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Abstract 

Large peripheral nerve (PN) defects require bridging substrates to restore tissue continuity and 

permit the regrowth of sensory and motor axons. We previously showed that cell-free PN segments 

repopulated ex vivo with Schwann cells (SCs) transduced with lentiviral vectors (LV) to express 

different growth factors (BDNF, CNTF or NT-3) supported the regeneration of axons across a 1cm 

peroneal nerve defect (Godinho et al 2013). Graft morphology, the number of regrown axons, the 

ratio of myelinated to unmyelinated axons, and hindlimb locomotor function differed depending on 

the growth factor engineered into SCs. Here we extend these observations, adding more LVs 

(expressing GDNF or NGF) and characterising regenerating sensory and motor neurons after 

injection of the retrograde tracer Fluorogold (FG) into peroneal nerve distal to grafts, 10 weeks after 

surgery. Counts were also made in rats with intact nerves and in animals receiving autografts, 

acellular grafts, or grafts containing LV-GFP transduced SCs. Counts and analysis of FG positive 

(+) DRG neurons were made from lumbar (L5) ganglia. Graft groups contained fewer labeled 

sensory neurons than non-operated controls, but this decrease was only significant in the LV-GDNF 

group. These grafts had a complex fascicular morphology that may have resulted in axon trapping. 

The proportion of FG+ sensory neurons immunopositive for calcitonin-gene related peptide (CGRP) 

varied between groups, there being a significantly higher percentage in autografts and most 

neurotrophic factor groups compared to the LV-CNTF, LV-GFP and acellular groups. Furthermore, 

the proportion of regenerating isolectin B4
+ neurons was significantly greater in the LV-NT-3 group 

compared to other groups, including autografts and non-lesion controls. Immunohistochemical 

analysis of longitudinal graft sections revealed that all grafts contained a reduced number of choline 

acetyltransferase (ChAT) positive axons, but this decrease was significant only in the GDNF and 

NT-3 graft groups. We also assessed the number and phenotype of regrowing lumbar FG+ motor 

neurons in non-lesioned animals, and in rats with autografts, acellular grafts, or in grafts containing 

SCs expressing GFP, CNTF, NGF or NT-3. The overall number of FG+ motor neurons per section 

was similar in all groups; however in tissue immunostained for NeuN (expressed in α- but not γ-

motor neurons) the proportion of NeuN negative FG+ neurons ranged from about 40-50% in all 

groups except the NT-3 group, where the percentage was 82%, significantly more than the SC-GFP 

group. Immunostaining for the vesicular glutamate transporter VGLUT-1 revealed occasional 

proprioceptive terminals in ‘contact’ with regenerating FG+ α-motor neurons in PN grafted animals, 

the acellular group having the lowest counts. In sum, while all graft types supported sensory and 

motor axon regrowth, there appeared to be axon trapping in SC-GDNF grafts, and data from the 

SC-NT-3 group revealed greater regeneration of sensory CGRP+ and IB4
+ neurons, preferential 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



regeneration of γ-motor neurons and perhaps partial restoration of monosynaptic sensorimotor 

relays.   
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Abbreviations 

BDNF, Brain-derived neurotrophic factor 

CGRP, Calcitonin-gene related peptide 

ChAT, Choline acetyltransferase 

CNTF, Ciliary neurotrophic factor 

DRG, Dorsal root ganglion 
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GDNF, Glial cell-derived neurotrophic factor 

GFP, Green fluorescent protein 

IB4, Isolectin B4 

LV, Lentiviral vectors 

NeuN, Neuronal DNA binding protein 

NGF, Nerve growth factor 

NT-3, Neurotrophin-3 

PN, Peripheral nerve 

SC, Schwann cells 

VGLUT-1, Vesicular glutamate transporter-1 
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Introduction 

After a peripheral nerve (PN) injury, affected neurons must first survive the initial trauma if they 

are to regrow their axons and re-establish connections with peripheral targets. Extensive PN injury 

involving more than a critical length of damaged tissue requires the use of bridging substrates such 

as PN grafts to re-establish continuity between proximal and distal stumps. Subsequent examination 

of such grafts and host nerve stumps can provide data on the number and distribution of 

regenerating axons but does not directly give information about neuronal survival and the source of 

the regenerating axons. The number of axons in grafts may include multiple sprouts from a single 

axon as well as axons that have turned around and are now travelling back along the nerve. 

Using an alternative to autologous nerve grafts, we previously showed that allogeneic acellular PN 

sheaths repopulated ex vivo with congeneic Schwann cells (SCs) transduced with lentiviral vectors 

(LV) to express different growth factors (either brain-derived neurotrophic factor - BDNF, ciliary 

neurotrophic factor - CNTF or neurotrophin-3 – NT-3) supported the regeneration of many axons 

across a 1cm peroneal nerve defect (Godinho et al 2013). The morphology of these grafts, the 

number and type of regenerating axons, the ratio of myelinated to unmyelinated axons, myelin 

thickness and hindlimb locomotor function all varied depending on the growth factor that had been 

engineered into the transplanted SCs. In the present study, using the same chimeric graft model, our 

aim was to quantify neuronal survival after injury and characterize the sensory and motor neurons 

that regrew axons through and beyond the different graft types. To do this, the retrograde tracer 

Fluorogold (FG) was injected into peroneal nerve distal to the grafts, 10 weeks after surgery. In 

addition to the genetically modified SCs described above, in the present study we also grafted PN 

repopulated with SCs transduced with LV encoding either glial cell-derived neurotrophic factor 

(GDNF) or nerve growth factor (NGF). Counts were also made in normal animals with intact 

nerves, and in rats receiving autografts, acellular grafts, or grafts containing ‘control’ SCs 

engineered to express only green fluorescent protein (GFP).  

The peroneal nerve is a mixed nerve containing both afferent and efferent axons; thus we counted 

and analyzed FG positive (+) neurons in lumbar dorsal root ganglia (DRG) known to contribute 

sensory axons to the rat peroneal nerve (Swett et al., 1991), and examined FG+ motor neurons in 

relevant segments of ventral horn of the spinal cord.  In addition to determining the number of 

regenerating sensory and motor neurons for each graft type, FG identification was combined with 

immunofluorescence labelling with several antibodies to permit some phenotypic characterization 

of the regenerating neuronal populations. For DRG neurons, the panel of antibodies included the 

neuronal markers isolectin B4 (IB4) and calcitonin gene-related peptide (CGRP), and antibodies 

against various neurotrophic factor receptors. In transverse lumbar spinal cord sections, neuronal 
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DNA binding protein (NeuN) antibodies were used to distinguish between alpha (α) and gamma (γ) 

motor neurons, the latter reported to express low levels of this protein (Friese et al., 2009). An 

additional series of spinal cord sections containing FG+ neurons was immunostained with antibodies 

to βIII-tubulin and the vesicular glutamate transporter-1 (VGLUT-1), the latter a marker for the 

terminals of primary 1a afferents originating from muscle spindles (Todd et al., 2003; Alvarez et al., 

2011; Levine et al. 2014; Liu et al. 2014). This was done in order to determine if sensory feedback 

was restored to regenerate motor neurons (Mendell et al., 1999). Finally, longitudinal sections of 

graft tissue were immunostained with an antibody to central choline acetyl transferase (ChAT) to 

assess the regeneration of cholinergic motor neurons and their axons within the genetically 

modified grafts.  

 

Materials and Methods 

Experimental animal groups and surgical procedures  

Fischer 344 rats were obtained from the Animal Resource Centre (Western Australia) and housed 

under standard conditions with a 12hr light/dark cycle and ad libitum access to food and water. 

Surgical procedures followed Australia's NHMRC guidelines and were approved by the UWA's 

Animal Ethics Committee. There were 9 experimental groups, each containing 5 adult (8-10 week 

old) male Fischer rats. Normal (control) rats were uninjured, while in all other animals the peroneal 

nerve on the left hindlimb was transected and grafted with different types of PN tissue: autografts 

(in which 1cm segment of the nerve was completely sectioned and sutured back into the nerve 

defect), acellular PN sheaths, or allogeneic PN sheaths that had been repopulated ex vivo with 

Fischer-derived SCs genetically modified using LV vectors to express different growth factors or 

control SCs genetically modified to express the reporter gene GFP (Fig. 1). Rats were anesthetized 

with an intra-peritoneal injection (1ml/kg body weight) of a mixture of equal volume of ketamine 

(100mg/ml) and xylazine (20mg/ml), the peroneal nerve exposed and a 1cm segment removed. The 

nerve gap was immediately repaired with a graft attached to proximal and distal nerve stumps using 

10/0 nylon suture (Ethilon). Skin was closed with 6/0 suture (Ethilon) and animals were given 

Benacillin ((200µl/100g of body weight, 64mg/kg, 300 U/mL) intra-muscularly and Temgesic 

(20µg/kg body weight, 0.0324mg/kg, 300 U/mL) subcutaneously.  

