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Abstract: With the continuous advancement of data acquisition and signal processing, sensors, and
wireless communication, copious research work has been done using vibration response signals
for structural damage detection. However, in actual projects, vibration signals are often subject to
noise interference during acquisition and transmission, thereby reducing the accuracy of damage
identification. In order to effectively remove the noise interference, bilateral filtering, a filtering
method commonly used in the field of image processing for improving data signal-to-noise ratio was
introduced. Based on the Gaussian filter, the method constructs a bilateral filtering kernel function by
multiplying the spatial proximity Gaussian kernel function and the numerical similarity Gaussian
kernel function and replaces the current data with the data obtained by weighting the neighborhood
data, thereby implementing filtering. By processing the simulated data and experimental data,
introducing a time-frequency analysis method and a method for calculating the time-frequency
spectrum energy, the denoising abilities of median filtering, wavelet denoising and bilateral filtering
were compared. The results show that the bilateral filtering method can better preserve the details of
the effective signal while suppressing the noise interference and effectively improve the data quality
for structural damage detection. The effectiveness and feasibility of the bilateral filtering method
applied to the noise suppression of vibration signals is verified.

Keywords: structural vibrations; denoising; bilateral filtering; structural damage
detection; time-frequency analysis; signal-to-noise ratio; time-frequency spectrum energy;
magnitude-squared coherence

1. Introduction

1.1. Motivation

Damage detection is the first step in the non-destructive evaluation (NDE) of structures [1].
Thanks to the advancements in hard- and software, and signal processing, vibration-based structural
damage detection can be achieved having only the structural response data to estimate the health of
a structure [1]. For practical applications on in-service structures, due to the smallness and/or complexity
of structural damage, the relatively small vibration response amplitudes, and the unpredictability
of the environmental excitations, the recorded response signals are often non-stationary and contain
noise [1]. Thus, the extraction of signal components that contain information regarding structural
damage from the collected complex response signal becomes a critical step in the identification of
structural damage [2]. Note that in structural damage detection, noise refers to unrelated signal
content that does not reflect structural vibration characteristics. This noise can be of significant
amplitude, making structural damage detection difficult or impossible. Consequently, discriminating
and eliminating unwanted signal content such as noise is the first critical step in structural damage
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detection. The objective of effective denoising is thus to maximize the vibration-related information of
the structure in order to enable an effective data analysis and achieve reliable and rational structural
damage detection [3,4].

1.2. Background

To date, a number of denoising algorithms have been developed and used for the denoising
of structural vibration signals, such as moving average filter [5], median filter [6], Kalman filter [7],
and more. Unfortunately, these filters are often not effective or can be even detrimental for practical
applications. For example, a moving average filter dose not denoise effectively when the signal
contains wide-band frequency noise [5]. The median filter has been found to be effective for
suppressing large-amplitude pulse interference, but some details of the signal content of interest may
be suppressed [6,7]. Wavelet analysis is suitable for analyzing nonlinear signals because the analysis
takes place over a portion of a signal, i.e., on a window with adjustable length, in the time and
frequency domains [8]. Mathematically, wavelet denoising is a function approximation problem in
which the best approximation of the measured signal is sought. Signal denoising is achieved by
expansion and translation of a wavelet basis function using a certain measurement criterion, which can
be treated as an optimization problem [8–10]. Donoho and Johnstone proposed the wavelet threshold
denoising technique based on the wavelet transform using both hard as well as soft threshold function
methods [11–14]. While these two threshold denoising methods work well for some signals, they have
deficiencies and shortcomings due to the discontinuity of the wavelet coefficients and their associated
ability to reconstruct the measured signals.

