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Abstract

Pipe-routing is ranked among the most important, and at the same time the most time-consuming
activities during the detail-design phase of a ship. Furthermore, it is closely related to a multitude of
other concurrent tasks within the ship, meaning that a less than optimal solution can cause serious
issues during later phases of the design process. The complexity is very high, given the fact that the
configuration of the layout space is highly elaborate, with numerous pipelines, obstacles and spaces
that should remain free for various operational and safety reasons. In the present Diploma Thesis,
automated pipe-routing algorithms are proposed, that go some way towards providing swift and
optimal solution suggestions to the designer, thus effectively cutting down on precious manhours
and improving the efficiency of the whole design procedure. A cell-degeneration method, based on
a combination of surface and solid voxelization techniques, is developed, in order to make the
transition from the continuous space to a three-dimensional cubic grid representation of the target
layout space. Having established the mathematical model of our layout space, two graph constructs
are considered, the standard and the diagonal one, so that the discrete mathematical model can meet
various geometric connectivity constraints. Then a path-finding procedure is initiated based on the
Dijkstra and the A* algorithms. Furthermore, in order to be able to facilitate the incorporation of
directional specifications during the path-finding process, an augmented vertex-split strategy is
devised and implemented. In addition, this extension actively solves the problem of bend in a
resulting path. Last but not least, the position-level and plane-distance weight allocation methods
are introduced, in order to enable the designer to actively manipulate the whereabouts of the
resulting optimal path. A series of test runs on various models of increased layout complexity were
then carried out, in order to demonstrate the efficiency of the proposed methodology. All in all, the
automatic routing result can serve as an optimization guide, that will enable the designer to achieve
better results.



2uvoyn

H dwdwacio oyediaong cwAinvovpyiodv dwktvwv (Pipe-routing) KotatdoGETOL OVOUESO GTIC TTLO
ONUOVTIKEG, Kol GuvApa o xpovoPopes depyacieg mov Aapupdvovv ydpo KOTE TN (AGN TOL
aVOAVTIKOD GYESOGHOV £vOg mhoiov. EmmpocHétwe, n dadikacio avtr| eivon Aueso cuvoedepuévn
pe po TAn0dpa GAL®V dlepyasidv evtdg TOL TAOIOVL, YEYOVOS OV onUoivel OTL 1 TOPOy®YN UN
BéATIoTOV Moemv evoéyeTan va. 00NyNoeL o€ coPapd TPoPANUOTE O EMOUEVES PACELS GYEOOGLOV.
H molvmhokétnta mov yapoktnpilel ) dwdikacio oxedlaong tov IKTLOV VTGOV elval PeYaAn,
dedopévou Tov Ot 1 dtdTaén TV dubécIuwV YOPwV evtog Tov TAOIoL glval eEonpeTikd mepimAok,
pe TANODPU COANVOCE®V , EUTOSIOV Kol Un TPOSRAGIH®Y YOP®V, TOGO Yol AGYOLS GUVTHPLONG
000 Kol acPoieiog. Xty mapovca AWTAOUOTIKY epyacio, TPOTeiveTal 1 avarTTuEn aAyopibumv
Bértiomg oyediaong diktdmv mAoiov, mpokeévoy va dwbel o PEATIOT TTpoTEVOEVT ADoN GE
GUVIOUO YPOVIKO O1oTNUO, HEIOVOVTOG £TGL TIG OMOITOVUEVES avOpOTOdpEg epyoaciog Kot
ALEAVOVTOG TNV OMOTEAEGLOTIKOTNTO NG Oladkaciog oyedioong. Apyikd, ovamtOGCGETOL Lo
puéBodog olaxprromoinomg ywpov (Cell-decomposition), mov Boaciletor o€ TEXVIKES EMUPAVEIOKNG KO
o1epels Yopikng amodounons (Voxelization). H pébodog avtn, kabiotd dvvarr ) petdfoocn amd
TOV GLVEYN OTO JKPLTO YDPO, LE TN HOPPN €VOG TPIGOIACTATOV KLPUKOD TAEYHOTOG TO OToio
ytileton eni Tov YOpPov evdlEEPovTOg pag. ‘Exoviag mAéov tn pobnpotikn poviehomoinon tov
YOPOL OGS, TPOYWPOVUE GTNV Kataokevn ovo ypapwv (Graph), Tov amiol kol Tov dwymviov, ot
01010l TPOGOIdOLY TNV EVVOLL TG YEMUETPIKNG OOUNG OTO HOVTEAO UOG. TN CLVEXELN, EKKIVEITOL
po oladtkacio gvpeong PEATIoTC ddpoung, n oapyn Asttovpyia g omoiag omnpiletal oTovg
unyovicpovs tov adyopumv Dijkstra kow A*. EmimAéov, mpoxeipevov va Kataotel duvatn n Anym
TPOoOLypapadV Katevhvuvong oty dwdkasion emiAvong Ttov TPOoPANUOTOS, VAOTOlEiTOL [
otopmNyK KopPo-dryotoéunong (Vertex-split). Ilépa amd Tic mpodwypapés katevBuvone, 1
TPOTEWVOUEV OLTH GTPATNYIKY], OVTIUETOMILEL OMOTEAEGHATIKA TO TTPOPANua tov yovidov (The
problem of bend) ota amoteléoparta. Télog, mapovsidloviar dvo péBodot amddoong Papovg oTig
aKpég (edges) tov ypaowv, n néBodog emmédov-0éong (Position-level) ko n péBodog andotaong
-emnédov (Plane-distance), 1 gpappoyn tov omoiwv kabiotd €@kt TV duvatdTnTo £vEPYOHS
EMPPONG TOV TEPLOYDV TPOTIUNONG OEAELONG TOV TAPAYOUEVOV OTOTEAECUATOV. TN CUVEXELN,
vAomolovvtor o oelpd  ond  mpocopowwoels  (Test-runs) o poviédo  KAMPOKOOUEVNG
TOAVTAOKOTNTOG, TPOKEWEVOL VO, KATOOEWOEl 1  OMOTEAECUATIKOTNTO TNG TPOTEWOUEVNG
pebodoroyiog oyediaong SKTO®V. ZVUTEPAGUOTIKA, Ol AVGELS, OTMEC OVTEG TPOKLATOVY OO TNV
avtopoatouromuévn péBodo oyedioong mov mpoteivetol, UTOPOHV VO AEITOVPYICOLY MG YVMDUOVES
Beitictomoinong, ot omoiot Bo emTPEYOLV GTOV €KAGTOTE GYESNGTH VO EMTUYEL KOAVTEPO
amoteAéopato oyedioong.
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1. Introduction

1.1. Pipe Routing and applications

A ship could be likened to a living organism, when one takes into consideration the amount of
systems that comprise it, such as Auxiliary systems, Sea water systems, Fresh water systems, Fuel
and Lubricant handling and storage systems etc. The whereabouts, the connectivity and the
arrangement of all components of these systems, and their respective piping apparatus, are decided
and designed during the detail-design phase of the ship design process. The ship-wide routing of
piping in a ship environment is a very delicate, complicated and strenuous work that approximately
accounts for more than half of the total detail-design man-hours!"!. To this very day, most of the
pipe-routing work that needs to be done is executed by individuals, know as Piping Engineers, and
thus the results of pipe design are very highly dependent on the experience and knowledge of these
individuals. As a result, design and time efficiency are seriously undermined, or at best, constrained.
On top of that, many of the other activities of detail-design depend on the resulting pipe routing.

Based on the aforementioned facts, it becomes obvious that a different approach needs to be
adopted when faced with the complex problem of pipe-routing. A switch has to happen, from the
traditional methods, to the development of automatic pipe-routing methods. The widespread use of
3D-CAD systems in the last couple of years, in conjunction with a high demand for extensive
piping retrofits, as a result of a potential Water Ballast Treatment System (WBTS) or Scrubber
System installation, has made it clear that the future of pipe-routing lies with automation. However,
an automatic approach to such a complicated and multifaceted problem is by no means simple, nor
straightforward, as there are lots of restrictions and requirements that have to be met in every pipe-
routing scenario.

1.2. Literature Review

Extensive research has been carried out in the last couple of decades, with many promising results,
which are usually accompanied by new challenges and limitations. As a result, innovative ways to
route pipes automatically have been created. By definition, pipe-routing belongs to the class of
optimization problems. All the algorithms that have been developed over the years, in order to deal
with such problems, utilize techniques that can be categorized in the following three directions:

¢ Deterministic.
* Non-Deterministic (Meta-Heuristic).
¢ Combination of both.

As far as the first direction is concerned, it includes several methods, the most prominent of which
being Lee's algorithm (or Maze algorithm, MA)™, Dijkstra's algorithm®!, and the A* (A Star)
algorithm!!. The main advantage of this approach is that it always produces the best solution, in
case of course one exists. However, there lies a calculation time and extensive RAM memory
occupation trade off. On top of that, applications which include a search space heavily ridden with
obstacles, only make the aforementioned disadvantages all the more obvious. Last but not least, not
many ready made implementations of these algorithms exist in supported software solutions™.

In recent years, Non-Deterministic methods slowly, but steadily, have made their way towards the
field of pipe-routing. Genetic algorithms (GA)!HHEP1" Ant colony optimization algorithms (ACO)
0L and Particle swarm optimization algorithms (PSO)!2HEM4HIS) gre but a few of the methods
that fall into this category. All of them use stochastic procedures in order to tackle the complex
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problem of pipe-routing, thus resulting into lower memory RAM occupation and consequently
faster result production. While this may be true, these methods do not always produce the best
solution, even if one exists. Furthermore, use of stochastic methods in complex environments
makes it even more difficult for them to achieve high standard results.

In recent years, a combination of both methods is being favored by many, as it incorporates the
optimal solution finding capability of Deterministic methods, and the faster computational times
and lower RAM occupation combination of Meta-Heuristic methods into one package, thus
amplifying the advantages of both methods while trying to eradicate the disadvantages.

H Kimura!'® | proposed a new method based on Dijkstra's algorithm used in conjunction with a GA
optimizer. The pipe branches are considered as various equipment, meaning that a pipeline simply
connects two pieces of equipment. In order to achieve a fairly good distribution of all the equipment
in the available layout space, a Random Equipment Arrangement and a Self-Organization
Equipment Arrangement technique is introduced. The suggested connecting paths between each
equipment is produced by the Dijkstra algorithm.

H Sui and W Niu'", developed an improved genetic algorithm for tackling with the problem of
branch-pipe-routing. They regarded the branch pipe as a collection of several two point pipes, thus
breaking down a complex branch-pipe-routing methodology into a series of simple point to point
line connection problems. The initial population, on which the GA's unique crossover and mutation
operations would be exercised, was produced by implementing an improved version of Lee's MA,
which aimed to expand the search space constructed by two connection points by introducing the
concept of the auxiliary point. The auxiliary point serves as a layout space expansion agent,
meaning that the path which will be connecting the specific starting and end point of each
algorithmic iteration will have to pass through this randomly chosen point, adding a much needed
diversity to the individual candidate paths that will afterwards be fed to the GA mechanism for
optimization. A similar approach was adopted by W Niu et al.!'"”); who introduced the pipe grading
method, and then presented an optimization module by combining MA, non dominated sorting
genetic algorithm II (NSGA-II) and cooperative co-evolution non dominated genetic algorithm II
(CCNSGA-II).

Z Dong and Y Lin(1)"®, proposed a path formulation method which utilizes the fixed-length
encoding GA by connecting adjacent intermediate points using Dijkstra's algorithm. Whats more, in
the case of multi-pipe-routing, they introduce the use of cooperative co-evolution GA (CCGA), in
which the optimality of each suggested solution is closely correlated with its ability to collaborate
with individuals from other concurrent solutions which refer to different pipe lines being routed. Y
Ando and H Kimura!"®, proposed a new method based on an improved version of Dijkstra's
algorithm, thus managing to include elbows and bends to the pipe-routing process, and at the same
time disconnecting the pipe size from the size of the cell grid that decomposes the layout search
space. A similar approach was followed also by H Nguyen et al.?®, who in addition also
incorporated the solution of the branch-pipe-routing problem in their method implementation. S-H
Kim et al.*!!, proposed a graph based vertex-split technique in order to regulate the number of bends
in the resulting path. Dijkstra's algorithm was utilized in the pipe-routing process, while the search
space was divided into non-uniform cells in order to reduce the RAM requirements.

All of the aforementioned endeavors, as far as the processing of the layout workspace is concerned,
adopted the cell decomposition approach, in which the space is decomposed into a grid of cells,
otherwise known as voxels. The connecting points of each individual machinery piece, or other
component, that define each individual pipe-routing problem, can this way be represented by these
connected voxels. This approach, being the most common, has both advantages and disadvantages.
On the plus side, decomposing the workspace into cells allows for the use of graph-search based
algorithms such as Dijkstra, A* etc, who can guarantee the finding of the optimal solution, if such
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exist. Furthermore, it enables the user to perform sophisticated weight allocation on the different
edges of the resulting graph, thus enabling the active manipulation of the resulting paths. The big
drawback of this approach however is the fact that good solutions require large number of voxels,
leading to longer computational time and higher RAM usage. In order to tackle this issue, some
other approaches have been developed.