Preparation of acellular nerve sheaths 

Acellular sheaths are non-immunogenic PN segments that have been freeze-thawed to kill 

endogenous cells while maintaining the integrity of the basal lamina (Gulati et al., 1995; Cui et al., 
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2003). As described previously (Godinho et al., 2013) acellular sheaths were prepared from 

peroneal nerves of allogeneic (Wistar) adult male rats and inserted into similar nerves in F344 host 

rats. Cells were removed by 5 consecutive cycles of 5 minutes freezing in liquid nitrogen and 5 

minutes thawing at room temperature, followed by storage at -80°C. One experimental group 

received acellular nerve sheaths prepared as described and trimmed to 1cm (acellular group), while 

others received nerve sheaths which were seeded with genetically modified SCs prior to grafting.  

Preparation and genetic modification of adult SC cultures using lentiviral vectors (LV) 

The methods used to obtain primary cultures of adult SCs and their subsequent transduction have 

been described (Morrisey et al., 1991; Plant et al., 2002; Cui et al., 2003; Hu et al., 2005, 2007; 

Godinho et al., 2013). Briefly, to prepare each culture, five F344 rats were sacrificed and their 

sciatic nerves collected, placed in Liebovitz’s L-15 medium (Invitrogen), stripped of their 

epineurium and sectioned into 1-2mm pieces. Explants were incubated at 37°C with 5% CO2 in D10 

media (Dulbecco’s Modified Eagle’s Medium (DMEM)) (Sigma) with 10% foetal bovine serum 

(FBS) (Sigma), 1% L-glutamine (Invitrogen) and 1% penicillin/streptomycin (Invitrogen). Every 

week for about a month explants were transferred into clean dishes to discard plated fibroblasts 

which are quicker than SCs in migrating out of the nerve pieces. Explants were then enzymatically 

dissociated overnight with 1.25U/ml dispase (Boehringer Mannheim Biochemicals) and 0.05% 

collagenase (Sigma) in DMEM with 15% FBS. The resulting SC cultures were expanded on poly-

L-lysine (Sigma) coated dishes containing D10 media with 20µg/ml bovine pituitary extract 

(GibcoBRL) and 2µM forskolin (Sigma).  

For the transduction, approximately 106 SCs were plated for 24hr and incubated with each of the 

LV stocks (titers between 108 and 109 transducing units/ml; MOI of 50) for 24hr. As described 

previously (Godinho et al., 2013), cultures were incubated in fresh D10 for further 48hr to allow 

maximal transgene expression. The LV stocks used encoded either: green fluorescent protein 

(GFP), brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-

derived neurotrophic factor (GDNF), nerve growth factor (NGF) or neurotrophin-3 (NT-3). These 

LV vectors were similar to those described and carefully characterized in vitro and in vivo 

elsewhere (Hu et al., 2005, 2007; Hoyng et al., 2014).  

Seeding of freeze-thawed peroneal nerve sheaths with genetically modified SCs  

We previously described the seeding of acellular sheaths with SCs (Cui et al., 2003; Hu et al., 2005; 

Godinho et al., 2013). Briefly, cultured SCs were rinsed twice with Ca2+ and Mg2+ free Hanks 

balanced salt solution (Sigma), incubated with 0.05% trypsin (CSL) and 0.02% EDTA (Invitrogen) 

for 5 minutes at 37°C, rinsed with D10, centrifuged at 103 rpm and resuspended to 5x104/µl in D10. 
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Acellular nerve sheaths incubating in D10 were trimmed to 1cm length and, using a glass 

micropipette in a Hamilton syringe, 1µl of SC suspension was slowly injected into both ends of the 

nerve, aiming for the optimal concentration of 105 SCs/sheath. Exactly the same injection technique 

was used for all reconsituted graft types. Sheaths were then incubated for 24hr in a drop of SC 

suspension to promote further infiltration. Subsequently these repopulated sheaths were used to 

repair 1cm gaps in left hindlimb peroneal nerve of F344 host rats in the experimental groups SC-

GFP, BDNF, CNTF, GDNF, NGF and NT-3 (see above ‘surgical procedures’ section).  

Retrograde labelling of cell bodies 

Ten weeks after PN graft surgery, rats were anaesthetized as described previously, their grafted 

peroneal nerve exposed and 0.2µl of 4% FluoroGold (FG) (Fluorochrome Inc.) slowly injected via a 

pulled glass pipette attached to a 10µl Hamilton syringe into the host nerve stump several mm distal 

to the graft (Fig. 1). Great care was taken to ensure FG did not leak into the distal end of each graft. 

The uninjured group of animals received a FG injection into their intact left hindlimb peroneal 

nerve to determine baseline numbers and normal distribution of neurons in dorsal root ganglia and 

ventral horn of the spinal cord. Animals received post-operative care and survived for 3 days to 

allow retrograde transport of the tracer.  

Tissue collection and processing 

Rats were deeply anaesthetized with an intra-peritoneal injection of sodium pentobarbitone 

(Lethabarb, 325mg/kg) and perfused transcardially with heparinized phosphate buffered saline 

(PBS, 0.1M pH 7.4) and then 4% paraformaldehyde in the same buffer. Collections from every 

animal included the left peroneal nerve – containing the grafted tissue, the fourth to sixth lumbar 

DRGs, and in 7 of the 9 groups the lumbosacral regions of the spinal cord to analyze motor neuron 

regeneration (Fig. 2). Due to problems during tissue processing, appropriate regions of the lumbar 

spinal cord from the LV-BDNF and LV-GDNF groups could not be analyzed. Fixed nerves were 

gently straightened onto a wooden spatula and cryoprotected in 30% sucrose solution for 24hr at 

4°C. PNs, DRGs and dissected spinal cords were embedded in OCT (tissue freezing medium, 

Leica), snap frozen in isopentane (2-methylbutane) and stored at -80°C. Using a Leica CM3050 

cryostat 16µm thick longitudinal sections of the peroneal nerve with graft were collected in a series 

of 5 gelatine coated slides. DRGs were cut into 20µm thick sections assembled in series of 5 slides, 

air-dried and stored at -20°C. Spinal cords were thawed and gently rinsed in PBS. The cords were 

cut into three blocks and each block was embedded in 10% gelatine PBS, aligned from rostral to 

caudal. Tissue was cryoprotected in 30% sucrose in PBS overnight at 4°C and stored in -20°C 

freezer until sectioning. Gelatine fixed spinal cords were mounted and covered with fresh OCT and 
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cut into 40μm thick sections in a Leica CM3050 cryostat at -20°C. Cut sections were placed free 

floating in 0.02% sodium azide in PBS. Series of sections were put in pairs in 24-well plates. 

Immunofluorescence staining  

Immunostaining protocols and selected antibodies differed slightly, depending on whether DRG, 

nerves or spinal cords were being processed (Fig. 2). From storage, DRG slides were dried at room 

temperature in a humidified dark chamber with gentle agitation. Sections were rinsed 3x with PBS 

for 5 minutes, blocked for 1hr in primary antibody diluent (PBS with 10% normal horse serum and 

0.2% Triton X-100, and incubated overnight in diluent with primary antibodies at 4°C. 