Unlike the preceding denoising methods, singular value decomposition (SVD) can realize signal
noise suppression by dividing a noise-contaminated signal into signal and subspaces [15]. Zhao and
Ye researched the principles of Hankel matrix-based SVD and wavelet transform in noise suppression,
and a singularity detection experiment was conducted to test their performances [16]. Feng and Dong
applied SVD to vibration signals by the construction of the singular space, which was divided into
singular and noise singular value subspaces according to the distribution of the singular value subspace.
The noise singular value subspace was removed by setting a proper threshold [15]. Empirical mode
decomposition (EMD) is a time-frequency analysis method developed by Huang et al. [17] to process
complex signals. EMD can deal with nonlinear and non-stationary signals; hence, it has a large number
of applications in vibration data processing. Boudraa and Cexus introduced an EMD-based noise
reduction method. In their study, the noisy signal was first decomposed adaptively into intrinsic mode
functions (IMFs). By filtering or thresholding each IMF, an estimated signal was reconstructed from
the processed IMFs [18]. Fan and Zhencai combined EMD and SVD to process noisy vibration signals
in their research. EMD was applied to decompose the obtained signals into IMFs, then only IMFs
including the characteristic damage frequencies (CDFs) and higher frequency components were selected
to do further noise reduction using SVD; other IMFs were classified as noise and abandoned [19].

1.3. Significance and Aims

Ideally, denoising preserves signal content of interest while rejecting noise. This is of particular
importance in structural health monitoring (SHM) applications where field data often has a low
signal-to-noise ratio (SNR). To achieve this goal for image processing, researchers have proposed
a number of local adaptive algorithms. Tomasi and Manduchi proposed a non-iterative algorithm
for image denoising, referred to as bilateral filtering algorithm [20]. Compared with traditional
iterative algorithms, the bilateral filtering algorithm better preserves the image edge information
while eliminating image noise and thus achieves more effective denoising. Paris and Kornprobst
comprehensively reviewed and summarized the bilateral filtering algorithm and applied it to image
denoising, extraction, and texture, as well as tone adjustment [21,22]. Although bilateral filtering
algorithms have been widely used in image processing, including medical tomography and nuclear
magnetic resonance scanning, their application to structural vibration data is novel. In this article, we
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evaluated bilateral filtering for denoising of structural vibration data and demonstrated its ability to
provide superior denoising and ultimately promise improvement for damage detection tasks. For our
evaluation, we used both synthetically generated signals as well as signals collected from a small-scale
laboratory experiment.

1.4. Article Outline

The theoretical basis of bilateral filtering is introduced in Section 2. Means for calculating the SNR,
a time-frequency analysis method called S transform, and a method to quantify the time-frequency
spectrum-Frobenius norm were introduced to evaluate the denoising effects. In Section 3, numerical
examples are employed to demonstrate the effectiveness of the proposed technique and denoising
effects are compared with other methods. The effectiveness of the proposed bilateral filtering technique
is verified on experimental data in Section 4. Finally, conclusions are drawn and recommendations for
further work are presented in Section 5.

2. Methodologies

Section 2.1 introduces the concept of bilateral filtering and how it is applied to structural vibration
time series data. Sections 2.2–2.4 define methods to characterize the effects this filter has on a time series.

2.1. Theory of Bilateral Filtering with Illustrative Example

Bilateral filtering is a nonlinear, non-iterative low-pass filtering technique commonly used for
edge-preserving image smoothing [15]. It employs a bilateral filter kernel function by multiplying
the spatial proximity Gaussian kernel and the numerical similarity Gaussian kernel functions. Current
data points are replaced by those obtained by weighting the neighborhood data points, thereby
achieving the purpose of filtering. The process of bilateral filtering is illustrated in Figure 1.

Figure 1. Schematic of a bilateral filtering process.

The two Gaussian weights in the bilateral filtering technique are related to spatial distance and
numerical similarity. The expression only considering the spatial weight Gaussian filter is [20]:

h(xi j) = k−1
d (xi j)

∫
∞

−∞

∫
∞

−∞

ξstc((s, t), (i, j))dsdt (1)

where

kd(xi j) =

∫
∞

−∞

∫
∞

−∞

c((s, t), (i, j))dsdt (2)

where (s, t) and (i, j) are two pixels, c() is the Gaussian weight function based on spatial distance, and
ξst and xi j are the gray levels of (s, t) and (i, j), respectively. kd(xi j) is used to normalize the output
signal.

