linking algorithm that generates good sequences of bounding boxes.
However, it is quite important to choose the appropriate classifier who will be able very accurately
predict whether a candidate action tube belongs to a known category of actions or it belongs to
the background. This is because we may produce good proposals for candidate actions, but if
our classier is unable to distinguish them, our system will again fail to recognize the actions.

The right choice of a classifier is a big dilemma we are facing and we need to answer. However,
this classifier will get as input some activation maps in order to be classified. Therefore, apart
from the picking the most suitable classifier, equally, good choice of features is important, too.
Finally, the training process of the classifier plays a major role in order to be able to generalize
and to avoid overfitting situations.

For our implementation, we implement approaches including a Linear Classifier, a Recursive
Neural Network (RNN) Classifier, a Support Vector Machine (SVM) Classifier and a Multilayer
perceptron (MLP). Additionally, we experiment using feature maps obtained from 3D RoiAlign
using, also, avg or max pooling. Last but not least, we try to find the right ratio between
foreground and background action tubes including their total number needed during training
stage in order our classifier to perform efficiently.

The whole procedure of classification is consisted from the following steps:

1. Separate video into small video clips and feed TPN network those video clips and get as
output k-proposed Tols and their corresponding features for each video clip.

2. Connect the proposed Tols in order to get video tubes which may contain an action.

3. For each candidate video tube, which is a sequence of Tols, feed its feature maps into the
classifier in order to perform classification.

The general structure of the whole network is depicted in figure 7?7, in which we can see the
aforementioned steps if we follow the arrows.

We treated each dataset seperately, because we didn’t manage to achieve good recall
performance for UCF-101 dataset, so it is preferable to experiment mainly at JHMDB dataset

135
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315 112,112) (3.16,112,112) (316,112,112)

Figure 11.1: Structure of the whole network

for spatiotemporal localization. Then, we performed temporal localization for UCF-101, because
we achieve good temporal recall performance during connection stage.

11.2 Preparing data and first classification results

For carrying out classification stage, we use, at first, a Linear classifier and a RNN classifier.

Linear Classifier Linear classifier is a type of classifier which is able to discriminate objects
and predict their class based on the value of a linear combination of object’s feature values,
which usually are presented in a feature vector. If the input feature vector to the classifier is a
real vector ¥, then the output score is :

y=f@-7)=f ijxi

J
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RNN Recurrent neural networks, or RNNs for short, are a type of neural network that was
designed to learn from sequence data, such as sequences of observations over time, or a sequence
of words in a sentence. RNN takes many input vectors to process them and output other vectors.
It can be roughly pictured like in the Figure 7?7 below, imagining each rectangle has a vectorial
depth and other special hidden quirks in the image below. For our case, we choose many to
one approach, because we want only one prediction, at the end of the action tube.

one to one one to many many to one many to many many to many

§| RR N [ NEN (NN
] 000 OO0 DOOOD O
T

Figure 11.2: Types of RNN

|-+

Training In order to train our classifier, we have to execute the steps, presented in the first
section, for each video. However, each video has different number of frames and reserves too
much memory in the GPU. In order to deal with this situation and considering there are 4 GPUs
available, we give as input one video per GPU. So we can handle 4 videos simultaneously. This
means that a regular training session takes too much time for just 1 epoch.

The solution we came with, is to precompute the features for both foreground and background
video tubes, and then to feed those features to our classifier for training it in order to discriminate
classes. This solution includes the following steps:

1. At first, we extract only groundtruth action tubes’ features. Also we extract feature
maps from background action tubes, which are double the number of groundtruth action
tubes. We chose this ratio between the number of positive and negative tubes inspired
by Yang et al. 2017, in which it has 25% ratio between foreground and background rois
and chooses 128 roi in total. Respectively, we chose a little bigger ratio because we have
only 1 groundtruth video tube in each video. So, for each video we got 3 action tubes in
total, 1 for positive and 2 for background. We considered background tubes those whose
overlap scores with groundtruth tubes are > 0.1 and < 0.3. Of course, in order to get those
action tubes,we use a pre-trained TPN to generate Tols for each video segment and then
our proposed connection algorithm for linking proposed Tols. Finally, we get each action
tube’s corresponding feature map using 3D RoiAlign

2. After extracting those features, we trained both Linear and RNN classifiers. The Linear
classifier needs a fixed input size, so we used a pooling function in the dimension of the
number of videos. So, at first we had a feature map of 3,512,16 dimensions and then we get
as output a feature maps of 512,16 dimensions. We experimented using both max and avg
pooling as shown at Table ??7. For the RNN classifier, we do not use any pooling function
before feeding it.

In order to train our classifiers, we use Cross-Entropy Loss as training loss function.
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Validation Validation stage includes using both pre-trained TPN and classifier. So, for each
video, we get classification scores for proposed action tubes. Most approaches usually consider a
confidence score threshold for considering an action tube as foreground. However, we don’t use
any confidence score. On the contrary, because we know that JHMDB has trimmed videos with
only 1 performed action, we just consider the best-scoring tube as our prediction.

. . mAP
Classifier | Pooling 0.5 0.4 0.3
Linear mean 14.18 19.81  20.02
max 13.67 16.46  17.02
RNN - 113  14.14 14.84

Table 11.1: First classification results using Linear and RNN classifiers

Table 77 shows first classification results, which are not very good. The only useful deduction
that we can come with, using above results is that, avg pooling method outclass max pooling.
So, for all the rest classifications using Linear classifier, we use avg pooling before classification
stage.

11.3 Support Vector Machine (SVM)

SVMs are classifiers defined by a separating hyper-plane between trained data in a N-
dimensional space. The main advantage of using a SVM is that can get very good classification
results when we have few data available.

