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Abstract

Admissible subcategories of del Pezzo surfaces

Dmitrii Pirozhkov

Admissible subcategories are building blocks of semiorthogonal decompositions. Many

examples of them are known, but few general properties have been proved, even for

admissible subcategories in the derived categories of coherent sheaves on basic varieties such

as projective spaces. We use a relation between admissible subcategories and anticanonical

divisors to study admissible subcategories of del Pezzo surfaces. We show that any

admissible subcategory of the projective plane has a full exceptional collection, and since all

exceptional objects and collections for the projective plane are known, this provides a

classification result for admissible subcategories. We also show that del Pezzo surfaces of

degree at least three do not contain so-called phantom subcategories. These are the first

examples of varieties of dimension larger than one that have some nontrivial admissible

subcategories, but provably do not contain phantoms.
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Chapter 1: Introduction

The derived category of coherent sheaves on an algebraic variety is a large and complicated

invariant. It contains a lot of information about the variety, and many other invariants may

be extracted out of the derived category. Working with this huge invariant directly is difficult,

and thus an important notion in this field is the notion of a semiorthogonal decomposition.

This is a particular way of decomposing the derived category into smaller pieces. Those

pieces are called admissible subcategories.

We know many examples of semiorthogonal decompositions. For example, a full exceptional

collection is nothing but a semiorthogonal decomposition of a category such that each

component of the decomposition is equivalent to the derived category of vector spaces.

The first example of such a decomposition was given in [Bei78] for projective spaces. Full

exceptional collections are also known for Grassmannians, del Pezzo surfaces, and other

varieties (see, for example, [Kuz14]). Later mutations were introduced in [Gor89; BK90], which

are operations that transform a given semiorthogonal decomposition into other semiorthogonal

decompositions. There are other tools of various complexity to produce new semiorthogonal

decompositions, such as Orlov’s blow-up formula [Orl93] or Kuznetsov’s homological projective

duality [Kuz07]. More methods and examples may be found in [Kuz14].

Despite a large number of examples of semiorthogonal decompositions, we do not have a

good understanding of the structure of an arbitrary semiorthogonal decomposition. Some

things are known, but mostly negative ones. For instance, counterexamples for the Jordan–

Hölder property for semiorthogonal decompositions are given in [BBS14; Kuz13]. Another

somewhat pathological behavior is the existence of so-called phantom subcategories, shown

in [GO13; Böh+15], which are admissible subcategories which behave as zero subcategories

on the level of K-theory. Among the positive constraints on the structure of admissible
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subcategories, perhaps the strongest one is proved in [KO15]: admissible subcategories are

closed under small deformations of objects.

Nevertheless, it is expected that for sufficiently nice varieties, e.g., for projective spaces,

none of the pathologies should occur. For example, it is conjectured in [KP16, Rem. 1.7]

that there are no phantom subcategories in homogeneous spaces. It is surprisingly hard to

check these expectations for any variety which is more complicated than P1. There are open

questions about admissible subcategories which are not known even for P2.

Even the semiorthogonal decompositions of the simplest kind, the ones coming from full

exceptional collections, are quite mysterious. In this case we can push a little bit further

than just P1. The paper [GR87] by Gorodentsev–Rudakov about P2 and further work by

Kuleshov–Orlov [KO94] show that any exceptional object on a del Pezzo surface fits into some

full exceptional collection, and any full exceptional collection can be obtained from a standard

one by a sequence of mutations. However, already for P3 things are more complicated, and

not everything is known. See [Pol11] for some results.

In this paper we study arbitrary admissible subcategories of del Pezzo surfaces over an

algebraically closed field of characteristic zero. We have two major results. The first one

is about projective plane. On P2 we are able to produce a full classification of admissible

subcategories. They all turn out to be of the special kind described above, i.e., they are

generated by exceptional collections:

4.1.1. Theorem. Any admissible subcategory in Db
coh(P2) has a full exceptional collection.

A category with a full exceptional collection is never a phantom subcategory. Thus we

obtain a corollary:

4.1.2. Corollary. There are no phantom subcategories in Db
coh(P2).

To the best of author’s knowledge, this is the first example of a variety of dimension

larger than one which admits some nontrivial semiorthogonal decompositions, but provably

does not contain any phantom subcategories. In Section 5 we produce more examples in
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Corollary 5.3.5, where we show that blow-ups of distinct points on surfaces with globally

generated canonical bundles also do not contain any phantom subcategories.

For more complicated del Pezzo surfaces we do not have a classification statement.

However, our methods are sufficient to show the non-existence of phantoms in del Pezzo

surfaces of degree at least 3, which is our second main result:

6.4.6. Theorem. Let Y be a del Pezzo surface of degree at least 3. Then there are no phantom

subcategories in Db
coh(Y ).

Remark. The reason for the degree restriction is that in the argument we need to construct

many convenient smooth anticanonical divisors. In an ongoing project I apply the results from

the paper [BKl06] to perform a relatively similar argument relying purely on irreducibility

instead of smoothness, and this leads to the non-existence of phantoms in arbitrary del Pezzo

surfaces. This is work in progress. Unfortunately, it appeared too late to be written up as a

part of this thesis, but the methods build directly upon the arguments in Chapter 6.

The main technical tool that allows us to prove these results is a relation between

admissible subcategories and autoequivalences of derived categories of various anticanonical

divisors. It is a generalization to arbitrary admissible subcategories of an observation that a

restriction of an exceptional object to an anticanonical divisor is a so-called spherical object,

and thus defines a certain autoequivalence of the derived category of sheaves on that divisor.

This relation was discovered by Addington [Add16, Prop. 2.1] in 2011, but it seems that the

consequences of this relation for the study of semiorthogonal decompositions have not yet

been fully explored. Addington’s result gives exceptionally strong structural constraint on

the semiorthogonal decomposition of surfaces, which we discuss in Proposition 3.1.3.

The thesis is structured as follows. In Chapter 2 we state and prove miscellaneous lemmas

about derived categories of coherent sheaves and admissible subcategories. Chapter 3 is the

technical core of the paper, describing the constraints that anticanonical divisors put on

admissible subcategories. In Chapter 4 we prove the classification of admissible subcategories
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in the derived category of the projective plane P2. Chapter 5 contains a local classification of

admissible subcategories which are supported on a single (−1)-curve in a surface, and an

application for phantom subcategories in some blow-ups. The classification result is used in

Chapter 6, where we prove that there are no phantom subcategories in del Pezzo surfaces of

degree at least three.
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Chapter 2: Preliminaries

2.1 Conventions and notation

We work over an algebraically closed field k of characteristic zero. All varieties and

triangulated categories in this paper are assumed to be over k. All functors are assumed to

be derived, and a subcategory of a triangulated category is assumed to be a triangulated

subcategory.

For an algebraic variety X we denote by Db
coh(X) the bounded derived category of coherent

sheaves on X. We denote by Perf(X) the triangulated category of perfect complexes on X.

When X is smooth, these two categories coincide.

For an algebraic variety X and an object F ∈ Db
coh(X) we denote by Hi(F ) the i’th

cohomology sheaf of F . We also use the canonical truncation τ≤iF which has the same

cohomology sheaves as F in degrees ≤ i and zero cohomology sheaves in degrees strictly

greater than i. If an object F ∈ Db
coh(X) is represented as a complex of sheaves, τ≤iF can be

represented as a subcomplex. We define τ>iF similarly.

2.2 Exceptional objects and semiorthogonal decompositions

In this subsection we fix the notation and cite several standard results about triangulated

categories, exceptional objects, and semiorthogonal decompositions. These notations, defini-

tions, and results are used throughout the paper. For a more detailed introduction, see, for

example, [BK90].

Until the end of this subsection, we work with an idempotent-complete triangulated

category T .

For any two objects A,B ∈ T we denote by RHom(A,B) the graded vector space
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⊕i∈ZHomT (A,B[i]). The graded components are referred as RiHom(A,B) or Exti(A,B).

Similarly, the symbol REnd(A) denotes RHom(A,A) and its graded components are referred

to as Endi(A). Given any graded vector space V • = ⊕i∈ZV i and an object F ∈ T , the tensor

product V • ⊗ F is an object of T defined to be the direct sum of shifts
⊕

i∈Z F
⊕ dimV i

[−i].

For an arbitrary object F ∈ T we denote by 〈F 〉 the smallest strictly full triangulated

subcategory which contains F and is closed under taking direct summands. We say that an

object F is a classical generator of T if 〈F 〉 = T . For any quasi-compact and quasi-separated

scheme the category of perfect complexes has a classical generator [BB03, Cor. 3.1.2].

2.2.1. Definition. An object E ∈ T is called exceptional if REnd(E) ∼= k[0]. A sequence of

exceptional objects E1, . . . , En is called an exceptional collection if RHom(Ej, Ei) = 0 for any

j > i. An exceptional collection is full if the smallest strictly full triangulated subcategory

containing every Ei is all of T .

2.2.2. Definition. For a full subcategory A ⊂ T we define the left and right orthogonal

subcategories :

⊥A := {F ∈ T | ∀t ∈ A RHom(F, t) = 0},

A⊥ := {F ∈ T | ∀t ∈ A RHom(t, F ) = 0}.

2.2.3. Lemma ([BB03]). If G ∈ A is a classical generator, then F ∈ ⊥A if and only if

RHom(F,G) = 0, and similarly for A⊥.

2.2.4. Definition. A semiorthogonal decomposition of a triangulated category T is a sequence

of strictly full triangulated subcategories A1, . . . ,An of T such that Ai ⊂ A⊥j for any i < j

and the smallest strictly full triangulated subcategory containing every Ai is T . We denote

this using angle brackets, i.e., by writing T = 〈A1, . . . ,An〉.

The key property of semiorthogonal decompositions is that any object of T has a filtration

whose associated graded components belong to the component subcategories Ai ⊂ T . In this
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paper we work mostly with semiorthogonal decompositions into two components, so to avoid

introducing complicated notation, we only state this result for semiorthogonal decompositions

like that.

2.2.5. Definition ([BK90]). Let T = 〈A,B〉 be a semiorthogonal decomposition. For any

object F ∈ T there exists a unique projection triangle in T :

RB(F )→ F → LA(F )→ RB(F )[1] (2.2.5.1)

such that the object RB(F ) lies in B and LA(F ) lies in A. Moreover, the projection triangle is

functorial in F , thus we obtain two functors: the right projection functor RB : T → B which

is a right adjoint functor to the inclusion B ↪→ T , and the left projection functor LA : T → A

which is a left adjoint functor to the inclusion A ↪→ T .

2.2.6. Corollary. Let T = 〈A,B〉 be a semiorthogonal decomposition. Let F ∈ T be any

object. The composition with the projection map RB(F )→ F from Definition 2.2.5 induces

an isomorphism REnd(RB(F ))
∼−→ RHom(RB(F ), F ).

Proof. This follows from the fact that the functor RB is an adjoint functor to the inclusion

functor B ↪→ T . Alternatively, we can deduce the statement from semiorthogonality: an

application of the functor RHom(RB(F ),−) to the triangle (2.2.5.1) results in the triangle

REnd(RB(F ))→ RHom(RB(F ), F )→ RHom(RB(F ), LA(F ))

in the derived category of vector spaces. Since A is semiorthogonal to B, the graded vector

space RHom(RB(F ), LA(F )) vanishes. Therefore the first arrow is an isomorphism.

Exceptional collections may be used to construct many examples of semiorthogonal

decompositions. A common abuse of notation in this context is to write an exceptional

object E as a component in the semiorthogonal decomposition, having in mind the triangulated

subcategory 〈E〉 ⊂ T generated by that object.
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2.2.7. Lemma ([BK90]). Let 〈E1, . . . , En〉 be an exceptional collection in T . Suppose that for

any two objects F,G ∈ T the graded vector space RHomT (F,G) has finite total dimension.

• Let A be the right orthogonal subcategory 〈E1, . . . , En〉⊥. Then the sequence

〈A, E1, . . . , En〉

is a semiorthogonal decomposition of T . If the exceptional collection consists of one

object E ∈ T , then the projection functor RE is given by F 7→ E ⊗ RHomT (E,F ) and

the projection triangle for T = 〈A, E〉 is a cone of the evaluation morphism

E ⊗ RHomT (E,F )
ev−→ F → LE⊥(F ).

• Let A be the left orthogonal subcategory ⊥〈E1, . . . , En〉. Then the sequence

〈E1, . . . , En,A〉

is a semiorthogonal decomposition of T . If the exceptional collection consists of one

object E ∈ T , then the projection functor LE is given by F 7→ RHomT (F,E)∨ ⊗ E and

the projection triangle for T = 〈E,A〉 is a fiber of the coevaluation morphism

R⊥E(F )→ F
coev−−→ RHomT (F,E)∨ ⊗ E.

Remark. The projection triangles for longer exceptional collections may also be written

explicitly, in terms of dual exceptional collections, as in [Kap88]. We omit this since this is

not necessary for our paper.
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2.3 Derived categories of coherent sheaves

We continue with several miscellaneous lemmas, mostly related to homological algebra.

We will use the following definitions throughout the paper.

2.3.1. Definition. Let X be an algebraic variety, and let E ∈ Db
coh(X) be an object. The

(set-theoretic) support supp(E) of the object E is the union ∪i∈Z supp(Hi(E)) of supports of

cohomology sheaves.

2.3.2. Lemma ([Huy06, Ex. 3.30]). Let X be an algebraic variety, and let E ∈ Db
coh(X) be an

object. Then a point p ∈ X lies in supp(E) if and only if RHom(E,Op) 6= 0, where Op is the

skyscraper sheaf at the point p.

2.3.3. Lemma ([Huy06, Lem. 3.9]). Let X be an algebraic variety, and let E ∈ Db
coh(X) be an

object. Suppose that supp(E) is a disjoint union Z1 t Z2 of two closed subsets of X. Then

there exists a unique decomposition E ' E1 ⊕ E2 into a direct sum such that supp(E1) = Z1

and supp(E2) = Z2.

2.3.4. Definition. Let X be an algebraic variety. An object E ∈ Db
coh(X) is called locally free

if all cohomology sheaves of E are locally free. Similarly, it is called a torsion object if all

cohomology sheaves are torsion sheaves.

There are multiple ways to define locally free objects in a derived category. In the following

lemma we show some equivalent characterizations. The lemma is well-known, but we include

the proof due to the lack of a convenient reference.

2.3.5. Definition. The length of a graded vector space V • is the number l(V •) :=
∑

i dimV i.

The length of a complex of vector spaces is the length of its cohomology viewed as a graded

vector space.

2.3.6. Lemma. Let X be a smooth algebraic variety, and let E ∈ Db
coh(X) be an object. The

following are equivalent:

1. E is a locally free object.
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2. For any point x ∈ X there exists a Zariski-neighborhood U ⊂ X containing x such that

the restriction E|U is isomorphic to OU ⊗ V • for some graded vector space V •.

3. The length of the derived fiber of E at each point x ∈ X is the same.

Proof. It is clear that the condition (2) implies both (1) and (3). It is enough to show that

(1) implies (2), and that (3) implies (1).

(1) =⇒ (2): Let U ⊂ X be an affine open neighborhood of x ∈ X such that each

cohomology sheaf of E becomes trivial. Such a neighborhood exists since E has only finitely

many nonzero cohomology sheaves. Then each cohomology sheaf of E|U is a direct sum of

several copies of the structure sheaf OU . Since U is affine, there are no higher Ext’s between

copies of the structure sheaf, and hence the complex E|U is formal, i.e., quasiisomorphic to a

direct sum of its cohomology sheaves.

(3) =⇒ (1): For each point x ∈ X denote by ιx : Speck ↪→ X the inclusion morphism.

For any k ∈ Z the dimension of the k’th derived pullback functor Lkι∗x(E) is an upper

semicontinuous function, so the total length of the object ι∗x(E) is constant if and only

if the dimension of each Lkι
∗
x(E) is constant as a function of x ∈ X. Assume that some

cohomology sheaf Hi(E) is not locally free. Without loss of generality we may assume that

each cohomology sheaf Hj(E) with j > i is locally free. Consider the spectral sequence for

the derived pullback ι∗x [Huy06, (3.10)]:

Ep,q
2 = L−qι

∗
x(Hp(E)), dp,qr : Ep,q

r → Ep−r+1,q+r
r ⇒ Hp+q(ι∗xE).

For any j > i by assumption we know that Lqι∗x(Hj(E)) = 0 for q > 0. This implies that the

cell Ei,0
2 = L0ι

∗
x(Hi(E)) survives to E∞. In particular, Liι∗x(E) ' L0ι

∗
x(Hi(E)) for any point

x ∈ X. Since Hi(E) is not locally free, its (nonderived) rank L0ι
∗
x(Hi(E)) is not a constant

function, but then the dimension of Liι∗x(E) is also not constant, a contradiction.

2.3.7. Lemma. Let X be an algebraic variety, and let F ∈ Db
coh(X) be an object concentrated

in nonpositive cohomology degrees. Then for any coherent sheaf F on X there is a canonical

10



isomorphism

R0Hom(H0(F ),F)
∼−→ R0Hom(F,F).

Proof. Let τ≤−1F denote the canonical truncation of the complex F . There exists a truncation

triangle

τ≤−1F → F → H0(F )→ (τ≤−1F )[1].

The application of the cohomological functor R0Hom(−,F) together with the fact that there

are no negative Ext’s between coherent sheaves finishes the proof of the lemma.

2.3.8. Lemma. Let Y be a variety, and let j : D ↪→ Y be an embedding of a Cartier divisor.

Let F ∈ Perf(Y ) be an object. Then for every i ∈ Z:

1. there exists a short exact sequence

0→ L0j
∗Hi(F )→ Hi(j∗F )→ L1j

∗Hi+1(F )→ 0.

2. supp(Hi(F )) ∩D ⊂ suppHi(j∗F );

3. If Hi(j∗F ) = 0, then the support of Hi(F ) does not intersect D.

Proof. Consider the spectral sequence converging to the cohomology sheaves of the derived

pullback j∗F :

Ep,q
2 = L−qj

∗Hp(F ), dp,qr : Ep,q
r → Ep−r+1,q+r

r =⇒ Hp+q(j∗F ).

Since j : D ↪→ Y is an inclusion of a Cartier divisor, the E2-page of that spectral sequence

has only two rows, and therefore it degenerates at the second page by dimension reasons,

producing a collection of short exact sequences as in the statement. The other two claims in

the statement easily follow from this observation.

The derived categories of coherent sheaves on curves and surfaces have some special
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convenient properties, which makes them easier to deal with than the derived categories

for higher-dimensional varieties. We recall some of the properties in the following several

well-known lemmas, and include the sketches of proofs for completeness.

2.3.9. Lemma. Let C be a smooth curve, and let W ∈ Db
coh(C) be an object.

1. There is a decompositionW '
⊕

i∈ZHi(W )[−i] into a direct sum of shifts of cohomology

sheaves.

2. There is a direct sum decomposition W ' T ⊕ V where T is a torsion object and V is

a locally free object.

Proof. The first claim follows from the fact that the category of coherent sheaves on a smooth

curve has homological dimension one, see, e.g., [Huy06, Cor. 3.15]. Consequently, it is enough

to prove the second claim for coherent sheaves. Let F be a coherent sheaf on C. Denote by

T ⊂ F the torsion subsheaf. Then there is a short exact sequence

0→ T → F → F/T → 0.

The quotient sheaf F/T is torsion-free on a smooth curve, so it is locally free. Then the

space Ext1(F/T , T ) vanishes and the extension splits.

2.3.10. Lemma. Let C be a curve, and let W be a coherent sheaf on C supported at a smooth

point p ∈ C.

