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Abstract Abstract 
We evaluate three approaches to mapping vegetation using images collected by an unmanned aerial 
vehicle (UAV) to monitor rehabilitation activities in the Five Islands Nature Reserve, Wollongong 
(Australia). Between April 2017 and July 2018, four aerial surveys of Big Island were undertaken to map 
changes to island vegetation following helicopter herbicide sprays to eradicate weeds, including the 
creeper Coastal Morning Glory (Ipomoea cairica) and Kikuyu Grass (Cenchrus clandestinus). The spraying 
was followed by a large scale planting campaign to introduce native plants, such as tussocks of Spiny-
headed Mat-rush (Lomandra longifolia). Three approaches to mapping vegetation were evaluated, 
including: (i) a pixel-based image classification algorithm applied to the composite spectral wavebands of 
the images collected, (ii) manual digitisation of vegetation directly from images based on visual 
interpretation, and (iii) the application of a machine learning algorithm, LeNet, based on a deep learning 
convolutional neural network (CNN) for detecting planted Lomandra tussocks. The uncertainty of each 
approach was assessed via comparison against an independently collected field dataset. Each of the 
vegetation mapping approaches had a comparable accuracy; for a selected weed management and 
planting area, the overall accuracies were 82 %, 91 % and 85 % respectively for the pixel based image 
classification, the visual interpretation / digitisation and the CNN machine learning algorithm. At the scale 
of the whole island, statistically significant differences in the performance of the three approaches to 
mapping Lomandra plants were detected via ANOVA. The manual digitisation took a longer time to 
perform than others. The three approaches resulted in markedly different vegetation maps characterised 
by different digital data formats, which offered fundamentally different types of information on vegetation 
character. We draw attention to the need to consider how different digital map products will be used for 
vegetation management (e.g. monitoring the health individual species or a broader profile of the 
community). Where individual plants are to be monitored over time, a feature-based approach that 
represents plants as vector points is appropriate. The CNN approach emerged as a promising technique 
in this regard as it leveraged spatial information from the UAV images within the architecture of the 
learning framework by enforcing a local connectivity pattern between neurons of adjacent layers to 
incorporate the spatial relationships between features that comprised the shape of the Lomandra 
tussocks detected. 
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A B S T R A C T

We evaluate three approaches to mapping vegetation using images collected by an unmanned aerial vehicle
(UAV) to monitor rehabilitation activities in the Five Islands Nature Reserve, Wollongong (Australia). Between
April 2017 and July 2018, four aerial surveys of Big Island were undertaken to map changes to island vegetation
following helicopter herbicide sprays to eradicate weeds, including the creeper Coastal Morning Glory (Ipomoea
cairica) and Kikuyu Grass (Cenchrus clandestinus). The spraying was followed by a large scale planting campaign
to introduce native plants, such as tussocks of Spiny-headed Mat-rush (Lomandra longifolia). Three approaches to
mapping vegetation were evaluated, including: (i) a pixel-based image classification algorithm applied to the
composite spectral wavebands of the images collected, (ii) manual digitisation of vegetation directly from
images based on visual interpretation, and (iii) the application of a machine learning algorithm, LeNet, based on
a deep learning convolutional neural network (CNN) for detecting planted Lomandra tussocks. The uncertainty of
each approach was assessed via comparison against an independently collected field dataset. Each of the ve-
getation mapping approaches had a comparable accuracy; for a selected weed management and planting area,
the overall accuracies were 82 %, 91 % and 85 % respectively for the pixel based image classification, the visual
interpretation / digitisation and the CNN machine learning algorithm. At the scale of the whole island, statis-
tically significant differences in the performance of the three approaches to mapping Lomandra plants were
detected via ANOVA. The manual digitisation took a longer time to perform than others. The three approaches
resulted in markedly different vegetation maps characterised by different digital data formats, which offered
fundamentally different types of information on vegetation character. We draw attention to the need to consider
how different digital map products will be used for vegetation management (e.g. monitoring the health in-
dividual species or a broader profile of the community). Where individual plants are to be monitored over time, a
feature-based approach that represents plants as vector points is appropriate. The CNN approach emerged as a
promising technique in this regard as it leveraged spatial information from the UAV images within the archi-
tecture of the learning framework by enforcing a local connectivity pattern between neurons of adjacent layers
to incorporate the spatial relationships between features that comprised the shape of the Lomandra tussocks
detected.

1. Introduction

As unmanned aerial vehicles (UAVs), or drones, have become more
affordable and the capability of the sensors that can be operated from
them has improved, they have become more widely adopted platforms
for acquiring aerial images with which to accurately map, better

understand and manage environmental landscapes. The popularity and
utility of UAV platforms stems largely from autonomous functionalities
they allow, which minimise user intervention including the ability to
plan and conduct surveys to collect aerial photography or remote sen-
sing data across a broad spectral range, over an area interest. Examples
of different sensor applications include the acquisition of thermal
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images that detect body heat to monitor and conserve wildlife
(Gonzalez et al., 2016), and the use of multispectral cameras operating
at blue and green wavelengths that can penetrate water to map sub-
merged marine fauna (Colefax et al., 2017). Applications of vegetation
remote sensing from UAVs include mapping aquatic vegetation (Husson
et al., 2016), monitoring the condition of native vegetation (Lawley
et al., 2016) and managing agricultural crops (Krishna, 2016). A wide
variety of vegetation mapping sensors can be operated from a UAV
platform, including hyperspectral sensors that detect reflectance at
many wavelengths and can discern different plant species (Xie et al.,
2008), the use of red and near-infrared wavebands to calculate indices
that indicate the degree of vegetative ground cover (Ghazal et al., 2015)
and characterisation of canopy structure, including texture and vege-
tation height with a light detection and ranging (LiDAR) sensor (Lefsky
et al., 2002).