The use of SVM is inspired from Girshick [2015| and it is trained using hard negative mining.
This means that we have 1 classifier per class which has only 2 labels, positive and negative. We
mark as positive the feature maps of the groundtruth action, and as negative groundtruth actions
from other classes, and feature maps from background classes. As we know, SVM is driven by
small number of examples near decision boundary. Our goal is to find a set of negatives that are
the closest to the separating hyper-plane. So in each iteration, we update this set of negatives
adding those which our SVM didn’t perform very well. Each SVM is trained independently.

SVM code is take from Microsoft’s Azure github page in which there is an implementation of
Fast RCNN using a SVM classifier. We didn’t modify its parameters which means that it has a
linear kernel, uses L2-norm as penalty and L1-norm as loss during training. Training procedure
starts with randomly picking 100 videos in order to calculate feature’s scale. After that, each
svm is provided by positive samples’ feature maps and network looks for hard negatives for each
class’ svm. We consider as hard-negatives the tubes that got confidence score > —1.0 during
classification, and we add them to svim’s samples. When we gather hard-negatives whose number
is bigger than 500 or 1000 (depending on the approach) we retrain the class’ SVM and remove
samples with new score < —1.0.

This whole process makes the choice of the negatives a crucial factor. In order to find the
best policy, we came with 5 different cases to consider as negatives:

1. Negatives are other classes’ positives and all the background tubes
2. Negatives are only all the background videos
3. Negatives are only other classes’ positives

4. Negatives are other classes’ positives and background tubes taken only from videos that
contain a positive tube


https://github.com/Azure/ObjectDetectionUsingCntk
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5. Negatives are only background tubes taken from videos that contain a positive tube

On top of that, we use 2 pooling functions in order to have a fixed input size.

In the next tables, we show our architecture’s mAP performance when we follow each one of
the above policies. Also, we experimented for 2 feature maps, (64,8,7,7) and (256,8,7,7) where
8 equals with the sample duration. Both feature maps were extracted by using 3D RoiAlign
procedure from feature maps with dimensions (64,8,28,28) and (256,8,7,7) respectively (in the
second case, we just add zeros in the feature map outsize from the bounding boxes for each
frame). Table ?? contains the first classification results. At first column we have the dimensions
of feature maps before pooling function, where k = 1,2,..5 . At second column we have feature
maps’ dimensions after pooling, and at the next 2 column, the type of pooling function and the
policy we followed. Finally in the last 3 columns we have the mAP performance when we have
threshold equal to 0.3, 0.4 and 0.5 respectively. During validation, we keep only the best scoring
tube because we know that we have only 1 action per video.

Dimensions Poolin Tvpe mAP precision
before ‘ after g yp 0.5 0.4 0.3

3.16 4.2 4.4
2.29 2.68 2.86
1.63 3.16 4

2.42 4.83 5.46
0.89 1.12 1.21
1.11 2.35 2.7
2.31 2.62 2.64
1.11 2.35 2.7
1.41 2.76 3.84
0.33 0.51 0.58

11.41 1173 11.73
10.35 10.92 11.89
8.93 9.64 9.94
121 13.04 13.04
5.92 6.92 7.79
22.07 24.4 25.77
14.07 16.56 17.74
14.22 1894 216
21.05 24.63 25.93
11.6  13.92 15.81

(k,64,8,7,7) (1,64,8,7,7) mean

(k,64,8,7,7) (1,64,8,7,7) max

(k,256,8,7,7) | (1,256,8,7,7) | mean

(k,256,8,7,7) | (1,256,8,7,7) | max

Y x| | DN =] O x| | DN ]| O x| W D] | O x| W[ N| =

Table 11.2: Our architecture’s performance using 5 different policies and 2 different feature maps
while pooling in tubes’ dimension. With bold is the best scoring case

From the above results we notice that features map with dimension (256,8,7,7) outperform
in all cases, both for mean and max pooling and for all the policies. Also, we can see that max
pooling outperforms mean pooling in all cases, too. Last but not least, we notice that policies
2, 3 and 5 give us the worst results which means that svin needs both data from other classes
positives and from background tubes.
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11.3.1 Modifying 3D Roi Align

As we mentioned before, we extract from each tube its activation maps using 3D Roi Align
procedure and we set equal to zero the pixels outside of bounding boxes for each frame. We
came with the idea that the environment surrounding the actor sometimes help us determine
the class of the action which is performed. This is base in the idea that 3D Convolutional
Networks use the whole scene in order to classify the action that is performed. We thought to
extend a little each bounding box both in width and height. So, during Roi Align procedure,
after resizing the bounding box into the desired spatial scale ( in our case 1/16 because original
sample size = 112 and resized sample size = 7 ) we increase by 1 both width and height.
According to that if we have a resized bounding box (z1,y1,x2,y2) our new bounding box
becomes (max(0,z; — 0.5),maz(0,y; — 0.5), min(7,x2 + 0.5),min(7,y2 + 0.5)) ( we use min
and maz functions in order to avoid exceeding feature maps’ limits). We just experiment in
policies 1 and 4 for both (256,8,7,7) and (64,8,7,7) feature maps as show in Table 7?

Dimensions Poolin Tvpe mAP precision
before ‘ after g yp 0.3 0.4 0.5

9.75 11.92 13.34
5.74  6.62  7.59
6.46 10.26 10.83
419 6.27  7.52

(k,64,8,7,7) | (1,64,8,7,7) mean

IS Y VARG

(k,64,8,7,7) | (1,64,8,7,7) | max

Table 11.3: Our architecture’s performance using 2 different policies and 2 different pooling
methods using modified Roi Align.

According to Table 7?7, modified Roi Align doesn’t improve mAP performance. On the
contrary, it reduces it. However, the gap between those 2 approaches is small, so we don’t
abandon this idea, because, for different approaches, modified Roi Align may outclass regular
Roi Align.