1. There is a direct sum decomposition W '
⊕

k

(
OC/mk

)⊕wk , where m is the ideal sheaf

of the point p and {wk} is some set of multiplicities.

2. If W ' OC/mn and W ′ ' OC/mm are two indecomposable torsion coherent sheaves on

C supported at point p, then dim HomC(W,W ′) = dim Ext1
C(W,W ′) = min(m,n).

Proof. A local ring of C at a smooth point p is a discrete valuation ring [Eis95, Prop. 11.1].

In particular it is a principal ideal domain. The classification of finitely generated modules
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over a PID establishes the first claim. If f ∈ m is a generator, then the sheaf OC/mn has a

two-term locally free resolution

0→ OC
fn−→ OC → OC/mn → 0,

which lets us compute Hom and Ext for the second part of the statement.

2.3.11. Lemma. Let S be a smooth surface. A choice of an object M ∈ Db
coh(S) up to an

isomorphism is the same as a choice of the following two pieces of information:

1. a collection of cohomology sheaves F i := Hi(M);

2. a collection of glueing maps ξi ∈ Ext2(F i, F i−1).

Remark. In general, the glueing data for an object in the derived category also includes

additional information related to higher Ext’s, and it is not easy to describe explicitly. On a

smooth surface all Ext’s of degree larger than two between coherent sheaves vanish, and this

gives us a simpler description.

Proof. If M is concentrated in a single cohomological degree, this is clear. Assume that the

claim is proved for complexes concentrated in at most n degrees, and let M be an object

concentrated in exactly n+ 1 different cohomological degrees. Let i be the largest integer

such that Hi(M) 6= 0. Consider the truncation triangle

τ≤i−1M →M → Hi(M)[−i]→ (τ≤i−1M)[1].

The object M is determined up to an isomorphism by its truncation τ≤i−1M and the glueing

map ξ ∈ Ext1(Hi(M)[−i], τ≤i−1M). By induction the lemma holds for the truncation. Thus

it remains to show that Ext1(Hi(M)[−i], τ≤i−1M) ' Ext2(Hi(M),Hi−1(M)).

Consider the truncation triangle for τ≤i−1M :

τ≤i−2M → τ≤i−1M → Hi−1(M)[−i+ 1]→ (τ≤i−2M)[1].

13



An application of the functor Ext•(Hi(M)[−i],−) leads to a long exact sequence of vector

spaces. Since the homological dimension of a smooth surface is two, both vector spaces

Ext1(Hi(M)[−i], τ≤i−2M) and Ext1(Hi(M)[−i], (τ≤i−2M)[1]) vanish by dimension reasons.

Thus the induction step is established.

2.3.12. Lemma. Let S be a smooth surface, and let F be a torsion-free coherent sheaf on S.

Then there exists a unique up to a unique isomorphism short exact sequence

0→ F → E → Q → 0,

where E is locally free, and Q is a torsion sheaf supported on a zero-dimensional subset.

Proof. Any morphism from F to a locally free sheaf factors through the double dual coherent

sheaf F∨∨. On a smooth surface the double dual is locally free [OSS11, Lem. 2.1.1.10].

The morphism F → F∨∨ is an isomorphism on an open set where F is locally free. The

complement to that open set has codimension two [OSS11, Lem. 2.1.1.8], so the quotient is a

zero-dimensional torsion sheaf. Uniqueness follows from the universal property of the double

dual.

2.3.13. Lemma. Let S be a smooth surface, and let F be a torsion-free coherent sheaf on S.

For any divisor j : D ↪→ S the derived restriction j∗F ∈ Db
coh(D) is concentrated only in

degree 0.

Proof. The object j∗j∗F ∈ Db
coh(S) can be represented as a cone of a morphism

F ⊗O(−D)→ F .

Since F is torsion-free, this map is injective, and hence j∗j∗F is concentrated in degree zero.

Since the pushforward j∗ is an exact functor, this implies that j∗(L1j
∗F) = 0. A pushforward

of a nonzero coherent sheaf along the closed embedding is nonzero, so in fact L1j
∗F = 0, as

claimed.
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2.4 Spectral sequences for Ext-groups

In the rest of the paper we often compute Ext’s between objects in the derived category.

In this subsection we describe two useful spectral sequences which aid these computations.

The first one is a spectral sequence which computes the self-Ext’s of an object in the derived

category in terms of the Ext’s between its cohomology sheaves. It is a special case of the

spectral sequence for Ext’s between two objects admitting lifts to a filtered derived category,

constructed in [BBD82, (3.1.3)]. We work with the usual derived category, however any

object has a canonical filtration whose associated graded factors are quasiisomorphic to the

cohomology sheaves. We describe the resulting spectral sequence in this case explicitly for

convenience.

2.4.1. Lemma. Let X be a smooth algebraic variety, and let F ∈ Db
coh(X) be an arbitrary

object. There exists a E1-spectral sequence with

Ep,q
1 =

⊕
i∈Z

Ext2p+q(Hi(F ),Hi−p(F )) dp,qr : Ep,q
r → Ep+r,q−r+1

r

which converges to Extp+q(F, F ). The d1 differential is given by pre- and post-compositions

with glueing maps ξi+1 ∈ Ext2(Hi+1(F ),Hi(F )) and ξi−p ∈ Ext2(Hi−p(F ),Hi−p−1(F )).

Proof. Since F is a bounded complex and smooth varieties have finite homological dimension,

it is possible to find an injective resolution for F which is a bounded complex equipped

with a decreasing filtration whose associated graded factors are injective resolutions for the

cohomology sheaves Hi(F ) such that the filtration in each degree is split. The resolution with

this filtration represents an object in the filtered derived category. The spectral sequence in

[BBD82, (3.1.3.4)] computing Ext(F, F ) in the usual derived category is the spectral sequence

claimed in the statement.

2.4.2. Corollary. Let S be a smooth surface, and let F ∈ Db
coh(S) be an object in the derived

15



category. Then

dim Ext1(F, F ) ≥
∑
i∈Z

dim Ext1(Hi(F ),Hi(F )).

Proof. Consider the spectral sequence from Lemma 2.4.1. Note that

E0,1
1 =

⊕
i∈Z

Ext1(Hi(F ),Hi(F )).

On a smooth variety of dimension n the spectral sequence degenerates at En for dimension

reasons, thus on a surface the only nonzero differential is d1. Consider the cell E0,1
1 and the

d1-differentials starting and ending on that cell:

⊕
i∈Z

Ext−1(Hi(F ),Hi+1(F ))
d1−→

⊕
i∈Z

Ext1(Hi(F ),Hi(F ))
d1−→
⊕
i∈Z

Ext3(Hi(F ),Hi−1(F )).

On a smooth surface both Ext−1 and Ext3 between coherent sheaves are always zero, thus

the vector space in E1,0
1 survives to E∞ and is a subquotient of Ext1(F, F ). This implies the

inequality for dimensions of those vector spaces.

Another useful spectral sequence is the following one. It lets us compute Ext’s between

cones of maps in Db
coh(X). An important class of cones to keep in mind is the ones coming

from short exact sequences of coherent sheaves on X.

2.4.3. Lemma. Let X be a smooth algebraic variety. Suppose that there are two distinguished

triangles in Db
coh(X):

A1 → B1 → C1 → A1[1] A2 → B2 → C2 → A2[1].
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There exists a E1-spectral sequence which degenerates at E3 and converges to Ext∗(C1, C2):

Ep,q
1 =



Extq(B1, A2), p = −1;

Extq(A1, A2)⊕ Extq(B1, B2), p = 0;

Extq(A1, B2), p = 1;

0, otherwise.

with differential dp,qr : Ep,q
r → Ep+r,q−r+1

r . The differential d1 is given by compositions with the

morphisms A1 → B1 and A2 → B2.

The key observation is that both C1 and C2 lift to objects in the filtered derived category.

There are various notions of a filtration on an object in the triangulated category Db
coh(X),

and most of them do not allow lifting the object to the filtered category, but the two-step

filtrations arising from the distinguished triangles are always sufficient.

Proof. Choose injective resolutions for A1 and B1. Then the morphism A1 → B1 in the

derived category may be represented as an actual map of complexes. The cone of this map of

complexes is a complex representing the object C1 ∈ Db
coh(X). This cone is equipped with a

filtration whose associated graded components are quasiisomorphic to A1 and B1 respectively.

A similar procedure applied to C2 lets us conclude by invoking [BBD82, (3.1.3.4)] again.

We may use the spectral sequences from Lemmas 2.4.1 and 2.4.3 to obtain the following

property of objects on smooth surfaces.

2.4.4. Lemma. Let S be a smooth surface, and let p ∈ S be a point. Assume that F ∈ Db
coh(S) is

an object which is locally free away from p, but not locally free at p. Then dim Ext1(F, F ) ≥ 2.

Remark. For some surfaces such as P2 there is a geometric argument for this inequality.

Consider a two-dimensional family of automorphisms of P2 which moves the point p around.

The pullbacks of F with respect to that family form a deformation of F over a two-dimensional

base. It may be checked that, in characteristic zero, the first-order deformation along any
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direction of the two-dimensional base is nontrivial, and therefore dim Ext1(F, F ) ≥ 2.

Proof. If F is not locally free at p, by definition this means that at least one cohomology

sheaf of F is not locally free at p. By Corollary 2.4.2 it is enough to prove the inequality for

the dimension of self-Ext1 of that cohomology sheaf. So suppose that F is a coherent sheaf

which is not locally free at p, but locally free on the complement S \ {p}. The inequality for

coherent sheaves is related to the inequalities in [Muk87, Cor. 2.11 and 2.12], but we include

a direct proof for completeness. We consider several cases to prove the inequality.

Suppose first that F is a torsion sheaf supported at p. Then the Euler characteristic

χ(F ,F) is zero since it stays constant in flat families and the sheaf F may be deformed by

moving the point p in a flat family. Since we are on a smooth surface we may use Serre

duality to find the following expression for Euler characteristic. Note that the canonical

bundle is trivial in a neighborhood of the point p, so:

χ(F ,F) = 2 · dim Hom(F ,F)− dim Ext1(F ,F).

The sheaf F is nonzero, so dim Hom(F ,F) ≥ 1. Therefore dim Ext1(F ,F) ≥ 2.

Suppose now that F is a torsion-free sheaf which is not locally free at p. Then by

Lemma 2.3.12 there exists a short exact sequence

0→ F → E → Q → 0,

where E is locally free and Q is a nonzero torsion sheaf supported at the point p. Consider

the spectral sequence from Lemma 2.4.3 which computes Ext∗(F ,F) in terms of that short

exact sequence. The E1 page contains the following fragment:

Ext1(Q, E)
d1−→ Ext1(Q,Q)⊕ Ext1(E , E)

d1−→ Ext1(E ,Q).

Since E is locally free and Q is supported on a zero-dimensional set, it is easy to see that
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Ext•(E ,Q) is concentrated only in degree zero and Ext•(Q, E) is concentrated only in degree

two. Thus the vector space in E0,1
1 -cell, which contains Ext1(Q,Q) as a subspace, survives to

E2. By dimension reasons there are no nonzero differentials on the E2 page which start or

end at E0,1
2 . Hence

dim Ext1(F ,F) ≥ dim Ext1(Q,Q).

From the previous case we considered we know that the right hand side is at least two, which

confirms the claim for torsion-free sheaves.

It remains to consider the case where F has a nonzero torsion subsheaf with a nonzero

torsion-free quotient:

0→ T → F → G → 0.

Consider again the spectral sequence from Lemma 2.4.3 which computes Ext•(F ,F). The

E1-page contains the following fragment:

Hom(T ,G)
d1−→ Ext1(T , T )⊕ Ext1(G,G)

d1−→ Ext2(G, T ).

Since G is torsion-free, Hom(T ,G) = 0. Using the embedding from Lemma 2.3.12 it is easy

to see that Ext2(G, T ) is also zero. Thus the E0,1
1 -cell survives to E2, and similarly to the

previous case purely by dimension reasons it survives to E∞. Therefore the lemma is proved

for all coherent sheaves, and hence for all objects in the derived category as well.

2.5 Admissible subcategories and their properties

We begin with several general observations about admissible subcategories and also

consider their consequences for admissible subcategories of projective spaces, especially P2.

2.5.1. Definition. Let X be an algebraic variety. A strictly full triangulated subcategory

A ⊂ Db
coh(X) is an admissible subcategory if the inclusion functor admits both left and right

adjoint functors. We denote the left adjoint by LA and the right adjoint by RA.
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For smooth and proper varieties an admissible subcategory is essentially the same thing as

a semiorthogonal decomposition with two components, and the choice of notation for adjoints

is compatible with Definition 2.2.5. More precisely, we have the following statement.

2.5.2. Lemma ([BK90]). Let X be a smooth and proper algebraic variety. If Db
coh(X) = 〈A,B〉

is a semiorthogonal decomposition, then both A and B are admissible subcategories of Db
coh(X).

Conversely, if A ⊂ Db
coh(X) is an admissible subcategory, then both 〈A⊥,A〉 and 〈A, ⊥A〉 are

semiorthogonal decompositions of Db
coh(X).

The main property of admissible subcategories in the geometric situation is the fact that

they are closed under small deformations of objects in the following sense:

2.5.3. Proposition ([KO15, Cor. 3.12]). Let X be a smooth proper algebraic variety. Let

A ⊂ Db
coh(X) be an admissible subcategory. For any smooth variety Y with a chosen point

y ∈ Y , and any object R ∈ Db
coh(X × Y ) such that the derived restriction R|X×{y} ∈ Db

coh(X)

is in A, there exists a Zariski open neighborhood U ⊂ Y of the point y such that R|X×{u} ∈ A

for any u ∈ U . Moreover, A is invariant under the action of the connected automorphism

group Auto(X).

In general, it is very difficult to control even the basic behavior of admissible subcategories.

For example, the following question is still open:

2.5.4. Conjecture ([Kuz09]). Let X be a smooth projective variety. If

A1 ⊂ A2 ⊂ . . . ⊂ Db
coh(X)

is an infinite increasing chain of admissible subcategories, then it stabilizes at some finite

step.

Several results of this paper are related to phantom subcategories:

2.5.5. Definition. Let X be a smooth and proper variety, and let A ⊂ Db
coh(X) be an

admissible subcategory. It is called a phantom subcategory if K0(A) = 0 and A 6= 0.
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It is not easy to construct examples of phantom subcategories. It is expected that they

do not exist for nice varieties, such as homogeneous spaces [KP16, Rem. 1.7] or varieties

admitting a full exceptional collection [Kuz14, Conj. 1.10]. In this paper we confirm this

expectation for del Pezzo surfaces of degree at least three.

The invariance of admissible subcategories under the connected automorphism group,

shown in Proposition 2.5.3, has several important implications.

2.5.6. Lemma. Let X be a smooth proper variety. Let A ⊂ Db
coh(X) be an admissible subcate-

gory, and let F ∈ Db
coh(X) be an object. Consider the projection triangle as in Definition 2.2.5:

B → F → A

with A ∼= LA(F ) ∈ A and B ∈ ⊥A. If F is invariant under the action of some subgroup

G ⊂ Auto(X), then both A and B are also invariant under the action of G.

Proof. Pick an automorphism g ∈ G. By Proposition 2.5.3 the pullbacks g∗A and g∗B lie

in the subcategories A and ⊥A respectively. Thus the pullback of the projection triangle is

another decomposition of F ' g∗F into components from A and ⊥A. Such a decomposition

is unique, thus g∗A ' A and g∗B ' B.

2.5.7. Corollary. Every admissible subcategory of Db
coh(Pn) has a PGL(n + 1)-invariant

classical generator.

Proof. The categoryDb
coh(Pn) has a PGL(n+1)-invariant classical generator G =

⊕
0≤i≤nO(i).

Let LA be the projection functor to A as in Definition 2.2.5. Then LA(G) is a classical

generator of A which is PGL(n+ 1)-invariant by Lemma 2.5.6.

2.5.8. Lemma. Let X be a smooth variety. Let A ⊂ Db
coh(X) be an admissible subcategory,

and let A ∈ A be an object. Let Op be a skyscraper sheaf at some point p ∈ X. If there exists

a morphism Op → A[a] for some shift a ∈ Z which induces a nonzero map on the zeroth
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cohomology sheaves, then any object of the subcategory ⊥A is set-theoretically supported on

the complement to the point X \ {p}.

Proof. Let B ∈ ⊥A be any object. Suppose that at least one of its cohomology sheaves is

not zero at p. Without loss of generality we may assume that the support of H0(B) contains

p, while the supports of Hi(B) for i > 0 do not. It is easy to check that

R0Hom(B,Op) ∼= R0Hom(H0(B),Op) 6= 0.

Pick any nonzero map f : B → Op. Then the composition B → Op → A[a] induces a nonzero

map on the zeroth cohomology sheaves, but this contradicts semiorthogonality. Therefore

any object in ⊥A is supported away from p.

2.5.9. Corollary. Let X be a smooth algebraic variety such that the connected automorphism

group Auto(X) acts transitively on X. Let A ⊂ Db
coh(X) be an admissible subcategory, and

let A ∈ A be an object. If there exists a morphism Op → A[a] from a skyscraper sheaf at

some point p ∈ X to a shift of A which induces a nonzero map on the zeroth cohomology

sheaves, then A = Db
coh(X).

Proof. By Lemma 2.5.8 any object of the orthogonal subcategory ⊥A is not supported at p.

For any element g ∈ Auto(X), the pullback g∗(Op → A[a]) lets us conclude similarly that

any object of ⊥A is not supported anywhere along the orbit of p under Auto(X). Therefore

⊥A = 0 and A = Db
coh(X).

2.6 Projections of skyscraper sheaves

To study admissible subcategories, in this paper we often consider the projections of

skyscraper sheaves into them. The following several lemmas prove some important properties

of the projections of skyscrapers.
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2.6.1. Lemma. Let Db
coh(Pn) = 〈A,B〉 be a semiorthogonal decomposition. Consider a projec-

tion triangle for a skyscraper sheaf Op at some point p ∈ Pn:

B → Op → A→ B[1].

If B 6= 0, then the morphism H0(B)→ Op is surjective.

Proof. If the map H0(B) → Op is not surjective, then it is zero, and by the long exact

sequence of cohomology this would imply that Op → A induces a nonzero map on H0. The

result follows from Corollary 2.5.9.

2.6.2. Lemma. Let Db
coh(Pn) = 〈A,B〉 be a semiorthogonal decomposition. Consider a decom-

position of a skyscraper sheaf at a point p ∈ Pn into the components:

B → Op → A→ B[1].

1. If n > 1, at least one of A and B is not a locally free object at the point p.

2. Both A and B are invariant under the action of Stab(p) ⊂ PGL(n+ 1).

3. If B is set-theoretically supported at the point p, then A = 0 and B = Db
coh(Pn).

Proof. If B = 0, all properties are clear. So we assume that B is a nonzero admissible

subcategory.

(1): consider the fragment of the long exact sequence of cohomology sheaves associated

to the projection triangle:

0→ H−1(A)→ H0(B)→ Op → H0(A).

Since B 6= 0, by Corollary 2.5.9 we see that the morphism Op → H0(A) vanishes. Then the
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fragment above produces a short exact sequence

0→ H−1(A)→ H0(B)→ Op → 0.

If both H−1(A) and H0(B) are locally free at p, this produces a locally free resolution of Op

of length one, which is impossible by homological dimension reasons if the dimension n is

greater than one. Thus at least one of those two cohomology sheaves is not locally free.

(2) is an immediate consequence of Lemma 2.5.6.

(3) If B is supported at p, then there is a nonzero morphism from a skyscraper sheaf Op

to the leftmost cohomology sheaf of B. By Corollary 2.5.9 this is equivalent to B = Db
coh(Pn)

and hence A = 0.