Several key developments made over the last decade have the po-
tential to result in a radically new way of generating feature data from
pixel-based images. Computational advances have increased the ac-
cessibility of low-cost machines with fast arithmetic units, opening up
the scope for numerical approaches to machine learning. Furthermore,
the “big-data” revolution has made large volumes of complex in-
formation readily available in environmental research, including sa-
tellite and UAV based remote sensing images that may be analysed
computationally to reveal patterns and trends. Up until now, the
variability and richness of natural features depicted as raster images,
particularly the comparably coarse resolution of earth observation sa-
tellite images has presented a challenge to pattern recognition algo-
rithms. However, the substantial increase in spatial resolution that has
been introduced through the operation of UAV platforms at much lower
altitudes, which have reduced pixels sizes from 30m2 to 3 cm2, has
rendered many smaller features amenable to detection via machine
learning. Collectively, these developments are changing how remote
sensing technology is applied at regional scales (ca 50 km2) to better
understand landscapes. This is particularly the case in dynamic en-
vironments that are subject to either natural or anthropogenically-in-
duced changes, where deep learning techniques have the potential to
not only identify features of interest, but to track how they evolve over
time.

Classification in remote sensing involves the categorisation of re-
sponse functions recorded in imagery (i.e. detected light that has re-
flected from the Earth’s surface) as representations of real-world ob-
jects. In the context of the present study, classification transforms
images collected from a UAV into a customised vegetation map. This
process can be achieved through the application of either supervised or
unsupervised image classification algorithms, by simply viewing, in-
terpreting and manually annotating aerial images by digitisation (i.e.
digitally tracing over features to be mapped), or through the application
of a variety of machine learning approaches (e.g. decision trees, random
forest classifiers or convolutional neural networks). Each of these ap-
proaches is subject to advantages and disadvantages. For example,
object-based image classifiers have been successfully applied to UAV
orthoimage mosaics collected by the DJI Phantom 4 to differentiate
between tree crowns of wild pistachio and almond trees (Chenari et al.,
2017) and to estimate grass biomass (Viljanen et al., 2018) drawing on
the unique texture and colouring of these vegetation communities.
While visual interpretation and digitisation of images has yielded reli-
able vegetation mapping results, such approaches are time both con-
suming and susceptible to the bias of the interpreter, as well as errors in
the manual digisation of features (Barlow, 2018; Hamylton, 2017).

Several studies have employed machine learning algorithms to re-
cognise vegetation, with a particular focus on detecting clusters of
woodland forest or wetland vegetation rather than individual plants
(Dujon and Schofield, 2019). Machine learning offers a fundamentally
different approach to the processing routines available through most
commercial image processing softwares, which rely on pre-pro-
grammed algorithms to classify input image data into an output map

based on the relative statistical reflectance properties of their composite
pixels. In the case of machine learning, the data and desired result are
provided to a learning algorithm (a ‘learner’), which then generates the
algorithm that turns one into the other. For example, deep neural
networks (DNNs) are composed of multiple layers between the input
and output layers which collectively define the correct mathematical
manipulation that generates the output from the input through a series
of convolutions (LeCun et al., 2015). These algorithms are increasingly
finding uses in remote sensing applications, although little is known
about their performance in comparison to existing vegetation mapping
approaches.

1.1. The use of convolutional neural networks for recognising objects in
images

Machine Learning technology has developed in response to the ri-
gidity of many computer programs in comparison with the world’s in-
finite versatility (Domingos, 2015). In the case of feature detection from
remote sensing images, one of the key challenges has been reliably
recognising real-world objects from a large number of pixels. To date,
this has largely been achieved using statistical classifiers that discern
features or ground cover based on multiple reflectance values across
different wavebands composing an image, or applying predefined rule-
sets to logically classify objects segmented from an image (Xie et al.,
2008).

Convolutional neural networks (CNN) are a class of deep neural
network machine learning algorithm that has met with success in var-
ious image analysis applications, including facial and recognition of
handwritten characters (LeCun et al., 1990; Matsugu et al., 2003).
Given an input image and a predefined training set of object categories,
a detection algorithm can locate all the object instances falling within
these categories across an image (Blaschke et al., 2008). It does so at a
fine-grained, regional level of the image to recognise recurring patterns
that present themselves across multiple pixels based on user guidance.
In doing so, it is able to draw explicitly on useful signals that are ap-
parent in the collective properties of pixels within an image. By inter-
leaving convolutional and pooling layers, CNN algorithms have proven
to be good at extracting mid- and high-level abstract features from raw
images in large-scale image recognition, object detection, and semantic
segmentation exercises (Zhu et al., 2017).

Given a database of images, feature detection algorithms can learn
to detect commonly occurring features from the images, and one of the
key challenges related to the application of machine learning for this
purpose is finding out what is needed from initial assumptions, parti-
cularly how much data the learner algorithms require so that features
can consistently be reliably detected from image data. This relates
specifically to the amount of, and variability between, training in-
stances used.

In the present study, we adopt a vegetation rehabilitation case study
to evaluate how a CNN machine learning algorithm can learn to detect
Lomandra, and how this compares to other commonly used approaches
for vegetation mapping.

The present study aims to compare the advatages and disadvantages
of three distinct approaches to vegetation mapping from UAV images
by:

1 Mapping the vegetation of Big Island, with a particular focus on
tussocks of the native mat-rush plant Lomandra longifolia, using the
following three approaches:
i

i a pixel-based image classification method,
ii visual interpretation and manual digitisation of individual

Lomandra tussocks, and
iii through the application of CNN machine learning object de-

tection algorithms.
2 Evaluating the above three approaches to vegetation mapping, in
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terms of the time taken for their implementation, their uncertainty
as measured against a common ground referencing dataset and as-
certaining whether statistically significant differences occur be-
tween their accuracies.