11.3.2 Temporal pooling

After getting first results, we implement a temporal pooling function inspired from Hou,
Chen, and Shah [2017. We need a fixed input size for the SVM. However, our tubes’ temporal
stride varies from 2 to 5, because a video lasting 15 frames is consisted of 2 Tols and a video of 40
frames is consisted of 5. So we use as fixed temporal pooling equal with 2. As pooling function
we use 3D max pooling, one for each filter of the feature map. So for example, for an action tube
with 4 consecutive Tols, we have (4,256,8,7,7) as feature size. We separate the feature map
into 2 groups using linspace function and we reshape the feature map into (256, k,8,7,7) where
k is the size of each group. After using 3D max pooling, we get a feature map with dimensions
(256,8,7,7), so we concat them and finally get feature maps with size of (2,256,8,7,7). In
this case we didn’t experiment with feature maps with size (64,8,7,7) because they wouldn’t
performed better than feature maps with size (256,8,7,7) as noticed from the previous section.

We experiment using a SVM classifier for training policies 1 and 4 and using both regular
and modifier Roi Align. The performance results are presented at Table ?77.




11.5. ADDING MORE GROUNDTRUTH TUBES 141

Dimensions Poolin Tvpe mAP precision
before ‘ after g yp 0.5 0.4 0.3

2497 2691 29.11
23.27 2596 28.25
7.01  9.69 10.52
5.5 7.25  8.99

RoiAlign
k,256,8,7,7 | 2,256,8,7,7

e e

mod RoiAlign

Table 11.4: mAP results using temporal pooling for both RoiAlign approaches

Comparing Tables 7?7 and 7?7, we clearly notice that we get better results when using temporal
pooling. Also, the difference between regular Roi Align and modified Roi Align become much
bigger than previously, so this makes us abandon the idea of modified Roi Align. So, the rest
section, we only experiment using regular Roi Align.

11.4 Increasing sample duration to 16 frames

Next, we though that a good idea would be to increase the sample duration from 8 frames to
16 frames. We experiment both using and not using temporal pooling, again for policies 1 and
4. Results are included at table ?7?.

Dimensions Temporal Tvpe mAP precision
before ‘ after Pooling yp 0.5 0.4 0.3
1 23.4  27.57 28.65
k,256,16,7,7 | 1,256,16,7,7 No 1 597 96,05 98.0%
1 21.12  24.07 24.36
k,256,16,7,7 | 2,256,16,7,7 Yes 7 1836 2300 0575

Table 11.5: mAP results for policies 1,4 for sample duration = 16

As shown at Table 7?7, we get better performance when we don’t use temporal pooling, fact
that is unexpected. However, the difference between those performances is about 2%. Probably,
this is caused by the fact that, in the temporal pooling approach, SVM classifier has to train
too many parameters when it uses temporal pooling, on the contrary with the approach not
using temporal pooling, in which SVM has to train half the number of parameters. Furthermore,
comparing above results with results shown at Table 7?7, we can see that we get about the same
results for both approaches. So, we choose to keep using approach with sample duration equal
with 8. That’s because, we don’t have to use too much memory during training and validation.

11.5 Adding more groundtruth tubes

The previous results came from when we train classifiers using only 1 groundtruth action tube
and 2 background. We thought that we should experiment with the number of foreground action
tubes and the ratio between foreground and background tubes because in previous approaches
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these numbers were a little arbitrary. So, we choose to train our previous classifiers using 2, 4
and 8 foreground tubes and a ratio of 2:3, 1:2, 1:3, and 1:4 between the number of foreground
tubes and the total number of both foreground and background tubes.

Firstly, we train the RNN classifier using feature maps with dimensions (256,8,7,7) and mAP
performance is presented at Table ?? for overlap threshold equal to 0.5, 0.4 and 0.3 .

mAP

F. map FG tubes | Total tubes 05 04 0.3
1 3 11.3  14.14 14.84

3 1.96 5.07 7.27

9 4 3 5.03 5.77

(k,256,8,7,7) 6 1.34 3.89 4.49
8 0.77 1.51 2.72

6 13.23 21.74 254

4 8 20.73  28.25  29.50

12 16.55 24.35 25.22

16 20.11  25.50 27.62

12 13.82  19.93 22.80

3 16 15.47 23.08 24.19

24 15.88 23.44 24.48

32 12.66 23.50 25.61

Table 11.6: RNN results

According to Table 77, firstly we can see that increasing the number of foreground tubes
from 1 to 2 leads to reduce rapidly mAP performance. But, when we set foreground tubes equal
to 4 we get better results. On top of that, we get best performance when the ratio is equal to
1:2 and 1:4. Finally, when we set the number of foreground tubes equal to 8, performance gets
slightly better comparing with the initial conditions (1 foreground action tube and 3 in total)
but, this situation doesn’t get us the best results.

Next, it’s time to experiment using the Linear classifier. We use again the same cases like we
did for RNN classification. As mentioned before, we need a pooling method before classification
step. According to Table 7?7, avg pooling method results in better mAP performance than max
pooling, so we use avg pooling for all following cases. Results are included at Table 77.

mAP
F. map FG tubes | Total tubes 05 0.4 0.3

1 3 14.18 19.81 20.02

3 12.68 13.38 15.14

9 4 11.5 14.95 16.22

(k,256,8,7,7) 6 10.74 13.36 15.18
8 8.00 9.83 11.17

6 15 17.55 19.39

4 8 17.04 20.12 22.07

12 1757 199  21.88

16 14.24 1724 17.95
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12 1791 22,51 24.62
8 16 16.76  20.34 22.72
24 17.61 19.12 2448
32 14.45 18.07 19.14

Table 11.7: Linear results

First of all, after considering results presented at both Tables 7?7 and 77, it becomes clear
that when we set the number of foreground tubes equal to 2, for both case, we get worse results
that the initial. This probably is due to the fact that we increase also the number of background
tubes for cases when ratio is 1:2, 1:3 and 1:4 resulting in considering more proposed tubes as
background tubes. On the other hand when we set ratio equal to 2:3, instead of considering most
proposed action tubes as background, classifiers classify them as a specific action class, which
means there is an overfitting situation. So, although we think that we shouldn’t investigate any
more for cases with 2 foreground action tubes, we will train our SVM classifier using 2 foreground
tubes and all the aforementioned ratio because we want to be sure about our assumption. On
the other hand we notice that using 4 or 8 foreground tubes both get us better results than the
initial results. The best results come when ratio between foreground and total tubes is 1:3 for
both cases. Furthermore, we get good results for ratios 2:3 and 1:2, and we get the worst while
using ratio 1:4. This is caused probably from the big number of background tubes comparing
with the one of foreground tubes.