2.7 Fourier–Mukai transforms

We recall some material about Fourier–Mukai transforms. For a more detailed exposition,

see, for example, the book [Huy06, Ch. 5].

2.7.1. Definition. Let X and Y be two smooth and proper varieties. Let πX , πY be the

projection maps from X × Y to X and Y respectively. Let K ∈ Db
coh(X × Y ) be any object.

Then the Fourier–Mukai transform with kernel K is the functor ΦK : Db
coh(X) → Db

coh(Y )

given by the formula ΦK(−) := πY ∗(π
∗
X(−)⊗K).

Most natural functors between derived categories of sheaves are Fourier–Mukai transforms.

The identity functor on Db
coh(X) is given by a Fourier–Mukai transform with respect to the

structure sheaf of the diagonal O∆X
∈ Db

coh(X ×X). See [Huy06, Ex. 5.4] for many other

examples.

2.7.2. Proposition ([Huy06, Prop. 5.9]). Let X and Y be smooth and proper varieties. For any

object K ∈ Db
coh(X × Y ) the functor ΦK has both left and right adjoint functors, and they are

also Fourier–Mukai transforms.
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2.7.3. Proposition ([Kuz11, Th. 7.1]). Let X be a smooth and proper variety, and let Db
coh(X) =

〈A,B〉 be a semiorthogonal decomposition. Then the projection functors RB and LA from

Definition 2.2.5 are Fourier–Mukai transforms. The kernels of those functors, which we also

denote by RB and LA, fit into a distinguished triangle

RB → O∆X
→ LA

of objects in Db
coh(X ×X).

2.7.4. Lemma. Let X be a smooth variety, and let f : Y → X be a proper morphism. Let

Db
coh(X) = 〈A,B〉 be a semiorthogonal decomposition, with the right projection functor defined

by the Fourier–Mukai kernel RB ∈ Db
coh(X ×X). Then the Fourier–Mukai transform along

the object (f, f)∗RB ∈ Db
coh(Y × Y ) is the functor f ∗ ◦RB ◦ f∗ : Db

coh(Y )→ Db
coh(Y ).

Proof. Consider the commutative diagram:

Y × Y

Y ×X X ×X X × Y

Y X X Y

π1 π1 π2 π2

All three commutative squares in this diagram are Cartesian and are easily seen to be

Tor-independent ([Stacks, Tag 08IA]). The claimed formula follows by diagram chasing using

the projection formula and the base change theorem for Tor-independent squares (see, for

example, [Stacks, Tag 08IB]).
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2.8 Serre functors

Given a morphism f : M → N in some category T and another object L ∈ T , we can use

composition with f on either side to get two morphisms:

Hom(L,M)
f◦−−−→ Hom(L,N), Hom(N,L)

−◦f−−→ Hom(M,L).

Those two morphisms are quite different. Using Serre duality we may find a different, but

similar, pair of morphisms, also given by pre-composition and post-composition with f , which

are closely related to each other.

2.8.1. Definition ([BK90, §3]). Let T be a triangulated category with finite-dimensional Hom’s.

An endofunctor S : T → T is called a Serre functor if for each M,N ∈ T we are given an

isomorphism

RHom(M,N)
∼−→ RHom(N,S(M))∨ (2.8.1.1)

which is functorial in both arguments.

The naturality of the morphism (2.8.1.1) lets us give another description of the duality.

Since RHom(M,S(M))∨ ' REnd(M), there is a canonical functional trM on RHom(M,S(M)),

corresponding to the identity map on M . Given any object N , the pairing in (2.8.1.1) is the

trace of the composition:

RHom(M,N)⊗ RHom(N,S(M))
−◦−−−→ RHom(M,S(M))

trM−−→ k (2.8.1.2)

We will need the following well-known lemma for which we could not find a reference.

2.8.2. Lemma. Let T be a triangulated category admitting a Serre functor S. Let f : M → N

be a morphism in T , and let L ∈ T be an object. Consider the following diagram, where the

vertical maps are isomorphisms given by Serre duality (2.8.1.1):
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RHom(L,M) RHom(L,N)

RHom(M,S(L))∨ RHom(N,S(L))∨

f◦−

∼∼ (2.8.2.1)

The composition defines a map RHom(M,S(L))∨ → RHom(N,S(L))∨. By dualizing it

corresponds to a unique morphism RHom(N,S(L))→ RHom(M,S(L)). Then this map, up

to a sign, is given by the composition (− ◦ f) with the morphism f : M → N .

Proof. We will ignore the sign changes induced by shifts of complexes since we are only

interested in the answer up to a sign. Let ϕ ∈ Exti(L,M) be a class in RHom(L,M). Using

the description (2.8.1.2) of Serre duality, we see that the image of ϕ in the graded vector

space RHom(N,S(L))∨ is a functional defined as follows:

g ∈ Extj(N,S(L)) 7→ trL

(
L

ϕ−→M [i]
f [i]−−→ N [i]

g[i]−→ S(L)[i+ j]
)
.

Similarly, the image of ϕ in the graded vector space RHom(M,S(L))∨ is a functional defined

as follows:

h ∈ Extj(M,S(L)) 7→ trL

(
L

ϕ−→M [i]
h[i]−−→ S(L)[i+ j]

)
.

It is clear from those formulas that setting the bottom horizontal map in the diagram (2.8.2.1)

to be a pre-composition with f : M → N makes the diagram commute when evaluated on

any element ϕ ∈ Ext•(L,M). Since the vertical arrows are isomorphisms of graded vector

spaces, this implies the statement of the lemma.
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Chapter 3: Semiorthogonal decompositions and anticanonical

divisors

Many standard examples of semiorthogonal decompositions arise from exceptional objects.

Restriction to an anticanonical divisor is an important tool for studying exceptional objects.

It has been used, for example, in [Zub90], to prove the stability of exceptional vector bundles

on P3. Given an arbitrary semiorthogonal decomposition which does not arise from an

exceptional collection, it is more difficult to apply this approach. It is not even clear what

exactly should we restrict to the divisor. In this section we collect several statements that

allow us to use anticanonical divisors to study admissible subcategories. More precisely, we

show in Theorem 3.1.1 that a choice of an admissible subcategory induces an autoequivalence

of the derived category of sheaves on an anticanonical divisor. This statement and its

consequences form the technical core of the paper. The strongest results are obtained in the

surface case, where an anticanonical divisor is a curve.

Almost all results in this section follow from a theorem by Nicolas Addington [Add16,

Prop. 2.1] about the relation between so-called spherical functors and admissible subcategories.

This particular statement and the whole idea that spherical functors are useful for questions

about admissible subcategories became known to the author of this thesis only in the very

late stages of preparing the manuscript. Originally, this section contained a direct proof of

Proposition 3.1.3, which later was replaced by a direct proof of more general Theorem 3.1.1.

Only after this proof had been mostly written up did the author discover Addington’s work.

In this section we state Theorem 3.1.1, explain briefly why it follows from Addington’s

result, and show how to deduce Proposition 3.1.3, which is a key statement for the rest of this

paper. After this, we have included a direct proof of Theorem 3.1.1 which does not rely on
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the notion of a spherical functor. Some lemmas in this proof may be of independent interest.

3.1 Admissible subcategories and autoequivalences

The following theorem is essentially due to Addington.

3.1.1. Theorem ([Add16]). Let X be a smooth proper variety. Let B ⊂ Db
coh(X) be an admissible

subcategory, and let RB ∈ Db
coh(X ×X) be a Fourier–Mukai kernel for the right projection

functor to B, equipped with the morphism ϕB : RB → O∆X
as in Proposition 2.7.3.

Let j : D ↪→ X be an inclusion morphism of a smooth anticanonical divisor. Consider the

composition of the restricted morphism ϕB|D×D : RB|D×D → O∆X
|D×D with the tautological

map O∆X
|D×D → O∆D

. Take the cone of this composition to obtain a distinguished triangle

in Db
coh(D ×D):

RB|D×D → O∆D
→ T. (3.1.1.1)

Then the Fourier–Mukai transform with respect to the object T ∈ Db
coh(D ×D) is an auto-

equivalence of Db
coh(D).

To deduce this from Addington’s paper, we need to recall a notion of a spherical functor.

Roughtly speaking, a functor F : T1 → T2 between two triangulated categories which admits

a left adjoint L and a right adjoint R is called spherical if the endofunctors obtained as cones

of the unit natural transformations IdT1 ⇒ R◦F and IdT2 ⇒ F ◦L are both autoequivalences,

of T1 and T2, respectively. Of course, this definition only makes in settings where taking

a cone of a natural transformation is a meaningful operation. This is not really possible

in the realm of triangulated subcategories, and we need either dg-enhancements or stable

(∞, 1)-categories to make this into a rigorous definition ([AL17]; however, see [Kuz19, Def. 2.8]

for an alternative approach). There exist several other equivalent definitions.

Proof of Theorem 3.1.1. It is a standard fact that the restriction j∗ : Db
coh(X)→ Db

coh(D) to

any divisor is a spherical functor (see, e.g., [Add16, 2.2 (4)]). In our case D is an anticanonical

divisor, in particular its canonical bundle is trivial, and hence its Serre functor is just a shift.
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Then [Add16, Prop. 2.1] implies that the composition B ↪→ Db
coh(X) → Db

coh(D) is also a

spherical functor. Compare [Add16, 2.2 (4′)]. Spherical functors are associated with many

endofunctors, and one may check that a so-called spherical twist in this context is exactly

a Fourier–Mukai transform along the object T ∈ Db
coh(D ×D). Spherical twists are always

autoequivalences [Add16, Th. 2.3].

3.1.2. Corollary. In the notation of Theorem 3.1.1, for any object F ∈ Db
coh(D) there exists

a distinguished triangle j∗RB(j∗F )→ F → T (F ).

Proof. The only thing to check is that the Fourier–Mukai transform of an object F with

respect to the kernel RB|D×D is isomorphic to j∗RB(j∗F ), but this is true by Lemma 2.7.4.

When the ambient variety is a surface, we can deduce from Theorem 3.1.1 a strong

structural result that lets us control the behavior of arbitrary admissible subcategories. This

is used to classify admissible subcategories of P2 in Theorem 4.1.1 and show the non-existence

of phantom subcategories for del Pezzo surfaces of degree at least three in Theorem 6.4.6.

3.1.3. Proposition. Let S be a smooth proper surface, let j : E ↪→ S be an anticanonical

divisor, and let p ∈ E be a smooth point of E. Let B ⊂ Db
coh(S) be an admissible subcategory.

Denote by B := RB(Op) the (right) projection of a skyscraper sheaf Op to the subcategory B.

If supp(j∗B) ⊂ E is a nonempty zero-dimensional subset and each point of this subset is

a smooth point of E, then j∗B ∈ Db
coh(E) is isomorphic to one of the following options:

1. j∗B ' Op[0]⊕Oq[a] for a smooth point q ∈ E which may coincide with p, and a ∈ Z;

2. j∗B ' O2p[0], where O2p ∈ Coh(E) is a quotient of OE by the square of the maximal

ideal of the point p ∈ E;

If E is a connected smooth curve and supp(j∗B) = E, then j∗B ∈ Db
coh(E) is isomorphic

to one of the following options:

3. j∗B ' Op[0]⊕M [b] for some simple vector bundle M on E.
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4. j∗B ' M̃ [0], where M̃ is a vector bundle on E which fits into a short exact sequence

0→M → M̃ → Op → 0

where M is a simple vector bundle on E.

In any case, the support supp(j∗B) has at most two connected components.

Proof. The object B is by definition isomorphic to RB(j∗Op). By Corollary 3.1.2 the derived

pullback j∗B ∈ Db
coh(E) fits into a triangle

j∗B → Op → C → j∗B[1] (3.1.3.1)

where C := T (Op) ∈ Db
coh(E) is some object. By Theorem 3.1.1 the functor T is an

autoequivalence, thus

REndE(C) ' REndE(Op) ' k[0]⊕ k[−1].

In particular, C is a simple object, i.e., its endomorphisms of degree zero are spanned by the

identity map. Note that simple objects are automatically indecomposable, and on curves

many objects split into direct sums via Lemmas 2.3.9 and 2.3.10. Using those lemmas, we

may essentially classify all possible options for C, and hence for j∗B, as follows.

Observe first that by Lemma 2.3.3 the support of the indecomposable object C is connected.

Thus the triangle (3.1.3.1) implies that supp(j∗B) has at most two connected components.

This confirms the last claim of the statement.

Assume that supp(j∗B) ⊂ E is zero-dimensional, nonempty, and consists of smooth points

of E. Then the same holds for supp(C) ⊂ E. In particular, C is supported on a smooth part

of the curve E. Then we may apply Lemma 2.3.9 to see that C is a torsion coherent sheaf

shifted to some degree, and by Lemma 2.3.10 any such simple C is necessarily isomorphic to

a shift Oq[a] of a skyscraper sheaf at some point q ∈ E.
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If q is not the same point as p, then the map Op → Oq[a] from (3.1.3.1) is necessarily

zero, and hence j∗B ' Op[0]⊕Oq[a− 1]. If q = p and the map Op → Op[a] from (3.1.3.1) is

nonzero, there are two cases. Either a = 0 and the map is an isomorphism, but then the cone

j∗B is zero, which contradicts the assumption that supp(j∗B) is nonempty. Or a = 1 and the

map is a nonzero element of Ext1
E(Op,Op) ' k, in which case the object j∗B is isomorphic

to the unique nontrivial extension of a skyscraper sheaf by itself, i.e., j∗B ' O2p[0].

Assume now that we are in the second situation, i.e., the curve E is smooth and j∗B is

not a torsion object. Then the triangle (3.1.3.1) shows that C is also not a torsion object.

By Lemma 2.3.9 we see that any simple object C on a smooth curve which is not a torsion

object is a shift of a simple vector bundle, C 'M [a] for some a ∈ Z.

If the morphism Op → M [a] in (3.1.3.1) is zero, then j∗B ' Op[0] ⊕M [a − 1]. On a

smooth curve ExtaE(Op,M) is nontrivial only when a = 1, so any nonzero map in (3.1.3.1)

arises from some short exact sequence

0→M → M̃ → Op → 0,

and for those maps in Ext1
E(Op,M) we have an isomorphism j∗B ' M̃ [0] in (3.1.3.1). Thus

the list of possible isomorphism classes of j∗B in the statement is exhaustive.

The description of j∗B in the proposition above implies an interesting property for

restrictions of the object B to arbitrary anticanonical divisors. Suppose that we are in a

situation where j∗B is isomorphic to a direct sum of two skyscraper sheaves. Consider a

different anticanonical divisor, j′ : E ′ ↪→ S, which does not necessarily pass through the

point p ∈ S. If E ′ is in some sense "close" to the divisor E, it is reasonable to expect

that j′∗B is also a torsion object, and by semicontinuity it should not be significantly more

complicated than two skyscrapers. This imprecise intuitive picture may be improved to a

rigorous statement. We state it as Lemma 3.4.1 and prove it later in this section, since the

proof uses a technical lemma from our direct approach to Theorem 3.1.1.
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3.2 Admissible subcategories and pushforwards

In the previous section we have given a short proof of Theorem 3.1.1 based on the

properties of spherical functors. The rest of this chapter is an alternative, more direct proof

of this theorem. We start with an observation about admissible subcategories and objects

pushed forward along some map.

Let X be an algebraic variety and let B ⊂ Db
coh(X) be an admissible subcategory. Suppose

E ∈ Db
coh(X) is an object supported on a closed subvariety Z ⊂ X. Does the projection of E

to B know anything about Z? At the first glance, there is no relation. Certainly the support

of the projection does not have to be Z. However, when E is not just supported on Z, but

happens to be a pushforward from Db
coh(Z), there is a nontrivial relationship. In this section

we explain it in Lemma 3.2.4.

3.2.1. Setting. We fix a smooth proper variety X and a proper morphism f : Y → X of

varieties. Let I be the (shift of the) cone of the natural map OX → f∗OY :

I → OX → f∗OY → I[1].

We also fix a semiorthogonal decomposition Db
coh(X) = 〈A,B〉. Recall that for any object

E ∈ Db
coh(X) there exists a projection triangle as in Definition 2.2.5:

RB(E)→ E → LA(E).

We use the symbols RB and LA also for the Fourier–Mukai kernels of the projection functors,

as in Proposition 2.7.3.

3.2.2. Setting. In some lemmas we are interested only in the case where the map f : Y → X

from Setting 3.2.1 is an embedding of an anticanonical divisor of X, and in this case we use

the notation j : D ↪→ X instead.
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When the map f : Y → X from Setting 3.2.1 is a closed embedding, the object I is just

the ideal sheaf. Objects pushed forward from Y have the property that they are annihilated

by the ideal sheaf. When f is an arbitrary morphism, a similar property holds.

3.2.3. Lemma. Let f : Y → X and I ∈ Db
coh(X) be as in Setting 3.2.1. Let F ∈ Db

coh(Y ) be an

arbitrary object. Then the morphism

f∗F ⊗ (I → OX) : f∗F ⊗ I → f∗F (3.2.3.1)

in the category Db
coh(X) is a zero map.

Proof. The morphism (3.2.3.1) may be extended to a distinguished triangle:

f∗F ⊗ I → f∗F → f∗F ⊗ f∗OY .

It is enough to prove that the map f∗F → f∗F⊗f∗OY is a split monomorphism. We construct

the splitting explicitly. Consider the commutative diagram:

f∗F ⊗OX f∗F ⊗ f∗f ∗OX

f∗(F ⊗ f ∗OX) f∗(F ⊗ f ∗f∗f ∗OX) f∗(F ⊗ f ∗OX)

f∗F⊗−

∼ ∼
f∗(F⊗f∗(unitOX

)) f∗(F⊗ counitf∗OX
)

Here the vertical isomorphisms are given by the projection formula, the square commutes by

the construction of projection formula, the morphism unitOX
is the natural transformation

Id⇒ f∗f
∗(−) applied the the object OX , and similarly for the counit. The composition in

the bottom row is an identity map by the definition of adjoint functors. Thus it provides a

splitting. Therefore the lemma is proved.

Remark. More generally, for any object G ∈ Db
coh(X) define T (G) to be the fiber of the unit

morphism G→ f∗f
∗G. Then the same vanishing occurs for f∗F ⊗ (T (G)→ G).

Semiorthogonal decomposition is a global notion. The projection of an object usually

changes its support in a difficult to control way. However, some analogue of the vanishing in
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Lemma 3.2.3 still holds for the projections.

3.2.4. Lemma. Let f : Y → X, I ∈ Db
coh(X), and B ⊂ Db

coh(X) be as in Setting 3.2.1. Let

F ∈ Db
coh(Y ) be any object. Consider the morphism

ιF : RB(f∗F )⊗ I → RB(f∗F )

induced by the map I → OX .

1. The morphism RB(ιF ) : RB(RB(f∗F )⊗ I)→ RB(f∗F ) is a zero morphism in B.

2. For any object B ∈ B the morphism of graded vector spaces

RHom(B,RB(f∗F )⊗ I)
ιF ◦−−−−→ RHom(B,RB(f∗F )) (3.2.4.1)

given by composition with ιF , is a zero map.

Proof. Consider the commutative square of projections:

RB(f∗F )⊗ I RB(f∗F )

f∗F ⊗ I f∗F

Note that the bottom arrow is zero by Lemma 3.2.3. An application of the projection

functor RB(−) to this commutative diagram leads to a commutative square where the bottom

horizontal map is still zero, while the right vertical map is an isomorphism. This establishes

the first claim of the Lemma. The second follows from it by definition of the right projection

functor RB.

3.2.5. Lemma. Let f : Y → X, I ∈ Db
coh(X) and B ⊂ Db

coh(X) be as in Setting 3.2.1. Let

B ∈ B be an arbitrary object.