Gaussian filtering as defined by Equation (1) is effective as a low-pass filter, but one problem is
that only spatial distance information of the data is considered. The filtered signal thus experiences
a loss of edge information. Edge in this article mainly refers to the instances in which numerical
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amplitude values suddenly change. Bilateral filtering solves this problem by adding another weight
function to the Gaussian filter. The expression of a Gaussian filter considering numerical weights is

h(xi j) = k−1
r (xi j)

∫
∞

−∞

∫
∞

−∞

ξsts(ξst, xi j)dsdt (3)

where

kr(xi j) =

∫
∞

−∞

∫
∞

−∞

s(ξst, xi j)dsdt (4)

where s() is the Gaussian weight function based on numerical similarity and kr(xi j) is used to normalize
the output signal. By combining the two expressions, a bilateral filtering expression based on spatial
distance and numerical similarity is obtained, as follows:

h(xi j) = k−1(xi j)

∫
∞

−∞

∫
∞

−∞

ξstc((s, t), (i, j))s(ξst, xi j)dsdt (5)

where

k(xi j) =

∫
∞

−∞

∫
∞

−∞

c((s, t), (i, j))s(ξst, xi j)dsdt (6)

Equation (6) combines two Gaussian weight functions, kd(xi j) and kr(xi j) (Equations (2) and
(4)) where c((s, t), (i, j)) and s(ξst, xi j) are measures for the spatial and numerical similarity between
the center pixel xi j and its neighbor ξst, respectively. Usually, these two measures can be defined as
two Gaussian Kernel functions:

c((s, t), (i, j)) = e−
1
2 (
‖(s,t)−(i, j)‖
σd

)
2

(7)

s(ξst, xi j) = e−
1
2 (
‖ξst−xij‖
σr )

2

(8)

The bilateral filter integrates spatial and numerical similarity filters into one. It defines a space
neighborhood using spatial filter variance, σd. The numerical similarity filter is used for selecting
the points with the similar gray levels in the defined spatial neighborhood.

Equations (1) to (8) are infinite integrals in space; however, they need to be discretized before
they can be employed in a numerical algorithm. This article considers the case where a signal is
one-dimensional, e.g., the acceleration response time-history from a structural vibration test. To
illustrate the capabilities of bilateral filtering, an example is presented next. Consider a signal, X
representing the noise-free version of a response signal. Zero-mean random Gaussian noise, N is
added to signal,X, producing a more realistic real-world response signal, Y:

Y = X + N (9)

The bilateral filtering technique restores the original signal, X by weighted averaging the amplitudes
in the response signal, Y:

X[ξ] =
∑R

x=−R W[ξ, x]Y[ξ− x]∑R
x=−R W[ξ, x]

(10)

where R is the smoothing distance (or radius). Equation (10) represents a normalized weighted average
of 2R + 1 sized neighborhood points centered at the ξth sampling point in Y to obtain the filtered signal
amplitude at the xth sampling point. The weight coefficients function, W[ξ, x] is the product of the two
factors based on the spatial distances weight function, Wd[ξ, x] and the numerical similarity weights
function, Wr[ξ, x], which are defined as follows:

Wd[ξ, x] = e−d2([ξ],[ξ−x])/2σ2
d = e−x2/2σ2

d (11)
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Wr[ξ, x] = e−d2(Y[ξ],Y[ξ−x])/2σ2
r = e−(Y[ξ]−Y[ξ−x])2/2σ2

r (12)

where d represents the distance measure operator.
As can be observed from the equations above, the bilateral filter is controlled by three parameters:

the smoothing radius, R, where larger values provide stronger smoothing, but at the same time causes
data distortion, the spatial distance standard deviation σd, and the numerical similarity standard
deviation, σr, which determine the degree of attenuation of the two weighting functions, Wd[ξ, x] and
Wr[ξ, x], respectively. For large values of these parameters, bilateral filtering converges with mean
filtering. On the other hand, if the values for the three parameters are too small, the smoothing effect is
weakened. Figure 2 illustrates the effect of bilateral filtering using three different sets of parameters on
a synthetic noisy square wave signal, the dotted red lines in each figure represent the residual noise.