1.2. Study location: the Five Islands Nature Reserve

The Five Islands Group comprises Flinders Islet, Bass Islet, Rocky
Islet, Big Island and Martin Islet, which collectively represent an area of
approximately 0.26 km2 that stretches 3.6 km offshore from Port
Kembla, Wollongong in southern New South Wales (Fig. 1). The largest
of the islands, Big Island (0.18 km2) consists of two elevated islands
joined by a low rocky isthmus that have been subdivided for manage-
ment purposes into Big Island 1 and 2. The present study focuses on
vegetation rehabilitation activities on Big Island 1 (herein, referred to
as Big Island).

Wollongong experiences a warm temperate climate (Kottek et al.,
2006), with an average annual rainfall and air temperature of ap-
proximately 1400mm and 17 °C respectively. Precipitation is higher
during the austral summer-autumn months (December to May) than
winter-spring (June – November). Precipitation is the lowest in July

with an average of 60mm and reaches its peak of approximately
190mm in March. February is the hottest (22 °C) and July is the coldest
(11.9 °C) month of the year (Climate-Data, 2019). In 1938, Big Island
was composed largely of exposed rock, soil and sand dunes, with 58
species of vegetation recorded, 40 of which were native and only 18
were deemed to be exotic (Davis, 1983). Since then, the ground cover
has shifted from one dominated by sand and rock to a vegetated com-
munity that was initially comprised predominantly of native plant
species but is now dominated by exotic species, particularly the dense
grass Kikuyu (Cenchrus clandestinus) and creeper Coastal Morning Glory
(Ipomoea cairica) (Figs. 2 and 3). Non-native vegetation in the form of
Buffalo Grass (Stenotaphrum secundatum) was introduced to Big Island
to reduce soil erosion by grazing goats and cattle. This began a history
of significant human-induced changes to ground surface cover on the
islands through the introduction of non-native plant species, land fires
and mining for shell grit (Mills, 2015). The resulting shift in vegetative
cover has resulted in severe habitat degradation for native seabirds that
breed on the island.

In 1967, the Five Islands became a nature reserve under the National
Parks and Wildlife Act (NSW). The islands are a site of significance to the
Illawarra Aboriginal Community (NSW Department of Environment

Fig. 1. (A) Port Kembla and the Five Islands Nature Reserve, (B) Study site location along the Eastern Australian Coastline, (C) Big Island 1 and 2, connected by a
central rocky isthmus.
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and Conservation, 2005), featuring in several dreamtime storie for the
coastal Dharawal people (Organ and Speechley, 1997).

The islands provide important breeding habitat for many species of
native shore and seabirds, including Wedge-tailed Shearwaters
(Ardenna pacifica), Short-tailed Shearwaters (Ardenna tenuirostris),
Sooty Oystercatchers (Haematopus fuliginosus; listed as a vulnerable
species), Crested Terns (Sterna bergii), Silver Gulls (Larus novae-
hollandiae), Australian Pelicans (Pelecanus conspicillatus), White-faced
Storm-Petrels (Pelagodroma marina) and Little Penguins (Eudyptula
minor) (Carlile et al., 2017). The shearwaters, petrels and penguins dig
burrows in the ground to lay their eggs and rear their chicks. Burrows
are easily damaged by soil erosion, trampling or the current major
problem of weed infestations, which trap the birds in their burrows or
entangle their wings and legs. The rehabilitation of island vegetation
was largely initiated due to the damage caused to burrowing seabirds.

1.2.1. Vegetation rehabilitation at Big Island
The original, pre-European vegetation on Big Island has been re-

placed with a dense weed cover following fires, clearing and weed in-
vasion (Mills, 1990). From the late 1960s, a dense sward of Kikuyu
Grass has spread and dominated the whole island. Most recently, the
creeper Coastal Morning Glory has invaded part of Big Island. In 2014,
a vegetation rehabilitation program was initiated by NSW National
Parks and Wildlife Service in collaboration with Berrim Nuru En-
vironmental Service of the Illawarra Local Aboriginal Land Council.
This involved a staged weed removal followed by revegetation of Big
Island for five focussed vegetation rehabilitation areas. Weed removal
was undertaken by four operations involving helicopter aerial appli-
cations of glyphosate 360 g L−1 Manual replanting with a range of
native species has occurred through a large-scale effort that has seen
approximately 23,400 individual seedlings between 2015 and 2018 in

focussed management areas. These were primarily tussocks of Lo-
mandra longifolia due to their suitability as a ground cover that provides
protection for seabirds without damaging the birds or their burrows.
This species grows as a tussock of long leaves, to over 1-m long (see
Fig. 3D). Due to this planting effort, along with natural expansion fol-
lowing the killing of the Kikuyu sward, the cover of native plants has
increased substantially on Big Island (Mills, 2015).

2. Methods

2.1. Fieldwork: Ground referencing and UAV survey methods to support
vegetation mapping

2.1.1. Ground referencing
Several field trips (summarised in Fig. 4) were undertaken on Big

Island to collect in-situ ground referencing records of vegetation cover
to assist with the development of digital vegetation maps, alongside
aerial UAV surveys. These were timed to occur before and after aerial
weed sprays in 2007 and 2018. In both years, the first trip occurred just
days prior to the Glyphosate 360 g L−1 helicopter spray (April 2017 and
May 2018) for the purpose of eradicating invasive weeds on Big Island,
with a second trip three months after the aerial spray (July 2017 and
July 2018).