1. Let G ∈ Db
coh(X) be an arbitrary object. Then

dim ExtiY (f ∗B, f ∗RB(G)) ≤ dim ExtiX(B,G) + dim Exti+1
X (B,RB(G)⊗ I). (3.2.5.1)

35



2. Suppose additionally that G ' f∗F for some object F ∈ Db
coh(Y ). Then the inequality

(3.2.5.1) becomes an equality.

3. Suppose additionally that f : Y → X is an embedding of an anticanonical divisor, and

that B ' RB(f∗E) for some E ∈ Db
coh(Y ). Then

dim ExtiY (f ∗RB(f∗E), f ∗RB(f∗F )) = dim ExtiY (f ∗RB(f∗E), F )+

+ dim ExtiY (E, f ∗RB(f∗F )).

(3.2.5.2)

Proof. Consider the triangle

RB(G)⊗ I → RB(G)→ f∗f
∗RB(G).

An application of the functor RHom(B,−) leads to a long exact sequence of Ext-groups.

Note that RHom(B,RB(G)) ∼= RHom(B,G) by definition of the right projection functor.

This proves the inequality (3.2.5.1).

The second point follows from Lemma 3.2.3: the first arrow in the triangle above becomes

zero when G ' f∗F .

The last point is a consequence of Serre duality. In this case I is the canonical line bundle

on X. Note that RHom(RB(f∗F ), RB(f∗E)) is isomorphic to RHom(RB(f∗F ), f∗E) and then

the adjunction transforms the expression in (3.2.5.1) into a symmetric expression from the

last point.

3.3 Proof of autoequivalence

3.3.1. Lemma. Let f : Y → X and B ⊂ Db
coh(X) be as in Setting 3.2.1. Let F ∈ Db

coh(Y ) be

an arbitrary object. Consider the morphism

cF : f ∗RB(f∗F )→ F
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corresponding by adjunction to the projection map π : RB(f∗F )→ f∗F . Then the morphism

RB(f∗(cF )) : RB(f∗f
∗RB(f∗F ))→ RB(f∗F )

is a split epimorphism. For any object B ∈ B, the application of RHom(f ∗B,−) to cF leads

to a degree-wise surjective map of graded vector spaces:

RHom(f ∗B, cF ) : RHom(f ∗B, f ∗RB(f∗F ))
cF ◦−−−−→ RHom(f ∗B,F ).

Proof. Recall that the adjunction between f∗ and f ∗ produces a unit and counit natural

transformations. Consider the following diagram:

RB(f∗F ) f∗f
∗RB(f∗F )

f∗F f∗f
∗f∗F

f∗F

unitRB(f∗F )

π f∗f∗(π)
f∗(cF )

unitf∗F

id

f∗ (counitF )

Here the square commutes since unit(−) : Id⇒ f∗f
∗(−) is a natural transformation. The

lower triangle commutes by definition of adjoint functors. The right-side triangle commutes

by definition of cF via adjuncation and π.

An application of the functor RB to this diagram produces a commutative diagram in B.

Note that RB(π) becomes an identity morphism. Thus RB(f∗(cF )) is a split epimorphism.

The second claim in the statement follows by definition of the right projection functor RB

and the adjunction between f∗ and f ∗.

3.3.2. Corollary. Let f : Y → X and B ⊂ Db
coh(X) be as in Setting 3.2.1. Suppose that Y is

a smooth and proper variety with trivial canonical bundle. Let E,F ∈ Db
coh(Y ) be two objects.

Consider the morphisms

cE : f ∗RB(f∗E)→ E cF : f ∗RB(f∗F )→ F
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as in Lemma 3.3.1. Then the complex

RHom(E, f ∗RB(f∗F ))
−◦cE−−−→ RHom(f ∗RB(f∗E), f ∗RB(f∗F ))

cF ◦−−−−→ RHom(f ∗RB(f∗E), F ).

of graded vector spaces, given by compositions with cE and cF , has cohomology only in the

middle. If f : Y → X is an embedding of an anticanonical divisor, then this complex is exact.

Proof. By Lemma 3.3.1 the map of graded vector spaces

RHom(f ∗RB(f∗E), f ∗RB(f∗F ))
cF ◦−−−−→ RHom(f ∗RB(f∗E), F )

is degree-wise surjective. Note that the map

RHom(f ∗RB(f∗F ), f ∗RB(f∗E))
cE◦−−−−→ RHom(f ∗RB(f∗F ), E)

is also surjective, for the same reason. We will deduce the injectivity claimed in the statement

using Serre duality. Recall that the derived category of a smooth and proper variety Y has a

Serre functor, and since Y has trivial canonical bundle, its Serre functor is just a shift. Thus

by Lemma 2.8.2 the graded surjection above is a shift of the graded dual to the map

RHom(E, f ∗RB(f∗F ))
−◦cE−−−→ RHom(f ∗RB(f∗E), f ∗RB(f∗F )),

which therefore is degree-wise injective.

To deal with the last statement, note that Lemma 3.2.5 shows that the graded dimension

in the middle equals the sum of graded dimensions, and therefore the complex is exact.

Now we are ready to give an alternative proof of Theorem 3.1.1. We repeat the statement

of this theorem for the ease of reading.

Theorem. Let X be a smooth proper variety. Let B ⊂ Db
coh(X) be an admissible subcategory,

and let RB ∈ Db
coh(X ×X) be a Fourier–Mukai kernel for the right projection functor to B,
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equipped with the morphism ϕB : RB → O∆X
as in Proposition 2.7.3.

Let j : D ↪→ X be an inclusion morphism of a smooth anticanonical divisor. Consider the

composition of the restricted morphism ϕB|D×D : RB|D×D → O∆X
|D×D with the tautological

map O∆X
|D×D → O∆D

. Take the cone of this composition to obtain a distinguished triangle

in Db
coh(D ×D):

RB|D×D → O∆D
→ T.

Then the Fourier–Mukai transform with respect to the object T ∈ Db
coh(D ×D) is an auto-

equivalence of Db
coh(D).

Proof. Abusing the notation a little, we use the symbol T not only for an object inDb
coh(D×D),

but also for the functor Db
coh(D)→ Db

coh(D) given by the Fourier–Mukai transform with that

kernel. First, observe that it is enough to show that T is a fully faithful functor. Indeed, any

Fourier–Mukai transform has both left and right adjoints by Proposition 2.7.2, so by definition

the image of T would be an admissible subcategory. However, since D is an anticanonical

divisor, its canonical bundle is trivial, and therefore Db
coh(D) does not have any nontrivial

admissible subcategories [KO15, Th. 1.2]. Thus in this case T is automatically essentially

surjective, i.e., it is an autoequivalence.

Let E,F ∈ Db
coh(D) be two arbitrary objects. Consider the triangles

j∗RB(j∗E)→ E → T (E) j∗RB(j∗F )→ F → T (F ).

We may use the spectral sequence from Lemma 2.4.3 to compute RHom(T (E), T (F )) in

terms of other spaces. The first page is the following complex of graded vector spaces, where

the parentheses mean RHom for brevity:

(E, f ∗RB(f∗F ))
−◦cE−−−→ (f ∗RB(f∗E), f ∗RB(f∗F ))⊕ (E,F )

cF ◦−−−−→ (f ∗RB(f∗E), F ).

By Corollary 3.3.2 the first arrow is injective and the second arrow is surjective. Moreover,
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the complex is quasiisomorphic to RHom(E,F ) by the last claim of that corollary. Therefore

the natural map

RHom(E,F )→ RHom(T (E), T (F ))

is an isomorphism for each pair E,F . Thus the functor T is fully faithful and hence an

autoequivalence.

3.4 Skyscrapers and arbitrary anticanonical divisors

Proposition 3.1.3 concerns the projections of the skyscraper sheaves for points lying on

some anticanonical divisor in a surface. After the proof of the proposition, we have remarked

that there are some implications even for skyscraper sheaves at the points not on that divisor.

Now we are ready to make the imprecise statement mentioned in that remark into a lemma.

3.4.1. Lemma. Let S, j : E ↪→ S, p ∈ E and B ∈ B ⊂ Db
coh(S) be as in Proposition 3.1.3.

Suppose that E is smooth. Let j′ : E ′ ↪→ S be another smooth anticanonical divisor, not

necessarily passing through the point p ∈ S. Suppose that the support of j∗B consists of two

distinct points, and suppose that j′∗B is a torsion object. Then j′∗B is isomorphic to one of

the following options:

1. j′∗B = 0;

2. j′∗B ' Oq[a] for some point q ∈ E ′ and a shift a ∈ Z;

3. j′∗B ' Oq[a]⊕Or[b] for some points q, r ∈ E ′ and shifts a, b ∈ Z;

4. j′∗B ' O2q[a] for some point q ∈ E ′ and a shift a ∈ Z, where O2q is the quotient of the

structure sheaf OE by the square of the maximal ideal of the point q ∈ E.

Proof. Consider a restriction triangle for the object B ∈ Db
coh(S) to the divisor E ⊂ S:

B ⊗KS → B → j∗j
∗B
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An application of the functor RHom(B,−) produces a triangle of graded vector spaces

RHom(B,B ⊗KS)→ RHom(B,B)→ REnd(j∗B). (3.4.1.1)

From Proposition 3.1.3 we know that j∗B is isomorphic to a direct sum of two distinct

skyscrapers. Then the length of the graded vector space REnd(j∗B) is equal to four. Since

by definition B is the projection RB(j∗Op), Lemma 3.2.4 implies that the first arrow in the

triangle (3.4.1.1) is zero, and thus REnd(j∗B) is isomorphic to a direct sum of the other two

terms. Therefore we get

`(RHom(B,B ⊗KS)) + `(RHom(B,B)) = 4.

By a similar procedure we obtain a triangle of graded vector spaces corresponding to the

restriction to the divisor j′ : E ′ ↪→ S:

RHom(B,B ⊗KS)→ RHom(B,B)→ REnd(j′∗B).

The length of the cone is bounded from above by the sum of lengths of the first two terms.

This produces an inequality:

`(REnd(j′∗B)) ≤ `(RHom(B,B ⊗KS)) + `(RHom(B,B)) = 4.

Using Lemmas 2.3.9 and 2.3.10 it is easy to see that a torsion object j′∗B on a smooth

curve with `(REnd(j′∗B)) ≤ 4 is isomorphic to one of the four options listed above.

41



Chapter 4: Classification of admissible subcategories of P2

4.1 Overview

The goal of this chapter is to prove the following result about admissible subcategories

in the derived category Db
coh(P2) of coherent sheaves on P2. Since exceptional objects and

exceptional collections in Db
coh(P2) have been classified in [GR87], this theorem may be

described as a classification of admissible subcategories.

4.1.1. Theorem. Any admissible subcategory in Db
coh(P2) has a full exceptional collection.

This classification immediately implies the following.

4.1.2. Corollary. There are no phantom subcategories in Db
coh(P2).

Proof. For any category A with a full exceptional collection of length n the Grothendieck

group K0(A) is a free abelian group on n generators. Thus by Theorem 4.1.1 an admissible

subcategory of Db
coh(P2) is either a zero category, or has non-vanishing K0.

As mentioned in Lemma 2.5.2, any admissible subcategory A ⊂ Db
coh(P2) leads to a

semiorthogonal decomposition of that category, Db
coh(P2) = 〈A, ⊥A〉. Since the length of any

full exceptional collection in Db
coh(P2) is three, the result above implies that in any nontrivial

decomposition at least one of the subcategories A and ⊥A is generated by a single exceptional

object. In fact, in the proof of Theorem 4.1.1 we do not construct nontrivial exceptional

collections directly, but rather recognize which of the subcategories A and ⊥A is a simpler

one. More precisely, Theorem 4.1.1 is implied by the following statement:

4.1.3. Theorem. Let Db
coh(P2) = 〈A,B〉 be a semiorthogonal decomposition with A 6= 0 and
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B 6= 0. Pick a point p ∈ P2. Consider a projection triangle for the skyscraper sheaf Op:

B → Op → A→ B[1]

with B ∼= RB(Op) ∈ B and A ∼= LA(Op) ∈ A. Assume that B is not locally free at p. Then

the subcategory A ⊂ Db
coh(P2) is generated by a single exceptional vector bundle.

The strategy of the proof of Theorem 4.1.3 is discussed in Section 4.2. First we show how

to deduce Theorem 4.1.1 from this statement.

Proof of the implication (4.1.3) =⇒ (4.1.1). Let A ⊂ Db
coh(P2) be an arbitrary admissible

subcategory. Denote the orthogonal subcategory ⊥A ⊂ Db
coh(P2) by B. Then Db

coh(P2) =

〈A,B〉 is a semiorthogonal decomposition. If either A or B is a zero subcategory, there is

nothing to prove, so we assume that the decomposition is nontrivial. Let p ∈ P2 be a point.

Consider a projection triangle

B → Op → A→ B[1]

of the skyscraper sheaf. By parts (1) and (2) of Lemma 2.6.2 we know that at least one of

projections A and B is not locally free at p.

Suppose B is not locally free. Then Theorem 4.1.3 implies that there is an exceptional

vector bundle E ∈ Db
coh(P2) such that A = 〈E〉, confirming Theorem 4.1.1 in this case.

Suppose now that A is not locally free. Observe that the dualized and shifted triangle

A∨[2]→ Op → B∨[2]→ A∨[3]

is the projection triangle of the skyscraper Op corresponding to the dual semiorthogonal

decomposition Db
coh(P2) = 〈B∨,A∨〉. Note that A is locally free if and only if A∨[2] is. By the

same argument as above we see that B∨ = 〈E〉 for some exceptional bundle E ∈ Db
coh(P2).

This implies that B is generated by a single exceptional bundle E∨.

By [GR87, Th. 5.10] an exceptional vector bundle E∨ on P2 may be extended to a
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full exceptional collection 〈E ′, E ′′, E∨〉. Therefore the category A = B⊥ is equal to the

subcategory 〈E ′, E ′′〉. Thus Theorem 4.1.1 holds in this case as well.

4.2 Strategy of the proof

The proof of Theorem 4.1.3 relies on the properties of the restriction of B to a cubic curve

passing through the point p ∈ P2. The proof is split into several parts. First in Section 4.3

we use the results from Section 3 to study the restriction of the object B to a cubic curve,

i.e., to an anticanonical divisor. We use the classification from Proposition 3.1.3 to deduce

strong constraints on the object B itself. For instance, in that subsection we show that B

is concentrated in at most two cohomology degrees. Then in Section 4.4 we prove that the

zeroth cohomology sheaf of B is a skyscraper sheaf Op and the minus first cohomology sheaf

is locally free. Finally, in Section 4.5 we conclude that A is a direct sum of several copies of a

single exceptional vector bundle, which lets us finish the proof by Lemma 4.5.2.

4.3 Restricting projections of a skyscraper to a cubic curve

4.3.1. Setting. From here on we fix the data involved in Theorem 4.1.3, namely a semiorthog-

onal decomposition Db
coh(P2) = 〈A,B〉 with A 6= 0 and B 6= 0, a point p ∈ P2, and the

projection triangle for the skyscraper sheaf

B → Op → A→ B[1]

with B ∈ B and A ∈ A, such that B is not locally free at p. We also fix a smooth cubic curve

j : E → P2 cut out by an equation s ∈ Γ(P2,O(3)) which passes through p.

Remark. In our approach to the proof of Theorem 4.1.3 we often use the fact that PGL(3),

the automorphism group of P2, acts doubly transitively on P2. For example, this implies that

the stabilizer subgroup Stab(p) ⊂ PGL(3) of the point p ∈ P2, which acts on the projections

of the skyscraper sheaf by Lemma 2.6.2 (2), has only two orbits in P2. It is possible to avoid
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most instances of relying on symmetry by using general cubic curves instead of fixing the

curve E in Setting 4.3.1. We use a strategy like that in some parts of Section 6, where we deal

with del Pezzo surfaces. However, for Theorem 4.1.3 we need some global geometric properties

of P2 in any case, so there is no immediate benefit from circumventing the arguments based

on symmetry.

4.3.2. Lemma. Let B be as in Setting 4.3.1. Then the support supp(B) is P2.

Proof. The object B is invariant under the action of the group Stab(p) ⊂ PGL(3) by

Lemma 2.6.2, so supp(B) is a closed Stab(p)-invariant subset of P2. Thus it is either P2, or a

point p.

Assume that B is an object set-theoretically supported only at the point p ∈ P2. Pick the

smallest integer i ∈ Z such that Hi(B) 6= 0. Then there exists a morphism Hi(B)[−i]→ B in

the derived category inducing the identity map on the i’th cohomology sheaves. Since Hi(B)

is a nonzero torsion sheaf supported at a point p, there exists a inclusion Op ↪→ Hi(B) of

sheaves. The composition Op[−i]→ Hi(B)[−i]→ B is a map inducing a nonzero morphism

on the i’th cohomology sheaves, so by Corollary 2.5.9 this implies that B = Db
coh(P2) and

A = 0. This is a contradiction with the assumption that A 6= 0.

4.3.3. Lemma. Let B be as in Setting 4.3.1. For any smooth cubic curve j : E → P2 which

passes through p, the derived restriction j∗B is isomorphic to Op[0]⊕M [a] for some simple

vector bundle M on the curve E and some shift a ∈ Z.

Proof. Note that we are exactly in the situation of Proposition 3.1.3: we restrict a projection

of a skyscraper to a smooth anticanonical divisor on a surface. It only remains to rule out all

options except Op[0]⊕M [a].

The object B is Stab(p)-invariant by Lemma 2.6.2. There are only two orbits of Stab(p)

on P2, the point p and the complement P2 \ {p}. Thus if B is not locally free at p, by

Lemma 2.3.6 the length of the derived fiber at p is strictly larger than at any other point

of P2. This implies that the restriction j∗B to E is also not locally free at p ∈ E since
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the (derived) restriction does not change the lengths of derived fibers. By Lemma 4.3.2 the

support of j∗B is the curve E, so the pullback j∗B is not a torsion object. Among the options

listed in Proposition 3.1.3, only one is an object which is not torsion and not locally free at

p, and therefore j∗B ' Op[0]⊕M [a] for a simple vector bundle M on E, as claimed in the

statement.

4.3.4. Lemma. Let B and j : E → P2 be as in Setting 4.3.1. If Hi(j∗B) = 0, then Hi(B) = 0.

Proof. Since j : E → P2 is an inclusion of a (Cartier) divisor, by Lemma 2.3.8 the vanishing

of Hi(j∗B) implies that supp(Hi(B)) ∩ E = ∅. By Lemma 2.6.2 the object B is Stab(p)-

invariant, hence Hi(B) is also Stab(p)-invariant. Since E passes through p and Stab(p) acts

transitively on P2 \ {p}, we obtain that the nonderived restriction of Hi(B) to any point of

P2 is zero, but this implies Hi(B) = 0.

4.3.5. Corollary. Let B be as in Setting 4.3.1. Then B has at most two nonzero cohomology

sheaves, and at most one of them is not a torsion sheaf supported at p.

Proof. Pick an elliptic curve j : E → P2 which passes through p. Then Lemmas 4.3.3

and 4.3.4 imply that B has at most two nonzero cohomology sheaves. Moreover, we see that

the (derived) restriction of B to some point q ∈ E which is distinct from p is concentrated in

a single degree. Since B is Stab(p)-invariant, it is locally free away from p and thus only one

of cohomology sheaves is nonzero around the point q.

4.4 The structure of B

4.4.1. Lemma. Let F be a nonzero coherent sheaf on a smooth surface S supported at a single

point p ∈ S. Then for any curve j : C ↪→ S passing through p we have L1j
∗F 6= 0 and

L0j
∗F 6= 0. Moreover, those two zero-dimensional sheaves have the same length.