In 1968, K Mikami and K Tabuchi®, introduced the first line-search algorithm, and later on D W
Hightower™!, in 1969, proposed the so called escape algorithm which is based on the work done by
the previous two. This method starts with two perpendicular lines through the starting point S. It
tries to find a point such that an escape line will extend beyond one of the previous boundaries of
point S. If such an escape point is found, it becomes the new point S. This method repeats the
process until the line segment crosses the target point G. The escape algorithm is both fast and uses
less memory, but, the same way as Non-Deterministic methods, cannot guarantee a solution.
Furthermore, this method cannot be implemented in a weighted graph environment. A Asmara'*"),
favored the use of the Mikamu-Tabuchi algorithm for conducting the so called blockage checker,
whose main purpose is to test whether a pipe can be routed or not. For the actual pipe-routing
process he utilized the A* algorithm.

J-H Park and R L Storch'®®!, having identified the weakness of cell decomposition, proposed a cell
generation method. This method introduces the use of a number of predetermined basic and
modified pipe patterns, which along with a bridge cell generation process between terminal cells,
can achieve acceptable pipe-routing solutions, that also take directional specifications into
consideration. Another work was done by L Huibiao et al.*, who proposed a hanging bridge
algorithmic solution for pipe-routing arrangements that make use of free space modeling, thus
resulting into more simplified arrangement constraints and easier incorporation of traditional path-
finding algorithms into to the problem-solving process.

When all is said and done, comparison between these three directions (Deterministic, Non-
Deterministic and Combination of both) is not an easy task, as all of them approach the problem of
pipe-routing from quite different angles. As a result, it is all but impossible to know which is better.
However, all three of these approaches share some disadvantages:

(1) Traditional optimum methods do not consider the problem of elbows and bends, emphasizing
more on the problem of shortest path.

(2) The ability to actively manipulate the resulting path whereabouts is not supported.
(3) Diagonal movement freedom is not included in most of the developed methods.

(4) Directional specifications are not taken into consideration when performing the pipe-routing
process.

(5) The decomposition of the search space is closely correlated with the size of the smallest pipe to
be routed .

(6) Highly complex search spaces, can result in low quality paths being produced.
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1.3. Goals — Outline of present study

1.3.1. Pipe - Routing method

As discussed in the introduction and literature review sections, automatic pipe-routing solutions
need to be developed, solutions that will actively improve both the design and time efficiency of the
ship-wide routing of piping in ships. Solutions do exist, but most of them are striving to incorporate
deterministic approach algorithmic solutions into ready-made, user-friendly software package
solutions.

Following previous literature studies, the present work attempts to expand the potential of two
traditional Deterministic algorithms, which have seen extensive use in the field of the path-finding
and consequently in the pipe-routing industry: Dijkstra and the A*. Both Dijkstra and A* algorithms
are guaranteed to find the optimal solution in any pipe-routing problem, regardless of complexity, if
of course such a solution exists. However, careful consideration should be given when choosing the
heuristic function for the A*, because it can greatly impact the algorithm's optimal path-finding
capability. The cell decomposition method is used in order to transform the layout search space into
a discrete cubic grid. For this reason, a solid voxelization engine is developed. Afterwards, the
centroids of all cubic cells in the target space are used as the vertices of the graph, which will serve
as an input to our path-finding algorithms. At this point, one should keep in mind that the vertex and
edge connections (line segments connecting every vertex to its neighboring vertices) of the created
graph needs to have a topological meaning, as the graph should represent the physical pipe routing.
For this reason, a vertex-split strategy is introduced, based on the work of S-H Kim et al.*"!, which
enables us to differentiate edges that form a straight or a bend pipeline segment. Furthermore, the
proposed vertex-split strategy is expanded, for use in graphs that enable diagonal movement as well,
thus offering a richer pipe-routing solution pool, from which our method can draw potential optimal
results from. Having chosen to delve into the possibilities of graph-search based algorithms, proper
edge weight allocation should be conducted in order for the algorithms to function correctly. In this
work, we introduce the position-level and plane-distance based weight allocation methods. These
methods allow for a complicated edge weighting of the graph structure that can result into realistic
pipe-routing solutions being produced, without the use of a Non-Deterministic approach. Last but
not least, a set evaluation criteria of the resulting paths is formed, in order to access the optimality
of the solutions that are produced by our method.

All in all, the proposed pipe-routing method in question can be broken down to its primary
components which comprise:

* Layout workspace CAD model creation.

* Decomposition of the 3D space model into cubic cells (Voxelization).
e Graph structure creation.

*  Vertex-split strategy implementation.

* Edge weight allocation.

* Resulting path metrics evaluation.

Given the fact that the previously mentioned steps, that describe the pipe-routing solution, are
anything but straightforward, and bearing in mind the inter-connectivity of them all, a standalone
pipe-routing application is developed and presented in this study.
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1.3.2. Software development

As we have already mentioned in the previous section, the proposed pipe-routing method of this
study is presented within the frameworks of a dedicated piece of software that was drawn up
exclusively for the needs of the current Thesis. The program was developed using C++ language.

An in-depth overview of the new program is given in chapter 3 Pipe-routing software. However, for
the shake of completeness, a summary of the main functionalities of the program is being presented
below. The user needs to input a file containing the information needed to recreate a 3D CAD
model of a layout workspace as discrete grid of cubic cells, otherwise known as voxels. Such
information refer to the size of the cubic cells, dx, dy and dz, the number of cells along each of the
three x, y and z axis, the voxel tag that denotes whether a voxel belongs to the free space available
for pipe-routing or not etc. The program then offers the user the opportunity to run pipe-routing
simulations based on a series of parameters, such as start and end point coordinates and direction,
graph type, weight allocation method and path-finding algorithm, which are presented in the path
options window through a graphical user interface (GUI). After conducting various test runs, the
user can see the evaluation characteristics, or path metrics, of each suggested path and thus draw
conclusions accordingly. Last but not least, the program gives the user the ability to save his or her
test runs in an output file, which can be loaded in the program at a later date for further use.

1.3.3. Case studies

In order to investigate the potential of the method proposed in this section, as well as the limitations
that are imposed to it by several factors, most important of all being the RAM consumption, a series
of case studies were carried out.

In the present work, a series of CAD test models are considered. All of these models were created
on the grounds of bringing out the method's contribution towards solving particular pipe-routing
issues, such as:

* Manage navigation through highly complex and heavily obstacle ridden layout spaces.

* Penalizing bends during the pipe-routing procedure, in order to eradicate zig-zag effects in
the resulting paths.

* Adding directional specifications as input parameters for the test runs.

* Force the path-finding algorithms to follow paths that are deemed more preferable according
to various edge weighing criteria.

¢ Avoid obstacle collision issues.

Finally, a 3D CAD engine room model of a typical cargo ship was created based on various General
Arrangement and Capacity Plan designs that were provided by Christos I. Papadopoulos, Associate
Professor, School of Naval Architecture & Marine Engineering, National Technical University of
Athens. The final test runs were performed in this model, as to test the functionalities of our method
in almost real-life conditions.
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2. Methodology

2.1. Introduction

In this chapter, we will delve into the two main aspects which comprise the methodology that was
developed in the current study: Modeling and Algorithmic. At first, the modeling approach to the
problem of pipe-routing will be presented and analyzed. This includes information about the layout
space modeling and the creation of the graph structure. Secondly, the details of the algorithmic
approach to the problem will be discussed. At this point, the functionality of Dijkstra and A* will be
explained, alongside with the weight allocation method and the path metrics evaluation process that
was followed throughout this work.

2.2. Problem formulation and constraints

2.2.1. Understanding the problem

Pipe-routing in an obstacle populated environment is by no means an easy task. On the contrary, it
is a complicated, multi-objective optimization problem which at most cases require a fare amount of
computational resources in order to be solvable, alongside with some serious thinking, regarding the
issues that have to be dealt with. The most important of these problems are as follow. First and
foremost, the space that is occupied by any kind of obstacles, be it walls, machinery, stairs, piping
apparatus etc, has to be redacted from the available free space.

Secondly, the pipes that are about to be routed from various start and end points within the feasible
search space, should not interfere with any obstacle occupied cell. Last but not least, a graph
structure has to be constructed using the centroids of every obstacle-free cell as a vertex, and the
edges connecting these points as the graph edges. As we have previously discussed, weights have to
be allocated to the various graph edges. These weights represent the penalty which the path-finding
algorithm will be called to pay, as it navigates through the various edges in order to reach the
destination point that has been inputted by the user. The higher the weight an edge has, the less the
probability that the path-finding algorithm will choose to use it. The weight values, that every edge
will have , are related to the weight allocation methods that the developer has chosen to include in
the path-finding process. For example, its common practice for the pipes to be routed close to the
walls or the ceiling. This means that the edges which are located closer to obstacles occupied cells
will have a smaller weight value than other edges which will be located in the middle of a room,
resulting in interference of movement. The same thing applies with floors and ceilings, with
proximity to the later being more favorable than the first. Consequently, weight allocation methods,
are closely related with the satisfaction of various geometrical and topological constraints. When
more than one constraint is needed to be satisfied, the penalty weight factors are combined, and
later added to the original weight value of every edge in the graph construct, which is equal to the
actual distance of the vertices that it connects.

All in all, careful consideration should be taken, followed by meticulous planning, when trying to
understand how the pipe-routing problem is formulated and which steps should be made in order to
deal with the various constraints that are imposed to this problem.
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2.2.2. Understanding the constraints

The pipe-routing optimization problem should go some way towards satisfying various
requirements and constraints. In his survey of pipe-routing design, X-L Qian et al.”), quoting from
the work of J-H Park and R-L Storch!?’, categorizes these various requirements and constraints into
the following types:

(1) Physical constraints: The pipe routing should avoid physical obstacles and always connect
to the desired equipment.

(2) Economic constraints: Minimize the total length and number of bends of the routed pipes.

(3) Operation & Maintenance constraints: Pipes that need frequent maintenance, or pipes that
have apparatus that should be accessible by man, should be routed within arm's reach and
clear from inaccessible areas or tight spaces.

(4) Production constraints: Maximization of support sharing with other pipes. In other words,
pipes of similar class and size should be routed in parallel as much as possible.

(5) Flexibility constraints: Pipes should be routed along walls as much as possible.
(6) Safety constraints: Keep minimum clearance off from specific equipment.

These requirement/ constraint types can be divided into two main groups: restrictive ((1) - (3)) and
quantifiable ((4) - (6)). Bearing the previously mentioned constraints in mind, helps one perceive
the problem of pipe-routing in a more structured and tangible way. In other words, pipe-routing
seeks to find the best candidate path which meets the requirements of restrictive constraints, while
trying to satisfy, to some extent, the quantifiable constraints. However, it should be noted that some
times a trade-off has to be considered when pursuing to satisfy all these constraints, as in more than
one occasions the fulfillment requirements of one constraint might be contradictory to another. For
example, considering the problem of minimizing the bends of a pipeline, might lead to candidate
paths being routed away from obstacles such as walls, floor or ceiling, thus interfering with
production and flexibility constraints.

All in all, it becomes apparent that pipe-routing, is a multi-objective optimization problem, meaning
that more than one optimal solution can exist, depending on the evaluation parameters and the
constraints that they strive to meet. While this fact might raise questions as to whether the resulting
solutions are truly optimal, and if so under what conditions, it provides a much needed diversity to
the solution pool, giving the user the opportunity to assess the results and finally choose the ones
which best meet the criteria of his approach to the problem.
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2.3 Modeling approach

2.3.1. Introduction

In order to tackle the problem of pipe-routing, a solid and straightforward modeling approach has to
be devised first, before the actual problem-solving procedure is initiated. A path-finding algorithm
requires the existence of a geometrical and topological model. In the present work, a solid
voxelization engine was developed, followed by the construction of a 3D graph structure using the
spatial and geometric data acquired from the voxelizer engine.

2.3.2. Voxelization

2.3.2.1. Definition

In order to generate a volumetric representation from a 3D geometric object, a reformulation
process is required®”. This process is usually called voxelization. Voxelization is a stage of
paramount importance in the field of computational science, during which a geometric object is
modeled into its equivalent discrete voxel representation'®. A voxel is a single element in a
voxelized model, see Figure 1.

/
Figure 1: Left: Single voxel unit; Right: Voxel connectivity through their centroids

There are two main approaches regarding voxelization: surface and solid voxelization. When
referring to a surface voxelization, all voxels are set that fulfill some overlap or distance criterion
with respect to a surface, whereas a solid voxelization sets all voxels which are considered interior
to a particular object. Much research has been conducted the last years regarding the topic of
voxelization, which still remains a difficult problem because of its computational complexity.
However interesting and important these studies are, it goes beyond the scope of this study to
present an in depth literature review concerning the matter of voxelization. Nevertheless, in case the
reader displays particular interest on this subject, he is advised to look up in the references
displayed here[Z‘)], [30], [31], [32], [33], [34], [35]'

Although the topic of voxelization, and especially that of the solid approach, might be difficult and
complex, there is a certain advantage that renders this approach essential to the pipe-routing
problem solution. By representing a solid as a set of voxels, it enables us to access each voxel in the
grid directly by knowing its position in space or its relative position to another neighboring voxel.
This distinct advantage makes the solid voxelization approach the perfect candidate for modeling
the environmental layout workspace for a collision detection problem.
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2.3.2.2. Implementation

As mentioned above, for the needs of the current work, a solid voxelization engine was developed.
At this point, before proceeding with a detailed analysis of the functionalities of our voxelizer
engine, it should be underlined that the aim of this whole process, is to formulate a cubic cell
decomposition of our layout workspace, which will serve as construction template for the graph
creation that will follow.