Ground referencing photographs were collected on four separate
fieldtrips as training and validation data respectively. On each trip,
photographs recorded information on the vegetative land cover across
the whole island. Photograph locations were recorded to 5m XY posi-
tional accuracy. These reference photographs were then used for
training the automated mapping algorithms (in the case of mapping
approaches 1 and 3). In addition to this, half of one common set of
ground reference photographs, shown in red on the May 2018 image

Fig. 2. Aerial photographs showing the gradual increase in vegetative cover of Big Island between 1947 and 2005 (photographs sourced from the School of Earth,
Atmospheric and Life Sciences aerial photograph collection, The University of Wollongong). Rock outcrops border the entire island; Ground cover dominated by
mostly sand (white) between 1947 and 1951, and subsequently by exotic vegetated species (grey in B&W / green in colour photographs). Brown indicates dry
vegetation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 4), was employed to compare all three mapping approaches via
accuracy assessment.

2.1.2. Unmanned aerial vehicle surveys
A DJI Phantom 4 UAV was used to acquire aerial images with a

FC330 camera, using a built-in 1/2.3″ CMOS sensor, with a lens field of
view of 94°, 20mm (35mm format equivalent), which captures images
at 12.4 megapixels (MP). Images were captured at nadir, i.e. perpen-
dicular (90° ± 0.02°) to the ground surface. The UAV was flown at
70m above sea level along an autonomous, pre-programmed flight path
to ensure the entire study area was included, with sufficient overlap
between adjacent images to avoid gaps and allow subsequent photo-
grammetric processing (Table 1).

The raw images of each flight were collated into an orthomosaic
using the photogrammetric software Agisoft Photoscan Professional
(AgiSoft, 2014). The overall orthomosaic was constructed by applying
feature matching and triangulation to a series of photographs for which
the approximate x, y coordinate information had been captured in the
associated Exchangeable Image File (EXIF, vision positioning system
accuracy of± 0.3m). Feature matching involved detecting and
matching clearly visible points representing the same feature from at
least three different perspectives. Triangulation was used to adjust for
camera orientation and focal length to produce a point cloud, which
was then processed into a continuous mesh. To further improve loca-
tional accuracy, 17 visible targets were established at permanent fea-
tures around the island periphery and interior (Fig. 4) including rocks
and man-made structures as ground control points (GCPs), for which x,
y and z coordinates were measured with a differential GPS (accu-
racy±0.32m). A further georectification was then performed to bring
the image mosaic into line with the GCPs.

2.2. Vegetation mapping approach 1: Pixel-based image classification

For each of the four mapping campaigns, all in-situ photo records
were viewed independently and assigned a class with respect to the
land cover classification scheme employed. This grouped all possible
ground covers into one of seven classes: rock, water, Kikuyu Grass,
Coastal Morning Glory, Mirror Plant (Coprosma repens) / Bitou Bush
(Chrysanthemoides monilifera rotundata), Lomandra or other native ve-
getation and dead vegetation. Half of the ground referencing photo-
graphs collected were used to define training areas to supervise the
image classification, the remaining half were used to assess and inter-
pret the accuracy of the vegetation map.

A supervised classification was performed in ArcMap10.4.1 using a
maximum likelihood parametric rule on the red, green and blue bands
of the aerial images acquired by each UAV survey. The classified output
was a single thematic layer that was subsequently interpreted with
respect to the ground referencing dataset from the photo records. A
final map of seven classes was produced by merging some of the output
classes on the basis of spectral similarity and contextual editing (Mather
and Koch, 2011). For the purpose of the vegetation mapping, the non-
vegetation classes of rock and water were clipped from the outside of
the map.

2.2.1. Assessment of pixel-based image classification accuracy
A validation exercise assessed the accuracy of digital maps gener-

ated from the pixel-based image classification by comparing the land
cover specified by the digital thematic map for May 2018 to the land
cover that was visually interpreted from the independent ground re-
ferencing photographs taken for this time period. To enable meaningful
comparison of corresponding output maps with the other approaches,

Fig. 3. Plant species targeted in the rehabilitation program. (A) Invasive weed Kikuyu Grass (Cenchrus clandestinus). (B) Invasive weed creeper Coastal Morning Glory
(Ipomoea cairica). (C) Leaves of the woody weed Mirror Bush (Coprosma repens) and (D) Planted tussocks of the native Lomandra longifolia.
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the producer’s accuracy of the Lomandra class mapped was calculated
as the proportion of ground referencing photographs collected in-situ
that were identified as Lomandra that were also assigned to the
Lomandra class as the digital map (Congalton and Green, 2008).

2.3. Vegetation mapping approach 2: Visual interpretation and manual
digitisation of plants

The visual interpretation and manual digitisation of vegetation fo-
cussed on the ground cover of Lomandra longifolia tussocks as visible in
the May 2018 orthomosaic. Tussocks of Lomandra were visually iden-
tified, based on the size, shape and colour, digitised from the Big Island
orthomosaic on a screen at a scale of 1:50 and recorded as digital vector

data points. A point shapefile was created to represent Lomandra tus-
socks and assigned spatial referencing information to match that of the
UAV images.

Fully grown Lomandra tussocks were identified (average diameter of
around 1.2m, earthy green colour, circular shape with a central vertex),
as well as juvenile Lomandra tussocks that were large enough to be
interpreted from the aerial image. Where tussocks has clustered to-
gether, individual plant sizes and shapes were estimated based on the
position of each plant centre.