Proof. We may work locally and assume that S is a spectrum of a local ring. Let m ⊂ OS be

the ideal sheaf of the point p. The curve C is given by f = 0 for some f ∈ m. The derived
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pullback j∗F is computed by the complex F f ·−−−→ F . Since F is set-theoretically supported at

the point p, for some n� 0 we have fn ∈ Ann(F). The multiplication by f thus cannot be

an automorphism of F . Since F is a vector space of finite dimension, this means the kernel

and cokernel of the multiplication map are both nonzero and have the same dimension.

4.4.2. Lemma. Let F be a nonzero coherent sheaf on a smooth surface S supported at a single

point p ∈ S. Assume that for any tangent direction at p there exists a smooth curve j : C ↪→ S

passing through p with that tangent direction such that the torsion sheaf L0j
∗F has length

one. Then F is isomorphic to a skyscraper sheaf Op on S.

Proof. Let A := OS,p be the local ring of the point p ∈ S, and denote by m the maximal

ideal of A. Let C ⊂ S be one of the curves from the statement, and let f ∈ m be an equation

of the curve C. Then the nonderived restriction L0j
∗F is isomorphic to F/fF . Note that

the quotient F/mF is nonzero since F is a nonzero sheaf. Since the length of F/fF is one,

this implies that F/mF is an one-dimensional vector space. By Nakayama’s lemma F is a

cyclic module, i.e., F ' A/I for some ideal I ⊂ A contained in m.

Let Ip be the image of I ⊂ m in the cotangent space T∨p := m/m2. If Ip = T∨p , then by

Nakayama’s lemma I = m and then F ' A/m ' Op, so the lemma is proved. Assume now

that Ip is a proper subset of T∨p . For an equation f ∈ m of a curve C as in the statement

let [f ] ∈ T∨p denote its class in T∨p . If Ip is a nonzero subspace, choose a curve C = {f = 0}

such that [f ] ∈ Ip, and if Ip is zero, choose an arbitrary C. The assumption on the length

of L0j
∗F implies that (I, f) = m. But by the choice of f the image of the ideal (I, f) in

the cotangent space T∨p is a proper subset of T∨p , a contradiction. Thus I = m is the only

option.

4.4.3. Lemma. Let B be as in Setting 4.3.1. At least one cohomology sheaf Hi(B) has torsion.

Proof. Assume that all cohomology sheaves are torsion-free. By Corollary 4.3.5 the object B

has only one nonzero cohomology sheaf. Moreover, by Lemma 2.6.1 the sheaf H0(B) is not

zero. Hence B ' F [0] for some Stab(p)-invariant torsion-free coherent sheaf F on P2. By
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Lemma 2.3.13 the derived restriction j∗F is concentrated in degree zero. From Lemma 4.3.3

we conclude that L0j
∗F ' Op ⊕M for a vector bundle M on the curve E, and L1j

∗F = 0.

Since F is a torsion-free sheaf on a surface, we may consider the short exact sequence

from Lemma 2.3.12:

0→ F → E → Q → 0 (4.4.3.1)

where E is locally free and Q is a torsion sheaf. By Stab(p)-invariance of F and the uniqueness

of the short exact sequence the torsion sheaf Q is supported only at the point p.

Consider the long exact sequence of derived pullbacks L•j∗ induced by the short exact

sequence (4.4.3.1):

0→ L1j
∗Q → L0j

∗F → L0j
∗E → L0j

∗Q → 0.

The sheaf L1j
∗Q is a nonzero torsion sheaf by Lemma 4.4.1. Since the torsion part of L0j

∗F is

isomorphic to a skyscraper Op, this implies that L1j
∗Q ' Op. By Lemma 4.4.1 the nonderived

pullback L0j
∗Q is also isomorphic to a skyscraper at p. Since Q is Stab(p)-invariant, the

same holds for cubic curves passing through p in any direction. By Lemma 4.4.2 this implies

that Q ' Op. Then one easily computes that

Ext1(B,Op) = Ext1(F ,Op) ' Ext2(Q,Op) ' k.

Since the object B is the projection of a skyscraper sheaf, by Corollary 2.2.6 the vector

space Ext1(B,Op) is isomorphic to Ext1(B,B). On the other hand, F is not locally free at

a single point p ∈ P2, so Ext1(F ,F) is at least two-dimensional by Lemma 2.4.4. This is a

contradiction, so at least one cohomology sheaf of B is not torsion-free.

Remark. The first part of the argument in Lemma 4.4.3 shows that if B is a single coherent

sheaf, then it is a torsion-free sheaf which is a kernel of a map between a vector bundle

and a skyscraper. Sheaves like that do actually arise in semiorthogonal decompositions
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Db
coh(P2) = 〈A,B〉 as left projections LA(Op) of a skyscraper sheaf when the subcategory B is

generated by a single exceptional vector bundle. For example, when B = 〈O〉, the projection

triangle is

O → Op → Ip[1].

Here the ideal sheaf Ip is exactly the sheaf described by the first part of the argument in

Lemma 4.4.3. Thus the second part of the argument may be considered as a way to distinguish

the left projection and the right projection of a skyscraper sheaf.

4.4.4. Lemma. Let B be as in Setting 4.3.1. Then B is concentrated in degrees [−1; 0], H0(B)

is isomorphic to Op, the sheaf H−1(B) is locally free, and the projection triangle

B → Op → A

from Setting 4.3.1 is isomorphic to a truncation triangle of B, with A ' H−1(B)[2].

Proof. By Lemma 4.4.3 we know that there exists some i ∈ Z such that the sheaf Hi(B)

is not torsion-free. Let T ⊂ Hi(B) be the torsion subsheaf. It is Stab(p)-invariant, so it is

supported only at the point p. Consider the short exact sequence

0→ T → Hi(B)→ Hi(B)/T → 0.

Consider the long exact sequence of derived pullbacks L•j∗ induced by that short exact

sequence. The quotient Hi(B)/T is a torsion-free sheaf on a smooth surface, so using

Lemma 2.3.13 we see L1j
∗(Hi(B)/T ) = 0, and hence L1j

∗Hi(B) ' L1j
∗T . This space is

nonzero by Lemma 4.4.1. We also see that L0j
∗Hi(B) contains the nonzero torsion subsheaf

isomorphic to L0j
∗T .

The relation between cohomology sheaves of j∗B and derived pullbacks L•j∗Hi(B) is

described in Lemma 2.3.8. In particular, this lemma implies that Hi−1(j∗B) has a quotient

isomorphic to L1j
∗Hi(B), and Hi(j∗B) has a subsheaf isomorphic to L0j

∗Hi(B). Thus both
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i’th and (i − 1)’th cohomology sheaves of j∗B are nonzero, and moreover Hi(j∗B) has a

nonzero torsion subsheaf.

By Lemma 4.3.3 this implies that i = 0, the object j∗B is concentrated in degrees [−1; 0],

the sheaf H0(j∗B) is isomorphic to a skyscraper sheaf Op, and the sheaf H−1(j∗B) is locally

free. By Lemma 4.3.4 the cohomology sheaves of the complex B are also zero outside of

the range [−1; 0]. Since in this case L0j
∗H0(B) ' H0(j∗B) ' Op, and the sheaf H0(B) is

Stab(p)-invariant, by Lemma 4.4.2 this implies that H0(B) ' Op.

Since the sheaf H−1(j∗B) is locally free on a curve, its subsheaf L0j
∗H−1(B) is also locally

free. The sheaf H−1(B) is Stab(p)-invariant, and the curve j : E → P2 passes through p, so

the nonderived rank of the sheaf H−1(B) is constant over P2. Therefore H−1(B) is locally

free.

Thus B is concentrated in degrees −1 and 0, with H0(B) ' Op and H−1(B) locally free.

Using Lemma 2.3.7 it is easy to compute that Hom(B,Op) is one-dimensional. Any nonzero

map is proportional to the truncation morphism B → τ≥0(B) ' Op[0], and the cone of this

map is isomorphic to H−1(B)[2]. This confirms the last claim of the statement.

4.5 Full description of A and B

4.5.1. Lemma. Let X be a smooth and proper variety, and let A ⊂ Db
coh(X) be an admissible

subcategory. Let E ∈ A be an exceptional object and suppose that for any point p ∈ X the

projection LA(Op) ∈ A lies in the subcategory 〈E〉 ⊂ A. Then A = 〈E〉.

Proof. By Lemma 2.2.7 the subcategory 〈E〉 ⊂ A is admissible in A. Consider the induced

semiorthogonal decomposition A = 〈A′, E〉. Let LA′ : Db
coh(X)→ A′ be the left projection

functor. It is equal to the composition of the left projection functor LA and the left projection

to A′ inside A. Thus the condition LA(Op) ∈ 〈E〉 implies that LA′(Op) = 0 for all skyscrapers.

Since LA′ is the left adjoint for the inclusion functor A′ ↪→ Db
coh(X), for any object A ∈ A′

we have

RHomX(A,Op) ∼= RHom(A,LA′(Op)) = 0.
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This is true for all points p ∈ X, so the support of any object A ∈ A′ is empty. Therefore

the subcategory A′ is a zero subcategory, which means that A = 〈E〉, as claimed.

4.5.2. Lemma. Let A,B be as in Setting 4.3.1. Then A is generated by a single exceptional

vector bundle.

Proof. By Lemma 4.4.4 we know that the object A in the projection triangle B → Op → A

is isomorphic to N [2] for some vector bundle N on P2. Semiorthogonality of A and B implies

that

RHom(N,N) ∼= RHom(N [2], N [2]) ∼= RHom(Op, N [2]).

Since N is locally free, the space RHom(Op, N [2]) is concentrated in degree 0. Therefore

Ext∗(N,N) is also concentrated in degree zero. Thus the bundle N is rigid. By [Dre86, Cor. 7]

all rigid vector bundles on P2 are direct sums of exceptional bundles. Suppose that N is not

a direct sum of copies of the same exceptional bundle. Then N has two non-isomorphic direct

summands R0 and R1, which are both exceptional bundles. It is known that an exceptional

vector bundle on P2 is uniquely determined by its slope [DLP85, Lem. 4.3], so without loss of

generality we may assume that the slope of R0 is strictly smaller than the slope of R1.

Since every exceptional bundle on P2 is stable [GR87, Th. 4.1], the inequality of slopes

implies that

R0Hom(R1, R0) = 0.

Then the pair R0, R1 is semiorthogonal: indeed, Ext∗(N,N) = Ext0(N,N), so there are no

higher Exts between the direct summands of N , and there are no R0Homs from R1 to R0 by

semistability.

The category A is closed under direct summands, so both R0 and R1 lie in A. The

orthogonal subcategory B = ⊥A is contained inside ⊥〈R0, R1〉. By [GR87, Th. 5.10] the

orthogonal to an exceptional pair on P2 is generated by a single exceptional vector bundle.

In particular, this would imply that any object in B is locally free, but we assumed from the

very beginning in Setting 4.3.1 that B ∈ B is not a locally free object. This contradiction
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shows that A ' N [2] ' (N ′)⊕n [2] is a direct sum of several copies of an exceptional vector

bundle N ′.

All exceptional bundles on P2 are rigid and therefore PGL(3)-invariant. Thus by Proposi-

tion 2.5.3 we know that the pullback of the projection triangle

B → Op → A

along some element g ∈ PGL(3) is a projection triangle for a skyscraper at the point g−1(p).

Thus the projection of any skyscraper to A is isomorphic to (N ′)⊕n [2]. By Lemma 4.5.1 we

see that the subcategory A is generated by an exceptional vector bundle N ′. This establishes

the second part of the statement.

This lemma is the final step in the proof of Theorem 4.1.3, and hence it also establishes

the main theorem of this chapter, Theorem 4.1.1.
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Chapter 5: Admissible subcategories supported on (−1)-curves

In the previous section we showed that any admissible subcategory of Db
coh(P2) is one of

the examples we know. We would like to generalize this statement for some other varieties.

The next natural case would be to study del Pezzo surfaces. They are closely related to P2,

and there are strong structural results [KO94] about exceptional objects and exceptional

collections on del Pezzo surfaces.

The case of P2 is quite special. For instance, on other surfaces we may have admissible

subcategories supported set-theoretically on closed subsets. A simple example is that the struc-

ture sheaf of an exceptional divisor for a blow-up of a smooth point is an exceptional object.

Thus it is interesting to understand and potentially classify those kinds of subcategories.

The main result of this chapter is Proposition 5.3.4, where we prove that any admissible

subcategory supported on a smooth (−1)-curve in a surface is a standard subcategory, i.e.,

it is generated by a twist of the structure sheaf of that (−1)-curve. It is possible and not

too difificult to give a proof along the lines of Theorem 4.1.3: restricting the projections of a

skyscraper sheaf to various anticanonical divisors, using Proposition 3.1.3 to understand the

possibilities, and then proceed with reductions similar to the ones in Section 4.4. However,

we use a different, perhaps more conceptual approach, following a suggestion by Kuznetsov.

It uses the additivity of Hochschild homology in the form proved in [Kuz09].

One application of this local classification result is given in Corollary 5.3.5, where we

prove the non-existence of phantom subcategories in some blow-ups of surfaces. Note that any

nontrivial blow-up has a nontrivial semiorthogonal decomposition [Orl93], so the non-existence

of phantoms is interesting.

We start with an outline of a direct proof for the classification result in Section 5.1. We

continue with a reminder on Hochschild homology and its interaction with semiorthogonal
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decompositions, following [Kuz09], in Section 5.2. We complete the classification of possible

admissible subcategories supported on (−1)-curves in Section 5.3.

5.1 A sketch of a direct proof for the classification

As mentioned above, the actual proof for the classification is given in Section 5.3, but

here we give an outline for a direct argument. We omit many details in this rough sketch.

Let S be a smooth and proper surface, and let E ⊂ S be a smooth (−1)-curve. Let

A ⊂ Db
coh(S) be an admissible subcategory. Assume that any object of A is set-theoretically

supported on E. For each point p ∈ E let Ap be the left projection LA(Op) of the skyscraper

sheaf at p into the subcategory A. The idea behind our argument is that admissible

subcategories are closed under small deformations (Proposition 2.5.3), but most complicated

objects supported on a curve E may be deformed away from E. Since all objects in A are

assumed to be supported on E, the object Ap ∈ A cannot be deformed away from E, and

this is a strong constraint on that object.

Moreover, there are other constraints arising from Proposition 3.1.3. It gives us a list of

possible options for the restriction of Ap to an anticanonical divisor of S. It is not hard to

check that the only property of anticanonical divisors that is used in Proposition 3.1.3 (and

Theorem 3.1.1 as well, on which the proposition is based) is their relation with Serre duality.

If j : C → S is a curve which intersects the (−1)-curve E in a single point, transversely, then

in a Zariski open neighborhood of E the curve C is equivalent to an anticanonical divisor.

Since we work only with objects in A, and they all are supported on E, the list of options

in Proposition 3.1.3 applies as well to the restriction j∗Ap to the curve C. So it is a torsion

object of length two supported at the point p. We ought to be careful about the fact that

the type of an object j∗Ap may, in principle, depend on the choices of the point p and the

curve C, but for the purpose of this outline we ignore this difficulty.

If the restriction j∗Ap is a direct sum of skyscrapers Op[0] ⊕ Op[a] with a 6= 0, then

by an argument similar to the ones from Section 4.4 we may check that the object Ap has
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only two cohomology sheaves, and both of them are pushforwards of line bundles from E.

Since E ' P1, we know all line bundles, and we know all complexes made out of their

pushforwards. This lets us enumerate all possibilities for Ap, and there is only one case

which does not lead to a contradiction by deforming the object Ap away from the (−1)-curve

(Proposition 2.5.3) and does not lead to a contradiction with the universal property of the

projection functors (Corollary 2.2.6 for the morphism Op → LA(Op)). This unique possible

case is where Ap ' OE(n)[0]⊕OE(n)[−1] for some integer n ∈ Z. Then we may show using

Lemma 4.5.1 that A = 〈OE(n)〉, as expected.

If the restriction j∗Ap is a direct sum of two skyscrapers, both in degree zero, then we

may check that Ap has only one cohomology sheaf, and it is a pushforward from E ' P1. An

argument similar to the one we employ below in Proposition 5.3.4 shows that there are no

admissible subcategories where projections of skyscraper look like that, so this situation is

impossible.

If the restriction j∗Ap is a torsion coherent sheaf of length two, then we may show that

the object Ap is an extension of two pushforwards of line bundles from E ' P1. Again, we

know all the line bundles on E, and we know all extensions between their pushforwards, so

we once again may show that this situation is impossible.

5.2 Reminder on Hochschild homology

The material below is taken from [Kuz09]. See the reference for additional details and the

proofs.

Let X be a smooth and proper variety, and let 〈A,B〉 = Db
coh(X) be a semiorthogonal

decomposition. Let RB and LA denote the projection functors from Db
coh(X) to B and A, right

and left respectively. By Proposition 2.7.3 there exist Fourier–Mukai kernels in Db
coh(X ×X)

representing those functors, and we denote the kernels with the same symbols. The kernels
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for the projection functors fit into a triangle in Db
coh(X ×X):

RB → ∆∗OX → LA.

The graded vector space RHomX×X(∆∗OX ,∆∗KX [dimX]) is called the Hochschild homology

of X, denoted by HH•(X). It is a straightforward consequence of this definition that there

exists an isomorphism HH− dimX(X) ∼= H0(X,KX). There exists an interpretation of the

entire Hochschild homology in terms of Hodge decomposition, known as Hochschild–Kostant–

Rosenberg theorem, but we do not need it.

For objects in Db
coh(X ×X) there is a binary operation - ◦ -, called convolution, which

corresponds to the composition of Fourier–Mukai transforms. The structure sheaf ∆∗OX

of the diagonal is an identity element for this operation, and thus there is an isomorphism

∆∗KX [dimX] ' ∆∗OX ◦∆∗KX [dimX]. It is proved in [Kuz09, Prop. 5.5] that any morphism

ϕ ∈ HHm(X) can be uniquely extended to a morphism of triangles:

RB ∆∗OX LA

RB ◦∆∗KX [m+ dimX] ∆∗KX [m+ dimX] LA ◦∆∗KX [m+ dimX]

γA(ϕ) ϕ γB(ϕ)

(5.2.0.1)

The spaces RHom(RB, RB ◦∆∗KX [dimX]) and RHom(LA, LA ◦∆∗KX [dimX]) are called

Hochschild homology spaces HH•(B) and HH•(A) respectively. Thus the uniqueness and

existence of the extension (5.2.0.1) of the map ϕ to a morphism of triangles using certain

maps γA(ϕ) and γB(ϕ) produces a map

HH•(X)
(γA,γB)−−−−→ HH•(A)⊕ HH•(B).

Theorem 7.3 in [Kuz09] shows that this map is an isomorphism, i.e., Hochschild homology is

additive for semiorthogonal decompositions.
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5.3 Local classification on (−1)-curves

Let S be a smooth proper surface. Suppose that A ⊂ Db
coh(S) is an admissible subcategory

supported set-theoretically on some smooth (−1)-curve in S. In this subsection we first

show that HH−2(A) = 0 in Lemma 5.3.1, and then in Lemmas 5.3.2 and 5.3.3 we deduce

from the vanishing of this homology group the fact that any object of A is a pushforward

of some object from the derived category Db
coh(P1) of sheaves on the (−1)-curve. Finally, in

Proposition 5.3.4 we complete the classification.

5.3.1. Lemma. Let X be a smooth and proper variety, and let A ⊂ Db
coh(X) be an admissible

subcategory. Assume that A is supported on a proper closed subset Z ⊂ X. Then the bottom

Hochschild homology HH− dimX(A) vanishes.