Figure 2. Effect of bilateral filter on synthetic signal with three different sets of parameters: (a) Synthetic
square wave signal with added random noise; (b) filtered signal using R= 3, σd = 5, and σr = 0.05;
(c) filtered signal using R = 5, σd = 10, and σr = 0.1, and (d) filtered signal using R = 15, σd = 10, and σr

= 0.1. The dotted red line represents the residual noise.

2.2. Reference Filtering Methods

In this article, we used median filtering and wavelet filtering as two classic noise suppression
methods for comparison with our proposed bilateral filter. Subsequently, we introduce these two
methods briefly.

Median filtering is a non-linear signal processing method particularly used for signal and image
smoothing [6]. It is performed by letting a window with a select number of points slide over a signal
and replace the value at the window center with the median of the original values within the window.
This process produces an output sequence that usually is smoother than the original one. Median
filtering is a simple but effective method for smoothing signals with random spikes with minimal
interference of the actual features.
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Wavelet denoising is another effective non-linear technique that operates on one wavelet coefficient
at a time [8]. In its most basic form, each coefficient is compared against a threshold. If the coefficient
is smaller than threshold, it is set to zero; otherwise, it is kept or modified. Replacing all small
noisy coefficients by zero and the performing an inverse wavelet transform on the result may lead to
a reconstruction with the essential signal characteristics and less noise. Wavelet denoising involves
three steps: (1) a linear discrete wavelet transform, (2) a nonlinear thresholding step, and (3) a linear
inverse wavelet transform.

2.3. Signal-to-Noise Ratio (SNR)

Several sources of noise exist in recorded real-world structural vibration signals that need to
be considered, including environmental and ambient noise, noise from the measurement device
itself, noise from the test setup, etc. For the synthetic signals used in this article, high-frequency
white noise following a Gaussian distribution was used. To estimate the signal-to-noise ratio (SNR),
the superposition method is used [23,24]. In the SNR analysis, window D, the data volume is
recorded as:

D = [di]M (13)

where M is the number of sampling points in the time window analyzed, i = 1, 2, · · · , M. If the noise is
randomly distributed at zero mean and is independent of the signal along the measurement direction,
then

di = si + ni (14)

where si and ni are signal and noise amplitudes at index i, respectively. Furthermore,

M∑
i=1

ni = 0 (15)

The energy of the signal containing noise is

ES =
M∑

i=1

si
2 =

1
M

(
M∑

i=1

di)

2

(16)

The energy of the noise is

EN =
M∑

i=1

di
2
− ES (17)

The resulting expression for the SNR is

SNR =
ES
EN

= 10 log10


M∑

i=1
di

2

M
M∑

i=1
di2 −

M∑
i=1

di2

 (18)

2.4. Theory of the S Transform

While the Fourier transform (FT) contains information about the spectral components of a time
series, the temporal distribution of them is lost. Hence, for the analysis of real world, non-stationary
signals, the FT may have limited use. In order to study the local properties of the signal in the time
and frequency domains simultaneously, Gabor proposed a windowed FT, also known as short time
Fourier transform (STFT) [25]. The STFT is now widely used, but due to the limitation of the fixed
window length, the time and frequency resolutions are restricted mutually and do not have adaptability.
The Wavelet transform (WT) adapts the STFT localization idea and overcomes some shortcoming by
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offering flexible window lengths [26]. However, the disadvantage of the WT is that there is no direct
relationship between wavelet series and frequency.

In 1996, geophysicist Stockwell proposed the S transform (ST) based on previous time-frequency
analysis studies [27]. The ST combines the advantages of the STFT and WT. The reciprocal of
the frequency in the ST determines the size of the Gaussian window scale, and it possesses the advantages
of the multi-resolution property of the WT. Furthermore, there is a phase factor in the ST that
preserves each of the absolute phase characteristics of the frequency, which is not available in the WT.
The one-dimensional continuous ST is defined as follows:

S(τ, f ) =
∫
∞

−∞

f (t)

∣∣∣ f ∣∣∣
√

2π
e[
− f 2(τ−t)2

2 ]e−2π f tdt (19)

where S denotes the ST of the time series, f (t), f and t represent frequency and time, respectively, and
τ controls the position of the Gaussian window on the time axis, which is equivalent to the shift factor
in the WT.