Basically, the approach to the problem of voxelization, that our engine adopts is based on the
following steps.

(1) Create an axes aligned bounding box of the imported CAD geometry.
(2) Set the desired voxel size in mm.

(3) Perform a non-uniform scale of the bounding box, based on the voxel size value, in order to
have an integer number cubic cells along the x, y, z axes.

(4) Create a 2D square cell grid on the xy-plane (base plane).
(5) Extrude each cell of the 2D grid, forming a 3D cubic cell grid.

(6) Create a series of 3D cubic cell layers and translate them along the z axis, decomposing the
entire space, included in the bounding box, into voxels.

(7) Perform an interference check between the 3D CAD geometry and the cubic grid.

(8) Perform an inclusion test for all the voxels of the grid. In order for such a check to be
performed, each voxels is represented by its centroid. In case the point is found to be within
a particular object, the voxel is marked as being inside the object.

In Figure 2, the configuration of the voxelizer engine is illustrated.

Choose the desired
voxel size

\ 4

Surface Voxelization
module

Output file with voxel tags:
If voxelisin free space:1
If voxelis in occupied space:0

Upload the desired
CAD model geometry

\ 4

A 4

v v
I

Solid Voxelization
module

Voxelizer engine
Figure 2: Voxelizer engine configuration

The developed voxelizer engine, was designed to be as automated as possible, meaning that great
effort was made to keep manual intervention in the process to a minimum of inputting the desired
geometry parameters, as we all as designating the desired voxel size. Although more efficient
voxelization methods exist, the fact that the present study even addresses this particular issue
directly, an issue that plays an active role in the pipe-routing problem , without assuming it to be
trivial or already solved, renders it quite unique.

Figures 3 — 6, illustrate the basic steps that comprise the proposed voxelization method.
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Bounding Box

Figure 3: 2D perspective of created bounding box

Voxel Size \ Voxel Size \

Voxel Size /\ Voxel Size

Figure 4: 2D vrepresentation of voxelization process. Top Left: Cell
Decomposition based on desired voxel size; Down Left: Surface voxelization;
Down right: Solid voxelization, with depiction of overlap between the two
methods; Top right: Voxelized model
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4
Figure 5: 3D perspective of scaled and decomposed bounding box

Figure 6: 3D perspective of a slice from the final voxelized model
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2.3.3 Graph construction

2.3.3.1. Definition

Graphs are a powerful and versatile data structures that easily allow for representation of real life
relationships between different types of data (nodes). There are two main parts of a graph: Nodes,
and edges. The nodes are sometimes also referred to as vertices and the edges are lines or arcs that
connect any two nodes in the graph. More formally a graph can be defined as consisting of a finite
set of vertices and set of edges which connect a pair of vertices. In other words, in this context a
graph is made up of vertices which are connected by edges. Figure 7, depicts a simple graph.

3 (8)
D)

Figure 7: A Simple graph with nine nodes (vertices) and eleven edges

A distinction can be made between undirected graphs and directed graphs. The difference between
these two types, lies in the fact that in undirected graphs, edges link two vertices symmetrically,
meaning that if vertex 1 is connected with vertex 2, then vertex 2 is also connected with vertex 1,
whereas in directed graphs, this link is asymmetrical, and thus connection of vertex 1 with vertex 2
does not imply a two-way connection. To better understand the difference, an illustration is
presented in Figure 8:

Figure 8: Left: Undirected graph, Right: Directed graph
In addition to this distinction, graphs can also be weighted or unweighted. What this means is that
there can be some cost value associated with the edges connecting the several vertices that populate
the graph structure, or no cost value at all.

In the current study, an undirected weighted graph is constructed upon the cell decomposed space
that was produced by the voxelizer engine, using the centroids of the unoccupied voxels as vertices.
The main reasons for choosing to create such a graph are explained. First and foremost, the
undirected graph is clearly the best choice, since it allows for a two-way connectivity between any
two edge-connected vertices within the graph structure, a feature that serves any pipe-routing
problem solution procedure well. Secondly, this goes some way towards reducing the RAM
requirements of the developed software since it reduces the number of the edges that would be
needed in half, in case a directed graph was opted for. And last but not least, weighted graphs allow
the use of traditional path-finding algorithms such as Dijkstra and the A*.

In addition, two types of graphs are introduced, the standard and the diagonal graph. Furthermore,
in order to equip the vertex and edge connections of these graphs with topological information, that
will enable the pipe-routing to produce realistic results, as far as the issue of bends is concerned, a
vertex-split strategy is introduced.
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2.3.3.2. Standard graph

Dealing with the task of routing pipes in a ship is by no means easy, as there are multitudes of
obstacles in an already free-space deprived environment. However, the use of a cell decomposition
method can simplify the problem by providing a free-space frame upon which a graph can be built.

Although a ship's hull is comprised of steel plates that have been given elaborate geometric forms in
order to produce a smooth finish, thus resulting into lower frictional resistance, it is regarded as
good practice to route pipes along the main axes of ship, avoiding unnecessary diagonal routes.
Bearing this in mind, a standard graph is constructed in the decomposed layout space of our 3D
CAD model.

With the term standard we refer to the edge connections of the graph. In particular, every vertex,
which is represented by the centroids of those cells that belong solely to the free-space of our 3D
CAD model, is connected only with its immediate neighboring vertices along the x, y and z axes.
In order for all these connections to be established, a ID-based vertex classification technique was
devised.

On the assumption that the centroids of the voxels, i.e. vertices, are represented by points Pijk, where

i=0,1,...,numX , j=0,1,..,numY and k=0,1,...,numZ | then the unique ID of every on
of these points is given by the formula below:

ID=i-numY + j+k-(numX -numY') (1)

where, numX, numY and numZ are the number of voxels in each of the respective x, y and z axes.
The values resulting from this ID allocation method range from [0, ..., (numX -numY -numZ)—1]
It should be noted that all the centroids of the output file from the voxelizer engine are taken into
account when considering the ID allocation method. In case a voxel is tagged as occupied, then the
corresponding ID value will not be present in the ID pool of the graph's vertices. The above
presented formula, is formulated in such way, as to match the output results of the voxelizer engine.
An explanatory illustration of the ID allocation method can be seen in Figure 9.
T |
5

0
| f
8 21 4

4

2 (5) 8 11 a4 17

y 1 4 7 10 13 16

1
CL—MO 3 6 (9 42 15 4

Figure 9: ID allocation of vertices in a simple 3x3x3 voxel grid
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Having established this (i, j,k) index based ID allocation, makes the neighbor finding process a
pretty straightforward procedure. Each ID refers to one, and only one, set of (i, 7, k) indexes
according to the following equations:

j=ID % numY (2)
i=((ID—j) | numY) % numX 3)
k=((ID— j—i-numY) | numY) | numX 4

where, / and % denotes the integer division and the remainder after the integer division respectively.

As a result, a random P ik point is connected with the following points: p St Pl 5wt

P o s Pa g 07 P s enr Pl s ey if of course these points exist and are not in an

inaccessible area.
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2.3.3.3. Diagonal graph

When considering the pipe-routing problem, most of the current studies that have been performed,
utilizing a graph-search based algorithm either for mere path-finding or pipe-routing, only
considered the freedom degrees of the previously presented standard graph. However practical and
reasonable this approach might be, by imposing such a limitation to the degrees of freedom of
movement within the graph, potential optimal solutions might be omitted. As a result, the current
study also considers the diagonal freedom of movement, thus introducing the diagonal graph.

As we have already pointed out in the previous section, the term diagonal, which precedes the
graph, refers to the edge connections. The currently discussed graph type, has all the edge
connections that the standard graph has. In addition, each vertex is also connected with all of its
immediate diagonal neighbors.

Considering the index based ID allocation formula and method that was presented earlier, a random

P ik point is connected with the following points:

(i-1, 3, ¥’ P(i+1, i, v’ (i, 3-1, ' P(i, i1, k! P(i, i, k-1 7 P(i, 3, k+1) ' P(i+1, i1, k-1 7 P<i+1,
: ’ ; : ’ = ’ P ’ ; : ’ P : ’ P : ’
3, k-1) (i+1, 3-1, k-1) (i, 341, k-1) (i, 3-1, k-1) (1-1, 3+1, k-1) (i-1, j, x-1) (i-1, 3-1, k-1)
P P P P P P
(i+1, 3+1, k' (i+1, j-1, k' (i-1, j+1, k) 7' (i-1, j-1, k' (i+1, j+1, k+1) ' (i+1, 3, k+1) ' (i+1, j-1,

k+1) 7 P(i, 3+1, k+1)’ P(i, -1, k+1) ' P(i—l, +1, k+1)’ P(i—l, 3, k+1) ' P(i—l, -1, k+1)

Limitations regarding the existence of these potential neighboring points, as well as their
accessibility, apply as always. In order to better understand the diagonal connectivity of the vertices
in the current graph, the following illustrations are presented.

Figure 10, illustrates all the edge connections among the vertices of 2x2x2 grid. On the left we can
see the extended diagonal connections marked with red. Right next to this we have the diagonal
edge connections that lay on, or in parallel to planes xz, Xy and yz. And finally on the right we can

see the orthogonal connections between the vertices.
z
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) Vertices of a 2x2x2 grid

Xz Xy yz
Figure 10: Connection within a diagonal graph voxel. Left: Extended diagonal edges; Middle:
diagonal edges, Right: Standard orthogonal edges

24



Based on the illustration of Figure 10, in Figure 11 we can see all the edge connections of a
particular vertex, in particular the one with an ID value of thirteen, within a diagonal 3x3x3 graph

structure.

18 19
~_ 9 \ , 110

Figure 11: Connecting edges of vertex with ID = 13, in a diagonal graph
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2.3.3.4. Vertex-split strategy

When considering a pipe-routing problem in a graph environment, it is all about finding the shortest
path between a start vertex and an end vertex in the graph. Regardless of the graph representation
being used, traditional path-finding algorithms cannot really tell the difference between a straight
path to the end vertex and a path that includes a number of bends and turns. This fundamental issue
arises from the fact that no directional information, regarding the relative position of the vertices in
the proposed optimal path, are taken into consideration by the algorithms that perform the path-
finding procedure. Thus, edges of the graph, cannot have their weights dynamically changed so as
to penalize a potential bend of the path. The following illustration depicts this particular problem.

Figure 12: The problem of bend

As mentioned in the literature review section of this work, when dealing with the problem of bends
in pipe-routing, solutions ranging from meta-heuristic optimization methods, to post processing the
output of the path-finding algorithm have been devised and proposed. One rather interesting and
innovative approach was presented by S-H Kim et al.*'l, called vertex-split strategy. He clearly
stated that:

“A vertex with two or more incoming edges and outgoing edges should be split when outgoing
edges can be used in a different route path, straight or bent simultaneously.... Practically, in a 3D
cubic cell space where the number of neighbor vertices cannot exceed six, the number of split
vertices is at most three in a case with three incoming edges and three outgoing edges. ”

In Figure 12, there is no way to really tell the difference between the two paths. The 7-4-2-1 path is
all straight, whereas path 3-4-2-1 includes a bend. At the moment, the so far devised graph structure
cannot somehow penalize this bending movement. One could argue that by putting a larger dy
weight value in the edge connecting vertices 3 and 4, this could be averted. However, if that was the
case, then the candidate path 3-4-5, would be penalized without good reason.

The current study proposes an extension of the vertex-split strategy. First of all, since the standard
graph instance is regarded as undirected, the number of split-vertices in the current graph is raised
to six at most, since every edge connecting this particular vertex with the neighboring ones serve
both as incoming and outgoing at the same time. Furthermore, the vertex-split strategy is expanded,
as to accommodate the needs of the diagonal graph as well. Each vertex is split to a number of
split-vertices equal to the number of neighboring vertices, with this having a maximum value of
twenty six. In both cases, every split-vertex is connected with each other, with new edges. For more
information the reader is advised to refer to Section 2.4.3.1..
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In Figure 13, the solution to the problem of bend, in a standard graph is presented. In this graph,
route 1-2-4-6 is a straight one whereas route 1-2-4-3 is a bend one. With the vertex split strategy
implementation, the edge corresponding to the straight connection and the bend connection is no
longer the same, thus enabling the algorithm to choose between a straight path and a bend one.
Consequently, the two presented paths in Figure 13, no longer have the same overall weight cost as
they would have in an non-split graph.

dx dx dx

dy dy
dx

Figure 13: Solution of the problem of bend in a standard graph

In Figure 14, the solution to the problem of bend, in a diagonal graph is presented. Paths 1-2-4-6, 1-
2-4-2 and 1-2-4-5 use different edges to reach their respective goal nodes. However, enabling the
diagonal movement within this graph structure, expands the concept of penalizing a bend path, as it
is introducing different types of bends (For more information, refer to Section 2.4.3. of the present
study). Furthermore, Figure 14 depicts the internal connectivity between the split vertices of a
random vertex.
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Figure 14: Solution of the problem of bend in a diagonal graph
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The introduction of the split vertices present us with two distinct advantages:

First and foremost, it enables us to differentiate between a straight and a bend pipe. Since
every point is split to a number of vertices equal to the number of neighbors that it has,
another set of edges is added to our graph, a set that we refer to as directional edges. After
performing the vertex-split, every single one of the split vertices that originate from one
particular vertex, is connected with every other using these directional edges. Whenever a
path-finding algorithm reaches one of these split-vertices,while navigating through the edges
of the graph, in order to find the shortest path from one vertex to another, it is faced with a
choice. Each of the directional edges that refer to one of the split vertices, has a different
weight value, based on whether the path will keep its previous course or change direction.
These values are set as parameters to the problem of pipe-routing. Nevertheless, the edge
weight corresponding to a straight movement is always significantly smaller than that of a
bending movement. For more information on the weight allocation process, concerning
these edges, refer to Section 2.4.3. of the current study.