Remark. In other conventions this space may be called HHdimX(A). See [Kuz09, Rem. 2.2].

Proof. Let B := ⊥A be the orthogonal subcategory in Db
coh(X). Let γB : HH•(X)→ HH•(B)

be the restriction morphism defined in Section 5.2. By the additivity of Hochschild homology

[Kuz09, Th. 7.3] the kernel of the map HH− dimX(X) → HH−dimX(B) is isomorphic to

HH− dimX(A). Thus it is enough to prove that this map is injective.

Using the definition given in Section 5.2 it is easy to compute that the vector space

HH− dimX(X) is isomorphic to H0(X,KX). Suppose s ∈ H0(X,KX) is a nonzero section such

that γB(s) is a zero class in HH− dimX(B). Pick a point p in the open subset X \ Z such that

s does not vanish at p. By assumption the skyscraper sheaf Op is orthogonal to every object

in A, and hence Op ∈ B. The morphism of triangles (5.2.0.1) of objects in Db
coh(X ×X) for

the class s ∈ HH− dimX(X) produces the following morphism of triangles in Db
coh(X) via a

Fourier–Mukai transform of the skyscraper sheaf Op:

RB(Op) ' Op Op 0

RB(Op ⊗KX) ' Op ⊗KX Op ⊗KX 0

id

γB(s)(Op) s(p)

id

(5.3.1.1)
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If the class γB(s) ∈ HH− dimX(B) is zero, then the natural transformation obtained by the

Fourier–Mukai transform along γB(s) vanishes on every object, hence the leftmost vertical

morphism is also necessarily zero. But by the commutativity of the diagram it vanishes if

and only if the section s vanishes at the point p. However, by the choice of p this does not

happen. Thus the morphism γB is injective on HH−dimX and the lemma is proved.

5.3.2. Lemma. Let S be a smooth and proper surface, and let C ⊂ S be a smooth (−1)-curve.

Let c ∈ Γ(S,OS(C)) be a section cutting out the curve C. Let A ⊂ Db
coh(S) be an admissible

subcategory supported on C. Then for every object A ∈ A the morphism A→ A(C) in the

derived category given by the multiplication with a section c is a zero morphism.

Proof. Let S → S ′ denote the contraction of the (−1)-curve C to a point p ∈ S ′. Let U ′ ⊂ S ′

denote a Zariski neighborhood of the point p on which the canonical bundle KS′ ' Ω2
S′ is

trivial. Denote by U ⊂ S its preimage in S. A pullback of a constant section of KS on U to a

section s ∈ Γ(U,KS|U) vanishes exactly along C ⊂ U with multiplicity one. By construction

in a neighborhood of C ⊂ S the line bundle KS is isomorphic to the line bundle OS(C) with

the sections s and c corresponding to each other. Since any object A ∈ A is supported on

a subset C ⊂ U , the tensor multiplication with the section s produces a map A s−→ A⊗KS

well-defined on the whole surface S, and the claim in the statement of this lemma is equivalent

to the fact that this map is zero.

We want to study the multiplication by s as a natural transformation using Hochschild

homology methods. If s were a global section of KS, then it would by definition give a class in

Hochschild homology HH−2(S). Since s is only defined in a neighborhood of the (−1)-curve,

we can only construct a class in HH−2(A) by a more careful procedure. To do this, note

that s ∈ H0(U,KS|U) produces a morphisms OU → KS ⊗OU of quasicoherent sheaves on S.

We define the following morphism of quasicoherent sheaves on S × S, where ∆: S → S × S

denotes the diagonal inclusion:

ϕs : ∆∗OU → ∆∗(KS ⊗OU).
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Let LA ∈ Db
coh(S × S) denote the Fourier–Mukai kernel for the left projection functor

from Db
coh(S) to the subcategory A.

Claim. 1. LA is supported on the closed subset C × C ⊂ S × S;

2. the convolution LA ◦∆∗OU is isomorphic to LA;

3. the convolution LA ◦∆∗(KS ⊗OU) is isomorphic to LA ◦∆∗KS.

Proof of the claim. Since the projection of any skyscraper to A is by assumption an object

supported on C, we see that LA is set-theoretically supported on S × C. Moreover, any

skyscraper at a point in S \C is orthogonal to each object of A, and hence projects to zero via

LA, which implies that LA is supported set-theoretically on C ×C. This directly implies that

the convolution LA ◦∆∗OU is isomorphic to the convolution LA ◦∆∗OS with the structure

sheaf of the diagonal, and this convolution is isomorphic to LA. The last statement is proved

similarly.

Consider now the convolution LA ◦ ϕs. By the claim above it may be considered as the

following morphism in Db
coh(S × S):

LA ◦ ϕs : LA → LA ◦∆∗KS.

By definition, this morphism is a class in HH−2(A). By Lemma 5.3.1 this group vanishes.

Therefore the morphism is zero in the derived category Db
coh(S × S), and the natural trans-

formation between the Fourier–Mukai functors is also zero on every object.

Let A ∈ A be an arbitrary object. Then LA(A) ∼= A by definition. Then the projection of

the morphism A⊗K∨S
s−→ A to the subcategory A fits into the following commutative square:

A⊗K∨S A

LA(A⊗K∨S ) LA(A) ∼= A

s

id
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The bottom horizontal morphism is zero since it is given by the natural transformation

arising from the zero morphism LA ◦ ϕs. Since the right vertical arrow is an isomorphism,

the top horizontal map A⊗K∨S → A is also zero, which is equivalent to the vanishing of the

morphism A→ A⊗KS, and this is exactly what we wanted to show.

5.3.3. Lemma. Let S be a smooth and proper surface, and let C ⊂ S be a smooth curve. Pick

a section s ∈ Γ(S,OS(C)) cutting out the curve C. Assume that A ∈ Db
coh(S) is an object

such that the morphism A
·s−→ A(C) is zero in the derived category. Then A is isomorphic to

a pushforward of an object from Db
coh(C).

Remark. A stronger result valid in arbitrary dimension was recently proved in [LO20, Th. 3.2].

The two-dimensional case is significantly easier than the general statement, so we include the

direct proof.

Proof. Denote by j : C ↪→ S the inclusion morphism. Consider the restriction triangle for A:

A(−C)
s−→ A→ j∗j

∗A.

The first morphism in this triangle vanishes by assumption, thus the morphism A→ j∗j
∗A is

a split monomorphism, i.e., an inclusion of a direct summand. Note that the derived pullback

j∗A ∈ Db
coh(C) in the derived category of a smooth curve is automatically formal, i.e., it is

a direct sum of shifts of cohomology sheaves. Then the pushforward j∗j∗A is also formal,

and it is easy to show that any direct summand of a formal complex is formal, given by a

choice of a direct summand in each cohomology sheaf. Thus A ' ⊕Hi(A)[−i], and each

cohomology sheaf Hi(A) is a direct summand of a sheaf j∗Hi(j∗A). Any direct summand

of the pushforward sheaf j∗Hi(j∗A) is a pushforward of some direct summand of Hi(j∗A).

Thus A is isomorphic to a pushforward of an object in Db
coh(C).

Now we can prove the main result of this section.
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5.3.4. Proposition. Let S be a smooth surface, and let j : E ↪→ S be an embedding of a

smooth (−1)-curve. Let A ⊂ Db
coh(S) be a nonzero admissible subcategory supported on E.

Then A is generated by an exceptional sheaf j∗OE(k) for some k ∈ Z.

Proof. By Lemmas 5.3.2 and 5.3.3 any object of the subcategory A is a pushforward of some

object from Db
coh(E). Let G ∈ Db

coh(E) be an object such that j∗G is a generator of A. Note

that A contains pushforwards of all objects in 〈G〉 ⊂ Db
coh(P1). Suppose that G generates

the entire derived category of E. Then A contains a skyscraper sheaf at some point of E.

On the surface S this skyscraper sheaf may be deformed into a skyscraper sheaf at some

point away from E ⊂ S. Since admissible subcategories are closed under small deformations

(Proposition 2.5.3), this is a contradiction with the assumption that A is supported only on

E. Therefore G ∈ Db
coh(P1) cannot be a generator.

On P1 any object of the derived category splits into a direct sum of shifts of torsion

sheaves and line bundles. It is easy to check that an object G ∈ Db
coh(P1) is not a generator

only in two cases: either G is a torsion object, or G is a direct sum of several copies of the

same line bundle. The object G cannot be torsion by the same argument as above. Thus G is

a direct sum of shifts of copies of OP1(k) for some fixed k, and the subcategory A generated

by its pushforward j∗G can also be generated by j∗OE(k), as claimed.

This classification implies that there are no phantom subcategories supported on a smooth

(−1)-curve. Using the properties of Hochschild homology we may deduce from this the

non-existence of phantom subcategories in some surfaces. This enlarges the list of surfaces

that admit nontrivial semiorthogonal decompositions but provably do not have phantom

subcategories from just the plane P2, checked in Theorem 4.1.1, to many other examples.

The reduction to the local classification of admissible subcategories supported on (−1)-curves

is essentially due to Kuznetsov (private communication). This idea was the starting point for

the approach we used to prove the classification in this section.

5.3.5. Corollary. Let S be a surface with a globally generated canonical bundle, and let
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π : S ′ → S be a blow-up of several distinct points. Then Db
coh(S ′) does not contain any

phantom subcategories.

Proof. Assume thatA ⊂ Db
coh(S ′) is a phantom subcategory. Then by definition HH−2(A) = 0.

Let s ∈ Γ(S,KS) be any nonzero section. Its pullback π∗s ∈ Γ(S ′, KS′) is a class in HH−2(S ′)

which necessarily restricts to a zero class in HH−2(A). Similarly to the proof of Lemma 5.3.2

we see that for any object A ∈ A the morphism A→ A(KS′) given by the multiplication with

the section π∗s vanishes. If the support of A contains a point p ∈ S ′ such that (π∗s)(p) 6= 0,

then at that point the multiplication with π∗s is an isomorphism, hence nonzero. Therefore

any object of A is set-theoretically supported on the vanishing locus of π∗(s). This is a union

of the preimage of the vanishing locus of s together with all exceptional divisors for the

morphism π.

Since the same holds for an arbitrary section s ∈ Γ(S,KS) of the globally generated

line bundle KS, the conclusion is that any object A ∈ A is supported on the union of

exceptional divisors. This is a disjoint union of several (−1)-curves. Objects supported on

different (−1)-curves are completely orthogonal to each other. Thus A splits into a completely

orthogonal sum of subcategories supported on each (−1)-curve separately. The options for

each summand are classified in Proposition 5.3.4, and there are no phantom subcategories

among them.
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Chapter 6: On phantoms in del Pezzo surfaces

From the classification of admissible subcategories of Db
coh(P2) given by Theorem 4.1.1 we

easily see that there are no phantom subcategories in P2. In fact, the full classification is not

necessary, and it is not hard to come to the same conclusion right after Lemma 4.3.3. In this

section we explore other situations where the strong structural result given by Proposition 3.1.3

is sufficient to rule out the possibility of phantom subcategories. In Theorem 6.4.6 we show

that on a del Pezzo surface of degree at least three there are no phantoms.

It seems difficult to give a meaningful classification of admissible subcategories in the

derived category of a del Pezzo surface, or even to show that any admissible subcategory is

generated by an exceptional collection. However, a key observation in Lemma 6.4.1 shows

that many complicated admissible subcategories are not phantoms. The remaining options

are easier to deal with. In some situations the result of this lemma is strong enough to imply

that any phantom subcategory must be supported on a union of some (−1)-curves. For del

Pezzo surfaces of degree greater or equal to three we can improve this result to non-existence

of phantom subcategories.

The proof of Theorem 6.4.6 is based upon the notion of a point-support of a semiorthogonal

decomposition at some point. This notion is introduced in Section 6.1. We also need some

additional lemmas about objects set-theoretically supported on curves in surfaces. We study

them by pulling them back along curves transverse to the support in Section 6.2. After

establishing several probably well-known statements about smooth anticanonical divisors in

del Pezzo surfaces in Section 6.3, we finish the proof of the main theorem in Section 6.4.
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6.1 Point-supports of semiorthogonal decompositions

6.1.1. Definition. Let X be an algebraic variety. Pick a point p ∈ X. The point-support at p

of a semiorthogonal decomposition Db
coh(X) = 〈A,B〉 is a set defined as follows. Consider the

projection triangle of the skyscraper sheaf at p:

B → Op → A→ B[1].

Then the point-support is the set-theoretic support of A⊕B.

Question. Suppose A ⊂ Db
coh(X) is an admissible subcategory. Is it true that for any point

p ∈ X the supports of the two projections LA(Op) and RA(Op) coincide? If this is true, it

would be more convenient to define the point-support of an admissible subcategory instead

of the point-support of a semiorthogonal decomposition.

6.1.2. Lemma. Let X be an algebraic variety, let p ∈ X be a point, and let Db
coh(X) = 〈A,B〉

be a semiorthogonal decomposition. Let Sp be the point-support of this decomposition at p.

1. Sp is a connected closed subset which contains p.

2. If Sp = {p}, then either Op ∈ A, or Op ∈ B.

3. If Sp 6= {p}, then supp(A) = supp(B) = Sp.

Proof. Let Ap and Bp denote the projections of the skyscraper. Consider the subset supp(Bp).

Suppose that it has a nonempty connected component which does not contain p. Then by

Lemma 2.3.3 the object Bp has a nonzero direct summand B′ which is not supported at p.

Then the map Bp → Op factors through the projection to Bp/B
′, and therefore its cone,

Ap, has a direct summand isomorphic to B′[1]. But then RHom(Bp, Ap) 6= 0, which is a

contradiction with semiorthogonality. Thus the support of Bp (and by a similar argument

the support of Ap as well) is either empty, or a connected subset containing p. The union of

two connected subsets both containing p is also connected, and this proves part (1).

64



Suppose now that Sp = {p}. Assume that both Ap and Bp are nonzero objects supported

at a single point p. Let a ∈ Z be the smallest number such that Ha(Ap) 6= 0 and let b ∈ Z

be the largest number such that Hb(Bp) 6= 0. Pick nonzero morphisms Hb(Bp) � Op and

Op ↪→ Ha(Ap), which always exist for coherent sheaves supported at one point. Then the

composition

Bp → Hb(Bp)[−b] � Op[−b] ↪→ Ha(Ap)[−b]→ Ap[a− b]

with truncation morphisms is a morphism Bp → Ap[a− b] which by construction is nonzero

on cohomology sheaves. This contradicts semiorthogonality, and thus at least one of Ap and

Bp must be a zero object when Sp = {p}, so the part (2) is proved.

To deal with the last part, note that the long exact sequence of cohomology sheaves proves

that supp(Bp) ⊂ supp(Op) ∪ {p} and similarly for supp(Ap). Since both of those supports

are either empty or contain the point p, part (3) follows.

6.1.3. Lemma. Let Y be a smooth variety, S1, S2 ⊂ Y two closed subsets whose set-theoretic

intersection S1 ∩ S2 contains an isolated point. Let F1, F2 ∈ Perf(Y ) be objects whose

set-theoretical supports are S1, S2 respectively. Then RHom(F1, F2) 6= 0.

Proof. We can compute the RHom-space by the dualization:

RHom(F1, F2) ∼= RΓ (Y, F∨1 ⊗ F2).

The support of the tensor product F∨1 ⊗F2 is the intersection S1 ∩ S2. It contains an isolated

point, so by Lemma 2.3.3 the object F∨1 ⊗F2 has a nonzero direct summand supported only at a

single point. Any object with zero-dimensional support has a nonvanishing (hyper)cohomology

class given by a nonzero global section of the lowest degree cohomology sheaf, so the lemma

is proved.

6.1.4. Lemma. Let Y be a smooth variety, p, q ∈ Y distinct points. Let Db
coh(Y ) = 〈A,B〉 be a

semiorthogonal decomposition. Denote by Sp, Sq the point-supports of the decomposition at p

65



and q respectively. Then the set-theoretic intersection Sp ∩ Sq does not contain any isolated

points.

Remark. This lemma is most useful on surfaces, where all nontrivial point-supports are curves,

and curves usually intersect along finitely many points.

p
qSp

Sq

Figure 6.1: An impossible situation

Proof. Without loss of generality assume Sp is larger than just {p}. Consider first the

situation where Sq = {q}. In this case by Lemma 6.1.2 there are two options:

• Oq ∈ A. Since q ∈ Sp by assumption, we have RHom(RB(Op),Oq) 6= 0, but this

contradicts semiorthogonality.

• or Oq ∈ B. Note that supp(LA(Op)) = Sp contains q by assumption, hence the graded

space RHom(Oq, LA(Op)) is nonzero, but this also contradicts semiorthogonality.

Thus we may assume that Sq 6= {q}. Then by the same lemma supp(LA(Oq)) = Sq. Consider

the space RHom(RB(Op), LA(Oq)). If the intersection Sp ∩ Sq contains an isolated point,

then by Lemma 6.1.3 this space is not zero, but this again is impossible by semiorthogonality

of A and B.

Point-support subsets cannot be entirely arbitrary. For example, on surfaces we can show

that their intersections with anticanonical divisors are relatively simple.

6.1.5. Lemma. Let S be a smooth proper surface, and let Db
coh(S) = 〈A,B〉 be a semiorthogonal

decomposition. Let p ∈ S be a point, denote by Sp the point-support of the decomposition at p.
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Assume that Sp has dimension one. Let j : D ↪→ S be an anticanonical divisor of S passing

through p. Suppose that the point p and some additional point q 6= p satisfy the following:

1. both p and q are isolated points in the set-theoretic intersection Sp ∩D;

2. both p and q are smooth points of D.

Then Sp ∩D = {p, q}. Moreover, let B denote the (right) projection of the skyscraper sheaf

at the point p to B. Then j∗B ' Op[0]⊕Oq[dq] for some shift dq ∈ Z.

Proof. Consider a projection triangle B → Op → A of the skyscraper at the point p. By

Lemma 6.1.2 we know that supp(B) = Sp, so Lemma 2.3.8 implies that supp(j∗B) = Sp ∩D.

Since B is a projection of a skyscraper and j is an inclusion of an anticanonical divisor into a

surface, we may apply Proposition 3.1.3. By the last claim of the proposition the support of

the object j∗B has at most two connected components. Since the points p and q are isolated

in the intersection Sp ∩D, this implies that supp(j∗B) = {p} t {q}. Now we may apply the

classification result from Proposition 3.1.3. Among the options listed in the lemma there is

only one whose support is two distinct points, and it is a direct sum of two skyscrapers in

some degrees.

6.2 Cutting lemmas

This subsection contains a few observations about objects in the derived categories of

surfaces which are set-theoretically supported on curves.

6.2.1. Definition. Let S be a smooth surface, F ∈ Db
coh(S) an object. Assume that the

set-theoretic support of F is a reduced curve C ⊂ S. A slice of F at a point p ∈ C is the

derived pullback j∗F to a curve j : D → S which is smooth at the point p and does not

intersect C anywhere else.

Note that an alternative way to state the definition would be to let D intersect C at some

other points, but replace the derived pullback by the largest direct summand supported at

the point p. This is equivalent to replacing D with an open neighborhood of p in D.
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6.2.2. Lemma. Let U be a smooth surface, let i : C ↪→ U be a curve, and let p ∈ C be a point.

Let F ∈ Perf(U) be an object whose set-theoretic support is C. Suppose that there exists a

slice of F at p which is a torsion object of length one. Then C equipped with a reduced scheme

structure is smooth at the point p, and, after possibly replacing U by a Zariski-neighborhood

of p, the object F is isomorphic to i∗OC [a] for some shift a ∈ Z.