2.3.1. Assessment of visual interpretation and manual digitisation accuracy
Probabilistic methods are an established technique for assessing the

uncertainty of manually digitised vector datasets generated from the

Fig. 4. Aerial mosaics of UAV survey images acquired before (left hand side) and after (right hand side) aerial weed spraying at Big Island. Dots indicate in-situ
photographs taken as ground reference information (training and validation data) to support vegetation map production (black) and validation (red), while red
crosses (July 2018) indicate ground control points (GCPs) collected for evaluating the positional accuracy of the UAV images. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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visual interpretation of images (Hamylton, 2017). Broadly, these
methods use repeated attempts to interpret and digitise the same fea-
tures to estimate the spread, or variability, of the resultant vector data
as a measure of uncertainty.

A probabilistic estimate of uncertainty of the digitization of
Lomandra was evaluated from the statistical distribution of multiple
repeat digitisations of Lomandra plants. To do this, 30 volunteers with
expertise in GIS analysis from the University of Wollongong were asked
to digitise all the Lomandra plants inside a selected weed management
area of Big Island (0.01 km2) over a standardised period of fifteen
minutes. These data were then used to create a frequency histogram of
the results by binning the estimated numbers of Lomandra (ranging
between 0 and 840) and statistical uncertainty metrics were calculated,
including the statistical mean, range, standard deviation, standard
error, 95 % confidence intervals and the root mean squared error
(Barlow, 2018).

2.4. Vegetation mapping approach 3: Application of a CNN machine
learning algorithm

A third approach to the detection of Lomandra tussocks applied a
gradient-based learning algorithm called LeNet to the May 2018 or-
thophotomosaic. This was trained by the ground referencing data col-
lected in the same year (Fig. 4, black dots). The decision was made to
recognise individual tussocks of Lomandra rather than continuous cover
of other vegetation types (e.g. Kikuyu) as the LeNet algorithm is de-
signed for object recognition. Gradient-based approaches to learning
operate by minimising a function between an output pattern (i.e. a
detected feature) and set of adjustable parameters with respect to a
given input (i.e. an image). They use analytical computations to gen-
erate a smooth, continuous function to estimate the discrepancy be-
tween the correct output and that produced by the algorithm (often
termed the ‘loss’) from the gradient of this loss function with respect to
adjustable parameters.

A typical CNN algorithm for feature recognition is made up of a
staged series of convolutions and maxpooling that collectively define
the relationship between the output (detected feature) and the input
(raw image) (see Fig. 5). The detailed architecture of the LeNet CNN
algorithm is described elsewhere by LeCun et al. (1998).

Examples of the features to be detected were centred on the input
field using a series of photographs in which the locations of 1194
Lomandra plants had been labelled. The whole image was partitioned
into 45 tiles (of size 2400 by 1900 pixels), half of which formed a
training set and the remaining half formed an independent test set.

The training set of ‘positive examples’ (i.e. regions where Lomandra
was present) was generated by cropping many small corresponding
regions (sized 64 by 64 pixels) centred on the Lomandra plants. A

training set of negative examples (i.e. regions where Lomandra was not
present was generated by sliding a window of the same size over the
training photographs and identifying windows that did not significantly
overlap with positive examples (i.e. < 1000 pixels overlap) as negative
examples. Thus, overall training datasets of 1194 positive and 174,243
negative examples were created.

The LeNet convolutional network incorporated three design ele-
ments (local receptive fields, shared weights and spatial maxpooling)
that enabled features to be detected at various scales and with potential
image shifts and distortions. Local receptive fields were iteratively as-
sessed via a ‘sliding stride’ function across sub-regions of an entire
image. This identified regions of interest inside a 64×64 pixel window
(i.e. covering 1m on the ground) that was passed at 10-pixel stride
increments across the entire test patch image. In this way, network
neurons extracted elementary features, the locations of which were
collectively recorded on a uniformly weighted feature map. These were
combined in subsequent layers to detect higher-order features and for
each location, the content of the window was categorised as ‘Lomandra’
or ‘not Lomandra’ (see Fig. 5). A complete convolutional layer was
composed of several feature maps (each with different weight vectors
applied) and the network was built up through sequential im-
plementation of feature maps, complete with their connection weights,
followed by an additive bias and a squashing function (LeCun et al.,
1998). Thus, each output feature map was connected to an input feature
map and the term ‘convolution’ corresponded to the mathematical
operation that summed all the individual convolutions of all inputs
through their corresponding filters.

The detection exercise took 600 s to run on an Intel Core i7-3820
central processing unit (3.60 GHz x 8, Memory 31.4GiB). For each ob-
ject (i.e. individual Lomandra tussock), the detection algorithm pre-
dicted the bounding box of each tussock in an image through im-
plenetation of the detection algorithm. Maxpooling was applied to each
feature map layer to downgrade the precision with which the positions
of distinctive features were encoded into feature maps. This reduced the
sensitivity of the output to shifts and distortions of the input by aver-
aging out features locally. Finally, to improve detection accuracy and
remove redundant windows, non-maximum suppression (NMS) was
applied to merge multiple detected windows containing Lomandra that
had significant overlapping.

2.4.1. Assessment of CNN machine learning algorithm accuracy
The accuracy of detection results was assessed by comparing plants

detected by the algorithm with those in the test set, and calculating true
positive rates (TPR), false negative rates (FNR), false positive rates
(FPR) and true negative rates (TNR). The performance of the algorithm
was expressed as a percentage accuracy, calculated as the proportion of
positive detections that were correct (i.e. TPRs). This metric aligned
with the accuracy assessments of the other approaches, while also
avoiding disproportionate influence from the large number of true ne-
gative rates.