2.5. Energy of the Spectrum

The ST produces the time-frequency spectrum of a time series such as acceleration measured from
structural vibrations. In order to quantify the change in energy of the time-frequency spectrum, we
introduce the concept of the Frobenius norm (F-norm) [28]. The F-norm can be defined in the following
different ways:

‖A‖F = E =

√√√ m∑
i=1

n∑
j=1

∣∣∣ai j
∣∣∣2 =

√
trace(A∗A) =

√√√min{m,n}∑
i=1

σ2
i (20)

where A∗ represents the conjugate transpose of A, σi is the singular value of A. The F-norm is
similar to the Euclidean norm representing the inner product from the space of all matrices. For
the time-frequency spectrum S(t, f ) obtained based on the ST, the energy, E of the time-frequency
spectrum can be expressed as follows:

E =

√√√ m∑
i=1

n∑
j=1

S2(ti, f j) (21)

where m and n are the time-frequency spectrum pixel points in the time and frequency directions
respectively, can be defined by m = T · Pt, n = F · P f . T and F are the ranges of time and frequency
directions in the time-frequency spectrum, Pt and P f are time and frequency resolution, respectively.

3. Evaluation Using Synthetic Signals

In order to illustrate the capabilities of bilateral filtering for processing one-dimensional time
series, two examples using synthetic signals are discussed in this section: a dual-frequency chirp signal
and a structural damped free vibration signal. Gaussian white noise with a variance of 10% was added
to both signals. Median filtering, wavelet denoising, and bilateral filtering are applied to the signals
and their ability to suppress noise while retaining signal features of interest is compared.

3.1. Dual-Frequency Chirp Signal

Figure 3a shows a chirp signal with a length of 2 s and a sampling frequency of 1000 Hz, having
two frequency components of 5 and 15 Hz. The signal after adding random noise as shown in Figure 3b.
Although the period of the original signal is retained, the noise greatly changes the amplitude of
the original signal. The effect of the median filter for noise suppression is shown in Figure 3c.
It can be observed that, while some impulse noise interferences are removed, some signal loss is
introduced, resulting in a relatively large difference between the filtered and the original noise-free
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signal. The signal after employing wavelet denoising is shown in Figure 3d. While this technique
shows some improvement, there is still distortion in the high frequency portion of the signal. The result
from bilateral filtering is displayed in Figure 3e. It can be observed that the denoised signal is closer to
the original signal both in terms of the smoothness and variation of amplitudes. The parameters used
are: R = 15, σd = 10, and σr = 0.1. The dotted red line represents the residual noise. It can be seen from
the Figure 3b to Figure 3e, the Bilateral Filtering method obtained the best denoising result.

Figure 3. Synthetic dual-frequency chirp signal and denoising effects: (a) Original signal; (b) original
noisy signal; (c) signal using median filtering; (d) signal using wavelet denoising, and (e) signal using
bilateral filtering. The dotted red line represents the residual noise.

By calculating the SNR, the effects of the used denoising techniques can be compared quantitatively.
As shown in Table 1, both median filtering as well as wavelet denoising improve the SNR of the original
noisy signal. Bilateral filtering, however, has the highest SNR compared to the other methods for
the signal studied.

Table 1. Signal-to-noise ratio (SNR) of synthetic dual-frequency chirp signals.