Immunostaining runs included a negative control with no primary antibody. DRG sections were 

immunostained stained with IB4 (Invitrogen #18-0171Z (Zymed), 1:500) to identify primary 

nonpeptidergic sensory neurons, CGRP (AbD Serotec #1720-9007, 1:400) for primary peptidergic 

sensory neurons, or antibodies against neurotrophic factor receptors, namely, the tropomyosin 

receptor kinases (Trk) A (Millipore #AB1577, 1:500) and TrkC (Biosensis #R-151-100, 1:500), 

receptor p75 (Promega #G323A , 1:1000) and ciliary neurotrophic receptor alpha (CNTFRα) (AbD 

Serotec #1720-9007, 1:1000). Secondary antibodies used for DRG staining were either goat anti-

rabbit Cy3 (Jackson ImmunoResearch Labs #111-166-006, 1:300), donkey anti-goat Cy3 (Jackson 

ImmunoResearch Labs #705-166-147, 1:1000), donkey anti-goat Alexa Fluor 488 (Invitrogen 

#A11055, 1:1000), or goat anti-rabbit FITC (Sigma #F6005, 1:100). Sections were washed 3x with 

PBS for 5 minutes, appropriate secondary antibody dilutions were added for 1hr, and sections were 

washed as described. Slides were covered with fluorescence mounting medium (DAKO), cover-

slipped and kept in the dark at 4°C. 

Longitudinal PN sections were stained using protocols similar to the above with neurofilament 

(PanNF) (Invitrogen #18-0171Z, 1:500) for axonal neurofilaments or βIII-tubulin (TuJ1, Covance 

#MMS-435P, 1:400 for axonal microtubules, and goat anti-mouse Cy3 (Jackson ImmunoResearch 

Labs #115-166-006, 1:500) as the secondary antibody. For ChAT immunostaining, an additional 

step of antigen retrieval was added in the beginning, which involved a 10 minute wash with 0.1% 

Triton-X100 and 10μg/ml proteinase k in PBS and overnight incubation at 55°C in 50% formamide. 

This procedure enhances antibody penetration and optimizes visualization of ChAT (Eggers et al. 

2010; Shakhbazau et al. 2012). This was followed by routine immunohistochemical protocol using 

an antibody to central ChAT (Chemicon #AB144P, 1:1000), followed by donkey anti-goat Alexa 

Fluor 488 (1:1000). 

Free-floating spinal cord sections were rinsed in PBS, then blocked for 30 minutes on a shaker tray 

in antibody diluent (PBS with 10% normal goat serum and 0.2% Triton X-100). Sections were 

incubated overnight in primary antibody dilution at 4°C, washed 3x with PBS for 10 minutes, and 
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appropriate secondary antibody dilutions were added for 2hr. Primary antibodies used on spinal 

cord tissue were βIII-tubulin (Covance, 1:2000), NeuN (Chemicon, mab377. 1:1000) or VGLUT-1 

(Synaptic Systems #135303, 1:1000); secondary antibodies were goat anti-rabbit Alexa Fluor 488 

(LifeTech #A11088, 1:500), goat anti-mouse Cy3 (Jackson Immunoresearch Labs #115-166006, 

1:400) or goat anti-mouse Alexa Fluor 568 (LifeTech #11031, 1:400). After three 10 minute washes 

with PBS, sections were mounted onto slides and coverslipped with ProLong® Diamond Antifade 

Mountant (Thermofisher Scientific). 

Quantification and characterisation of regenerating FG labeled neurons in the DRG 

From every experimental animal, three pairs of DRG were collected (L4-L6). In initial trials, 

sections were obtained from all ganglia; consistent with previous studies it was found that heavy 

and consistent retrograde FG label was always present in the sections from L5 ganglia (Swett et al., 

1991). Thus, L5 DRGs from all rats that had received peroneal grafts were sectioned, 

immunostained and quantified. Some DRG neurons in L5 that projected into the peroneal branch 

may have survived the initial injury but did not regenerate their axon successfully through and 

beyond the graft. Other neurons would have had axons that did not project into the peroneal branch 

and therefore were not injured when the grafts were inserted. These neurons would also not have 

been labeled by the peroneal FG injections. For these reasons only FG+ neurons were analyzed and 

no attempt was made to count the total number of DRG neurons labeled with a particular antibody 

or combination of antibodies in the sectioned L5 material.  

Prior to quantification slides were coded so that counts were done blind. DRG sections with FG and 

double-labeled with IB4/TrkA and CGRP/TrkC were photographed at x10 with a Nikon Eclipse 

E800 microscope using a QuantiFIRE camera operated by PictureFrameTM software (Optronics). 

All FG+ cellular profiles in every section were manually counted using Image-Pro Express software 

(MediaCybernetics). These counts were saved and overlaid on images of the same sections stained 

with each of the primary antibodies, and only the FG labeled profiles were counted. Sections 

double-labeled with CNTFRα/p75 were counted directly under the microscope, switching between 

filters. In at least 5 tissue sections up to 11 fields, each measuring 243x243µm were counted. For 

this analysis, counts were expressed as a proportion of the total number of FG+ neurons, and data 

were statistically analyzed with either one-way analysis of variance with least significant difference 

(LSD) post-hoc tests or with Kruskal-Wallis with Dunn’s post-hoc tests and all pairwise 

comparisons, always with significance levels at p<0.05. The number of samples and the power of 

statistical tests are indicated in the text. 

Quantification of regenerate ChAT+ axons in PN grafts 
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The number of ChAT+ axons was quantified from longitudinal sections. Three longitudinal sections 

of normal nerve, and from each PN graft (3-4 animals per group), were viewed using a Nikon 

Eclipse E400 microscope and photographed at 20x magnification along the length of the section 

from the proximal to distal end. The sections were selected from across the breadth of the nerve to 

provide a representative sample of the nerve cross section. The numbers of stained axons crossing 

arbitrarily placed lines located in proximal, middle and distal parts of each nerve were counted and 

at each measurement site were averaged per 500µm width of sectioned nerve. For each group, the 

nerve width at each measurement site was also measured to estimate the total number of ChAT+ 

axons present at each location (Godinho et al 2013, Krishnan et al 2016). ChAT+ axon counts per 

500µm width from all three sample locations from each animal per group were then combined to 

give an overall average of axons per unit graft width. For each group the number of immunostained 

ChAT+ axons in longitudinal PN grafts was compared and analyzed using Kruskal-Wallis with 

Dunn’s post-hoc tests and all pairwise comparisons, with a significance level p<0.05.   

Quantification and characterisation of FG labeled motor neurons in the lumbar ventral horn. 

To eliminate the chance of double counting, every 6th 40µm thick cross section of the spinal cord 

was used for quantification of retrogradely labeled FG+ motor neurons in the 7 analyzed groups. 

Collection of sections began in upper lumbar cord and continued through to the upper sacral region 

in order to include the likely area of interest, i.e. segments L4 to L6. All sections with FG+ motor 

neurons were photographed on a Nikon Eclipse E800 microscope using a Nikon DS-Qi2 camera at 

2 different magnifications (x4 and x20), and in some cases at x40. Images were obtained as quickly 

as possible to minimize light-exposure and fading of the FG stain, enabling subsequent live 

counting of all FG+ neurons in each section. Photographs were taken at the focal plane when the 

majority of nuclei were in focus and taken using two different filters to permit exclusion of 

autofluorescent profiles. The x4 magnification was used to obtain an overview of the whole FG 

stained region, whereas 20x and 40x objectives were used for the quantification and evaluation of 

cell body and nuclear dimensions. The analysis involved measuring the area (and equivalent 

diameter, a theoretical diameter of an even sphere generated from the areal measurement) of the 

somas and nuclei of non-counterstained FG+ motor neurons. All measurements were hand drawn 

using Nis Element Basic Research 4.5 software from the 20x or 40x magnification pictures. Only 

cells that were FG+ and had a clear nucleus were drawn; a total of 1322 cells was analyzed (Table 

1).  

Proportion of FG+ motor neurons that were also immunoreactive for NeuN 
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After counting the number of FG+ motor neurons per experimental group, spinal cord sections 

containing the greatest number of retrogradely labeled motor neurons were selected for NeuN 

immunostaining. Three uninjured normal animals were analyzed (3-6 sections per animal) and four 

animals from each of the 6 experimental groups (3 sections per animal). The relative numbers of 

FG+, either NeuN+ or NeuN
-
, motor neurons were then determined in each section, yielding the 

average percentage of NeuN- counts/section (674 motor neurons counted – Table 1). Unlike all 

other counts, these counts were not done ‘blinded’ to the observer. 

Quantification of VGLUT-1 contacts on regenerating FG+ motor neurons 

Sections for the VGLUT-1 counts were double immunostained with VGLUT-1 and βIII-tubulin and 

were photographed in a similar manner to the quantification and measurement of FG+ motor 

neurons. Note that images were taken only in the focal plane in which the nucleolus was in focus – 

and counts made solely from that image. We examined immunostained sections from three normal, 

autograft, acellular and LV NT-3 graft animals, and from four SC-GFP, LV-CNTF and LV-NGF 

animals; in total, 370 FG+ motor neurons were analyzed (Table 1). Only VGLUT-1 terminals that 

were in very close apposition to FG+ cells were counted (Liu et al., 2014; Krishnan et al., 2018). 