2.5. Comparison of the three vegetation mapping approaches

A subset of the May 2018 image which corresponded to a weed
management and planting area of the Big Island Rehabilitation Program
(0.01 km2) was selected for inter-comparison of the three approaches.
In this area, maps made by each of the three approaches were assessed
for accuracy based on the same ground referencing dataset (see Fig. 4,
red dots).

A bootstrapping method was adopted to enable a formal statistical
comparison of producer’s accuracy across the three Lomandra vegeta-
tion mapping approaches. For each mapping approach, the producer’s
accuracy for Lomandra was calculated twenty five times from the 74
validation ground referencing points across the whole island (red dots
on Fig. 4), Each calculation was performed on a subset of the validation
dataset from which 10 random points had been omitted. Producer's

Table 1
Flight and image processing parameters for the UAV surveys of Big Island.

Parameters Big Island

Dates 19 April 2017, 29 July
2017
23 May 2018, 7 July
2018

# Images 281
Area 0.12 km2

Flying altitude 70m
Image frontlap 75 %
Image sidelap 75 %
Number of GCPs 17
Post-processed GPS accuracy (July 2018) 0.32m
Alignment accuracy High
# Tie points 36,817
XY error of GCPs following Photoscan processing

(July 2018)
5.23 cm

Resolution (orthomosaic) 3.0 cm
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accuracy was defined as the proportion of ground referncing photo-
graphs collected in-situ that were identified as Lomandra that were also
mapped as Lomandra using the different mapping approaches. This
iterative approach enabled estimation of a sampling distribution for the
producer’s accuracy metrics for each vegetation mapping approach,
from which standard error could be derived. In turn, the differences
between the mean accuracy metrics as grouped by mapping approach,
could be tested for statistical significance using a one way analysis of
variance (ANOVA) using the statistical package SPSS. Overall, this re-
vealed whether or not there were statistically significant differences
between the accuracy of the three Lomandra mapping approaches.

3. Results

3.1. Vegetation mapping approach 1: Pixel-based image classification

The pixel-based image classifications produced digital vegetation
maps that characterised the full extent of Big Island into five vegetation

classes, with seven ground cover classes in total (including water and
rock platform, which were subsequently clipped from the digital ve-
getation map, Fig. 6). Producer classification accuracies for Lomandra
ranged from 74 % to 85 % for the complete island area.

3.2. Vegetation mapping approach 2: Visual interpretation and manual
digitisation of plants results

The visual interpretation and digitisation took approximately eight
hours in the GIS laboratory. A total of 1351 individual Lomandra tus-
socks were manually digitised across Big Island, falling largely inside
the weed management area in the north western sector of the island
(see Fig. 7a). Of these plants, 56 coincided with ground referencing
images of Lomandra, for which 52 had been visually identified and
recorded as Lomandra, yielding a producer accuracy of 93 %.

The repeat digitisation exercise undertaken by 30 trained digitisers
yielded a wide statistical spread in the estimations of the number of
Lomandra plants inside the weed management area (Fig. 8), ranging

Fig. 5. Process flow diagram illustrating the four-step implementation of the convolutional neural network machine learning algorthm on UAV images to detect
Lomandra plants. The procedure begins with image preparation through subdivision, training of the detection algorithm on a set of pre-dertermined Lomandra plant
images, implementation of the detection algorithm on a test set of images and subsequent classification of detected features into Lomandra plants through a series of
convolutions (Conv), their output layers (Rectified Linear Units, Relu) and subsampling via maxpooling (MaxP).
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from 456 to 754, with a standard deviation of 86 and a standard error of
17.

3.3. Vegetation mapping approach 3: Application of a machine learning
algorithm

Results from the application of detection algorithm are summarised
in Table 2. Of the 1351 Lomandra plants, the algorithm detected 1103
(81 % TPR) as true positive objects while wrongly detecting 427 non-
Lomandra windows as Lomandra (0.05 % FPR) and failing to detect 248

plants (18 % FNR). Fig. 9 illustrates an image employed in the test site,
with the detection results overlaid. The spatial coincidence of the green
and red window locations, which represent the ground truth and suc-
cessfully detected Lomandra locations respectively, illustrates the high
performance of the detection algorithm. Large areas devoid of Lo-
mandra, particularly those associated with low-growing Kikuyu Grass
were correctly classified as negative objects, i.e. not Lomandra plants
(Fig. 9). The detection algorithm also performed with a high success
rate in areas represented by a more diverse array of vegetation types,
such as mosaics of Lomandra plants interspersed with the native

Fig. 6. Pixel-based classifications of the vegetation cover for Big Island, before (left) and after (right) aerial weed sprays undertaken in 2017 and 2018 (see Fig. 4 for
raw image mosaics). Note that the water and rock platform classes have been removed to emphasise the classified vegetation.
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succulent creeper Pig Face (Carpobrotus glaucescens), dead vegetation
and Mirror Bush (Coprosma repens). The falsely positively classified
objects (0.05 % FPR) primarily arose from the confusion of Lomandra
with dead vegetation.

3.4. Comparison of vegetation mapping approaches

The three mapping approaches had comparable accuracies inside
the weed management and planting area. The manual digitisation of
Lomandra plants took eight hours, which was the longest time, while
the automated approaches were faster, taking two hours and two hours
15min for approaches one and three respectively (see Fig. 10).

Producer’s accuracy for mapping Lomandra across the whole island
was very similar to the accuracies estimated for the weed management
and planning area. Analysis of variance in producer’s accuracy across
each of the three approaches for mapping Lomandra, yielded an F-
statistic of 24.38 (p < 0.001). This meant that variation was sig-
nificantly greater than expected between the group averages, sug-
gesting that the accuracy with which Lomandra was mapped was sta-
tistically significantly dependant on the mapping approach employed
(Fig. 11).