Secondly, it provides a unique opportunity, which can go some way towards giving a much
needed expansion, as far as a directional specification aspect of the problem is concerned.
Apart from enabling us to remove the ambiguousness of vertex connections withing the
graph, it also gives us the opportunity to choose the direction of both the start an end point
of each pipe-routing scenario. This addition, is highly important since the laying down of
pipes happens after the positions of all the included equipment have been determined. This
means, that both the start/ end coordinates and directional specifications of the problem are
known beforehand. However, without introducing this expanded vertex-split strategy,
considering directional constraints would be all but impossible, and an acceptable solution
highly unlikely.

The introduction of the vertex-split strategy, despite of enabling the incorporation of directional
specifications to the problem of pipe-routing, raises the complexity of the graph structure
significantly, both in terms of vertex and edge numbers. On top of that, when considering the edges
connecting the split-vertices with each other, in case of both the start and end vertex for every pipe-
routing scenario, it should nor be possible to obtain a path that crosses more than one split-vertex of
each of them, as this would not have any physical meaning. Figure 15 illustrates this very problem.

B0 : NSO AN
: e

Figure 15: Left: Physically feasible solution; Right: Physically non-feasible solution

In order for this issue to be tackled, every time a pipe-routing scenario is considered, the edges
connecting the split-vertices of both start and end vertices, are filtered out of the graph structure, as
to avoid such confusing results.
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2.4. Algorithmic approach
2.4.1. Introduction

2.4.2. Path - Finding Algorithms

Both Dijkstra and the A* belong to the class of network optimization algorithms. Optimization
network techniques aim at seeking the optimal path forms of constructed networks by using graph
search algorithms the likes of Dijkstra and A*.

In network based optimization each vertex (node) v, denotes the junction of a pipe where either a
straight or a bend pipe part can be placed; the edge e, between vertices v. and v, denotes the cost c,
from moving from one to the other. The optimization problem is defined by the following equation:

G=(V,E,QC) (5)

where, V denotes the set of vertices, E the set of edges and C the set of edge costs. The pipe-routing
optimization problem is to find the shortest path between the initial vertex S and the goal vertex G.

2.4.2.1. Dijkstra

2.4.2.1.1. Algorithm description

The Dijkstra's method is classed as a breadth-first search (BFS). It starts at the starting node, and
explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next
depth level. It was first conceived by computer scientist E W Dijkstra in 1956 and was published
three years later™.

As is the case with most shortest path algorithms, Dijkstra is run on weighted graph, starting from
an initial node to a goal node and finds the least cost path to the goal node. Dijkstra assigns a
tentative distance value to every vertex or node. It sets it to zero for our initial node, and infinity for
the rest of the nodes. It also creates a visited set that starts with the initial node, and an unvisited set
which starts with the rest of the nodes. It starts running at the initial vertex. For our current vertex
we add the vertex to the visited set and remove it from the unvisited set. Then you calculate the
distance to the current vertex plus the weight of the edge between the current vertex and its
unvisited neighbors. If the value that you calculated for each of the neighbors is less than the current
stored tentative distance to that vertex you replace the stored distance with the newly calculated
value. When all the unvisited neighbors of the current node have been considered, the current node
is marked as visited and it is then removed from the unvisited set and transferred to the visited set
If the goal node has been marked visited, then the algorithm is finished, and the goal node has bee
reached. Otherwise, the algorithm moves on to set the next current node, which will be the node
with the lowest distance from the previously current node, repeating the aforementioned process
until the goal node is finally reached.
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Figure 16 shows a flow diagram of Dijkstra's algorithm.

Start

Assign tentative distance
values to every vertex:
Set zero for initial node.
Set infinity for every other node.

!

Create the visited and unvisited set.
The visited set starts with the initial node.
The unvisited set starts with every other node.

|

Move the current node from the unvisited set to the visited,
while considering all of the unvisited neighbors
and calculating their distance from the current node.

Is the calculated distance values less
than the stored tentative value?

Replace the two values Do not replace the two values

Transfer the current node to the visited set.
Is the goal node
marked as visited?

Figure 16: Dijkstra's algorithm flow diagram

Set the node with the lowest distance value
in the unvisited set, as the current node.

Figure 17 illustrates a simple example using Dijkstra's algorithm.
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Figure 17: Implemetation of Dijkstra from start node zero (0), to goal node five (35)
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24.2.2.A*

2.4.2.2.1. Algorithm description

Contrary to Dijkstra's algorithm, A* is classed as a depth-first search (DFS), namely it explores the
highest-depth nodes first before being forced to backtrack and expand shallower nodes.

A* search algorithm is one of the best and most popular technique used in path-finding and graph-
traversals. Unlike other traversal techniques, A* is a really “smart” algorithm, because it uses
heuristics to guide its search. It can be seen as an extension of Dijkstra's algorithm. This path-
finding technique has seen extensive use in many applications, such as game development, web-
based map navigation etc, because it achieves better performance and accuracy than most traditional
search algorithms through the use of heuristics.

Consider a graph with multiple nodes. The aim is to reach the goal node, or target node, from the
initial, or starting node, as quickly as possible. What A* search algorithm does is that at each step, it
picks the node according to a value “f” which is equal to the sum of “g” and “h”. At each step, it
picks the node having the lowest “f” value, and process it.

f(n)=g(n)+h(n) (6)

where, n is the previous node on the path, g(n) is the cost of the path from the start to node n and
h(n) is a heuristic that estimates the cost of the cheapest path from n to the goal node.

Typical implementations of A* use a priority queue to perform the repeated selection of the
minimum estimated nodes to expand. Vertices on the priority queue, also known as open set, have
been discovered by the algorithm, but they have not yet been expanded, meaning that their
surrounding vertices have not been discovered yet. On the other hand, vertices marked as closed,
meaning that they belong to the closed set, have been completely examined by the search algorithm,
meaning that they have been expanded and their surrounding vertices have been added to the
priority queue.

The algorithm begins by going to the starting node and expanding it, namely looking at all of its
surrounding nodes and calculating some values for each of them. These values are the g and h cost .
Basically, the g cost values represents the distance of the current node from the starting node,
whereas the h cost is practically the opposite from g cost, meaning that its value quantifies the how
far the current node is from the goal node. Having calculated these value pairs for each one of these
neighboring nodes, it sums these two numbers, creating the so called f cost. The algorithm then
proceeds by going to look at all of these nodes, and it is going to choose the one with the lowest f
cost to look at first. Once it identifies the lowest f cost node, it marks it as closed, removes it from
the queue and then calculates and updates, if needed, the g, h, and f cost values for all of its
surrounding nodes, which in turn are added to the priority queue. The algorithm continues until the
goal node has a lower f value than any other node within the priority queue, or if the priority queue
is empty. The f value of the goal node is then equal to the cost of the resulting shortest path, as the h
cost value will be equal to zero because by definition, the distance estimation for moving from the
goal node to the same node is zero.
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Figure 18 shows the flow diagram of the A* algorithm.

Is the f cost of the goal node the lowest
within the priority queue?

Expand the initial node,
adding the discovered neighboring
nodes to the priority queue. Mark
the initial node as closed, removing
it from the priority queue

l

For each of the neighboring nodes, calculate the
fand g cost values. The sum of these values
adds up to create the f cost value: f = g + h.

l

From the calculated f cost values, identify the node with
the lowest f cost, and then proceed by expanding it, adding
the not yet discovered neighbors to the priority queue.

v

Mark the selected node as closed,
thus removing it from the priority queue

]

Calculate and update ,if needed, the g, h and consequently
the f cost of each of its neighboring nodes.

Is the goal node
marked as visited?

Yes

Figure 18: A* algorithm flow diagram

Figure 19 illustrates a simple example using the A*
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The goal node has the lowest f cost within the priority queue.
Figure 19: Implemetation of Dijkstra from start node nine (9), to goal node two (2)
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2.4.2.2.2. Heuristic functions

As we have previously illustrated, what sets the A* apart from its other counterparts, is that it
utilizes a heuristic in order to guide its search while traversing any given graph. The heuristic
function h(n), provides A* with an estimation of the minimum cost from any vertex n to a certain
goal point. Thus, it is of vital importance to choose a proper and efficient heuristic function. The
efficiency of a heuristic function, which is closely tied with the overall optimality of the A*
algorithm, depends on the following two conditions:

(1) Admissibility: The heuristic function, must be admissible, meaning that it should never
overestimate the actual minimum cost of reaching the goal node.

(2) Consistency: Because a closed set implementation of A* is considered, admissibility alone
does not guarantee an optimal solution. The heuristic function also has to be consistent,
meaning that given any pair of adjacent nodes n and n+1, where c(n, n+1) denotes the
weight of the edge connecting them, the following condition must be met:

h(n)<c(n,n+1)+h(n+1) (7)

In the current study, bearing in mind the aforementioned optimality requirements, the following
three heuristic functions are considered:

*  Manhattan distance heuristic: The Manhattan distance between two nodes, the current and
the goal node, is defined as the sum of absolute values of the differences in the x, y, and z
coordinates of the two nodes. The calculation is performed according to the following
formula:

h= Z | goal.i—current.i | (8)

i=x,y,z

*  Fuclidean distance heuristic: The Euclidean distance between two nodes, the current and the
goal node is defined as the square root of the sum of the squares of the differences between
the corresponding coordinates of the two nodes. The calculation is performed according to
the following formula:

h= \/(( goal.x—current.x ) +(goal.y—current.y)*+(goal.z—current.z)’) 9)

33



2.4.2.3. Comparative performance evaluation analysis

It is of vital importance to understand the different aspects that characterize these two algorithms in
order to be able to proceed with a thorough performance evaluation analysis. This analysis will be
based on the following three factors: RAM requirements, time complexity, optimal solution finding
capability and multi-goal solving flexibility:

RAM requirements: The A* takes lead over Dijkstra when considering their respective RAM
requirements. Dijkstra, as a BFS algorithm, explores nodes on all different directions
uniformly, thus being reminiscent of a circular wavefront expansion movement. This usually
leads, to more nodes being discovered before the goal node is reached, compared to the A*
which uses a heuristic in order to expand to directions which seem more promising
regarding minimum distance from current to goal node. As a result, Dijkstra tends to occupy
more memory than A*

Time complexity: Bounds of the running time of both Dijkstra's algorithm and the A*, which
are implemented in the current study, can be expressed as a function of the number of edges
and of the number of vertices, using big-O notation. For Dijkstra we have a complexity of

O(V-logV) , whereas for A* we have a complexity of O((E+V)logV) , where V
denotes the number of vertices within the graph, and E the number of edges.

Optimal solution finding capability: Dijkstra is always guaranteed to find the optimal
solution in any non-negative weighted graph environment regardless of complexity, if such a
solution exists of course. On the other hand, the performance of the A* depends highly on
heuristic function being used to guide the search. The use of an non-admissible, or non-
consistent heuristic can result in sub-optimal solutions being produces.

Multi-goal solving flexibility: Although the original variant of Dijkstra's algorithm solves the
single-source shortest-path problem, it is possible to fix a single node as the source node and
then find shortest paths from the source to all nodes in the graph, thus producing a shortest-
path-tree. In this case, A* is not very optimal as it has to be run several times in order to get
all the target nodes.

To this point, it is safe to say that both algorithms have their advantages and disadvantages. A
comparison regarding which is the best choice, when it comes to pipe-routing problems, could be
made. However, such a comparison goes beyond the aim of this thesis, which is to present both the
capabilities and the limitations of each method, letting the reader decide whichever approach suits
his or her interest in the best possible way.
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2.4.3. Weight allocation

2.4.3.1. Definition

In many applications that require the use of a graph structure, pipe-routing included, each edge of
the graph, be it normal or directional, has an associated numerical value, called weight. By normal
we refer to the edges connecting vertices in the standard graph, whereas by directional we refer to
the edges inter-connecting the split vertices of each individual original vertex. This distinction is
illustrated in Figure 20. The utilization o Dijkstra and A* calls for the use of non-negative values as
weights. The weight of an edge is often referred to as the cost of the edge, meaning the penalty that
is imposed when moving from the one vertex end to the other.

In the present study, weights represent the actual distance between each vertex and its neighboring
one. Furthermore, a distinction is made between normal and directional edges. In this section, the
edge weight allocation methods for both normal and directional edges will be presented. Also, a
directional tag (Dir-tag) allocation method is introduced, that will facilitate the weight allocation
process.