Statistical tests on motor neurons were made using GraphPad Prism v6.01, using Kruskal-Wallis 

analysis with pairwise comparisons followed by Dunn’s multiple comparison tests, and significance 

levels set at p<0.05. 

 

Results 

Analysis of regenerated dorsal root ganglia neurons 

FG+ neurons.  Large numbers of FG+ axons were seen within normal nerve and in all peroneal 

grafts (Fig. 2). For each experimental group, the numbers of FG-labeled cell bodies in L5 DRG 

(Fig. 3A-D) were manually quantified. Quantification was performed on two out of a series of five 

slides, therefore corresponding to roughly 40% of sections of the entire DRG. All FG+ neurons were 

counted. Given that care was taken to ensure that FG was injected in host peroneal nerve distal to 

the grafts, only neurons with injured axons that regenerated and projected beyond the grafts were 

labeled. A Kruskal-Wallis test revealed significant differences between groups in the number of 

FG+ profiles (χ2 (8, n = 45) = 19.437, p = 0.013) (Fig. 4A). The average number of retrogradely 

labeled FG+ neurons after injection into normal peroneal nerve was higher than in any experimental 

group, the ‘gold standard’ autograft group being next highest. The lowest average number of FG-

labeled neurons was seen in the GDNF graft group (56.8), corresponding to a 2.5-fold decrease 
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from normal numbers and 1.95-fold decrease from the number of profiles in the autograft group. A 

Dunn’s post-hoc test with all pairwise comparisons indicated that the number of FG+ DRG neurons 

in the GDNF group was significantly lower than in the normal group (p<0.05) (Fig. 4A), although 

not significantly different from other reconstituted graft groups, including the control SC-GFP 

group.. 

CGRP+ neurons.  From each of the control (ungrafted normal) animals and experimental groups 

(n=5), between 10-13 sections, comprising about 20% of the L5 DRG, were immunostained for 

calcitonin-gene related peptide (CGRP) (Fig. 3A,B). Neurons that were FG+ and CGRP+ were 

counted and expressed as a percentage of the total number of FG+ neurons in those sections (Fig. 

4B). The proportion of CGRP+ regenerating neurons ranged from about 20% in acellular and LV-

GFP grafts to about 40% in grafts containing NT-3 transduced SCs. A one-way analysis of variance 

comparing mean percentages revealed significant differences between experimental groups (F (8, 

36) = 6.431, p<0.0005). The mean percentage of FG-labeled neurons that were also CGRP+ in L5 

DRG connected to normal nerves, acellular, SC-GFP and CNTF nerve grafted groups (a, Fig. 4B) 

was significantly less (p<0.05) than the mean percentage in autografts, and BDNF, GDNF, NGF 

and NT-3 graft groups (b, Fig. 4B). The mean percentages in the DRG from acellular and SC-GFP 

groups were also significantly lower (p<0.05) compared to all neurotrophic groups, with the 

exception of the group containing LV-CNTF transduced SCs. Thus the regrowth of this 

subpopulation of sensory axons through SC reconstituted grafts is stimulated by gene therapy for 

neurotrophins, with the exception of CNTF. The data therefore suggest that neurotrophic factor 

gene therapy is beneficial for the regeneration of CGRP+ axons.   

IB4
+ neurons.  Another set of sections from each group, again comprising about 20% of the L5 

DRG, were immunostained with antibodies to IB4 (Fig. 3C,D). With this antibody, in all 

experimental groups IB4
+ pericellular ring-like profiles were commonly seen around neurons (Fig. 

3E), likely associated with neuronal sprouts and satellite glial cells (Li and Zhou, 2001). IB4
+ 

neurons in each group were expressed as a percentage of the FG+ neurons that had regenerated 

axons into distal peroneal nerve (Fig. 4C). The mean percentages were compared using a one-way 

analysis of variance, indicating a significant difference between groups (F (8, 36) = 4.509, p = 

0.001). One-way analysis of variance with LSD post-hoc comparisons revealed that the proportion 

of IB4
+ neurons in DRG from NT-3 grafted rats (about 50%) was significantly higher (p<0.05) than 

all other groups (a, Fig. 4C). Additionally, both the mean percentage of IB4
+ neurons in DRG from 

acellular and CNTF groups (b) was significantly lower (p<0.05) compared to the NGF group. 

CNTFRα+ and p75+ neurons.  A third set of sections from 3 of the 5 animals in each group was 

double-labeled with antibodies to the CNTFRα receptor and p75 neurotrophin receptor. p75 is co-
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expressed with most Trk receptor expressing DRG neurons (Wright et al., 1995), and CNTFRα is 

present on most DRG neurons (MacLennan et al., 1996). Unlike the analysis described above, in 

which all FG-labeled regenerated neurons were counted, in these sections, for each L5 DRG, counts 

were made in random fields from at least five tissue sections. Depending on DRG size, from 7-11 

fields (each measuring 243 x 243µm) were counted per DRG section. In agreement with earlier 

work (Stucky and Koltzenburg, 1997) about 50% of normal DRG neurons expressed p75. In injured 

animals, antibodies to p75 labeled ring-like structures around some DRG neurons (Zhou et al., 

1996), especially those of larger diameter. The numbers of FG+ neurons that were CNTFRα+ were 

counted and expressed as a percentage of the total number of FG+ profiles (Fig. 4D). A one-way 

analysis of variance revealed significant differences between experimental groups (F (8, 18) = 

2.824, p = 0.032). Post-hoc comparisons revealed that DRGs from autograft and NGF groups 

contained significantly more (p<0.05) regenerating CNTFRα+ neurons compared to normal, 

acellular and GDNF groups (a, Fig. 4D), and the proportion of CNTFRα+ neurons was significantly 

lower (p<0.05) in acellular compared to BDNF and SC-GFP groups (b, Fig. 4D). The proportion of 

regenerating neurons that were CNTFRα+/p75+ did not significantly differ between groups.  

TrkA+ or TrkC+ neurons.  Distinct subpopulations of DRG neurons express TrkA, TrkB or TrkC 

(Wright et al., 1995). Due to the limited number of sections available per DRG, the set of sections 

immunostained with IB4 was also immunostained with a TrkA antibody, and those sections 

immunostained with CGRP were also immunostained with a TrkC antibody. Counts of TrkA+ 

neurons in normal controls and each experimental group were compared using a Kruskal-Wallis 

test, which revealed no significant differences (χ2 (8, n=45) = 0.980, p = 0.998). Similarly, there 

were no statistically significant differences between groups in the mean percentage of regenerated 

neurons expressing TrkC (F (8, 36) = 1.225, p=0.313).   

Morphological assessment in longitudinal sections of grafts 

Longitudinal sections of grafts allowed the monitoring of transgene expression by transplanted SCs 

and the uptake and retrograde transport of FG (Fig. 2). In addition, it was possible to qualitatively 

assess the effects of neurotrophic factors on host axon growth and donor graft morphology. As 

observed before (Godinho et al., 2013), the labelling of SCs with LV-GFP confirmed continued 

transgene expression within grafts for at least 10 weeks (not shown). All PN sheaths were 

reconstituted in vitro with SCs in exactly the same way, yet post-transplantation there were 

considerable differences in graft and axon morphology that depended on the particular growth 

factor expressed by the genetically modified glia. We previously documented changes in graft width 

in PN containing different donor SC populations, and in some grafts (e.g. with cells engineered to 

express BDNF or NT-3) there was clear fasciculation (Godinho et al., 2013). In the present study, 
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when compared to normal PN (Fig. 5A), in LV-NGF grafts and especially in LV-GDNF grafts (Fig. 

5B), fascicles of often disorganized βIII-tubulin+ fibres were evident, indicating that axons were 

clearly losing their orientation and longitudinal organization. Such axonal entrapments (see also 

Hoyng et al., 2014) were not obvious in grafts with SCs engineered to express BDNF, CNTF or 

NT-3.  