4. Discussion

4.1. Evaluation of the vegetation mapping approaches

The pixel-based image classifications accurately summarised vege-
tation cover for the full areal extent of Big Island (across the four sur-
veys, accuracies ranged from 74 to 85 %). This is a surprising finding
given that the spectral capability of the three-band RGB sensor for ve-
getation mapping is limited. The absence of an infra-red band poten-
tially constrains the ability to discern vegetation from other, non-ve-
getative landcovers based on their spectral reflectance. Typically, the
spectral radiances in the red and near infrared wavelength regions of
the electromagnetic spectrum detect photosynthetically active radiation
and have the greatest utility for reliably distinguishing vegetation from
other land cover types. Nevertheless, in this exercise supervised pixel-
based classification algorithms reliably mapped seven classes, five of
which were vegetation (Fig. 6). This suggests that the three-band RGB
aerial photographs were fit for the purpose of distinguishing between
coarse vegetation types.

The map derived by manually digitising Lomandra plants had a
comparable level of accuracy to the image classification, although it
was focussed on only one of the vegetation types depicted in the map
generated through the pixel based classification (i.e. in the first ap-
proach, Lomandra tussocks were represented as a more general com-
ponent of the “native vegetation class”). In the management context of
the broader vegetation rehabilitation program (section 1.2.1), it can be
useful to track the progress of planted native Lomandra tussocks, and to
monitor their ongoing health to answer practical questions, such as
“how many healthy individual tussocks are there on the island, where
are they, and where should be place our planting efforts?” Such focus
comes at the exclusion of other plants. To capture the same level of
complexity as the pixel-based map, which had five vegetation classes,
an equal amount of effort would need to be invested in the visual in-
terpretation and manual digitisation of other types of vegetation, which

would likely take 40 h (i.e. eight hours multiplied by five classes),
across the whole island.

From a starting point of images where Lomandra tussocks were la-
belled with the correct categories, LeNet defined functions that char-
acterised each one, then accurately applied these to unlabelled images.
While multi-layer convolutional networks trained using gradient-based
approaches have a proven ability to learn complex, high-dimensional
non-linear mappings from large collections of examples, this is the first
time they have been successfully applied to detect individual Lomandra
tussocks from mosaicked UAV images across a complete island land-
scape. This is a noteworthy finding because the structure from motion
photogrammetric technique employed to mosaic together individual
UAV images via feature matching introduces distortions into the image,
which may have changed the shape of the Lomandra tussocks within the
background matrix of ground cover (Barlow, 2018). Yet the long, thin
blades of these plants emanating from a single centre point could be
defined by the CNN learner as a distinctly recognisable feature across
collective pixels.

The ability of the CNN learner algorithm to recognise features de-
pends heavily on the user providing an appropriate set of training in-
stances, which has historically been a difficult task in applications such
as street surveillance or medical x-ray images (LeCun et al., 1998).
Because drone images are acquired at a distance that is typically further
from the subject than most photographs (i.e. a flight altitude of 60m),
they typically cover a large ground footprint (in this case, 120 m2) and
therefore include multiple instances of the same feature that can be
utilised in the training process to overcome this challenge.

Two additional key features of UAV image datasets combine to
make them particularly amenable to the application of CNN machine
learning. Firstly, the raster grids are configured at a high enough spatial
resolution to clearly resolve individual plants. Lomandra tussocks are
typically sized around 1m2, which can clearly be distinguished from an
image with a spatial resolution of three cm. Secondly, the raster grid
configuration of UAV images retains important spatial contextual in-
formation. Because the convolutions pass local filters over the input
image space, they exploit the spatial structure present in natural
landscape images. While other machine learning techniques such as
decision trees have been used for mapping invasive grasses in arid
environments (Sandino et al., 2018) and random forest classifiers de-
tected weeds in maize fields (Gao et al., 2018), these machine learning
frameworks are based on inverse deduction. They draw on the spatial
domain of an image to segment pixels based on their neighbourhoods
before employing logical reasoning to classify segments. The learning
frameworks of these machine learning algorithms therefore do not
utilise contextual information or emergent patterns from collective
pixels in the same manner.

A distinctive feature of CNN algorithms is that they have a specia-
lised learning architecture based on the particular task for which they
are designed that draws on local connection patterns between features,
enforcing a local connectivity pattern between neurons of adjacent
feature map layers within the convolutions (LeCun et al., 1998). Thus,
the spatial relationships within and between receptive fields are ex-
plicitly built into the feature extractor in a way that is distinct from
conventional image processing algorithms (e.g. supervised classifica-
tion algorithms).

Several issues adversely affected the accuracy of the detection

Table 2
Summary of detection results via comparison of plants detected by the algorithm and those in the test set, including true positive rates (TPR), false negative rates
(FNR), false positive rates (FPR) and true negative rates (TNR). Shaded boxes indicate correctly detected objects.