—|D.Edge
—|S.Edge

Figure 20: Standard and Directional edges depiction

2.4.3.2. Directional edges weight allocation

2.4.3.2.1. Standard graph

When considering a standard graph, two types of weights are allocated to the directional edges
created by the application of the vertex-split strategy: the straight weight and the bend weight.
Although the vertex-split enables us to have different edges that correspond with the different
direction movement possibilities, the question still remains: How can we tell if one directional edge
should be assigned a straight weigh value or a bend one? In order to be able to discern between the
directional edges, a directional tag allocation methodology is devised. Every split vertex is assigned
a Dir-tag, ranging from one to six, according to the illustration, presented in Figure 21. At this point
it should be noted that all the split-vertices of a particular vertex are inter-connected, as we have
already mention in Section 2.3.3.4., meaning that every single one of these split vertices are
connected through a directional edge with all the others of the same vertex.
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Figure 21: Dir-tag allocation of vertex with ID=13 in a standard graph

In the case of the standard graph, if the difference between the Dir-tags of the split-vertices that
define a particular directional edge equals three, then a straight weight penalty is allocated to this
edge. Otherwise, a bend weight penalty is allocated. Figure 22 illustrates the proposed weight
allocation method concerning the directional edges of a standard graph.
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Bend Weight

LallP-

Straight Weight
18 »2

N

Figure 22: Weight allocation in the directional edges of a standard graph
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2.4.3.2.2. Diagonal graph

The proposed directional tag allocation methodology can be expanded, so as to apply to the
diagonal graph structure as well. In this case, every split vertex is assigned a directional tag (Dir-
tag), ranging from one to twenty six, according to Figure 23. Again, as we have already mention in
Section 2.3.3.4., all of the split-vertices of a particular vertex are inter-connected, meaning that
every split-vertex is connected with all the other, which originate from the original vertex being
split.
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Flgure 23: Dir-tag allocatlon of vertex with ID=13 in a diagonal graph

Since we are currently referring to the diagonal graph, based on the difference between the Dir-tags
of the split-vertices that define a particular directional edge, we can discern the following cases:

(1) Straight weight: The straight weight value is allocated to an edge, if the following condition
is met:

|directional edge.source.Dir tag—directional edge.target.Dir tag|=13 (10)
(2) Bend weight: The 90° bend weight value is allocated to an edge, if the following condition is

met:

|directional edge.source.Dir tag—directional edge.target.Dir tag|#13 (11)
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Figure 24 illustrates the proposed weight allocation method concerning the directional edges of a d
graph.

15 14 2

Bend Weight

§ Straight Weight
— 13 >3

14 b 2
Figure 24: Weight allocation in the directional edges of a diagonal graph

This concept of differentiating only between straight and bend movement , although complete, lacks
depth. This means that it penalizes all directional changes with the same value. Because of this, we
expand the concept of directional change of movement, by adding some extra cases:

(1) 45° bend weight

(2) Extended 45° bend weight
(3) 135° bend weight

(4) Extended 135° bend weight

In order for these directional change cases to be better understood, refer to Figures 25 and 26, which
depict these directional change weight penalties. At this point, it should be noted that the extended
bends, which are presented in this section, are not actually equal to 45° or 135° bends. In reality
these are custom and not standardized bends. However, the fact remains that changing direction
towards them, should be penalized differently.
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2.4.3.3. Normal edges weight allocation

2.4.3.3.1. Position-level based weight allocation

Generally speaking, space availability is crucial when considering the problem of pipe-routing. As a
result, pipes being routed near walls or other equipment, which are regarded as obstacles, are more
preferable than being routed through the middle of an available free space, because it causes
movement obstruction and unnecessary waste of free space continuity. In order to achieve resulting
optimal paths which are routed near obstacles within our layout workspace, a weight allocation
method based on a position-level tag methodology is proposed.

When considering the non-split version of either the standard or the diagonal graph, every vertex in
the graph is assigned a position-level tag (Pos-tag), according to the following procedure. Back
when were talking about the implementation of the proposed voxelization technique, we reached to
a point were every vertex within the decomposed layout workspace was assigned a value of one, if
the vertex was in an accessible region, or zero if the vertex was interfering with an obstacle.

One way to figure whether a vertex belongs to the outermost layer of voxels in the graph, meaning
next to an obstacle, is to check the number of neighboring vertices that it has. Depending on the
type of graph being used at the time, the following apply:

* Standard graph: A vertex that has a number of neighbors other than six, is assigned a Pos-
tag equal to zero, suggesting that it belongs to the outermost layer of voxels in the graph.

If neighbor count of current vertex # 6 — Pos tag = 0 (12)

* Diagonal graph: A vertex that has a number of neighbors other than twenty six, is assigned a
Pos-tag equal to zero, suggesting that it belongs to the outermost layer of voxels in the
graph.

If neighbor count of current vertex # 26— Pos_tag = 0 (13)

From this point on, vertices that are neighboring a zero value Pos-tag vertex, are tagged with a Pos-
tag value of 1 etc. This operation continues until every single vertex has a Pos-tag value assigned to
it. Afterwards, the average of the Pos-tag values of the start-end vertices of every edge is assigned
to the edge.

The position-level based weight allocation uses this Pos-tag values of every edge within the graph,
in order to assign an extra weight penalty factor to it. More specifically, the Pos-tag value is passed
as an argument to a function, and the result, multiplied by a user defined non-negative
multiplication factor, ranging from zero to a hundred, is the weight penalty factor that will be added
to the corresponding edge. The developed software, provides the user with four function choices:

*  Exponential: f (Pos-tag)=e"""
o Linear: f (Pos-tag)=Pos-tag

Quadratic:  f (Pos-tag)=Pos-tag”

Cubic:  f (Pos-tag)=Pos-tag’

Figure 27, depicts the edge Pos-tag calculation process for a random graph edge.
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Figure 27: Edge Pos-Tag calculation process
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2.4.3.3.2. Plane-distance based weight allocation

Apart from being able to route pipes along obstacles it would also be useful to be able to designate
the desired distance from either floor or ceiling. Sometimes, routing pipes along the ceiling of an
enclosed space is more preferable than routing them along the floor, while other times the opposite
is true. Regardless of the scenario, the need for such a capability becomes evident. Consequently, a
plane-distance weight allocation method is proposed.

In order for this method to be able to work the height position of the floor or deck planes within the
3D layout space CAD model have to be explicitly defined by the wuser, as a

plane vector[i],i=0,...,n . This vector contains the characteristic coordinate value of each
plane, be it x, y or z. Although this method can be used with pretty much any series of desired
planes, be it x, y, or z, originally it was created bearing in mind the deck plane configuration within
a ship.

Once this is done, the plane-distance method uses the average z coordinate value of each edge, in
order to assign an extra weight penalty factor to it. At first, it identifies between which planes, from
the ones provided beforehand, the average z coordinate value of each edge of the graph is included.
Afterwards, this value is passed as an argument to a function and the result, multiplied by a user
defined non-negative multiplication factor, ranging from zero to a hundred, is the weight penalty
factor that will be added to the corresponding edge. As is the case for the previous method as well,
the developed software, provides the user with four function choices:

* Increasing linear: Supposedly that the =z coordinate value lies between the
plane vector[i] & plane vector[i+1] values, meaning that the edge in question is located
between the i and i+1 vertical planes. This function assigns penalty factor values according

to the formula below:

(z— plane_vector [i]) | ( plane vector [i+1]— plane_vector [i]) (14)

* Increasing exponential: This function assigns penalty factor values according to the formula
below:

e(z—planefvector [i]) I (plane vector [i +1]— plane_vector [i]) (15)

* Decreasing linear: This function assigns penalty factor values according to the formula
below:

1—(z— plane vector [i]) | ( plane vector [i+1]— plane vector [i]) (16)

* Decreasing exponential: This function assigns penalty factor values according to the
formula below:

1 _e((z — plane_vector [i]) | (plane_vector [i+1]— plane_vector [i]))—e (1 7)

For better understanding the aforementioned procedure, Figure 28 visualizes the first function
choice, illustrating its use and functionality.
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2.4.4. Path metrics

2.4.4.1. Evaluation parameters

At this point we have discussed about all the tools that will enable us to initiate the pipe-routing
problem solution procedure. We have talked about different types of graph structures, different
path-finding algorithms and also about elaborate weight allocation methods. What we lack is
evaluation parameters, that will enable us to compare the path results, from different combinations
of these methods.

For the purposes of the current thesis, the following parameters are introduced and considered in the
comparative evaluation process:

(1) Number of bends

(2) Algorithm run time (s)

(3) Total x-axis component length (mm)

(4) Total y-axis component length (mm)

(5) Total z-axis component length (mm)

(6) Total path length (mm)

(7) Total distance from boundaries (mm)

(8) Number of boundary attached points (%)

(9) Maximum-minimum distance from boundaries (mm)

44



3. Pipe-routing software

3.1. Introduction

We have seen that pipe-routing is a complex problem, that requires a fare amount of work regarding
both its modeling and algorithmic aspects. Decomposing the target layout workspace into voxels,
creating a graph structure, allocating realistic weights its edges and finally running path-finding
algorithms are all interconnected processes, that interact heavily with each other during any pipe-
routing routine.

In the current study, in order to tackle these issues, a standalone application for automatic pipe-
routing is developed. In the current chapter, both the configuration, as well as the user interface of
the software in question are presented.

3.2. Configuration

The automatic pipe-routing application relies heavily on the voxelizer engine, which we presented
earlier in this study. The output of the voxelizer, serves as the input to the pipe-routing software.
Bearing this interaction in mind, the procedure which the application itself implements, consists of
the following steps:

(1) Input data upload: During he input data upload step, the application obtains the output of
the voxelizer engine in the form of a .vraw file, which in turn uploads as an input into the
pipe-routing application. Furthermore, it generates the desired CAD model geometry, as
defined in the .vraw file, while at the same time visualizing the cloud of points which will
serve as the vertices of the graph structure that will be constructed later on. An example of
such a file is presented in the Appendix A section of this thesis.

(2) Route options setting: The route options setting component step, is all about providing the
user with a variety of choices regarding the pipe-routing procedure parameters, such as
graph type, weight allocation methods, path-finding algorithm etc. The user can select and
change the parameter set according to their choosing.

(3) Result acquisition: In the course of this final step, a visualization of the actual pipe model in
the CAD model is created, while at the same time the user is provided with the necessary
information regarding the path evaluation parameters. Last but not least, the resulting paths
can be saved, in the form of a .path file. An example of such a file is presented in the
Appendix B section of this thesis.
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3.3 User interface

The developed pipe-routing software, provides an GUI, which is written using C++. In Figure 29
the user interface is presented.

ﬂVoxeliz%r - Auto routing algorithms - [m] X
ile
Show Voxel Geometry[~] Show CAD Geometry[»] Show Generated Paths[ ] Show Vertex Split

Create New Optimal Path ‘ 3

Refine Voxel Graph Occupancy Flag Check Update Edge Weight ~ Filter Graph 5 6
Main tree 5 x| 2D Plots 3D Plots Path Options.
1 Graph details
Standard Graph Diagonal Graph
Split Graph

Start and End point details
Start Point End Point
X [mm] 1000 2]
Y [mm] 8000 2| 360002

Z [mm] 2000 3 260002 |

Direction E
Weigths

Boundary Distance Method
Bponental =
Plane Distance Method

Increasing Linear - -
Pathfinding Algorithms

O Dijkstra @ A*

Heuristic

@ Euclidean Distance (O Manhattan Distance

Path Metrics

Number of Bends :l
Total x-axis length |
Total y-axis length —‘
Total z-axis length :l
Total length :I

Total Distance from Boundaries |
Number of Wall Attached Points
Maximum Distance from Wall

Ready 4

Figure 29: GUI representation

As we can see, the GUI is comprised of several components, all of which serve a specific purpose.
In particular:

(1) “ File ” Menu bar: Provides the user with a set of action choices, presented in Figure 30:
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File
Open Raw Voxel File

Save XML Voxel File

Open XML Voxel File
Open CAD File

Open Point Cloud Data
Save Path File

Figure 30: " File " Menu bar actions

(1) Toolbar with check-boxes: This toolbar contains two check-boxes, which enable the user to
either show or hide both voxel geometry of a graph and the CAD model of the layout
workspace, see Figure 29.
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(2) “ Create New Optimal Path ~ Button: This button initiates the each of the pipe-routing test
runs, based on the parameters of the ““ Path Options ~ docked window.

(3) Main tree docked window: After each test run, a path item is added to this window. By right
clicking on each one of these items, a custom context menu bar is revealed, that provides the
user with the following actions, as depicted in Figure 31.

Main tree & x 2D Plots 3D Plots
|
Delete
Reveal Path Plot

Reveal Path Metrics
Erase Path Plot

1

Path 1
Path 2

Figure 31: Custom context menu bar

(4) Graphics main window: This is the main window of the developed software application,
where all visualization happens. This includes the representation of the graph vertices as a
point cloud, the CAD model of the layout workspace and the resulting paths of each test run.
Figure 32 illustrates all the aforementioned graphic representations.

Figure 32: Graphics window visualization

(5) “ Path Options  docked window: As shown in Figure 29, this window contain every single
parameter that can be adjusted by the user before each pipe-routing test run. It also contains
a “ Path Metrics ” subsection, where the evaluation parameters are presented after each test
run.
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4. Case studies

4.1. Introduction

In order to verify the effectiveness of the developed pipe-routing software and its various modeling
and algorithmic capabilities, a series of test cases are considered. These test cases refer to various
CAD layout workspace representations, of increasing complexity. The idea behind the designing of
these spaces is to best portray some performance and feasibility issues that come with traditional
automatic pipe-routing solutions. On the other hand, these spaces will serve as a challenge to our
proposed pipe-routing methodology, through which the improved results that are brought about by
our approach to the problem can be most evident.