 

ChAT immunoreactive axons in PN grafts 

In an earlier study, grafts reconstituted with genetically modified SCs were immunostained for 

markers of sensory axons – CGRP and IB4 (Godinho et al., 2013). Here, to provide information 

more focused on the presence of regenerating efferent motor axons, PN graft sections were 

immunostained with antibodies to central ChAT (examples shown in Fig. 5C-E). Note again the 

characteristic disorganized fascicular nature of graft organization in the LV-GDNF engineered 

material (Fig. 5E). Three to four nerves were sampled from each group, at each of three locations 

within the grafts – proximal, middle and distal (Fig. 5F). The number of ChAT+ axons was 

estimated per 500μm width of each graft and the numbers averaged at each location. No significant 

difference in number was seen from proximal to distal in any group, but grafts containing SCs 

engineered to express either GDNF, NGF or NT-3 consistently contained fewer ChAT+ profiles. 

This was especially obvious in grafts containing SCs transduced with GDNF or NT-3, the low 

numbers in proximal regions indicating an initial lack of penetration into the grafts. ChAT+ axon 

counts per 500μm nerve width from all three sample locations were then combined to give an 

overall average count of axons per unit graft width (Fig. 5G). Transplanted animals contained fewer 

axons in the PN grafts than normal nerves, but in most cases this decrease was not significant; 

however compared to normal nerves there were significantly fewer ChAT+ axons in the GDNF 

(p=0.021) and NT-3 (p=0.009) engineered grafts (asterisk, Fig. 5G).  

Graft thickness and estimates of total number of ChAT+ axons 

Grafts were generally thicker compared to normal peroneal nerve. In particular, measurement of 

graft width in longitudinal sections (Fig. 5A, B) revealed that grafts containing GDNF (p=0.045) 

and NT-3 (p=0.032) engineered SCs were significantly wider than normal nerve (Fig. 6A), the latter 

consistent with our earlier study (Godinho et al., 2013). The expanded girth of these reconstituted 

grafts was associated with significantly increased size of the proximal peroneal nerve stumps 

attached to the grafts (data not shown). Based on the graft width measurements, in each graft group 

it was possible to estimate the average total number of ChAT+ axons counted at graft location and 

relate this estimate to the average thickness of each graft (Fig. 6B). The lowest counts were seen in 
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the LV-NGF and especially LV-GDNF and LV-NT-3 groups, and highest in normal nerve. Note 

that acellular grafts were of similar thickness to the aforementioned genetically modified grafts, yet 

on average contained many more ChAT+ profiles. 

Analysis of regenerated motor neurons in ventral horn of the spinal cord 

FG+ neurons.  Retrogradely labeled, regenerating FG+ motor neurons were readily visible in the 

ventral horn from normal Fischer rats (arrow, Fig. 7A,C), with fewer cells visible in experimental 

PN grafted animals (Fig. 7B). Counts were made from every 6th, 40μm thick, section containing 

FG+ neurons cells in L4-L6 ventral horn of the lumbar spinal cord. In 34 animals (n=5/group, 

except normal nerve n=4) from seven groups (normal nerve, autograft, acellular, SC-GFP, CNTF, 

NGF, NT-3) a total of 4581 FG+ positive cells were counted (Table 1). These counts were carried 

out blind to the experimental group. As expected, the normal (uninjured) nerve group showed the 

highest FG+ cell count, however subsequent analysis of FG+ motor neuron counts/section did not 

show any significant differences based on Kruskal-Wallis (p=0.871) followed by a Dunn’s multiple 

comparison, between any of the experimental groups (Fig. 8A). Note that, given the low numbers of 

regenerate ChAT+ axons within the transplanted nerve in the NT-3 engineered graft group (Fig. 

5G), FG+ motor neuron counts in the spinal cord were higher than might be expected (Fig. 8A). 

Morphological assessment of regenerated FG+ motor neurons.  A total of 356 images, using a 

blinded allocated numbering scheme, were randomly taken in order to measure soma and nucleus 

size of the FG+ cells in the seven groups (normal nerve, autograft, acellular, SC-GFP, CNTF, NGF, 

NT-3). A total number of 1322 FG+ motor neurons was measured (Table 1). Labeled motor neurons 

in normal animals showed a tendency for allocation to two groups, one of smaller equivalent 

diameter peaking around 29-30 μm and one of larger equivalent diameter peaking around 42-43 μm. 

The mean soma areas for FG+ motor neurons appeared to be greater in normal animals than in any 

of the experimental groups (Fig. 8B), although due to a large amount of variance (and perhaps 

differential regeneration of α and γ motor neurons of characteristically different size range – see 

below) this difference was not significant (both soma and nucleus, p=0.99). 

Analysis of NeuN expression in regenerated FG+ motor neurons.  The neuronal DNA binding 

protein NeuN has been reported to be expressed in α- but not γ-motor neurons (Mullen et al., 1992; 

Friese et al., 2009), innervating extrafusal and intrafusal muscle fibres respectively. Quantitative 

counts (a total of 674 neurons) were therefore made of regenerating FG+, βIII-tubulin+ neurons that 

were either immunopositive or negative for NeuN (Table 1, Fig. 7C-F). While the average total 

number of FG+ motor neurons was similar across all groups (Fig. 8A), a significantly higher 

proportion of these regenerating neurons was NeuN negative (NeuN-) in the graft group with NT-3 
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engineered SCs (Fig. 9). The percentage of retrogradely labeled NeuN- neurons in the NT-3 group 

(82%) was about double that seen in normal uninjured rats (44%). Statistical analysis revealed that 

the percentage of FG+ motor neurons that were NeuN- was significantly less in the SC-GFP group 

than in the NT-3 group (asterisk, Fig. 9) - Kruskal-Wallis analysis (p=0.024) followed by a Dunn’s 

multiple comparison (p=0.035). Thus NT-3 appeared to preferentially enhance the regeneration of 

γ-motor neurons. 

VGLUT-1 expression in spinal cord 

VGLUT-1 is reported to be a marker for the terminals of primary 1a afferents originating from 

muscle spindles (Todd et al., 2003; Levine et al. 2014; Liu et al. 2014). There was high expression 

of VGLUT-1 in the ventral horn of the spinal cord in normal animals (Fig. 7A, Fig. 10A), however 

the number of VGLUT-1+ profiles was clearly reduced in localized regions of the ventral horn 

ipsilateral to all PN grafts (e.g. spinal cord from SC-GFP grafted animal, Fig. 7B). The white 

arrows in Figure 10 A,B point to examples of VGLUT-1 terminals in close apposition to the soma 

of large βIII-tubulin immunolabeled, presumably α motor neurons. For each group, the number of 

these VGLUT-1+ profiles per neuron was counted in an image plane in which the nucleolus was 

clearly in focus. On average, compared to uninjured controls the number of apparent VGLUT1 

terminal contacts on motor neurons was less in all SC graft groups (Fig. 10C), but only in the 

acellular group was this loss of connectivity significant, (Kruskal-Wallis, p=0.058) followed by 

Dunn’s multiple comparison (adjusted p=0.041). It is important to note that in all graft groups, most 

frequently seen in animals with SC-NT-3 grafts, there were occasional VGLUT-1 contacts with 

regenerating FG+ neurons (arrows, Fig. 10B), indicating the restoration of at least some sensory-

motor relays after nerve reconstruction.  

 

Discussion  

The research described here is an extension of an earlier morphological and behavioural study that 

used allogeneic PN sheaths repopulated ex vivo with congeneic SCs genetically modified to express 

neurotrophic factors to repair a 1cm defect in rat peroneal nerves (Godinho et al., 2013). In the 

present study, using this model, we injected the retrograde tracer FG into peroneal nerve distal to 

PN grafts 10 weeks post-transplantation to quantify and phenotype regenerating sensory and motor 

neurons. Two additional LV vectors were tested, expressing either GDNF or NGF. Outcomes were 

complex, and effects on sensory and motor neurons varied depending on the trophic factor 

engineered into donor SCs. While graft groups contained fewer FG+ DRG neurons than non-

operated controls, there was a trend for this loss to be less in autograft and LV-CNTF groups, and 
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the decrease was only significant in the LV-GDNF group. These grafts had a complex fascicular 

morphology that may have resulted in axon trapping. A significantly higher proportion of CGRP+ 

neurons was seen in autografts and most neurotrophic factor groups compared to LV-GFP and 

acellular groups, and there were more IB4
+ neurons in DRGs from the NT-3 group. However, 

compared to normal nerves, there were significantly fewer ChAT+ axons in grafts containing SCs 

expressing NT-3 or GDNF. In ventral horn, the overall number of FG+ motor neurons per section 

was similar in all groups, however the proportion of NeuN-, FG+ neurons - generally between 40-

45% - was almost doubled in the NT-3 group (82%). VGLUT-1+ terminals in ‘contact’ with 

regenerating FG+ α-motor neurons were occasionally seen in PN grafted animals, with a trend for 

more such contacts in neurotrophin expressing grafts.  