Ground truth (test set)

Detection algorithm Positives Negatives
Positives 1103/1351 (TPR=82 %) 427/ 945760 (FPR=0.05 %)
Negatives 248/1351 (FNR=18 %) 945333/945760 (TNR=99.95 %)
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algorithm, which could be further refined for the detection of Lomandra
tussocks. The performance of an object detection model is inherently
linked to the number of representative images, and the extent to which
they are representative of the complete range of scenarios in which the
object appears (e.g. in different weather and lighting conditions)
(Bottou and Vapnik, 1992). There need to be enough data to learn
general patterns and this relatively limited set of positive examples
could limit the efficacy of the classifier in recognising the variable form

of Lomandra tussocks. In this case there was a very high number of
negative training examples compared to the number of positive training
examples i.e., 945,760 vs. 1351. Also, only the centres of the plants
were manually labelled for the training exercise, thus, no information
was incorporated on the individual plant sizes, which were approxi-
mated to be 64×64 pixels (i.e. 1 m2). Detection performance could
likely be improved by building in more information to capture the
complexity of these Lomandra tussocks, employing more advanced CNN

Fig. 7. (A) Lomandra plants (depicted as red dots in each picture) digitised across Big Island in May 2018 (white inset show area depicted in B), (B) Distribution of
Lomandra the weed management and planting area of the Big Island Rehabilitation Program (white inset shows area depicted in C), (C) Lomandra plants at a scale of
1:50. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Frequency histogram of thirty estimates of the abundance of Lomandra plants in the weed management and planting area of Big Island (see Fig. 7 for location).
Inset table: Statistical uncertainty estimates based on thirty repeat digitisations of Lomandra plants inside the weed management and planting area.
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models. Finally, the illumination in the different photographs varied
across the whole island, making some of the plants difficult to detect.
This confounding effect could be mitigated by planning UAV survey
times to coincide with solar zenith, so that shadows and ambient light
variability are minimised (Mather and Koch, 2011).

4.2. Comparison of the vegetation mapping approaches

In terms of accuracy, each of the mapping methods performed
reasonably well, with all accuracies falling between 74 % and 91 % for
the selected weed management and planting area. The comparative
ANOVA exercise indicated a statistically significant difference in the
performance of the three mapping approaches, as estimated via the
producer’s accuracy of the Lomandra maps across the whole island.
Average producer accuracies calculated in the bootstrapping exercise
were comparable to those estimated within the weed management and
planting area, with the three mapping approaches ranking in the same
order, i.e. visual interpretation and manual digisation was found to be
the most accurate approach (approach 2, 89 % average producer’s ac-
curacy), followed by the machine learning CNN algorithm (approach 3,
84 % average producer’s accuracy) with pixel-based image classifica-
tion emerging as the least accurate (approach 1, 79 % average produ-
cer’s accuracy).

Although they had similar levels of user-reliability, as digital ve-
getation maps they represented fundamentally different types of in-
formation, both in terms of data format and the vegetation they

represented. The raster map derived from the image classification
(approach 1) subdivided the entire vegetation community into five
classes, providing a continuous indication of vegetative cover for the
entire land area of the island. The feature maps provided information
on a single type of vegetation (Lomandra), derived from the manual
digitisations and machine learning algorithms (approaches 2 and 3,
respectively). Working with data stored in these two fundamentally
different formats is subject to a range of practical advantages and dis-
advantages (summarised in Table 2.1, pg 35 of Barlow, 2018). Notably,
raster grids provide continuous data over a large geographic area,
which can depict gradients of change well, but they store information
less precisely than feature data and potentially incorporate redundant
information in geographic areas of less management interest. Con-
versely, feature data are more thematically-focussed, highly localised
and typically incorporate less data redundancy, generating smaller file
sizes that are computationally less intensive to process.

Both of the automated mapping approaches (i.e. the pixel based
supervised classification and the LeNet machine learning algorithm
utilised in approaches 1 and 3) were faster to run than the manual
digitisation. The time invested in running them was spent “training” the
algorithm, i.e. calibrating it to run in an automated fashion by training
either a spectral classification or a feature detection algorithm. Once
trained, such algorithms have utility beyond the present mapping ex-
ercise as they can be applied to other images, thereby heightening their
practical value for vegetation management. For example, once the
LeNet feature detection algorithm could reliably recognise Lomandra

Fig. 9. Example test set image with ground-truthed Lomandra plants (green boxes) and plants correctly identified by the detection algorithm (red boxes). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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tussocks on Big Island, it could do so on the remaining islands in the
Five Islands Nature Reserve, or in other coastal environments. If the
rehabilitation program was extended to other coastal islands of New
South Wales, this mapping approach could be applied with ease.

5. Conclusions

All three approaches reliably mapped vegetation in spite of the
comparably limited spectral information available in the Phantom 4
UAV images. In the case of the pixel based supervised image classifi-
cation (approach 1) the cover of five different vegetation classes could

Fig. 10. A. raw UAV image mosaic for the selected weed management and planting area (May 2018), B. Pixel based classified image, C. Manually digitised Lomandra,
D. CNN machine learning results.

Fig. 11. Average producer’s accuracy for mapping Lomandra plants, estimated via bootstrapping for each of the mapping approaches evaluated (twenty five cal-
culations, 74 ground referencing points). Vertical bars indicate standard error.
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reliably be discerned across the full areal extent of Big Island (Kikuyu
Grass, Coastal Morning Glory, Mirror Bush, native vegetation and dead
vegetation). The two maps that identified individual Lomandra tus-
socks, generated either through manual digitisation or automated de-
tection (approaches 2 and 3, respectively) emerged as the most accu-
rate, however, they took longer to produce. The three different mapping
approaches generated fundamentally different digital information in
the form of either a geographically continuous grid depicting a suite of
five different vegetation community components (approach 1) or lo-
calised point datasets identifying the location of individual Lomandra
tussocks (approaches 2 and 3). The fundamentally different nature of
the vegetation maps invites greater consideration of the management
objectives for which the mapping exercise is being undertaken.

The CNN machine learning algorithm established in the production
of the third map emerged as a promising technique for detecting
Lomandra plants as it leveraged information from both the high spatial
resolution and the spatial context of the raster grids of the UAV images,
while also explicitly incorporating spatial relationships within the ar-
chitecture of the learning framework.
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