4.2 Test run parameters

Before proceeding with analyzing all the different test runs that have been conducted within the
framework of the current Thesis, it is deemed necessary to refer in detail to the various parameters
which determine the outcome of the pipe-routing process.

Path-finding

Comments
parameters

Voxel Size (mm) Is directly connected with the original edge weights, dx, dy and dz of every edge

Graph Type 1t has two values: Standard and Diagonal

Split graph 1t has two values: True and False
Start point (mm) It contains the x,y and z coordinates of the start vertex
End point (mm) It contains the x,y and z coordinates of the start vertex

Direction (S-E) It's value ranges from 1-6 for the standard graph, to 1-26 for the diagonal graph

Position-level method | /¢ points to whether this weight allocation method is used or not

Function It provides the following options: Exponential, Linear, Quadratic and Cubic

Multiplier Its value ranges from 0 to 100

Plane-distance method | /¢ points to whether this weight allocation method is used or not

1t provides the following options: Increasing Linear & Exponential, Decreasing Linear &

Function Exponential
Multiplier Its value ranges from 0 to 100
Algorithm It provides the following options: Dijkstra, A*
Heuristic In case A* is chosen, it provides the following options: Euclidean and Manhattan

Table 1: Explanation of test run parameters (1)
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Path-finding
parameters

Comments

Dir.“straight” weight

1t represents the penalty to pay in order for the path to keep its current course

Dir.“4S bend” weight

1t represents the penalty to pay in order for the path to change its current course by 45°

Dir. “bend” weight

It represents the penalty to pay in order for the path to change its current course by 90°

Dir.“135 bend” weight

1t represents the penalty to pay in order for the path to change its current course by 135°

“E.45 bend” weight

1t represents the penalty to pay in order for the path to change its current course according
to Figure 25

“E.135 bend” weight

It represents the penalty to pay in order for the path to change its current course according
to Figure 25

Diagonal weight
mult/er

1t represents the value with which the standard diagonal edge weight is multiplied

E. diagonal weight
mult/er

1t represents the value with which the extended diagonal edge weight is multiplied

Table 2: Explanation of test run parameters (2)

It should be noted, that the parameters previewed in Table 2, have a great potential for optimization,
as tweaking them can have a great impact on the resulting path solution.
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4.3. Test case setting

In order to prove the effectiveness of the developed pipe-routing software, and consequently of the
methods that it utilizes in order to tackle the problem of automatic pipe-routing, five test case
models are used:

*  Empty cubic space

*  Simple room space

*  Compound space

*  Complex compound space

» Simplified engine room space

The presented approach is implemented in Visual C++ 2017, under Windows 10, x64 bit OS
(Microsoft Corporation). All of the test runs were conducted using a laptop with Intel(R) Core(TM)
17-8750H CPU @ 2.20GHz, 2208 MHz, 6 Core(s), 12 Logical Processor(s). At this point it should
be noted that a multitude of test runs for several test cases were conducted over an extended period
of time. This led us to gain some much needed experience, as far as picking the right parameters for
each individual pipe-routing problem is concerned. Consequently, all of the parameters and path
option settings that were used in each test run for the following cases, were inferred from a
strenuous trial and error process. These parameters and options are presented and discussed in detail
in the following sections.
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4.3.1. Model 1: Empty cubic space

4.3.1.1 Test case presentation

Three sets of test runs were conducted for the current model. The first set, consists of three test
runs, which aim to illustrate the different results that the Dijkstra and the A* algorithm produce, in a
standard weighted graph. As far as the weight allocation methods are concerned, no further penalty
was considered, meaning that the edge weights are equal to the respective dx, dy and dz parameters
of the voxelized space. Both the Euclidean and the Manhattan distance heuristics were considered.
Table 3 contains all the information needed to recreate each of these individual test runs.

Path-finding settings Test run #1 Test run #2 Test run #3
Voxel Size (mm) 100 100 100
Graph Type Standard Standard Standard
Split graph False False False
Start point (mm) (0,0, 0) (0,0, 0) (0,0, 0)
End point (mm) (1900, 1900, 1900) (1900, 1900, 1900) (1900, 1900, 1900)
Direction (S-E) Not applicable Not applicable Not applicable
Position-level method Not utilized Not utilized Not utilized
Plane-distance method Not utilized Not utilized Not utilized
Algorithm Dijkstra A* A*
Heuristic - Euclidean Manhattan
Dir. “straight” weight 1 1 1
Dir. “bend” weight 20 20 20

Table 3: Model 1: First set test run parameters
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The second set now consists of two test runs. Now, both Dijkstra and A* are used in a split, standard
weighted graph. Again, no further penalty is applied to the edge weights, while for the A* only the
Euclidean distance heuristic is considered. Furthermore, directional specifications are considered.
Table 4 contains all the information needed to recreate each of these individual test runs.

Path-finding settings Test run #4 Test run #5
Voxel Size (mm) 100 100
Graph Type Standard Standard
Split graph True True
Start point (mm) (0,0,0) (0,0,0)

End point (mm) (1900,1900,1900) (1900,1900,1900)
Direction (S-E) 1-6 1-6
Position-level method Not utilized Not utilized
Plane-distance method Not utilized Not utilized
Algorithm Dijkstra A*
Heuristic - Euclidean
Dir. “straight” weight 1 1
Dir. “bend” weight 20 20

Table 4: Model 1: Second set test run parameters
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For the third, and final set for this model, two groups of six test runs are considered. Dijkstra is used
in a split, standard weighted graph. As with the other two sets, no added penalty is considered. Last
but not least, directional specifications play a pivotal role in this set. Table 5 contains all the

information needed to recreate each of these individual test runs.

Path-finding settings

Group 1 (Test run #6 - #11)

Group 2 (Test run #12 - #17)

Voxel Size (mm) 100 100
Graph Type Standard Standard
Split graph True True

Start point (mm) (500,500,500) (500,500,500)

End point (mm) (1700,1700,1700) (1700,1700,1700)
Direction (S-E) (1:6)-6 1-(1:6)
Position-level method Not utilized Not utilized
Plane-distance method Not utilized Not utilized
Algorithm Dijkstra Dijkstra
Heuristic - -
Dir. “straight” weight 1 1
Dir. “bend” weight 20 20

Table 5: Model 1: Third set test run parameters
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4.3.1.2. Results illustration

Based on on the data presented in Tables 3 to 5, the results of the various test runs are presented in

the figure illustrations below.

Path Metrics

Number of Bends
Algorithm run time (s)
Total x-axis length (mm)
Total y-axis length (mm)
Total z-axis length (mm)

Total length (mm)

Number of Wall Attached Points (%) ‘24

25

0.001

2100

11900

1900

5900

Total Distance from Boundaries (mm) \12500

Maximum Distance from Wall (mm) \500
Figure 33: Test run #1 illustration and metrics

Path Metrics

Number of Bends |56 \
Algorithm run time (s) |0.003 \
Total x-axis length (mm) |2100 ‘
Total y-axis length (mm) |1900 \
Total z-axis length (mm) |1900 \
Total length (mm) |5900 \

Figure 34: Test run #2 illustration and metrics

Number of Wall Attached Points (%) |10

Maximum Distance from Wall (mm)

Total Distance from Boundaries (mm) |25200

l900

55



Path Metrics

Number of Bends ‘2

Algorithm run time (s) \0.002
Total x-axis length (mm) ‘2100
Total y-axis length (mm) \1900
Total z-axis length (mm) \1900
Total length (mm) ‘5900

Total Distance from Boundaries (mm) \0

Number of Wall Attached Points (%) \100

Maximum Distance from Wall (mm) ‘0

Figure 35: Test run #3 illustration and metrics

Path Metrics

Number of Bends \2

Algorithm run time (s) ‘0.02
Total x-axis length (mm) \1900
Total y-axis length (mm) \2100
Total z-axis length (mm) ‘1900
Total length (mm) \5900

Total Distance from Boundaries (mm) \0

Number of Wall Attached Points (%) ‘100

Maximum Distance from Wall (mm) \0

Figure 36: Test run #4 illustration and metrics
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Path Metrics

Number of Bends \2

Algorithm run time (s) ‘0.009
Total x-axis length (mm) \1900
Total y-axis length (mm) ‘2100
Total z-axis length (mm) \1900
Total length (mm) \5900

Total Distance from Boundaries (mm) ‘0

Number of Wall Attached Points (%) \100

Maximum Distance from Wall (mm) \0

Figure 37: Test run #5 illustration and metrics

Figure 38: Test run #6 - #11 illustration and close-up on directional specifications
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Figure 39:

Test run #12 - #17 illustration and close up on directional specifications
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4.3.1.3. Results assessment
Considering the previous test runs, the following conclusions can be drawn:

(1) By comparing the results from Figures 33 — 37, it becomes apparent that the implementation
of the proposed vertex-split strategy goes along way towards drastically reducing the
number of bends in each resulting path. It should be noted that the number of bends dropped
from 56 and 25 to a mere 2.

(2) While the previous conclusions is without doubt true, if one takes a closer look at Figures 33
35, we can see that the performance of the A* is really affected by its heuristic. In particular,
from these results it becomes apparent that by using the right heuristic function for each
situation, in this case the Manhattan distance heuristic, solid path solutions can occur,
regarding the number of bends, even without the use of the split graph.

(3) Last but not least, by considering the results from Figures 38 and 39, it is clear that the
directional specifications, which are provided to the algorithm in the form of the Dir-Tag
values, are met with success. However, care should be taken as to assess whether the
proposed solutions can truly be feasible.
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4.3.2. Model 2: Simple Room space

4.3.2.1. Test case presentation

At the previous section we have illustrated some of the main functionalities of the pipe-routing
software. However, the layout space of our model could be described as anything but complicated,
given the fact that it was both a simple box and completely obstacle free. The rest of the models
presented in the current work, increase the complexity of the layout space gradually, helping us to
see how our proposed pipe-routing method can cope.

Two sets of test runs were conducted for the current model. The first set, consists of two test runs,
both of which are using the A*, with its two different heuristic function options. Furthermore, the
split standard graph is used. None of the two weight allocation methods are used for these test runs.
Table 6 contains all the information needed to recreate each of these individual test runs.

Path-finding settings

Test run #18

Test run #19

Voxel Size (mm) 100 100
Graph Type Standard Standard
Split graph True True

Start point (mm) (600, 100, 0) (600, 100, 0)

End point (mm) (7300, 7300, 2800) (7300, 7300, 2800)

Direction (S-E) 1-6 1-6

Position-level method Not utilized Not utilized
Plane-distance method Not utilized Not utilized
Algorithm A* A*
Heuristic Manhattan Euclidean
Dir. “straight” weight 1 1
Dir. “bend” weight 20 20

Table 6: Model 2: First set test run parameters
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The second set, consists of three test runs. This time, Dijkstra is used. Furthermore, the split
standard graph is used. In the first test run, no weight allocation method is used, whereas in the
second and third test run, the position-level and the plane-distance weight allocation methods are
used respectively. Table 7 contains all the information needed to recreate each of these individual

test runs.

Path-finding settings

Test run #20

Test run #21

Test run #22

Voxel Size (mm) 100 100 100
Graph Type Standard Standard Standard
Split graph True True True

Start point (mm) (600, 100, 0) (600, 100, 0) (600, 100, 0)

End point (mm) (7300, 7300, 2800) (7300, 7300, 2800) (7300, 7300, 2800)
Direction (S-E) 1-6 1-6 1-6
Position-level method Not utilized v v
Function - Exponential -
Multiplier - 100 -
Plane-distance method Not utilized v v
Function - - Decreasing exponential
Multiplier - - 100
Algorithm Dijkstra Dijkstra Dijkstra
Heuristic - - -
Dir. “straight” weight 1 1 1
Dir. “bend” weight 20 20 20

Table 7: Model 2: Second set test run parameters
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4.3.2.2. Results illustration

Based on on the data presented in Tables 6 and 7, the results of the various test runs are presented in
the figure illustrations below.