Type of Signal Energy of Signal Energy of Noise SNR (dB)

Original noisy signal 1000 99.3 10.0
Denoised signal using median filtering 1000 17.2 17.6

Denoised signal using wavelet denoising 1000 10.9 19.6
Denoised signal using bilateral filtering 1000 9.82 20.1

To illustrate the applicability and superiority of the proposed bilateral filtering technique,
time-frequency analysis based on the S transform is performed. Figure 4a accurately characterizes
the two frequencies of the chirp signal. It can be observed from the time-frequency spectrum after
adding the noise (Figure 4b), that the amplitude value of the noise is spread over the entire frequency
band, with noise amplitudes gradually increasing from 30 to 90 Hz. The median filtering result is
shown in Figure 4c. It can be observed that the amplitude of the noise across the whole frequency band
is only minimally reduced. The wavelet denoising result presented in Figure 4d shows significant
improvement over the low frequency portion of the signal, but there is still noise interference in
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the high frequency portion. Bilateral filtering displayed in Figure 4e while still not perfect, shows
further improvement as the filtered signal is closest to the time-frequency spectrum of the original
signal shown in Figure 4a.

Figure 4. Time-frequency spectrum based on S transform for simulated chirp signal with random noise
and denoising results: (a) Original signal; (b) original noisy signal; (c) signal using median filtering;
(d) signal using wavelet denoising, and (e) signal using bilateral filtering.

3.2. Structural Damped Free Vibration Signal

Compared with the dual-frequency chirp signal, a structural damped free vibration signal is
composed of a series of sine functions. Each harmonic frequency has a different amplitude value;
the composite signal can better simulate the acceleration response signal generated by vibration in
structural damage detection. Figure 5a shows the synthetic damped free vibration signal having
a fundamental frequency, fn = 115 Hz and five sub-harmonic frequencies, with a signal duration of
2 s. In Figure 5b, which shows the noisy version of the signal, noise interference with large amplitude
peaks appear in the signal, which seriously affects the data quality for subsequent processing. As
seen in Figure 5c, after denoising using median filtering, the noise interference with large amplitude
values can be effectively suppressed, but this technique is not effective for removing random noise
with zero-mean value. The result of wavelet denoising is displayed in Figure 5d. Here, on the contrary,
wavelet denoising is able to remove zero-mean random noise, but it is not effective for random peaks.
The resulting signal when bilateral filtering is employed is shown in Figure 5e. Although there is still
a small amount of background noise in the signal, the overall shape of the signal is closer to the original
signal without noise. The bilateral filter parameters used are: R = 15, σd = 10, and σr = 0.1.
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Figure 5. Synthetic structural damped free vibration signal and denoising effects: (a) Original signal;
(b) original noisy signal; (c) signal using median filtering; (d) signal using wavelet denoising, and
(e) signal using bilateral filtering. The dotted red line represents the residual noise.

Next, the SNR of the original noisy signal and the denoised signal by three denoising techniques
are calculated and are displayed in Table 2. The SNR of the signal is obviously improved after
processing by median filtering and wavelet denoising method. Nevertheless, the proposed bilateral
filtering technique suppresses more noise interference, achieving the highest SNR.

Table 2. SNR of synthetic structural damped free vibration signals.

Type of Signal Energy of Signal Energy of Noise SNR (dB)

Original noisy signal 22.8 6.92 5.18
Denoised signal using median filtering 22.8 4.11 7.45

Denoised signal using wavelet denoising 22.8 2.86 9.02
Denoised signal busing bilateral filtering 22.8 2.71 9.26

Similarly, time-frequency analysis based on the S transform is performed for comparison.
After the random noise is added, the noise is significantly disturbed in the 0–500 Hz range of
the time-frequency spectrum as shown in Figure 6b. The result of median filtering denoising is
displayed in Figure 6c. Noise interference in the time-frequency spectrum is reduced; however,
the amplitude value of the noise is still high throughout the frequency band. Wavelet denoising further
improves the result, as is shown in Figure 6d, but there are still some random peak bands present.
The result after bilateral filtering is employed shows the best improvement in the overall quality of
the signal, as can be observed in Figure 6e.
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Figure 6. Time-frequency spectrum for simulated damped vibration signal with random noise and
denoising results: (a) spectrum for original signal; (b) spectrum for original noisy signal; (c) median
filtering result; (d) wavelet denoising result and (e) bilateral filtering result.

4. Evaluation Using Experimental Data

In this section, data recorded from a non-destructive test of a laboratory-scale reinforced concrete
beam are processed using different filtering techniques and compared.