As described previously (Godinho et al., 2013), 10 weeks after transplantation there were marked 

differences between experimental groups in the general morphology and architecture of grafts. All 

grafts appeared to be thicker than normal peroneal nerve, with NT-3 and GDNF grafts significantly 

greater in size than uninjured nerve. This in turn was associated with an increase in the size of the 

proximal peroneal nerve stumps attached to the grafted material. Interestingly, autografts of sciatic 

nerve injected with LV-GDNF, an approach that transduces not only SCs but other non-neuronal 

cells in the grafted material, were also found to be much larger (Hoyng et al., 2014). Note here that 

sustained vector-mediated delivery of these various neurotrophic factors may also have induced 

different amounts of SC proliferation after transplantation (Hoyng et al., 2014) or altered the 

phenotype of infiltrating cells such as fibroblasts or macrophages. There was also likely intermixing 

of SCs between graft and host (Symons et al., 2001), the emigration of engineered, congeneic SCs 

into distal host peroneal nerve potentially enhancing axon regrowth beyond the PN bridge. 

Previous immunohistochemical and ultrastructural analysis revealed macrophage infiltration, 

extracellular matrix deposition and fascicularization of axon bundles in grafts containing SCs 

transduced with growth factors (Godinho et al., 2013). Fascicles were especially evident in grafts 

containing BDNF or NT-3 expressing SCs. The amount of myelination of regrown axons also 

differed between groups, grafts with BDNF expressing SCs having the highest ratio of myelinated 

to unmyelinated fibers, NT-3 grafts containing many more unmyelinated axons (Godinho et al., 

2013). In the present study, the organization of BDNF and CNTF engineered grafts appeared 

relatively normal, with linearly ordered profiles, compared to grafts containing SCs engineered to 

express NGF or GDNF which displayed a highly irregular morphology. It seems likely that this 

neuroma-like architecture compromised sustained, longitudinal axonal regeneration along the 

grafts, perhaps entrapping many regenerating fibers (Tannemaat et al., 2008; Santosa et al., 2013; 

Hoyng et al., 2014). In this regard, it is of interest that NGF levels have been linked to neuromas 
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(Atherton et al., 2006) which in turn have been reported to express receptors for both NGF and 

GDNF (Harpf et al., 2001). It is important to emphasize that all donor sheaths were reconstituted in 

vitro with SCs in exactly the same way prior to engraftment. Given that all cellular grafts were 

similarly constructed, the SCs seeded into randomly selected freeze-thawed nerve sheaths, it is 

remarkable how graft morphology subsequently varied so consistently and so extensively with the 

type of transgene incorporated into the donor cells (see also Godinho et al., 2013). These 

differences were seen throughout the length of the grafts, not just at host-graft interfaces. 

Sensory neurons 

In the analysis of lumbar DRGs, as expected the highest mean number of FG-labeled neurons was 

found in the normal group. Of the engineered grafts, although not significant at p<0.05, the number 

of FG+ neurons was greatest in animals with grafts containing SCs transduced with CNTF. This is 

consistent with previous studies describing trophic effects of CNTF on injured DRG neurons (Lo et 

al., 1995; Sango et al., 2008), but differs somewhat from our previous study (Godinho et al., 2013), 

in which the number of βIII-tubulin+ axons per mm width of nerve grafts was comparatively low in 

CNTF engineered grafts. In contrast, the total number of FG-labeled neurons in the GDNF group 

was significantly reduced, consistent with the observation that grafts containing GDNF transduced 

SCs possessed bulbous structures and a highly disorganized architecture that almost certainly 

impeded the linear regenerative growth of axons within the grafts. Note here that the overall impact 

of the release of neurotrophic factors from genetically modified SCs in peroneal grafts needs to be 

viewed in light of the observation that at least some DRG neurons can increase endogenous 

neurotrophin expression after axotomy (Gordon, 2009; Richner et al., 2014), and satellite cells in 

the DRG can also upregulate factors such as NGF and NT3 (Zhou et al., 1999) or GDNF 

(Hammarberg et al., 1996) after injury.  

Alternate series of L5 DRG sections were co-immunostained for either IB4/TrkA or CGRP/TrkC. 

Although TrkA has been reported to be down regulated 7 days after sciatic nerve transection in 

mice (Kalous and Keast, 2010), in our experimental groups we found no significant differences in 

the proportion of FG+ neurons that were TrkA or TrkC immunoreactive 10 weeks after surgery, 

perhaps reflecting recovery of expression during the regenerative process (Richner et al., 2014). 

Sections were also co-stained for the receptors CNTFRα and p75. p75+ ring-like structures were 

seen around some FG+ DRG neurons, especially noticeable around larger cells. Others have 

described similar structures after PN injury (Zhou et al., 1996) and this may be associated with 

expression in non-neuronal, satellite cells. For CNTFRα there was a significant difference between 

experimental groups; perhaps surprisingly, in the autograft and NGF but not the CNTF groups there 

was a significantly higher proportion of FG+ neurons that were CNTFRα+ compared to normal, 
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acellular and GDNF groups. After a PN lesion there is upregulation of CNTFRα in motor neurons 

(MacLennan et al., 1999), and there also is an increase in receptor expression in skeletal muscle 

which can promote regeneration of motor axons (Lee et al., 2013, 2019); however, to our 

knowledge, while message for this receptor is expressed in a great many DRG neurons (Ip et al., 

1993), changes in expression levels during PN regeneration have not been described.  

In the earlier study (Godinho et al., 2013), longitudinal graft sections were stained with antibodies 

to CGRP or IB4, markers typically used to characterize subpopulations of sensory neurons (Stucky 

and Lewin, 1999). CGRP labels medium and small-sized peptidergic neurons that give rise to thinly 

myelinated Aδ fibers and unmyelinated C fibers with mainly nociceptive properties (Ju et al., 1987; 

Tannemaat et al., 2008). These neurons express TrkA and p75, and have been shown to respond to 

NGF (Averill et al., 1995; Michael et al., 1997). In the present study, 10 weeks after peroneal nerve 

repair there were significant differences between experimental groups regarding the proportion of 

FG+ DRG neurons that were CGRP+. Overall, there were significantly fewer CGRP+ neurons in the 

normal, acellular, SC-GFP and CNTF groups compared to the autograft, BDNF, GDNF, NGF and 

NT-3 groups. In the earlier study, more CGRP+ axons were seen in grafts containing NT-3 

expressing SCs, although due to inter-animal variance this increase was not significant (Godinho et 

al. 2013). It seems possible that the trophic effects of the neurotrophins on CGRP expressing 

sensory neurons were mediated via p75, while the effects of GDNF were perhaps mediated 

indirectly.  

IB4 labels small DRG neurons with mostly unmyelinated axons that are classed as non-peptidergic 

nociceptive neurons (Hunt and Mantyh, 2001; Fang et al., 2006). They express the GDNF receptor 

(Molliver et al., 1997; Bennett et al., 1998) and are responsive to GDNF (Bennett et al., 1998; 

Gavazzi et al., 1999) especially in the presence of laminin (Tucker et al., 2006). It has been reported 

that IB4-binding neurons regenerate poorly after PN injury (Leclere et al., 2007), however we found 

that the proportion of regenerate FG+ DRG neurons that were immunoreactive for IB4 was similar 

(between 30-40%) in control and experimental groups. The exception was the NT-3 group, in which 

there was a significant increase in the proportion of regenerate FG+ neurons that were IB4
+. These 

sensory neurons may well give rise to many of the unmyelinated axons described in a previous 

ultrastructural study (Godinho et al., 2013). Conversely, in the acellular and CNTF groups the 

percentage of IB4
+ neurons was lower, a difference that was significant when compared to the NT3 

and NGF groups. These new DRG data are entirely consistent with earlier counts of IB4
+ axons 

within engineered grafts, there being significantly more regenerating axons in the NT-3 group 

(Godinho et al., 2013), but given that the IB4
+ sensory population is responsive to GDNF and is 

distinct from the TrkC+ population of sensory neurons this result is surprising (Gavazzi et al., 1999; 
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Marmigere and Ernfors, 2007). There was a trend for a greater percentage of IB4+ sensory neurons 

in the GDNF group, but as stated earlier there were significantly fewer FG+ DRG neurons in the 

CGRP group overall, thus axon trapping within these grafts may have influenced neuronal counts. 