Path Metrics

Total Distance from Boundaries (mm) \0

Number of Wall Attached Points (%) \100

Number of Bends \6 |
Algorithm run time (s) \0.054 |
Total x-axis length (mm) \6700 |
Total y-axis length (mm) \12800 |
Total z-axis length (mm) \2800 |
Total length (mm) \22300 |
|
|
|

Maximum Distance from Wall (mm) \0

Figure 40: Test run #18 illustration and metrics
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Path Metrics

Number of Bends ‘4
Algorithm run time (s) \0.213
Total x-axis length (mm) ‘6700
Total y-axis length (mm) \7400
Total z-axis length (mm) \2800
Total length (mm) \16900

Total Distance from Boundaries (mm) \9000

Number of Wall Attached Points (%) \86

Maximum Distance from Wall (mm) \500

Figure 41: Test run #19 illustration and metrics
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Path Metrics

Number of Bends \4
Algorithm run time (s) \0.256
Total x-axis length (mm) ‘6700
Total y-axis length (mm) \7400
Total z-axis length (mm) ‘2800
Total length (mm) \16900

Total Distance from Boundaries (mm) ‘9000

Number of Wall Attached Points (%) \86

Maximum Distance from Wall (mm) ‘500

Figure 42: Test run #20 illustration and metrics
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Path Metrics

Number of Bends \4
Algorithm run time (s) \0.248
Total x-axis length (mm) \6700
Total y-axis length (mm) \7400
Total z-axis length (mm) \2800
Total length (mm) \16900

Total Distance from Boundaries (mm) \0

Number of Wall Attached Points (%) \100

Maximum Distance from Wall (mm) \0

Figure 43: Test run #21 illustration and metrics
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Path Metrics

Number of Bends ‘8
Algorithm run time (s) \0.234
Total x-axis length (mm) ‘6700
Total y-axis length (mm) \7400
Total z-axis length (mm) ‘2800
Total length (mm) \16900

Total Distance from Boundaries (mm) ‘11493.6

Number of Wall Attached Points (%) \77

Maximum Distance from Wall (mm) ‘500

Figure 44: Test run #22 illustration and metrics
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4.3.2.3. Results assessment
Considering the previous test runs, the following conclusions can be drawn:

(1) We have already realized the importance of a good heuristic as far as the optimality of the
A* path solutions is concerned. Keeping this in mind, a closer look at the results depicted in
Figure 40 and 41, makes the aforementioned statement all the more vital. In Figure 40, we
can see that the A* becomes trapped by its heuristic resulting in an obvious less than optimal
pipe-routing solution. This happens because the algorithm does not have foreknowledge of
the existence of obstacles in the layout search space, and as a result its heuristic guides the
solution towards the most heuristically promising path. Great care should be taken when
deciding which heuristic function will be utilized in each scenario.

(2) By comparing the results of Figures 41 and 42, we can see that the resulting paths from the
implementation of Dijkstra in a split graph, can be an exact match with the paths resulting
from the A*. The only thing that differentiates the two solutions is the run time.

(3) Last but not least, by considering the results from Figures 41 — 43, we can see that the
proposed weight allocation methods play an active role in influencing the form and the
whereabouts of the resulting paths.
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4.3.3. Model 3: Compound Space

4.3.3.1. Test case presentation

Three sets of test runs were conducted for the current model. The first set, consists of three test
runs, both of which are using Dijkstra in a standard, non split, weighted graph. None of the two
weight allocation methods are used for these test runs. The aim of these test runs is to show that
Dijkstra always finds the shortest length path to the goal, as well as efficiently avoiding interference
with any obstacle, regardless of the search space complexity. Table 8 contains all the information

needed to recreate each of these individual test runs.

Path-finding settings Test run #23 Test run #24 Test run#25
Voxel Size (mm) 200 200 200
Graph Type Standard Standard Standard
Split graph False False False

Start point (mm)

(200, 200, 2600)

(1800, 16600, 4400)

(2600, 8400, 1200)

End point (mm)

(10200, 5800, 5200)

(10200, 4600, 3200)

(11800, 3400, 1200)

Direction (S-E)

Not applicable

Not applicable

Not applicable

Table 8: Model 3: First set test run parameters

Position-level method Not utilized Not utilized Not utilized
Plane-distance method Not utilized Not utilized Not utilized
Algorithm Dijkstra Dijkstra Dijkstra
Heuristic - - -
Dir. “straight” weight 1 1 1
Dir. “bend” weight 20 20 20
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The second set, consists of five test runs. This time Dijkstra is being tested in a split standard graph
without the use of a weight allocation method. In addition, the effect of the directional weights is
investigated. Table 9 contains all the information needed to recreate each of these individual test
runs.

Path-finding settings Test run #26 & 27 Test run #28 Test run #29 Test run #30
Voxel Size (mm) 200 200 200 200
Graph Type Standard Standard Standard Standard
Split graph True True True True
Start point (mm) (200, 200, 200) (200, 200, 200) (200, 200, 200) (200, 200, 200)

End point (mm) (13800, 9800, 6600) | (13800, 9800, 6600) | (13800, 9800, 6600) | (13800, 9800, 6600)

Direction (S-E) 1-2 1-2 1-2 1-2
Position-level method Not utilized Not utilized Not utilized Not utilized
Plane-distance method Not utilized Not utilized Not utilized Not utilized
Algorithm Dijkstra Dijkstra Dijkstra Dijkstra
Heuristic - - - -
Dir. “straight” weight 1,10 20 30 200
Dir. “bend” weight 20,200 1 1 10

Table 9: Model 3: Second set test run parameters

In the third and final set, four test runs are performed. Dijkstra is again utilized as the path-finding
algorithm for solving the pipe-routing problem. However, the search takes place within a diagonal
graph structure, both non-split and split. As far as the weight allocation methods are concerned, the
position-level method is used. At this point, the concept of the diagonal directional edge weights is
expanded and the effects of these values are looked into. Furthermore, the standard weight of
diagonal edge is multiplied by a factor, the value of which affects the results directly. Table 10
contains all the information needed to recreate each of these individual test runs.
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Path-finding settings

Test run #31

Test run #32

Test run #33

Test run #34

Voxel Size (mm) 300 300 300 300
Graph Type Diagonal Diagonal Diagonal Diagonal
Split graph False False True True

Start point (mm) (300, 300, 0) (300, 300, 0) (300, 300, 0) (300, 300, 0)

End point (mm) (13500, 12000, 6600) | (13500, 12000, 6600) | (13500, 12000, 6600) | (13500, 12000, 6600)
Direction (S-E) Not applicable Not applicable 1-7 1-9
Position-level method Not utilized v Not utilized v
Function - Exponential - Quadratic
Multiplier - 100 - 100
Plane-distance method Not utilized v Not utilized v
Function - I]EDX ?5512:11251 - Decreasing Linear
Multiplier - 100 - 100
Algorithm Dijkstra Dijkstra Dijkstra Dijkstra
Heuristic - - - -
Dir.“straight” weight - - | 1
Dir.“45 bend” weight - - 30 20
Dir. “bend” weight - - 20 20
Dir.“135 bend” weight - - 100 20
“E.45 bend” weight - - 50 20
“E.135 bend” weight - - 200 20
Diagonal weight 1 ) 15 1
mult/er
E. diagonal weight 1 15 15 15

mult/er

Table 10: Model 3: Third set test run parameters
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4.3.3.2. Results illustartion

Based on on the data presented in Tables 8 to 10, the results of the various test runs are presented in
the figure illustrations below. However, for the shake of clarity, the current model on which the test
runs were performed, is also presented from different angles.

Figure 45: Model 3: Explanatory layout space illustration
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Path Metrics

Number of Bends |32
Algorithm run time (s) |0.01
Total x-axis length (mm) |15200
Total y-axis length (mm) |12400
Total z-axis length (mm) |3800
Total length (mm) |31400

Total Distance from Boundaries (mm) |10374.3

Number of Wall Attached Points (%) |78

Maximum Distance from Wall (mm) |1000

Figure 46: Test run #23 illustration and metrics
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Path Metrics

Number of Bends |46
Algorithm run time (s) |0.011
Total x-axis length (mm) |22000
Total y-axis length (mm) |18000
Total z-axis length (mm) |4000
Total length (mm) |44000

Total Distance from Boundaries (mm) |8682.84

Number of Wall Attached Points (%) |83

Maximum Distance from Wall (mm) |400

Figure 47: Test run #24 illustration and metrics
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Path Metrics

Number of Bends ‘14
Algorithm run time (s) \0.011
Total x-axis length (mm) ‘12400
Total y-axis length (mm) \16000
Total z-axis length (mm) \0
Total length (mm) \28400

Total Distance from Boundaries (mm) \27693.2

Number of Wall Attached Points (%) \63

Maximum Distance from Wall (mm) \1000

Figure 48: Test run #25 illustration and metrics
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Path Metrics

Number of Bends |7
Algorithm run time (s) |0.065
Total x-axis length (mm) |13600
Total y-axis length (mm) |10000
Total z-axis length (mm) |6400
Total length (mm) |30000

Total Distance from Boundaries (mm) |15095.7

Number of Wall Attached Points (%) |52

Maximum Distance from Wall (mm) |565.685

Figure 49: Test run #26 & #27 illustration and metrics
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Path Metrics

Number of Bends \6
Algorithm run time (s) ‘0.064
Total x-axis length (mm) \13600
Total y-axis length (mm) ‘10000
Total z-axis length (mm) \6400
Total length (mm) ‘30000

Total Distance from Boundaries (mm) \15095.7

Number of Wall Attached Points (%) ‘52

Maximum Distance from Wall (mm) \565.685

Figure 50: Test run #28 illustration and metrics
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Path Metrics

Number of Bends \50
Algorithm run time (s) \0.06
Total x-axis length (mm) \13600
Total y-axis length (mm) \10000
Total z-axis length (mm) \6400
Total length (mm) \30000

Total Distance from Boundaries (mm) \41020.3

Number of Wall Attached Points (%) \32

Maximum Distance from Wall (mm) \1000

Figure 51: Test run #29 illustration and metrics
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Path Metrics

Number of Bends \80
Algorithm run time (s) ‘0.062
Total x-axis length (mm) \13600
Total y-axis length (mm) \10000
Total z-axis length (mm) \6400
Total length (mm) \30000

Total Distance from Boundaries (mm) \33723.5

Number of Wall Attached Points (%) \31

Maximum Distance from Wall (mm) \1000

Figure 52: Test run #30 illustration and metrics
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Path Metrics

Number of Bends \0
Algorithm run time (s) ‘0.005
Total x-axis length (mm) \13800
Total y-axis length (mm) ‘11700
Total z-axis length (mm) \6600
Total length (mm) ‘25806.9

Total Distance from Boundaries (mm) \5700

Number of Wall Attached Points (%) ‘84

Maximum Distance from Wall (mm) \900

Figure 53: Test run #31 illustration and metrics
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Path Metrics

Number of Bends \4
Algorithm run time (s) \0.006
Total x-axis length (mm) \14400
Total y-axis length (mm) \11700
Total z-axis length (mm) \7200
Total length (mm) \27594.2

Total Distance from Boundaries (mm) \600

Number of Wall Attached Points (%) \97

Maximum Distance from Wall (mm) \300

Figure 54: Test run #32 illustration and metrics
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Path Metrics

Number of Bends |4
Algorithm run time (s) |0.132
Total x-axis length (mm) |13800
Total y-axis length (mm) |11700
Total z-axis length (mm) |6600
Total length (mm) |27915.8

Total Distance from Boundaries (mm) |6900

Number of Wall Attached Points (%) |77

Maximum Distance from Wall (mm) |900

Figure 55: Test run #33 illustration and metrics
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Path Metrics

Number of Bends \0
Algorithm run time (s) ‘0.137
Total x-axis length (mm) \13800
Total y-axis length (mm) ‘11700
Total z-axis length (mm) \7200
Total length (mm) ‘26373.5

Total Distance from Boundaries (mm) \0

Number of Wall Attached Points (%) ‘100

Maximum Distance from Wall (mm) \0

Figure 56: Test run #34 illustration and metrics

82



4.3.3.3. Results assessment
Considering the previous test runs, the following conclusions can be drawn:

(1) From Figures 46 — 48, we can see that Dijkstra is always for the shortest path, if one exists
of course. Furthermore, we can see that both the proposed modeling and algorithmic
approach to the problem of pipe-routing counters the problem of collision with complete
success, as it manages to navigate through complex spaces. Finding openings to pass
through (see Figure 46), navigating through alternating walls (see Figure 47) and evading
dead ends (see Figure 48) are dealt with successfully in each run.

(2) While presenting the weight allocation methods in Section 2.4.3., we saw that the values of
the directional edge weights play an active role in the resulting path. While considering the
results presented in Figures 49 — 52, we can draw the following conclusions. Firstly, based
on Figures 49 and 50, we see that the value sets of 1 — 20 and 10 — 200 for the straight and
90° directional weights give the same results, leading us to believe that the actual value of
these two weights does not really matter, whereas their ratio value does. However, in Figure
49 we shift the value set to 20 — 1, which leads again to the same result. These two
observations, leads us to the conclusion that the ability of the directional edges to affect the
resulting paths in a way that leads to good solutions, is closely connected with the ratio of
the two values in combination with the ratio of these values and the standard edge weights.
This conclusion is verified by the result in Figure 51, where a value set of 30 — 1 (straight —
90° bend) leads to a more bend ridden path. In Figure 52, setting the value set to 200 — 10,
only raises the number of bends from 50 in Figure 51, to 80. This, also leads us to the
conclusion that misuse of these directional weight values can ruin the optimal path-finding
capability of the split graph structure.

(3) Last but not least, by considering the results from Figures 53 — 56, we can see that the
diagonal graph structure produces some really interesting results. In general, when routing
pipes in a diagonal graph, the resulting optimal path tends to follow the diagonal edges
more, as they lead to shortest length path solution candidates. However, extensive use of
these diagonal edges is not feasible. For this reason, the diagonal weight multipliers which
we introduced, can go some way towards leading to more orthogonal paths, see Figures 53
and 54. Furthermore, by taking a look at Figures 55 and 56, we can see that the use of the
extended diagonal weight penalty allocation method, as introduced in Section 2.4.3.2.2. in
Figures 23, 24 can lead to paths were much less directional changes occur within a path.
However, even the use of a uniform bend penalty, regardless of the angle, as described in
Section 2.4.3.2.2. in Figure 24, leads to good alternative pipe-routing solutions.
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4.3.4. Model 4: Complex compound space

4.3.4.1. Test case presentation

Two sets of test runs were conducted for the current model. As far as the first set is concerned, two
test runs are considered. Both Dijkstra and A* are used respectively, in a standard, non split
weighted graph, without the utilization of a weight allocation method. The aim of these test runs is
to show the run time superiority of the A* algorithm over Dijkstra, especially in a complex layout

space. Table 11 contains all the information needed to recreate each of these individual test runs.