4.1. Test Setup and Procedure

In a non-destructive test, a simply supported reinforced concrete beam was excited by striking
an instrumented hammer with a rubber tip at a designated impact location on the beam. A hydraulic
actuator with a load cell was used to apply several different vertical loads, P at mid-span to induce
different stages of cracking. Figure 7 shows the test setup and instrumentation. The overall length
of the beam is 1000 mm with a span length of 900 mm. The cross-sectional dimensions are b × h =

100 mm × 150 mm. The longitudinal bars in the compression zone are 2 Ø6 mm, the longitudinal bars
in the tension zone are 2 Ø10 mm, and the stirrups are Ø6 mm spaced @ 100 mm. The concrete used
for the beam was C20. The impact hammer is made by Jiangsu Donghua, Model DH118. The vibration
response was recorded by two accelerometers located on top of the beam: Accelerometer 1 was
located 50 mm to the right of mid-span and Accelerometer 2 over the right support. The piezoelectric
accelerometers are manufactured by Jiangsu Donghua, Model DH105E and have a sensitivity of
100 mV/ms2 and frequency response range of 0.1 Hz to 1 kHz.
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Figure 7. (a) Illustration of test setup with reinforced concrete beam and (b) photograph showing
experimental setup. Dimensions in (mm).

The hammer impact location is located 50 mm away to the left of mid-span. In order to ensure
consistency of the impact source, the force amplitude was kept at 140 ± 10 N. A typical hammer impact
signal is displayed in Figure 8.

Figure 8. Sample of a typical hammer impact signal.
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4.2. Signal Processing and Results

The experiment was carried out in a relatively open environment. During the experiment,
the measurements were subjected to environmental noise, internal electrodes of the instrument, and
noise generated by the power amplifier, thus reducing the quality of the recorded data. Increasing
loads, P applied at mid-span were used to introduce higher levels of cracking. After each load was
applied, it was held for 2 min followed by unloading. After each unloading phase, hammer impacts
were performed on the beam and the vibration response recorded by the two accelerometers. In this
article, impact tests associated with the following applied load stages are discussed further: 5, 15, 25,
and 35 kN.

In Figure 9, the results for Accelerometer 1 are shown. Rows (a) to (d) show both the vibration
response in the time-domain as well as the corresponding time-frequency spectrum. Columns (I)
to (IV) correspond to load stages 5 to 35 kN, respectively. It can be seen from the time-frequency
spectrum in that with increasing load stage, the amplitude of the signal gently decreases. This can be
explained by the appearance and extension of cracks inside the beam with increasing load. Cracking
causes the energy of the elastic wave to decrease as it interacts with cracks. However, it is difficult to
extract useful and quantitative information from the time-frequency spectrum due to the presence of
random noise.
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Figure 9. Time domain signals and corresponding time-frequency domain results for each loading stage
for Accelerometer 1: Columns (I to IV) show the loading stage and the rows correspond to the filtering
technique: (a) Spectrum for original signal; (b) median filtering result; (c) wavelet denoising result and
(d) bilateral filtering result.

The signals collected from Accelerometer 2 are not discussed in this paper; the processed results
are shown in Figure A1 in the Appendix A.
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Based on the above analysis of the measured vibration response signals, median filtering, wavelet
denoising and bilateral filtering were used to suppress the random noise. The denoising result of
the median filtering as shown in Figure 9b, the noise interference with larger amplitude is suppressed,
but the random noise interference is not effectively processed. It can be seen from the time-frequency
spectrum that the noise amplitude value is still distributed over the entire frequency band and it is
hard to recognize whether the simply supported beam is damaged or not from the time-frequency
spectrum. Figure 9(cI) to (cIV) show the results for wavelet denoising processing. Evidently, the wavelet
denoising method can suppress the random noise interference better, but the noise with larger amplitude
cannot be effectively removed. These large amplitude noise interferences do not only appear in time
domain signals, they are easy to observe in the time-frequency spectrum as well. It is, however,
difficult to distinguish between effective signal and noise interference. Especially for loading stage
IV (35 kN), the high-frequency signal should be rapidly attenuated when the elastic wave passes
through the cracked concrete beam, but the signal still has a frequency component above 200 Hz (see
Figure 9(cIV)). Compared with the median filtering and wavelet denoising methods, the bilateral
filtering method has a better denoising effect on different types of noise interference, the denoising
results presented in Figure 9d. It can be seen from the time-frequency spectra that not merely
the noise amplitude of the high frequency part are removed, but also the energy concentration area of
the time-frequency spectra show a reasonable attenuation trend with the gradual increase of the loading
force, which means as the loading force increases, cracks steadily appear in the simply supported
beam. At the same excitation level, the energy attenuation increases as the elastic wave propagates;
accordingly, in the time-frequency spectra, the energy concentration area decreases gradually.