Note that, as for p75, IB4
+ pericellular ring-like profiles were commonly seen around neurons. After 

PN injury, these profiles have been reported to be associated with neuronal sprouts and satellite 

glial cells (Li and Zhou, 2001). 

The proportion of regenerate DRG neurons immunoreactive for CGRP or IB4 was relatively low in 

animals with grafts containing SCs transduced with CNTF, even though in this group the total 

number of FG+ sensory neurons was higher than of any of the other growth factor groups (Fig. 4). 

Presumably the impact of CNTF was comparatively more marked in the medium-to-large 

population of sensory neurons (Sango et al., 2008). 

Motor neurons 

Longitudinal sections of grafts were stained with an antibody to central ChAT to obtain information 

about the regenerative growth of motor neurons (Fig. 5). Counts at the proximal, middle and distal 

ends revealed that the significantly lower numbers of ChAT+ fibers in GDNF and NT-3 grafts 

appeared in part to be due to a failure to enter from the proximal nerve stump. The number of 

ChAT+ axons in the NGF group was also relatively low, although not significantly different from 

other groups. Spinal motor neurons have been shown to express cognate receptors for BDNF, NT-3 

and GDNF (Merlio et al., 1992; Henderson et al., 1993; Soler et al., 1999; Richner et al., 2014; 

Tovar-Y-Romo et al., 2014), and they also express the neurotrophins themselves (Buck et al., 

2000).  Thus the paucity of ChAT+ profiles in reconstituted nerve grafts containing SCs engineered 

to express GDNF or NT-3 is unexpected. In comparison, after injections of LV encoding 

neurotrophin genes directly into peripheal nerve segments, Hoyng et al. (2014) reported that the 

number of ChAT+ axons, albeit of finer caliber than in controls, was 2x and 4x higher in BDNF and 

GDNF treated grafts respectively compared to control grafts, the fibers spatially segregated from 

CGRP+ axons. GDNF has well-established pro-survival and pro-regenerative effects on spinal 

motor neurons (Henderson et al., 1994; Munson and McMahon, 1997; Gould et al., 2008) but the 

effects are dependent on dose and perhaps also the time that GDNF is made available (Shakhbazau 

et al., 2013; Marquardt et al., 2015; Eggers et al., 2019; Fadia et al., 2020). In the present study, 

GDNF release was presumably sustained over 10 weeks, affecting graft morphology and trapping 

regowing axons within the graft itself, but seemingly also restricting entry into the grafts at its 

proximal attachment to host peroneal nerve. Note here that the number of ChAT+ axons in BDNF 

grafts, a neurotrophin shown previously to have dose-dependent effects on motor neuron regrowth 

(Richner et al., 2014), was similar to the other graft groups, including normal nerves.  
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In 7 groups, counts of FG+ motor neurons were made in L4-L6 segments of spinal cord after 

injection of FG into host peroneal nerve distal to the grafts. Due to processing issues, regions of the 

lumbar spinal cord from the LV-BDNF and LV-GDNF groups could not be analyzed, however 

counts of regenerate motor neuron numbers were not significantly different in all other groups (Fig. 

8). The FG+ cell count for the NT-3 group was higher than expected given the relatively low 

number of ChAT+ axons observed in nerve grafts themselves (see above). A possible reason for this 

is that NT-3 is an important neurotrophic factor for γ-motor neurons during development (Kucera et 

al., 1995; Wooley et al., 1999) and their nerve fibers are smaller than those originating from α-

motor neurons; such axons may exhibit less ChAT expression and hence may have been more 

difficult to detect in the immunostained material. Although data on motor neuron numbers were not 

available in GDNF treated animals, as stated above the number of cholinergic motor fibers was also 

significantly lower in this group, which may be associated with axon trapping but, similar to NT-3, 

may also reflect that GDNF has growth promoting effects on the smaller γ-motor neurons (Gould et 

al., 2008). 

It has previously been reported that NeuN does not stain γ-motor neurons (Mullen et al., 1992; 

Friese et al., 2009). These neurons, which innervate intrafusal muscle fibers and modulate muscle 

spindle activity, are also positive for the transcription factor Err3 (Friese et al., 2009). Consistent 

with these earlier studies, in each of the 7 analyzed groups there was a proportion of FG+ motor 

neurons that did not possess detectable NeuN immunoreactivity. The normal distribution of smaller 

γ-motor neurons to the larger α-motor neurons in rat lumbar ventral horn has been estimated to be 

about 30:70 (Hashizume et al., 1988; Roy et al., 2007; Friese et al., 2009). In our study, about 40% 

of FG+ cells in normal rats were not immunoreactive for NeuN. This ratio was similar in all graft 

groups but there was a trend for a higher proportion in CNTF treated grafts and especially in NT-3 

grafts where the proportion of NeuN negative FG+ motor neurons was 82%, significantly higher 

than the group containing SCs transduced only with GFP. Overall, compared to uninjured control, 

regenerate FG+ motor neurons were slightly smaller (Fig. 8B), and it is of note that neuronal size in 

the NT-3 group was not significantly different from other graft groups even though the majority of 

these labeled cells were NeuN negative γ-motor neurons. Many of these usually small neurons were 

indeed small to medium-sized, but some were larger in diameter. Some motor neurons may swell 

after axotomy (McIlwain and Hoke, 2005), and the neurotrophic effects of NT-3 on γ- motor 

neurons (Kucera et al., 1995; Woolley et al., 1999) may also have resulted in a relative increase in 

cell body size.  

Finally, double immunostaining for the glutamate transporter VGLUT-1 and βIII-tubulin revealed a 

consistent (about 75-80%) reduction in the number of VGLUT-1 immunoreactive terminals located 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



adjacent to the soma of α-motor neurons in rats with peroneal nerve grafts when compared to 

uninjured controls. Importantly however, this ’synaptic stripping’, assessed 10 weeks post-

transplantation, was found to be significant only in the group that received nerve grafts lacking SCs, 

suggesting that the presence of SCs and expression of relevant neurotrophic factors can partially 

restore connectivity. Excitatory VGLUT-1 synapses on α-motor neurons (Friese et al., 2009) are 

associated with input from 1a proprioceptive afferent fibers (Oliveira et al., 2003; Liu et al., 2014; 

Zhu et al., 2016). While most appear to have remained permanently withdrawn in the grafted 

animals (see also Alvarez et al., 2011), occasional VGLUT-1 positive terminals were seen in close 

contact with regenerate FG+ motor neurons, with a trend for more contacts in grafts with 

neurotrophin expressing SCs, consistent with an earlier electrophysiological PN injury study in the 

cat (Mendell et al., 1999) which reported re-establishment of a monosynaptic reflex, particularly 

with NT-3 treatment. 

In conclusion, both GDNF (Whitehead et al., 2005) and NT-3 (Copray and Brouwer, 1994) have 

been reported to be expressed in intrafusal fibers and muscle spindles, and both factors can support 

γ- motor neurons. In addition, proprioceptive sensory neurons express TrkC (Marmigere and 

Ernfors, 2007), the cognate receptor for NT-3, the neurotrophin known to play an essential role in 

the formation of monosynaptic sensory-motor circuits in ventral spinal cord (Imai and Yoshida, 

2018). In our peroneal repair model, grafts containing SCs expressing NT-3 displayed unique 

characteristics; more IB4
+ and CGRP+ neurons and axons (Godinho et al., 2013) were seen in NT-3 

treated grafts, fewer ChAT+ axons overall, but there was a greater proportion of regenerating γ- 

motor neurons and seemingly more proprioceptive VGLUT-1 contacts on α-motor neurons. While, 

in another graft model involving direct LV injection into sciatic autografts, BDNF and GDNF were 

reported to impair motor recovery and NGF impair sensory recovery (Hoyng et al., 2014), in our 

graft model using genetically engineered chimeric PN grafts functional locomotor changes were 

most evident in the NT-3 group (Godinho et al., 2013). Although locomotor behaviour can be 

influenced by neurotrophin-induced sensory neuropathy and hypersensitivity (Anand, 2004), it is 

tempting to speculate that in NT-3 grafts in particular there was at least partial restoration of 

functionally relevant monosynaptic proprioceptive sensory-motor relays via the regenerate peroneal 

nerve, similar to that described after chronic NT-3 infusion in the cat (Mendell et al., 1999). 