As mentioned before, we train SVM classifier using aforementioned cases only for policy 1
because it gives us the best results for all previous cases. Classification performance using mAP
metric is shown at Table ?7.

mAP
F. map |FG tubes|Total tubes 05 04 03
1 3 24.97 26.91 29.11
3 13.87 18.74 21.29
9 4 14.21 19.67 21.75
6 12.88 18.62 21.59
(2,256,8,7,7) 8 12.66 18.7 21.97
6 25.04 26.91 27.82
4 8 24.34 25.67 26.34
12 23.47 25.31 25.9
16 21.94 23.55 24.23
12 24.83 27.13 27.46
8 16 23.97 26.38 26.94
24 24.17 26.24 26.76
32 24.17 26.24 26.76

Table 11.8: SVM results

Results shows us some interesting facts. Firstly, it confirms our assumption that our network
is unable to train well with only 2 foreground tubes, so from now on, we will investigate training
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situations using 4 or 8 foreground action tube during training. Also, a strange fact occurs, which
is that we get almost the same results with the results obtained for using policy 1, only one
foreground tube, 3 in total and temporal pooling. This is probably because during calculation
of feature scale, during training stage, we don’t get such good sample set of video like we did
during aforementioned situation. But we think that it is better to keep testing using 4 or 8
foreground action tubes. Last but not least, it is clear that we get the best result when we
have ratio 2:3 between number of foreground and total action tubes. Also, it is more preferable
to have 4 foreground action tubes instead of 8. This means that given too many action tubes
confuse SVM classifier, so it fails to perform well.

11.5.1 Increasing again sample duration (only for RNN and Linear)

Table 7?7 showed that SVM classifier gets about the same performance for both sample
durations 8 and 16 frames. Triggered by this fact, we trained RNN and Linear classifiers for
sample duration equal to 16 frames. Table ?? shows RNN’s mAP performance and Table 77
Linear’s mAP performance. We started experimenting with RNN classifier because it performed
better than Linear classifier previously. As mentioned before, we experiment using 4 or 8
foreground tubes and ratios 2:3, 1:2, 1:3 and 1:4 between the number of foreground and total
action tubes provided.

mAP

FG tubes | Total tubes 05 04 0.3
6 7.94 13.51 14.95
4 8 10.88 14.02 14.74
12 14.05 19.23  20.99
16 11.69 15.77 16.87
12 10.47 15.06 19.93
8 16 12.29 19.51 23.11
24 12.85 18.35 20.00

32 9.38 14.33 16

Table 11.9: RNN results for sample duration equal to 16

Comparing results from Table ?? and previous table ?? one by one, it is clear that RNN
outperforms when sample duration equals with 8 frames. This results was expected, because,
the increase of sample duration reduce the number of video segments needed for each video. So,
this means that RNN has to classify sequences with 3 video segments at the most, which is more
difficult that classifying bigger sequence like previously.

Next, we experiment using Linear classifier for the same cases like RNN’s.

mAP
FG tubes | Total tubes 05 04 0.3
6 13.79 19.75 23.63
4 8 15.11 19.78 21.14
12 11.39 15.74 18.15
16 13.62 16.11 18.15
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12 10.63 1937  21.65
3 16 12.98 17.52 19.10
24 12.92 1764 19.95
32 11.51 13.98 14.82

Table 11.10: Linear results for sample duration equal to 16

In this case, results from table 7?7 are worse than those presented at Table 77, with the
difference being about 2%. So, after considering both cases, it becomes clear that it is preferable
to experiment using sample duration equal to 8 and not to increase it to 16 frames.

11.6 MultiLayer Perceptron (MLP)

=-==]m=
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Figure 11.3: Structure of the MLP classifier

In previous sections we used classic classifiers like Linear, RNN and SVM. Last but not least,
another widely category of classifiers is Multilayer Perceptron (MLP) classifiers. MLP is a class
of feedforward Neural Network, so its function is described in chapter 2. So, we design a MLP
which is shown in Figure ?? for sample duration equal to 8, and is described below:

o At first, after 3D Roi align and for sample duration = 8, we get an activation map
of (k,256,8,7,7) where k is the number of linked Tols. Inspired by previous sections,
we perform temporal pooling followed by a max pooling operation in sample duration’s
dimension. So, we now have an activation maps with dimensions equal to (2,256,7,7),
which we reshape it into (256, 2,7, 7) which we feed to layers extracted from the last stage of
ResNet34. This stages includes 3 Residual Layers with stride equal to 2 in all 3 dimensions
and output number of filters equal to 512.

e After Residual Layers, we perform avg pooling for x-y dimensions. So we get as output
activation maps with dimension size equal to (512,). Finally, we feed these feature maps
to a linear layer in order to get class confidence score, after applying soft-max function.
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11.6.1 Regular training

According to figure 7?7, the trainable parts of our network is TPN and the classifier. As
mentioned before, training code requires running only one video per GPU, because, videos have
different duration. For previous approaches we came with the idea of pre-calculating video
features and then training only the classifier. However, for this step, we normally trained our
in order to get classification results. Of course, we used a pre-trained TPN, whose layers were
frozen in order not to be trained. We tried to explore different ratios between the number of
foreground tubes and the total number of tubes per video. First 3 simulations included fixed
number of total tubes and variable ratio between the number of foreground and background
tubes. We started using only foreground tubes, which means 32 out 32 tubes are foreground,
then half of the proposed tubes aka 16 out of 32 and finally less than half, namely 14 out of 32.
After that, we experiment using a fixed number of foreground tubes and variable number of total
tubes, which are 16, 24 and 32. The performance results are presented at Table 77.

mAP
FG tubes | Total tubes 05 04 0.3
32 1.28 1.73 1.87
16 32 3.98 4.38 4.38
14 0.40 0.40 0.40
16 9.41 12.59 14.61
8 24 12.32  15.53 18.57
32 7.16  10.92 13.00

Table 11.11: MLP’s mAP performance for regular training procedure

The results show that when first 3 approaches give us very bad results. Comparing them
with the rest 3, we came with the conclusion that we need at the most 8 foreground tubes,
even thought the ratio between the number of foreground and background is in favor the second
one. Probably, too many foreground action tubes make our architecture overfitted so unable to
generalize.