Time-frequency energy E was calculated next using Equation (21) for each recorded signal and
plotted against load stage (5 to 35 kN). For Accelerometer 1 (Figure 10a), it can be observed that
overall, independent of the filter was used, E decreases with increasing load stage. From 15 and 25 kN,
however, E actually increases, which makes E not a viable parameter usable for detecting cracking.
Since the original signal contains a large amount of noise interference, the calculated energy value E is
much higher. The calculated value for the median filtering method and the wavelet denoising method
are much smaller, and the overall E value calculated by the wavelet denoising method is relatively
lower. Because the bilateral filtering method most effectively suppresses excessive random noise
interference, E has the lowest values. For Accelerometer 2 (Figure 10b), the overall trend of the data is
more consistent compared to Figure 10a. For this case, both wavelet and bilateral filtering produce
curves with a consistent negative slope, which, in turn, are consistent with higher levels of cracking.
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Figure 11 shows the results when magnitude-squared coherence (MSC) is used to compare the time
response histories. MSC operates in the frequency domain, producing a function of normalized
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coherence vs. frequency. In this case, the integral of the MSC function was used, which produces
a value ranging from 0 to 1, as a measure of similarity between two signals. For the data studied in
this article, the integral was computed from 0 to 0.5fNyquist. This idea of using MSC was first proposed
by Grosse [29] to compare acoustic emission signals. More recently, the same approach was used by
the second author of this article on ultrasonic monitoring data [30]. For Accelerometer 1, it can be
observed that only wavelet and bilateral filtering produce a consistent trend for the MSC similarity
index with increasing cracking. The results for Accelerometer 2 are consistent for any filtering method
but most clear for the data denoised by bilateral filtering.
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5. Summary and Conclusions

In this article, a new signal denoising approach based on bilateral filtering is presented and
evaluated on both synthetic and experimental signals. Bilateral filtering is typically used in image
processing, having excellent edge-preserving properties. More traditional filtering schemes including
median filtering and Wavelet filtering were performed for comparison. The S transform was used
as an auxiliary method to effectively compare and verify the denoising effect of the different filtering
approaches visually. The performance of the three filters are first explored using synthetic signals
containing Gaussian noise. A structural vibration test is then presented and discussed. Furthermore,
the concept of time-frequency energy is introduced to quantify the change of time-frequency spectra
at each loading stage. Finally, the results of magnitude-squared coherence (MSC) for the data from
Accelerometer 1 and 2 are shown to exemplify the effectiveness of the bilateral filtering method for
quantifying varying levels of cracking.

Overall, we demonstrated that bilateral filtering offers advantages over traditional schemes,
in that it is more effective for noisy signals. Bilateral filtering is particularly effective in removing
high-frequency noise in synthetic signals with Gaussian noise. This can be observed in the highest
SNR and lowest energy in the filtered signals. For the laboratory vibration test, both median and
bilateral filtering allowed for producing a consistent indicator of cracking in the beam. The bilateral
filtering method was most effective in removing noise interference and random noise interference with
large amplitude.

Future work includes analyzing impulse response data from a large-scale laboratory concrete test
as well as other tests such as acoustic emission or portable ground penetrating radar.
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Appendix A

Figure A1 shows the time domain signals and their corresponding time-frequency spectra at each
loading stage for Accelerometer 2.

Figure A1. Time domain signals and corresponding Time-frequency domain results for each
loading stage.
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