Path-finding settings

Test run #35

Test run #36

Voxel Size (mm) 100 100
Graph Type Standard Standard
Split graph False False

Start point (mm) (600, 4800, 3400) (600, 4800, 3400)

End point (mm) (17300, 7300, 2800) (17300, 7300, 2800)

Direction (S-E) Not applicable Not applicable

Position-level method Not utilized Not utilized
Plane-distance method Not utilized Not utilized
Algorithm Dijkstra A*
Heuristic - Euclidean
Dir. “straight” weight 1 1
Dir. “bend” weight 20 20

Table 11: Model 4: First set test run parameters
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The second set, consists of t test runs. Dijkstra's algorithm is used, in both standard split and non-
split graphs. The aim of this set of test runs is to test the effectiveness of the weight allocation
methods proposed, as far as their ability to force the solution through certain areas is concerned.
Table 12 contains all the information needed to recreate each of these individual test runs.

Path-finding settings Test run #37 Test run #38 Test run #39 Test run #40
Voxel Size (mm) 100 100 100 100
Graph Type Standard Standard Standard Standard
Split graph False True True True

Start point (mm)

(7300, 3700, 800)

(7300, 3700, 800)

(7300, 3700, 800)

(7300, 3700, 800)

End point (mm) (17300, 7300, 2800) | (17300, 7300, 2800) | (17300, 7300, 2800) | (17300, 7300, 2800)
Direction (S-E) Not applicable 3-2 3-2 3-2
Position-level method Not utilized v Not utilized Not utilized
Function - Exponential - -
Multiplier - 100 - -
Plane-distance method Not utilized Not utilized v v
Function - - Decreasing Linear Increasing Linear
Multiplier - - 100 100
Algorithm Dijkstra Dijkstra Dijkstra Dijkstra
Heuristic - - - -
Dir. “straight” weight 1 1 1 1
Dir. “bend” weight 20 20 20 20

Table 12: Model 4: Second set test run parameters
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4.3.4.2. Results illustration

Based on on the data presented in Tables 11 and 12, the results of the various test runs are presented
in the figure illustrations below. However, for the shake of clarity, the current model on which the
test runs were performed, is also presented from different angles.

Figure 57: Model 4: Explanatory layout space illustration
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Path Metrics

Number of Bends |63

Algorithm run time (s) |0.098
Total x-axis length (mm) |16900
Total y-axis length (mm) |4900
Total z-axis length (mm) |4000
Total length (mm) |25800

Total Distance from Boundaries (mm) |23259.8

Number of Wall Attached Points (%) |62

Maximum Distance from Wall (mm) |500

Figure 58: Test run #35 illustration and metrics
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Path Metrics

Total Distance from Boundaries (mm) \7141.42

Number of Wall Attached Points (%) \84

Number of Bends \54 |
Algorithm run time (s) \0.136 |
Total x-axis length (mm) \16900 |
Total y-axis length (mm) \4900 |
Total z-axis length (mm) \4000 |
Total length (mm) \25800 |
|
|
|

Maximum Distance from Wall (mm) \200

Figure 59: Test run #36 illustration and metrics
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Path Metrics

Number of Bends |43
Algorithm run time (s) |0.112
Total x-axis length (mm) |10000
Total y-axis length (mm) |6600
Total z-axis length (mm) |2000
Total length (mm) |18600

Total Distance from Boundaries (mm) |79316.8

Number of Wall Attached Points (%) |37

Maximum Distance from Wall (mm) |1100

Figure 60: Test run #37 illustration and metrics
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Path Metrics

Number of Bends \7
Algorithm run time (s) ‘0.73
Total x-axis length (mm) \10000
Total y-axis length (mm) ‘6400
Total z-axis length (mm) \2400
Total length (mm) ‘18800

Total Distance from Boundaries (mm) \0

Number of Wall Attached Points (%) ‘100

Maximum Distance from Wall (mm) \0

Figure 61: Test run #38 illustration and metrics
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Path Metrics

Number of Bends ‘5
Algorithm run time (s) \0.717
Total x-axis length (mm) ‘10000
Total y-axis length (mm) \6400
Total z-axis length (mm) ‘2200
Total length (mm) \18600

Total Distance from Boundaries (mm) ‘200

Number of Wall Attached Points (%) \98

Maximum Distance from Wall (mm) ‘100

Figure 62: Test run #39 illustration and metrics
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Path Metrics

Number of Bends ‘9
Algorithm run time (s) \0.719
Total x-axis length (mm) ‘10600
Total y-axis length (mm) \6400
Total z-axis length (mm) ‘4000
Total length (mm) \21000

Total Distance from Boundaries (mm) ‘1682.84

Number of Wall Attached Points (%) \92

Maximum Distance from Wall (mm) ‘141.421

Figure 63: Test run #40 illustration and metrics
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4.3.4.3. Results assessment
Considering the previous test runs, the following conclusions can be drawn:

(1) From Figures 58 — 59, we can see that the A* outruns Dijkstra as far as run time is
concerned. However, these run times are insubstantial. Overall, both algorithms perform
really well, with A* gaining the edge bend-wise. This again leads us to the conclusion that in
case a non-split graph structure is used for path-finding, A* is the best choice as far as the
minimum number of bends is concerned.

(2) At this point, great emphasis should be given on the results presented in Figures 60 — 63.
Figure 60, shows the shortest path between that start and goal vertices. However, the
solution happens to cross through usable free-space. This would lead to interference of sorts,
thus rendering the proposed solution as non-viable. However, when the proposed weight
allocation methods come into play, in combination with the use of a split graph, the results
get way better. In Figure 62, we see that the resulting path is routed near the ceiling of the
layout space, while in Figure 63, it is routed near the floor. As a result, this leads us to the
conclusion that the proposed weight allocation methods truly lead to better results, as far as
the maximization of the available continuous free-space is concerned.
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4.3.5. Model 5: Simplified engine room space

4.3.5.1. Test case presentation

So far, the proposed pipe-routing software has been tested rigorously in four models of escallating
complexity. All of this models were created in order to bring up potential issues that traditional
pipe-routing methods exhibit, while showing how our proposed method goes some way towards
tackling them. Last but not least, a simplified, yet informationally complete ship engine room model

is considered.

One set of test runs is conducted for the current near real-life engine room model. These test runs
are not evaluated, based on their metric parameters, because they aim only to illustrate the problem-
solving capabilities of our proposed pipe-routing methodology. All in all two test runs are
conducted. Table 13 contains all the information needed to recreate each of these individual test

runs.

Path-finding settings Test run #41 Test run #42
Voxel Size (mm) 500 500
Graph Type Standard Standard
Split graph True True

Start point (mm)

(23600 , 22500, 4000)

(23000, 11100, 14000)

End point (mm) (23600, 9000, 14000) (19000, 12600, 6000)

Direction (S-E) 5-5 1-1
Position-level method Not utilized Not utilized
Plane-distance method v v

Function Increasing exponential Increasing exponential
Multiplier 100 100
Algorithm A* A*
Heuristic Euclidean Euclidean
Dir. “straight” weight 1 1
Dir. “bend” weight 20 20

Table 13: Model 5: Test run parameters

94



4.3.5.2. Results illustration

Based on on the data presented in Table 13 the results of the two test runs are presented in the figure
illustrations below. However, for the shake of clarity, the current model on which the test runs were
performed, is also presented from different angles.

Figure 64: Model 5: Explanatory layout space illustration
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Path Metrics

Number of Bends |8

Algorithm run time (s) |0.023
Total x-axis length (mm) |10000
Total y-axis length (mm) |13500
Total z-axis length (mm) |12000

Total length (mm) |35500

Total Distance from Boundaries (mm) |2000

Number of Wall Attached Points (%) |94

Maximum Distance from Wall (mm) |500

Figure 65: Model 5: Test run #41 illustration and metrics
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Path Metrics

Number of Bends \6
Algorithm run time (s) ‘0.016
Total x-axis length (mm) \4000
Total y-axis length (mm) ‘14500
Total z-axis length (mm) \8000
Total length (mm) ‘26500

Total Distance from Boundaries (mm) \27914.2

Number of Wall Attached Points (%) ‘9

Maximum Distance from Wall (mm) \1000

Figure 66: Model 5: Test run #42 illustration and metrics
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Figure 67: Model 5: Test run #41 & # 42 joined complete illustration
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5. Conclusions and future work

5.1. Conclusions

An automatic pipe-routing methodology is devised and implemented within the frameworks of a
dedicated piece of software. This methodology is comprised of two main aspects, the modeling and
the algorithmic one. Dijkstra and the A* are used within a graph-based structure, built upon the cell
decomposed model of a given layout workspace. Both orthogonal, or standard as referred to in the
present Thesis, and diagonal graph structures are considered, while at the same time an innovative
vertex-split strategy is introduced to the problem, that allows directional specifications being
considered in the problem of pipe-routing. Last but not least, two edge weight allocation methods
are proposed, the position-level and the distance-from-plane method.

This methodology is tested in five different models, of increasing layout complexity. The results
show the following:

(1) The resulting paths are always obstacle-free, meaning that no collision is detected during the
pipe-routing process.

(2) The proposed vertex-split strategy drastically reduces the number of bends included in each
candidate optimal path-algorithm.

(3) The proposed vertex-split strategy manages to lead to the creation of paths that follow
specific directional specifications regarding the start and goal point of each individual pipe-
routing scenario.

(4) The proposed edge weight allocation methods, actively affect the whereabouts of the
resulting paths, thus enabling the designer to minimize the wasted free-space as a result of a
pipe being routed.

(5) The proposed diagonal graph structure, in combination with its extended vertex-split
strategy, shows promising results that could be further expanded.

However, the following issues exist:

(1) The developed method so far deals only with single pipe-routing problems, meaning that it
does not deal with the problem of branch in pipe-routing.

(2) It is unclear as to what extent it is possible to fit the resulting paths with standardized pipe
components, in order to tackle with real life problems.

(3) Many parameters to the problem, such as the directional weights, that have to do with the
edges connecting the split-vertices, have a complex and somehow elusive effect on the
resulting paths, leading sometimes to less than optimal solutions, in light of the absence of
an optimization module.

When all is said and done, the proposed pipe-routing method and its accompanying software, can
produce results that can assist any designer involved with the field of pipe-routing. These results,
although not applicable in real life situations per se, they can serve as a guide to further required
developments, with the goal of reducing the man-hours needed for pipe-routing tasks.
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5.2. Future work

The pipe-routing concept proposed in the present work, opens up the path to many additional
improvements on the process in question. The software developed in the scope of this study can be
further improved to accommodate more functionalities that will make the developed method all the
more capable to deal with real life problems. Many things could be said, the most important of them
being:

(1) The development of a more efficient voxelization technique should be considered. One that
would enable us to decompose any given layout space more efficiently in terms of
computational resources and time needed. On top of that, the concept of decomposing part
of the layout workspace in question should also be considered.

(2) The algorithmic aspect of the proposed methodology should be extended in order to be able
to tackle the problem of routing multiple pipes at the same time, also considering the
problem of branch-pipe-routing.

(3) Further edge weight allocation methods should be considered, in order to pluralize the
optimal path solution pool.

(4) An optimization module should be created in order to best choose from the multitudes of
parameters that define our current pipe routing process.

(5) A thorough study should be conducted, regarding the fitting of the resulting optimal path
solutions with actual standardized pipe components.
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Appendix A

The typical format of a .vraw input file is presented in this Appendix.

<Voxel Size>

500 500 500

<Voxel Count>

509252

<Deck position>

6

02852 5242 12000 18600 25640
<Longitudinal Bulkhead position>
0

<Transverse Bulkhead position>
0

<Origin Point>

0-22779.669274 0

<Cad Filename>
EngineRoomModel.igs

<Voxel tag>

0

0

0
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Appendix B

The typical format of a .path output file is presented in this Appendix.

<Number of Paths>

1

<Graph Type>

0

<Split>

0

<Starting Point>

3003000

<Start Direction>

0

<Target Point>

13500 12000 6600

<Target Direction>

0

<Position Lvl Weight Penalty Flag>

0

<Position Lvl Weight Penalty Function ID>
0

<Position Lvl Weight Penalty Multiplier>

0

<Plane Distance Weight Penalty Flag>

0

<Plane Distance Weight Penalty Function ID>
0

<Plane Distance Weight Penalty Multiplier>
0

<Path Finding Algorithm>

1

<Heuristic>

1
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<Size of Point ID's vector>
72

<Point ID's>

<Number Of Bends>
0

<Total X-axis Length>
13800

<Total Y-axis Length>
11700

<Total Z-axis Length>
6600

<Total Length Sum>
25806.9

<Total Distance from Boundaries>

5700

<Number of Wall Attached Points>

61
<Max-Min Wall Distance>
900
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