11.6.2 Extract features

As previously performed, we trained MLP classifier using pre-computed feature maps. These
feature maps include both foreground and background action tubes. Based on the conclusions
made in previous sections, we will train our classifier only for number of foreground tubes equal
to 4 and 8. Furthermore, we will train it for 3 different ratios between the number of foreground
and background action tubes, which are 1:1, 1:2 and 1:3. Table ?? shows these cases and their
respective mAP performance during validation step.

mAP
FG tubes | Total tubes 05 04 0.3
6 4,37 8,54 10,12
4 8 5.89 9.54 13.61
12 9.51 12.8 14.6
16 6.80 13.17  14.67




11.7. ADDING NMS ALGORITHM 147

12 8,62 12,32 14,74
8 16 8.49 13.94 15.09
24 6.72 12.17 15.30
32 13.27 17.64 18.97

Table 11.12: mAP results for MLP trained using extracted features

Comparing results from Tables 7?7 and 77, it is clear we need 8 foreground tubes in order
MLP classifier to perform well. However, it isn’t very clear which of these two proposed training
approaches is better, but if we have to decide one method, we would choose using pre-extracted
features training. This approach manages to achieve the best results, and especially when we
have 8 foreground action tubes and 32 in total. Also, comparing methods using 4 or 8 positive
action tubes, it is clear that we would prefer using 8 generally. However, it’s not clear which
ratio is better because, we get best results when we have 8 foreground action tubes and ratio 1:4
while we get best results when ratio is 1:3 having 4 positive action tubes.

11.7 Adding nms algorithm

After getting previous classification results, we came with the idea that a lot of proposed
action tubes overlap spatiotemporally like presented in chapter 4, for the first linking algorithm.
On top of that, even though, at last, we will keep only the best scoring action tube, maybe, our
Network sometimes doesn’t score the best overlapping action tube but a neighbor, which should
have been removed. So, similar with chapter 4, we added NMS algorithm before classification
stage in order to remove unnecessary overlapping action tubes. The structure of this approach
is presented at Figure ?7. So, we run again validation stage for our classifiers and results are
presented at Tables 7?7, 7?7, 77 and 77 for SVM, RNN, Linear and MLP classifiers respectively.

We start experimenting using SVM classifier, whose mAP performance is presented at Table
7?7 when we use NMS algorithm.

mAP
FG tubes | Total tubes 0.5 04 0.3
6 21.42 24.3 25.11
4 8 21.3 24.06 24.85
12 21.73  24.19 25.04
16 21.11  23.98 24.84
12 20.47 22.55 23.41
3 16 21.21  23.89 2497
24 21.71 23.8 24.82
32 21.43  23.5  24.52

Table 11.13: mAP results for SVM classifier after adding NMS algorithm

According to Table 7?7 and taking Table’s 7?7 results into consideration, it is clear that mAP
performance decreases while using NMS algorithm. We run only for case with foreground tubes
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Figure 11.4: Structure of the network with NMS

equal to 4 or 8 and we didn’t experiment using initial ratio, because we think that we are going
to get the same attitude. This is probably because NMS algorithm removes some overlapping
action tubes, so SVM classifier doesn’t get the right action tubes for classifying them.

Next, we experiment using RNN classifier for sample duration equal to 8 frames per video
segment. Results are included at Table 77

mAP
FG tubes | Total tubes 05 04 03
6 13.27  26.12  30.69
4 8 16.06 25.81 27.63
12 13.93 2248 23.99
16 1724 26.44 28.36
12 2 5.11 7.75
3 16 11.11  20.98 23.97
24 13.84 22.77 24.31
32 12.74  21.49 25.39
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Table 11.14: mAP results for RNN classifier after adding NMS algorithm

Alongside with SVM’s mAP performances, RNN doesn’t achieve any improvement in its mAP
performance when adding NMS algorithm. On the contrary, it reduce about 5% in some cases,
so it is more preferable to use ActionNet’s architecture without NMS algorithm included while
using RNN as classifier.

Following RNN, we investigate the same situations with Linear classify instead of RNN. Its
performance is presented at Table ?7.

mAP
FG tubes | Total tubes 0.5 0.4 0.3
6 12.59 1491 17.79
4 8 15.89 21.92 23.28
12 13.23  19.72 23.17
16 15.07 17.38 18.27
12 18.88 24.37 26.72
3 16 15.42 2231 24.70
24 15.60 19.71 21.08
32 16.1 19.99 2147

Table 11.15: mAP results for Linear classifier after adding NMS algorithm

On the contrary with SVM and RNN’s performances, Linear’s mAP performance is getting
better when adding NMS algorithm, comparing results presented at Tables 7?7 and ?7. This is
probably because Linear classifier gets now less proposed action tubes comparing with previous
approach. So, now it is less likely to misclassify an action tube, probably considering it as
foreground when actually is a background action tube. Even though its performance increased,
it doesn’t achieve our best results, fact which may corroborate our previous claim. Last but not
least, we need to experiment using MLP classifier in order to determine if NMS algorithm is
needed during classification. The results are presented at Table ?77.

mAP
FG tubes | Total tubes 05 04 03
6 3.66 7.23 9.43
4 8 3.43  8.17 12.77
12 6.32 11.26 16.15
16 4.82 11.38 15.85
12 592 1242 15.81
3 16 6 12.55 14.66
24 4.73 11.33 15.25
32 9.67 14.82 16.74

Table 11.16: mAP results for MLP classifier after adding NMS algorithm



150 CHAPTER 11. CLASSIFICATION STAGE

Finally, comparing results from Tables 7?7 and 7?7, again adding NMS algorithm approach
decreases mAP performance. Consequently, after considering all situations it is clear that NMS
algorithm doesn’t contribute at the improvement of Network’s mAP performance, but, on the
contrary, it reduces it. So, as a final comment, it is more preferable not to uses it, except when
we use Linear classifier for classification.