Interestingly, this same neurotrophin delivered into peripheral nerve via adeno-associated viral 

vectors reduces degenerative dendritic changes in motor neurons after lumbar spinal cord injury, 

and stimulates functionally effective reorganization of descending propriospinal circuitry (Han et 

al., 2019). Taken together, and noting promising data from primate studies (Fadia et al., 2020), the 

use of bridging substrates that deliver appropriate neurotrophic factors, or a combinations of such 

factors, may soon be a more routine approach to the clinical repair of large peripheral nerve defects. 
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FIGURE LEGENDS 

FIGURE 1 

Summary of experimental protocols and groups. Freeze-thawed segments of Wistar peroneal nerve 

repopulated ex vivo with genetically modified Schwann cells were grafted into 1cm peroneal nerve 

defects in Fischer 344 rats. After 10 weeks, Fluorogold was injected into host nerve distal to the 

grafts to analyze regeneration of sensory and motor neurons. 

 

FIGURE 2 

Summary of tissue collection and immunohistochemical analysis using the listed antibodies. 

Peroneal nerve grafts were sectioned longitudinally; the image bottom left shows a section 

containing retrogradely labeled Fluorogold (FG) positive axons that are immunopositive for βIII-

tubulin (red), scale bar = 50µm. Counts of regenerate FG labeled neurons were made in sections of 

L5 dorsal root ganglia and transverse sections of lumbar spinal cord (arrow).  

 

FIGURE 3 

Examples of L5 dorsal root ganglion (DRG) neurons retrogradely labeled with Fluorogold (FG) 

after injections into host peroneal nerve distal to grafts. DRG sections from rat with acellular graft 

(A) and rat with graft containing LV-NT-3 modified Schwann cells (B) immunostained with an 

antibody to CGRP. C, D, IB4 immunostained DRG sections from animals with grafts containing 

LV-CNTF and LV-NT-3 modified Schwann cells respectively. Arrows point to examples of 

immunopositive, FG labeled neurons. E, IB4 immunostained section; note pericellular rings around 

many neurons.  Scale bar for A-D = 50µm, E = 200µm. 

 

FIGURE 4 

A, mean number (± SEM) of Fluorogold (FG) labeled neurons in L5 dorsal root ganglia (DRG) in 

each experimental group. There were significantly less profiles in the LV-GDNF group compared to 

the normal uninjured group (asterisk, p<0.05). B-D, the mean percentage (± SEM) of FG labeled 

DRG neurons immunopositive (+) for CGRP (B), IB4 (C) and CNTFRα (D). B, proportion of FG 

labeled neurons that were were CGRP+ in normal nerves, acellular, SC-GFP and CNTF nerve 

grafted groups (a) was significantly less (p<0.05) than the mean percentage in autografts, and grafts 

containing Schwann cell engineered to express BDNF, GDNF, NGF or NT3 (b). C, proportion of 
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FG-labeled profiles that were IB4
+ in the NT3 group was significantly higher than in all other 

groups (a), and in the acellular and CNTF groups was significantly lower than the NGF group (b) 

(both a and b, p<0.05). D, the proportion of FG labeled expressing CNTFRα in autografts and the 

NGF group (a) was significantly higher than in normal, acellular and GDNF groups. In the acellular 

group (b), the proportion was significantly lower than in autografts, SC-GFP, BDNF and NGF 

groups (all p<0.05). 

 

FIGURE 5 

A-B, longitudinal sections of normal peroneal nerve (A) and graft containing Schwann cells 

engineered to express GDNF (B). immunostained with an antibody to βIII-tubulin. Note the 

disorganized appearance and thickness of the GDNF graft. C-E, longitudinal sections of normal 

nerve (C), CNTF engineered graft (D) and GDNF graft (E) immunostained with an antibody to 

choline acetyl transferase (ChAT). Scale bars: A, B = 500µm; C-E = 100µm. F, average number (± 

SEM) of ChAT positive axons per 500µm width of nerve, measured at three locations. G, average 

number (± SEM) pooled from counts shown in F. All graft groups contained fewer axons than 

normal nerves, and compared to normal nerves there were significantly fewer ChAT positive axons 

in GDNF (p<0.05) and NT-3 (p<0.01) engineered grafts. 

 

FIGURE 6 

A, Average nerve width (± SEM) of normal peroneal nerve and each of the experimental graft 

groups. Grafts containing GDNF and NT-3 engineered Schwann cells were significantly wider than 

normal nerve (asterisks, p<0.05). B, estimated average total number of ChAT positive axons plotted 

against average width of each graft.  Note the displaced position of the LV-NT-3, LV-GDNF and 

LV-NGF groups. 

 

FIGURE 7 

A-B, low power images of transverse spinal cord sections immunostained for VGLUT1 (green) 

from uninjured control (A) and an animal that had received a graft containing Schwann cells 

expressing green fluorescent protein (B). Fluorogold (FG) labeled neurons are arrowed – note the 

reduced number in the graft animal. C-E, a spinal cord section from a normal rat showing (C) FG 

labeled neurons, (D) same field immunostained for βIII-tubulin, (E) same field immunostained for 
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NeuN, and (F) all three images combined. NeuN negative, FG labeled motor neurons are arrowed. 

Scale bars: A, B = 500µm; C-F = 100µm. 

FIGURE 8 

A, average number (mean ± SEM) per section of Fluorogold (FG) labeled motor neurons in the 

ventral horn of spinal cord segments L4-L6. B, average (± SEM) soma area of regenerated FG 

labeled motor neurons in each of the seven surveyed groups. 

 

FIGURE 9 

The average percentage (± SEM) of Fluorogold labeled neurons per lumbar spinal cord section that 

were not immunoreactive for NeuN. The proportion of NeuN negative neurons in the Schwann cell-

GFP was significantly less than the NT-3 group (asterisk, p<0.05). 

 

FIGURE 10 

A-B, high power images of sections immunostained for βIII-tubulin (red) and VGLUT1 (green). 

There are many more VGLUT-1 terminals in close apposition to the soma of large βIII-tubulin 

immunolabeled, presumably α motor neurons (white arrows), in normal animals (A) compared to 

grafted rats (B, LV-CNTF group). Scale for A and B = 50µm. C, the average number (± SEM) of 

VGLUT-1 positive contacts per neuron, counted in an image plane in which the nucleolus is in 

focus. The number in the acellular group was significantly less than normal control (asterisk, 

p<0.05).  

 

TABLE 1 

Summary of the number of motor neurons in normal and experimental groups analysed in each 

analysis 
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TABLE 1 

 

 

Number of motor neurons (MN) included in each analysis 
 

Analysis 
Normal 
nerve 

 

Autografts 
Acellular 

grafts 
SC- 
GFP 

SC- 
CNTF 

SC- 
NGF 

SC- 
NT-3 

 

Total 

FG+ MN counts 807 702 607 690 741 471 563 4581 

NeuN+ counts 83 55 36 80 40 35 11 340 

NeuN
-
 counts 65 41 36 52 57 34 49 334 

MN measurements 168 247 232 234 164 138 139 1322 

MN with VGLUT1+ 

‘contacts’ 
125 37 28 55 48 48 17 370 

 

Summary of the number of motor neurons in normal and experimental groups analysed in each 

analysis. FG, fluorogold. Columns headed SC-GFP, SC-CNTF, SC-NGF, SC-NT-3 denote PN 

grafts containing Schwann cells (SC) transduced with LV-GFP, LV-CNTF, LV-NGF and LV-NT-3 

respectively.  
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Schwann cells genetically engineered to express different neurotrophic factors. 

Transduced Schwann cells added to nerve sheaths prior to peroneal nerve engraftment. 

Graft morphology and the amount of axon regeneration varied between graft types. 

The type of sensory neuron that regenerated varied depending on neurotrophic factor.  

There were more regenerating NeuN negative γ-motor neurons in NT-3 nerve grafts. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



Figure 9



Figure 10