Proof. Let j : D → U be a smooth curve such that the derived pullback j∗F ∈ Db
coh(D) is a

torsion object of length one, i.e., it is isomorphic to a shift of a skyscraper sheaf Op[a] for

some a ∈ Z. By Lemma 2.3.8 the isomorphism j∗F ' Op[a] implies that in a neighborhood of

the point p the object F has only one nonzero cohomology sheaf, F ' F [a] for some coherent

sheaf F ∈ Coh(U). By shrinking U we may assume that U ' Spec (A) for some ring A, the

coherent sheaf F corresponds to a module M over the ring A, and the smooth curve D ⊂ U

is defined by an equation {d = 0} for an element d ∈ A. The assumption that M/dM is

isomorphic to a skyscraper sheaf at the point p implies that M/mpM is also a skyscraper

sheaf, so by Nakayama’s lemma M is locally isomorphic to a cyclic module, i.e., the quotient

M ' A/I for some ideal I ⊂ A.

Since (A/I)/d = (A/d)/I has length one, and A/(d) is a discrete valuation ring, this

means that the image of I in the quotient ring A/(d) is generated by one regular element

f̃ ∈ A/(d) such that f̃ generates the maximal ideal of A/(d). Pick a preimage f ∈ A of f̃ in

the ideal I. We will show that f generates I. Consider the short exact sequence

0→ I/fA→ A/fA→ A/I → 0.

The derived pullback to the smooth curve j : D → U produces a long exact sequence of

modules over the quotient ring A/d. Consider the following fragment:

L1j
∗(A/I)→ L0j

∗(I/fA)→ L0j
∗(A/fA)→ L0j

∗(A/I)→ 0

Since L1j
∗(A/I) ' L1j

∗M = 0 by the assumption of the theorem, this is in fact a short exact
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sequence. Note that L0j
∗(A/fA) by the definition is isomorphic to the quotient A/(d, f).

Since f is equal to f̃ modulo (d), this quotient is isomorphic to (A/d)/f̃ , which by the choice

of f̃ is isomorphic to (A/d)/I. Thus the last two terms of the short exact sequence are both

torsion sheaves of length one. Therefore L0j
∗(I/fA) can only be zero. In particular, I/fA is

not supported at the point p ∈ U .

Thus the inclusion (f) ⊂ I is an isomorphism at the point p, so after shrinking U we can

assume that I = (f), so the module M ' A/fA is the structure sheaf of the curve {f = 0}.

Note additionally that since f̃ ∈ A/d has valuation 1, the curve C = {f = 0} is smooth at

the point p. This finishes the proof of the lemma.

This local description may be improved to a global one if we consider the slices at all

points of the curve instead of a single point.

6.2.3. Lemma. Let S be a smooth surface, and let i : C ↪→ S be a connected curve. Let

F ∈ Perf(S) be an object whose set-theoretic support is C. Suppose that at each point p ∈ C

there exists a slice of F which is a torsion object of length one. Then the curve C is smooth,

and the object F is isomorphic to a pushforward i∗(L)[a] for some line bundle L ∈ Pic (C)

and a shift a ∈ Z.

Remark. If C is not connected, the pushforwards of line bundles from different connected

components may have different shifts, but otherwise the conclusion is the same.

Proof. By Lemma 6.2.2, applied at all points of C = supp(B), the object B is a shift of some

coherent sheaf F ∈ Coh(Y ). Moreover, the scheme-theoretic support of F is equal to the

reduced scheme structure on the curve C. Therefore F is a pushforward of a coherent sheaf

F ′ ∈ Coh(C). Locally the sheaf F ′ is isomorphic to the structure sheaf of C, thus F ′ is in

fact a line bundle on C.

6.2.4. Definition. Let U be a smooth surface, and let F ∈ Db
coh(U) be an object whose

set-theoretic support is a reduced curve C ⊂ U . We say that the object F is thin at the point
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p ∈ C if there exists a slice of F at the point p which is a torsion object of the length equal

to the multiplicity of the curve C at p.

6.2.5. Lemma. Let U be a smooth surface, and let F ∈ Db
coh(U) be an object whose set-theoretic

support is a reduced curve C ⊂ U . Let j : D ↪→ U be a smooth curve which intersects C at a

single point p ∈ C. Denote by d the multiplicity of the curve C at p.

1. For the length of the torsion object j∗F ∈ Db
coh(D) we have an inequality `(j∗F ) ≥ d.

2. If the tangent vector to the curve D at p lies in the tangent cone of the curve C at p,

then `(j∗F ) > d.

3. If F ' F [0] is a single coherent sheaf, then the bounds above hold for `(L0j
∗F).

Proof. Since D ⊂ U is a Cartier divisor, by Lemma 2.3.8 we know that

`(j∗F ) =
∑
n∈Z

`(j∗Hn(F )).

Thus we may replace the object F with the coherent sheaf
⊕

n∈ZHn(F ) without changing the

lengths of the slices. Thus it is enough to prove the bounds for the length of the nonderived

pullback L0j
∗F of a coherent sheaf F on U .

In the proof we use the notion of a (zeroth) Fitting ideal of a coherent sheaf. Recall the

definition: given a finitely generated module M over a Noetherian ring A, pick an arbitrary

free presentation:

Ak
Q−→ An →M → 0.

The Fitting ideal Fit(M) is defined to be the ideal of A generated by the (n× n)-minors of

the matrix Q. This construction globalizes to coherent sheaves. The Fitting ideal is contained

in the annihilator ideal, and the formation of Fitting ideals is compatible with arbitrary base

change (see, e.g., [Stacks, Tag 07Z6]).

Consider the coherent sheaf L0j
∗F on a curve D. It is supported at a single point p ∈ D.

Let m ⊂ OD be the maximal ideal sheaf of the point p. Using Lemma 2.3.10 it is easy to
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compute that for any coherent sheaf on a smooth curve D supported at the point p the

Fitting ideal is equal to m`, where ` is the length of the torsion sheaf. Thus in order to bound

the length of L0j
∗F it is enough to understand the Fitting ideal of this sheaf.

By passing to an étale neighborhood of the point p ∈ U we may assume that U is the

affine plane A2 = Spec k[x, y] and p is the origin. Let f ∈ k[x, y] be the reduced equation of

the curve C. Since the set-theoretic support of F is C, we know that the annihilator ideal

of the sheaf F is contained in the ideal (f). The Fitting ideal Fit(F) is contained in the

annihilator ideal, so Fit(F) ⊂ (f).

Since Fitting ideals are compatible with base change, we know that Fit(L0j
∗F) is contained

in the restriction of the ideal (f) to the curve D. The pullback of (f) is contained in md,

where d is the multiplicity of C at p, which is the lowest degree of a monomial occuring in f

with nonzero coefficient. Thus `(L0j
∗F) ≥ d. Moreover, if the tangent vector to D lies in

the tangent cone of C at the point p, by definition this means that the degree-d part of the

polynomial f restricts to zero in the quotient md/md+1. Thus in this case the pullback of (f)

to the curve D is contained in md+1, and then `(L0j
∗F) > d, as claimed.

6.2.6. Lemma. Let U be a smooth surface, let C ⊂ S be a reduced curve, and let p ∈ C be a

point. Let F be a coherent sheaf on U whose set-theoretic support is C ⊂ S. Suppose that

F is thin at the point p ∈ C. Then, after possibly replacing U by a Zariski neighborhood of

p ∈ U , the sheaf F is a pushforward of a torsion-free rank one sheaf F ′ on C.

Proof. The foundational case is when the multiplicity of the curve C at the point p is equal

to one. Then by definition F is thin at p if and only if there exists a slice of F of length one.

This case is proved in Lemma 6.2.2. Otherwise, let d > 1 be the multiplicity of the curve C

at the point p.

By shrinking U we may assume that U is affine. Let f ∈ H0(OU ) be the equation for the

reduced scheme structure on the curve C. Since the characteristic of the base field is zero,

by further shrinking U we may assume that all points in C \ {p} are smooth in the curve C.
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Let j : D ↪→ S be a smooth curve passing through p such that the derived pullback j∗F is a

torsion object of the length d.

We first show that F has no point-torsion at p. We know that the length

`(j∗F) := `(L0j
∗F) + `(L1j

∗F)

is equal to d. By Lemma 6.2.5 the summand `(L0j
∗F) is greater or equal to d. Thus L1j

∗F

has length zero, so it is a zero object. Consider the subsheaf T ⊂ F spanned by sections

supported only at the point p. Consider the short exact sequence

0→ T → F → F/T → 0.

Since j is an inclusion of a Cartier divisor, L2j
∗(−) vanishes at every argument. Thus the

long exact sequence of derived pullbacks along j : D ↪→ S shows that L1j
∗F has a subsheaf

isomorphic to L1j
∗T . If T is a nonzero sheaf, then by Lemma 4.4.1 the sheaf L1j

∗T is also

nonzero, but this leads to a contradiction with the fact that F is thin at p. Thus T = 0, i.e.,

the sheaf F has no point-torsion.

Let g ∈ H0(OU) be the equation of the smooth curve D ⊂ U . Consider a family of

inclusions jt : Dt ↪→ U , where the curve Dt is given by the equation {g = t}. By Lemma 6.2.5

the tangent vector of D at the point p does not lie in the tangent cone of C, and thus for

a general value of t the curve Dt intersects C transversely in exactly d distinct points (see,

e.g., [Mum95, §5A]; we use the assumption of characteristic zero here). Thus, after possibly

shrinking U , by semicontinuity we may assume that at each point of C \ {p} the sheaf F has

a slice which is a torsion object of length one.

In particular, by Lemma 6.2.3 this implies that on U \ {p} the sheaf F is a direct sum

of pushforwards of line bundles from the irreducible components of C \ {p}. Assume that

on the unpunctured surface U the sheaf F is not a pushforward from the curve C. Since U

is affine, this is equivalent to the fact that the equation f ∈ H0(OU) does not annihilate F .
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at each point⇒

p

Figure 6.2: Semicontinuity and slices

Then there exists a section s ∈ H0(F) such that f · s is not zero. The equation f annihilates

any section on the open set U \ {p}. Therefore f · s is a section of F which is supported only

at a single point p. But we proved that F has no zero-dimensional torsion, a contradiction.

Thus the scheme-theoretic support of the sheaf F is equal to C.

6.2.7. Lemma. Let S be a smooth surface, and let F ∈ Perf(S) be an object whose set-theoretic

support is a reduced curve C ⊂ S. Suppose that F is thin at every point of C. Then F is

a formal complex, and each cohomology sheaf Hn(F ) is isomorphic to a pushforward of a

torsion-free rank one sheaf from some subcurve Cn ⊂ C.

Proof. Let p ∈ C be a point, and let j : D ↪→ S be a smooth curve passing through p such

that j∗F is a torsion object of length equal to the multiplicity of C at p. By Lemma 2.3.8

we know that `(j∗F ) =
∑

n `(j
∗Hn(F )). Let Cn := supp(Hn(F )) ⊂ C be the set-theoretic

support of the n’th cohomology sheaf. Denote by I ⊂ Z the subset of those indices n ∈ Z such

that Cn contains p and p is not an isolated point in Cn. For n ∈ I, let mn be the multiplicity

of Cn at the point p. By Lemma 6.2.5 we have `(j∗Hn(F )) ≥ mn for each n ∈ I. Let m be

the multiplicity of the curve C at p. Since C = ∪n∈ICn near the point p set-theoretically, we

have
∑

n∈I mn ≥ m. Taking all this information into account, we get a chain of inequalities:

`(j∗F ) =
∑
n∈Z

`(j∗Hn(F )) ≥
∑
n∈I

`(j∗Hn(F )) ≥
∑
n∈I

mn ≥ m.

The assumption that F is thin at p implies that each inequality is in fact an equality. Note

that this holds for any point p ∈ C. Thus we conclude that:

1. For any n ∈ Z such that Hn(F ) 6= 0, the subset Cn = supp(Hn(F )) is a curve, and the
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sheaf Hn(F ) is thin at any point of its support Cn.

2. For any two distinct n, n′ ∈ Z the intersection Cn ∩ Cn′ is a zero-dimensional set.

Consider a nonzero cohomology sheaf Hn(F ). It is thin at every point of the curve Cn, so

by Lemma 6.2.6 the sheaf Hn(F ) is isomorphic to a pushforward of a torsion-free rank one

sheaf from Cn. It only remains to show that F is a formal complex.

By Lemma 2.3.11 the glueing data for F consists of classes in Ext2(Hn(F ),Hn−1(F ))

for each n ∈ Z. Since the supports Cn ∩ Cn−1 intersect along a zero-dimensional set, the

Ext-group may be computed locally at each intersection point, i.e.

Ext2(Hn(F ),Hn−1(F )) = H0(Ext2(Hn(F ),Hn−1(F )).

Let p ∈ S be any point. Since Hn(F ) is a pushforward of a torsion-free sheaf from a curve

via an inclusion Cn ↪→ S, it has no point-torsion at p. By definition this means that the

depth of the coherent sheaf Hn(F ) at p ∈ S is not zero. Since S is a smooth surface, by

Auslander–Buchsbaum formula this implies that the projective dimension of Hn(F ) over the

local ring OS,p is at most one. Since this true for every point p ∈ S, the local Ext-sheaf

Ext2(Hn(F ),−) vanishes for any second argument. Therefore Ext2(Hn(F ),Hn−1(F )) = 0.

This shows that complex F splits into a direct sum of its cohomology sheaves, and the lemma

is proved.

Recall that a curve is called nodal if it is smooth away from finitely many ordinary double

points. Torsion-free rank one sheaves on nodal curves are well-understood. To deal with

disconnected curves it is convenient to use the following definition.

6.2.8. Definition. A line bundle object on a curve C with connected components C = ti∈ICi

is an object F ∈ Perf(C) which is isomorphic to a direct sum ⊕i∈ILi[ai] for some line bundles

Li ∈ Pic (Ci) and shifts ai ∈ Z.

6.2.9. Lemma. Let S be a smooth surface, and let F ∈ Perf(S) be an object whose set-theoretic
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support is a nodal curve C ⊂ S. Suppose that F is thin at every point of C. Then F is a

pushforward of a line bundle object from some partial normalization of C.

Proof. Denote by Cn the set-theoretic support of Hn(F ). By Lemma 6.2.7 we know that

F ' ⊕Hn(F )[−n] and that any nonzero cohomology sheaf Hn(F ) is a pushforward of a

torsion-free rank one sheaf on Cn. Since Cn is a subcurve of a nodal curve C ⊂ S, it is also

nodal, and hence by [OS79, Prop. 10.1] any torsion-free rank one sheaf on Cn is a pushforward

of a line bundle Ln on some partial normalization C ′n → Cn. Then F is isomorphic to a

pushforward of a line bundle object on the partial normalization tC ′n → ∪Cn = C.

6.3 del Pezzo lemmas

In this subsection we collect some facts about smooth anticanonical divisors on del Pezzo

surfaces.

6.3.1. Definition. Let Y be a del Pezzo surface. The skeleton of Y , denoted by Y sk ⊂ Y , is

a union of all (−1)-curves contained in Y .

6.3.2. Lemma. Let Y be a del Pezzo surface. Let π : Y ′ → Y be a blow-up of several distinct

points such that Y ′ is also a del Pezzo surface. If D′ ⊂ Y ′ is a smooth anticanonical divisor,

then the image π(D′) ⊂ Y is also a smooth anticanonical divisor passing through the blown-up

points.

Proof. An anticanonical divisor intersects each (−1)-curve with multiplicity one, and since

the divisor D′ is smooth, it is also irreducible, so the intersection is indeed a transverse

intersection at a single point. Therefore the image of D′ under the blow-down map is also

smooth.

6.3.3. Lemma. Let Y be a del Pezzo surface of degree ≥ 2. For any point p ∈ Y there exist

infinitely many smooth anticanonical divisors passing through p.
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Proof. By Lemma 6.3.2 it is enough to prove this on a degree 2 del Pezzo surface. In this

case the anticanonical linear system defines a morphism π : Y → P2 which is a degree two

covering branched along a smooth quartic curve C ⊂ P2. A preimage of any line L ⊂ P2

which is not tangent to the curve C is a smooth anticanonical divisor of Y . Among the lines

in P2 passing through the point π(p) only finitely many are tangent to the smooth curve C.

Thus there are infinitely many lines whose preimages are smooth anticanonical divisors in Y

passing through p.

6.3.4. Lemma. Let Y be a del Pezzo surface of degree ≥ 2. Let Z ⊂ Y be the subset of singular

points of the skeleton, i.e., points which lie on more than one (−1)-curve. For any point

p ∈ Y \ Z there exist infinitely many smooth anticanonical divisors passing through p which

do not intersect Z.

Proof. It is enough to work with a degree 2 del Pezzo surface. The anticanonical linear system

defines a degree two morphism π : Y → P2 branched along a smooth quartic C ⊂ P2. From

the explicit description of the 56 (−1)-curves in Y as irreducible components of preimages

of bitangent lines to C we see that if p ∈ Y is not in Z, then the other point in the fiber of

π over π(p) also does not lie in Z. Therefore the linear system of lines in P2 separates π(p)

from the finitely many points in the image π(Z). By Lemma 6.3.3 there exist infinitely many

lines through π(p) whose preimages are smooth anticanonical divisors passing through p and

avoiding Z.

6.3.5. Lemma. Let Y be a del Pezzo surface of degree ≥ 3. Let p, q ∈ Y be two points. Assume

that at least one of them lies in Y \Y sk. Then there exist infinitely many smooth anticanonical

divisors passing through p and q.

Proof. Without loss of generality suppose that p ∈ Y \ Y sk. Then the blow-up π : Y ′ → Y of

the point p is a del Pezzo surface of degree ≥ 2. By Lemma 6.3.3 in Y ′ there exist infinitely

many smooth anticanonical divisors passing through the point π−1(q). Then by Lemma 6.3.2

their images are smooth anticanonical divisors of Y passing through both p and q.
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6.4 On phantoms in del Pezzo surfaces of degree at least 3

The goal of this section is to show that there are no phantom subcategories in del Pezzo

surfaces of degree greater or equal to 3. The proof is split into two stages. In the first stage,

culminating in Lemma 6.4.3, we show that any phantom subcategory is necessarily supported

on the union of (−1)-curves, in other words, on the skeleton of the del Pezzo surface. In

the second stage we classify possible admissible subcategories supported on the skeleton. In

Lemma 6.4.5 we show that the only option is to choose several disjoint (−1)-curves, pick

a line bundle on each one, and span the subcategory by their pushforwards. In particular,

there are no phantoms of this form, and hence no phantoms in del Pezzo surfaces of degree

at least 3.

Until the end of this section, we fix a del Pezzo surface Y with degree greater or equal to

3, and a semiorthogonal decomposition Db
coh(Y ) = 〈A,B〉. Recall that Y sk denotes the union

of (−1)-curves in Y .

6.4.1. Lemma. Let p ∈ Y be a point. Denote by Sp ⊂ Y the point-support of the decomposition

〈A,B〉 at p. If Sp = Y , then neither A nor B is a phantom subcategory.