11.7.1 General comments

To sum up, in this section we tried to find the most suitable classifier for achieve good
classification results based on mAP metric. It is clear that when using a SVM classifier, which
uses temporal pooling in order to have a fix-size input, we get the best results. The most suitable
method for training is using about 4 foreground action tubes and only 2 background which using
both background action tubes and action tubes from other classes as hard-negatives.

11.8 Classifying dataset UCF-101

11.8.1 Introduction

During previous section we explore different classification methods using several classifiers.
On top of that, it became clear how important is generating good proposal considering the
situation where we added NMS algorithm. NMS algorithm reduced the number of proposed
action tubes, so most of the classifiers failed to improve their performance. Considering recall
and MABO performances presented in chapter 4, it is clear that our network would fail to
recognize most of the groundtruth spatiotemporal action tubes and correctly classifying them.
However, in most cases, MABO performance got score about 92-94%. So, we came with the
idea of rather than performing spatiotemporal localization and classification, and getting very
bad classification results, for the dataset UCF-101, we performed only temporal localization and
explored our network’s potential. Temporal localization means that our network tries to detect
the video segments in which an action is performed, and simultaneously determine the class of
this performed action.

11.8.2 Only temporal classification

As presented in chapter 4, our connection algorithm is able to get good temporal recall and
MABO performance. In order to temporally localize action in videos, we use only the temporal
information containing in the proposed action tubes, which means the first and the last frame of
the action tube. We will classify the proposed action tubes without performing spatiotemporal
localization, but only temporally. Although we don’t use the extracted bounding boxes for
classification, we take advantage of the spatial information in order to perform better temporal
localization. Intuitively, that’s because, in order to extract the action tubes, we consider the
spatial overlap between the connected Tols . This aforementioned approach includes the following
steps:

1. First, we use TPN in order to propose spatiotemporal Tols, just like we did in previous
approaches. Then, we link those Tols based on the proposed algorithm in the chapter
4, using the spatiotemporal NMS algorithm with threshold equal to 0.9, for removing
overlapping action tubes.
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2. Nexts steps are exactly the same as previous classification approaches. However, in this
approach, we don’t use any kind of Roi Align in order to extract action tubes’ feature
maps. On the contrary, for all the proposed action tubes, we find their duration, aka
their first and their last frame. After that, we perform temporal NMS in order to remove
overlapping action tubes. The only difference between spatiotemporal and temporal nms
is the overlapping criterion, which is used. For spatiotemporal nms, we use spatiotemporal
IoU and respectively, for temporal we use the temporal IoU as presented in chapter 2.

3. Of course, the proposed action tubes last more that 16 frames, which we set as sample
duration. So, we separate action tubes into video clips lasting 16 frames (like our sample
duration). These video segments are fed, again at a 3D ResNet34 (Hara, Kataoka, and
Satoh [2018), which this time, we don’t use only for feature extraction, but also, for
classification for each video segment.

4. So, for each video clip, for each class we get a confidence score after performing softmax
operation. Finally, we get average confidence score for each class, and we consider the
best-scoring class as the class label of each action tube. Of course, some action tubes may
not contain any action, so we set a confidence score for separate foreground action tubes
with the background.

Training The only trainable part of this architecture is the ResNet34. We use a pre-trained
TPN as presented in chapter 4. ResNet34 training procedure is based on the code given by Hara,
Kataoka, and Satoh 2018, We modified it in order to be able to be trained for dataset UCF-101,
only for the 24 classes, for which there are spatiotemporal annotations and our TPN is trained.

Validation Based on the aforementioned steps, it is clear that the parameters that can be
modified are temporal NMS’ threshold and the confidence threshold for deciding if an action is

contained or not. All the different combinations used during validation are presented at Table
??

mAP

NMS thresh | Conf thresh 05 04 03
0.6 0.3 0.54 0.64

0.9 0.75 0.25 045 0.55
0.85 0.2 0.38 0.49

0.6 0.63 1.02 1.27

0.7 0.75 0.5 0.84 1.05
0.85 0.4 0.68 0.89

0.6 096 1.21 1.75

0.5 0.75 0.63 093 1.38
0.85 0.57 0.72  1.03

0.6 1.07 152 2.03

0.4 0.75 0.79 1.18 1.63
0.85 0.71 098 1.33

0.6 1.1 1.66 2.53

0.3 0.75 0.93 1.39 2.08
0.85 0.81 1.12 1.6
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0.6 0.84 138 217
0.2 0.75 0.73 113 1.78
0.85 0.65 0.81 1.31

Table 11.17: UCF-101’s temporal localization mAP performance

Recall
NMS thresh 0.9 0.8 0.7 MABO
0.9 0.7361 0.8935 0.9422 0.9138130172
0.7 0.3194 0.6875 0.9293 0.8412186326
0.5 0.1757 0.3331  0.6281 0.7471525429
0.4 0.1483 0.2829  0.4707 0.6986400756
0.3 0.111  0.2038 0.3848 0.6429232202
0.2 0.1217 0.2000 0.3163 | 0.5769587340803654

Table 11.18: UCF-101’s temporal localization recall and MABO performances

According to Table ??, mAP performance for temporal localization and classification is very
bad. The best performance is about 2%, a score which is very low. Comparing these results
with results shown at Table 7?7, we deduce that our method is not at all efficient. Even though
mAP results increase slightly, recall and MABO performance decrease rapidly. Of course, this
result is anticipated because, by decreasing NMS threshold, the number of rejected action tubes
is increased.

We tried another approach, which applies NMS algorithm after classification stage, and not
before it like we did previously. Also, we noticed in previous results that in most cases, we get
these low performances because of the number of false positives, which don’t get removed during
NMS procedure. To be more specific, Table 7?7 shows all the detected true and false positives
when we set NMS threshold equal to 0.2, mAP overlap threshold equal to 0.3 and confidence
threshold equal to 0.6 for both aforementioned approaches.

Appr 1|Appr 2 Appr 1|Appr 2
Class TP FP |TP FP‘ Class TP FP |TP FP
Basketball 5 279| 6 403 | BasketballDunk 7T 7 |12 13
Biking 0 3|0 5 CliffDiving 11 55|11 1
CricketBowling | 0 0 [10 75 Diving 20 189 |23 272
Fencing 11 222|125 336 | FloorGymnastics | 2 86 | 6 131
GolfSwing 4 51|16 78 Riding 0 33|4 58
IceDancing 8 29|16 38 LongJump 1 24|16 43
PoleVault 0 2029 296 RopeClimbing 1 24|14 43
SalsaSpin 3 158| 5 237 SkateBoarding 0 100 13
Skiing 0 0|0 O Skijet 1 2716 43
SoccerJuggling | 3 94 | 1 153 Surfing 11 102|23 159
TennisSwing 0 125| 0 166 |TrampolineJumping| 4 18 | 4 32
VolleyballSpiking| 20 704 | 20 1044| WalkingWithDog | 0 5 | 0 9
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Table 11.19: Comparing TP and FP for both approaches

Considering those two facts we came with the following solution. In previous approach, we
used NMS algorithm based on the connection scores obtained from linking algorithm, so we
removed those which overlap with high-scoring tubes. In our new approach, we firstly remove
action tubes with same temporal limits, in order to get unique temporal action tubes. Then,
we classify all the proposed action tubes exactly like we did in step 3 previously. After that,
we perform temporal NMS by using the confidence scores extracted by the last layer of the 3D
ResNet34 and finally we keep those which their confidence score is over a predefined threshold.

mAP MABO

NMS thresh|Conf thresh 05 04 03
0.6 0.31 0.54 0.65

0.9 0.75 0.26 0.46 0.55|0.9073251461121519
0.85 0.2 0.39 0.49
0.6 0.66 0.95 1.22

0.7 0.75 0.55 0.80 1.01| 0.833992951972403
0.85 0.41 0.67 0.87
0.6 0.98 1.43 1.63

0.5 0.75 0.75 1.14 1.29|0.7404971333964243
0.85 0.64 0.92 1.04
0.6 1.19 1.73 2.15

0.4 0.75 0.9 1.35 1.63|0.6823923696583215
0.85 0.79 1.16 1.38
0.6 1.12 1.85 2.23

0.3 0.75 0.96 1.54 1.7 |0.6068219177169945
0.85 0.83 1.28 1.43
0.6 2.05 2.68 3.7

0.2 0.75 1.61 2.17 3 ]0.5243533655334142
0.85 1.51 1.88 2.54

Table 11.20: UCF-101’s temporal localization mAP performance

Comparing Tables 7?7 and 77?7, we get about the same results for overlap thresholds 0.9, 0.7,
0.5, 0.4 and 0.3 . But for overlap threshold 0.2 we notice that mAP performance is improved only
about 1%. Alongside with that, we noticed that recall performance is lower now than previously,
a fact that is undesirable. Those two facts made us think classification procedure.

After looking more carefully the results, we noticed that using the average score obtained
from each video segment for final classification score is a very bad choice. That’s because, this
approach, firstly, doen’t highlight the differences between classes in each video segment and
secondly, gives a bigger score for action tubes that have small duration. That’s the reason, using
confidence score reduces more temporal recall and MABO performance. As a result, we use the
sum of confidence scores per action class obtained from each video segment.
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Considering aforementioned results, we experiment using only NMS threshold equal to 0.2
and 0.1 because, mAP performance was very low in higher NMS threshold’s values so these cases
are not worth being considered. Table ?? shows mAP results and MABO performance of this
method.

mAP MABO

NMS thresh|Conf thresh 05 04 03
0.6 5.57 6.16 7.21

0.2 0.75 4.76 5.23 6.12|0.7455353939
0.85 4.3 4.76 5.61
0.6 5,51 6.11 7.22

0.1 0.75 4.76 5.23 6.13|0.6954217834
0.85 4.3 4.76 5.61

Table 11.21: UCF-101’s temporal localization mAP performance calculating sum of confidence
scores

The results appearing in 77 are very encouraging. FEven though we got about the same MABO
performance, mAP performance has increased significantly.

We changed more our approach using softmax function before calculating confidence scores’
sum, in order to reduce the differences along class scores. We thought that if our classifier
misclassify a video segment, the whole classification procedure is more affected when there in
no softmax operation before calculating the sums. Results from this method are shown in

Table ?77.
mAP MABO
NMS thresh|Conf thresh 05 04 03
0.6 8.37 9.76 11.29
0.2 0.75 8.31 9.68 11.1]0.7455353939
0.85 8.14 9.3 10.68
0.6 8.37 9.69 11.49
0.1 0.75 8.27 9.53 11.27]0.6954217834
0.85 7.92 9.03 10.69

Table 11.22: UCF-101’s temporal localization mAP performance after adding softmax before
calculation the sum