Proof. Consider the projection triangle B → Op → A of the skyscraper sheaf at the point

p. One of the objects A and B is not locally free at the point p by Lemma 2.6.2 (1). For

simplicity of notation assume that it is B. Consider the subset R ⊂ Y of points where the

graded dimension of the derived fiber of B is the same as the graded dimension of B|{p}. In

a Zariski neighborhood of the point p the subset R is closed by semicontinuity. Moreover,

R does not contain any neighborhood of p since B is not locally free at p. By Lemma 6.3.3

there exist infinitely many distinct smooth anticanonical divisors passing through p. Since

the dimension of R is at most one, we may choose a smooth anticanonical divisor j : D → S

passing through p which is not contained in R. This implies that the derived restriction

j∗B ∈ Perf(D) is not locally free at the point p ∈ D. By Lemma 6.1.2 we know that

supp(B) = Sp = Y , so supp(j∗B) = D.
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The object j∗B is a restriction to an anticanonical divisor on a surface, so we may use the

classification from Proposition 3.1.3. From the discussion above we see that the only possible

option is for j∗(B) to be isomorphic to Op[a]⊕M [b] for some nonzero vector bundle M . In

particular, the alternating sum of generic ranks of cohomology sheaves of j∗B is, up to a sign,

a rank of M . This alternating sum is well-defined for classes in K0, so in particular the class

of j∗B in K0(D) is nonzero. Since the pullback induces a homomorphism Ko(Y )→ K0(D)

of abelian groups, this implies that the class of B in K0(Y ) is nonzero, and therefore B is not

a phantom subcategory.

Note that the derived pullback j∗(Op) is zero in the Grothendieck group, hence the class

of j∗A in K0(D) is the opposite to the class of j∗B, in particular also nonzero, so A is not a

phantom subcategory.

6.4.2. Lemma. Let p ∈ Y \ Y sk be a point. Denote by Sp ⊂ Y the point-support of the

decomposition 〈A,B〉 at p. If Sp is a curve, then neither A nor B is a phantom subcategory.

Proof. Consider the projection triangle B → Op → A of the skyscraper sheaf at p. Choose

an irreducible component C ⊂ Sp containing p, and then choose a point q on the curve C.

Since p ∈ Y \ Y sk, by Lemma 6.3.5 there exist infinitely many smooth anticanonical divisors

of Y passing through p and q. Since Sp is a curve, we may choose among them a divisor

j : D ↪→ Y which is not contained in Sp. Then the intersection D ∩ Sp contains p and q as

isolated points. By Lemma 6.1.5 the restriction j∗B is isomorphic to Op[a] ⊕ Oq[b] in the

derived category of the curve D.

If a = b, then the class of j∗B in K0(D) is nonzero, and similarly to Lemma 6.4.1 we

conclude that neither A nor B is a phantom subcategory. Assume now that a 6= b. Since j∗B

is isomorphic to Op[a] in a neighborhood of p, by Lemma 6.2.2 the curve Sp is smooth at

p, and in a neighborhood of p the object B is isomorphic to a pushforward of a line bundle

shifted to degree −a. In particular, the support of H−a(B) contains an open neighborhood

of the point p in the irreducible component C ⊂ Sp. Since the support of any coherent sheaf

is a closed subset, this implies that supp(H−a(B)) ⊃ C. In particular, q ∈ supp(H−a(B)).
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By Lemma 2.3.8 this implies that q ∈ supp(H−a(j∗B)), but this is a contradiction with the

description of j∗B.

Remark. It seems possible that a slight variation of the argument will prove that Sp is a

smooth curve and B is a pushforward of a line bundle from it. This situation probably never

happens.

6.4.3. Lemma. Assume that B ⊂ Db
coh(Y ) is a phantom subcategory. Then B is supported on

the skeleton.

Proof. Let p ∈ Y \ Y sk be any point. Let Sp ⊂ Y be the point-support of the semiorthogonal

decomposition 〈A,B〉. It is a connected closed subset in a surface, so it is equidimensional.

From Lemmas 6.4.1 and 6.4.2 we know that the only option is for Sp to have dimension zero.

By Lemma 6.1.2 this implies that Sp = {p} and the skyscraper sheaf Op lies in either A or B.

Since B is a phantom subcategory, Op ∈ A. This holds for a skyscraper sheaf at each point

of Y \ Y sk. Then semiorthogonality of A and B implies that any object of B is supported on

the skeleton Y sk.

6.4.4. Lemma. Let B ⊂ Db
coh(Y ) be an admissible subcategory. Assume that it is supported on

the skeleton. Let p be a smooth point of the skeleton, and let Sp be the point-support of the

decomposition 〈A,B〉. Then Sp is either a point {p} or the unique (−1)-curve containing p.

Proof. Let B denote the right projection of the skyscraper sheaf Op to the subcategory

B. The support of B is a closed subset of the skeleton. By Lemma 6.1.2 the subset Sp is

connected, and if it is not a single point {p}, then Sp = supp(B) is a connected union of several

(−1)-curves. By Lemma 6.3.3 there exists a smooth anticanonical divisor j : D ↪→ Y passing

through p. It intersects each (−1)-curve with multiplicity one, and since D is irreducible, it

does not contain any (−1)-curves, and hence intersects each of them transversely at a single

point. By Lemma 6.3.4 we may assume that D does not pass through any singular point of

the skeleton. In particular, the intersection D · Sp = |D ∩ Sp| is equal to the number of the
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irreducible components in Sp. By Proposition 3.1.3 we know that |D ∩ Sp| = | supp(j∗B)| is

at most two. Thus there are at most two irreducible components.

Assume that Sp has exactly two irreducible components, Sp = C1 ∪C2. Then according to

Proposition 3.1.3 the restriction j∗B is isomorphic to a direct sum of two skyscrapers. Then

for an arbitrary smooth anticanonical divisor j′ : D′ ↪→ Y , not necessarily passing through p,

Lemma 3.4.1 shows that j′∗B is a torsion object of length at most two.

Since the degree of the del Pezzo surface Y is at least three, (−1)-curves can be realized

as lines on a cubic surface, hence any two distinct intersecting (−1)-curves on Y intersect in

at most one point, and the intersection is transverse. Let z = C1 ∩ C2 be the intersection

point of the two (−1)-curves. By Lemma 6.3.3 there exists a smooth anticanonical divisor

j′ : D′ ↪→ Y passing through z. The restriction j′∗B ∈ Perf(D′) is a transverse slice of B at

the point z, and it has length at most two by the observation above. Moreover, if z1 ∈ Sp is

any point which is different from z, then by Lemma 6.3.3 there exists a smooth anticanonical

divisor passing through z1, and it also intersects the other irreducible component of Sp at

some point z2. Since the total length of the restriction to that anticanonical divisor is at

most two, the transverse slice at z1 (and at z2) has length one. Therefore B satisfies the

assumptions of Lemma 6.2.9.

Since C1 and C2 are smooth curves intersecting in a single point, the only nontrivial

partial normalization of the union Sp = C1 ∪C2 is the disjoint union C1 tC2. The conclusion

of Lemma 6.2.9 is that there are two possibilities for B. The first option is that B is a direct

sum of two (shifts of) sheaves, one of them a pushforward of a line bundle from C1, and

the other a pushforward of a line bundle from C2. Suppose that we are in the first type of

situation, and B is a direct sum of two pushforwards from distinct curves. Consider the

projection triangle B → Op → A. Since the point p lies on only one of the components of the

curve Sp = C1 ∪ C2, the map B → Op necessarily vanishes on one of the direct summands

of B. Therefore A and B have isomorphic nonzero direct summands, which contradicts the

semiorthogonality of B and A. So this option does not happen.
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The other possibility is for B to be a shift of a pushforward of a line bundle in Pic (C1∪C2).

Claim. Any line bundle on the reducible curve C1 ∪ C2 extends to a line bundle on the del

Pezzo surface Y .

Proof of the claim. Both components of C1 ∪ C2 are smooth rational curves, so the Picard

group Pic (C1 ∪ C2) is isomorphic to Z⊕2, and a line bundle is determined by the degrees of

its restrictions to the two irreducible components.

Choose a blow-down map π : Y → P2 such that C1 is one of the exceptional divisors.

The curve C2 intersects C1, so C2 cannot be an exceptional divisor of this map. Hence C2

is a proper transform of some curve in P2. Since the intersection C1 ∩ C2 is transverse, C2

passes through the point π(C1) with multiplicitly one, but since C2 is a (−1)-curve and the

self-intersection of any curve in P2 is at least 1, it necessarily passes through some other

blown-up point s ∈ P2. The exceptional divisor π−1(s) is a (−1)-curve on Y which by

construction intersects C2 and is disjoint from C1. The line bundle L2 = O(π−1(s)) on Y has

degree 0 on C1 and degree 1 on C2. The same method produces a line bundle L1 with degree

1 on C1 and degree 0 on C2. Tensor products of powers of those bundles L1 and L2 show

that the morphism Pic (Y )→ Pic (C1 ∪ C2) is surjective.

The claim shows that in this case B ' OC1∪C2 ⊗ L[a] for some shift a ∈ Z and some line

bundle L ∈ Pic (Y ). The curve C1 ∪ C2 ⊂ Y has self-intersection zero, so this curve can be

deformed into a smooth curve which does not lie in the skeleton. Since the object B is a twist

of the structure sheaf of C1 ∪ C2, it can also be deformed into an object whose support does

not lie in the skeleton of Y . But admissible subcategories are closed under small deformations

(Proposition 2.5.3), so this is a contradiction with the assumption that B is supported on the

skeleton. Thus Sp cannot be a reducible curve, and the lemma is proved.

6.4.5. Lemma. Let B ⊂ Db
coh(Y ) be an admissible subcategory. Assume that it is supported on

the skeleton and that for any smooth point p in the skeleton the point-support Sp is irreducible.
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Then there is a pairwise disjoint set of (−1)-curves {Cj}j∈J in Y and a set of twists {nj}j∈J

such that B = ⊕j∈J 〈OCj
(nj)〉.

Proof. Let C be a (−1)-curve in Y . Let Co be the open subset of points in C which are

smooth in the skeleton. For a point p ∈ Co we have only two choices for the point-support

Sp to be irreducible. It is either a single point p or the whole curve C. We say that the

(−1)-curve C is included in B if there exists a point p ∈ Co such that Sp = C.

Note that if C is not included in B, then for any p ∈ Co we have Sp = {p}. By Lemma 6.1.2

this implies that the skyscraper sheaf Op belongs to either A or B. It does not lie in B since

admissible subcategories are closed under small deformations and Op may be deformed into

a skyscraper at a point outside of the skeleton. Thus in this case the skyscraper sheaf of

every point in Co lies in A. By Lemma 2.5.8 the semiorthogonality of A and B implies that

the support of any object of B does not intersect Co. Thus any object of B is supported on

the union of the included (−1)-curves and possibly some of the finitely many points which

are singular in the skeleton. Any object supported at a point on a smooth surface may be

deformed away from the skeleton, so there are in fact no isolated points in the support of B,

only the union of the included curves.

Let C,C ′ be two distinct (−1)-curves which are included in B. Pick the points p ∈ Co

and p′ ∈ (C ′)o such that the point-supports are Sp = C, Sp′ = C ′. If the curves C and C ′

are not disjoint, then they intersect at a single point. But point-supports of distinct points

cannot have zero-dimensional intersections by Lemma 6.1.4.

We conclude that B is supported on the disjoint union of included (−1)-curves. The

objects supported at disjoint curves are completely orthogonal to each other, so B splits into

an orthogonal sum of subcategories, where for each included (−1)-curve C we have a nonzero

subcategory BC supported on C. The possible options for subcategories BC are classified in

Proposition 5.3.4. This finishes the proof.

6.4.6. Theorem. Let Y be a del Pezzo surface of degree at least 3. Then there are no phantom
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subcategories in Db
coh(Y ).

Proof. Assume B ⊂ Db
coh(Y ) is a phantom subcategory. Then by Lemma 6.4.3 it is supported

at the skeleton. By Lemma 6.4.4 the point-supports of the semiorthogonal decomposition

〈B⊥,B〉 for smooth points of the skeleton are always irreducible. However, the subcategories

with this property are classified in Lemma 6.4.5 and there are no phantom subcategories

among the listed options.

83



References

[Add16] Nicolas Addington. “New derived symmetries of some hyperkähler varieties”. In:
Algebr. Geom. 3.2 (2016), pp. 223–260.

[AL17] Rina Anno and Timothy Logvinenko. “Spherical DG-functors”. In: J. Eur. Math.
Soc. (JEMS) 19.9 (2017), pp. 2577–2656.

[BB03] A. Bondal and M. van den Bergh. “Generators and representability of functors
in commutative and noncommutative geometry”. In: Mosc. Math. J. 3.1 (2003),
pp. 1–36, 258.

[BBD82] A. A. Beilinson, J. Bernstein, and P. Deligne. “Faisceaux pervers”. In: Analysis
and topology on singular spaces, I (Luminy, 1981). Vol. 100. Astérisque. Soc.
Math. France, Paris, 1982, pp. 5–171.

[BBS14] Christian Böhning, Hans-Christian Graf von Bothmer, and Pawel Sosna. “On
the Jordan-Hölder property for geometric derived categories”. In: Adv. Math. 256
(2014), pp. 479–492.

[Bei78] A.A. Beilinson. “Coherent sheaves on Pn and problems of linear algebra”. In:
Functional Analysis and Its Applications 12.3 (1978), pp. 214–216.

[BK90] A. I. Bondal and M. M. Kapranov. “Representable functors, Serre functors, and
Mutations”. In: Mathematics of the USSR-Izvestiya 35.3 (1990), p. 519.

[BKl06] Igor Burban and Bernd Kreuß ler. “Derived categories of irreducible projective
curves of arithmetic genus one”. In: Compos. Math. 142.5 (2006), pp. 1231–1262.

[Böh+15] Christian Böhning et al. “Determinantal Barlow surfaces and phantom categories”.
In: J. Eur. Math. Soc. (JEMS) 17.7 (2015), pp. 1569–1592.

[DLP85] Jean-Marc Drezet and Joseph Le Potier. “Fibrés stables et fibrés exceptionnels
sur P_2”. In: Annales scientifiques de l’École Normale Supérieure 4e série, 18.2
(1985), pp. 193–243.

[Dre86] J.-M. Drezet. “Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur
P2(C)”. In: Math. Ann. 275.1 (1986), pp. 25–48.

[Eis95] David Eisenbud. Commutative Algebra: with a view toward algebraic geometry.
Vol. 150. Springer, 1995.

84



[GO13] Sergey Gorchinskiy and Dmitri Orlov. “Geometric phantom categories”. In: Publ.
Math. Inst. Hautes Études Sci. 117 (2013), pp. 329–349.

[Gor89] A. L. Gorodentsev. “Transformations of exceptional bundles on Pn”. In: Mathe-
matics of the USSR-Izvestiya 32.1 (1989).

[GR87] A. L. Gorodentsev and A. N. Rudakov. “Exceptional vector bundles on projective
spaces”. In: Duke Math. J. 54.1 (1987), pp. 115–130.

[Huy06] D. Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford Math-
ematical Monographs. The Clarendon Press, Oxford University Press, Oxford,
2006, pp. viii+307. isbn: 978-0-19-929686-6.

[Kap88] M.M. Kapranov. “On the derived categories of coherent sheaves on some homoge-
neous spaces.” In: Inventiones mathematicae 92.3 (1988), pp. 479–508.

[KO15] K. Kawatani and S. Okawa. Nonexistence of semiorthogonal decompositions and
sections of the canonical bundle. Aug. 2015. arXiv: 1508.00682 [math.AG].

[KO94] S. A. Kuleshov and D. O. Orlov. “Exceptional sheaves on Del Pezzo surfaces”. In:
Izv. Ross. Akad. Nauk Ser. Mat. 58.3 (1994), pp. 53–87.

[KP16] Alexander Kuznetsov and Alexander Polishchuk. “Exceptional collections on
isotropic Grassmannians”. In: J. Eur. Math. Soc. (JEMS) 18.3 (2016), pp. 507–
574.

[Kuz07] Alexander Kuznetsov. “Homological projective duality”. In: Publ. Math. Inst.
Hautes Études Sci. 105 (2007), pp. 157–220.

[Kuz09] Alexander Kuznetsov. Hochschild homology and semiorthogonal decompositions.
2009. arXiv: 0904.4330 [math.AG].

[Kuz11] Alexander Kuznetsov. “Base change for semiorthogonal decompositions”. In:
Compositio Mathematica 147.3 (2011), 852–876. arXiv: 0711.1734 [math.AG].

[Kuz13] Alexander Kuznetsov. A simple counterexample to the Jordan-Hölder property
for derived categories. 2013. arXiv: 1304.0903 [math.AG].

[Kuz14] Alexander Kuznetsov. “Semiorthogonal decompositions in algebraic geometry”.
In: Proceedings of the International Congress of Mathematicians—Seoul 2014.
Vol. II. Kyung Moon Sa, Seoul, 2014, pp. 635–660.

[Kuz19] Alexander Kuznetsov. “Calabi-Yau and fractional Calabi-Yau categories”. In: J.
Reine Angew. Math. 753 (2019), pp. 239–267.

85

http://arxiv.org/abs/1508.00682
http://arxiv.org/abs/0904.4330
http://arxiv.org/abs/0711.1734
http://arxiv.org/abs/1304.0903


[LO20] Max Lieblich and Martin Olsson. Derived categories and birationality. 2020. arXiv:
2001.05995 [math.AG].

[Muk87] S. Mukai. “On the moduli space of bundles on K3 surfaces. I”. In: Vector bundles
on algebraic varieties (Bombay, 1984). Vol. 11. Tata Inst. Fund. Res. Stud. Math.
Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413.

[Mum95] David Mumford. Algebraic geometry. I. Classics in Mathematics. Complex projec-
tive varieties, Reprint of the 1976 edition. Springer-Verlag, Berlin, 1995, pp. x+186.
isbn: 3-540-58657-1.

[Orl93] D.O. Orlov. “Projective Bundles, Monoidal Transformations, and Derived Cat-
egories of Coherent Sheaves”. In: Izvestiya: Mathematics 41 (1993), pp. 133–
141.

[OS79] Tadao Oda and C. S. Seshadri. “Compactifications of the generalized Jacobian
variety”. In: Trans. Amer. Math. Soc. 253 (1979), pp. 1–90.

[OSS11] Christian Okonek, Michael Schneider, and Heinz Spindler. Vector bundles on
complex projective spaces. Modern Birkhäuser Classics. Corrected reprint of the
1988 edition, With an appendix by S. I. Gelfand. Birkhäuser/Springer Basel AG,
Basel, 2011, pp. viii+239. isbn: 978-3-0348-0150-8.

[Pol11] A. Polishchuk. “Simple helices on Fano threefolds”. In: Canad. Math. Bull. 54.3
(2011), pp. 520–526.

[Stacks] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.
edu. 2015.

[Zub90] D. Yu. Zube. “The stability of exceptional bundles on three-dimensional projective
space”. In: Helices and vector bundles. Vol. 148. London Math. Soc. Lecture Note
Ser. Cambridge Univ. Press, Cambridge, 1990, pp. 115–117.

86

http://arxiv.org/abs/2001.05995
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu

	Title Page
	Table of Contents
	List of Figures
	Acknowledgments
	Introduction
	Preliminaries
	Conventions and notation
	Exceptional objects and semiorthogonal decompositions
	Derived categories of coherent sheaves
	Spectral sequences for Ext-groups
	Admissible subcategories and their properties
	Projections of skyscraper sheaves
	Fourier–Mukai transforms
	Serre functors

	Semiorthogonal decompositions and anticanonical divisors
	Admissible subcategories and autoequivalences
	Admissible subcategories and pushforwards
	Proof of autoequivalence
	Skyscrapers and arbitrary anticanonical divisors

	Classification of admissible subcategories of ¶2
	Overview
	Strategy of the proof
	Restricting projections of a skyscraper to a cubic curve
	The structure of B
	Full description of A and B

	Admissible subcategories supported on -1-curves
	A sketch of a direct proof for the classification
	Reminder on Hochschild homology
	Local classification on (-1)-curves

	On phantoms in del Pezzo surfaces
	Point-supports of semiorthogonal decompositions
	Cutting lemmas
	del Pezzo lemmas
	On phantoms in del Pezzo surfaces of degree at least 3

	References