Comparing Tables 7?7 and 77, we noticed that our assumption is correct. Results are improved
using a softmax operation for each video segment’s confidence scores. On top of that, we thought
to change the used classifier in order to achieve better results. Again, we use a 3D ResNet34
classifier, pretrained to Kinetics dataset. We “freeze” the first 3 groups of Layers, so we train the
last group, including 3 Residual Layers plus the final classification Layer. We use Cross-Entropy
loss as loss function and we experiment for both aforementioned approaches. On top of that,
for the second approach, we included cases in which NMS threshold is equal to 0.3 and 0.4.
Performances of mAP and MABO are presented in Tables 7?7 and 7?7. Table 77 contations mAP
and MABO performances when not using softmax before calculating sums and table 77 contains
these performances when using it.
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mAP MABO
NMS thresh|Conf thresh 05 04 03
0.6 10.47 18.05 24
0.2 0.75 10.46 18.01 23.95| 0.558332305
0.85 10.41 17.95 23.88
0.6 8.86 17.42 25.81
0.1 0.75 8.86 17.42 25.81(0.4977558269
0.85 8.81 17.36 25.74

Table 11.23: UCF-101’s temporal localization mAP performance using new classifier without
softmax before the calculation of the sums

mAP MABO

NMS thresh|Conf thresh 05 04 03
0.6 49.28 54.34 58.89

0.4 0.75 46.43 50.31 54.28]0.8138344861
0.85 45.2 48.77 52.39
0.6 50.01 54.29 59.3

0.3 0.75 46.79 49.98 54.15(0.7888980887
0.85 45.43 48.33 52.06
0.6 48.78 53.11 57.93

0.2 0.75 45.93 49.29 53.38(0.7602580204
0.85 44.44 47.48 51.2
0.6 48.49 52.67 57.4

0.1 0.75 45.97 49.32 53.37(0.7050217081
0.85 44.46 47.48 51.2
0.6 48.58 52.66 57.28

0.01 0.75 46.06 49.31 53.34| 0.675086919
0.85 44.54 47.53 51.25

Table 11.24: UCF-101’s temporal localization mAP performance using new classifier with
softmax before the calculation of the sums

Comparing Tables 7?7, 7?7 to 7?7 and 77, it is clear that the new classifier outperforms from
the previous one. That means that it is more preferable to train only some layers of a pretrained
classifier instead of training it from scratch. Comparing now, tables 7?7 with 7?7, we confirm that
using softmax operation before calculating sums results in better performance. On top of that,
we get better mAP and MABO performance when using bigger threshold than 0.2, as we did
previously. Our best results, which are 50%, are when NMS threshold is 0.3 and confidence score
is 0.6.
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Chapter 12

Conclusion - Future work

12.1 Conclusion

In this thesis, we explored the problem of action recognition and localization. We design a
network based on the approach proposed by Hou, Chen, and Shah [2017] combined with some
elements presented by Girdhar et al. 2018, Ren et al. 2017, Girshick [2015, Hu et al. |2019| and
Hara, Kataoka, and Satoh [2018|

We wrote a pytorch implementation, expanding code taken only from Yang et al. 2017
Furthermore, we wrote our own code using some CUDA functions designed by us (like calculating
connection scores, modifying tubes etc).

We designed the Tube Proposal Network for proposing Tols in given video segments, inspired
by Faster R-CNN’s RPN. We designed it using general anchors and not dataset specific anchors.
This means that we try to generalize our approach for several datasets, on the contrary with
the approach proposed by Girdhar et al. [2018], in which it uses the most frequently appearing
anchors for each dataset.

On top of that, we designed a naive connection algorithm for connecting proposed Tols based
on the algorithm proposed by Girdhar et al. 2018/ In our approach, we used the same scoring
policy, which is a combination between actioness and overlapping scores. The main difference
is that we avoided to calculate all the possible combinations using an updatable threshold. We,
also, tried another connection algorithm inspired by Hu et al.|2019, However, our implementation
wasn’t very good so, we didn’t explore all of its potentials.

Finally, we explored several classifiers for the classification stage of our network, which are a
RNN, an SVM and an MLP. We used an implementation taken from Fast RCNN for the SVM
classifier, which included hard negatives mining training procedure. We explored some training
techniques for best classification performance and 2 training approaches for MLP classifier, the
classic one and using pre-extracted features.

12.2 Future work

There is a lot of room for improvement for our network, in order to achieve state-of-the-art
results. The most important are described in the next paragraphs.

Improving TPN proposals We implemented 2 networks for proposing action tubes in a
video segment. We managed to achieve about 63% recall score for sample duration = 16 and

157
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about 80% recall for sample duration = 8. Theses scores show that there is plenty room for
improvement, especially for sample duration = 16. Even though a lot of networks’ architectures
have been explored for regression, a good idea would be to try other networks, not necessarily
inspired by object detection networks like we did. On top of that, adding A factors in training
loss would be a good idea and exploring which is the best approach. So training loss could be
defined as:

L= ZLcls(pivp:) + A Zp:Lreg(tht:) + A2 Zq;Lreg(Cia czk) (12_1)

Furthermore, it would be a good idea to use SSD’s (Liu et al. 2015 proposal network instead of
RPN, in order to compare result. Finally, we could experiment using Feature Pyramid Networks
(Lin et al. [2017)), which could be exteded in 3 dimensions as another feature extractor or some
other type of 3D ResNet.

Changing Connection algorithm In this thesis, another challenge we came was connecting
proposed Tols for proposing action tubes. We implemented a very naive algorithm, which wasn’t
able to give us very good proposals despite the changes we tried to do. We implemented another
connection algorithm which was based on estimationing temporal progress of an action tube and
its overlap with others. Although it also didn’t give us very good proposals, we believe that we
should explore this algorithm’s potential. That’s because it takes advantage of the progress of
the action, which the previous algorithm didn’t.

Explore other classification techniques For classification stage, we experimented mainly
on an SVM classifier for JHMDB dataset and we didn’t get involved with UCF-101 dataset. Our
first goal is to be able to get good classification results for UCF-101 dataset, too. We think
that we should explore UCF-101’s feature maps and techniques applied at feature maps before
classification. In addition, we could try other classification techniques like random forest or
experiment more with RNN classifier for the UCF-101 dataset. Finally, another classification
procedure would be a good idea, like extracting first all the possible action tubes and then using
other network’s features for classification stage.
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